Sample records for ethanol injection method

  1. Fast batch injection analysis system for on-site determination of ethanol in gasohol and fuel ethanol.

    PubMed

    Pereira, Polyana F; Marra, Mariana C; Munoz, Rodrigo A A; Richter, Eduardo M

    2012-02-15

    A simple, accurate and fast (180 injections h(-1)) batch injection analysis (BIA) system with multiple-pulse amperometric detection has been developed for selective determination of ethanol in gasohol and fuel ethanol. A sample aliquot (100 μL) was directly injected onto a gold electrode immersed in 0.5 mol L(-1) NaOH solution (unique reagent). The proposed BIA method requires minimal sample manipulation and can be easily used for on-site analysis. The results obtained with the BIA method were compared to those obtained by gas-chromatography and similar results were obtained (at 95% of confidence level). Published by Elsevier B.V.

  2. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method.

    PubMed

    Feng, Jian-Min; Dai, Ye-Jing

    2013-05-21

    Combining carbon nanotubes (CNTs) with graphene has been proved to be a feasible method for improving the performance of graphene for some practical applications. This paper reports a water-assisted route to grow graphene on CNTs from ferrocene and thiophene dissolved in ethanol by the chemical vapor deposition method in an argon flow. A double injection technique was used to separately inject ethanol solution and water for the preparation of graphene/CNTs. First, CNTs were prepared from ethanol solution and water. The injection of ethanol solution was suspended and water alone was injected into the reactor to etch the CNTs. Thereafter, ethanol solution was injected along with water, which is the key factor in obtaining graphene/CNTs. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and Raman scattering analyses confirmed that the products were the hybrid materials of graphene/CNTs. X-ray photo-electron spectroscopy analysis showed the presence of oxygen rich functional groups on the surface of the graphene/CNTs. Given the activity of the graphene/CNT surface, CdS quantum dots adhered onto it uniformly through simple mechanical mixing.

  3. Treatment of hyperfunctioning thyroid nodules by percutaneous ethanol injection.

    PubMed

    Larijani, Bagher; Pajouhi, Mohammad; Ghanaati, Hossein; Bastanhagh, Mohammad-Hassan; Abbasvandi, Fereshteh; Firooznia, Kazem; Shirzad, Mahmood; Amini, Mohammad-Reza; Sarai, Maryam; Abbasvandi, Nasreen; Baradar-Jalili, Reza

    2002-12-06

    BACKGROUND: Autonomous thyroid nodules can be treated by a variety of methods. We assessed the efficacy of percutaneous ethanol injection in treating autonomous thyroid nodules. METHODS: 35 patients diagnosed by technetium-99 scanning with hyperfunctioning nodules and suppressed sensitive TSH (sTSH) were given sterile ethanol injections under ultrasound guidance. 29 patients had clinical and biochemical hyperthyroidism. The other 6 had sub-clinical hyperthyroidism with suppressed sTSH levels (<0.24 &mgr;IU/ml) and normal thyroid hormone levels. Ethanol injections were performed once every 1-4 weeks. Ethanol injections were stopped when serum T3, T4 and sTSH levels had returned to normal, or else injections could no longer be performed because significant side effects. Patients were followed up at 3, 6 and, in 15 patients, 24 months after the last injection. RESULTS: Average pre-treatment nodule volume [18.2 PlusMinus; 12.7 ml] decreased to 5.7 PlusMinus; 4.6 ml at 6 months follow-up [P < 0.001]. All patients had normal thyroid hormone levels at 3 and 6 months follow-up [P < 0.001 relative to baseline]. sTSH levels increased from 0.09 PlusMinus; 0.02 &mgr;IU/ml to 0.65 PlusMinus; 0.8 &mgr;IU/ml at the end of therapy [P < 0.05]. Only 3 patients had persistent sTSH suppression at 6 months post-therapy. T4 and sTSH did not change significantly between 6 months and 2 years [P > 0.05]. Ethanol injections were well tolerated by the patients, with only 2 cases of transient dysphonia. CONCLUSION: Our findings indicate that ethanol injection is an alternative to surgery or radioactive iodine in the treatment of autonomous thyroid nodules.

  4. Renal Sympathetic Denervation by CT-scan-Guided Periarterial Ethanol Injection in Sheep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firouznia, Kavous, E-mail: k-firouznia@yahoo.com; Hosseininasab, Sayed jaber, E-mail: dr.hosseininasab@gmail.com; Amanpour, Saeid, E-mail: saeidamanpour@yahoo.com

    BackgroundRenal nerves are a recent target in the treatment of hypertension. Renal sympathetic denervation (RSD) is currently performed using catheter-based radiofrequency ablation (RFA) and because this method has limitations, percutaneous magnetic resonance (MR)-guided periarterial ethanol injection is a suggested alternative. However, few studies have been conducted on the effectiveness of percutaneous ethanol injection for RSD.AimTo evaluate the feasibility, efficacy, and complications of computed tomography (CT)-guided periarterial ethanol injection.MethodsEthanol (10 ml, 99.6 %) was injected around the right renal artery in six sheep under CT guidance with the left kidney serving as a control. Before and after the intervention, the sheep underwent MRmore » imaging studies and the serum creatinine level was measured. One month after the intervention, the sheep were euthanized and norepinephrine (NE) concentration in the renal parenchyma was measured to evaluate the efficacy of the procedure. The treated tissues were also examined histopathologically to evaluate vascular, parenchymal, and neural injury.ResultsThe right kidney parenchymal NE concentration decreased significantly compared with the left kidney after intervention (average reduction: 40 %, P = 0.0016). Histologic examination revealed apparent denervation with no other vascular or parenchymal injuries observed in the histological and imaging studies.ConclusionEffective and feasible RSD was achieved using CT-guided periarterial ethanol injection. This technique may be a potential alternative to catheter-based RFA in the treatment of hypertension.« less

  5. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    PubMed

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Hypertonic saline-epinephrine local injection therapy for post-endoscopic sphincterotomy bleeding: removal of blood clots using pure ethanol local injection.

    PubMed

    Sakai, Yuji; Tsuyuguchi, Toshio; Sugiyama, Harutoshi; Nishikawa, Takao; Kurosawa, Jo; Saito, Masayoshi; Tawada, Katsunobu; Mikata, Rintaro; Tada, Motohisa; Ishihara, Takeshi; Yokosuka, Osamu

    2013-08-01

    Bleeding following endoscopic sphincterotomy (EST) is a rare but unavoidable complication of the procedure. We routinely perform local injection of hypertonic saline-epinephrine (HSE) for the treatment of post-EST bleeding. Any blood clot is removed only by irrigation with water after local injection of pure ethanol into the blood clot to cause crusting. We evaluated the usefulness of this treatment method. Subjects were 8 patients (1.2%) with post-EST bleeding requiring hemostatic intervention among 682 patients undergoing EST. After determination of the bleeding point, local injection of HSE was performed. When an adherent blood clot was present, pure ethanol was injected into the blood clot and then irrigation with water was performed to remove the blood clot. Endoscopic hemostasis was successfully achieved in all the 8 patients (100%). In 4 patients (50%), the adherent blood clots were successfully removed only with pure ethanol local injection into the blood clot followed by irrigation with water. No complications of the hemostatic procedure occurred in any patients. This study indicated that hemostasis with HSE local injection can be safe and useful for the treatment of post-EST bleeding, and also that blood clot removal with pure ethanol local injection can be useful.

  7. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  8. Intraperitoneal Administration of Ethanol as a Means of Euthanasia for Neonatal Mice (Mus musculus)

    PubMed Central

    Dyer, Cecilia de Souza; Brice, Angela K; Marx, James O

    2017-01-01

    The humane euthanasia of animals in research is of paramount importance. Neonatal mice frequently respond differently to euthanasia agents when compared with adults. The AVMA's Guidelines for the Euthanasia of Animals includes intraperitoneal injection of ethanol as “acceptable with conditions,” and recent work confirmed that this method is appropriate for euthanizing adult mice, but neonatal mice have not been tested. To explore this method in neonatal mice, mouse pups (C57BL/6 and CD1, 162 total) were injected with 100% ethanol, a pentobarbital–phenytoin combination, or saline at 7, 14, 21, 28, or 35 d of age. Electrocardiograms, respiratory rates, and times to loss of righting reflex and death were recorded. Time to death (TTD) differed significantly between ethanol and pentobarbital–phenytoin at 7, 14, and 21 d and between ethanol groups at 7, 14, and 21 d compared with 35 d. The average TTD (± 1 SD) for ethanol-injected mice were: 7 d, 70.3 ± 39.8 min; 14 d, 51.7 ± 30.5 min; 21 d, 32.3 ± 20.8 min, 28 d, 14.0 ± 15.2; and 35 d, 4.9 ± 1.4. Mean TTD in pentobarbital–phenytoin-injected mice were: 7 d, 2.8 ± 0.4 min; 14 d, 2.9 ± 0.5 min; 21 d, 3.9 ± 1.2 min; 28 d, 3.9 ± 0.7 min; and 35 d, 4.4 ± 0.5. Although TTD did not differ between ethanol and pentobarbital–phenytoin at 28 d of age, the TTD in 3 of 12 mice was longer than 15 min after ethanol administration at this age. Therefore, ethanol should not be used as a method of euthanasia for mice younger than 35 d, because the criteria for humane euthanasia were met only in mice 35 d or older. PMID:28535865

  9. Intraperitoneal Administration of Ethanol as a Means of Euthanasia for Neonatal Mice (Mus musculus).

    PubMed

    de Souza Dyer, Cecilia; Brice, Angela K; Marx, James O

    2017-05-01

    The humane euthanasia of animals in research is of paramount importance. Neonatal mice frequently respond differently to euthanasia agents when compared with adults. The AVMA's Guidelines for the Euthanasia of Animals includes intraperitoneal injection of ethanol as "acceptable with conditions," and recent work confirmed that this method is appropriate for euthanizing adult mice, but neonatal mice have not been tested. To explore this method in neonatal mice, mouse pups (C57BL/6 and CD1, 162 total) were injected with 100% ethanol, a pentobarbital-phenytoin combination, or saline at 7, 14, 21, 28, or 35 d of age. Electrocardiograms, respiratory rates, and times to loss of righting reflex and death were recorded. Time to death (TTD) differed significantly between ethanol and pentobarbital-phenytoin at 7, 14, and 21 d and between ethanol groups at 7, 14, and 21 d compared with 35 d. The average TTD (± 1 SD) for ethanol-injected mice were: 7 d, 70.3 ± 39.8 min; 14 d, 51.7 ± 30.5 min; 21 d, 32.3 ± 20.8 min, 28 d, 14.0 ± 15.2; and 35 d, 4.9 ± 1.4. Mean TTD in pentobarbital-phenytoin-injected mice were: 7 d, 2.8 ± 0.4 min; 14 d, 2.9 ± 0.5 min; 21 d, 3.9 ± 1.2 min; 28 d, 3.9 ± 0.7 min; and 35 d, 4.4 ± 0.5. Although TTD did not differ between ethanol and pentobarbital-phenytoin at 28 d of age, the TTD in 3 of 12 mice was longer than 15 min after ethanol administration at this age. Therefore, ethanol should not be used as a method of euthanasia for mice younger than 35 d, because the criteria for humane euthanasia were met only in mice 35 d or older.

  10. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform.

    PubMed

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G; Abell, Chris

    2015-05-06

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production.

  11. New Alcohol and Onyx Mixture for Embolization: Feasibility and Proof of Concept in Both In Vitro and In Vivo Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeed Kilani, Mohammad, E-mail: msaeedkilani@gmail.com, E-mail: mohammadalikilani@yahoo.com; Zehtabi, Fatemeh, E-mail: fatemeh.zehtabi@gmail.com; Lerouge, Sophie, E-mail: Sophie.Lerouge@etsmtl.ca

    IntroductionOnyx and ethanol are well-known embolic and sclerotic agents that are frequently used in embolization. These agents present advantages and disadvantages regarding visibility, injection control and penetration depth. Mixing both products might yield a new product with different characteristics. The aim of this study is to evaluate the injectability, radiopacity, and mechanical and occlusive properties of different mixtures of Onyx 18 and ethanol in vitro and in vivo (in a swine model).Materials and MethodsVarious Onyx 18 and ethanol formulations were prepared and tested in vitro for their injectability, solidification rate and shrinkage, cohesion and occlusive properties. In vivo tests weremore » performed using 3 swine. Ease of injection, radiopacity, cohesiveness and penetration were analyzed using fluoroscopy and high-resolution CT.ResultsAll mixtures were easy to inject through a microcatheter with no resistance or blockage in vitro and in vivo. The 50%-ethanol mixture showed delayed copolymerization with fragmentation and proximal occlusion. The 75%-ethanol mixture showed poor radiopacity in vivo and was not tested in vitro. The 25%-ethanol mixture showed good occlusive properties and accepted penetration and radiopacity.ConclusionMixing Onyx and ethanol is feasible. The mixture of 25% of ethanol and 75% of Onyx 18 could be a new sclero-embolic agent. Further research is needed to study the chemical changes of the mixture, to confirm the significance of the added sclerotic effect and to find out the ideal mixture percentages.« less

  12. Effects of Alcohol Injection in Rat Sciatic Nerve

    PubMed Central

    Mazoch, Mathew J.; Cheema, Gulraiz A.; Suva, Larry J.; Thomas, Ruth L.

    2015-01-01

    Background Previous studies have shown that the injection of dehydrated alcohol has been successful for the treatment of Morton's neuroma in the foot. In this study, we determined the cellular effect of injection of alcohol into and around the sciatic nerve of rats, and measured the extent of cell necrosis and/or any associated histologic or inflammatory changes. Methods Twenty-two male (~375g) Wistar rats were randomized into two groups each receiving alcohol injections into or around the sciatic nerve after nerve exposure under sterile technique. Group 1 rats were injected with a 0.5ml solution of 0.5% Marcaine in the left sciatic nerve as a control group. In the right sciatic nerve a 0.5ml solution of 4% ethanol with 0.5% Marcaine was injected. Group 2 rats received 0.5ml of 20%ethanol with 0.5% Marcaine injected into the left sciatic nerve and 0.5 ml of 30% ethanol with 0.5% Marcaine injected into the right sciatic nerve. In each group, the rats were placed in 3 subgroups: intraneural, perineural, perimuscular injections. All rats were sacrificed and tissue harvested for histologic evaluation at day 10 post injection. Results No evidence of alcohol-associated cell necrosis, apoptosis or apparent inflammation was observed in histologic specimens of any injected nerves, perineural tissue, or muscles in controls or experimental groups regardless of concentration of ethanol injected on day 10. Conclusion We concluded that alcohol injection (≤30% ethanol) into and/or around the sciatic nerve or the adjacent muscle of rats has no histologic evidence of necrosis or inflammation to the nerve or surrounding tissue. There was no observable histological change in apoptosis, or cell number, in response to the alcohol injection. PMID:25097192

  13. Sterility in male animals induced by injection of chemical agents into the vas deferens.

    PubMed

    Freeman, C; Coffey, D S

    1973-11-01

    This study was undertaken to develop a simple non-surgical technic for achieving male sterility. The method induces obstruction in the vas deferens by injecting sclerosing chemical agents through the skin of the scrotum directly into the vas. Previous success in rats using 95% ethanol have been reported. This sutdy used 95% ethanol, 10% silver nitrate, 36% acetic acid, 3.6% formaldehyde, 3% sodium tetradecyl sulfate, 5% sodium morrhuate, 5% potassium permanganate, 3.6% formaldehyde in 90% ethanol, and for controls .9% sodium chloride. 25 or 50 mcl of the agent being tested was injected into each vas deferens of mature Sprague-Dawley rats. 2 weeks after treatment the rats were exposed to continuous mating. All of the rats treated with ethanol, silver nitrate, acetic acid, formaldehyde, and sodium tetradecyl sulfate have remained sterile for 8 months. 33% of those treated with potassium permanganate and 67% of those treated with sodium morrhuate have remained fertile. When the experiment was repeated in dogs using 95% ethanol, 10% silver nitrate, or 3.6% formaldehyde in 90% ethanol (100 or 500 mcl injected through the skin of the scrotum) the same obstructing sclerosis was found and a reduction in size of the vas was visible for approximately 2 cm. No sperm granulomas were found either grossly or microscopically. The method has not be used in humans but injections of methylene blue dye in alcohol have been made in several human autopsy specimens. The dye was contained within the sheath of the vas and penetrated the full thickness of the wall of the vas. The method is believed to be suitable for humans, would avoid post-surgical hemorrhage and infection, would require less equipment, and more rapid accomplishment and lower cost would follow if paramedical personnel could be taught the procudre in less developed countries for mass voluntary sterilizations. The results appear to be permanent. Surgical reversibility has not be determined.

  14. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform

    PubMed Central

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G.; Abell, Chris

    2015-01-01

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production. PMID:25878135

  15. Acquisition and reinstatement of ethanol-induced conditioned place preference in rats: Effects of the cholinesterase inhibitors donepezil and rivastigmine.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-07-01

    The present study examined the influence of the cholinesterase inhibitors donepezil (a selective inhibitor of acetylcholinesterase) and rivastigmine (also an inhibitor of butyrylcholinesterase) on the acquisition and reinstatement of ethanol-induced conditioned place preference (CPP) in rats. Before the CPP procedure, animals received a single injection of ethanol (0.5 g/kg, 10% w/v, intraperitoneally [i.p.]) for 15 days. The ethanol-induced CPP (biased method) was developed by four injections of ethanol (0.5 g/kg, 10% w/v, i.p.) every second day. Control rats received saline instead of ethanol. Donepezil (0.5, 1 or 3 mg/kg, i.p.) or rivastigmine (0.03, 0.5 or 1 mg/kg, i.p.) were administered before ethanol during conditioning or before the reinstatement of ethanol-induced CPP. The cholinesterase inhibitors were equally effective in increasing (dose dependently) the acquisition of ethanol-induced CPP. Furthermore, priming injections of both inhibitors reinstated (cross-reinstatement) the ethanol-induced CPP with similar efficacy. These effects of both cholinesterase inhibitors were reversed by mecamylamine (3 mg/kg, i.p.), a nicotinic acetylcholine receptor antagonist, but not by scopolamine (0.5 mg/kg, i.p.), a muscarinic acetylcholine receptor antagonist. Thus, our results show that the cholinergic system is involved in the reinforcing properties of ethanol, and nicotinic acetylcholine receptors play an important role in the relapse to ethanol-seeking behaviour. © The Author(s) 2016.

  16. Intoxication- and withdrawal-dependent expression of central and peripheral cytokines following initial ethanol exposure

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Bordner, Kelly A.; Richey, Laura; Jones, Megan E.; Deak, Terrence

    2016-01-01

    Background Evidence has emerged demonstrating that ethanol influences cytokine expression within the CNS, although most studies have examined long-term exposure. Thus, the cytokine response to an acute ethanol challenge was investigated, in order to characterize profiles of cytokine changes following acute exposure. Methods Rats pups were injected intraperitoneally (i.p.) with 2-g/kg ethanol and IL-1 mRNA and protein assessed 0, 60, 120, 180, and 240 min post-injection (Exp. 1). In Exps. 2-5, the expression of several cytokines was examined in adult male rats during acute intoxication (3 hr after 4-g/kg ethanol), as well as withdrawal (18 hr post-injection), after i.p. and intragastric (i.g.) ethanol administration. Results Early in ontogeny, acute ethanol significantly decreased brain IL-1 mRNA and protein. Subsequently, when adult rats were examined, significant and temporally dynamic alterations in central and peripheral cytokines were observed following acute i.p. ethanol exposure (4-g/kg). Although cytokine- and region-dependent, central IL-6 expression was generally increased and TNFα decreased during intoxication, whereas IL-1 expression exhibited increases during withdrawal. In the periphery, acute i.p. ethanol elevated expression of all cytokines, with the response growing in magnitude as the time post-injection increased. Following acute i.g. ethanol (4-g/kg), intoxication-related increases in IL-6 expression were again observed in the PVN, although to a lesser extent. Long-term, voluntary, intermittent ethanol consumption resulted in tolerance to the effects of an i.g. ethanol challenge (4-g/kg) on PVN IL-6 expression, whereas these same elevations in IL-6 expression were still seen in the amygdala in rats with a history of moderate ethanol intake. Treatment with minocycline did not significantly attenuate i.p. or i.g. ethanol-induced changes in central cytokine expression. Conclusions Together, these studies provide a foundation for understanding fluctuations in central and peripheral cytokines following acute ethanol as potential contributors to the constellation of neural and behavioral alterations observed during ethanol intoxication and withdrawal. PMID:25156612

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streitparth, F., E-mail: florian.streitparth@charite.de; Walter, A.; Stolzenburg, N.

    Purpose. To evaluate the feasibility and efficacy of image-guided periarterial ethanol injection as an alternative to transluminal radiofrequency ablation. Methods. Unilateral renal periarterial ethanol injection was performed under general anesthesia in 6 pigs with the contralateral kidney serving as control. All interventions were performed in an open 1.0 T MRI system under real-time multiplanar guidance. The injected volume was 5 ml (95 % ethanol labelled marked MR contrast medium) in 2 pigs and 10 ml in 4 pigs. Four weeks after treatment, the pigs underwent MRI including MRA and were killed. Norepinephrine (NE) concentration in the renal parenchyma served asmore » a surrogate parameter to analyze the efficacy of sympathetic denervation. In addition, the renal artery and sympathetic nerves were examined histologically to identify evidence of vascular and neural injury. Results. In pigs treated with 10 ml ethanol, treatment resulted in neural degeneration. We found a significant reduction of NE concentration in the kidney parenchyma of 53 % (p < 0.02) compared with the untreated contralateral kidney. In pigs treated with 5 ml ethanol, no significant changes in histology or NE were observed. There was no evidence of renal arterial stenosis in MRI, macroscopy or histology in any pig. Conclusion. MR-guided periarterial ethanol injection was feasible and efficient for renal sympathetic denervation in a swine model. This technique may be a promising alternative to the catheter-based approach in the treatment of resistant arterial hypertension.« less

  18. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant.

    PubMed

    Sebaaly, Carine; Greige-Gerges, Hélène; Agusti, Géraldine; Fessi, Hatem; Charcosset, Catherine

    2016-01-01

    Based on our previous study where optimal conditions were defined to encapsulate clove essential oil (CEO) into liposomes at laboratory scale, we scaled-up the preparation of CEO and eugenol (Eug)-loaded liposomes using a membrane contactor (600 mL) and a pilot plant (3 L) based on the principle of ethanol injection method, both equipped with a Shirasu Porous Glass membrane for injection of the organic phase into the aqueous phase. Homogenous, stable, nanometric-sized and multilamellar liposomes with high phospholipid, Eug loading rates and encapsulation efficiency of CEO components were obtained. Saturation of phospholipids and drug concentration in the organic phase may control the liposome stability. Liposomes loaded with other hydrophobic volatile compounds could be prepared at large scale using the ethanol injection method and a membrane for injection.

  19. Process for producing ethanol from syngas

    DOEpatents

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  20. Baclofen blocks yohimbine-induced increases in ethanol-reinforced responding in rats.

    PubMed

    Williams, Keith L; Nickel, Melissa M; Bielak, Justin T

    2016-05-01

    Chronic or repeated stress increases alcohol consumption. The GABA-B agonist baclofen decreases alcohol consumption and may be most effective for individuals with comorbid anxiety/stress disorders. The present study sought to determine if baclofen blocks stress-induced increases in ethanol self-administration as modeled by repeated yohimbine injections in rats. Rats were trained to respond for 15% w/v ethanol in operant chambers using a method that applies neither water deprivation nor saccharin/sucrose fading. Following training, the rats received 6 injections of 1.25mg/kg yohimbine were given immediately prior to the operant sessions during a 2-week time period. Subsequently, some rats were pair-matched to receive either 1.25mg/kg yohimbine or saline in the presence of 0.3, 1, and 3mg/kg baclofen prior to sessions. Acquisition of ethanol self-administration was poor. Pretreatment with yohimbine consistently increased responding across repeated injections. Yohimbine's effect on ethanol intake unexpectedly diverged from the effect on responding as the rats failed to consume all reinforcers earned. Smaller doses of baclofen paired with saline injections had no effect on ethanol responding; only 3mg/kg baclofen reduced ethanol self-administration. The smallest baclofen dose of 0.3mg/kg failed to block the yohimbine-induced increase in self-administration. The large baclofen dose of 3mg/kg continued to suppress ethanol self-administration when given with yohimbine. Baclofen 1mg/kg blocked the effect of yohimbine even though it had no effect when given in the absence of yohimbine. Exposure to high ethanol concentrations may induce self-administration only in certain conditions. The dissociation between responding and intake suggests that repeated yohimbine injections may initiate other behavioral or physiological mechanisms that confound its effects as a pharmacological stressor. Furthermore, an optimal baclofen dose range may specifically protect against stress-induced alcohol self-administration, highlighting a specific contribution of GABA-B receptors and a potential therapeutic efficacy of GABA-B agonists at a non-sedating dose. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Differential effects of context on psychomotor sensitization to ethanol and cocaine.

    PubMed

    Didone, Vincent; Quoilin, Caroline; Dieupart, Julie; Tirelli, Ezio; Quertemont, Etienne

    2016-04-01

    Repeated drug injections lead to sensitization of their stimulant effects in mice, a phenomenon sometimes referred to as drug psychomotor sensitization. Previous studies showed that sensitization to cocaine is context dependent as its expression is reduced in an environment that was not paired with cocaine administration. In contrast, the effects of the test context on ethanol sensitization remain unclear. In the present study, female OF1 mice were repeatedly injected with 1.5 g/kg ethanol to test for both the effects of context novelty/familiarity and association on ethanol sensitization. A first group of mice was extensively pre-exposed to the test context before ethanol sensitization and ethanol injections were paired with the test context (familiar and paired group). A second group was not pre-exposed to the test context, but ethanol injections were paired with the test context (nonfamiliar and paired group). Finally, a third group of mice was not pre-exposed to the test context and ethanol was repeatedly injected in the home cage (unpaired group). Control groups were similarly exposed to the test context, but were injected with saline. In a second experiment, cocaine was used as a positive control. The same behavioral procedure was used, except that mice were injected with 10 mg/kg cocaine instead of ethanol. The results show a differential involvement of the test context in the sensitization to ethanol and cocaine. Cocaine sensitization is strongly context dependent and is not expressed in the unpaired group. In contrast, the expression of ethanol sensitization is independent of the context in which it was administered, but is strongly affected by the relative novelty/familiarity of the environment. Extensive pre-exposure to the test context prevented the expression of ethanol sensitization. One possible explanation is that expression of ethanol sensitization requires an arousing environment.

  2. Differential Expression of Ethanol-Induced Hypothermia in Adolescent and Adult Rats Induced by Pretest Familiarization to the Handling/Injection Procedure

    PubMed Central

    Ristuccia, Robert C.; Hernandez, Michael; Wilmouth, Carrie E.; Spear, Linda P.

    2007-01-01

    Background Previous work examining ethanol’s autonomic effects has found contrasting patterns of age-related differences in ethanol-induced hypothermia between adolescent and adult rats. Most studies have found adolescents to be less sensitive than adults to this effect, although other work has indicated that adolescents may be more sensitive than adults under certain testing conditions. To test the hypothesis that adolescents show more ethanol hypothermia than adults when the amount of disruption induced by the test procedures is low, but less hypothermia when the experimental perturbation is greater, the present study examined the consequences of manipulating the amount of perturbation at the time of testing on ethanol-induced hypothermia in adolescent and adult rats. Methods The amount of test disruption was manipulated by administering ethanol through a chronically indwelling gastric cannula (low perturbation) versus via intragastric intubation (higher perturbation) in Experiment 1 or by either familiarizing animals to the handling and injection procedure for several days pretest or leaving them unmanipulated before testing in Experiment 2. Results The results showed that the handling manipulation, but not the use of gastric cannulae, altered the expression of ethanol-induced hypothermia differentially across age. When using a familiarization protocol sufficient to reduce the corticosterone response to the handling and injection procedure associated with testing, adolescents showed greater hypothermia than adults. In contrast, the opposite pattern of age differences in hypothermia was evident in animals that were not manipulated before the test day. Surprisingly, however, this difference across testing circumstances was driven by a marked reduction in hypothermia among adults who had been handled before testing, with handling having relatively little impact on ethanol hypothermia among adolescents. Conclusions Observed differences between adolescents and adults in the autonomic consequences of ethanol were dramatically influenced by whether animals were familiarized with the handling/injection process before testing. Under these circumstances, adolescents were less susceptible than adults to the impact of experimental perturbation on ethanol-induced hypothermia. These findings suggest that seemingly innocuous aspects of experimental design can influence conclusions reached on ontogenetic differences in sensitivity to ethanol, at least when indexed by ethanol-induced hypothermia. PMID:17374036

  3. Effects of binge-like ethanol exposure during adolescence on the hyperalgesia observed during sickness syndrome in rats.

    PubMed

    de Oliveira, Bruna M T; Telles, Tatiane M B B; Lomba, Luiz A; Correia, Diego; Zampronio, Aleksander R

    2017-09-01

    Acute and chronic ethanol exposure increases the risk of infection by altering the innate host's defense system. Adolescence is a critical period for brain development. Insults during this period may have long-lasting consequences. The present study investigated the effects of binge-like ethanol exposure in adolescent rats on mechanical hyperalgesia during sickness syndrome that was induced by a systemic injection of lipopolysaccharide (LPS) or an intracerebroventricular (i.c.v.) injection of interleukin-1β (IL-1β) after the cessation of ethanol exposure. Male Wistar rats were exposed to ethanol from postnatal day (PND) 25 to PND 38 in a binge-like pattern. Hyperalgesia was assessed on the right hindpaw after an intraperitoneal injection of LPS (5 and 50μg/kg, intraperitoneally) on PND 51 and PND 63 or an i.c.v. or intraplantar (i.pl.) injection of IL-β (3 and 1ng, respectively) on PND 51. Ethanol exposure during adolescence did not alter mechanical thresholds which increased normally with age. The systemic injection of LPS (0.5-50μg/kg) in adult rats induced dose-related mechanical hyperalgesia. Binge-like ethanol exposure significantly increased mechanical hyperalgesia that was induced by 50μg/kg LPS on PND 51 and 63, which lasted until 24h after the injection. This change was not observed at a lower dose of LPS (5μg/kg). Acute oral treatment with ethanol 24h prior to LPS administration did not alter mechanical hyperalgesia. The i.c.v. injection of IL-1β (1-10ng) also induced dose-related mechanical hyperalgesia in the right hindpaw in non-exposed animals. In animals that were exposed to binge-like ethanol, the i.c.v. or i.pl. injection of IL-1β also increased hyperalgesia on PND 51. These results suggest that binge-like ethanol exposure during adolescence causes alterations in the central nervous system that can increase mechanical hyperalgesia that is observed during sickness syndrome, and this effect can be observed until adulthood after the cessation of ethanol exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae).

    PubMed

    Reding, Michael E; Oliver, Jason B; Schultz, Peter B; Ranger, Christopher M; Youssef, Nadeer N

    2013-02-01

    Exotic ambrosia beetles are damaging pests in ornamental tree nurseries in North America. The species Xylosandrus crassiusculus (Motshulsky) and Xylosandrus germanus (Blandford) are especially problematic. Management of these pests relies on preventive treatments of insecticides. However, field tests of recommended materials on nursery trees have been limited because of unreliable attacks by ambrosia beetles on experimental trees. Ethanol-injection of trees was used to induce colonization by ambrosia beetles to evaluate insecticides and botanical formulations for preventing attacks by ambrosia beetles. Experiments were conducted in Ohio, Tennessee, and Virginia. Experimental trees injected with ethanol had more attacks by ambrosia beetles than uninjected control trees in all but one experiment. Xylosandrus crassiusculus and X. germanus colonized trees injected with ethanol. In most experiments, attack rates declined 8 d after ethanol-injection. Ethanol-injection induced sufficient pressure from ambrosia beetles to evaluate the efficacy of insecticides for preventing attacks. Trunk sprays of permethrin suppressed cumulative total attacks by ambrosia beetles in most tests. Trunk sprays of the botanical formulations Armorex and Veggie Pharm suppressed cumulative total attacks in Ohio. Armorex, Armorex + Permethrin, and Veggie Pharm + Permethrin suppressed attacks in Tennessee. The bifenthrin product Onyx suppressed establishment of X. germanus in one Ohio experiment, and cumulative total ambrosia beetle attacks in Virginia. Substrate drenches and trunk sprays of neonicotinoids, or trunk sprays of anthranilic diamides or tolfenpyrad were not effective. Ethanol-injection is effective for inducing attacks and ensuring pressure by ambrosia beetles for testing insecticide efficacy on ornamental trees.

  5. Cement vertebroplasty combined with ethanol injection in the treatment of vertebral hemangioma.

    PubMed

    Chen, Liang; Zhang, Chun-lin; Tang, Tian-si

    2007-07-05

    A number of methods have been used in the treatment of symptomatic and aggressive vertebral hemangioma, but none of them is optimal. Vertebral hemangioma treated with cement vertebroplasty or ethanol injection alone showed relatively good results despite their limitations. Between February 2002 and May 2004, twelve patients with vertebral hemangioma were subjected to combined cement vertebroplasty and ethanol injection, five of them were men and seven women, and aged from 26 to 54 years (mean, 41 years). The following levels of the spine were involved: T9: 1, T10: 3, T12: 2, L1: 1, L2: 2, L3: 2 and L4: 1. The clinical results and radiographic records of the patients were assessed after 2 years and 5 months of follow-up. The average score of back pain significantly decreased from 6.5 before operation to 1.7 one month after operation. No severe complications occurred during and after operation. During the period of follow-up, symptoms were not deteriorated. At the end of follow-up, neither radiographic sign of aggressive destruction nor collapse of the involved vertebra was observed. Significant improvement in the 12 patients was demonstrated on 7 of 8 SF-36 Health Scale except for mental health. Cement vertebroplasty combined with ethanol injection as a safe and effective technique is an alternative to the treatment of patients with vertebral hemangioma.

  6. Intraperitoneal Injection of Ethanol for the Euthanasia of Laboratory Mice (Mus musculus) and Rats (Rattus norvegicus)

    PubMed Central

    Allen-Worthington, Krystal H; Brice, Angela K; Marx, James O; Hankenson, F Claire

    2015-01-01

    Compassion, professional ethics, and public sensitivity require that animals are euthanized humanely and appropriately under both planned and emergent situations. According to the 2013 AVMA Guidelines for the Euthanasia of Animals, intraperitoneal injection of ethanol is “acceptable with conditions” for use in mice. Because only limited information regarding this technique is available, we sought to evaluate ethanol by using ECG and high-definition video recording. Mice (n = 85) and rats (n = 16) were treated with intraperitoneal ethanol (70% or 100%), a positive-control agent (pentobarbital–phenytoin combination [Pe/Ph]), or a negative-control agent (saline solution). After injection, animals were assessed for behavioral and physiologic responses. Pain-assessment techniques in mice demonstrated that intraperitoneal injection of ethanol was not more painful than was intraperitoneal Pe/Ph. Median time to loss of consciousness for all mice that received ethanol or Pe/Ph was 45 s. Median time to respiratory arrest was 2.75, 2.25, and 2.63 min, and time (mean ± SE) to cardiac arrest was 6.04 ± 1.3, 2.96 ± 0.6, and 4.03 ± 0.5 min for 70% ethanol, 100% ethanol, and Pe/Ph, respectively. No mouse that received ethanol or Pe/Ph regained consciousness. Although successful in mice, intraperitoneal ethanol at the doses tested (9.2 to 20.1 g/kg) was unsuitable for euthanasia of rats (age, 7 to 8 wk) because of the volume needed and prolonged time to respiratory effects. For mice, intraperitoneal injection of 70% or 100% ethanol induced rapid and irreversible loss of consciousness, followed by death, and should be considered as “acceptable with conditions.” PMID:26632787

  7. Intraperitoneal Injection of Ethanol for the Euthanasia of Laboratory Mice (Mus musculus) and Rats (Rattus norvegicus).

    PubMed

    Allen-Worthington, Krystal H; Brice, Angela K; Marx, James O; Hankenson, F Claire

    2015-11-01

    Compassion, professional ethics, and public sensitivity require that animals are euthanized humanely and appropriately under both planned and emergent situations. According to the 2013 AVMA Guidelines for the Euthanasia of Animals, intraperitoneal injection of ethanol is "acceptable with conditions" for use in mice. Because only limited information regarding this technique is available, we sought to evaluate ethanol by using ECG and high-definition video recording. Mice (n = 85) and rats (n = 16) were treated with intraperitoneal ethanol (70% or 100%), a positive-control agent (pentobarbital-phenytoin combination [Pe/Ph]), or a negative-control agent (saline solution). After injection, animals were assessed for behavioral and physiologic responses. Pain-assessment techniques in mice demonstrated that intraperitoneal injection of ethanol was not more painful than was intraperitoneal Pe/Ph. Median time to loss of consciousness for all mice that received ethanol or Pe/Ph was 45 s. Median time to respiratory arrest was 2.75, 2.25, and 2.63 min, and time (mean ± SE) to cardiac arrest was 6.04 ± 1.3, 2.96 ± 0.6, and 4.03 ± 0.5 min for 70% ethanol, 100% ethanol, and Pe/Ph, respectively. No mouse that received ethanol or Pe/Ph regained consciousness. Although successful in mice, intraperitoneal ethanol at the doses tested (9.2 to 20.1 g/kg) was unsuitable for euthanasia of rats (age, 7 to 8 wk) because of the volume needed and prolonged time to respiratory effects. For mice, intraperitoneal injection of 70% or 100% ethanol induced rapid and irreversible loss of consciousness, followed by death, and should be considered as "acceptable with conditions."

  8. Initiation and maintenance of oral ethanol self-administration in female Sprague-Dawley rats.

    PubMed

    Neill, J C; Domeney, A M; Costall, B

    1994-01-01

    Group-housed female Sprague-Dawley rats were trained to self-administer 5% ethanol (v/v) in a large self-administration chamber (100 x 40 x 40 cm) following three different initiation methods. The procedures were 1) an ethanol injection procedure, 2) a sucrose substitution procedure, and 3) a prandial drinking technique. Only the prandial drinking method served to maintain responding for ethanol in the absence of water deprivation or sweetening of the alcohol solution. Rats trained using this technique showed a large preference for 5% ethanol over water and a significant increase in locomotor activity while responding for 5% ethanol but not while responding for water. When the concentration of ethanol was increased from 1% to 32%, the amount of ethanol ingested increased up to a maximum of 1.233 +/- 0.3 g/kg of 32% ethanol, and response rates and number of ethanol deliveries followed an inverted U-shaped curve. Appreciable blood ethanol levels were detected immediately following self-administration of 8% ethanol. These results show that, in female Sprague-Dawley rats under the experimental conditions described, the prandial drinking technique was the most effective in inducing stable oral ethanol self-administration and suggest that under these conditions and in these subjects ethanol was acting as a positive reinforcer.

  9. Adapting ethanol fuels to diesel engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    During the 2nd International Alcohol Symposium 1977, Daimler-Benz reported on the advantages and disadvantages of the various methods of using ethanol in originally diesel-operated commercial vehicles, and especially about the first results in the field of adapting the ethanol fuel to the requirements of conventional diesel engines. Investigations to this effect were continued by Daimler-Benz AG, Stuttgart, and Mercedes-Benz of Brasil in coordination with competent Brazilian government departments. The development effort is primarily adapted to Brazilian conditions, since ethanol fuel is intended as a long-term project in this country. This report is presented under headings - auto-ignition; durability tests; remedialmore » measures; the injection systems; ethanol quality.« less

  10. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    PubMed

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  11. New Alcohol and Onyx Mixture for Embolization: Feasibility and Proof of Concept in Both In Vitro and In Vivo Models.

    PubMed

    Saeed Kilani, Mohammad; Zehtabi, Fatemeh; Lerouge, Sophie; Soulez, Gilles; Bartoli, Jean Michel; Vidal, Vincent; Badran, Mohammad F

    2017-05-01

    Onyx and ethanol are well-known embolic and sclerotic agents that are frequently used in embolization. These agents present advantages and disadvantages regarding visibility, injection control and penetration depth. Mixing both products might yield a new product with different characteristics. The aim of this study is to evaluate the injectability, radiopacity, and mechanical and occlusive properties of different mixtures of Onyx 18 and ethanol in vitro and in vivo (in a swine model). Various Onyx 18 and ethanol formulations were prepared and tested in vitro for their injectability, solidification rate and shrinkage, cohesion and occlusive properties. In vivo tests were performed using 3 swine. Ease of injection, radiopacity, cohesiveness and penetration were analyzed using fluoroscopy and high-resolution CT. All mixtures were easy to inject through a microcatheter with no resistance or blockage in vitro and in vivo. The 50%-ethanol mixture showed delayed copolymerization with fragmentation and proximal occlusion. The 75%-ethanol mixture showed poor radiopacity in vivo and was not tested in vitro. The 25%-ethanol mixture showed good occlusive properties and accepted penetration and radiopacity. Mixing Onyx and ethanol is feasible. The mixture of 25% of ethanol and 75% of Onyx 18 could be a new sclero-embolic agent. Further research is needed to study the chemical changes of the mixture, to confirm the significance of the added sclerotic effect and to find out the ideal mixture percentages.

  12. Gestrinone combined with ultrasound-guided aspiration and ethanol injection for treatment of chocolate cyst of ovary.

    PubMed

    Wu, Xiaoyun; Xu, Yun

    2015-05-01

    The aim of this study was to determine clinical performance of gestrinone combined with ultrasound-guided aspiration and ethanol injection in treating chocolate cyst of ovary. Sixty-eight patients enrolled in this study were randomly divided into two groups: control group and combination treatment group. In the control group, 34 patients were treated with ultrasound-guided aspiration and ethanol injection. In the combination treatment group, 34 patients received gestrinone p.o. following ultrasound-guided aspiration and ethanol injection. The recurrence rate of chocolate cyst was 10-fold lower in the combination treatment group (2.94%, 1/34) than in the control group (29.4%, 10/34) at 12 months. The effective rate for reduction of chocolate cyst was significantly higher in the combination treatment group (94.12%, 32/34) than in the control group (64.71%, 22/34) (P = 0.009). Gestrinone combined with ultrasound-guided aspiration and ethanol injection therapy is an effective treatment for ovarian chocolate cyst with low recurrence rate. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  13. Effects of ethanol on Pavlovian autoshaping in rats.

    PubMed

    Tomie, A; Cunha, C; Mosakowski, E M; Quartarolo, N M; Pohorecky, L A; Benjamin, D

    1998-09-01

    Approach responses, consummatory behaviors, and directed motor responses maintained by food reward resemble autoshaping CRs and are increased by lower doses of ethanol. This study evaluated the effects of presession i.p. injections of ethanol doses (0.00, 0.25, 0.50, 0.70. or 1.00 g/kg) on the acquisition of lever-press autoshaping CR performance in groups of male Long-Evans hooded rats. Paired groups received 15 daily sessions of Pavlovian autoshaping procedures, wherein the insertion of a retractable lever for 5 s (CS) was followed by the response-independent presentation of food (US). Ethanol facilitated lever-press autoshaping CR acquisition, as revealed by dose-related increases in the number of trials on which CRs were performed. The form of the dose-effect curve was inverted U-shaped with maximal responding induced during sessions 1-5 by the 0.70 g/kg ethanol dose. A similar dose-effect curve was observed during sessions 11-15, revealing that the effects of ethanol on autoshaping CR performance were relatively stable. A pseudoconditioning control group injected presession with 0.50 g/kg ethanol received training wherein the food US was presented randomly with respect to the lever CS. Few lever-presses were performed by the Random 0.50 group, indicating that ethanol's effects on autoshaping CR acquisition and maintenance observed in the Paired 0.50 group were not due to its psychomotor activating effects. A non-injection control group performed more autoshaping CRs than did the control group injected presession with saline, indicating that daily presession i.p. injections per se suppress autoshaping CR performance. Results reveal that low doses of ethanol enhance Pavlovian conditioning of directed motor and consummatory-like responding maintained by food reward. Implications for autoshaping accounts of impulsivity and drug abuse are considered.

  14. Development of an Ethanol Blend Two-Stroke Direct-Injection Snowmobile for Use in the Clean Snowmobile Challenge and National Parks

    DOT National Transportation Integrated Search

    2010-09-01

    The University of Idaho's entry into the 2010 SAE Clean Snowmobile Challenge (CSC) was a direct-injection (DI) two-stroke powered snowmobile modified to use blended ethanol fuel. The modulated and battery-less direct-injection system used to decrease...

  15. ACUTE ETHANOL DISRUPTS PHOTIC AND SEROTONERGIC CIRCADIAN CLOCK PHASE-RESETTING IN THE MOUSE

    PubMed Central

    Brager, Allison J.; Ruby, Christina L.; Prosser, Rebecca A.; Glass, J. David

    2011-01-01

    Background Alcohol abuse is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: 1) characterize the SCN pharmacokinetics of acute systemic ethanol administration; 2) explore the effects of acute ethanol on photic and non-photic phase-resetting; and 2) determine if the SCN is a direct target for photic effects. Methods First, microdialysis was used to characterize the pharmacokinetics of acute i.p. injections of 3 doses of ethanol (0.5, 1.0 and 2.0 g/kg) in the mouse suprachiasmatic (SCN) circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase-delays and serotonergic ([+]8-OH-DPAT-induced) phase-advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. Results Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20–40 min post-injection with half-lives for clearance ranging from 0.6–1.8 hr. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase-delays. Conclusions These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and non-photic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism. PMID:21463340

  16. Ethanol induces taurine release in the amygdala: an in vivo microdialysis study.

    PubMed

    Quertemont, E; Dahchour, A; Ward, R J; Witte, P

    1999-01-01

    The effect of acute IP ethanol injections on the extracellular aspartate, glutamate, taurine and GABA content of the basolateral amygdala microdialysate was investigated in relationship with total brain ethanol. Each acute intraperitoneal injection of ethanol, 0.5, 1.0, 2.0 and 3.0 g/kg body weight, induced an immediate increase in microdialysate taurine; both 0.5 and 1.0 g/kg ethanol evoked an increase during the first 20 minutes following injection which returned to baseline value by 40 minutes, despite the fact that ethanol was detectable in the brain until 60 or 120 minutes, respectively. After either 2.0 or 3.0 g/kg ethanol there was an increase in taurine of gradual intensity which gradually declined to reach baseline values by 100 minutes. In contrast, the ethanol concentration for 2.0 g/kg remained elevated at the end of the 120 minutes; approximately 25 mg ethanol/mg protein. The stimulated release of taurine within the amygdala could participate in the regulation of ethanoli-nduced changes in osmolarity, since taurine is postulated to act as an osmoregulator in the brain. Taurine could also mediate or interact with ethanol-induced central nervous system effects, as it exerts a modulatory action on cell excitability and neurotransmitter processes.

  17. Chronic tolerance to ethanol-induced sedation: implication for age-related differences in locomotor sensitization.

    PubMed

    Quoilin, Caroline; Didone, Vincent; Tirelli, Ezio; Quertemont, Etienne

    2013-06-01

    The adolescent brain has been suggested to be particularly sensitive to ethanol-induced neuroadaptations, which in turn could increase the risk of youths for alcohol abuse and dependence. Sensitization to the locomotor stimulant effects of ethanol has often been used as an animal model of ethanol-induced neuroadaptations. Previously, we showed that young mice were more sensitive than adults to the locomotor sensitization induced by high ethanol doses. However, this effect could be due to age-related differences in chronic tolerance to the sedative effects of ethanol. The aim of the present study is to assess chronic tolerance to the sedative effects of ethanol in weaning 21-day-old (P21), adolescent 35-day-old (P35) and adult 63-day-old (P63) female Swiss mice. After a daily injection of saline or 4 g/kg ethanol during 6 consecutive days, all P21, P35 and P63 mice were injected with 4 g/kg ethanol and submitted to the loss of righting reflex procedure. Our results confirm that the sensitivity to the acute sedative effects of ethanol gradually increases with age. Although this schedule of ethanol injections induces significant age-related differences in ethanol sensitization, it did not reveal significant differences between P21, P35 and P63 mice in the development of a chronic ethanol tolerance to its sedative effects. The present results show that age-related differences in the development of ethanol sensitization cannot be explained by differences in chronic ethanol tolerance to its sedative effects. More broadly, they do not support the idea that ethanol-induced sensitization is a by-product of chronic ethanol tolerance. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Biliopancreatic duct injection of ethanol as an experimental model of acute and chronic pancreatitis in rats

    PubMed Central

    Unal, Ethem; Atalay, Suleyman; Tolan, Huseyin Kerem; Yuksekdag, Sema; Yucel, Metin; Acar, Aylin; Basak, Fatih; Gunes, Pembegul; Bas, Gurhan

    2015-01-01

    In the present study, we described an easily reproducable experimental pancreatits model induced by biliopancreatic duct injection of ethyl alcohol. Seventy Wistar albino rats were divided equally into seven groups randomly: the control group (group 1), acute pancreatitis groups; induced by 20% ethanol (group 2), 48% ethanol (group 3), 80% ethanol (group 4), chronic pancreatitis groups; induced by 20% ethanol (group 5), 48% ethanol (group 6) and by 80% ethanol (group 7). Acute pancreatitis groups were sacrified on postoperative day 3, while the control group and chronic pancreatitis groups were killed on postoperative day 7. Histopathologic evaluation was done, and P < 0.05 was accepted as statistically significant. All rats in group 3 developed acute pancreatitis (100%). Inflammatory infiltration of neutrophils and mononuclear cells, interstitial edema, and focal necrotic areas were seen in the pancreatic tissues. Similarly, all rats in group 6 developed chronic pancreatitis (100%). Interstitial fibrosis, lymphotic infiltration, ductal dilatation, acinar cell atrophy, periductal hyperplasia were seen in the pancreatic tissues. Mortality was seen only in group 7. The biliopancreatic ductal injection of 48% ethanol induced acute and chronic pancreatitis has 100% success rate. PMID:25785001

  19. Substitution of Percutaneous Ethanol Injection with a Low Molecular Weight Peptide Gel Mimicking Chemoembolization for Cancer Therapy

    PubMed Central

    Xu, Long; Liang, Yan; Sun, Changzheng; Hao, Na; Yan, Jianqin; Gao, Wenxia; He, Bin

    2017-01-01

    In order to avoid the instability and quick separation between emulsifier and drug in the interventional chemoembolization, an injectable low molecular weight peptide gel (LMWG) was prepared to localize ethanol and chemotherapeutic for in situ synergistic therapy. The formation mechanism, rheological property and morphology of the LMWG were investigated by NMR, UV-vis, MS and SEM. The interaction between gelator and anticancer drug doxorubicin hydrochloride (DOX) was evaluated by fluorescence spectroscopy and its contribution on drug loading properties was demonstrated. The gel was non-toxic to both 3T3 fibroblasts and 4T1 breast cancer cells. DOX as well as ethanol were encapsulated in the gel and injected in breast cancer bearing mice with low drug dose (2.5 mg/kg body weight). The LMWG surrounded tumors act as a depot for ethanol release and release DOX to induce the apoptosis of cancer cells. With the combination of percutaneous ethanol injection (PEI) and chemotherapy, the DOX loaded LMWG exhibited great significance in necrosis of tumor tissue and exciting tumor inhibition efficiency. PMID:29071195

  20. Substitution of Percutaneous Ethanol Injection with a Low Molecular Weight Peptide Gel Mimicking Chemoembolization for Cancer Therapy.

    PubMed

    Xu, Long; Liang, Yan; Sun, Changzheng; Hao, Na; Yan, Jianqin; Gao, Wenxia; He, Bin

    2017-01-01

    In order to avoid the instability and quick separation between emulsifier and drug in the interventional chemoembolization, an injectable low molecular weight peptide gel (LMWG) was prepared to localize ethanol and chemotherapeutic for in situ synergistic therapy. The formation mechanism, rheological property and morphology of the LMWG were investigated by NMR, UV-vis, MS and SEM. The interaction between gelator and anticancer drug doxorubicin hydrochloride (DOX) was evaluated by fluorescence spectroscopy and its contribution on drug loading properties was demonstrated. The gel was non-toxic to both 3T3 fibroblasts and 4T1 breast cancer cells. DOX as well as ethanol were encapsulated in the gel and injected in breast cancer bearing mice with low drug dose (2.5 mg/kg body weight). The LMWG surrounded tumors act as a depot for ethanol release and release DOX to induce the apoptosis of cancer cells. With the combination of percutaneous ethanol injection (PEI) and chemotherapy, the DOX loaded LMWG exhibited great significance in necrosis of tumor tissue and exciting tumor inhibition efficiency.

  1. Genetic differences in ethanol-induced hyperglycemia and conditioned taste aversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risinger, F.O.; Cunningham, C.L.

    1992-01-01

    Genetic differences in the hyperglycemic response to acute ethanol exposure and ethanol-induced conditioned taste aversion were examined using inbred mice. Adult male C57BL/6J and DBA/2J mice were injected with ethanol and blood glucose levels determined over 4 h. C57 mice demonstrated greater dose-dependent elevations in blood glucose compared to DBA mice. In a conditioned taste aversion procedure, water deprived mice received ethanol injections immediately after access to a NaCl flavored solution. DBA mice developed aversion to the ethanol-paired flavor at a lower dose than C57 mice. These results provide further support for a possible inverse genetic relationship between sensitivity tomore » ethanol-induced hyperglycemia and sensitivity to conditioned taste aversion.« less

  2. [Ultrasonography-guided therapeutic procedures in the neck region].

    PubMed

    Brzac, Hrvojka Tomić

    2009-12-01

    Minimally invasive therapeutic procedures in medicine have become very popular because of the reduced risk compared to classic surgical treatment, speed of recovery, little or no side effects, and frequently lower cost. One of these methods is ultrasonography-guided percutaneous injection of 95% ethanol (PEIT, percutaneous ethanol injection therapy), which is especially suitable for the neck region. Other methods like laser photocoagulation (ILP) or radiofrequency ablation (RFA) are more aggressive and expensive. The procedure of sterile 95% ethanol injecting is performed on an outpatient basis, without preparation. A specific amount of alcohol is injected into the lesion using a thin spinal needle, under ultrasonography guidance. The amount of alcohol depends on the size of the lesion. Complications are rare and the procedure can be repeated several times. PEIT is used in the treatment of parathyroid glands, especially secondary hyperparathyroidism, thyroid nodules (toxic adenoma, goiters and cysts), other cysts on the neck, and cervical metastases of thyroid cancer. Direct ethanol injection into the tissue causes cellular dehydration and protein denaturation, followed by the development of necrosis, fibrosis, and thrombosis of the small blood vessels. In this way, reduction or disappearance of the nodes can be achieved, along with functional normalization (for parathyroid glands and toxic adenoma), with longer or shorter disease remission or complete recovery. Today, PEIT is mostly used in dialyzed patients with secondary hyperparathyroidism. The treatment gives best results in combination with vitamin D analogs, if 1-2 parathyroid glands are enlarged, and for residual parathyroid gland after parathyroidectomy. A success rate of 50%-70% has been reported, depending on the number of enlarged parathyroid glands. Therapeutic effect is manifested in the size reduction or complete fibrozation of the gland, reduction or disappearance of vascularization, and a decrease in the parathormone level. PEIT produced best results in cysts (thyroid cysts, parathyroid cysts or other cysts on the neck), and can replace surgery. In most cases, results are achieved after the first injection. Volume reduction is between 50% and 95%, depending on the size and content of the cyst (clear, colloidal, or hemorrhagic) and presence of solid tissue. Therapy for toxic and autonomous thyroid adenoma and toxic nodular goiter by ethanol injection is accepted as one of the methods for treating patients that refuse radiation therapy or surgery. The goals of the treatment are nodal size reduction, normalization of thyroid hormones and TSH, and an improved subjective condition of the patient. Complete cure has been achieved in more than 75% of patients. Post-therapeutic development of hypothyroidism is extremely rare. The treatment can also be used for non-toxic goiter, especially those with cystic changes. PEIT is also recommended for the treatment of thyroid cancer neck metastases as an alternative procedure in patients at a high risk of reoperation, those that refuse surgery, and those with radioiodine-negative metastasis. The results of PEIT show significant reduction in nodal size or complete disappearance of the node in more than 70% of patients, with a decrease in serum thyroglobulin, except for patients with distant metastases. The procedure can be repeated until the desired effect is achieved, and is well tolerated by patients. Therapeutic procedures under ultrasonography guidance are becoming ever more important in medical protocols. In the head and neck region, PEIT is the most widely used method because of a number of advantages. The simplicity of the procedure, relatively few side effects, low cost, outpatient treatment and good results make this method preferable to other, invasive therapeutic procedures.

  3. Microchip Non-Aqueous Capillary Electrophoresis (MicronNACE) Method to Analyze Long-Chain Primary Amines

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Mora, Maria; Cable, Morgan L.; Stockton, Amanda M.

    2012-01-01

    A protocol was developed as a first step in analyzing the complex organic aerosols present on Saturn's moon Titan, as well as the analogues of these aerosols (tholins) made on Earth. Labeling of primary amines using Pacific Blue succinimidyl ester is effected in ethanol with 25 mM triethylamine to maintain basic conditions. This reaction is allowed to equilibrate for at least one hour. Separation of the labeled primary amines is performed in ethanol with 1.05 M acetic acid, and 50 mM ammonium acetate in a commercial two-layer glass device with a standard crossmicrochannel measuring 50 microns wide by 20 microns deep. Injection potentials are optimized at 2 kV from the sample (negative) to the waste well (positive), with slight bias applied to the other two wells ( 0.4 and 0.8 V) to pinch the injection plug for the 30-s injection. Separation is performed at a potential of 5 kV along the channel, which has an effective separation distance of 7 cm. The use of ethanol in this method means that long-chain primary amines can be dissolved. Due to the low pH of the separation buffer, electro-osmotic flow (EOF) is minimized to allow for separation of both short-chain and longchain amines. As the freezing point of ethanol is much lower than water, this protocol can perform separations at temperatures lower than 0 C, which would not be possible in aqueous phase. This is of particular importance when considering in situ sampling of Titan aerosols, where unnecessary heating of the sample (even to room temperature) would lead to decomposition or unpredictable side reactions, which would make it difficult to characterize the sample appropriately.

  4. Influences of diesel pilot injection on ethanol autoignition - a numerical analysis

    NASA Astrophysics Data System (ADS)

    Burnete, N. V.; Burnete, N.; Jurchis, B.; Iclodean, C.

    2017-10-01

    The aim of this study is to highlight the influences of the diesel pilot quantity as well as the timing on the autoignition of ethanol and the pollutant emissions resulting from the combustion process. The combustion concept presented in this paper requires the injection of a small quantity of diesel fuel in order to create the required autoignition conditions for ethanol. The combustion of the diesel droplets injected in the combustion chamber lead to the creation of high temperature locations that favour the autoignition of ethanol. However, due to the high vaporization enthalpy and the better distribution inside the combustion chamber of ethanol, the peak temperature values are reduced. Due to the lower temperature values and the high burning velocity of ethanol (combined with the fact that there are multiple ignition sources) the conditions required for the formation of nitric oxides are not achieved anymore, thus leading to significantly lower NOx emissions. This way the benefits of the Diesel engine and of the constant volume combustion are combined to enable a more efficient and environmentally friendly combustion process.

  5. Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema

    PubMed Central

    2010-01-01

    Background Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. Methods The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. Results The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. Conclusions It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food. PMID:20573205

  6. CT-guided percutaneous ethanol injection with disposable curved needle for treatment of malignant liver neoplasms and their metastases in retroperitoneal lymph nodes

    PubMed Central

    Zuo, Chang-Jing; Wang, Pei-Jun; Shao, Cheng-Wei; Wang, Min-Jie; Tian, Jian-Ming; Xiao, Yi; Ren, Fang-Yuan; Hao, Xi-Yan; Yuan, Min

    2004-01-01

    AIM: To explore the feasibility of computed tomography (CT)-guided percutaneous ethanol injection (PEI) using a disposable curved needle for treatment of malignant liver neoplasms and their metastases in retroperitoneal lymph nodes. METHODS: CT-guided PEI was conducted using a disposable curved needle in 26 malignant liver tumors smaller than 5 cm in diameter and 5 lymph node metastases of liver cancer in the retroperitoneal space. The disposable curved needle was composed of a straight trocar (21G) and stylet, a disposable curved tip (25 G) and a fine stylet. For the tumors found in deep sites and difficult to reach, or for hepatic masses inaccessible to the injection using a straight needle because of portal vein and bile ducts, the straight trocar was used at first to reach the side of the tumor. Then, the disposable curved needle was used via the trocar. When the needle reached the tumor center, appropriate amount of ethanol was injected. For relatively large malignant liver tumors, multi-point injection was carried out for a better distribution of the ethanol injected throughout the masses. The curved needle was also used for treatment of the metastasis in retroperitoneal lymph nodes blocked by blood vessels and inaccessible by the straight needle. RESULTS: All of the 26 liver tumors received 2 or more times of successful PEI, through which ethanol was distributed throughout the whole tumor mass. Effect of the treatment was monitored by contrast-enhanced multi-phase CT and magnetic resonance imaging (MRI) examinations three months later. Of the 18 lesions whose diameters were smaller than 3 cm, the necrotic change across the whole mass and that in most areas were observed in 15 and 3 tumors, respectively. Among the 8 tumors sizing up to 5 cm, 5 were completely necrotic and 3 largely necrotic. Levels of tumor seromarkers were significantly reduced in some of the cases. In 5 patients with metastases of liver cancer in retroperitoneal lymph nodes who received 1 to 3 times of PEI, all the foci treated were completely necrotic and smaller demonstrated by dynamic contrast-enhanced CT or MRI 3 months later. CONCLUSION: CT-guided PEI using a disposable curved needle is effective, time-saving and convenient, providing an alternative therapy for the treatment of malignant liver tumors and their retroperitoneal lymph node metastases. PMID:14695769

  7. GABA(A) receptor modulation during adolescence alters adult ethanol intake and preference in rats.

    PubMed

    Hulin, Mary W; Amato, Russell J; Winsauer, Peter J

    2012-02-01

    To address the hypothesis that GABA(A) receptor modulation during adolescence may alter the abuse liability of ethanol during adulthood, the effects of adolescent administration of both a positive and negative GABA(A) receptor modulator on adult alcohol intake and preference were assessed. Three groups of adolescent male rats received 12 injections of lorazepam (3.2 mg/kg), dehydroepiandrosterone (DHEA, 56 mg/kg), or vehicle on alternate days starting on postnatal day (PD) 35. After this time, the doses were increased to 5.6 and 100 mg/kg, respectively, for 3 more injections on alternate days. Subjects had access to 25 to 30 g of food daily, during the period of the first 6 injections, and 18 to 20 g thereafter. Food intake of each group was measured 60 minutes after food presentation, which occurred immediately after drug administration on injection days or at the same time of day on noninjection days. When subjects reached adulthood (PD 88), ethanol preference was determined on 2 separate occasions, an initial 3-day period and a 12-day period, in which increasing concentrations of ethanol were presented. During each preference test, intake of water, saccharin, and an ethanol/saccharin solution was measured after each 23-hour access period. During adolescence, lorazepam increased 60-minute food intake, and this effect was enhanced under the more restrictive feeding schedule. DHEA had the opposite effect on injection days, decreasing food intake compared with noninjection days. In adulthood, the lorazepam-treated group preferred the 2 lowest concentrations of ethanol/saccharin more than saccharin alone compared with vehicle-treated subjects, which showed no preference for any concentration of ethanol/saccharin over saccharin. DHEA-treated subjects showed no preference among the 3 solutions. These data demonstrate that GABA(A) receptor modulation during adolescence can alter intake and preference for ethanol in adulthood and highlights the importance of drug history as an important variable in the liability for alcohol abuse. Copyright © 2011 by the Research Society on Alcoholism.

  8. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  9. Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced non-persistent radicals

    PubMed Central

    Bastiaansen, Jessica A. M.; Yoshihara, Hikari A. I.; Capozzi, Andrea; Schwitter, Juerg; Gruetter, Rolf; Merritt, Matthew E.; Comment, Arnaud

    2018-01-01

    Purpose To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13C-labeled substrate mixture prepared using photo-induced non-persistent radicals. Methods Droplets of mixed [1-13C]pyruvic and [1-13C]butyric acids were frozen into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet (UV) light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization (DNP) in a 7T polarizer, the beads were dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Results UV-irradiation created non-persistent radicals in a mixture containing 13C-labeled pyruvic and butyric acids and enabled the hyperpolarization of both substrates by DNP. Ethanol addition increased the radical concentration from 16 to 26 mM. Liquid-state 13C polarization was 3% inside the pump at the time of injection, and increased to 5% by addition of ethanol to the substrate mixture prior to UV irradiation. In the rat heart, the in vivo13C signals from lactate, alanine, bicarbonate and acetylcarnitine were detected following the metabolism of the injected substrate mixture. Conclusion Co-polarization of two 13C-labeled substrates and the detection of their myocardial metabolism in vivo was achieved without using persistent radicals. The absence of radicals in the solution containing the hyperpolarized 13C-substrates may simplify the translation to clinical use because no filtration is required prior to injection. PMID:29411415

  10. Differential expression of ethanol-induced hypothermia in adolescent and adult rats induced by pretest familiarization to the handling/injection procedure.

    PubMed

    Ristuccia, Robert C; Hernandez, Michael; Wilmouth, Carrie E; Spear, Linda P

    2007-04-01

    Previous work examining ethanol's autonomic effects has found contrasting patterns of age-related differences in ethanol-induced hypothermia between adolescent and adult rats. Most studies have found adolescents to be less sensitive than adults to this effect, although other work has indicated that adolescents may be more sensitive than adults under certain testing conditions. To test the hypothesis that adolescents show more ethanol hypothermia than adults when the amount of disruption induced by the test procedures is low, but less hypothermia when the experimental perturbation is greater, the present study examined the consequences of manipulating the amount of perturbation at the time of testing on ethanol-induced hypothermia in adolescent and adult rats. The amount of test disruption was manipulated by administering ethanol through a chronically indwelling gastric cannula (low perturbation) versus via intragastric intubation (higher perturbation) in Experiment 1 or by either familiarizing animals to the handling and injection procedure for several days pretest or leaving them unmanipulated before testing in Experiment 2. The results showed that the handling manipulation, but not the use of gastric cannulae, altered the expression of ethanol-induced hypothermia differentially across age. When using a familiarization protocol sufficient to reduce the corticosterone response to the handling and injection procedure associated with testing, adolescents showed greater hypothermia than adults. In contrast, the opposite pattern of age differences in hypothermia was evident in animals that were not manipulated before the test day. Surprisingly, however, this difference across testing circumstances was driven by a marked reduction in hypothermia among adults who had been handled before testing, with handling having relatively little impact on ethanol hypothermia among adolescents. Observed differences between adolescents and adults in the autonomic consequences of ethanol were dramatically influenced by whether animals were familiarized with the handling/injection process before testing. Under these circumstances, adolescents were less susceptible than adults to the impact of experimental perturbation on ethanol-induced hypothermia. These findings suggest that seemingly innocuous aspects of experimental design can influence conclusions reached on ontogenetic differences in sensitivity to ethanol, at least when indexed by ethanol-induced hypothermia.

  11. Chronic ethanol tolerance as a result of free-choice drinking in alcohol-preferring rats of the WHP line.

    PubMed

    Dyr, Wanda; Taracha, Ewa

    2012-01-01

    The development of tolerance to alcohol with chronic consumption is an important criterion for an animal model of alcoholism and may be an important component of the genetic predisposition to alcoholism. The aim of this study was to determine whether the selectively bred Warsaw High Preferring (WHP) line of alcohol-preferring rats would develop behavioral and metabolic tolerance during the free-choice drinking of ethanol. Chronic tolerance to ethanol-induced sedation was tested. The loss of righting reflex (LRR) paradigm was used to record sleep duration in WHP rats. Ethanol (EtOH)-naive WHP rats received a single intraperitoneal (i.p.) injection of 5.0 g ethanol/kg body weight (b.w.), and sleep duration was measured. Subsequently, rats had access to a 10% ethanol solution under a free-choice condition with water and food for 12 weeks. After 12 weeks of the free-choice intake of ethanol, the rats received another single i.p. injection of 5.0 g ethanol/kg b.w., and sleep duration was reassessed. The blood alcohol content (BAC) for each rat was determined after an i.p. injection of 5 g/kg of ethanol in naive rats and again after chronic alcohol drinking at the time of recovery of the righting reflex (RR). The results showed that the mean ethanol intake was 9.14 g/kg/24 h, and both sleep duration and BAC were decreased after chronic ethanol intake. In conclusion, WHP rats exposed to alcohol by free-choice drinking across 12 weeks exhibited increased alcohol elimination rates. Studies have demonstrated that WHP rats after chronic free-choice drinking (12 weeks) of alcohol develop metabolic tolerance. Behavioral tolerance to ethanol was demonstrated by reduced sleep duration, but this decrease in sleep duration was not significant.

  12. Evaluation of phenolic compounds in virgin olive oil by direct injection in high-performance liquid chromatography with fluorometric detection.

    PubMed

    Selvaggini, Roberto; Servili, Maurizio; Urbani, Stefania; Esposto, Sonia; Taticchi, Agnese; Montedoro, GianFrancesco

    2006-04-19

    Hydrophilic phenols are the most abundant natural antioxidants of virgin olive oil (VOO), in which tocopherols and carotenes are also present. The prevalent classes of hydrophilic phenols found in VOO are phenyl alcohols, phenolic acids, secoiridoids such as the dialdehydic form of decarboxymethyl elenolic acid linked to (3,4-dihydroxyphenyl)ethanol or (p-hydroxypheny1)ethanol (3,4-DHPEA-EDA or p-HPEA-EDA) and an isomer of the oleuropein aglycon (3,4-DHPEA-EA), lignans such as (+)-1-acetoxypinoresinol and (+)-pinoresinol, and flavonoids. A new method for the analysis of VOO hydrophilic phenols by direct injection in high-performance liquid chromatography (HPLC) with the use of a fluorescence detector (FLD) has been proposed and compared with the traditional liquid-liquid extraction technique followed by the HPLC analysis utilizing a diode array detector (DAD) and a FLD. Results show that the most important classes of phenolic compounds occurring in VOO can be evaluated using HPLC direct injection. The efficiency of the new method, as compared to the liquid-liquid extraction, was higher to quantify phenyl alcohols, lignans, and 3,4-DHPEA-EA and lower for the evaluation of 3,4-DHPEA-EDA and p-HPEA-EDA.

  13. An Accelerated Release Study to Evaluate Long-Acting Contraceptive Levonorgestrel-Containing in Situ Forming Depot Systems

    PubMed Central

    Janagam, Dileep R.; Wang, Lizhu; Ananthula, Suryatheja; Johnson, James R.; Lowe, Tao L.

    2016-01-01

    Biodegradable polymer-based injectable in situ forming depot (ISD) systems that solidify in the body to form a solid or semisolid reservoir are becoming increasingly attractive as an injectable dosage form for sustained (months to years) parenteral drug delivery. Evaluation of long-term drug release from the ISD systems during the formulation development is laborious and costly. An accelerated release method that can effectively correlate the months to years of long-term release in a short time such as days or weeks is economically needed. However, no such accelerated ISD system release method has been reported in the literature to date. The objective of the current study was to develop a short-term accelerated in vitro release method for contraceptive levonorgestrel (LNG)-containing ISD systems to screen formulations for more than 3-month contraception after a single subcutaneous injection. The LNG-containing ISD formulations were prepared by using biodegradable poly(lactide-co-glycolide) and polylactic acid polymer and solvent mixtures containing N-methyl-2-pyrrolidone and benzyl benzoate or triethyl citrate. Drug release studies were performed under real-time (long-term) conditions (PBS, pH 7.4, 37 °C) and four accelerated (short-term) conditions: (A) PBS, pH 7.4, 50 °C; (B) 25% ethanol in PBS, pH 7.4, 50 °C; (C) 25% ethanol in PBS, 2% Tween 20, pH 7.4, 50 °C; and (D) 25% ethanol in PBS, 2% Tween 20, pH 9, 50 °C. The LNG release profile, including the release mechanism under the accelerated condition D within two weeks, correlated (r2 ≥ 0.98) well with that under real-time conditions at four months. PMID:27598191

  14. The Application of Absolute Ethanol in the Treatment of Mucocele of the Glands of Blandin-Nuhn.

    PubMed

    Zhang, Jun; Wang, Chao

    2016-10-01

    Mucocele of the anterior lingual salivary glands is a more common cystic lesion, especially in patients aged less than 20 years. The study is aimed to observe the effect of treatment by injection of absolute ethanol instead of surgery. Fourteen outpatients diagnosed as mucocele of the glands of Blandin-Nuhn were selected. These patients, after blood investigation, were treated by injection of absolute ethanol into a mucous cavity of lesion under superficial anesthesia with 2% lidocaine once a week and followed up from 3 months to 2 years. Mucocele of the glands of Blandin-Nuhn was extirpated in all patients after 1 to 3 injections. There were no other complications except slight distending pain occurred on the same day when the patients were treated. The recurrence was not observed during the follow-up period. In conclusion, the study suggests that injection of absolute ethanol may be an alternative means for treating mucocele of the glands of Blandin-Nuhn, because it is mininvasive, safe, effective, economic, and simply manipulated compared with surgical treatment.

  15. Transurethral ethanol injection therapy of benign prostatic hyperplasia: four-year follow-up.

    PubMed

    Sakr, Mostafa; Eid, Ahmed; Shoukry, Mohammed; Fayed, Abdelaziz

    2009-02-01

    Evaluating long-term (50 months) efficacy of transurethral intraprostatic injection of absolute ethanol to treat benign prostatic hyperplasia (BPH). A prospective study was conducted to evaluate 35 patients with BPH treated by transurethral injection of dehydrated ethanol. Mean age was 66.3 years. Endoscopic injection of 6-12 mL ethanol was carried out at 5-10 sites in the prostate. International Prostate Symptom Score (IPSS), maximum flow rate, prostate volume, postvoid residual and side effects or complications incidence were logged. Mean IPSS +/- standard deviation improved significantly from 22.0 +/- 3.89 preoperatively to 9.85 +/- 2.23 at 50 months follow-up. Mean peak urinary flow rate increased from 5.87 +/- 3.69 mL/s to 16.89 +/- 4.12 after 4 years. Mean residual urine volume had decreased from 68.6 +/- 49.98 mL to 36.02 +/- 20.87 after 4 years (P < 0.05). The prostate volume decreased from 52.67 +/- 20.43 g preoperatively to 49.94 +/- 21.28 g after 4 years (statistically significant). There were no intra-operative complications but post-operative urine retention occurred in all patients requiring catheterization for a mean 6.7 days. Acute epididymitis and chronic prostatitis occurred in two patients. Urethral stricture occurred in one patient. This technique appears to be safe and cost effective. No occurrence of retrograde ejaculation was detected. The long-term effects of ethanol injection of the prostate were satisfactory and acceptable as a minimally invasive therapeutic modality of selected patients.

  16. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2008-10-01

    Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.

  17. POST-RETRIEVAL PROPRANOLOL TREATMENT DOES NOT MODULATE RECONSOLIDATION OR EXTINCTION OF ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE

    PubMed Central

    Font, Laura; Cunningham, Christopher L.

    2012-01-01

    The reconsolidation hypothesis posits that established emotional memories, when reactivated, become labile and susceptible to disruption. Post-retrieval injection of propranolol (PRO), a nonspecific β-adrenergic receptor antagonist, impairs subsequent retention performance of a cocaine- and a morphine-induced conditioned place preference (CPP), implicating the noradrenergic system in the reconsolidation processes of drug-seeking behavior. An important question is whether post-retrieval PRO disrupts memory for the drug-cue associations, or instead interferes with extinction. In the present study, we evaluated the role of the β-adrenergic system on the reconsolidation and extinction of ethanol-induced CPP. Male DBA/2J mice were trained using a weak or a strong conditioning procedure, achieved by varying the ethanol conditioning dose (1 or 2 g/kg) and the number of ethanol trials (2 or 4). After acquisition of ethanol CPP, animals were given a single post-retrieval injection of PRO (0, 10 or 30 mg/kg) and tested for memory reconsolidation 24 h later. Also, after the first reconsolidation test, mice received 18 additional 15-min choice extinction tests in which PRO was injected immediately after every test. Contrary to the prediction of the reconsolidation hypothesis, a single PRO injection after the retrieval test did not modify subsequent memory retention. In addition, repeated post-retrieval administration of PRO did not interfere with extinction of CPP in mice. Overall, our data suggest that the β-adrenergic receptor does not modulate the associative processes underlying ethanol CPP. PMID:22285323

  18. Genetic differences in the ethanol sensitivity of GABA sub A receptors expressed in Xenopus oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wafford, K.A.; Burnett, D.M.; Dunwiddie, T.V.

    1990-07-20

    Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABA{sub A})- and N-methyl D-aspartate (NMDA) - activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibitedmore » NMDA responses equally in the two lines. Thus, genes coding for the GABA{sub A} receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.« less

  19. Nicotine-induced conditioned taste aversion in the rat: effects of ethanol.

    PubMed

    Korkosz, Agnieszka; Scinska, Anna; Taracha, Ewa; Plaznik, Adam; Kukwa, Andrzej; Kostowski, Wojciech; Bienkowski, Przemyslaw

    2006-05-10

    It has been shown that small doses of ethanol antagonise the discriminative stimulus properties of nicotine in the rat. The aim of the present study was to evaluate whether ethanol could antagonise the aversive stimulus effects of nicotine. Wistar rats were trained to associate nicotine injections with a novel tasting fluid (0.1% saccharin) in the conditioned taste aversion procedure. Nicotine (0.3 mg/kg, s.c.) was injected 5 min after the end of a 20-min exposure to the saccharin solution. Ethanol (0.25-0.5 g/kg, i.p.) was administered 5 or 50 min before nicotine. In general, ethanol did not inhibit nicotine-induced conditioned taste aversion. Contrary to the findings in drug discrimination studies, a slight but significant enhancement of nicotine-induced taste aversion conditioning was observed after ethanol pre-treatment. Blood ethanol levels were measured in a separate group of rats. Maximal blood ethanol levels after i.p. administration of 0.25 or 0.5 g/kg ethanol exceeded 20 and 80 mg%, respectively. Concluding, the present results may indicate that ethanol does not attenuate nicotine-induced conditioned taste aversion in the rat.

  20. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    PubMed Central

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  1. Establishing a rat model of spastic cerebral palsy by targeted ethanol injection

    PubMed Central

    Yu, Yadong; Li, Liang; Shao, Xinzhong; Tian, Fangtao; Sun, Qinglu

    2013-01-01

    Spastic cerebral palsy is generally considered to result from cerebral cortical or pyramidal tract damage. Here, we precisely targeted the left pyramidal tract of 2-month-old Sprague-Dawley rats placed on a stereotaxic instrument under intraperitoneal anesthesia. Based on the rat brain stereotaxic map, a 1-mm hole was made 10 mm posterior to bregma and 0.8 mm left of sagittal suture. A microsyringe was inserted perpendicularly to the surface of the brain to a depth of 9.7 mm, and 15 μL of ethanol was slowly injected to establish a rat model of spastic cerebral palsy. After modeling, the rats appeared to have necrotic voids in the pyramidal tract and exhibited typical signs and symptoms of flexion spasms that lasted for a long period of time. These findings indicate that this is an effective and easy method of establishing a rat model of spastic cerebral palsy with good re-producibility. Ethanol as a chemical ablation agent specifically and thoroughly damages the pyramidal tract, and therefore, the animals display flexion spasms, which are a typical symptom of the disease. PMID:25206647

  2. [Treatment of autonomous and cystic thyroid nodules with intranodular ethanol injection].

    PubMed

    Braga-Basaria, Milena; Trippia, Marcus Adriano; Stolf, Anderson Ravy; Mesa, Cléo; Graf, Hans

    2002-01-01

    Intranodular ethanol injection has been used for the past 10 years as an efficient modality for treating patients with thyroid nodules. Several studies have reported the success of this therapy in autonomous and cystic nodules and, more recently, in cold benign nodules. To evaluate the efficacy of this therapeutic modality on the treatment of autonomous and cystic thyroid nodules. 42 patients (26 with cystic and 16 with autonomous nodules) were treated with ultrasound guided intranodular 99% ethanol injection and followed for 6 months. No major complications were observed during or after treatment, however, most of the patients reported slight to moderate pain and/or discomfort after the injection. Most of the nodules showed reduction after the treatment. Autonomous nodules had a mean reduction of 50.3% and cystic nodules of 69.3%. No significant differences in pretreatment serum total T3, total T4 or TSH were observed among the patients in the cystic group. Patients in the autonomous group with hyperfunctioning nodules showed a decrease in serum total T3, total T4 and an increase in serum TSH levels, hence, proving the effectiveness of this therapy. Intranodular ethanol injection is a safe and efficient treatment for autonomous and cystic nodules of the thyroid.

  3. Can nerve regeneration on an artificial nerve conduit be enhanced by ethanol-induced cervical sympathetic ganglion block?

    PubMed Central

    Sunada, Katsuhisa; Shigeno, Keiji; Nakada, Akira; Honda, Michitaka; Nakamura, Tatsuo

    2017-01-01

    This study aimed to determine whether nerve regeneration by means of an artificial nerve conduit is promoted by ethanol-induced cervical sympathetic ganglion block (CSGB) in a canine model. This study involved two experiments—in part I, the authors examined the effect of CSGB by ethanol injection on long-term blood flow to the orofacial region; part II involved evaluation of the effect of CSGB by ethanol injection on inferior alveolar nerve (IAN) repair using polyglycolic acid-collagen tubes. In part I, seven Beagles were administered left CSGB by injection of 99.5% ethanol under direct visualization by means of thoracotomy, and changes in oral mucosal blood flow in the mental region and nasal skin temperature were evaluated. The increase in blood flow on the left side lasted for 7 weeks, while the increase in average skin temperature lasted 10 weeks on the left side and 3 weeks on the right. In part II, fourteen Beagles were each implanted with a polyglycolic acid-collagen tube across a 10-mm gap in the left IAN. A week after surgery, seven of these dogs were administered CSGB by injection of ethanol. Electrophysiological findings at 3 months after surgery revealed significantly higher sensory nerve conduction velocity and recovery index (ratio of left and right IAN peak amplitudes) after nerve regeneration in the reconstruction+CSGB group than in the reconstruction-only group. Myelinated axons in the reconstruction+CSGB group were greater in diameter than those in the reconstruction-only group. Administration of CSGB with ethanol resulted in improved nerve regeneration in some IAN defects. However, CSGB has several physiological effects, one of which could possibly be the long-term increase in adjacent blood flow. PMID:29220373

  4. Therapy of Pancreatic Neuroendocrine Tumors: Fine Needle Intervention including Ethanol and Radiofrequency Ablation

    PubMed Central

    Lakhtakia, Sundeep

    2017-01-01

    Pancreatic neuroendocrine tumors (PNETs) are increasingly being detected, though usually as incidental findings. Majority of the PNETs are non-functional and surgical resection is the standard of care for most of them. However, in patients with small PNETs localized within the pancreas, who are unfit or unwilling for surgery, alternate methods of treatment are needed. Direct methods of ablation of PNETs, using either ethanol injection or radiofrequency ablation (RFA), are emerging as effective methods. The limited literature available as case reports or case series on endoscopic ultrasound (EUS)-guided local ablation using either ethanol or RFA has demonstrated safety and efficacy along with short- to medium-term sustained relief. Long-term benefits with these local ablative therapies are awaited. Comparative studies are needed to show which of these two competing technologies is superior. Finally, comparative trials of EUS-guided ablation with surgical resection in terms of efficacy and safety will ensure their place in the management algorithm. PMID:29207860

  5. Combined Effects of Acamprosate and Escitalopram on Ethanol Consumption in Mice

    PubMed Central

    Ho, Ada Man-Choi; Qiu, Yanyan; Jia, Yun-Fang; Aguiar, Felipe S.; Hinton, David J.; Karpyak, Victor M.; Weinshilboum, Richard M.; Choi, Doo-Sup

    2016-01-01

    Background Major depression is one of the most prevalent psychiatry comorbidities of alcohol use disorders (AUD). Since negative emotions can trigger craving and increase the risk of relapse, treatments that target both conditions simultaneously may augment treatment success. Previous studies showed a potential synergist effect of FDA approved medication for AUD acamprosate and the antidepressant escitalopram. In this study, we investigated the effects of combining acamprosate and escitalopram on ethanol consumption in stress-induced depressed mice. Methods Forty singly-housed C57BL/6J male mice were subjected to chronic unpredictable stress. In parallel, 40 group-housed male mice were subjected to normal husbandry. After 3 weeks, depressive- and anxiety-like behaviors and ethanol consumption were assessed. For the next 7 days, mice were injected with saline, acamprosate (200 mg/kg; twice/day), escitalopram (5 mg/kg; twice/day), or their combination (n = 9–11/drug group/stress group). Two-bottle choice limited access drinking of 15% ethanol and tap water was performed 3 hours into dark phase for 2 hours immediately after the dark phase daily injection. Ethanol drinking was monitored for another 7 days without drug administration. Results Mice subjected to the chronic unpredictable stress paradigm for 3 weeks showed apparent depression- and anxiety-like behaviors compared to their non-stressed counterparts including longer immobility time in the forced swim test and lower sucrose preference. Stressed mice also displayed higher ethanol consumption and preference in a 2-bottle choice drinking test. During the drug administration period, the escitalopram-only and combined drug groups showed significant reduction in ethanol consumption in non-stressed mice, while only the combined drug group showed significantly reduced consumption in stressed mice. However, such reduction did not persist into the post-drug administration period. Conclusions The combination of acamprosate and escitalopram suppressed ethanol intake in both non-stressed and stressed mice, hence this combination is potentially helpful for AUD individuals with or without comorbid depression to reduce alcohol use. PMID:27184383

  6. Role of acetaldehyde in ethanol-induced conditioned taste aversion in rats.

    PubMed

    Escarabajal, M Dolores; De Witte, Philippe; Quertemont, Etienne

    2003-05-01

    In spite of many recent studies on the effects of acetaldehyde, it is still unclear whether acetaldehyde mediates the reinforcing and/or aversive effects of ethanol. The present study reexamined the role of acetaldehyde in ethanol-induced conditioned taste aversion (CTA). A first experiment compared ethanol- and acetaldehyde-induced CTA. In a second experiment, cyanamide, an aldehyde dehydrogenase inhibitor, was administered before conditioning with either ethanol or acetaldehyde to investigate the effects of acetaldehyde accumulation. A classic CTA protocol was used to associate the taste of a saccharin solution with either ethanol or acetaldehyde injections. In experiment 1, saccharin consumption was followed by injections of either ethanol (0, 0.5, 1.0, 1.5 or 2.0 g/kg) or acetaldehyde (0, 100, 170 or 300 mg/kg). In experiment 2, the rats were pretreated with either saline or cyanamide (25 mg/kg) before conditioning with either ethanol or acetaldehyde. Both ethanol and acetaldehyde induced significant CTA. However, ethanol produced a very strong CTA relative to acetaldehyde that induced only a weak CTA even at toxic doses. Cyanamide pretreatments significantly potentiated ethanol- but not acetaldehyde-induced CTA. The present results indicate that ethanol-induced CTA does not result from brain acetaldehyde effects. In contrast, it is suggested that the reinforcing effects of brain acetaldehyde might actually reduce ethanol-induced CTA. Our results also suggest that the inhibition of brain catalase activity may contribute to the potentiating effects of cyanamide on ethanol-induced CTA.

  7. Process control of apple winemaking by low-resolution gas-phase Fourier-transform infrared spectroscopy.

    PubMed

    Ahro, M; Hakala, M; Kauppinen, J; Kallio, H

    2001-10-01

    Four apple wine fermentation processes have been observed by means of direct-inlet gas-phase FTIR spectroscopy. The apple juice concentrates were each fermented by two species of Saccharomyces cerevisiae starters, and the experiment was repeated. The development of the concentrations of 1-propanol, 4-methylpyridine, acetaldehyde, acetic acid, and ethyl acetate was monitored. Two different sampling methods were used--static headspace and direct injection of the must. The performance of the FTIR method is limited by the high ethanol concentration. It can be mathematically proven that the amount of sample can be selected so that any distortion due to ethanol is minimized. Headspace GC-MS was used for preliminary compound identification.

  8. Effect of di-amphetamine injected into N. Accumbens on ethanol self-administration in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, H.H.; Tolliver, G.A.; Haraguchi, M.

    1991-03-11

    Adult, male Long-Evans rats were initiated to lever press with 10% (v/v) ethanol reinforcement using the sucrose-fading technique. Following initiation and the development of stable ethanol self-administration behavior, bilateral cannula guides directed at the N.Accumbens were surgically implanted. Following recovery, the animals received microinjections once a week of either saline, 4, 10 or 20 ug/brain of dl-amphetamine sulfate dissolved in saline. Injections were 10 minutes prior to the daily 30min ethanol self-administration session.; At all doses tested, amphetamine had no significant effect upon the number of responses or ethanol. Reinforcements received during the session. However, a clear alteration in themore » pattern of responding was found at the 10 and 20 ug dose, with some animals showing effects at 4 ug. This alteration in response pattern with no effect upon total responding is different from prior work using systemic amphetamine injections, where both pattern and number of responses were affected. The data suggest that some but not all of the systemic effects could be related to amphetamine's actions on the N. Accumbens.« less

  9. Ethanol acts as an enhancer of steroid anesthetic activity in mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukusoglu, C.; Mok, W.M.; Krieger, N.R.

    1992-02-26

    Ethanol and the steroid 3{alpha}-hydroxy-5{alpha}-pregnan-20-one (3{alpha}) are each potent general anesthetics that bring about the rapid loss of the righting response (LRR) in mice. Ethanol is known to enhance the actions of a range of sedative and anesthetic agents. However the effects of ethanol on steroid anesthesia have not previously been described. When ethanol was co-injected with 3{alpha} as compared to 3{alpha} injected alone, the percentage of mice that lost the righting response was substantially increased; the time to LRR was shortened; and 3{alpha} brain levels were increased. The interactions between the two agents were analyzed with the aid ofmore » an isobologram and they were found to be consistent with a hypothesis of additivity. The authors speculate that the role of ethanol as an enhancer of administered 3{alpha} activity described here may extend to the enhancement of endogenous 3{alpha} activity.« less

  10. Acute Ethanol Administration Rapidly Increases Phosphorylation of Conventional Protein Kinase C in Specific Mammalian Brain Regions in Vivo

    PubMed Central

    Wilkie, Mary Beth; Besheer, Joyce; Kelley, Stephen P.; Kumar, Sandeep; O’Buckley, Todd K.; Morrow, A. Leslie; Hodge, Clyde W.

    2010-01-01

    Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKCγ immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection. Conclusions These results suggest that ethanol rapidly promotes phosphorylation of cPKC in limbic brain regions, which may underlie effects of acute ethanol on the nervous system and behavior. PMID:17511744

  11. Differential Sensitivity to Ethanol-Induced Circadian Rhythm Disruption in Adolescent and Adult Mice

    PubMed Central

    Ruby, Christina L.; Palmer, Kaitlyn N.; Zhang, Jiawen; Risinger, Megan O.; Butkowski, Melissa A.; Swartzwelder, H. Scott

    2016-01-01

    Background Growing evidence supports a central role for the circadian system in alcohol use disorders, but few studies have examined this relationship during adolescence. In mammals, circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), a biological clock whose timing is synchronized (reset) to the environment primarily by light (photic) input. Alcohol (ethanol) disrupts circadian timing in part by attenuating photic phase-resetting responses in adult rodents. However, circadian rhythms change throughout life and it is not yet known whether ethanol has similar effects on circadian regulation during adolescence. Methods General circadian locomotor activity was monitored in male C57BL6/J mice beginning in adolescence (P27) or adulthood (P61) in a 12 h light, 12 h dark photocycle for ~2 weeks to establish baseline circadian activity measures. On the day of the experiment, mice received an acute injection of ethanol (1.5 g/kg, i.p.) or equal volume saline 15 min prior to a 30-min light pulse at Zeitgeber Time 14 (2 h into the dark phase), then were released into constant darkness (DD) for ~2 weeks to assess phase-resetting responses. Control mice of each age group received injections but no light pulse prior to DD. Results While adults showed the expected decrease in photic phase-delays induced by acute ethanol, this effect was absent in adolescent mice. Adolescents also showed baseline differences in circadian rhythmicity compared to adults, including advanced photocycle entrainment, larger photic phase-delays, a shorter free-running (endogenous) circadian period, and greater circadian rhythm amplitude. Conclusions Collectively, our results indicate that adolescent mice are less sensitive to the effect of ethanol on circadian photic phase-resetting and that their daily activity rhythms are markedly different than those of adults. PMID:27997028

  12. Ethanol-induced analgesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohorecky, L.A.; Shah, P.

    1987-09-07

    The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5 - 1.5 g/kg) produced raid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to producemore » non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus, the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity. 21 references, 4 figures, 1 table.« less

  13. Portable electrochemical system using screen-printed electrodes for monitoring corrosion inhibitors.

    PubMed

    Squissato, André L; Silva, Weberson P; Del Claro, Augusto T S; Rocha, Diego P; Dornellas, Rafael M; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2017-11-01

    This work presents a portable electrochemical system for the continuous monitoring of corrosion inhibitors in a wide range of matrices including ethanol, seawater and mineral oil following simple dilution of the samples. Proof-of-concept is demonstrated for the sensing of 2,5-dimercapto-1,3,5-thiadiazole (DMCT), an important corrosion inhibitor. Disposable screen-printed graphitic electrodes (SPGEs) associated with a portable batch-injection cell are proposed for the amperometric determination of DMCT following sample dilution with electrolyte (95% v/v ethanol + 5% v/v 0.1molL -1 H 2 SO 4 solution). This electrolyte was compatible with all samples and the organic-resistant SPGE could be used continuously for more than 200 injections (100µL injected at 193µLs -1 ) free from effects of adsorption of DMCT, which have a great affinity for metallic surfaces, and dissolution of the other reported SPGE inks which has hampered prior research efforts. Fast (180h -1 ) and precise responses (RSD < 3% n = 10) with a detection limit of 0.3µmolL -1 was obtained. The accuracy of the proposed method was attested through recovery tests (93-106%) and the reasonable agreement of results of DMCT concentrations in samples analyzed by both proposed and spectrophotometric (comparative) methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Disinfection of syringes contaminated with hepatitis C virus by rinsing with household products.

    PubMed

    Binka, Mawuena; Paintsil, Elijah; Patel, Amisha; Lindenbach, Brett D; Heimer, Robert

    2015-01-01

    Background.  Hepatitis C virus (HCV) transmission among people who inject drugs (PWID) is associated with the sharing of injection paraphernalia. People who inject drugs often "disinfect" used syringes with household products when new syringes are unavailable. We assessed the effectiveness of these products in disinfecting HCV-contaminated syringes. Methods.  A genotype-2a reporter virus assay was used to assess HCV infectivity in syringes postrinsing. Hepatitis C virus-contaminated 1 mL insulin syringes with fixed needles and 1 mL tuberculin syringes with detachable needles were rinsed with water, Clorox bleach, hydrogen peroxide, ethanol, isopropanol, Lysol, or Dawn Ultra at different concentrations. Syringes were either immediately tested for viable virus or stored at 4°C, 22°C, and 37°C for up to 21 days before viral infectivity was determined. Results.  Most products tested reduced HCV infectivity to undetectable levels in insulin syringes. Bleach eliminated HCV infectivity in both syringes. Other disinfectants produced virus recovery ranging from high (5% ethanol, 77% ± 12% HCV-positive syringes) to low (1:800 Dawn Ultra, 7% ± 7% positive syringes) in tuberculin syringes. Conclusions.  Household disinfectants tested were more effective in fixed-needle syringes (low residual volume) than in syringes with detachable needles (high residual volume). Bleach was the most effective disinfectant after 1 rinse, whereas other diluted household products required multiple rinses to eliminate HCV. Rinsing with water, 5% ethanol (as in beer), and 20% ethanol (as in fortified wine) was ineffective and should be avoided. Our data suggest that rinsing of syringes with household disinfectants may be an effective tool in preventing HCV transmission in PWID when done properly.

  15. Disinfection of Syringes Contaminated With Hepatitis C Virus by Rinsing With Household Products

    PubMed Central

    Binka, Mawuena; Paintsil, Elijah; Patel, Amisha; Lindenbach, Brett D.; Heimer, Robert

    2015-01-01

    Background. Hepatitis C virus (HCV) transmission among people who inject drugs (PWID) is associated with the sharing of injection paraphernalia. People who inject drugs often “disinfect” used syringes with household products when new syringes are unavailable. We assessed the effectiveness of these products in disinfecting HCV-contaminated syringes. Methods. A genotype-2a reporter virus assay was used to assess HCV infectivity in syringes postrinsing. Hepatitis C virus-contaminated 1 mL insulin syringes with fixed needles and 1 mL tuberculin syringes with detachable needles were rinsed with water, Clorox bleach, hydrogen peroxide, ethanol, isopropanol, Lysol, or Dawn Ultra at different concentrations. Syringes were either immediately tested for viable virus or stored at 4°C, 22°C, and 37°C for up to 21 days before viral infectivity was determined. Results. Most products tested reduced HCV infectivity to undetectable levels in insulin syringes. Bleach eliminated HCV infectivity in both syringes. Other disinfectants produced virus recovery ranging from high (5% ethanol, 77% ± 12% HCV-positive syringes) to low (1:800 Dawn Ultra, 7% ± 7% positive syringes) in tuberculin syringes. Conclusions. Household disinfectants tested were more effective in fixed-needle syringes (low residual volume) than in syringes with detachable needles (high residual volume). Bleach was the most effective disinfectant after 1 rinse, whereas other diluted household products required multiple rinses to eliminate HCV. Rinsing with water, 5% ethanol (as in beer), and 20% ethanol (as in fortified wine) was ineffective and should be avoided. Our data suggest that rinsing of syringes with household disinfectants may be an effective tool in preventing HCV transmission in PWID when done properly. PMID:26034767

  16. Application of direct-injection detector integrated with the multi-pumping flow system to chemiluminescence determination of the total polyphenol index.

    PubMed

    Nalewajko-Sieliwoniuk, Edyta; Iwanowicz, Magdalena; Kalinowski, Sławomir; Kojło, Anatol

    2016-03-10

    In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL(-1). The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL(-1)), high precision (RSD = 3.3%) and high sample throughput (144 samples h(-1)) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. [Effect of the ethanol extracts of starfish Asterias amurensis on the levels of serum IL-4 and IFN-γ in mice].

    PubMed

    He, Su-hui; Tang, Xiao-lei; Deng, Ye-feng; Chen, Zhang-quan

    2011-11-01

    To investigate the effect of the ethanol extracts of the starfish Asterias amurensis on the levels of serum IL-4 and IFN-γ in mice. The whole bodies of the starfish were chopped and extracted with ethanol. The ethanol extracts were chromatographed on silica gel column. The separating fractions of the ethanol extracts were intraperitoneally injected into mice, respectively. The levels of serum IL-4 and IFN-γ in mice were detected by ELISA. The ethanol extracts from the starfish were separated through silica gel column chromatography to obtain 8 fractions (I-VIII). The high levels of IL-4 and IFN-γ were produced in serum of the mice injected with fractions III and VIII of the ethanol extracts from the starfish Asterias amurensis. The fractions III and VIIII separated from the ethanol extracts of the starfish Asterias amurensis can stimulate the mice to produce high lelves of IL-4 and IFN-γ, which has the characteristic of natural kill T (NKT) cells activator. It is suggests that there is the active substance that can activate NKT cells in the starfish Asterias amurensis.

  18. Ultrasound-guided interventional therapy for recurrent ovarian chocolate cysts.

    PubMed

    Wang, Lu-Lu; Dong, Xiao-Qiu; Shao, Xiao-Hui; Wang, Si-Ming

    2011-10-01

    The aim of this study was to determine the effectiveness of ultrasound-guided interventional therapy in the treatment of postoperative recurrent chocolate cysts. The 198 patients enrolled in this study were divided into three groups. In group 1, the saline washing group, the cavity of the cyst was washed thoroughly with warm saline. In group 2, the ethanol short-time retention group, after washing with saline, the cyst was injected with 95% ethanol with a volume of half of the fluid aspirated from the cyst. Ten minutes later, the rest of the ethanol was aspirated. In group 3, the ethanol retention group, the procedures were the same as with the ethanol short-time retention group, except that 95% of the ethanol was retained in the cyst. An ultrasound examination was performed in the third, sixth and 12th months after therapy. The chocolate cyst cure rate was significantly higher in the ethanol retention group (96%, 66/69) than in the ethanol short-time retention group (82%, 56/68) and no case was cured in the first group (saline washing). We conclude that ultrasound-guided injection and 95% ethanol retention are an effective therapy for the treatment of postoperative recurrent chocolate cysts. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Intermittent high-dose ethanol exposures increase motivation for operant ethanol self-administration: possible neurochemical mechanism.

    PubMed

    Li, Zhimin; Zharikova, Alevtina; Vaughan, Cheryl H; Bastian, Jaime; Zandy, Shannon; Esperon, Leonardo; Axman, Elyssia; Rowland, Neil E; Peris, Joanna

    2010-01-15

    We investigated the neurochemical mechanism of how high-dose ethanol exposure may increase motivation for ethanol consumption. First, we developed an animal model of increased motivation for ethanol using a progressive ratio (PR) schedule. Sprague-Dawley rats were trained to administer 10% ethanol-containing gelatin or plain gelatin (on alternate weeks) in daily 30-min sessions under different fixed ratio (FR) and PR schedules. During FR schedules, rats self-administered about 1 g/kg ethanol, which was decreased to 0.4+/-0.03 g/kg under PR10. Rats then received four pairs of either 3 g/kg ethanol or saline injections during the weeks when the reinforcer was plain gelatin. During subsequent ethanol gel sessions, breakpoints and ethanol consumption rose 40% in the high-dose ethanol group by the fourth set of injections with no change in plain gel responding. Alterations in amino acids in the ventral striatum (VS) during PR10 responding for 10% ethanol gelatin and plain gelatin were measured using microdialysis sampling coupled with capillary electrophoresis and laser-induced fluorescence detection. There was greater release of taurine, glycine and glutamate in the NAC of the high-dose ethanol rats during 10% ethanol-containing gelatin responding, compared to the control rats or during plain gel responding. An increase in the release of glycine in this same brain region has recently been shown to be involved with anticipation of a reward. Thus, it appears that intermittent high-dose ethanol exposure not only increases motivation for ethanol responding but may also change neurotransmitter release that mediates anticipation of reinforcement, which may play a key role in the development of alcoholism. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema.

    PubMed

    Maruyama, Hiroe; Sakamoto, Takashi; Araki, Yoko; Hara, Hideaki

    2010-06-23

    Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food.

  1. Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol

    PubMed Central

    Bohlen, Martin; Hayes, Erika R.; Bohlen, Benjamin; Bailoo, Jeremy; Crabbe, John C.; Wahlsten, Douglas

    2016-01-01

    Eight standard inbred mouse strains were evaluated for ethanol effects on a refined battery of behavioral tests in a study that was originally designed to assess the influence of rat odors in the colony on mouse behaviors. As part of the design of the study, two experimenters conducted the tests, and the study was carefully balanced so that equal numbers of mice in all groups and times of day were tested by each experimenter. A defect in airflow in the facility compromised the odor manipulation, and in fact the different odor exposure groups did not differ in their behaviors. The two experimenters, however, obtained markedly different results for three of the tests. Certain of the experimenter effects arose from the way they judged behaviors that were not automated and had to be rated by the experimenter, such as slips on the balance beam. Others were not evident prior to ethanol injection but had a major influence after the injection. For several measures, the experimenter effects were notably different for different inbred strains. Methods to evaluate and reduce the impact of experimenter effects in future research are discussed. PMID:24933191

  2. Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol.

    PubMed

    Bohlen, Martin; Hayes, Erika R; Bohlen, Benjamin; Bailoo, Jeremy D; Crabbe, John C; Wahlsten, Douglas

    2014-10-01

    Eight standard inbred mouse strains were evaluated for ethanol effects on a refined battery of behavioral tests in a study that was originally designed to assess the influence of rat odors in the colony on mouse behaviors. As part of the design of the study, two experimenters conducted the tests, and the study was carefully balanced so that equal numbers of mice in all groups and times of day were tested by each experimenter. A defect in airflow in the facility compromised the odor manipulation, and in fact the different odor exposure groups did not differ in their behaviors. The two experimenters, however, obtained markedly different results for three of the tests. Certain of the experimenter effects arose from the way they judged behaviors that were not automated and had to be rated by the experimenter, such as slips on the balance beam. Others were not evident prior to ethanol injection but had a major influence after the injection. For several measures, the experimenter effects were notably different for different inbred strains. Methods to evaluate and reduce the impact of experimenter effects in future research are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A Rare Complication following Thyroid Percutaneous Ethanol Injection: Plummer Adenoma

    PubMed Central

    Cesareo, Roberto; Naciu, Anda Mihaela; Pasqualini, Valerio; Pelle, Giuseppe; Manfrini, Silvia; Tabacco, Gaia; Lauria Pantano, Angelo; Casini, Alessandro; Cianni, Roberto

    2017-01-01

    Percutaneous ethanol injection (PEI) is a technique used only for benign thyroid nodules, cystic or mixed cystic-solid with a large fluid component. It is a quite low-cost, safe, and outpatient method of treatment. Rare and severe complications have been described after PEI: jugular vein thrombosis and severe ethanol toxic necrosis of the larynx combined with necrotic dermatitis. Moreover, only four thyrotoxicosis cases due to Graves' disease have been reported. We report a case of 58-year-old female with a voluminous thyroid cystic nodule, occupying almost the entire left thyroid lobe. Our patient had already performed surgical visit and intervention of thyroidectomy had been proposed to her, which she refused. At baseline, our patient has a normal thyroid function with negative autoantibodies. According to the nodular structure, intervention of PEI has been performed with a significant improvement of compressive symptoms and cosmetic disorders. About 30 days after treatment, there was a significant volume reduction, but patient developed an acclaimed symptomatic thyrotoxicosis. After ruling out several causes of hyperthyroidism and according to the thyroid scintigraphy findings, we made the diagnosis of Plummer adenoma. To our knowledge, our patient is the first case of Plummer adenoma following PEI treatment of nontoxic thyroid nodule. PMID:28465846

  4. Assessment of affective and somatic signs of ethanol withdrawal in C57BL/6J mice using a short-term ethanol treatment.

    PubMed

    Perez, E E; De Biasi, M

    2015-05-01

    Alcohol is one of the most prevalent addictive substances in the world. Withdrawal symptoms result from abrupt cessation of alcohol consumption in habitual drinkers. The emergence of both affective and physical symptoms produces a state that promotes relapse. Mice provide a preclinical model that could be used to study alcohol dependence and withdrawal while controlling for both genetic and environmental variables. The use of a liquid ethanol diet offers a reliable method for the induction of alcohol dependence in mice, but this approach is impractical when conducting high-throughput pharmacological screens or when comparing multiple strains of genetically engineered mice. The goal of this study was to compare withdrawal-associated behaviors in mice chronically treated with a liquid ethanol diet vs. mice treated with a short-term ethanol treatment that consisted of daily ethanol injections containing the alcohol dehydrogenase inhibitor, 4-methylpyrazole. Twenty-four hours after ethanol treatment, mice were tested in the open field arena, the elevated plus maze, the marble burying test, or for changes in somatic signs during spontaneous ethanol withdrawal. Anxiety-like and compulsive-like behaviors, as well as physical signs, were all significantly elevated in mice undergoing withdrawal, regardless of the route of ethanol administration. Therefore, a short-term ethanol treatment can be utilized as a screening tool for testing genetic and pharmacological agents before investing in a more time-consuming ethanol treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Agmatine blocks ethanol-induced locomotor hyperactivity in male mice.

    PubMed

    Ozden, Onder; Kayir, Hakan; Ozturk, Yusuf; Uzbay, Tayfun

    2011-05-20

    Ethanol-induced locomotor activity is associated to rewarding effects of ethanol and ethanol dependence. Agmatine is a novel endogenous ligand at α2-adrenoceptors, imidazoline and N-methyl-d-aspartate (NMDA) receptors, as well as a nitric oxide synthase (NOS) inhibitor. There is no evidence presented for the relationship between the acute locomotor stimulating effect of ethanol and agmatine. Thus, the present study investigated the effects of agmatine on acute ethanol-induced locomotor hyperactivity in mice. Adult male Swiss-Webster mice (26-36g) were used as subjects. Locomotor activity of the mice was recorded for 30min immediately following intraperitoneal administration of ethanol (0.5, 1 and 2g/kg) or saline (n=8 for each group). Agmatine (5, 10 and 20mg/kg) or saline was administered intraperitoneally to another four individual groups (n=8 for each group) of the mice 20min before the ethanol injection. In these groups, locomotor activity was also recorded immediately following ethanol (0.5g/kg) injection for 30min. Ethanol (0.5g/kg) produced some significant increases in locomotor activity of the mice. Agmatine (5-20mg/kg) significantly blocked the ethanol (0.5g/kg)-induced locomotor hyperactivity. These doses of agmatine did not affect the locomotor activity in naive mice when they were administered alone. Our results suggest that agmatine has an important role in ethanol-induced locomotor hyperactivity in mice. There may be a relationship between the addictive psychostimulant effects of the ethanol and central agmatinergic system. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Preclinical Evaluation of Riluzole: Assessments of Ethanol Self-Administration and Ethanol Withdrawal Symptoms

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Hodge, Clyde W.

    2010-01-01

    Background Many of the neurobehavioral effects of ethanol are mediated by inhibition of excitatory N-methyl-d-aspartate (NMDA) and enhancement of inhibitory γ-amino-butyric-acid (GABA) receptor systems. There is growing interest in drugs that alter these systems as potential medications for problems associated with alcoholism. The drug riluzole, approved for treatment of amyotrophic lateral sclerosis (ALS), inhibits NMDA and enhances GABAA receptor system activity. This study was designed to determine the preclinical efficacy of riluzole to modulate ethanol self-administration and withdrawal. Methods Male C57BL/6J mice were trained to lever press on a concurrent fixed-ratio 1 schedule of ethanol (10% v/v) versus water reinforcement during daily 16-hour sessions. Riluzole (1 to 40 mg/kg, IP) was evaluated on ethanol self-administration after acute and chronic (2 week) treatment. To determine if riluzole influences ethanol withdrawal-associated seizures, mice were fed an ethanol-containing or control liquid diet for 18 days. The effects of a single injection of riluzole (30 mg/kg) were examined on handling-induced convulsions after ethanol withdrawal. Results Acute riluzole (30 and 40 mg/kg) reduced ethanol self-administration during the first 4 hours of the session, which corresponds to the known pharmacokinetics of this drug. Ethanol self-administration was also reduced by riluzole after chronic treatment. Riluzole (30 mg/kg) significantly decreased the severity of ethanol-induced convulsions 2 hours after ethanol withdrawal. Conclusions These results demonstrate that riluzole decreases ethanol self-administration and may reduce ethanol withdrawal severity in mice. Thus, riluzole may have utility in the treatment of problems associated with alcoholism. PMID:19426166

  7. Percutaneous ethanol injection for liver metastases.

    PubMed

    Riemsma, Robert P; Bala, Malgorzata M; Wolff, Robert; Kleijnen, Jos

    2013-05-31

    Primary liver tumours and liver metastases from colorectal carcinoma are the two most common malignant tumours to affect the liver. The liver is second only to the lymph nodes as the most common site for metastatic disease. More than half of the patients with metastatic liver disease will die from metastatic complications. Percutaneous ethanol injection (PEI) causes dehydration and necrosis of tumour cells accompanied by small vessel thrombosis, leading to tumour ischaemia and destruction. To study the beneficial and harmful effects of percutaneous ethanol injection compared with no intervention, other ablation methods, or systemic treatments in patients with liver metastases. We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, LILACS, and CINAHL up to December 2012. We included all randomised clinical trials assessing the beneficial and harmful effects of percutaneous ethanol injection versus no intervention, other ablation methods, or systemic treatments in patients with liver metastases. We extracted the relevant information on participant characteristics, interventions, study outcome measures, and data on the outcome measures for our review, as well as information on the design and methodology of the studies. Quality assessment of the trials fulfilling the inclusion criteria and data extraction from the trials retrieved for final evaluation were done by one author and checked by a second author. One randomised clinical trial was included, comparing transcatheter arterial chemoembolisation (TACE) + percutaneous intratumour ethanol injection (PEI) versus TACE alone. Forty-eight patients with liver metastases were included; 25 received the intervention with PEI and 23 received TACE alone.Mortality data were not reported. The trial reported the survival data after one, two, and three years. In the TACE + PEI group, 92%, 80%, and 64% of the patients survived after 1, 2, and 3 years respectively; in the TACE group, 78.3%, 65.2%, and 47.8% of the patients survived after 1, 2, and 3 years respectively. The hazard ratio was 0.57 (95% CI 0.19 to 1.67). The local recurrence was 16% in the TACE + PEI group and 39.1% in the TACE group, resulting in a relative risk (RR) of 0.41 (95% CI 0.15 to 1.07). Forty-five tumours (66.2%) out of 68 tumours in total shrunk by at least 25% in the TACE + PEI group versus 31 tumours (48.4%) out of 64 tumours in total in the TACE group (RR 2.08; 95% CI 1.03 to 4.2). The authors reported some adverse events, but with very few details. On the basis of one small randomised trial, it can be concluded that addition of PEI to TACE, as compared with TACE alone, in patients with liver metastases seems to bring no clear benefit in terms of survival and local recurrence. The size of the tumour necrosis was larger in the combined treatment group. No intervention-related mortality or major complications were reported. More trials are needed.

  8. Treating kaposiform hemangioendothelioma with Kasabach-Merritt phenomenon by intralesional injection of absolute ethanol.

    PubMed

    Shen, Weimin; Cui, Jie; Chen, Jianbin; Zou, Jijun; Xiaoying, Zhang

    2014-11-01

    Kasabach-Merritt phenomenon (KMP) is characterized by thrombocytopenia, microangiopathic hemolytic anemia, consumptive coagulopathy, and an enlarging vascular lesion. It is a rare and life-threatening disease of vascular tumor. The purpose of this study was to assess the effectiveness of absolute ethanol in the treatment of KMP. We treated 8 pediatric patients with KMP by using absolute ethanol injections, whose cases failed previously when applied steroid therapy. We reviewed the clinical and laboratory data of these 8 cases at Nanjing Children's Hospital in China. Eight pediatric patients (5 female and 3 male) showed tumor regression after treatments. Core needle biopsy had been performed on the 8 patients, and the results included 7 kaposiform hemangioendotheliomas and one tufted angioma. All patients had an increase in platelet count. All coagulopathies were corrected. Complications included one patient with flush on face, one patient with needle scars, and one patient with a small area of local tissue necrosis. Absolute ethanol therapy presents a safe option in the treatment of KMP. Treatment-associated complications seemed to be reversible and acceptable by severity levels. Direct intralesional injection of absolute ethanol provides a simple and reliable alternative treatment for KMP among infants and may be used as the second-line therapy.

  9. Percutaneous ethanol injection of large autonomous hyperfunctioning thyroid nodules.

    PubMed

    Tarantino, L; Giorgio, A; Mariniello, N; de Stefano, G; Perrotta, A; Aloisio, V; Tamasi, S; Forestieri, M C; Esposito, F; Esposito, F; Finizia, L; Voza, A

    2000-01-01

    To verify the effectiveness of percutaneous ethanol injection (PEI) in the treatment of large (>30-mL) hyperfunctioning thyroid nodules. Twelve patients (eight women, four men; age range, 26-76 years) with a large hyperfunctioning thyroid nodule (volume range, 33-90 mL; mean, 46.08 mL) underwent PEI treatment under ultrasonographic (US) guidance. US was used to calculate the volume of the nodules and to assess the diffusion of the ethanol in the lesions during the procedure. When incomplete necrosis of the nodule was depicted at scintigraphy performed 3 months after treatment, additional PEI sessions were performed. Four to 11 PEI sessions (mean, seven) were performed in each patient, with an injection of 3-14 mL of 99.8% ethanol per session (total amount of ethanol per patient, 30-108 mL; mean, 48.5 mL). At scintigraphy after treatment in all patients, recovery of extranodular uptake, absence of uptake in the nodule, and normalization of thyroid-stimulating hormone (thyrotropin) levels were observed. In all patients, US showed volume reductions of 30%-50% after 3 months and 40%-80% after 6-9 months. Side effects were self-limiting in all patients. During the 6-48-month follow-up, no recurrence was observed. PEI is an effective and safe technique for the treatment of large hyperfunctioning thyroid nodules.

  10. Effect of alcohol on behavioral and autonomic thermoregulation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, C.J.; Stead, A.G.

    1986-01-01

    Male, BALB/c mice were injected intraperitoneally with ethyl alcohol (ethanol) in dosages of 0, 0.03, 0.1, 0.3, 1.0, or 3.0 g/kg and then placed in a temperature gradient that permitted the measurement of preferred ambient temperature (Ta). The 3 g/kg dosage of ethanol resulted in a slight lowering of the preferred Ta during the first 30 min of placement in the gradient. However, there was no overall statistically significant effect of alcohol dosage on preferred Ta. In another experiment, BALB/c mice were treated with the aforementioned ethanol dosages while metabolic rate (MR), evaporative water loss (EWL), and colonic temperature weremore » measured 60 min post-injection at Ta's of 20, 30, and 35 C a dosage of 3 g/kg caused a significant decrease in MR, EWL, and colonic temperature. At a Ta of 30 C this same dosage caused significant reduction in colonic temperature, however; at Ta of 35 C ethanol had no effect on these parameters. In spite of the significant decrease in colonic temperature at a Ta of 30 C, which approximates the normal preferred Ta, the behavioral thermal preference was marginally affected. It is not clear whether or not ethanol injection results in a decrease in the set-point body temperature.« less

  11. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Chang, G.-Q.; Karatayev, O.; Chang, S.Y.; Leibowitz, S.F.

    2016-01-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24 h post-fertilization, zebrafish embryos were exposed for 2 h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  13. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    PubMed

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evaluation Tests of Select Fuel Additives for Potential Use in U.S. Army Corps of Engineers Diesel Engines

    DTIC Science & Technology

    2016-07-01

    DOER) program, diesel fuel additives were tested to evaluate their potential for reducing diesel fuel consumption and cost. Four fuel additives were...tested to evaluate their potential for reducing diesel fuel consumption and cost: • An ethanol injection system • Envirofuels Diesel Fuel Catalyst...reduction in select operation conditions, only the ethanol injection system consistently showed potential to reduce diesel fuel consumption , which may be

  15. Ethanol-induced conditioned taste aversion in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats.

    PubMed

    Dyr, Wanda; Wyszogrodzka, Edyta; Paterak, Justyna; Siwińska-Ziółkowska, Agnieszka; Małkowska, Anna; Polak, Piotr

    2016-03-01

    The aversive action of the pharmacological properties of ethanol was studied in selectively bred Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. For this study, a conditioned-taste aversion test was used. Male WHP and WLP rats were submitted to daily 20-min sessions for 5 days, in which a saccharin solution (1.0 g/L) was available (pre-conditioning phase). Next, this drinking was paired with the injection of ethanol (0, 0.5, 1.0 g/kg), intraperitoneally [i.p.] immediately after removal of the saccharin bottle (conditioning phase). Afterward, the choice between the saccharin solution and water was extended for 18 subsequent days for 20-min daily sessions (post-conditioning phase). Both doses of ethanol did not produce an aversion to saccharin in WLP and WHP rats in the conditioning phase. However, injection of the 1.0 g/kg dose of ethanol produced an aversion in WLP rats that was detected by a decrease in saccharin intake at days 1, 3, 7, and 10 of the post-conditioning phase, with a decrease in saccharin preference for 16 days of the post-conditioning phase. Conditioned taste aversion, measured as a decrease in saccharin intake and saccharin preference, was only visible in WHP rats at day 1 and day 3 of the post-conditioning phase. This difference between WLP and WHP rats was apparent despite similar blood ethanol levels in both rat lines following injection of 0.5 and 1.0 g/kg of ethanol. These results may suggest differing levels of aversion to the post-ingestional effects of ethanol between WLP and WHP rats. These differing levels of aversion may contribute to the selected line difference in ethanol preference in WHP and WLP rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Supplemental choline does not attenuate the effects of neonatal ethanol administration on habituation of the heart rate orienting response in rats.

    PubMed

    Hunt, Pamela S; Jacobson, Sarah E; Kim, Sarah

    2014-01-01

    Several studies using rodent subjects have now shown that extra dietary choline may prevent or even reverse the deleterious effects of pre- and early post-natal ethanol administration. Choline supplementation has been shown to attenuate many, although not all, of ethanol's effects on brain development and behavior. Our laboratory has consistently reported impaired habituation of the heart rate orienting response to a novel olfactory stimulus in animals exposed to ethanol on postnatal days (PD) 4-9. Here we examine whether supplemental choline given both during and after ethanol administration could alleviate these ethanol-induced deficits. Subjects were given 5g/kg/day ethanol or sham intubations on PD 4-9. Half of the subjects in each group were given a single daily s.c. injection of choline chloride on PD 4-20, while the other half were injected daily with saline. Pups were tested for heart rate orienting and response habituation in a single test session on PD 23. Results replicated the ethanol-induced impairment in response habituation. However, choline supplementation had no effect on orienting or habituation in either neonatal treatment group. These findings indicate that habituation deficits induced by ethanol are not alleviated by extra dietary choline using these parameters. Choline holds great promise as a treatment for some fetal alcohol effects, but is not an effective treatment for all ethanol-related deficits. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Ethanol sclerotherapy of head and neck venous malformations

    PubMed Central

    Orlando, José Luiz; Caldas, José Guilherme Mendes Pereira; Campos, Heloisa Galvão do Amaral; Nishinari, Kenji; Krutman, Mariana; Wolosker, Nelson

    2014-01-01

    ABSTRACT Objective: This retrospective study evaluated the results of sclerotherapy with low doses of ethanol for treatment of head and neck venous malformations. Methods: We treated 51 patients, 37 females. Median age was 23 years. Patients were treated with percutaneous intralesional injection of alcohol every two weeks and followed up prospectively for a median period of 18 months. Most lesions affected the face and cosmetic disfigurement was the most frequent complaint. Results: We performed a median of 7 sessions of sclerotherapy. Complete resolution or improvement was observed in 48 patients presented. Five cases of small skin ulceration, two cases of hyperpigmentation and two of paresthesia were documented; all of them were treated conservatively. Conclusion: Percutaneous sclerotherapy with low doses of ethanol is a safe and effective treatment modality for venous malformations affecting the head and neck. PMID:25003923

  18. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    EPA Science Inventory

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...

  19. Application of multicriteria decision making methods to compression ignition engine efficiency and gaseous, particulate, and greenhouse gas emissions.

    PubMed

    Surawski, Nicholas C; Miljevic, Branka; Bodisco, Timothy A; Brown, Richard J; Ristovski, Zoran D; Ayoko, Godwin A

    2013-02-19

    Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

  20. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    PubMed

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Differences in sensitivity to ethanol-induced conditioned taste aversions emerge after pre- or post-pubertal gonadectomy in male and female rats.

    PubMed

    Morales, Melissa; Spear, Linda P

    2013-03-01

    We have previously demonstrated that gonadectomy either prior to (early) or after (late) puberty elevated ethanol consumption in males to levels similar to intact adult females-effects that were attenuated by testosterone replacement. To assess whether alterations in the aversive effects of ethanol might contribute to gonadectomy-associated increases in ethanol intake in males, the present study examined the impact of gonadectomy on conditioned taste aversions (CTA) to ethanol in male and female Sprague-Dawley rats. Animals were gonadectomized, received sham surgery (SH) or non-manipulated (NM) on postnatal (P) day 23 (early) or 67 (late) and tested for CTA to ethanol in adulthood. Water-deprived rats were given 1 hr access every-other-day to 10% sucrose followed by an injection of ethanol (0, 1g/kg) for 5 test sessions. Test data were analyzed to determine the first day significant aversions emerged in each ethanol group (i.e., sucrose intakes significantly less than their saline-injected counterparts). Early gonadectomized males acquired the CTA more rapidly than did early SH and NM males (day 1 vs 3 and 4 respectively), whereas a gonadectomy-associated enhancement in ethanol CTA was not evident in late males. Among females, gonadectomy had little impact on ethanol-induced CTA, with females in all groups showing an aversion by the first or second day, regardless of surgery age. These data suggest that previously observed elevations in ethanol intake induced by either pre- or post-pubertal gonadectomy in males are not related simply to gonadectomy-induced alterations in the aversive effects of ethanol indexed via CTA. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Intoxication by Intraperitoneal Injection or Oral Gavage Equally Potentiates Postburn Organ Damage and Inflammation

    PubMed Central

    Chen, Michael M.; Palmer, Jessica L.; Ippolito, Jill A.; Curtis, Brenda J.; Choudhry, Mashkoor A.; Kovacs, Elizabeth J.

    2013-01-01

    The increasing prevalence of binge drinking and its association with trauma necessitate accurate animal models to examine the impact of intoxication on the response and outcome to injuries such as burn. While much research has focused on the effect of alcohol dose and duration on the subsequent inflammatory parameters following burn, little evidence exists on the effect of the route of alcohol administration. We examined the degree to which intoxication before burn injury causes systemic inflammation when ethanol is given by intraperitoneal (i.p.) injection or oral gavage. We found that intoxication potentiates postburn damage in the ileum, liver, and lungs of mice to an equivalent extent when either ethanol administration route is used. We also found a similar hematologic response and levels of circulating interleukin-6 (IL-6) when either ethanol paradigm achieved intoxication before burn. Furthermore, both i.p. and gavage resulted in similar blood alcohol concentrations at all time points tested. Overall, our data show an equal inflammatory response to burn injury when intoxication is achieved by either i.p. injection or oral gavage, suggesting that findings from studies using either ethanol paradigm are directly comparable. PMID:24379525

  3. Impact of parameter fluctuations on the performance of ethanol precipitation in production of Re Du Ning Injections, based on HPLC fingerprints and principal component analysis.

    PubMed

    Sun, Li-Qiong; Wang, Shu-Yao; Li, Yan-Jing; Wang, Yong-Xiang; Wang, Zhen-Zhong; Huang, Wen-Zhe; Wang, Yue-Sheng; Bi, Yu-An; Ding, Gang; Xiao, Wei

    2016-01-01

    The present study was designed to determine the relationships between the performance of ethanol precipitation and seven process parameters in the ethanol precipitation process of Re Du Ning Injections, including concentrate density, concentrate temperature, ethanol content, flow rate and stir rate in the addition of ethanol, precipitation time, and precipitation temperature. Under the experimental and simulated production conditions, a series of precipitated resultants were prepared by changing these variables one by one, and then examined by HPLC fingerprint analyses. Different from the traditional evaluation model based on single or a few constituents, the fingerprint data of every parameter fluctuation test was processed with Principal Component Analysis (PCA) to comprehensively assess the performance of ethanol precipitation. Our results showed that concentrate density, ethanol content, and precipitation time were the most important parameters that influence the recovery of active compounds in precipitation resultants. The present study would provide some reference for pharmaceutical scientists engaged in research on pharmaceutical process optimization and help pharmaceutical enterprises adapt a scientific and reasonable cost-effective approach to ensure the batch-to-batch quality consistency of the final products. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  4. Possible mechanism of acute effect of ethanol on intestinal IgA expression in rat.

    PubMed

    Budec, Mirela; Koko, Vesna; Todorović, Vera; Marković, Dragana; Postić, Marija; Drndarević, Neda; Spasić, Andelka; Mitrović, Olivera

    2007-06-01

    The purpose of this study was to investigate the possible mechanism of acute effect of ethanol on IgA expression in rat intestine. To this end, adult female Wistar rats showing diestrus day 1 were treated with (a) ethanol (2 or 4 g/kg, i.p.); (b) N omega-nitro-L-arginine-methyl ester (L-NAME), which inhibits the activity of all isoforms of nitric oxide synthase, (30 mg/kg, s.c.) followed by ethanol 3 h later; and (c) L-NAME (30 mg/kg, s.c.) followed by saline 3 h later. Saline-injected and untreated rats were used as controls. The animals were sacrificed 0.5 h after ethanol administration. Intestinal expression of IgA was evaluated by both immunohistochemistry and Western immunoblotting. Morphometric analysis showed that acute ethanol treatment increased the number of IgA-immunoreactive cells in a dose-dependent manner. Pretreatment with L-NAME abolished this action of alcohol. Injection of L-NAME followed by saline had no influence on the number of IgA+cells. The results, obtained by Western immunoblotting, paralleled our immunohistochemical findings. Taken together, these data suggest that acute effect of ethanol on intestinal IgA might be mediated by endogenous nitric oxide.

  5. Supplemental choline does not attenuate the effects of neonatal ethanol administration on habituation of the heart rate orienting response in rats

    PubMed Central

    Hunt, Pamela S.; Jacobson, Sarah E.; Kim, Sarah

    2014-01-01

    Several studies using rodent subjects have now shown that extra dietary choline may prevent or even reverse the deleterious effects of pre- and early post-natal ethanol administration. Choline supplementation has been shown to attenuate many, although not all, of ethanol’s effects on brain development and behavior. Our laboratory has consistently reported impaired habituation of the heart rate orienting response to a novel olfactory stimulus in animals exposed to ethanol on postnatal days (PD) 4–9. Here we examine whether supplemental choline given both during and after ethanol administration could alleviate these ethanol-induced deficits. Subjects were given 5 g/kg/day ethanol or sham intubations on PD 4–9. Half of the subjects in each group were given a single daily s.c. injection of choline chloride on PD 4–20, while the other half were injected daily with saline. Pups were tested for heart rate orienting and response habituation in a single test session on PD 23. Results replicated the ethanol-induced impairment in response habituation. However, choline supplementation had no effect on orienting or habituation in either neonatal treatment group. These findings indicate that habituation deficits induced by ethanol are not alleviated by extra dietary choline using these parameters. Choline holds great promise as a treatment for some fetal alcohol effects, but is not an effective treatment for all ethanol-related deficits. PMID:24907459

  6. Spectrophotometric determination of sulphate in automotive fuel ethanol by sequential injection analysis using dimethylsulphonazo(III) reaction.

    PubMed

    de Oliveira, Fabio Santos; Korn, Mauro

    2006-01-15

    A sensitive SIA method was developed for sulphate determination in automotive fuel ethanol. This method was based on the reaction of sulphate with barium-dimethylsulphonazo(III) leading to a decrease on the magnitude of analytical signal monitored at 665 nm. Alcohol fuel samples were previously burned up to avoid matrix effects for sulphate determinations. Binary sampling and stop-flow strategies were used to increase the sensitivity of the method. The optimization of analytical parameter was performed by response surface method using Box-Behnker and central composite designs. The proposed sequential flow procedure permits to determine up to 10.0mg SO(4)(2-)l(-1) with R.S.D. <2.5% and limit of detection of 0.27 mg l(-1). The method has been successfully applied for sulphate determination in automotive fuel alcohol and the results agreed with the reference volumetric method. In the optimized condition the SIA system carried out 27 samples per hour.

  7. Self-Assembly Behavior of Amphiphilic Janus Dendrimers in Water: A Combined Experimental and Coarse-Grained Molecular Dynamics Simulation Approach.

    PubMed

    Elizondo-García, Mariana E; Márquez-Miranda, Valeria; Araya-Durán, Ingrid; Valencia-Gallegos, Jesús A; González-Nilo, Fernando D

    2018-04-21

    Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs’ molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems.

  8. The role of social isolation in ethanol effects on the preweanling rat

    PubMed Central

    Kozlov, Andrey P.; Nizhnikov, Michael; Varlinskaya, Elena I.; Spear, Norman E.

    2011-01-01

    The present experiments investigated the effects of acute ethanol exposure on voluntary intake of 0.1% saccharin or water as well as behavioral and nociceptive reactivity in twelve–day-old (P12) rats exposed to differing levels of isolation. The effects of ethanol emerged only during short-term social isolation (STSI) with different patterns observed in males and females and in pups exposed to saccharin or water. The 0.5 g/kg ethanol dose selectively increased saccharin intake in females, decreased rearing activity in males and attenuated isolation-induced analgesia (IIA) in all water-exposed pups. Ingestion of saccharin decreased IIA, and the 0.5 g/kg ethanol dose further reduced IIA. The 1.0 g/kg ethanol dose, administered either intragastrically or intraparentionally, also decreased IIA in P12 females, but not in P9 pups. A significant correlation between voluntary saccharin intake and baseline nociceptive reactivity was revealed in saline injected animals, saccharin intake was inversely correlated with behavioral activation and latency of reaction to noxious heat after 0.5 g/kg ethanol in females. The 0.5 g/kg ethanol dose did not affect plasma corticosterone (CORT) measured 5 hours after maternal separation or 20 minutes after ethanol injection. Female pups CORT level was inversely correlated with magnitude of IIA that accompanied the first episode of STSI (pretest isolation) 1.5–2 hours before CORT measurement. The present findings suggest that the anxiolytic properties of ethanol are responsible for enhancement of saccharin intake during STSI. Furthermore, differential reactivity of P12 males and females to STSI plays an important role in ethanol effects observed at this age. PMID:22051944

  9. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis.

    PubMed

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G

    2016-02-01

    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6JIco and BALB/cAnN@Ico mice injected with ethanol.

    PubMed

    Lalonde, R; Strazielle, C

    2012-04-01

    The effects of ethanol were examined on three tests of exploratory activity in two mouse strains. Although ethanol reduced open-field rearing in both strains, it increased ambulation only in the less active BALB/cAnN@Ico strain, not in the C57BL/6JIco strain. Likewise, ethanol increased open and enclosed arm entries in the elevated plus-maze only in the more anxious BALB/cAnN@Ico strain. However, both strains injected with ethanol emerged faster than placebo from a small chamber at doses not affecting behaviors in the other two tests. Significant correlations were found between emergence latencies on one hand and either slow stereotyped movements or open and enclosed arm entries on the other. The strain-specific effects may be attributable to differences in GABA(A) -related receptor binding or catalase activity. © 2011 The Authors Fundamental and Clinical Pharmacology © 2011 Société Française de Pharmacologie et de Thérapeutique.

  11. Detection of Chlorogenic Acid in Honeysuckle Using Infrared-Assisted Extraction Followed by Capillary Electrophoresis with UV Detector

    PubMed Central

    Tang, Zhuxing; Zang, Shuliang; Zhang, Xiangmin

    2012-01-01

    In this study, a novel infrared-assisted extraction method coupled capillary electrophoresis (CE) is employed to determine chlorogenic acid from a traditional Chinese medicine (TCM), honeysuckle. The effects of pH and the concentration of the running buffer, separation voltage, injection time, IR irradiation time, and anhydrous ethanol in the extraction concentration were investigated. The optimal conditions were as follows: extraction time, 30 min; extraction solvent, 80% (v/v) ethanol in water solution; and 50 mmol/L borate buffer (pH 8.7) was used as the running buffer at a separation voltage of 16 kV. The samples were injected electrokinetically at 16 kV for 8 s. Good linearity (r2 > 0.9996) was observed over the concentration ranges investigated, and the stability of the solutions was high. Recoveries of the chlorogenic acid were from 95.53% to 106.62%, and the relative standard deviation was below 4.1%. By using this novel IR-assisted extraction method, a higher extraction efficiency than those extracted with conventional heat-reflux extraction was found. The developed IR-assisted extraction method is simple, low-cost, and efficient, offering a great promise for the quick determination of active compounds in TCM. The results indicated that IR-assisted extraction followed by CE is a reliable method for quantitative analysis of active ingredient in TCM. PMID:22291060

  12. Neuroprotective role of quercetin in locomotor activities and cholinergic neurotransmission in rats experimentally demyelinated with ethidium bromide.

    PubMed

    Beckmann, Diego V; Carvalho, Fabiano B; Mazzanti, Cinthia M; Dos Santos, Rosmarini P; Andrades, Amanda O; Aiello, Graciane; Rippilinger, Angel; Graça, Dominguita L; Abdalla, Fátima H; Oliveira, Lizielle S; Gutierres, Jessié M; Schetinger, Maria Rosa C; Mazzanti, Alexandre

    2014-05-17

    The purpose of this study was to investigate whether the flavonoid quercetin can prevent alterations in the behavioral tests and of cholinergic neurotransmission in rats submitted to the ethidium bromide (EB) experimental demyelination model during events of demyelination and remyelination. Wistar rats were randomly distributed into four groups (20 animals per group): Control (pontine saline injection and treatment with ethanol), Querc (pontine saline injection and treatment with quercetin), EB (pontine 0.1% EB injection and treatment with ethanol), and EB+Querc (pontine 0.1% EB injection and treatment with quercetin). The groups Querc and Querc+EB were treated once daily with quercetin (50mg/kg) diluted in 25% ethanol solution (1ml/kg) and the animals of the control and EB groups were treated once daily with 25% ethanol solution (1ml/kg). Two stages were observed: phase of demyelination (peak on day 7) and phase of remyelination (peak on day 21 post-injection). Behavioral tests (beam walking, foot fault and inclined plane test), acetylcholinesterase (AChE) activity and lipid peroxidation in pons, cerebellum, hippocampus, hypothalamus, striatum and cerebral cortex were measured. The quercetin promoted earlier locomotor recovery, suggesting that there was demyelination prevention or further remyelination velocity as well as it was able to prevent the inhibition of AChE activity and the increase of lipidic peroxidation, suggesting that this compound can protect cholinergic neurotransmission. These results may contribute to a better understanding of the neuroprotective role of quercetin and the importance of an antioxidant diet in humans to provide benefits in neurodegenerative diseases such as MS. Copyright © 2014. Published by Elsevier Inc.

  13. Tigecycline Reduces Ethanol Intake in Dependent and Non-Dependent Male and Female C57BL/6J Mice

    PubMed Central

    Bergeson, Susan E.; Nipper, Michelle A.; Jensen, Jeremiah; Helms, Melinda L.; Finn, Deborah A.

    2016-01-01

    Background The chronic intermittent ethanol (CIE) paradigm is valuable for screening compounds for efficacy to reduce drinking traits related to alcohol use disorder (AUD), as it measures alcohol consumption and preference under physical dependence conditions. Air control treated animals allow simultaneous testing of similarly treated, non-dependent animals. As a consequence, we used CIE to test the hypothesis that tigecycline, a semi-synthetic tetracycline similar to minocycline and doxycycline, would reduce alcohol consumption regardless of dependence status. Methods Adult C57BL/6J female and male mice were tested for tigecycline efficacy to reduce ethanol consumption using a standard CIE paradigm. The ability of tigecycline to decrease 2-bottle choice of 15% ethanol (15E) versus water intake in dependent (CIE-vapor) and non-dependent (air-treated) male and female mice was tested after four cycles of CIE vapor or air exposure using a within-subjects design and a dose response. Drug doses of 0, 40, 60, 80, 100 mg/kg in saline were administered intraperitoneally (0.01 mL/g body weight) and in random order, with a 1 hr pretreatment time. Baseline 15E intake was re-established prior to administration of subsequent injections, with a maximum of two drug injections tested per week. Results Tigecycline was found to effectively reduce high alcohol consumption in both dependent and non-dependent female and male mice. Conclusions Our data suggest that tigecycline may be a promising drug with novel pharmacotherapeutic characteristics for the treatment of mild to severe AUD in both sexes. PMID:27859429

  14. Assessment of the effects of six standard rodent diets on binge-like and voluntary ethanol consumption in male C57BL/6J mice

    PubMed Central

    Marshall, S. Alex; Rinker, Jennifer A.; Harrison, Langston K.; Fletcher, Craig A.; Herfel, Tina M.; Thiele, Todd E.

    2015-01-01

    Background In recent years much attention has been given to the lack of reproducibility in biomedical research, particularly in pre-clinical animal studies. This is a problem that also plagues the alcohol research field, particularly in consistent consumption in animal models of alcohol use disorders. One often overlooked factor that could affect reproducibility is the maintenance diet used in pre-clinical studies. Methods Herein, two well-established models of alcohol consumption, the “drinking in the dark” (DID) procedure and the continuous two-bottle choice paradigm (C2BC), were employed to determine the effects of diet on ethanol consumption. Male C57BL/6J were given one of six standard rodent-chow diets obtained from Purina LabDiet®, Inc. [St. Louis, MO; Prolab® RMH 3000] or Harlan Laboratories Inc. [Indianapolis, IN; Teklad Diets T.2916, T.2918, T.2920X, T.7912, or T.8940]. A separate group of animals were used to test dietary effects on ethanol pharmacokinetics and behavioral measures following intraperitoneal (IP) injections of various doses of ethanol. Results Mice eating Harlan diets T.2916 (H2916) and T.2920X (H2920) consumed significantly less ethanol and exhibited lower blood ethanol concentrations (BECs) during DID; however, during C2BC animals maintained on Harlan T.7912 (H7912) consumed more ethanol and had a higher ethanol preference than the other diet groups. Ethanol consumption levels did not stem from changes in alcohol pharmacokinetics, as a separate group of animals administered ethanol IP showed no difference in BECs. However, animals on Harlan diet T.2920X (H2920) were more sensitive to alcohol-induced locomotor activity in an open-field task. No diet dependent differences were seen in alcohol-induced sedation as measured with loss of righting reflex. Conclusions Although these data do not identify a specific mechanism, together they clearly show that the maintenance diet impacts ethanol consumption. It is incumbent upon the research community to consider the importance of describing nutritional information in methods, which may help decrease inter-laboratory reproducibility issues. PMID:26110576

  15. Functional interaction and cross-tolerance between ethanol and Δ9-THC: possible modulation by mouse cerebellar adenosinergic A1/GABAergic-A receptors.

    PubMed

    Dar, M Saeed

    2014-08-15

    We have previously shown a functional motor interaction between ethanol and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) that involved cerebellar adenosinergic A1 and GABAergic A receptor modulation. We now report the development of cross-tolerance between intracerebellar Δ(9)-THC and intraperitoneal ethanol using ataxia as the test response in male CD-1 mice. The drugs [Δ(9)-THC (20 μg), N(6)-cyclohexyladenosine, CHA (12 ng), muscimol (20 ng)] used in the study were directly microinfused stereotaxically via guide cannulas into the cerebellum except ethanol. Δ(9)-THC, infused once daily for 5 days followed 16 h after the last infusion by acute ethanol (2g/kg) and Rotorod evaluation, virtually abolished ethanol ataxia indicating development of cross-tolerance. The cross-tolerance was also observed when the order of ethanol and Δ(9)-THC treatment was reversed, i.e., ethanol injected once daily for 5 days followed 16 h after the last ethanol injection by Δ(9)-THC infusion. The cross-tolerance appeared within 24-48 h, lasted over 72 h and was maximal in 5-day ethanol/Δ(9)-THC-treated animals. Finally, tolerance in chronic ethanol/Δ(9)-THC/-treated animals developed not only to ethanol/Δ(9)-THC-induced ataxia, respectively, but also to the ataxia potentiating effect of CHA and muscimol, indicating modulation by cerebellar adenosinergic A1 and GABAA receptors. A practical implication of these results could be that marijuana smokers may experience little or no negative effects such as ataxia following alcohol consumption. Clinically, such antagonism of ethanol-induced ataxia can be observed in marijuana users thereby encouraging more alcohol consumption and thus may represent a risk factor for the development of alcoholism in this segment of population. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. THC inhibits the expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Filev, Renato; Engelke, Douglas S; Da Silveira, Dartiu X; Mello, Luiz E; Santos-Junior, Jair G

    2017-12-01

    The motivational circuit activated by ethanol leads to behavioral changes that recruit the endocannabinoid system (ECS). Case reports and observational studies suggest that the use of Cannabis sp. mitigates problematic ethanol consumption in humans. Here, we verified the effects of the two main phytocannabinoid compounds of Cannabis sp., cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), in the expression of ethanol-induced locomotor sensitization in mice. Male adult DBA/2 mice were exposed to locomotor sensitization by daily intraperitoneal injections of ethanol (2.5 g/kg) for 12 days; control groups received saline. After the acquisition phase, animals were treated with cannabinoids: CBD (2.5 mg/kg); THC (2.5 mg/kg); CBD + THC (1:1 ratio), or vehicle for 4 days with no access to ethanol during this period. One day after the last cannabinoid injection, all animals were challenged with ethanol (2.0 g/kg) to evaluate the expression of the locomotor sensitization. Mice treated with THC alone or THC + CBD showed reduced expression of locomotor sensitization, compared to the vehicle control group. No effects were observed with CBD treatment alone. Our findings showing that phytocannabinoid treatment prevents the expression of behavioral sensitization in mice provide insight into the potential therapeutic use of phytocannabinoids in alcohol-related problems. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of melatonin on motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Cutrera, R A; Lores-Arnaiz, S

    2014-06-06

    Increased reactive oxygen species generation and mitochondrial dysfunction occur during ethanol hangover. The aim of this work was to study the effect of melatonin pretreatment on motor performance and mitochondrial function during ethanol hangover. Male mice received melatonin solution or its vehicle in drinking water during 7 days and i.p. injection with EtOH (3.8 g/kg BW) or saline at the eighth day. Motor performance and mitochondrial function were evaluated at the onset of hangover (6h after injection). Melatonin improved motor coordination in ethanol hangover mice. Malate-glutamate-dependent oxygen uptake was decreased by ethanol hangover treatment and partially prevented by melatonin pretreatment. Melatonin alone induced a decrease of 30% in state 4 succinate-dependent respiratory rate. Also, the activity of the respiratory complexes was decreased in melatonin-pretreated ethanol hangover group. Melatonin pretreatment before the hangover prevented mitochondrial membrane potential collapse and induced a 79% decrement of hydrogen peroxide production as compared with ethanol hangover group. Ethanol hangover induced a 25% decrease in NO production. Melatonin alone and as a pretreatment before ethanol hangover significantly increased NO production by nNOS and iNOS as compared with control groups. No differences were observed in nNOS protein expression, while iNOS expression was increased in the melatonin group. Increased NO production by melatonin could be involved in the decrease of succinate-dependent oxygen consumption and the inhibition of complex IV observed in our study. Melatonin seems to act as an antioxidant agent in the ethanol hangover condition but also exhibited some dual effects related to NO metabolism. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Effect of chronic ethanol consumption on the response of parathyroid hormone to hypocalcemia in the pregnant rat.

    PubMed

    Duggal, Shalu; Simpson, Mary Elizabeth; Keiver, Kathy

    2007-01-01

    Chronic alcohol (ethanol) consumption during pregnancy results in maternal/fetal hypocalcemia, which may underlie some of ethanol's adverse effects on maternal and fetal bone, and fetal/neonatal health. Ethanol appears to alter the relationship between parathyroid hormone (PTH) and blood calcium (Ca) level, and PTH does not increase in response to ethanol-induced hypocalcemia. However, it is not known whether ethanol actually prevents PTH from responding, or whether the ability to regulate blood Ca is intact, but ethanol lowers the level of Ca maintained. The objective of this study was to determine whether chronic ethanol consumption impairs the ability of the pregnant female to increase PTH in response to acute hypocalcemia. Rats were fed isocaloric diets with ethanol (36% ethanol-derived calories, E group) or without ethanol [pair-fed (PF) and control (C) groups], before and throughout 21 days of gestation. On day 21 gestation, rats received an intraperitoneal injection of ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (300 or 500 mumol/kg body weight) or saline (saline group), or no injection (baseline group). Blood was collected from the baseline group, and at 30 or 60 minutes postinjection (saline and EGTA groups), and analyzed for ionized Ca (iCa), pH, and PTH. Consistent with previous studies, ethanol consumption decreased blood iCa levels at baseline, but PTH levels did not differ among groups. Administration of EGTA significantly decreased blood iCa levels by 30 minutes, but ethanol did not prevent PTH from increasing in response to the hypocalcemia. In all diet groups, PTH levels were significantly increased by 30 minutes. Ethanol did, however, appear to decrease the maximum PTH level achievable in blood. These data suggest that chronic ethanol consumption does not impair the ability of the pregnant rat to raise serum PTH levels in response to acute hypocalcemia, but ethanol's effect on maximal PTH secretion could impair the ability of the pregnant female to sustain high PTH levels in response to chronic hypocalcemia.

  19. Evaluation of bromide mass discharge in a sandy aquifer at Vandenberg AFB, CA

    NASA Astrophysics Data System (ADS)

    Mackay, D. M.; Rasa, E.; Einarson, M.; Kaiser, P.; Chakraborty, I.; Scow, K. M.

    2009-12-01

    Side-by-side experiments were conducted by UC Davis research team at a former fuel station at Vandenberg Air Force Base (AFB) to evaluate the rate of transformation of methyl tert-butyl ether (MTBE) to tert-butyl alcohol (TBA) impacted by ethanol and to investigate evidence of TBA degradation under sulfate reducing conditions. On one side we injected groundwater amended with ethanol and MTBE. In the other lane we injected groundwater amended with TBA. On both sides, injected ground water was spiked with bromide tracer to provide estimates of groundwater flow direction variations, flow velocity, dispersion, and mobile mass loss resulting from diffusive sequestration into aquitards. 162 monitoring wells were aligned into seven transects located downgradient of the injection wells. The mass discharge approach was used to evaluate the natural attenuation of the injected constituents. In this talk we will focus on calculations of mass discharge of the bromide tracer at each of the seven monitoring well transects. The amount of bromide mass discharged through each transect was calculated for any sampling time using field measurements of break through curves. Cumulative mass discharges were estimated and, by iteration based on mass balance, the flow properties of the aquifer were estimated. The calibration process resulted in subtle but quantitatively important changes in our assumptions regarding key physical properties of the aquifer (thickness, porosity) which could be only approximately estimated by standard methods (coring, CPT, etc.). On the basis of this calibration, a more robust approach was devised for evaluating the source and fate of TBA in the aquifer.

  20. Study of the various factors influencing deposit formation and operation of gasoline engine injection systems

    NASA Astrophysics Data System (ADS)

    Stepien, Z.

    2016-09-01

    Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.

  1. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  2. Ethanol, 3,4-methylenedioxymethamphetamine (ecstasy) and their combination: long-term behavioral, neurochemical and neuropharmacological effects in the rat.

    PubMed

    Cassel, Jean-Christophe; Riegert, Céline; Rutz, Susanne; Koenig, Julie; Rothmaier, Katharina; Cosquer, Brigitte; Lazarus, Christine; Birthelmer, Anja; Jeltsch, Hélène; Jones, Byron C; Jackisch, Rolf

    2005-10-01

    This study investigated long-term behavioral, neurochemical, and neuropharmacological effects of ethanol-(+/-)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) combinations. Over 4 consecutive days, male Long-Evans rats received 1.5 g/kg ethanol and/or 10 mg/kg MDMA, or saline. Rectal temperatures were taken in some rats. Starting 4 days after the last injection, we tested working memory, sensory-motor coordination, and anxiety. Subsequently, we measured cortical, striatal, septal, and hippocampal monoamines (last MDMA injection-euthanasia delay: 20 days), or electrically evoked release of serotonin (5-HT) in cortical and hippocampal slices, and its modulation in the presence of CP 93,129 (3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrollo[3,2-b]pyrid-5-one) or methiotepin (last MDMA injection-euthanasia delays: 3-6 weeks). Ethanol attenuated the MDMA-induced hyperthermia, but only on the first day. In the long-term, MDMA reduced 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) content in most brain regions. The behavioral and neurochemical effects of the ethanol-MDMA combination were comparable to those of MDMA alone; sensory-motor coordination was altered after ethanol and/or MDMA. In hippocampal slices from rats given ethanol and MDMA, the CP 93,129-induced inhibition and methiotepin-induced facilitation of 5-HT release were stronger and weaker, respectively, than in the other groups. This is the first study addressing long-term effects of repeated MDMA and EtOH combined treatments in experimental animals. Whereas the drug combination produced the same behavioral and neurochemical effects as MDMA alone, our neuropharmacological results suggest that MDMA-EtOH interactions may have specific long-term consequences on presynaptic modulation of hippocampal 5-HT release, but not necessarily related to MDMA-induced depletion of 5-HT. Thus, it is likely that the psycho(patho)logical problems reported by ecstasy users drinking alcohol are not solely due to the consumption of MDMA.

  3. Development of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes) polysaccharides injection formulation.

    PubMed

    Jiang, Yuji; He, Anle; Liu, Yanhong; Xie, Baogui; Li, Ye; Deng, Youjin; Liu, Xinrui; Liu, Qichao

    2014-01-01

    Biochemical and pharmacological research has demonstrated that Lingzhi or Reishi medicinal mushroom Ganoderma lucidum polysaccharides (GLPS) have significant anticancer, antitumor, and antioxidant activities. To investigate the effect of injecting GLPS into hosts for clinical studies, aqueous polysaccharide extracts from G. lucidum fruit bodies were purified by deproteinization using the Sevage method, anion-exchange chromatography elution (cellulose DEAE-52 chromatography), dialysis, ethanol precipitation, and active carbon and millipore membrane filtration techniques. The purified GLPS were used for injection in mice. Polysaccharide indexes, protein, tannin, heavy metal, arsenic salt, oxalate, potassium ion, resin, pH, ignition residue measurements, evaluation criterion for allergic reactions, and total solids content of the GLPS injection were all performed using the reference methods in the Chinese Pharmacopoeia. Our results showed that polysaccharide was the key component of injection mixtures. The ignition residue and total solids content in the injection mixture were 1.4% and 2.4%, respectively. The other indices were all within the expected safety ranges. Furthermore, studies from mice functional assays showed that the injection mixture improved the antifatigue capacity of mice without any effect on weight loss/gain. In addition, the injection mixture was safe, which was confirmed by allergy testing in guinea pigs. The development of a GLPS injection offers a novel approach for future medicinal mushroom utilization and holds great commercial promise.

  4. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    PubMed

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Combined Treatment of Large Hepatocellular Carcinoma with Transcatheter Arterial Chemoembolization and Percutaneous Ethanol Injection with a Multipronged Needle: Experimental and Clinical Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Rinako; Seki, Toshihito, E-mail: sekit@takii.kmu.ac.jp; Umehara, Hideto

    2012-04-15

    Purpose: This study was designed to evaluate the usefulness of percutaneous ethanol injection (PEI) with a multipronged needle for the treatment of large hepatocellular carcinoma (HCC). An experimental animal study and a clinical investigation were performed. Methods: In the experimental study, 20 ml of 99.5% ethanol was injected into porcine liver in vivo with a multipronged needle (n = 5) or a straight needle (n = 5), and the volumes of coagulation necrosis were compared. In the clinical investigation, PEI was performed in 17 patients (10 men, 7 women; mean age 73.4 {+-} 6.7 years) with single, large HCC (meanmore » tumor diameter, 47.2 {+-} 11.5 mm; range, 32-70 mm) by using a multipronged needle. Fifteen of 17 patients received transarterial chemoembolization (TACE) before PEI. Results: The volume of coagulation in porcine liver in vivo was significantly increased with the multipronged needle compared with the straight needle (longest perpendicular diameters, 34.2 {+-} 3.6 mm Multiplication-Sign 30.2 {+-} 3.6 mm vs. 22.6 {+-} 2.5 mm Multiplication-Sign 19 {+-} 2.2 mm, respectively; P < 0.05). In the clinical trial, initial complete response (CR) of the tumor was achieved in 17 of 17 patients, 7 of whom required two PEI sessions. During the follow-up, local recurrence was detected in 4 of 17 patients at 3-19 months after the procedure, for a rate of sustained local CR of 76%. No major complication occurred. Conclusions: Use of a multipronged needle substantially increases the volume of coagulation in vivo with respect to the conventional PEI technique. Combined TACE and PEI with multipronged needles is a safe and effective option for percutaneous treatment of single, large HCC.« less

  6. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    PubMed

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  7. REINSTATEMENT OF ETHANOL AND SUCROSE SEEKING BY THE NEUROSTEROID ALLOPREGNANOLONE IN C57BL/6 MICE

    PubMed Central

    Finn, Deborah A.; Mark, Gregory P.; Fretwell, Andrea M.; Gililland, Katherine R.; Strong, Moriah N.; Ford, Matthew M.

    2016-01-01

    Rationale Recent work in our laboratory documented that the “sipper” method of operant ethanol self-administration produced high ethanol intake and blood ethanol concentrations as well as the typical extinction “burst” in responding under non-reinforced conditions in male C57BL/6 mice. However, the neurochemical basis for reinstatement of responding following extinction has not been examined in mice with this model. Objectives Based on findings that the GABAergic neurosteroid allopregnanolone (ALLO) significantly increased the consummatory phase of ethanol self-administration, the present study determined the effect of ALLO on reinstatement of extinguished ethanol-seeking behavior and compared this effect to reinstatement of responding for sucrose reward. Methods Separate groups of male C57BL/6 mice were trained to lever press for access to a 10% ethanol (10E) or a 5% sucrose (5S) solution. A single response requirement of 16 presses (RR16) on an active lever resulted in 30 min of continuous access to the 10E or 5S solution. After the animals responded on the RR16 schedule for 14 weeks, mice were exposed to 30 min extinction sessions where responding had no scheduled consequence. Once responding stabilized below the pre-extinction baseline, mice received an IP injection of ALLO (0, 3.2, 5.6, 10 or 17 mg/kg) 15 min prior to the extinction session in a within-subjects design. Results ALLO produced a dose-dependent increase in responding under non-reinforced conditions in both the 10E and 5S groups. Additional work documented the ability of a conditioned cue light or a compound cue (light+lever retraction) to reinstate non-reinforced responding on the previously active lever. Conclusions These findings definitively show that conditioned cues and priming with ALLO are potent stimuli for reinstating both ethanol and sucrose seeking behavior in C57BL/6 mice. PMID:18758755

  8. Effects of beta-lactam Compounds on GLT1 and xCT Expression levels as well as Ethanol Intake in Alcohol-Preferring Rats

    NASA Astrophysics Data System (ADS)

    Hakami, Alqassem

    Drug abuse is associated with deficits in glutamate uptake and impairment of glutamate homeostasis. Glutamate transporters are the key players in regulating extracellular glutamate concentrations. Considering the importance of glutamate transporters, pharmacological management of the transporter functions can be used as very promising therapeutic targets. Ceftriaxone (beta-lactam antibiotic) has been shown to attenuate ethanol consumption and cocaine-seeking behavior in part by restoring glutamate homeostasis in mesocorticolimbic regions. Furthermore, recent studies from our lab have demonstrated the effects of amoxicillin and Augmentin on upregulating GLT-1 expression level as well as reducing ethanol consumption in male P rats. Therefore, in this project, we examined the effects of amoxicillin and Augmentin on other glutamate transporters (xCT and GLAST) expression levels in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Furthermore, we also investigated the effects of clavulanic acid administration on alcohol consumption as well as GLT-1 and xCT expression levels in NAc. Additionally, we also determined whether oral Augmentin have any effect in reducing alcohol intake in male P rats. Rats were exposed to free choice of ethanol (15% and 30%), water, and food for a period of five weeks. During week six, rats were given five consecutive daily i.p. injections of saline vehicle, 100 mg/kg amoxicillin injections or 100 mg/kg Augmentin injections. Both compounds significantly increased xCT expression level in NAc. Augmentin also increased xCT expression level in PFC. In the clavulanic acid study, rats were given five consecutive i.p. injections of 5 mg/kg clavulanic acid for the treatment group and the saline injections for the saline group. Clavulanic acid significantly reduced ethanol consumption and significantly upregulated GLT-1 and xCT expression levels in NAc. In oral Augmentin study, oral gavage of Augmentin (100 mg/kg) significantly attenuated alcohol consumption in male P rats as compared to the water gavage group. These findings revealed that amoxicillin, Augmentin and clavulanic acid may have a potential therapeutic action for the treatment of alcohol dependence that are mediated through upregulation of GLT-1 and xCT expression levels in the mesocorticolimbic structures.

  9. Red sorrel (Hibiscus Sabdariffa) prevents the ethanol-induced deficits of Purkinje cells in the cerebellum.

    PubMed

    Suryanti, S; Partadiredja, G; Atthobari, J

    2015-01-01

    The present study is aimed at investigating the possible protective effects of H. sabdariffa on ethanol-elicited deficits of motor coordination and estimated total number of the Purkinje cells of the cerebellums of adolescent male Wistar rats. Forty male Wistar rats aged 21 days were divided into five groups. Na/wtr group was given water orally and injected with normal saline intra peritoneally (ip). Eth/wtr group was given water orally and ethanol (ip). Another three experimental groups (Eth/Hsab) were given different dosages of H. sabdariffa and ethanol (ip). All groups were treated intermittently for the total period of treatment of two weeks. The motor coordination of rats was tested prior and subsequent to the treatments. The rats were euthanized, and their cerebellums were examined. The total number of Purkinje cells was estimated using physical fractionator method. Upon revolving drum test, the number of falls of rats increased following ethanol treatment. There was no significant difference between the total number of falls prior and subsequent to treatment in all Eth/Hsab groups. The estimated total number of Purkinje cells in Eth/Hsab groups was higher than in Eth/wtr group. H. sabdariffa may prevent the ethanol-induced deficits of motor coordination and estimated total number of Purkinje cells of the cerebellums in adolescent rats (Tab. 3, Fig. 1, Ref. 42).

  10. Absolute Ethanol Embolization of Arteriovenous Malformations in the Periorbital Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Li-xin, E-mail: sulixin1975@126.com; Jia, Ren-Bing, E-mail: jrb19760517@hotmail.com; Wang, De-Ming, E-mail: wdmdeming@hotmail.com

    2015-06-15

    ObjectiveArteriovenous malformations (AVMs) involving the periorbital region are technically challenging clinical entities to manage. The purpose of the present study was to present our initial experience of ethanol embolization in a series of 16 patients with auricular AVMs and assess the outcomes of this treatment.MethodsTranscatheter arterial embolization and/or direct percutaneous puncture embolization were performed in the 16 patients. Pure or diluted ethanol was manually injected. The follow-up evaluations included physical examination and angiography at 1- to 6-month intervals.ResultsDuring the 28 ethanol embolization sessions, the amount of ethanol used ranged from 2 to 65 mL. The obliteration of ulceration, hemorrhage, pain, infection,more » pulsation, and bruit in most of the patients was obtained. The reduction of redness, swelling, and warmth was achieved in all the 16 patients, with down-staging of the Schobinger status for each patient. AVMs were devascularized 100 % in 3 patients, 76–99 % in 7 patients, and 50–75 % in 6 patients, according to the angiographic findings. The most common complications were necrosis and reversible blister. No permanent visual abnormality was found in any of the cases.ConclusionEthanol embolization is efficacious and safe in the treatment of AVMs in the periorbital region and has the potential to be accepted as the primary mode of therapy in the management of these lesions.« less

  11. Ethanol self-administration and nicotine treatment increase brain levels of CYP2D in African green monkeys

    PubMed Central

    Miller, R T; Miksys, S; Hoffmann, E; Tyndale, R F

    2014-01-01

    BACKGROUND AND PURPOSE CYP2D6 metabolizes many centrally acting drugs, neurotoxins and endogenous neurochemicals, and differences in brain levels of CYP2D have been associated with brain function and drug response. Alcohol consumers and smokers have higher levels of CYP2D6 in brain, but not liver, suggesting ethanol and/or nicotine may induce human brain CYP2D6. We investigated the independent and combined effects of chronic ethanol self-administration and nicotine treatment on CYP2D expression in African green monkeys. EXPERIMENTAL APPROACH Forty monkeys were randomized into control, ethanol-only, nicotine-only and ethanol + nicotine groups. Two groups voluntarily self-administered 10% ethanol in sucrose solution for 4 h·day−1, whereas two groups consumed sucrose solution on the same schedule. Two groups received daily s.c. injections of 0.5 mg·kg−1 nicotine in saline bid, whereas two groups were injected with saline on the same schedule. KEY RESULTS Both nicotine and ethanol dose-dependently increased CYP2D in brain; brain mRNA was unaffected, and neither drug altered hepatic CYP2D protein or mRNA. The combination of ethanol and nicotine increased brain CYP2D protein levels to a greater extent than either drug alone (1.2–2.2-fold, P < 0.05 among the eight brain regions assessed). Immunohistochemistry revealed the induction of brain CYP2D protein within specific cell types and regions in the treatment groups. CONCLUSIONS AND IMPLICATIONS Ethanol and nicotine increase brain CYP2D protein levels in monkeys, in a region and treatment-specific manner, suggesting that CNS drug responses, neurodegeneration and personality may be affected among people who consume alcohol and/or nicotine. PMID:24611668

  12. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Chronic Nicotine Exposure Initiated in Adolescence and Unpaired to Behavioral Context Fails to Enhance Sweetened Ethanol Seeking

    PubMed Central

    Madayag, Aric C.; Czarnecki, Kyle S.; Wangler, Lynde M.; Robinson, Donita L.

    2017-01-01

    Nicotine use in adolescence is pervasive in the United States and, according to the Gateway Hypothesis, may lead to progression towards other addictive substances. Given the prevalence of nicotine and ethanol comorbidity, it is difficult to ascertain if nicotine is a gateway drug for ethanol. Our study investigated the relationship between adolescent exposure to nicotine and whether this exposure alters subsequent alcohol seeking behavior. We hypothesized that rats exposed to nicotine beginning in adolescence would exhibit greater alcohol seeking behavior than non-exposed siblings. To test our hypothesis, beginning at P28, female rats were initially exposed to once daily nicotine (0.4 mg/kg, SC) or saline for 5 days. Following these five initial injections, animals were trained to nose-poke for sucrose reinforcement (10%, w/v), gradually increasing to sweetened ethanol (10% sucrose; 10% ethanol, w/v) on an FR5 reinforcement schedule. Nicotine injections were administered after the behavioral sessions to minimize acute effects of nicotine on operant self-administration. We measured the effects of nicotine exposure on the following aspects of ethanol seeking: self-administration, naltrexone (NTX)-induced decreases, habit-directed behavior, motivation, extinction and reinstatement. Nicotine exposure did not alter self-administration or the effectiveness of NTX to reduce alcohol seeking. Nicotine exposure blocked habit-directed ethanol seeking. Finally, nicotine did not alter extinction learning or cue-induced reinstatement to sweetened ethanol seeking. Our findings suggest that nicotine exposure outside the behavioral context does not escalate ethanol seeking. Further, the Gateway Hypothesis likely applies to scenarios in which nicotine is either self-administered or physiologically active during the behavioral session. PMID:28860980

  14. Erysodine, a competitive antagonist at neuronal nicotinic acetylcholine receptors, decreases ethanol consumption in alcohol-preferring UChB rats.

    PubMed

    Quiroz, Gabriel; Guerra-Díaz, Nicolás; Iturriaga-Vásquez, Patricio; Rivera-Meza, Mario; Quintanilla, María Elena; Sotomayor-Zárate, Ramón

    2018-09-03

    Alcohol abuse is a worldwide health problem with high economic costs to health systems. Emerging evidence suggests that modulation of brain nicotinic acetylcholine receptors (nAChRs) may be a therapeutic target for alcohol dependence. In this work, we assess the effectiveness of four doses of erysodine (1.5, 2.0, 4.0 or 8.0 mg/kg/day, i.p.), a competitive antagonist of nAChRs, on voluntary ethanol consumption behavior in alcohol-preferring UChB rats, administered during three consecutive days. Results show that erysodine administration produces a dose-dependent reduction in ethanol consumption respect to saline injection (control group). The highest doses of erysodine (4 and 8 mg/kg) reduce (45 and 66%, respectively) the ethanol intake during treatment period and first day of post-treatment compared to control group. While, the lowest doses of erysodine (1.5 and 2 mg/kg) only reduce ethanol intake during one day of treatment period. These effective reductions in ethanol intake were 23 and 29% for 1.5 and 2 mg/kg erysodine, respectively. Locomotor activity induced by a high dose of erysodine (10 mg/kg) was similar to those observed with saline injection in control rats, showing that the reduction in ethanol intake was not produced by hypolocomotor effect induced by erysodine. This is the first report showing that erysodine reduces ethanol intake in UChB rats in a dose-dependent manner. Our results highlight the role of nAChRs in the reward effects of ethanol and its modulation as a potentially effective pharmacological alternative for alcohol dependence treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. [The cause of polyurethane catheter cracking during constant infusion of etoposide (VP-16) injection].

    PubMed

    Yokoyama, H; Aoyama, T; Matsuyama, T; Yamamura, Y; Nakajima, K; Nakamura, K; Sato, H; Kotaki, H; Chiba, S; Hirai, H; Yazaki, Y; Iga, T

    1998-12-01

    We studied the cause of cracking of a clinically used polyurethane (PU) catheter during the constant infusion of etoposide (VP-16) injection (Lastet), administered without dilution to patients as a part of combination high-dose chemotherapy. After VP-16 injection was infused into the PU catheter at a constant infusion rate (30 ml/h) for 24 h, a decrease in the elasticity (36% of untreated) and on increase in the length of the catheter (3.7%) were observed. These changes were significantly higher than those treated with the control saline. The similar changes of the PU catheter were observed after treatment with a basal solution containing polyethylene glycol 400 (PEG 400), polysorbate 80 and ethanol, which is the vehicle of the VP-16 injection, and with ethanol alone. Moreover, obvious degeneration of the internal wall (occurrence of spots like melting) and cutting face (micro-cracking) of the catheter was observed with an electron microscope after treatment with the vehicle. On the other hand, the elasticity or extension of the PU catheter were not changed after treatment with saline or PEG 400. From these findings, it was suggested that the degeneration and subsequent cracking of the PU catheter during the infusion of VP-16 injection was caused by ethanol contained in its injection solution. No cracking or morphological changes of polyvinyl chloride (PVC) and silicone catheters were found after treatment with the vehicle solution. However, since it has been reported in previous reports that di(2-ethylhexyl)phthalate was leached from PVC bags, the high dose chemotherapy with the dilution-free VP-16 injection should be achieved safely and effectively using a silicon catheter, rather than the PU catheter.

  16. Methanolic Extract of Morinda citrifolia L. (Noni) Unripe Fruit Attenuates Ethanol-Induced Conditioned Place Preferences in Mice

    PubMed Central

    Khan, Yasmin; Pandy, Vijayapandi

    2016-01-01

    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence. PMID:27729866

  17. Methanolic Extract of Morinda citrifolia L. (Noni) Unripe Fruit Attenuates Ethanol-Induced Conditioned Place Preferences in Mice.

    PubMed

    Khan, Yasmin; Pandy, Vijayapandi

    2016-01-01

    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  18. Chronic psychosocial stress causes delayed extinction and exacerbates reinstatement of ethanol-induced conditioned place preference in mice.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2014-01-01

    We have shown previously, using an animal model of voluntary ethanol intake and ethanol-conditioned place preference (EtOH-CPP), that exposure to chronic psychosocial stress induces increased ethanol intake and EtOH-CPP acquisition in mice. Here, we examined the impact of chronic subordinate colony (CSC) exposure on EtOH-CPP extinction, as well as ethanol-induced reinstatement of CPP. Mice were conditioned with saline or 1.5 g/kg ethanol and were tested in the EtOH-CPP model. In the first experiment, the mice were subjected to 19 days of chronic stress, and EtOH-CPP extinction was assessed during seven daily trials without ethanol injection. In the second experiment and after the EtOH-CPP test, the mice were subjected to 7 days of extinction trials before the 19 days of chronic stress. Drug-induced EtOH-CPP reinstatement was induced by a priming injection of 0.5 g/kg ethanol. Compared to the single-housed colony mice, CSC mice exhibited increased anxiety-like behavior in the elevated plus maze (EPM) and the open field tests. Interestingly, the CSC mice showed delayed EtOH-CPP extinction. More importantly, CSC mice showed increased alcohol-induced reinstatement of the EtOH-CPP behavior. Taken together, this study indicates that chronic psychosocial stress can have long-term effects on EtOH-CPP extinction as well as drug-induced reinstatement behavior and may provide a suitable model to study the latent effects of chronic psychosocial stress on extinction and relapse to drug abuse.

  19. The effect of prior alcohol consumption on the ataxic response to alcohol in high-alcohol preferring mice

    PubMed Central

    Fritz, Brandon M.; Boehm, Stephen L.

    2014-01-01

    We have previously shown that ethanol-naïve high-alcohol preferring (HAP) mice, genetically predis-posed to consume large quantities of alcohol, exhibited heightened sensitivity and more rapid acute functional tolerance (AFT) to alcohol-induced ataxia compared to low-alcohol preferring mice. The goal of the present study was to evaluate the effect of prior alcohol self-administration on these responses in HAP mice. Naïve male and female adult HAP mice from the second replicate of selection (HAP2) underwent 18 days of 24-h, 2-bottle choice drinking for 10% ethanol vs. water, or water only. After 18 days of fluid access, mice were tested for ataxic sensitivity and rapid AFT following a 1.75 g/kg injection of ethanol on a static dowel apparatus in Experiment 1. In Experiment 2, a separate group of mice was tested for more protracted AFT development using a dual-injection approach where a second, larger (2.0 g/kg) injection of ethanol was given following the initial recovery of performance on the task. HAP2 mice that had prior access to alcohol exhibited a blunted ataxic response to the acute alcohol challenge, but this pre-exposure did not alter rapid within-session AFT capacity in Experiment 1 or more protracted AFT capacity in Experiment 2. These findings suggest that the typically observed increase in alcohol consumption in these mice may be influenced by ataxic functional tolerance development, but is not mediated by a greater capacity for ethanol exposure to positively influence within-session ataxic tolerance. PMID:25454537

  20. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats

    PubMed Central

    Ajiboye, Basiru Olaitan; Adeleke Ojo, Oluwafemi; Adeyonu, Oluwatosin; Imiere, Oluwatosin; Emmanuel Oyinloye, Babatunji; Ogunmodede, Oluwafemi

    2018-01-01

    Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p<0.05) weight reduction, abnormal haematological parameters, high serum lipids (except high density lipoprotein) concentrations, increased creatinine, bilirubin and urea levels with decreased in albumin level when compared with non-diabetic control rats. All these alterations were reverted to normal after administered with different doses of ethanol extract of Artocarpus heterophyllus stem bark most especially at 150 mg/kg body weight which exhibited no significant (p>0.05) different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients. PMID:29670849

  1. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats.

    PubMed

    Ajiboye, Basiru Olaitan; Adeleke Ojo, Oluwafemi; Adeyonu, Oluwatosin; Imiere, Oluwatosin; Emmanuel Oyinloye, Babatunji; Ogunmodede, Oluwafemi

    2018-03-01

    Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p<0.05) weight reduction, abnormal haematological parameters, high serum lipids (except high density lipoprotein) concentrations, increased creatinine, bilirubin and urea levels with decreased in albumin level when compared with non-diabetic control rats. All these alterations were reverted to normal after administered with different doses of ethanol extract of Artocarpus heterophyllus stem bark most especially at 150 mg/kg body weight which exhibited no significant (p>0.05) different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients.

  2. Noni (Morinda citrifolia Linn.) fruit juice attenuates the rewarding effect of ethanol in conditioned place preference in mice.

    PubMed

    Pandy, Vijayapandi; Khan, Yasmin

    2016-11-01

    Morinda citrifolia L. commonly known as noni or Indian mulberry belongs to the family Rubiaceae. Noni fruit juice has recently become a very popular remedy for the treatment of several diseases, including psychiatric disorders. This study aimed to investigate the anticraving effect of Tahitian Noni® Juice (TNJ) against ethanol seeking behavior in ICR male mice using the conditioned place preference (CPP) test. The CPP procedure consisted of four phases: preconditioning, conditioning, extinction, and reinstatement. During conditioning, intraperitoneal (i.p.) injections of ethanol (2 g/kg body weight (bw)) and normal saline (10 ml/kg bw) were given on alternate days for 12 days. Then, the animals were subjected to extinction trials for the next 12 days to weaken CPP. Finally, CPP was reinstated in the extinguished animals by a single low-dose priming injection of ethanol (0.4 g/kg bw, i.p.). The effect of TNJ (as a source of drinking water) on different phases of ethanol CPP in mice was studied. TNJ-treated mice showed a significant reduction in ethanol seeking behavior in the CPP test. The reference drug, acamprosate (ACAM) also showed a similar effect in the CPP test. The outcome of this study suggests that TNJ is effective in attenuating ethanol craving in mice and could be utilized for the treatment of alcohol dependence. Further clinical studies in this direction are warranted to support the present preclinical findings.

  3. Noni (Morinda citrifolia Linn.) fruit juice attenuates the rewarding effect of ethanol in conditioned place preference in mice

    PubMed Central

    Pandy, Vijayapandi; Khan, Yasmin

    2016-01-01

    Morinda citrifolia L. commonly known as noni or Indian mulberry belongs to the family Rubiaceae. Noni fruit juice has recently become a very popular remedy for the treatment of several diseases, including psychiatric disorders. This study aimed to investigate the anticraving effect of Tahitian Noni® Juice (TNJ) against ethanol seeking behavior in ICR male mice using the conditioned place preference (CPP) test. The CPP procedure consisted of four phases: preconditioning, conditioning, extinction, and reinstatement. During conditioning, intraperitoneal (i.p.) injections of ethanol (2 g/kg body weight (bw)) and normal saline (10 ml/kg bw) were given on alternate days for 12 days. Then, the animals were subjected to extinction trials for the next 12 days to weaken CPP. Finally, CPP was reinstated in the extinguished animals by a single low-dose priming injection of ethanol (0.4 g/kg bw, i.p.). The effect of TNJ (as a source of drinking water) on different phases of ethanol CPP in mice was studied. TNJ-treated mice showed a significant reduction in ethanol seeking behavior in the CPP test. The reference drug, acamprosate (ACAM) also showed a similar effect in the CPP test. The outcome of this study suggests that TNJ is effective in attenuating ethanol craving in mice and could be utilized for the treatment of alcohol dependence. Further clinical studies in this direction are warranted to support the present preclinical findings. PMID:27333840

  4. Effect of nicotinic acid on the sleep time and tolerance induced by ethanol in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basilio, C.; Toro, A.; Yojay, L.

    The intraperitoneal (i.p.) administration (50 mg/kg) of nicotinic acid (NA), markedly decreased the sleep time of rats pretreated (10 min before), post-treated (10 min after) or simultaneously treated with ethanol (4 g/Kg i.p.). A similar effect was observed on the sleep time induced by pentobarbital (37 mg/Kg i.p.). Blood alcohol levels (BAL) were the same or slightly higher in the animals pretreated with NA than in the control animals pre-injected with saline. Nicotinamide and NAD had no effect. A total of three doses of ethanol, each one administered weekly or biweekly, induced tolerance, which persisted for approximately six weeks. Aftermore » this period, a hypersensitivity to ethanol appeared to develop. This phenomenon was not observed when NA was pre-injected 10 min before each dose of ethanol. The sleep time of the latter animals did not change neither during the treatment period nor after six weeks without any treatment. BAL were slightly higher in NA treated than in control animals. The authors concluded that the effect of NA on the sleep time and tolerance induced by ethanol is not due to an increased rate of its metabolism and/or elimination but to a long-lasting effect that decreases the sensitivity of the nervous cells to ethanol. The mechanisms involved in the shortening of the sleep time as well as those responsible for the loss of the capacity to develop tolerance are under current investigation.« less

  5. The acute effect of ethanol on adrenal cortex in female rats--possible role of nitric oxide.

    PubMed

    Dikić, Dragoslava; Budeč, Mirela; Vranješ-Durić, Sanja; Koko, Vesna; Vignjević, Sanja; Mitrović, Olivera

    2011-01-01

    The present study was designed to investigate a possible role of endogenous nitric oxide (NO) in the adrenal response to an acute alcohol administration in female rats. To this end, N(ω)-nitro-L-arginine-methyl ester (L-NAME), a competitive inhibitor of all isoforms of NO synthase, was used. Adult female Wistar rats showing diestrus Day 1 were treated with: (a) ethanol (2 or 4 g/kg, intraperitoneally); (b) L-NAME (30 or 50 mg/kg, subcutaneously) followed by either ethanol or saline 3 h later. Untreated and saline-injected rats were used as controls. The animals were killed 30 min after last injection. Adrenal cortex was analyzed morphometrically, and plasma levels of adrenocorticotropic hormone (ACTH) and serum concentrations of corticosterone were determined. Acute ethanol treatment enhanced the levels of ACTH and corticosterone in a dose-dependent manner. Stereological analysis revealed that acute alcohol administration induced a significant increase in absolute volume of the cortex and the zona fasciculata (ZF). In addition, ethanol at a dose of 4 g/kg increased volume density and length of the capillaries in the ZF. However, other stereological parameters were unaffected by alcohol exposure. Pretreatment with both doses of L-NAME had no effect on ethanol-induced changes. Obtained findings indicate that acute ethanol treatment stimulates the activity of the adrenal cortex and that this effect is not mediated by endogenous NO in female rats under these experimental conditions.

  6. Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    McKelvie, Jennifer R.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2007-12-01

    Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The δ 13C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of - 31.3 ± 0.5‰ ( n = 40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in 13C of MTBE by 40.6‰, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 μg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of δ 13C for TBA in groundwater samples in the "With ethanol lane" was - 26.0 ± 1.0‰ ( n = 32). Uniform δ 13C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of - 9.2‰ to - 15.6‰, and values of δ 13C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year - 1 ( n = 18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year - 1 calculated using contaminant mass-discharge for the "With ethanol lane".

  7. Ethanol and Mesolimbic Serotonin/Dopamine Interactions via 5HT-1B Receptors

    DTIC Science & Technology

    2007-03-01

    of [3H]DA in the presence of the monoamine oxidase inhibitor pargyline to minimize the formation of DA metabolites. Under these experimental... human genetics and in animal models, and to play a role in regulating alcohol voluntary intakes. 15. SUBJECT TERMS Ethanol, Dopamine, Serotonin...ip to the KO and WT mice, respectively. Twenty minutes later, each mouse received an ethanol injection (1 or 2 g/kg, ip) and extracellular DA in the

  8. Ceftriaxone treatment affects the levels of GLT1 and ENT1 as well as ethanol intake in alcohol-preferring rats.

    PubMed

    Sari, Youssef; Sreemantula, Sai N; Lee, Moonnoh R; Choi, Doo-Sup

    2013-11-01

    Studies have demonstrated that deletion of equilibrative nucleoside transporter 1 (ENT1) is associated with reduced glutamate transporter 1 (GLT1) level, and consequently increased ethanol intake. In this study, we measured changes in GLT1 and ENT1 levels in prefrontal cortex (PFC), and nucleus accumbens (NAc) core and shell associated with alcohol drinking in alcohol-preferring (P) rats. We examined, then, whether ceftriaxone (CEF) would affect both GLT1 and ENT1 levels in these brain regions. P rats were given 24-h concurrent access to 15 and 30% ethanol, water, and food for 5 weeks. On Week 6, P rats received 100 mg/kg CEF (i.p.) or a saline vehicle for five consecutive days. Ethanol intake was measured daily for 8 days starting on the first day of injections. We found a significant reduction in daily ethanol intake in CEF-treated group, starting on Day 2 of injections. Western blot for GLT1 and binding assay for ENT1 revealed downregulation of GLT1 level, whereas ENT1 levels were increased in the NAc core and NAc shell, respectively, but not in the PFC in saline vehicle group. Importantly, CEF treatment reversed these effects in both NAc core and shell. These findings provide evidence for potential regulatory effects of CEF on both GLT1 and ENT1 expression in reducing ethanol intake.

  9. Study on the antiulcer effects of Veronicastrum axillare on gastric ulcer in rats induced by ethanol based on tumor necrosis factor-α (TNF-α) and endothelin-1 (ET-1).

    PubMed

    Du, Yong; Zhao, Weichun; Lu, Leilei; Zheng, Jiayan; Hu, Xishi; Yu, Zhehan; Zhu, Lixin

    2013-12-01

    To assess whether Veronicastrum axillare (V. axillare) can ameliorate ethanol-induced gastric mucosal lesions in rats, reduce the production of pro-inflammatory cytokines, suppress apoptosis and improve local microcirculation disturbances. Totally 48 male Sprague-Dawley rats were randomly divided into six groups, eight rats in each group. Rats in the normal group and the model group were administered with 0.9% normal saline respectively. Rats in the positive group and ranitidine group were administered with 0.18% ranitidine suspension by intragastric administration respectively. Those in the high dose V. axillare group, the medium dose V. axillare group and the low dose V. axillare group were administrated with V. axillare at the daily dose of 2.8 g/kg, 1.4 g/kg and 0.7 g/kg by intragastric administration. Gastric mucosal lesions were produced by intragastric administration of absolute ethanol. Water extract of V. axillare was successively injected for 14 d and last day was injected 1 h before ethanol administration. Gastric mucosal ulcer index and ulcer inhibitory rate were counted by improved Guth methods. The tissue sections were made for pathological histology analysis. Also, we measured the concentrations of tumor necrosis factor-α (TNF-α) and endothelin-1 (ET-1) in gastric mucosal, as an index of the pro-inflammatory cytokines, apoptosis and local microcirculation. Besides, the mRNA contents of TNF-α and ET-1 were measured to verify effects on gene expression by real-time fluorescent quantitative PCR. Water extract of V. axillare significantly ameliorated the gastric mucosal lesions induced by ethanol administration (P<0.01). Pro-inflammatory cytokines, TNF-α and ET-1 were increased after ethanol administration and significantly reduced by water extract of V. axillare. The expressions of TNF-α and ET-1 mRNA were also be inhibited by water extract of V. axillare. Current evidences show water extract of V. axillare is effective for defending against ethanol-induced gastric mucosal lesions, significantly inhibiting the production of pro-inflammatory cytokines and the expressions of TNF-α and ET-1 mRNA, which may be useful for inhibiting apoptosis and improving local microcirculation. Copyright © 2013 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  10. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F; West, Brian H; Huff, Shean P

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There aremore » over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.« less

  11. Ethanol inhibits B16-BL6 melanoma metastasis and cell phenotypes associated with metastasis.

    PubMed

    Kushiro, Kyoko; Núñez, Nomelí P

    2012-01-01

    Every year, approximately 68,000 new cases of malignant melanoma are diagnosed in the US. Ethanol consumption inhibits metastasis of melanoma in mice, but the mechanism is not well understood. C57BL/6J ob/+ mice, given either water or 20% ethanol, were injected intravenously with B16-BL6 melanoma cells to determine pulmonary metastasis. The effects of ethanol on cell phenotypes and markers of the epithelial-to-mesenchymal transition were determined in cell culture. In mice, ethanol consumption inhibited experimental pulmonary metastasis. This inhibition was associated with decreased body weight, and levels of systemic leptin, and insulin. In cell culture, ethanol inhibited B16-BL6 cell motility, invasion, and anchorage-independent growth. Additionally, ethanol reduced Snai1 expression and increased E-cadherin expression. Lastly, ethanol increased the expression of Kiss1 metastasis-suppressor and the metastasis suppressor Nm23/nucleoside diphosphate kinase. In both animal and in cell culture conditions, ethanol inhibited the metastatic ability of B16-BL6 melanoma cells.

  12. IMPACT OF ETHANOL ON THE NATURAL ATTENUATION OF MTBE IN A NORMALLY SULFATE-REDUCING AQUIFER

    EPA Science Inventory

    Two side-by-side experiments were conducted in an MTBE-contaminated aquifer at a former service station site to determine the effect of ethanol release on the fate of pre-existing MTBE contamination. On one side, we injected groundwater amended with 1-3 mg/L benzene, toluene, and...

  13. Light-Duty GDI Vehicle PM and VOC Speciated Emissions at Differing Ambient Temperatures with Ethanol Blend Gasoline

    EPA Science Inventory

    With the rise in the use of ethanol-blend gasoline in the US and more manufacturers implementing gasoline direct injection (GDI) technologies, interest is increasing in how these fuel blends affect PM and VOC emissions in GDI technology vehicles. EPA conducted a study characteri...

  14. Fully automated analytical procedure for propofol determination by sequential injection technique with spectrophotometric and fluorimetric detections.

    PubMed

    Šrámková, Ivana; Amorim, Célia G; Sklenářová, Hana; Montenegro, Maria C B M; Horstkotte, Burkhard; Araújo, Alberto N; Solich, Petr

    2014-01-01

    In this work, an application of an enzymatic reaction for the determination of the highly hydrophobic drug propofol in emulsion dosage form is presented. Emulsions represent a complex and therefore challenging matrix for analysis. Ethanol was used for breakage of a lipid emulsion, which enabled optical detection. A fully automated method based on Sequential Injection Analysis was developed, allowing propofol determination without the requirement of tedious sample pre-treatment. The method was based on spectrophotometric detection after the enzymatic oxidation catalysed by horseradish peroxidase and subsequent coupling with 4-aminoantipyrine leading to a coloured product with an absorbance maximum at 485 nm. This procedure was compared with a simple fluorimetric method, which was based on the direct selective fluorescence emission of propofol in ethanol at 347 nm. Both methods provide comparable validation parameters with linear working ranges of 0.005-0.100 mg mL(-1) and 0.004-0.243 mg mL(-1) for the spectrophotometric and fluorimetric methods, respectively. The detection and quantitation limits achieved with the spectrophotometric method were 0.0016 and 0.0053 mg mL(-1), respectively. The fluorimetric method provided the detection limit of 0.0013 mg mL(-1) and limit of quantitation of 0.0043 mg mL(-1). The RSD did not exceed 5% and 2% (n=10), correspondingly. A sample throughput of approx. 14 h(-1) for the spectrophotometric and 68 h(-1) for the fluorimetric detection was achieved. Both methods proved to be suitable for the determination of propofol in pharmaceutical formulation with average recovery values of 98.1 and 98.5%. © 2013 Elsevier B.V. All rights reserved.

  15. Effect of Ruta graveolens and Cannabis sativa alcoholic extract on spermatogenesis in the adult wistar male rats.

    PubMed

    Sailani, M R; Moeini, H

    2007-07-01

    The present study was undertaken to evaluate the effects of alcohol extracts of Ruta graveolens and Cannabis sativa that were used traditionally in medieval Persian medicine as male contraceptive drugs, on spermatogenesis in the adult male rats. Ethanol extracts of these plants were obtained by the maceration method. The male rats were injected intraperitionaly with C. sativa and R. graveolens 5% ethanol extracts at dose of 20 mg/day for 20 consecutive days, respectively. Twenty-four hours after the last treatment, testicular function was assessed by epididymal sperm count. The statistical results showed that the ethanol extracts of these plants reduced the number of sperms significantly (P=0.00) in the treatment groups in comparison to the control group. The results also showed that the group, treated by extract of R. graveolens reduced spermatogenesis more than the group treated by extracts of C. sativa. The present study demonstrated the spermatogenesis reducing properties of the ethanol extracts of R. graveolens and C. sativa in the adult male wistar rats but more studies are necessary to reveal the mechanism of action that is involved in spermatogenesis.

  16. Nephroprotective effect of Bauhinia variegata (Linn.) whole stem extract against cisplatin-induced nephropathy in rats

    PubMed Central

    Pani, Saumya R.; Mishra, Satyaranjan; Sahoo, Sabuj; Panda, Prasana K.

    2011-01-01

    The nephroprotective activity of the ethanolic extract of Bauhinia variegata (Linn.) whole stem against cisplatin-induced nephropathy was investigated by an in vivo method in rats. Acute nephrotoxicity was induced by i.p. injection of cisplatin (7 mg/kg of body weight (b.w.)). Administration of ethanol extract at dose levels of 400 and 200 mg/kg (b.w.) to cisplatin-intoxicated rats for 14 days attenuated the biochemical and histological signs of nephrotoxicity of cisplatin in a dose-dependent fashion. Ethanol extract at 400 mg/kg decreased the serum level of creatinine (0.65 ± 0.09; P<0.001) and urea (32.86 ± 5.88; P<0.001) associated with a significant increase in body weight (7.16 ± 1.10; P<0.001) and urine volume output (11.95 ± 0.79; P<0.05) as compared to the toxic control group. The ethanol extract of B. variegata at 400 mg/kg (b.w.) exhibited significant and comparable nephroprotective potential to that of the standard polyherbal drug cystone. The statistically (one-way-ANOVA followed by Tukey-Kramer multiple comparison) processed results suggested the protective action of B. variegate whole stem against cisplatin-induced nephropathy. PMID:21572659

  17. Positive relationship between dietary fat, ethanol intake, triglycerides, and hypothalamic peptides: counteraction by lipid-lowering drugs.

    PubMed

    Barson, Jessica R; Karatayev, Olga; Chang, Guo-Qing; Johnson, Deanne F; Bocarsly, Miriam E; Hoebel, Bartley G; Leibowitz, Sarah F

    2009-09-01

    Studies in both humans and animals suggest a positive relationship between the intake of ethanol and intake of fat, which may contribute to alcohol abuse. This relationship may be mediated, in part, by hypothalamic orexigenic peptides such as orexin (OX), which stimulate both consumption of ethanol and fat, and circulating triglycerides (TGs), which stimulate these peptides and promote consummatory behavior. The present study investigated this vicious cycle between ethanol and fat, to further characterize its relation to TGs and to test the effects of lowering TG levels. In Experiment 1, the behavioral relationship between fat intake and ethanol was confirmed. Adult male Sprague-Dawley rats, chronically injected intraperitoneally with ethanol (1g/kg) and tested in terms of their preference for a high-fat diet (HFD) compared with low-fat diet (LFD), showed a significant increase in their fat preference, compared with rats injected with saline, in measures of 2h and 24h intake. Experiment 2 tested the relationship of circulating TGs in this positive association between ethanol and fat, in rats chronically consuming 9% ethanol versus water and given acute meal tests (25kcal) of a HFD versus LFD. Levels of TGs were elevated in response to both chronic drinking of ethanol versus water and acute eating of a high-fat versus low-fat meal. Most importantly, ethanol and a HFD showed an interaction effect, whereby their combination produced a considerably larger increase in TG levels (+172%) compared to ethanol with a LFD (+111%). In Experiment 3, a direct manipulation of TG levels was found to affect ethanol intake. After intragastric administration of gemfibrozil (50mg/kg) compared with vehicle, TG levels were lowered by 37%, and ethanol intake was significantly reduced. In Experiment 4, the TG-lowering drug gemfibrozil also caused a significant reduction in the expression of the orexigenic peptide, OX, in the perifornical lateral hypothalamus. These results support the existence of a vicious cycle between ethanol and fat, whereby each nutrient stimulates intake of the other. Within this vicious cycle, ethanol and fat act synergistically to increase TG levels, which in turn stimulate peptides that promote further consumption, and these phenomena are reversed by gemfibrozil, which lowers TG levels.

  18. Positive relationship between dietary fat, ethanol intake, triglycerides and hypothalamic peptides: Counteraction by lipid-lowering drugs

    PubMed Central

    Barson, Jessica R.; Karatayev, Olga; Chang, Guo-Qing; Johnson, Deanne F.; Bocarsly, Miriam E.; Hoebel, Bartley G.; Leibowitz, Sarah F.

    2009-01-01

    Studies in both humans and animals suggest a positive relationship between the intake of ethanol and intake of fat, which may contribute to alcohol abuse. This relationship may be mediated, in part, by hypothalamic orexigenic peptides such as orexin (OX), which stimulate both consumption of ethanol and fat, and circulating triglycerides (TG), which stimulate these peptides and promote consummatory behavior. The present study investigated this vicious cycle between ethanol and fat, to further characterize its relation to TG and to test the effects of lowering TG levels. In Experiment 1, the behavioral relationship between fat intake and ethanol was confirmed. Adult male Sprague-Dawley rats, chronically injected with ethanol (1 g/kg i.p.) and tested in terms of their preference for a high-fat compared to low-fat diet, showed a significant increase in their fat preference, compared to rats injected with saline, in measures of 2 h and 24 h intake. Experiment 2 tested the relationship of circulating TG in this positive association between ethanol and fat, in rats chronically consuming 9% ethanol vs. water and given acute meal tests (25 kcal) of a high-fat vs. low-fat diet. Levels of TG were elevated in response to both chronic drinking of ethanol vs. water and acute eating of a high-fat vs. low-fat meal. Most importantly, ethanol and a high-fat diet showed an interaction effect, whereby their combination produced a considerably larger increase in TG levels (+172%) compared to ethanol with a low-fat diet (+111%). In Experiment 3, a direct manipulation of TG levels was found to affect ethanol intake. After administration of gemfibrozil (50 mg/kg i.g.) compared to vehicle, TG levels were lowered by 37%, and ethanol intake was significantly reduced. In Experiment 4, the TG-lowering drug gemfibrozil also caused a significant reduction in the expression of the orexigenic peptide OX, in the perifornical lateral hypothalamus. These results support the existence of a vicious cycle between ethanol and fat whereby each nutrient stimulates intake of the other. Within this vicious cycle, ethanol and fat act synergistically to increase TG levels, which in turn stimulate peptides that promote further consumption, and these phenomena are reversed by gemfibrozil, which lowers TG levels. PMID:19801273

  19. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice

    PubMed Central

    Kasten, Chelsea R.; Boehm, Stephen L.

    2014-01-01

    The GABAB agonist baclofen has been widely researched clinically and preclinically as a treatment of alcohol use disorders (AUDs). However, the efficacy of baclofen remains uncertain. The clinically used racemic compound can be separated into separate enantiomers. These enantiomers have produced different profiles in behavioral assays, with the S- compound often being ineffective compared to the R- compound, or the S- compound antagonizing the effects of the R- compound. We have previously demonstrated that the R(+)-baclofen enantiomer decreases binge-like ethanol intake in the Drinking-in-the-Dark (DID) paradigm, whereas the S(-)-baclofen enantiomer increases ethanol intake. One area implicated in drug abuse is the nucleus accumbens shell (NACsh).The current study sought to define the role of the NACsh in the enantioselective effects of baclofen on binge-like ethanol consumption by directly microinjecting each enantiomer into the structure. Following bilateral cannulation of the NACsh, C57Bl/6J mice were given 5 days of access to ethanol or saccharin for 2 hours, 3 hours into the dark cycle. On Day 5 mice were given an injection of aCSF, 0.02 R(+)-, 0.04R(+)-, 0.08 S(-)-, or 0.16 S(-)-baclofen (μg/side dissolved in 200nl of aCSF). It was found that the R(+)-baclofen dose-dependently decreased ethanol consumption, whereas the high S(-)-baclofen dose increased ethanol consumption, compared to the aCSF group. Saccharin consumption was not affected. These results further confirm that GABAB receptors and the NACsh shell are integral in mediating ethanol intake. They also demonstrate that baclofen displays bidirectional, enantioselective effects which are important when considering therapeutic uses of the drug. PMID:25026094

  20. The selective kappa-opioid receptor agonist U50,488H attenuates voluntary ethanol intake in the rat.

    PubMed

    Lindholm, S; Werme, M; Brené, S; Franck, J

    2001-05-01

    Non-selective opioid receptor antagonists are increasingly used in the treatment of alcohol dependence. The clinical effects are significant but the effect size is rather small and unpleasant side effects may limit the benefits of the compounds. Ligands acting at mu- and/or delta- receptors can alter the voluntary intake of ethanol in various animal models. Therefore, the attenuating effects of selective opioid receptor ligands on ethanol intake may be of clinical interest in the treatment of alcoholism. The objective of this study was to examine the effects of a selective kappa-receptor agonist, U50,488H on voluntary ethanol intake in the rat. We used a restricted access model with a free choice between an ethanol solution (10% v/v) and water. During the 3-days baseline period, the rats received a daily saline injection (1 ml/kg, i.p.) 15 min before the 2 h access to ethanol. The animals had free access to water at all times. The control group received a daily saline injection during the 4-days treatment-period, whereas the treatment groups received a daily dose of U50,488H (2.5, 5.0 or 10 mg/kg per day). Animals treated with U50,488H dose-dependently decreased their ethanol intake. The effect of the highest dose of U50,488H was reduced by pre-treatment with the selective kappa-antagonist nor-binaltorphimine (nor-BNI). These results demonstrate that activation of kappa-opioid receptors can attenuate voluntary ethanol intake in the rat, and the data suggest that the brain dynorphin/kappa-receptor systems may represent a novel target for pharmacotherapy in the treatment of alcohol dependence.

  1. Intra-nucleus accumbens shell injections of R(+)- and S(-)-baclofen bidirectionally alter binge-like ethanol, but not saccharin, intake in C57Bl/6J mice.

    PubMed

    Kasten, Chelsea R; Boehm, Stephen L

    2014-10-01

    The GABAB agonist baclofen has been widely researched clinically and preclinically as a treatment of alcohol use disorders (AUDs). However, the efficacy of baclofen remains uncertain. The clinically used racemic compound can be separated into separate enantiomers. These enantiomers have produced different profiles in behavioral assays, with the S- compound often being ineffective compared to the R- compound, or the S- compound antagonizing the effects of the R- compound. We have previously demonstrated that the R(+)-baclofen enantiomer decreases binge-like ethanol intake in the Drinking-in-the-Dark (DID) paradigm, whereas the S(-)-baclofen enantiomer increases ethanol intake. One area implicated in drug abuse is the nucleus accumbens shell (NACsh).The current study sought to define the role of the NACsh in the enantioselective effects of baclofen on binge-like ethanol consumption by directly microinjecting each enantiomer into the structure. Following bilateral cannulation of the NACsh, C57Bl/6J mice were given 5 days of access to ethanol or saccharin for 2h, 3h into the dark cycle. On Day 5 mice were given an injection of aCSF, 0.02 R(+)-, 0.04R(+)-, 0.08 S(-)-, or 0.16 S(-)-baclofen (μg/side dissolved in 200nl of aCSF). It was found that the R(+)-baclofen dose-dependently decreased ethanol consumption, whereas the high S(-)-baclofen dose increased ethanol consumption, compared to the aCSF group. Saccharin consumption was not affected. These results further confirm that GABAB receptors and the NACsh shell are integral in mediating ethanol intake. They also demonstrate that baclofen displays bidirectional, enantioselective effects which are important when considering therapeutic uses of the drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Subcellular location of secretory proteins retained in the liver during the ethanol-induced inhibition of hepatic protein secretion in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volentine, G.D.; Tuma, D.J.; Sorrell, M.F.

    1986-01-01

    Ethanol administration inhibits the secretion of proteins by the liver, resulting in their hepatocellular retention. Experiments were designed in this study to determine the subcellular location of the retained secretory proteins. Ethanol was administered acutely to nonfasted rats by gastric intubation, whereas control animals received an isocaloric dose of glucose. Two hours after intubation, when maximum blood ethanol levels (45 mM) were observed, (/sup 3/H)leucine and (/sup 14/C)fucose were injected simultaneously into the dorsal vein of the penis. The labelling of secretory proteins was determined in the liver and plasma at various time periods after label injection. Ethanol treatment decreasedmore » the secretion of both leucine- and fucose-labeled proteins into the plasma. This inhibition of secretion was accompanied by a corresponding increase in the hepatic retention of both leucine- and fucose-labeled immunoprecipitable secretory proteins. At the time of maximum inhibition of secretion, leucine labeled secretory proteins located in the Golgi apparatus represented about 50% of the accumulated secretory proteins in the livers of the ethanol-treated rats, whereas the remainder was essentially equally divided among the rough and smooth endoplasmic reticulum and cytosol. Because fucose is incorporated into secretory proteins almost exclusively in the Golgi complex, fucose-labeled proteins accumulated in the livers of the ethanol-treated rats mainly in the Golgi apparatus, with the remainder located in the cytosol. These results show that ethanol administration causes an impaired movement of secretory proteins along the secretory pathway, and that secretory proteins accumulate mainly, but not exclusively, in the Golgi apparatus.« less

  3. Ethanol modifies the effect of handling stress on gene expression: problems in the analysis of two-way gene expression studies in mouse brain.

    PubMed

    Rulten, Stuart L; Ripley, Tamzin L; Manerakis, Ektor; Stephens, David N; Mayne, Lynne V

    2006-08-02

    Studies analysing the effects of acute treatments on animal behaviour and brain biochemistry frequently use pairwise comparisons between sham-treated and -untreated animals. In this study, we analyse expression of tPA, Grik2, Smarca2 and the transcription factor, Sp1, in mouse cerebellum following acute ethanol treatment. Expression is compared to saline-injected and -untreated control animals. We demonstrate that acute i.p. injection of saline may alter gene expression in a gene-specific manner and that ethanol may modify the effects of sham treatment on gene expression, as well as inducing specific effects independent of any handling related stress. In addition to demonstrating the complexity of gene expression in response to physical and environmental stress, this work raises questions on the interpretation and validity of studies relying on pairwise comparisons.

  4. Simultaneous determination of methanol, acetaldehyde, acetone, and ethanol in human blood by gas chromatography with flame ionization detection.

    PubMed

    Schlatter, J; Chiadmi, F; Gandon, V; Chariot, P

    2014-01-01

    Methanol, acetaldehyde, acetone, and ethanol, which are commonly used as biomarkers of several diseases, in acute intoxications, and forensic settings, can be detected and quantified in biological fluids. Gas chromatography (GC)-mass spectrometry techniques are complex, require highly trained personnel and expensive materials. Gas chromatographic determinations of ethanol, methanol, and acetone have been reported in one study with suboptimal accuracy. Our objective was to improve the assessment of these compounds in human blood using GC with flame ionization detection. An amount of 50 µl of blood was diluted with 300 µl of sterile water, 40 µl of 10% sodium tungstate, and 20 µl of 1% sulphuric acid. After centrifugation, 1 µl of the supernatant was injected into the gas chromatograph. We used a dimethylpolysiloxane capillary column of 30 m × 0.25 mm × 0.25 µm. We observed linear correlations from 7.5 to 240 mg/l for methanol, acetaldehyde, and acetone and from 75 to 2400 mg/l for ethanol. Precision at concentrations 15, 60, and 120 mg/l for methanol, acetaldehyde, and acetone and 150, 600, and 1200 mg/ml for ethanol were 0.8-6.9%. Ranges of accuracy were 94.7-98.9% for methanol, 91.2-97.4% for acetaldehyde, 96.1-98.7% for acetone, and 105.5-111.6% for ethanol. Limits of detection were 0.80 mg/l for methanol, 0.61 mg/l for acetaldehyde, 0.58 mg/l for acetone, and 0.53 mg/l for ethanol. This method is suitable for routine clinical and forensic practices.

  5. Pharmaco-EEG-based assessment of the interaction between ethanol and oxcarbazepine.

    PubMed

    Pietrzak, Bogusława; Czarnecka, Elzbieta

    2010-01-01

    Oxcarbazepine is a representative molecule for a new class of anticonvulsant drugs that can treat alcohol dependence in addition to other disorders. Interestingly, the central mechanism of action in oxcarbazepine is very similar to ethanol, suggesting that these two agents may interact and cause enhanced effects in the central nervous system. In this study, we used a pharmaco-EEG method to examine the influence of oxcarbazepine on the effect of ethanol on the EEG of rabbits (midbrain reticular formation, hippocampus, frontal cortex). Oxcarbazepine was administered po as a single dose (20 mg/kg or 80 mg/kg) or repeatedly at a dose of 40 mg/kg/day for 14 days. Ethanol was injected iv at a dose of 0.8 g/kg 60 min after the administration of oxcarbazepine. Ethanol caused an increase in the low frequencies (0.5-4 Hz) in the recordings, and it caused a marked decrease in higher frequencies (13-30 Hz and 30-45 Hz). Oxcarbazepine altered the EEG pattern in rabbits; this interaction was dependent on the dose of the drug and whether it was administered as a single dose or as multiple doses. Oxcarbazepine administered at a lower dose had a synergistic effect with ethanol in the frontal cortex and midbrain reticular formation, and a similar effect was observed in the hippocampus at a higher dose. Changes in EEG recordings after the administration of oxcarbazepine alone were more pronounced after multiple administrations. The drug decreased the sensitivity of the hippocampus to ethanol, an observation that may be important for the treatment of alcohol addiction.

  6. Epigenetics of proteasome inhibition in the liver of rats fed ethanol chronically

    PubMed Central

    Oliva, Joan; Dedes, Jennifer; Li, Jun; French, Samuel W; Bardag-Gorce, Fawzia

    2009-01-01

    AIM: To examine the effects of ethanol-induced proteasome inhibition, and the effects of proteasome inhibition in the regulation of epigenetic mechanisms. METHODS: Rats were fed ethanol for 1 mo using the Tsukamoto-French model and were compared to rats given the proteasome inhibitor PS-341 (Bortezomib, Velcade™) by intraperitoneal injection. Microarray analysis and real time PCR were performed and proteasome activity assays and Western blot analysis were performed using isolated nuclei. RESULTS: Chronic ethanol feeding caused a significant inhibition of the ubiquitin proteasome pathway in the nucleus, which led to changes in the turnover of transcriptional factors, histone-modifying enzymes, and, therefore, affected epigenetic mechanisms. Chronic ethanol feeding was related to an increase in histone acetylation, and it is hypothesized that the proteasome proteolytic activity regulated histone modifications by controlling the stability of histone modifying enzymes, and, therefore, regulated the chromatin structure, allowing easy access to chromatin by RNA polymerase, and, thus, proper gene expression. Proteasome inhibition by PS-341 increased histone acetylation similar to chronic ethanol feeding. In addition, proteasome inhibition caused dramatic changes in hepatic remethylation reactions as there was a significant decrease in the enzymes responsible for the regeneration of S-adenosylmethionine, and, in particular, a significant decrease in the betaine-homocysteine methyltransferase enzyme. This suggested that hypomethylation was associated with proteasome inhibition, as indicated by the decrease in histone methylation. CONCLUSION: The role of proteasome inhibition in regulating epigenetic mechanisms, and its link to liver injury in alcoholic liver disease, is thus a promising approach to study liver injury due to chronic ethanol consumption. PMID:19222094

  7. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  8. Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine.

    PubMed

    Parthasarathy, M; Isaac JoshuaRamesh Lalvani, J; Dhinesh, B; Annamalai, K

    2016-12-01

    Environment issue is a principle driving force which has led to a considerable effort to develop and introduce alternative fuels for transportation. India has large potential for production of biofuels like biodiesel from vegetable seeds. Use of biodiesel namely, tamanu methyl ester (TME) in unmodified diesel engines leads to low thermal Efficiency and high smoke emission. To encounter this problem hydrogen was inducted by a port fueled injection system. Hydrogen is considered to be low polluting fuel and is the most promising among alternative fuel. Its clean burning characteristic and better performance attract more interest compared to other fuels. It was more active in reducing smoke emission in biodiesel. A main drawback with hydrogen fuel is the increased NO x emission. To reduce NO x emission, TME-ethanol blends were used in various proportions. After a keen study, it was observed that ethanol can be blended with biodiesel up to 30% in unmodified diesel engine. The present work deals with the experimental study of performance and emission characteristic of the DI diesel engine using hydrogen and TME-ethanol blends. Hydrogen and TME-ethanol blend was used to improve the brake thermal efficiency and reduction in CO, NO x and smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Ethanol intake and ethanol-conditioned place preference are reduced in mice treated with the bioflavonoid agent naringin.

    PubMed

    Bahi, Amine; Nurulain, Syed M; Ojha, Shreesh

    2014-11-01

    Recently, PPAR-γ activation has emerged as a potential treatment for alcoholism. However, the adverse effects of synthetic PPAR-γ activators, despite being effective drugs, prompted the need for novel PPAR-γ agonists that retain efficacy and potency with a lower potential of side effects. Hence, naringin, a bioflavonoid isolated from citrus fruits and recently identified as a natural ligand of PPAR-γ, has begun to be evaluated for treatment of alcoholism. It is well known to possess several therapeutic benefits in addition to its anti-anxiety and antidepressant properties. In the present study, we assessed whether naringin treatment possesses anti-ethanol reward properties in C57BL/6 mice. We used the two-bottle choice drinking paradigm and ethanol-induced conditioned place preference (CPP) to examine the effect of naringin treatment on ethanol drinking. Results have shown that, compared with vehicle, naringin (10-100 mg/kg) significantly and dose-dependently decreased voluntary ethanol intake and preference in a two-bottle choice drinking paradigm [3-15% (v/v) escalating over 2 weeks], with no significant effect observed on saccharin [0.02-0.08% (w/v)] or on quinine [15-60 μM (w/v)] intake. In addition, there was no significant difference in blood ethanol concentration (BEC) between groups following naringin administration of 3 g of ethanol/kg body weight. Interestingly, when mice were treated with vehicle or naringin (30 mg/kg) before injection of ethanol (1.5 g/kg) during conditioning days, naringin inhibited the acquisition of ethanol-CPP. More importantly, these effects were significantly attenuated when mice were pre-injected with the peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662. Taken together, the present findings are the first to implicate naringin and PPAR-γ receptors in the behavioral and reward-related effects of ethanol and raise the question of whether specific drugs that target PPAR-γ receptors could potentially reduce excessive ethanol consumption and preference. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Postoperative Biliary Leak Treated with Chemical Bile Duct Ablation Using Absolute Ethanol: A Report of Two Cases.

    PubMed

    Sasaki, Maho; Hori, Tomohide; Furuyama, Hiroaki; Machimoto, Takafumi; Hata, Toshiyuki; Kadokawa, Yoshio; Ito, Tatsuo; Kato, Shigeru; Yasukawa, Daiki; Aisu, Yuki; Kimura, Yusuke; Takamatsu, Yuichi; Kitano, Taku; Yoshimura, Tsunehiro

    2017-08-08

    BACKGROUND Postoperative bile duct leak following hepatobiliary and pancreatic surgery can be intractable, and the postoperative course can be prolonged. However, if the site of the leak is in the distal bile duct in the main biliary tract, the therapeutic options may be limited. Injection of absolute ethanol into the bile duct requires correct identification of the bile duct, and balloon occlusion is useful to avoid damage to the surrounding tissues, even in cases with non-communicating biliary fistula and bile leak. CASE REPORT Two cases of non-communicating biliary fistula and bile leak are presented; one case following pancreaticoduodenectomy (Whipple's procedure), and one case following laparoscopic cholecystectomy. Both cases were successfully managed by chemical bile duct ablation with absolute ethanol. In the first case, the biliary leak occurred from a fistula of the right posterior biliary tract following pancreaticoduodenectomy. Cannulation of the leaking bile duct and balloon occlusion were achieved via a percutaneous route, and seven ablation sessions using absolute ethanol were required. In the second case, perforation of the bile duct branch draining hepatic segment V occurred following laparoscopic cholecystectomy. Cannulation of the bile duct and balloon occlusion were achieved via a transhepatic route, and seven ablation sessions using absolute ethanol were required. CONCLUSIONS Chemical ablation of the bile duct using absolute ethanol is an effective treatment for biliary leak following hepatobiliary and pancreatic surgery, even in cases with non-communicating biliary fistula. Identification of the bile duct leak is required before ethanol injection to avoid damage to the surrounding tissues.

  11. Melatonin Reduces Angiogenesis in Serous Papillary Ovarian Carcinoma of Ethanol-Preferring Rats

    PubMed Central

    Zonta, Yohan Ricci; Martinez, Marcelo; Camargo, Isabel Cristina C.; Domeniconi, Raquel F.; Lupi Júnior, Luiz Antonio; Pinheiro, Patricia Fernanda F.; Reiter, Russel J.; Martinez, Francisco Eduardo; Chuffa, Luiz Gustavo A.

    2017-01-01

    Angiogenesis is a hallmark of ovarian cancer (OC); the ingrowth of blood vessels promotes rapid cell growth and the associated metastasis. Melatonin is a well-characterized indoleamine that possesses important anti-angiogenic properties in a set of aggressive solid tumors. Herein, we evaluated the role of melatonin therapy on the angiogenic signaling pathway in OC of an ethanol-preferring rat model that mimics the same pathophysiological conditions occurring in women. OC was chemically induced with a single injection of 7,12-dimethylbenz(a)anthracene (DMBA) under the ovarian bursa. After the rats developed serous papillary OC, half of the animals received intraperitoneal injections of melatonin (200 µg/100 g body weight/day) for 60 days. Melatonin-treated animals showed a significant reduction in OC size and microvessel density. Serum levels of melatonin were higher following therapy, and the expression of its receptor MT1 was significantly increased in OC-bearing rats, regardless of ethanol intake. TGFβ1, a transforming growth factor-beta1, was reduced only after melatonin treatment. Importantly, vascular endothelial growth factor (VEGF) was severely reduced after melatonin therapy in animals given or not given ethanol. Conversely, the levels of VEGF receptor 1 (VEGFR1) was diminished after ethanol consumption, regardless of melatonin therapy, and VEGFR2 was only reduced following melatonin. Hypoxia-inducible factor (HIF)-1α was augmented with ethanol consumption, and, notably, melatonin significantly reduced their levels. Collectively, our results suggest that melatonin attenuates angiogenesis in OC in an animal model of ethanol consumption; this provides a possible complementary therapeutic opportunity for concurrent OC chemotherapy. PMID:28398226

  12. Memantine reduces alcohol drinking but not relapse in alcohol-dependent rats.

    PubMed

    Alaux-Cantin, Stéphanie; Buttolo, Romain; Houchi, Hakim; Jeanblanc, Jérôme; Naassila, Mickaël

    2015-09-01

    Alcoholism is a chronic relapsing disorder with consequences on health and that requires more effective treatments. Among alternative therapies, the therapeutic potential of the non-competitive N-methyl-D-aspartate receptor antagonist memantine has been suggested. Despite promising results, its efficiency in the treatment of alcoholism remains controversial. Currently, there is no pre-clinical data regarding its effects on the motivation for ethanol in post-dependent (PD) animals exposed to intermittent ethanol vapor, a validated model of alcoholism. Thus, the objectives of this study were to evaluate the effects of acute injections of memantine (0, 12.5, 25 and 50 mg/kg) on operant ethanol self-administration in non-dependent (ND) and PD rats tested either during acute withdrawal or relapse after protracted abstinence. Our results showed that memantine (25 mg/kg) abolished ethanol self-administration in ND rats and reduced by half the one of PD rats during acute withdrawal. While this effect was observed only 6 hours after treatment in ND rats, it was long lasting in PD rats (at least 30 hours after injection). Furthermore, our results indicated that memantine did not modify the breaking point for ethanol. This suggests that memantine probably act by potentiating the pharmacological effect of ethanol but not by reducing motivation for ethanol. Finally, memantine was also ineffective in reducing relapse after protracted abstinence. Altogether, our pre-clinical results highlighted a potential therapeutic use of memantine that may be used as a replacement therapy drug but not as relapse-preventing drug. © 2014 Society for the Study of Addiction.

  13. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). Inmore » this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.« less

  14. [Adaptation of the (18)FDG module for the preparation of a sodium fluoride [(18)F] injection solution in agreement with the United States (USP 32) and European Pharmacopeia (PhEur 6)].

    PubMed

    Martínez, T; Cordero, B; Medín, S; Sánchez Salmón, A

    2011-01-01

    To establish an automated procedure for the preparation of sodium fluoride (18)F injection using the resources available in our laboratory for the preparation of (18)FDG and to analyze the repercussion of the conditioning column of the fluoride ion entrapment on the characteristics of the final product. The sequence of an (18)FDG synthesis module prepared so that it traps the fluoride ion from the cyclotron in ion-exchange resin diluted with 0.9% sodium chloride. The final solution was dosified and sterilized in a final vial in an automatized dispensing module. Three different column conditioning protocols within the process were tested. Quality controls were run according to USP 32 and EurPh 6, adding control of ethanol levels of residual solvent and quality controls of the solution at 8 h post-preparation. Activation of the resin cartridges with ethanol and water was the chosen procedure, with fluoride ion trapping > 95% and pH around 7. Ethanol levels were < 5.000 ppm. Quality controls at 8 h indicated that the solution was in compliance with the USP 32 and EurPh 6 specifications. This is an easy, low-cost, reliable automated method for sodium fluoride preparation in PET facilities with existing equipment for (18)FDG synthesis and quality control. Copyright © 2010 Elsevier España, S.L. y SEMNIM. All rights reserved.

  15. Pathophysiology of chronic pancreatitis induced by dibutyltin dichloride joint ethanol in mice

    PubMed Central

    Zhang, Hong; Liu, Bin; Xu, Xiao-Fan; Jiang, Ting-Ting; Zhang, Xiao-Qin; Shi, Ying-Li; Chen, Yu; Liu, Fang; Gu, Jie; Zhu, Lin-Jia; Wu, Nan

    2016-01-01

    AIM: To search for a new chronic pancreatitis model in mice suitable for investigating the pathophysiological processes leading to pancreatic fibrosis. METHODS: The mice were randomly divided into 2 groups (n = 50), control group and model group. The mice in model group were given ethanol (10%) in drinking water after injection of dibutyltin dichloride (DBTC) (8 mg/kg BW) in tail vein. The mice in control group were injected with only solvent into tail vein (60% ethanol, 20% glycerine and 20% normal saline) and drank common water. At days 1, 7, 14, 28, and 56 after application of DBTC or solvent, 10 mice in one group were killed at each time point respectively. Blood was obtained by inferior vena cava puncture. The activity of amylase, concentration of bilirubin and hyaluronic acid in serum were assayed. The pancreas was taken to observe the pancreatic morphology by HE staining, and to characterize the pancreatic fibrosis by Masson staining. The expression of F4/80, CD3 and fibronectin (FN) were assayed by immuno-histochemistry or Immunofluorescence technique. Collagen type I (COL1A1) in pancreas were detected by Western blot. The expression of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA in the pancreas was assessed by real time PCR. RESULTS: DBTC induced an acute edematous pancreatitis within 1 d. The dilated acini, scattered acinar cell necrosis, and inflammatory cells were found at day 7. Extensive infiltration with inflammatory cells following deposition of connective tissue was observed at day 14. At day 28, level of pancreatic fibrosis was aggravated. The pancreatic tissue was replaced by an extended interstitial fibrosis at the end of 2 mo. There was significant difference in the level of amylase, bilirubin and hyaluronic acid in serum between control group and model group (P < 0.05). The level of COL1A1 and FN in pancreas increased. The expression of MMP-1 mRNA in pancreas decreased, but TIMP-1 mRNA increased at model group. CONCLUSION: DBTC joint Ethanol drinking can induce chronic pancreatitis in accordance with the pathophysiological modification of human. DBTC joint Ethanol-induced pancreatitis in mice is an effective and handy experimental method. The model is suitable to study the mechanism of pancreatic fibrosis in chronic pancreatitis. PMID:26973392

  16. Sequential injection spectrophotometric determination of oxybenzone in lipsticks.

    PubMed

    Salvador, A; Chisvert, A; Camarasa, A; Pascual-Martí, M C; March, J G

    2001-08-01

    A sequential injection (SI) procedure for the spectrophotometric determination of oxybenzone in lipsticks is reported. The colorimetric reaction between nickel and oxybenzone was used. SI parameters such as sample solution volume, reagent solution volume, propulsion flow rate and reaction coil length were studied. The limit of detection was 3 microg ml(-1). The sensitivity was 0.0108+/-0.0002 ml microg(-1). The relative standard deviations of the results were between 6 and 12%. The real concentrations of samples and the values obtained by HPLC were comparable. Microwave sample pre-treatment allowed the extraction of oxybenzone with ethanol, thus avoiding the use of toxic organic solvents. Ethanol was also used as carrier in the SI system. Seventy-two injections per hour can be performed, which means a sample frequency of 24 h(-1) if three replicates are measured for each sample.

  17. Evaluation of traditional plant extracts for innate immune mechanisms and disease resistance against fish bacterial Aeromonas hydrophila and Pseudomonas sp.

    NASA Astrophysics Data System (ADS)

    Hardi, E. H.; Saptiani, G.; Kusuma, I. W.; Suwinarti, W.; Nugroho, R. A.

    2018-03-01

    The purposes of this study were to evaluate effect of ethanol herbal extracts of Boesenbergia pandurata, Solanum ferox and Zingimber zerumbet on Tilapia (Oreochromis nilaticus) innate immune mechanisms and disease resistance against Aeromonas hydrophila and Pseudomonas sp. Fish were intramuscularly injected with 0.1 mL/fish (1010 CFU mL-1) of each bacterium on the day 6th of post treatment using extract by several methods (injection, oral administration and immersion). The doses of extract were 600 ppm of B. pandurata, 900 ppm S. ferox and 200 ppm of Z. zerumbet. The percentage mortality, Relative Percent Survival (RPS) and innate immune response were assessed on weeks 1, 2, 3 and 4. All the methods were effective to enhance the immune parameters after 2 weeks application and the RPS of treatment reached more than 90 %. The results showed that the injection method of extracts was the most effective method to control A. hydrophila and Pseudomonas sp. The result indicated that all the doses of extracts could be significantly influence the immune response and protect the health status of tilapia against A. hydrophila and Pseudomonas sp. infections.

  18. Determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin) and their 4-oxo metabolites in human and animal plasma by high-performance liquid chromatography with automated column switching and ultraviolet detection.

    PubMed

    Wyss, R; Bucheli, F

    1997-10-24

    A highly sensitive HPLC method with automated column switching was developed for the simultaneous determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin) and their 4-oxo metabolites in plasma samples from man, Cynomolgus monkey, rabbit, rat and mouse. Plasma (0.4 ml) was deproteinated by adding ethanol (1.5 ml) containing the internal standard acitretin. After centrifugation, 1.4 ml of the supernatant were directly injected onto the precolumn packed with LiChrospher 100 RP-18 (5 microm). 1.25% ammonium acetate and acetic acid-ethanol (8:2, v/v) was used as mobile phase during injection and 1% ammonium acetate and 2% acetic acid-ethanol (102:4, v/v) was added, on-line, to decrease the elution strength of the injection solution. After backflush purging of the precolumn, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm. Two coupled Superspher 100 RP-18 endcapped columns (both 250x4 mm) were used for the separation, together with a mobile phase consisting of acetonitrile-water-10% ammonium acetate-acetic acid: (A) 600:300:60:10 (v/v/v/v), (B) 950:20:5:20 (v/v/v/v), and (C) 990:5:0:5 (v/v/v/v). The method was linear in the range 0.3-100 ng/ml, at least, with a quantification limit of 0.3 ng/ml. The mean recoveries from human plasma were 93.2%-94.4% and the mean inter-assay precision was 2.8%-3.2% (range 0.3-100 ng/ml). Similar results were obtained for animal plasma. The analytes were found to be stable in the plasma of all investigated species stored at -20 degrees C for 4.3 months and at -80 degrees C for 9 months, at least. At this temperature, human plasma samples were even stable for 2 years. The method was successfully applied to more than 6000 human and 1000 animal plasma samples from clinical and toxicokinetic studies. Endogenous levels determined in control patients and pregnant women were similar to published data from volunteers.

  19. Determination of low molecular weight alcohols including fusel oil in various samples by diethyl ether extraction and capillary gas chromatography.

    PubMed

    Woo, Kang-Lyung

    2005-01-01

    Low molecular weight alcohols including fusel oil were determined using diethyl ether extraction and capillary gas chromatography. Twelve kinds of alcohols were successfully resolved on the HP-FFAP (polyethylene glycol) capillary column. The diethyl ether extraction method was very useful for the analysis of alcohols in alcoholic beverages and biological samples with excellent cleanliness of the resulting chromatograms and high sensitivity compared to the direct injection method. Calibration graphs for all standard alcohols showed good linearity in the concentration range used, 0.001-2% (w/v) for all alcohols. Salting out effects were significant (p < 0.01) for the low molecular weight alcohols methanol, isopropanol, propanol, 2-butanol, n-butanol and ethanol, but not for the relatively high molecular weight alcohols amyl alcohol, isoamyl alcohol, and heptanol. The coefficients of variation of the relative molar responses were less than 5% for all of the alcohols. The limits of detection and quantitation were 1-5 and 10-60 microg/L for the diethyl ether extraction method, and 10-50 and 100-350 microg/L for the direct injection method, respectively. The retention times and relative retention times of standard alcohols were significantly shifted in the direct injection method when the injection volumes were changed, even with the same analysis conditions, but they were not influenced in the diethyl ether extraction method. The recoveries by the diethyl ether extraction method were greater than 95% for all samples and greater than 97% for biological samples.

  20. Amelioration of cerebellar dysfunction in rats following postnatal ethanol exposure using low-intensity pulsed ultrasound.

    PubMed

    Bolbanabad, Hiva Mohammadi; Anvari, Enayat; Rezai, Mohammad Jafar; Moayeri, Ardashir; Kaffashian, Mohammad Reza

    2017-04-01

    The neonatal development stage of the cerebellum in rats is equivalent to a human foetus in the third trimester of pregnancy. In this stage, cell proliferation, migration, differentiation, and synaptogenesis occur. Clinical and experimental findings have shown that ethanol exposure during brain development causes a variety of disruptions to the brain, including neurogenesis depression, delayed neuronal migration, changes in neurotransmitter synthesis, and neuronal depletion.During postnatal cerebellar development, neurons are more vulnerable to the destructive effects of ethanol. The effects of low-intensity pulsed ultrasound (LIPUS) on the number of cells and thickness of the cell layers within the cerebellar cortex were examined during the first two postnatal weeks in rats following postnatal ethanol exposure. Postpartum rats were distributed randomly into six groups. Normal saline was injected intraperitoneally into control animals and ethanol (20%) was injected into the intervention groups for three consecutive days. Intervention groups received LIPUS at different frequencies (3 or 5MHz), after administration of ethanol. After transcardial perfusion, the rat's brain was removed, and a complete series of sagittal cerebellum sections were obtained by systematic random manner. Photomicrographs were made with Motic digital cameras and analysed using Nikon digital software. The numbers of granular cells decreased in ethanol-treated rats compared to the control group. LIPUS, administered at (3 or 5MHz), combined with ethanol administration resulted in a reduction of ethanol's effects. Using 5MHz LIPUS resulted in significantly higher numbers of granular cells in the internal layer compared to the control rats. Using 3 or 5MHz LIPUS alone resulted in a significant enhancement in the granular cells of the molecular layer. A significant reduction was seen in the thickness of the external granular layer in ethanol-treated rats. This study showed that exposure to LIPUS can affect the number of granular cells and thickness of the cell layer within the cerebellar cortex in neonatal rats. LIPUS also could attenuate ethanol toxicity effects on the cerebellum. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of acamprosate on ethanol-seeking and self-administration in the rat.

    PubMed

    Czachowski, C L; Legg, B H; Samson, H H

    2001-03-01

    Acamprosate (calcium acetyl homotaurinate) has been used clinically to treat relapse in alcoholics. In rats, it has been shown to decrease ethanol, but not water, self-administration after ethanol deprivation. To further investigate the effect of acamprosate on reinforced behaviors in rats, the present experiment used: (1) both ethanol and sucrose reinforcer solutions to better assess the distinct effects of acamprosate on ethanol-directed behaviors, and (2) an operant model that procedurally separates the "cost" to begin drinking from consuming the reinforcer solutions to dissociate the effects of acamprosate on appetitive versus consummatory processes. In daily sessions (5 days/week), rats (n = 6/group) were trained to make 30 lever-press responses to gain access for 20 min to a sipper tube containing either ethanol (10%) or sucrose (3%). After stable responding, acamprosate treatment was given. Three doses were tested (50, 100, and 200 mg/kg/injection, intraperitoneally), one dose per week. Each week, a total of four injections were given (21 and 2 hr before the operant sessions over 2 consecutive days). At these doses, acamprosate had no effect on the measures of appetitive responding for either solution. However, all doses reliably decreased ethanol consumption on the 2nd day of treatment (from an average of 0.83 to 0.63 g/kg). Analysis of the pattern of ethanol consumption showed that the effects of acamprosate occurred after the onset of a normal pattern of intake, as measured by lick rate and size of the initial bout of drinking, which suggested that acamprosate is most effective when combined with the pharmacological effects of ethanol. Sucrose intake was unaffected by all acamprosate treatments, which indicated that the treatment effects were specific to ethanol and not due to a general decrease in consummatory behavior. Overall, these results suggest that acamprosate is effective at reducing total ethanol intake, but may not reliably alter subjects propensity to begin a drinking bout as measured by this model. However, whether this applies to the clinical use of acamprosate, where other types of reinforcement may also precipitate relapse drinking, is not certain.

  2. High intensity focused ultrasound (HIFU) and ethanol induced tissue ablation: Thermal lesion volume and temperature ex vivo

    NASA Astrophysics Data System (ADS)

    Hoang, Nguyen Hai

    HIFU is the upcoming technology for noninvasive or minimally invasive tumor ablation via the localized acoustic energy deposition at the focal region within the tumor target. The presence of cavitation bubbles had been shown to improve the therapeutic effect of HIFU. In this study, we have investigated the effect of HIFU on temperature rise and cavitation bubble activity in ethanol-treated porcine liver and kidney tissues. We have also explored changes in the viability and proliferation rate of HepG2, SW1376, and FB1 cancer cells with their exposure to ethanol and HIFU. Tissues were submerged in 95% ethanol for five hours and then exposed to HIFU generated by a 1.1 MHz transducer or injected into focal spot before HIFU exposure. Cavitation events were measured by a passive cavitation detection technique for a range of acoustic power from 1.17 W to 20.52 W. The temperature around the focal zone was measured by type K or type E thermocouples embedded in the samples. In experiments with cancer cells, 2.7 millions cells were treated with concentration of ethanol at concentration 2%, 4%, 10%, 25%, and 50% and the cell were exposed to HIFU with power of 2.73 W, 8.72 W, and 12.0 W for 30 seconds. Our data show that the treatment of tissues with ethanol reduces the threshold power for inertial cavitation and increases the temperature rise. The exposure of cancer cells to various HIFU power only showed a higher number of viable cells 24 to 72 hours after HIFU exposure. On the other hand, both the viability and proliferation rate were significantly decreased in cells treated with ethanol and then HIFU at 8.7 W and 12.0 W even at ethanol concentration of 2 and 4 percent. In conclusion, the results of our study indicate that percutaneous ethanol injection (PEI) and HIFU have a synergistic effect on cancer cells ablation.

  3. Physicochemical characterization and an injection formulation study of water insoluble ZCVI₄-2, a novel NO-donor anticancer compound.

    PubMed

    Gao, Yuan; Li, Li; Zhang, Jianjun; Su, Feng; Gong, Zhenhua; Lai, Yisheng; Zhang, Yihua

    2012-07-01

    ZCVI(4)-2 was a novel nitric oxide-releasing glycosyl derivative of oleanolic acid that displayed strong cytotoxicity selectively against human hepatocellular carcinoma in vitro and in vivo. In this study, ZCVI(4)-2 was characterized by FT-IR spectroscopy, differential scanning calorimetry, powder X-ray diffractometry, Raman spectroscopy, hygroscopicity and stability. A high performance liquid chromatography method was also established for the quantitative determination of solubility and additional stability profile of ZCVI(4)-2. ZCVI(4)-2 was found to be an amorphous and stable solid with low solubility of less than 10 μg/mL. Based on the solubilization tests that included methods of cosolvency and micellization, the solution mixture of 5% Solutol HS-15, 5% 1, 2-propylene glycol and 5% anhydrous ethanol was determined to be the system for the preparation of the ZCVI(4)-2 early injection solution. The effect of pH, temperature, light and injectable isotonic glucose or NaCl solution on ZCVI(4)-2 injection was also investigated. Good stability was observed at all testing conditions. Under the conditions studied, the NO-releasing rate and amount of ZCVI(4)-2 from the early injection solution in rat plasma demonstrated a promising therapeutic efficacy while maintaining a good safety profile.

  4. University of Idaho's low-speed flex fuel direct-injected 797cc two-stroke rear drive snowmobile.

    DOT National Transportation Integrated Search

    2012-06-01

    The University of Idahos entry into the 2012 SAE Clean Snowmobile Challenge uses a Ski-Doo XP chassis with a low-speed 797 cc direct-injection two-stroke powered snowmobile modified for flex fuel use on blended ethanol fuel. A battery-less direct ...

  5. The Class I-Specific HDAC Inhibitor MS-275 Decreases Motivation to Consume Alcohol and Relapse in Heavy Drinking Rats

    PubMed Central

    Lemoine, Sandrine; Jeanblanc, Virginie; Alaux-Cantin, Stéphanie; Naassila, Mickaël

    2015-01-01

    Background: New strategies for the treatment of alcohol dependence are a pressing need, and recent evidence suggests that targeting enzymes involved in epigenetic mechanisms seems to have great potential. Among these mechanisms, alteration of histone acetylation by histone deacetylases is of great importance for gene expression and has also been implicated in addiction. Here, we examined whether intra-cerebroventricular administration of MS-275, a class I-specific histone deacetylase inhibitor, could alter ethanol self-administration, motivation to consume ethanol, and relapse in heavy drinking rats. Methods: Male Long Evans rats trained to self-administer high levels of ethanol received intra-cerebroventricular micro-infusions of MS-275 (250 µM, 500 µM, and 1000 µM) 3 hours prior to the self-administration sessions. Results: First, we demonstrated that intra-cerebroventricular infusion of MS-275 increases acetylation of Histone 4 within the nucleus accumbens nucleus accumbens and the dorsolateral striatum. Second, we observed that MS-275 decreases ethanol self-administration by about 75%. We found that 2 consecutive daily injections are necessary to decrease ethanol self-administration. Additionally, the dose-response curve test indicated that MS-275 has a U-shape effect on ethanol self-administration with the dose of 500 µM as the most efficient dose. Furthermore, we showed that MS-275 also diminished the motivation to consume ethanol (25% decrease), and finally, we demonstrated that MS-275 reduced relapse (by about 50%) and postponed reacquisition even when the treatment was stopped. Conclusions: Our study confirms the potential therapeutic interest of targeting epigenetic mechanisms in excessive alcohol drinking and strengthens the interest of focusing on specific isoforms of histone deacetylases. PMID:25762717

  6. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats

    PubMed Central

    Petchi, Ramesh R.; Parasuraman, S.; Vijaya, C.

    2013-01-01

    Objective: To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. Materials and Methods: The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. Results: The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. Conclusion: The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats. PMID:24808679

  7. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-13 C]Alanine.

    PubMed

    Park, Jae Mo; Khemtong, Chalermchai; Liu, Shie-Chau; Hurd, Ralph E; Spielman, Daniel M

    2017-05-01

    The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD + ]. In this study, we assessed the use of hyperpolarized [1- 13 C]alanine and the subsequent detection of the intracellular products of [1- 13 C]pyruvate and [1- 13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1- 13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. In vivo rat liver spectra showed peaks from [1- 13 C] alanine and the products of [1- 13 C]lactate, [1- 13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/ 13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. A method to measure in vivo tissue redox using hyperpolarized [1- 13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/ 13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Thyroid nodule

    MedlinePlus

    ... has grown Another possible treatment is an ethanol (alcohol) injection into the nodule to shrink ... Division of Metabolism, Endocrinology & Nutrition, University of Washington School of Medicine, ...

  9. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  10. Angiotensin (1-7) contributes to nitric oxide tonic inhibition of vasopressin release during hemorrhagic shock in acute ethanol intoxicated rodents

    PubMed Central

    Whitaker, Annie M.; Molina, Patricia E.

    2013-01-01

    Aims Acute ethanol intoxication (AEI) attenuates the arginine vasopressin (AVP) response to hemorrhage leading to impaired hemodynamic counter-regulation and accentuated hemodynamic stability. Previously we identified that the ethanol-induced impairment of circulating AVP concentrations in response to hemorrhage was the result of augmented central nitric oxide (NO) inhibition. The aim of the current study was to examine the mechanisms underlying ethanol-induced up-regulation of paraventricular nucleus (PVN) NO concentration. Angiotensin (ANG) (1-7) is an important mediator of NO production through activation of the Mas receptor. We hypothesized that Mas receptor inhibition would decrease central NO concentration and thus restore the rise in circulating AVP levels during hemorrhagic shock in AEI rats. Main Methods Conscious male Sprague Dawley rats (300-325 g) received a 15h intra-gastric infusion of ethanol (2.5g/kg + 300mg/kg/h) or dextrose prior to a fixed-pressure (~40mmHg) 60 minute hemorrhage. The Mas receptor antagonist A-779 was injected through an intracerebroventricular (ICV) cannula 15 min prior to hemorrhage. Key Findings PVN NOS activity and NO were significantly higher in AEI compared to DEX-treated controls at the completion of hemorrhage. ICV A-779 administration decreased NOS activity and NO concentration, partially restoring the rise in circulating AVP levels completion of hemorrhage in AEI rats. Significance These results suggest that Mas receptor activation contributes to the NO-mediated inhibitory tone of AVP release in the ethanol-intoxicated hemorrhaged host. PMID:24002017

  11. Differences in muscarinic acetylcholine receptor subtypes in the central nervous system of long sleep and short sleep mice. [Ethanol effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, M.; Ming, X.; McArdle, J.J.

    Differences in voluntary ethanol consumption have been noted in various inbred strains of mice and pharmacogenetic approaches have been used to study the mechanisms of action of many drugs such as ethanol. Long-sleep (LS) and short-sleep (SS) mice, selectively bred for differences in ethanol induced narcosis, provide a method by which a relationship between the differential responsiveness of these geno-types and muscarinic acetylcholine receptors (mAChR) may be evaluated. Sleep times after injection of 3ml ethanol/kg (i.p.) verified the higher sensitivity of LS vs. SS. Mean body weights of LS (26.5g) vs. SS (22g) were also significantly (p<.01) greater. Binding assaysmore » for ({sup 3}H)(-) quinuclidinylbenzilate (({sup 3}H)(-)QNB), a specific but nonsubtype selective mAChR antagonist, ({sup 3}H)pirenzepine (({sup 3}H)PZ), a specific M1 mAChR antagonist and ({sup 3}H)11-2-((2-((diethylamino) methyl)-1-piperidinyl) acetyl)-5,11-dihydro-6H-pyrido (2,3-b) (1,4) benzodiazepine-6-one, (({sup 3}H)AF-DX 116), an M2 selective antagonist were performed to determine mAChR affinity (K{sub d}) and density (B{sub max}) in CNS regions such as the cerebral cortex, hippocampus, corpus striatum and other areas. Significantly lower (30-40%) ({sup 3}H)(-)QNB binding suggests that SS have fewer mAChR's than LS in many areas. These differences may relate to their differential ethanol sensitivity.« less

  12. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68more » vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.« less

  13. A "Dual-acceptor Channel" Membraneless Gas-diffusion Unit for Simultaneous Determination of Ethanol and Acetaldehyde in Liquors Using Reverse Flow Injection.

    PubMed

    Choengchan, Nathawut; Poontong, Bangerdsuk; Mathaweesansurn, Arjnarong; Maneerat, Noppadol; Motomizu, Shoji; Ratanawimarnwong, Nuanlaor; Nacapricha, Duangjai

    2018-01-01

    A new design of membraneless gas-diffusion unit with dual acceptor channels for separation, collection and simultaneous determination of two volatile analytes in liquid sample is presented. The unit is comprised of three parallel channels in a closed module. A sample is aspirated into the central channel and two kinds of reagents are introduced into the other two channels. Two analytes are isolated from the sample matrix by diffusion into head-space and absorbed into the specific reagents. Non-absorbed vapor is released by opening the programmable controlled lid. The unit was applied to liquors for measurement of ethanol and acetaldehyde using reverse flow injection. Dichromate and nitroprusside were exploited as reagents for colorimetric detection of ethanol and acetaldehyde, respectively. Good linearity ranges (r 2 >0.99) with high precision (RSD <2%) and high accuracy (recovery: 90 - 105%) were achieved. The results were compared to the results by GC-FID and no significant difference was observed by paired t-test (95% confidence).

  14. Age differences in fear retention and extinction in male Sprague-Dawley rats: Effects of ethanol challenge during conditioning

    PubMed Central

    Broadwater, Margaret; Spear, Linda P.

    2013-01-01

    Pavlovian fear conditioning is an ideal model to investigate how learning and memory are influenced by alcohol use during adolescence because the neural mechanisms involved have been studied extensively. In Exp 1, adolescent and adult male Sprague-Dawley rats were non-injected or injected with saline, 1 or 1.5 g/kg ethanol intraperitoneally 10 minutes prior to tone or context conditioning. Twenty-four hours later, animals were tested for tone or context retention and extinction, with examination of extinction retention conducted 24 hours thereafter. In Exp 2, a context extinction session was inserted between the tone conditioning and the tone fear retention/extinction days to reduce pre-CS baseline freezing levels at test. Basal levels of acquisition, fear retention, extinction, and extinction retention after tone conditioning were similar between adolescent and adult rats. In contrast adolescents showed faster context extinction than adults, while again not differing from adults during context acquisition, retention or extinction retention. In terms of ethanol effects, adolescents were less sensitive to ethanol-induced context retention deficits than adults. No age differences emerged in terms of tone fear retention, with ethanol disrupting tone fear retention at both ages in Exp1, but at neither age in Exp 2, a difference seemingly due to group differences in pre-CS freezing during tone testing in Exp 1, but not Exp 2. These results suggest that age differences in the acute effects of ethanol on cognitive function are task-specific, and provide further evidence for age differences cognitive functioning in a task thought to be hippocampally-related. PMID:23810415

  15. Evaluation of percutaneous ethanol injections in benign thyroid nodules.

    PubMed

    Perez, Camila Luhm Silva; Fighera, Tayane Muniz; Miasaki, Fabiola; Mesa Junior, Cleo Otaviano; Paz Filho, Gilberto Jorge da; Graf, Hans; Carvalho, Gisah Amaral de

    2014-12-01

    The objective of this study was to evaluate the efficacy and safety of percutaneous ethanol injection (PEI) in the treatment of benign thyroid nodules. We evaluated 120 patients with benign thyroid nodules. Patients underwent evaluation of serum TSH and free T4, cervical ultrasound, and thyroid scintigraphy (in those with suppressed TSH levels). The application of sterile ethanol 99% was guided by ultrasound, with the injected volume amounting to one-third of the nodule volume. Response was considered complete (reduction of 90%); partial (reduction between 50 and 90%); or none (reduction of < 50%). Autonomous nodules were evaluated for normalization of TSH levels. Among the nodules studied, 30.8% were solid, 56.7% were mixed, 12.5% were cystic, and 21.6% were hyperfunctioning. The initial volume of the treated nodules ranged from 0.9 to 74.8 mL (mean 13.1 ± 12.4 mL). We performed 1-8 sessions of PEI, applying an average of 6.2 mL of ethanol for patient. After 2 years of follow-up, 17% of patients achieved a complete response (94% reduction); 53%, a partial response (70% reduction); and 30%, no response. A reduction in the volume of autonomous nodules was noted in 70% of cases, and 54% had a normalized value of TSH. The main side effect is local pain, lasting less than 24 hours in most cases. This study showed that PEI is a safe and effective procedure for treatment of benign, solid or mixed thyroid nodules. Most cases resulted in significant reduction in nodule volume, with normalization of thyroid function.

  16. Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach▿ †

    PubMed Central

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

    2010-01-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318

  17. Significant association between sulfate-reducing bacteria and uranium-reducing microbial communities as revealed by a combined massively parallel sequencing-indicator species approach.

    PubMed

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M

    2010-10-01

    Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.

  18. Preparation and evaluation of a phospholipid-based injectable gel for the long term delivery of leuprolide acetaterrh.

    PubMed

    Long, Danhong; Gong, Tao; Zhang, Zhirong; Ding, Rui; Fu, Yao

    2016-07-01

    A phospholipid-based injectable gel was developed for the sustained delivery of leuprolide acetate (LA). The gel system was prepared using biocompatible materials (SPME), including soya phosphatidyl choline (SPC), medium chain triglyceride (MCT) and ethanol. The system displayed a sol state with low viscosity in vitro and underwent in situ gelation in vivo after subcutaneous injection. An in vitro release study was performed using a dialysis setup with different release media containing different percentages of ethanol. The stability of LA in the SPME system was investigated under different temperatures and in the presence of various antioxidants. In vivo studies in male rats were performed to elucidate the pharmacokinetic profiles and pharmacodynamic efficacy. A sustained release of LA for 28 days was observed without obvious initial burst in vivo. The pharmacodynamic study showed that once-a-month injection of LA-loaded SPME (SPME-LA) led to comparable suppression effects on the serum testosterone level as observed in LA solution except for the onset time. These findings demonstrate excellent potential for this novel SPME system as a sustained release delivery system for LA.

  19. Lack of relation between drug-seeking behavior in an addiction model and the expression of behavioral sensitization in response to ethanol challenge in mice.

    PubMed

    Ribeiro, A F; Pigatto, G; Goeldner, F O; Lopes, J F; de Lacerda, R B

    2008-01-01

    Drug-induced sensitization has been associated with enhanced self-administration and may contribute to addiction. The possible association between sensitization and voluntary ethanol consumption using an addiction model was investigated. Mice (n = 60) were individually housed with ad libitum access to food and had free choice between ethanol (5% and 10%) and water in a four-phase paradigm: free choice (12 weeks), withdrawal (2 weeks), re-exposure (2 weeks), and quinine-adulteration (2 weeks). Control mice (n = 10) had access to water. Mice were characterized as addicted (n = 10, ethanol preference without reducing intake with adulterated ethanol), heavy (n = 22, ethanol preference but reduced intake with adulterated ethanol), and light (n = 21, water preference). Oral ethanol then was withdrawn, and 24 h later mice received a 2 g/kg ethanol (i.p.) challenge dose or saline, and ambulation was evaluated 10 min later. Half of the classified mice received daily 2 g/kg ethanol injections for 14 days, and ambulation was assessed 10 min after the last dose. Acute ethanol increased ambulation in all groups compared to the control group, and chronic ethanol induced sensitization, showing no difference among ethanol-treated mice. The data suggest that independent neural mechanisms are responsible for the development of addiction and sensitization.

  20. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    NASA Astrophysics Data System (ADS)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the NABIR program, DOE, under grant No. DE-FG02-04ER63740 to CZ. We thank J. Istok, David Watson, and Philip Jardine for their help. The views and opinions of authors expressed herein do not necessarily state or reflect those of the DOE.

  1. Preparation and emission characteristics of ethanol-diesel fuel blends.

    PubMed

    Zhang, Run-Duo; He, Hong; Shi, Xiao-Yan; Zhang, Chang-Bin; He, Bang-Quan; Wang, Jian-Xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection (DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon (HC), and carbon monoxide (CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  2. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Barone, Teresa L; Thomas, John F

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol contentmore » beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.« less

  3. Cyanidin-3-glucoside ameliorates ethanol neurotoxicity in the developing brain.

    PubMed

    Ke, Zunji; Liu, Ying; Wang, Xin; Fan, Zhiqin; Chen, Gang; Xu, Mei; Bower, Kimberley A; Frank, Jacqueline A; Ou, Xiaoming; Shi, Xianglin; Luo, Jia

    2011-10-01

    Ethanol exposure induces neurodegeneration in the developing central nervous system (CNS). Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during pregnancy and are the most common nonhereditary cause of mental retardation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Multiple mechanisms have been proposed for ethanol-induced neurodegeneration, and oxidative stress is one of the most important mechanisms. Recent evidence indicates that glycogen synthase kinase 3β (GSK3β) is a potential mediator of ethanol-mediated neuronal death. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. Our previous study suggested that C3G inhibited GSK3β activity in neurons. Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that C3G can ameliorate ethanol-induced neuronal death in the developing brain. Intraperitoneal injection of C3G reduced ethanol-meditated caspase-3 activation, neurodegeneration, and microglial activation in the cerebral cortex of 7-day-old mice. C3G blocked ethanol-mediated GSK3β activation by inducing phosphorylation at serine 9 while reducing the phosphorylation at tyrosine 216. C3G also inhibited ethanol-stimulated expression of malondialdehyde (MDA) and p47phox, indicating that C3G alleviated ethanol-induced oxidative stress. These results provide important insight into the therapeutic potential of C3G. Copyright © 2011 Wiley-Liss, Inc.

  4. GeoChip-based analysis of functional microbial communities in a bioreduced uranium-contaminated aquifer during reoxidation by oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Nostrand, J.D.; Wu, W.-M.; Wu, L.

    2009-07-15

    A pilot-scale system was established for in situ biostimulation of U(VI) reduction by ethanol addition at the US Department of Energy's (DOE's) Field Research Center (Oak Ridge, TN). After achieving U(VI) reduction, stability of the bioreduced U(IV) was evaluated under conditions of (i) resting (no ethanol injection), (ii) reoxidation by introducing dissolved oxygen (DO), and (iii) reinjection of ethanol. GeoChip, a functional gene array with probes for N, S and C cycling, metal resistance and contaminant degradation genes, was used for monitoring groundwater microbial communities. High diversity of all major functional groups was observed during all experimental phases. The microbialmore » community was extremely responsive to ethanol, showing a substantial change in community structure with increased gene number and diversity after ethanol injections resumed. While gene numbers showed considerable variations, the relative abundance (i.e. percentage of each gene category) of most gene groups changed little. During the reoxidation period, U(VI) increased, suggesting reoxidation of reduced U(IV). However, when introduction of DO was stopped, U(VI) reduction resumed and returned to pre-reoxidation levels. These findings suggest that the community in this system can be stimulated and that the ability to reduce U(VI) can be maintained by the addition of electron donors. This biostimulation approach may potentially offer an effective means for the bioremediation of U(VI)-contaminated sites.« less

  5. Effects of neuropeptide Y and ethanol on arousal and anxiety-like behavior in alcohol-preferring rats.

    PubMed

    Gilpin, Nicholas W; Henderson, Angela N; Badia-Elder, Nancy E; Stewart, Robert B

    2011-03-01

    Neuropeptide Y (NPY) is abundant in the mammalian brain and plays a prominent role in behaviors related to negative affect and alcohol. NPY suppresses anxiety-like behavior and alcohol-drinking behaviors in a wide array of rodent models and also affects changes in these behaviors produced by fearful and stressful stimuli. Rats selectively bred for high alcohol preference (P rats) appear to be particularly sensitive to the behavioral effects of NPY. The dual purpose of the present investigation was to determine the effects of intraventricular NPY on (1) the acoustic startle response (ASR) of P rats in a high-anxiety setting and (2) social interaction behavior of P rats. In experiment 1, P rats were either cycled through periods of long-term ethanol access and abstinence or they remained ethanol naive. Rats were injected with one of four NPY doses and tested for ASR before and after footshock stress. NPY suppressed ASR in all P rats regardless of shock condition or drinking history. In experiment 2, rats received intraventricular infusion of one of four NPY doses and were then injected with either ethanol (0.75 g/kg) or saline and tested for social interaction. NPY increased social interaction in P rats even at doses that suppressed locomotor activity, regardless of ethanol dose. Suppression of anxiety-like and arousal behaviors by NPY in the present study confirm a role for NPY in alcohol-related behaviors in alcohol-preferring P rats. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol

    PubMed Central

    Fang, Chaolong; Dai, Bo; Hong, Ruijin; Tao, Chunxian; Wang, Qi; Wang, Xu; Zhang, Dawei; Zhuang, Songlin

    2015-01-01

    An optofluidic device with tunable optical limiting property is proposed and demonstrated. The optofluidic device is designed for adjusting the concentration of graphene oxide (GO) in the ethanol solution and fabricated by photolithography technique. By controlling the flow rate ratio of the injection, the concentration of GO can be precisely adjusted so that the optical nonlinearity can be changed. The nonlinear optical properties and dynamic excitation relaxation of the GO/ethanol solution are investigated by using Z-scan and pump-probe measurements in the femtosecond regime within the 1.5 μm telecom band. The GO/ethanol solution presents ultrafast recovery time. Besides, the optical limiting property is in proportion to the concentration of the solution. Thus, the threshold power and the saturated power of the optical limiting property can be simply and efficiently manipulated by controlling the flow rate ratio of the injection. Furthermore, the amplitude regeneration is demonstrated by employing the proposed optofluidic device. The signal quality of intensity-impaired femtosecond pulse is significantly improved. The optofluidic device is compact and has long interaction length of optical field and nonlinear material. Heat can be dissipated in the solution and nonlinear material is isolated from other optical components, efficiently avoiding thermal damage and mechanical damage. PMID:26477662

  7. The Analgesic Effects of Different Extracts of Aerial Parts of Coriandrum Sativum in Mice

    PubMed Central

    Fatemeh Kazempor, Seyedeh; Vafadar langehbiz, Shabnam; Hosseini, Mahmoud; Naser Shafei, Mohammad; Ghorbani, Ahmad; Pourganji, Masoomeh

    2015-01-01

    Regarding the effects of Coriandrum sativum (C. sativum) on central nervous system, in the present study analgesic properties of different extracts of C. sativum aerial partswere investigated. The mice were treated by saline, morphine, three doses (20, 100 and 500 mg/kg) of aqueous, ethanolic, choloroformic extracts of C. sativum and one dose (100 mg/kg) of aqueous, two doses of ethanolic (100 and 500 mg/kg) and one dose of choloroformic (20 mg/kg) extracts of C. sativum pretreated by naloxone. Recording of the hot plate test was performed 10 min before injection of the drugs as a base and it was consequently repeated every 10 minutes after the extracts injection. The maximal percent effect (MPE) in the groups treated by three doses of aqueous, ethanolic and chloroformic extracts were significantly higher than saline group which were comparable to the effect of morphine. The effects of most effective doses of extracts were reversed by naloxone. The results of present study showed analgesic effect of aqueous, ethanolic and chloroformic extracts of C. sativum extract. These effects of the extracts may be mediated by opioid system. However, more investigations are needed to elucidate the exact responsible mechanism(s) and the effective compound(s).

  8. Simple flow injection analysis system for simultaneous determination of phenolic antioxidants with multiple pulse amperometric detection at a boron-doped diamond electrode.

    PubMed

    Medeiros, Roberta Antigo; Lourenção, Bruna Cláudia; Rocha-Filho, Romeu Cardozo; Fatibello-Filho, Orlando

    2010-10-15

    A method for simultaneous determination of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) in food was developed that uses multiple pulse amperometry (MPA) with flow injection analysis (FIA). Determination of these phenolic antioxidants was carried out with a cathodically pretreated boron-doped diamond electrode and an aqueous ethanolic (30% ethanol, v/v) 10 mmol L⁻¹ KNO₃ solution (pH(cond) = 1.5) as supporting electrolyte. A dual-potential waveform, at E(det1) = 850 mV/200 ms and E(det2) = 1150 mV/200 ms versus Ag/AgCl (3.0 mol L⁻¹ KCl), was employed. The use of E(det1) or E(det2) caused the oxidation of BHA or of BHA and BHT, respectively; hence, concentration subtraction could be used to determine both species. The respective analytical curves presented good linearity in the investigated concentration range (0.050-3.0 μmol L⁻¹ for BHA and 0.70-70 μmol L⁻¹ for BHT), and the detection limits were 0.030 μmol L⁻¹ for BHA and 0.40 μmol L⁻¹ for BHT. The proposed method, which is simple, quick, and presents good precision and accuracy, was successfully applied in the simultaneous determination of BHA and BHT in commercial mayonnaise samples, with results similar to those obtained by HPLC, at a 95% confidence level.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Dec, John E.; Sjoberg, Magnus

    Modern spark-ignition (SI) engine technologies have considerably changed in-cylinder conditions under which fuel autoignition and engine knock take place. In this paper, fundamental HCCI engine experiments are proposed as a means for characterizing the impact of these technologies on the knock propensity of different fuels. In particular, the impacts of turbocharging, direct injection (DI), and downspeeding on operation with ethanol and gasoline are investigated to demonstrate this approach. Results reported earlier for ethanol and gasoline on HCCI combustion are revisited with the new perspective of how their autoignition characteristics fit into the anti-knock requirement in modern SI engines. For example,more » the weak sensitivity to pressure boost demonstrated by ethanol in HCCI autoignition can be used to explain the strong knock resistance of ethanol fuels for turbocharged SI engines. Further, ethanol's high sensitivity to charge temperature makes charge cooling, which can be produced by fuel vaporization via direct injection or by piston expansion via spark-timing retard, very effective for inhibiting knock. On the other hand, gasoline autoignition shows a higher sensitivity to pressure, so only very low pressure boost can be applied before knock occurs. Gasoline also demonstrates low temperature sensitivity, so it is unable to make as effective use of the charge cooling produced by fuel vaporization or spark retard. These arguments comprehensively explain literature results on ethanol's substantially better anti-knock performance over gasoline in modern turbocharged DISI engines. Fundamental HCCI experiments such as these can thus be used as a diagnostic and predictive tool for knock-limited SI engine performance for various fuels. As a result, examples are presented where HCCI experiments are used to identify biofuel compounds with good potential for modern SI-engine applications.« less

  10. Understanding fuel anti-knock performances in modern SI engines using fundamental HCCI experiments

    DOE PAGES

    Yang, Yi; Dec, John E.; Sjoberg, Magnus; ...

    2015-08-19

    Modern spark-ignition (SI) engine technologies have considerably changed in-cylinder conditions under which fuel autoignition and engine knock take place. In this paper, fundamental HCCI engine experiments are proposed as a means for characterizing the impact of these technologies on the knock propensity of different fuels. In particular, the impacts of turbocharging, direct injection (DI), and downspeeding on operation with ethanol and gasoline are investigated to demonstrate this approach. Results reported earlier for ethanol and gasoline on HCCI combustion are revisited with the new perspective of how their autoignition characteristics fit into the anti-knock requirement in modern SI engines. For example,more » the weak sensitivity to pressure boost demonstrated by ethanol in HCCI autoignition can be used to explain the strong knock resistance of ethanol fuels for turbocharged SI engines. Further, ethanol's high sensitivity to charge temperature makes charge cooling, which can be produced by fuel vaporization via direct injection or by piston expansion via spark-timing retard, very effective for inhibiting knock. On the other hand, gasoline autoignition shows a higher sensitivity to pressure, so only very low pressure boost can be applied before knock occurs. Gasoline also demonstrates low temperature sensitivity, so it is unable to make as effective use of the charge cooling produced by fuel vaporization or spark retard. These arguments comprehensively explain literature results on ethanol's substantially better anti-knock performance over gasoline in modern turbocharged DISI engines. Fundamental HCCI experiments such as these can thus be used as a diagnostic and predictive tool for knock-limited SI engine performance for various fuels. As a result, examples are presented where HCCI experiments are used to identify biofuel compounds with good potential for modern SI-engine applications.« less

  11. Efficacy and Safety of Ethanol Ablation for Branchial Cleft Cysts.

    PubMed

    Ha, E J; Baek, S M; Baek, J H; Shin, S Y; Han, M; Kim, C-H

    2017-12-01

    Branchial cleft cyst is a common congenital lesion of the neck. This study evaluated the efficacy and safety of ethanol ablation as an alternative treatment to surgery for branchial cleft cyst. Between September 2006 and October 2016, ethanol ablation was performed in 22 patients who refused an operation for a second branchial cleft cyst. After the exclusion of 2 patients who were lost to follow-up, the data of 20 patients were retrospectively evaluated. All index masses were confirmed as benign before treatment. Sonography-guided aspiration of the cystic fluid was followed by injection of absolute ethanol (99%) into the lesion. The injected volume of ethanol was 50%-80% of the volume of fluid aspirated. Therapeutic outcome, including the volume reduction ratio, therapeutic success rate (volume reduction ratio of >50% and/or no palpable mass), and complications, was evaluated. The mean index volume of the cysts was 26.4 ± 15.7 mL (range, 3.8-49.9 mL). After ablation, the mean volume of the cysts decreased to 1.2 ± 1.1 mL (range, 0.0-3.5 mL). The mean volume reduction ratio at last follow-up was 93.9% ± 7.9% (range, 75.5%-100.0%; P < .001). Therapeutic success was achieved in all nodules (20/20, 100%), and the symptomatic ( P < .001) and cosmetic ( P < .001) scores had improved significantly by the last follow-up. In 1 patient, intracystic hemorrhage developed during the aspiration; however, no major complications occurred in any patient. Ethanol ablation is an effective and safe treatment for patients with branchial cleft cysts who refuse, or are ineligible for, an operation. © 2017 by American Journal of Neuroradiology.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream ofmore » the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.« less

  13. Null Mutation of 5α-Reductase Type I Gene Alters Ethanol Consumption Patterns in a Sex-Dependent Manner

    PubMed Central

    Nickel, Jeffrey D.; Kaufman, Moriah N.; Finn, Deborah A.

    2014-01-01

    The neuroactive steroid allopregnanolone (ALLO) is a positive modulator of GABAA receptors, and manipulation of neuroactive steroid levels via injection of ALLO or the 5α-reductase inhibitor finasteride alters ethanol self-administration patterns in male, but not female, mice. The Srd5a1 gene encodes the enzyme 5α-reductase-1, which is required for the synthesis of ALLO. The current studies investigated the influence of Srd5a1 deletion on voluntary ethanol consumption in male and female wildtype (WT) and knockout (KO) mice. Under a continuous access condition, 6 and 10 % ethanol intake was significantly greater in KO versus WT females, but significantly lower in KO versus WT males. In 2-h limited access sessions, Srd5a1 deletion retarded acquisition of 10 % ethanol intake in female mice, but facilitated it in males, versus respective WT mice. The present findings demonstrate that the Srd5a1 gene modulates ethanol consumption in a sex-dependent manner that is also contingent upon ethanol access condition and concentration. PMID:25416204

  14. Null mutation of 5α-reductase type I gene alters ethanol consumption patterns in a sex-dependent manner.

    PubMed

    Ford, Matthew M; Nickel, Jeffrey D; Kaufman, Moriah N; Finn, Deborah A

    2015-05-01

    The neuroactive steroid allopregnanolone (ALLO) is a positive modulator of GABAA receptors, and manipulation of neuroactive steroid levels via injection of ALLO or the 5α-reductase inhibitor finasteride alters ethanol self-administration patterns in male, but not female, mice. The Srd5a1 gene encodes the enzyme 5α-reductase-1, which is required for the synthesis of ALLO. The current studies investigated the influence of Srd5a1 deletion on voluntary ethanol consumption in male and female wildtype (WT) and knockout (KO) mice. Under a continuous access condition, 6 and 10 % ethanol intake was significantly greater in KO versus WT females, but significantly lower in KO versus WT males. In 2-h limited access sessions, Srd5a1 deletion retarded acquisition of 10 % ethanol intake in female mice, but facilitated it in males, versus respective WT mice. The present findings demonstrate that the Srd5a1 gene modulates ethanol consumption in a sex-dependent manner that is also contingent upon ethanol access condition and concentration.

  15. Absolute Ethanol Embolisation of Mandibular Arteriovenous Malformations Following Direct Percutaneous Puncture and Release of Coils via a Microcatheter.

    PubMed

    Wang, D; Su, L; Han, Y; Wang, Z; Zheng, L; Fan, X

    2017-06-01

    To evaluate the safety, efficacy, and medium-term outcome of a modified technique of ethanol embolisation of mandibular arteriovenous malformations (AVMs) following a direct percutaneous transvenous approach to the release of coils via a microcatheter. From January 2012 to July 2014, 18 consecutive patients (mean age 20.9 years [range 10-35 years]) with symptomatic AVMs of the mandible were enrolled. A microcatheter was inserted into the lesion via a direct percutaneous puncture needle. Electrolytically detachable coils and 0.018 mm coils were super-selectively placed to decrease the flow and volume of the arteriovenous fistulas via a microcatheter. Absolute ethanol was injected to obliterate the fistulas. Clinical follow-up was performed in all patients. Therapeutic outcomes were determined by evaluating the degree of devascularisation at follow-up angiography and symptoms and signs. Transvenous release of coils combined with absolute ethanol embolisation were used in all cases. The amount of ethanol used ranged from 5 to 50 mL (mean 25.7 mL) in a single session. Sixteen of 18 patients were cured, and two had partial remission. Follow-up times ranged from 8 to 26 months (medium 15.7 months), and there was no angiographic recurrence of the lesions. Minor complication occurred in five of the 18 patients. There were no major complications. Absolute ethanol embolisation following a direct percutaneous transvenous approach to release coils via a microcatheter is a feasible, safe, and highly effective method for the management of mandibular AVMs. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  16. The cannabinoid receptor 2 agonist, β-caryophyllene, reduced voluntary alcohol intake and attenuated ethanol-induced place preference and sensitivity in mice.

    PubMed

    Al Mansouri, Shamma; Ojha, Shreesh; Al Maamari, Elyazia; Al Ameri, Mouza; Nurulain, Syed M; Bahi, Amine

    2014-09-01

    Several recent studies have suggested that brain CB2 cannabinoid receptors play a major role in alcohol reward. In fact, the implication of cannabinoid neurotransmission in the reinforcing effects of ethanol (EtOH) is becoming increasingly evident. The CB2 receptor agonist, β-caryophyllene (BCP) was used to investigate the role of the CB2 receptors in mediating alcohol intake and ethanol-induced conditioned place preference (EtOH-CPP) and sensitivity in mice. The effect of BCP on alcohol intake was evaluated using the standard two-bottle choice drinking method. The mice were presented with increasing EtOH concentrations and its consumption was measured daily. Consumption of saccharin and quinine solutions was measured following the EtOH preference tests. Finally, the effect of BCP on alcohol reward and sensitivity was tested using an unbiased EtOH-CPP and loss of righting-reflex (LORR) procedures, respectively. BCP dose-dependently decreased alcohol consumption and preference. Additionally, BCP-injected mice did not show any difference from vehicle mice in total fluid intake in a 24-hour paradigm nor in their intake of graded concentrations of saccharin or quinine, suggesting that the CB2 receptor activation did not alter taste function. More importantly, BCP inhibited EtOH-CPP acquisition and exacerbated LORR duration. Interestingly, these effects were abrogated when mice were pre-injected with a selective CB2 receptor antagonist, AM630. Overall, the CB2 receptor system appears to be involved in alcohol dependence and sensitivity and may represent a potential pharmacological target for the treatment of alcoholism. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Cyanidin-3-Glucoside Ameliorates Ethanol Neurotoxicity in the Developing Brain

    PubMed Central

    Ke, Zunji; Liu, Ying; Wang, Xin; Fan, Zhiqin; Chen, Gang; Xu, Mei; Bower, Kimberley A.; Frank, Jacqueline A.; Ou, Xiaoming; Shi, Xianglin; Luo, Jia

    2011-01-01

    Ethanol exposure induces neurodegeneration in the developing central nervous system (CNS). Fetal Alcohol Spectrum Disorders (FASD) are caused by ethanol exposure during pregnancy and are the most common nonhereditary cause of mental retardation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Multiple mechanisms have been proposed for ethanol-induced neurodegeneration, and oxidative stress is one of the most important mechanisms. Recent evidence indicates that glycogen synthase kinase 3β (GSK3β) is a potential mediator of ethanol-mediated neuronal death (Luo, 2009). Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. Our previous study suggested that C3G inhibited GSK3β activity in neurons (Chen et al., 2009). Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that C3G can ameliorate ethanol-induced neuronal death in the developing brain. Intraperitoneal injection of C3G reduced ethanol-meditated caspase-3 activation, neurodegeneration and microglial activation in the cerebral cortex of seven-day-old mice. C3G blocked ethanol-mediated GSK3β activation by inducing the phosphorylation at serine 9 while reducing the phosphorylation at tyrosine 216. C3G also inhibited ethanol-stimulated expression of malondialdehyde (MDA) and p47phox, indicating that C3G alleviated ethanol-induced oxidative stress. These results provide important insight into the therapeutic potential of C3G. PMID:21671257

  18. Extraction and Determination of Trace Amounts of p-Coumaric Acid in Vinegar, Carrot Juice, and Seed Extract from Silybum marianum (L.) Gaertn.

    PubMed

    Khani, Rouhollah; Rostami, Zeinab; Bagherzade, Ghodsieh; Khojeh, Vahid

    2018-03-01

    In this study, for the monitoring and quantification of p-coumaric acid (p-CA) in vinegar, carrot juice, and seed extract from the plant species Silybum marianum (L.) Gaertn, an efficient and low-cost analytical method has been applied. For this purpose, a dispersive liquid-liquid microextraction (DLLME) method, followed by UV-Vis spectrophotometric detection, was used. To form a cloudy solution, a binary mixture containing ethanol as a disperser solvent and chloroform as an extraction solvent was rapidly injected by syringe into a sample solution containing p-CA. After centrifugation, dilution of the obtained organic phase was done with the proper amount of ethanol, and the phase was transferred into a micro cell for subsequent measurement. Some effective parameters for the DLLME method, such as the volume of disperser solvent and extraction solvent, pH, and salt concentration were inspected by a 24 full factorial central composite design using design Export Software. Under the optimized conditions, linearity was between 10 and 150 ng/mL, and the LOD was 2.3 ng/mL. The results of the proposed method were similar to the obtained results using a GC with flame-ionization detection method.

  19. Neuroprotective Effect of Exogenous Melatonin on Dopaminergic Neurons of the Substantia Nigra in Ovariectomized Rats

    PubMed Central

    Mehraein, Fereshteh; Talebi, Reza; Jameie, Behnamedin; Joghataie, Mohammad Taghi; Madjd, Zahra

    2011-01-01

    Background: Melatonin has receptors in substantia nigra pars compacta (SNc) and regulates development of dopaminergic (DA) neurons. This study was undertaken to determine ability of melatonin to protect SNc dopaminergic neuron loss induced by estrogen deficiency in ovariectomized rats. Methods: Female rats were randomized into four groups of seven each: control, ethanol sham, ovariectomy (ovx) and ovx with melatonin (ovx + m). In ovx, ovaries were removed. Ovx + m group was intraperitoneally injected with melatonin for 10 days, while the ethanol sham group received only ethanol. All rats were perfused with 4% paraformaldehyde, midbrains removed, fixed and paraffin embedded, then processed for Nissl and tyrosine hydroxylase staining (IHC). Ten sections of SNc in Nissl and IHC staining were analyzed in each animal, Nissl stained and tyrosine hydroxylase (TH) immunoreactive cells were counted in five experimental groups randomly. Data was analyzed using SPSS by ANOVA and t-test. Differences were considered significant for P<0.05. Results: There was less cell number in ovx compared to control and ethanol sham groups significantly (P<0.001). The ovx + m group had more cells than the ovx group in the SNc significantly (P<0.001). Furthermore, there was significant decrease of TH positive cell number in the ovx group compared to control and ethanol sham groups (P<0.05). The number of TH immunoreactive cells was higher in ovx + m compared to the ovx group (P<0.05). Conclusion: These findings can be compared with human and used in clinical application for prevention of DA neuron death of SNc after ovariectomy. PMID:21725499

  20. Sex differences in the effects of ethanol pre-exposure during adolescence on ethanol-induced conditioned taste aversion in adult rats

    PubMed Central

    Sherrill, Luke K.; Berthold, Claire; Koss, Wendy A.; Juraska, Janice M.; Gulley, Joshua M.

    2011-01-01

    Alcohol use, which typically begins during adolescence and differs between males and females, is influenced by both the rewarding and aversive properties of the drug. One way adolescent alcohol use may modulate later consumption is by reducing alcohol s aversive properties. Here, we used a conditioned taste aversion (CTA) paradigm to determine if pre-exposure to alcohol (ethanol) during adolescence would attenuate ethanol-induced CTA assessed in adulthood in a sex-dependent manner. Male and female Long-Evans rats were given intraperitoneal (i.p.) injections of saline or 3.0 g/kg ethanol in a binge-like pattern during postnatal days (PD) 35–45. In adulthood (> PD 100), rats were given access to 0.1% saccharin, followed by saline or ethanol (1.0 or 1.5 g/kg, i.p.), over four conditioning sessions. We found sex differences in ethanol-induced CTA, with males developing a more robust aversion earlier in conditioning. Sex differences in the effects of pre-exposure were also evident: males, but not females, showed an attenuated CTA in adulthood following ethanol pre-exposure, which occurred approximately nine weeks earlier. Taken together, these findings indicate that males are more sensitive to the aversive properties of ethanol than females. In addition, the ability of pre-exposure to the ethanol US to attenuate CTA is enhanced in males compared to females. PMID:21767576

  1. Naloxone effects on extinction of ethanol- and cocaine-induced conditioned place preference in mice.

    PubMed

    Font, Laura; Houck, Christa A; Cunningham, Christopher L

    2017-09-01

    Previous studies found that naloxone (NLX) facilitated choice extinction of ethanol conditioned place preference (CPP) using long (60 min) test sessions, but there is little information on the variables determining this effect. These studies examined repeated exposure to NLX during extinction of ethanol- or cocaine-induced CPP using both short and long tests. DBA/2J mice were injected with NLX (0 or 10 mg/kg) before three 10- or 60-min choice extinction tests (experiment 1). All mice received a final 60-min test without NLX. Post-test NLX was given in experiment 2. Experiment 3 tested whether NLX would affect a forced extinction procedure. Experiment 4 tested its effect on extinction of cocaine-induced CPP. Pre-test (but not post-test) injections of NLX-facilitated choice extinction of ethanol CPP at both test durations. Pre-test NLX also facilitated forced extinction. However, pre-test NLX had no effect on choice extinction of cocaine CPP. Extinction test duration is not critical for engaging the opioid system during ethanol CPP extinction (experiment 1). Moreover, NLX's effect does not depend on CPP expression during extinction, just exposure to previously conditioned cues (experiment 3). The null effect of post-test NLX eliminates a memory consolidation interpretation (experiment 2) and the failure to alter cocaine CPP extinction argues against alteration of general learning or memory processes (experiment 4). Overall, these data suggest that the endogenous opioid system mediates a conditioned motivational effect that normally maintains alcohol-induced seeking behavior, which may underlie the efficacy of opiate antagonists in the treatment of alcoholism.

  2. Pathophysiology of chronic pancreatitis induced by dibutyltin dichloride joint ethanol in mice.

    PubMed

    Zhang, Hong; Liu, Bin; Xu, Xiao-Fan; Jiang, Ting-Ting; Zhang, Xiao-Qin; Shi, Ying-Li; Chen, Yu; Liu, Fang; Gu, Jie; Zhu, Lin-Jia; Wu, Nan

    2016-03-14

    To search for a new chronic pancreatitis model in mice suitable for investigating the pathophysiological processes leading to pancreatic fibrosis. The mice were randomly divided into 2 groups (n = 50), control group and model group. The mice in model group were given ethanol (10%) in drinking water after injection of dibutyltin dichloride (DBTC) (8 mg/kg BW) in tail vein. The mice in control group were injected with only solvent into tail vein (60% ethanol, 20% glycerine and 20% normal saline) and drank common water. At days 1, 7, 14, 28, and 56 after application of DBTC or solvent, 10 mice in one group were killed at each time point respectively. Blood was obtained by inferior vena cava puncture. The activity of amylase, concentration of bilirubin and hyaluronic acid in serum were assayed. The pancreas was taken to observe the pancreatic morphology by HE staining, and to characterize the pancreatic fibrosis by Masson staining. The expression of F4/80, CD3 and fibronectin (FN) were assayed by immuno-histochemistry or Immunofluorescence technique. Collagen type I (COL1A1) in pancreas were detected by Western blot. The expression of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinases-1 (TIMP-1) mRNA in the pancreas was assessed by real time PCR. DBTC induced an acute edematous pancreatitis within 1 d. The dilated acini, scattered acinar cell necrosis, and inflammatory cells were found at day 7. Extensive infiltration with inflammatory cells following deposition of connective tissue was observed at day 14. At day 28, level of pancreatic fibrosis was aggravated. The pancreatic tissue was replaced by an extended interstitial fibrosis at the end of 2 mo. There was significant difference in the level of amylase, bilirubin and hyaluronic acid in serum between control group and model group (P < 0.05). The level of COL1A1 and FN in pancreas increased. The expression of MMP-1 mRNA in pancreas decreased, but TIMP-1 mRNA increased at model group. DBTC joint Ethanol drinking can induce chronic pancreatitis in accordance with the pathophysiological modification of human. DBTC joint Ethanol-induced pancreatitis in mice is an effective and handy experimental method. The model is suitable to study the mechanism of pancreatic fibrosis in chronic pancreatitis.

  3. Long-lasting reductions of ethanol drinking, enhanced ethanol-induced sedation, and decreased c-fos expression in the Edinger-Westphal nucleus in Wistar rats exposed to the organophosphate chlorpyrifos.

    PubMed

    Carvajal, Francisca; López-Grancha, Matilde; Navarro, Montserrat; Sánchez-Amate, Maria del Carmen; Cubero, Inmaculada

    2007-04-01

    Intermittent or continuous exposure to a wide variety of chemically unrelated environmental pollutants might result in the development of multiple chemical intolerance and increased sensitivity to drugs of abuse. Interestingly, clinical evidence suggests that exposure to organophosphates might be linked to increased ethanol sensitivity and reduced voluntary consumption of ethanol-containing beverages in humans. The growing body of clinical and experimental evidence emerging in this new scientific field that bridges environmental health sciences, toxicology, and drug research calls for well-controlled studies aimed to analyze the nature of the neurobiological interactions of drugs and pollutants. Present study specifically evaluated neurobiological and behavioral responses to ethanol in Wistar rats that were previously exposed to the pesticide organophosphate chlorpyrifos (CPF). In agreement with clinical data, animals pretreated with a single injection of CPF showed long-lasting ethanol avoidance that was not secondary to altered gustatory processing or enhancement of the aversive properties of ethanol. Furthermore, CPF pretreatment increased ethanol-induced sedation without altering blood ethanol levels. An immunocytochemical assay revealed reduced c-fos expression in the Edinger-Westphal nucleus following CPF treatment, a critical brain area that has been implicated in ethanol intake and sedation. We hypothesize that CPF might modulate cellular mechanisms (decreased intracellular cAMP signaling, alpha-7-nicotinic receptors, and/or cerebral acetylcholinesterase inhibition) in neuronal pathways critically involved in neurobiological responses to ethanol.

  4. Optimation and Determination of Fe-Oxinate Complex by Using High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Oktavia, B.; Nasra, E.; Sary, R. C.

    2018-04-01

    The need for iron will improve the industrial processes that require iron as its raw material. Control of industrial iron waste is very important to do. One method of iron analysis is to conduct indirect analysis of iron (III) ions by complexing with 8-Hydroxyquinoline or oxine. In this research, qualitative and quantitative tests of iron (III) ions in the form of complex with oxine. The analysis was performed using HPLC at a wavelength of 470 nm with an ODS C18 column. Three methods of analysis were performed: 1) Fe-oxinate complexes were prepared in an ethanol solvent so no need for separation anymore, (2) Fe-oxinate complexes were made in chloroform so that a solvent extraction was required before the complex was injected into the column while the third complex was formed in the column, wherein the eluent contains the oxide and the metal ions are then injected. The resulting chromatogram shows that the 3rd way provides a better chromatogram for iron analysis.

  5. Chronic intracerebroventricular infusion of nociceptin/orphanin FQ increases food and ethanol intake in alcohol-preferring rats.

    PubMed

    Cifani, Carlo; Guerrini, Remo; Massi, Maurizio; Polidori, Carlo

    2006-11-01

    Central administration of low doses of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, have been shown to reduce ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behavior in alcohol preferring rats. The present study evaluated the effect of continuous (7 days) lateral brain ventricle infusions of N/OFQ (0, 0.25, 1, 4, and 8 microg/h), by means of osmotic mini-pumps, on 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats provided 2h or 24h access to it. N/OFQ dose-dependently increased food intake in msP rats. On the other hand, in contrast to previous studies with acute injections, continuous lateral brain ventricle infusion of high doses of N/OFQ increased ethanol consumption when the ethanol solution was available for 24h/day or 2h/day. The present study demonstrates that continuous activation of the opioidergic N/OFQ receptor does not blunt the reinforcing effects of ethanol. Moreover, the data suggest that continuous activation of the opioidergic N/OFQ receptor is not a suitable way to reduce alcohol abuse.

  6. Effects of caffeine and Bombesin on ethanol and food intake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietze, M.A.; Kulkosky, P.J.

    1991-01-01

    The methylxanthine caffeine and ethyl alcohol are widely used and powerful psychotropic drugs, but their interactions are not well understood. Bombesin is a brain-gut neuropeptide which is thought to function as a neurochemical factor in the inhibitory control of voluntary alcohol ingestion. We assessed the effects of combinations of intraperitoneal doses of caffeine and bombesin on 5% w/v ethanol solution and food intake in deprived rats. Deprived male and female Wistar rats received access to 5% ethanol or Purina chow for 30 minutes after i.p. injections. In single doses, CAF and BBS significantly decreased both ethanol and food consumption, atmore » 50 mg/kg and 10 {mu}g/kg, respectively. CAF and BBS combinations produced infra-additive, or less-than-expected inhibitory effects on ethanol intake, but simple additive inhibitory effects on food intake. This experimental evidence suggests a reciprocal blocking of effects of CAF and BBS on ethanol intake but not food intake. Caffeine, when interacting and bombesin, increases alcohol consumption beyond expected values. Caffeine could affect the operation of endogenous satisfy signals for alcohol consumption.« less

  7. Effect of intravenously-administered putative and potential antagonists of ethanol on sleep time in ethanol-narcotized mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, R.C.; Jernigan, A.D.

    Groups of male CD-1 mice (n = 12/group) were injected intraperitoneally (IP) with 5 g ethanol/kg of body weight. After loss of righting reflex, they were given vehicle or one of 2-3 doses of reputed or potential antagonists of ethanol intravenously (IV). Sleep time was measured from loss to return of righting reflex. Mean sleep time (MST) was increased significantly by a large dose of dl-amphetamine and by 4-aminopyridine. Significant increases were also produced by small and large doses of aminophylline and by yohimbine. MST was not altered significantly by small and medium doses of dl-amphetamine, a medium dose ofmore » aminophylline, or by any doses of naloxone, thyrotropin-releasing hormone, propranolol, physostigmine, doxapram, or Ro 15-4513. When Ro 15-4513 was given IP 15 minutes before ethanol (n = 6/group), onset and duration of narcosis were not altered. None of the compounds tested was an effective IV antidote for deep ethanol narcosis because of drug side effects, toxicity, prolongation of MST, or insufficient shortening of MST. 36 references, 1 table.« less

  8. A highly sensitive and temporal visualization system for gaseous ethanol with chemiluminescence enhancer.

    PubMed

    Arakawa, Takahiro; Ando, Eri; Wang, Xin; Kumiko, Miyajima; Kudo, Hiroyuki; Saito, Hirokazu; Mitani, Tomoyo; Takahashi, Mitsuo; Mitsubayashi, Kohji

    2012-01-01

    A two-dimensional gaseous ethanol visualization system has been developed and demonstrated using a horseradish peroxidase-luminol-hydrogen peroxide system with high-purity luminol solution and a chemiluminescence (CL) enhancer. This system measures ethanol concentrations as intensities of CL via the luminol reaction. CL was emitted when the gaseous ethanol was injected onto an enzyme-immobilized membrane, which was employed as a screen for two-dimensional gas visualization. The average intensity of CL on the substrate was linearly related to the concentration of standard ethanol gas. These results were compared with the CL intensity of the CCD camera recording image in the visualization system. This system is available for gas components not only for spatial but also for temporal analysis in real time. A high-purity sodium salt HG solution (L-HG) instead of standard luminol solution and an enhancer, eosin Y (EY) solution, were adapted for improvement of CL intensity of the system. The visualization of gaseous ethanol was achieved at a detection limit of 3 ppm at optimized concentrations of L-HG solution and EY. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  10. Comparison of molecular marker expression in early zebrafish brain development following chronic ethanol or morpholino treatment.

    PubMed

    Zhang, Chengjin; Boa-Amponsem, Oswald; Cole, Gregory J

    2017-08-01

    This study was undertaken to ascertain whether defined markers of early zebrafish brain development are affected by chronic ethanol exposure or morpholino knockdown of agrin, sonic hedgehog, retinoic acid, and fibroblast growth factors, four signaling molecules that are suggested to be ethanol sensitive. Zebrafish embryos were exposed to 2% ethanol from 6 to 24 hpf or injected with agrin, shha, aldh1a3, or fgf8a morpholinos. In situ hybridization was employed to analyze otx2, pax6a, epha4a, krx20, pax2a, fgf8a, wnt1, and eng2b expression during early brain development. Our results showed that pax6a mRNA expression was decreased in eye, forebrain, and hindbrain of both chronic ethanol exposed and select MO treatments. Epha4a expression in rhombomere R1 boundary was decreased in chronic ethanol exposure and aldh1a3 morphants, lost in fgf8a morphants, but largely unaffected in agrin and shha morphants. Ectopic pax6a and epha4a expression in midbrain was only found in fgf8a morphants. These results suggest that while chronic ethanol induces obvious morphological change in brain architecture, many molecular markers of these brain structures are relatively unaffected by ethanol exposure.

  11. A New Sclerosing Agent in the Treatment of Venous Malformations

    PubMed Central

    Sannier, K.; Dompmartin, A.; Théron, J.; Labbé, D.; Barrellier, M.T.; Leroyer, R.; Touré, P.; Leroy, D.

    2004-01-01

    Summary Absolute ethanol is the most effective agent in the treatment of venous malformation (VM) although it is quite risky to use because of the danger of diffusion beyond the target. To reduce this risk, we have developed an alcoholic sclerosing solution that is less diffusible. The viscosity of absolute ethanol was enhanced with monographic ethyl-cellulose at a concentration of 5.88% ie 0.75 g in 15 ml of absolute ethanol 95%. 23 patients with VM located on the buttock (1), hand (2), leg (1) and face (19) were treated. A mean volume of 1.99 ml of the solution was injected directly into the VM. Each patient had an average of 2.8 procedures. Sixteen patients were done under general anaesthesia and seven with local anaesthesia. Evaluation was performed by the patient, the dermatologist of the treating multidisciplinary team and a dermatological group not involved in the treatment of the patients. Patients were evaluated after a mean delay of 24.52 months. Evaluation of the cosmetic result was made with a five point scale and the global result with a three point scale. VM pain was evaluated by the patients with a Visual Analogue Scale. The aesthetic results were graded as satisfactory (> 3) for the patient and the dermatologist of the multidisciplinary team. However the results were not as good with the independent dermatological group evaluation. The pain was significantly less important after the treatment (p << 0.001). Among the 23 patients, the local adverse events were nine necrosis with or without ethylcellulose fistula followed by only two surgical procedures. There were no systemic adverse events. Sclerotherapy of VM is usually performed with absolute ethanol or ethibloc. The main advantage of our sclerosing mixture is that it expands like a balloon when injected slowly in a aqueous media. Because of the important increase in viscosity the volume of injected solution is much lower than ethanol alone and the risk of systemic reactions is lower. Contrary to ethibloc, post-sclerosing surgery is not necessary because sub-cutaneous ethylcellulose disappears secondarily. PMID:20587223

  12. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in mice.

    PubMed

    Summers, Brooke L; Rofe, Allan M; Coyle, Peter

    2009-04-01

    We have previously demonstrated that ethanol teratogenicity is associated with metallothionein-induced fetal zinc (Zn) deficiency, and that maternal subcutaneous Zn treatment given with ethanol in early pregnancy prevents fetal abnormalities and spatial memory impairments in mice. Here we investigated whether dietary Zn supplementation throughout pregnancy can also prevent ethanol-related dysmorphology. Pregnant mice were injected with saline or 25% ethanol (0.015 ml/g intraperitoneally at 0 and 4 hours) on gestational day (GD) 8 and fed either a control (35 mg Zn/kg) or a Zn-supplemented diet (200 mg Zn/kg) from GD 0 to 18. Fetuses from the saline, saline + Zn, ethanol and ethanol + Zn groups were assessed for external birth abnormalities on GD 18. In a separate cohort of mice, postnatal growth and survival of offspring from these treatment groups were examined from birth until postnatal day 60. Fetuses from dams treated with ethanol alone in early pregnancy had a significantly greater incidence of physical abnormalities (26%) compared to those from the saline (10%), saline + Zn (9%), or ethanol + Zn (12%) groups. The incidence of abnormalities in ethanol + Zn-supplemented fetuses was not different from saline-treated fetuses. While ethanol exposure did not affect the number of fetal resorptions or pre- or postnatal weight, there were more stillbirths with ethanol alone, and cumulative postnatal mortality was significantly higher in offspring exposed to ethanol alone (35% deaths) compared to all other treatment groups (13.5 to 20.5% deaths). Mice supplemented with Zn throughout pregnancy had higher plasma Zn concentrations than those in un-supplemented groups. These findings demonstrate that dietary Zn supplementation throughout pregnancy ameliorates dysmorphology and postnatal mortality caused by ethanol exposure in early pregnancy.

  13. Ultratrace Determination of Cr(VI) and Pb(II) by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    PubMed Central

    Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad

    2013-01-01

    Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779

  14. Effects of percutaneous ethanol injection therapy on subsequent surgical parathyroidectomy

    PubMed Central

    Nakamura, Michio; Marui, Yuji; Ubara, Yoshifumi; Nakanishi, Shohei; Takemoto, Fumi; Takaichi, Kenmei; Tomikawa, Shinji

    2008-01-01

    Background. Renal hyperparathyroidism (RHPT) is a serious complication of long-term dialysis treatment. Two intervention methods can be administered to treat RHPT, namely percutaneous ethanol injection therapy (PEIT) and a parathyroidectomy (PTx). PEIT is associated with a significant adverse event, adhesion formation. This study was performed to investigate the effect of PEIT on subsequent PTx. Methods. A total of 80 subjects were included in the study. The patients had a diagnosis of RHPT for which surgery was indicated. They were divided according to whether they underwent PEIT (PEIT group) or not (non-PEIT group). The outcomes of PTx following PEIT were evaluated. Results. There were 19 patients in the PEIT group and 61 in the non-PEIT group. The operation time was significantly longer in the PEIT group but no significant differences in the amount of bleeding or frequency of recurrent nerve paralysis were observed. The intact PTH levels immediately following surgery were slightly higher in the PEIT group. The postoperative intact PTH levels were found to be significantly higher in those who received two or more courses of PEIT. The number of patients with an intact PTH level >60 pg/ml on postoperative Day 1 was significantly higher in the PEIT group. Conclusions. These findings suggested that PEIT prior to PTx can affect the subsequent surgical outcome due to associated adhesions and dissemination. For patients with a possibility of either a decreased efficacy or a lack of efficacy for PEIT, it is therefore important to consider PTx from the very beginning of the treatment. PMID:25983972

  15. Preparation, characterization, and application of an enzyme-immobilized magnetic microreactor for flow injection analysis.

    PubMed

    Nomura, Akira; Shin, Shigemitsu; Mehdi, Othman Oulad; Kauffmann, Jean-Michel

    2004-09-15

    Enzyme-immobilized magnetic microparticles (EMMP) have been prepared for use as a microreactor in flow injection analysis (FI). The microparticles were directly injected into the FI system. Their retention occurred within the flow line by small permanent magnets located near the detector. The analytical utility of this concept was illustrated by the assay of glucose using glucose oxidase (GOx), immobilized microparticles, and amperometric detection of liberated hydrogen peroxide. The microparticles were derived from silica gel (nominal pore diameter, 15-80 nm) by impregnation with a citric acid/ethanol solution and a ferric nitrate/ethanol solution and then by calcination in a nitrogen atmosphere to produce ferrimagnetic fine particles of spinel-type iron oxide (gamma-Fe(2)O(3)) inside the pore. They were characterized by X-ray diffraction. The calibration curve of the glucose sample (2 microL injected) was linear between 2.5 x 10(-6) and 5 x 10(-4) mol/L (R = 0.9995), and the detection limit was 1.0 x 10(-6) mol/L or 0.36 ng of injected glucose (S/N = 3). The repeatability for a 5 x 10(-4) mol/L glucose solution was RSD = 1.5% (n = 6). Application to the assay of glucose in a fermentation broth is illustrated. The GOx MMP were stable and active for more than eight months when kept at 10 degrees C.

  16. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  17. Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-response Behaviors in Model Organisms

    PubMed Central

    Adkins, Amy E.; Hack, Laura M.; Bigdeli, Tim B.; Williamson, Vernell S.; McMichael, G. Omari; Mamdani, Mohammed; Edwards, Alexis; Aliev, Fazil; Chan, Robin F.; Bhandari, Poonam; Raabe, Richard C.; Alaimo, Joseph T.; Blackwell, GinaMari G.; Moscati, Arden A.; Poland, Ryan S.; Rood, Benjamin; Patterson, Diana G.; Walsh, Dermot; Whitfield, John B.; Zhu, Gu; Montgomery, Grant W.; Henders, Anjali K.; Martin, Nicholas G.; Heath, Andrew C.; Madden, Pamela A.F.; Frank, Josef; Ridinger, Monika; Wodarz, Norbert; Soyka, Michael; Zill, Peter; Ising, Marcus; Nöthen, Markus M; Kiefer, Falk; Rietschel, Marcella; Gelernter, Joel; Sherva, Richard; Koesterer, Ryan; Almasy, Laura; Zhao, Hongyu; Kranzler, Henry R.; Farrer, Lindsay A.; Maher, Brion S.; Prescott, Carol A.; Dick, Danielle M.; Bacanu, Silviu A.; Mathies, Laura D.; Davies, Andrew G.; Vladimirov, Vladimir I.; Grotewiel, Mike; Bowers, M. Scott; Bettinger, Jill C.; Webb, Bradley T.; Miles, Michael F.; Kendler, Kenneth S.; Riley, Brien P.

    2017-01-01

    Background Alcohol Dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified. Methods We conducted a genomewide association study in 706 related AD cases and 1748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms to assess the role of orthologous genes in ethanol response behaviors. We tested one primate-specific gene for expression differences in case/control post-mortem brain tissue. Results We detected significant association in COL6A3 and suggestive association in two previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in C. elegans reduced ethanol sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance. Klf12 expression correlated with locomotor activation following ethanol injection in mice. Loss of function of the RYR3 ortholog reduced ethanol sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer ethanol in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens. Conclusions We detect association between AD and COL6A3, KLF12, RYR3 and LOC339975. Despite non-replication of COL6A3, KLF12 and RYR3 signals, orthologs of these genes influence behavioral response to ethanol in model organisms, suggesting potential involvement in human ethanol response and AD liability. The associated LOC339975 allele may influence gene expression in human nucleus accumbens. Although the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in multiple brain functions and disorders. PMID:28226201

  18. Sex differences in the effects of ethanol pre-exposure during adolescence on ethanol-induced conditioned taste aversion in adult rats.

    PubMed

    Sherrill, Luke K; Berthold, Claire; Koss, Wendy A; Juraska, Janice M; Gulley, Joshua M

    2011-11-20

    Alcohol use, which typically begins during adolescence and differs between males and females, is influenced by both the rewarding and aversive properties of the drug. One way adolescent alcohol use may modulate later consumption is by reducing alcohol's aversive properties. Here, we used a conditioned taste aversion (CTA) paradigm to determine if pre-exposure to alcohol (ethanol) during adolescence would attenuate ethanol-induced CTA assessed in adulthood in a sex-dependent manner. Male and female Long-Evans rats were given intraperitoneal (i.p.) injections of saline or 3.0g/kg ethanol in a binge-like pattern during postnatal days (PD) 35-45. In adulthood (>PD 100), rats were given access to 0.1% saccharin, followed by saline or ethanol (1.0 or 1.5g/kg, i.p.), over four conditioning sessions. We found sex differences in ethanol-induced CTA, with males developing a more robust aversion earlier in conditioning. Sex differences in the effects of pre-exposure were also evident: males, but not females, showed an attenuated CTA in adulthood following ethanol pre-exposure, which occurred approximately nine weeks earlier. Taken together, these findings indicate that males are more sensitive to the aversive properties of ethanol than females. In addition, the ability of pre-exposure to the ethanol US to attenuate CTA is enhanced in males compared to females. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    NASA Astrophysics Data System (ADS)

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-08-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  20. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: simulation of field observations

    USGS Publications Warehouse

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-01-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  1. Ethanolic extract of Moringa oleifera Lam. leaves protect the pre-pubertal spermatogonial cells from cyclophosphamide-induced damage.

    PubMed

    Nayak, Guruprasad; Honguntikar, Sachin D; Kalthur, Sneha Guruprasad; D'Souza, Antony Sylvan; Mutalik, Srinivas; Setty, Manjunath M; Kalyankumar, Raksha; Krishnamurthy, Hanumanthappa; Kalthur, Guruprasad; Adiga, Satish Kumar

    2016-04-22

    Moringa oleifera Lam. is widely cultivated in Asian and African countries for its medicinal and dietary significance. The leaves are highly nutritious and are known to possess various biological activities. Pre-pubertal Swiss albino male mice were injected with single dose of cyclophosphamide (CP, 200mg/kg body weight) or ethanolic extract of Moringa oleifera leaves (MOE, 100mg/kg body weight) intraperitoneally. In combination group, MOE was administered 24h prior to CP injection. CP induced a significant decrease in testicular weight (p<0.01) and depletion of germ cells (p<0.001) and higher level of DNA damage (p<0.001) compared to control. The expression of P53, Bax, Cytochrome C (Cyt C) was increased while there was a decrease in the expression of Bcl2, c-Kit and Oct4. Administration of MOE 24h prior to CP treatment ameliorated the depletion (p<0.001), DNA damage (p<0.001) and apoptosis (p<0.01) of germ cells induced by CP. The mitigating effect of MOE appears to be mediated by up-regulating the expression of c-Kit and Oct4 transcripts in P53-independent manner. MOE protects the spermatogonial cells from CP-induced damage by modulating the apoptotic response elicited by CP and therefore can be considered as an efficient method of male fertility preservation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Removing tannins from medicinal plant extracts using an alkaline ethanol precipitation process: a case study of Danshen injection.

    PubMed

    Gong, Xingchu; Li, Yao; Qu, Haibin

    2014-11-14

    The alkaline ethanol precipitation process is investigated as an example of a technique for the removal of tannins extracted from Salviae miltiorrhizae Radix et Rhizoma for the manufacture of Danshen injection. More than 90% of the tannins can be removed. However, the recoveries of danshensu, rosmarinic acid, and salvianolic acid B were less than 60%. Total tannin removal increased as the refrigeration temperature decreased or the amount of NaOH solution added increased. Phenolic compound recoveries increased as refrigeration temperature increased or the amount of NaOH solution added decreased. When operated at a low refrigeration temperature, a relative high separation selectivity can be realized. Phenolic compound losses and tannin removal were mainly caused by precipitation. The formation of phenol salts, whose solubility is small in the mixture of ethanol and water used, is probably the reason for the precipitation. A model considering dissociation equilibrium and dissolution equilibrium was established. Satisfactory correlation results were obtained for phenolic compound recoveries and total tannin removal. Two important parameters in the model, which are the water content and pH value of alkaline supernatant, are suggested to be monitored and controlled to obtain high batch-to-batch consistency.

  3. Appearance of Graves' disease after percutaneous ethanol injection for the treatment of hyperfunctioning thyroid adenoma.

    PubMed

    Monzani, F; Del Guerra, P; Caraccio, N; Casolaro, A; Lippolis, P V; Goletti, O

    1997-05-01

    In this report we describe an unusual patient with hyperfunctioning thyroid adenoma in whom percutaneous ethanol injection (p.e.i.) therapy was followed by typical Graves' disease. His history revealed the presence of a sister with Hashimoto's thyroiditis. 99-mTc thyroid scintiscan showed focal uptake in the nodule, with suppression of extranodular parenchyma. P.e.i. therapy was followed by the development of severe hyperthyroidism. One month after a second p.e.i. cycle, recurrence of hyperthyroidism associated with diffuse 99-mTc uptake by the gland was observed. TSH-receptor and thyroglobulin autoantibodies were undetectable before p.e.i. therapy, appeared during the first cycle, and showed a further increase after the second p.e.i. therapy cycle. Though spontaneous switch to Graves' disease cannot be excluded in patients with toxic nodules, the massive release of thyroid materials from follicular cells, among these TSH-receptor antigenic components partially denatured by ethanol, may indeed trigger an autoimmune response to the TSH-receptor, thus accounting for this observation. Patients with possible autoimmune disposition, as selected by familiar history and/or laboratory markers should be carefully monitored during p.e.i. treatment.

  4. The effects of ethanol and strontium on growth and development of two-cell arrested mouse embryos.

    PubMed

    Darabi, Mohammad Reza; Shiravi, Abdolhossein; Hojati, Vida

    2012-01-01

    Arresting at a certain stage of development like the two-cell stage could be one of the causes of infertility. The aim of this study is to evaluate the effects of ethanol and strontium on growth and development of mice embryos arrested at the two-cell stage. In this experimental study, female mice were coupled with a male following superovulation. Positive vaginal plug mice were sacrificed 48 hours after human chorionic gonadotropin (hCG) injection. Two-cell embryos were transferred to M16 medium and divided to four groups. The first control group was incubated without any exposure to low temperatures. Groups 2, 3 and 4 were exposed to 4°C for 24 hours. The second control group was incubated immediately, while the third and fourth groups were exposed to 10 mM strontium for five minutes and 0.1% ethanol for a further five minutes. Growth rate and developmental parameters of embryos were analyzed by one- way ANOVA. The significant difference between the groups was determined by Post Hoc. The data shows that developmental rate is decreased significantly by 4°C exposure. The mean percentage of degenerated embryo was significantly different between groups but the mean cleavage rate was not significantly different. The mean percent of morula, blastocyst and hatched blastocyst formation were significantly different between groups during a 120 hours study post hCG injection. The effect of strontium and ethanol on arrested two-cell embryos had no significant effect on the mean percentage of morula, but ethanol treatment significantly increased the percentage of blastocyst and hatched blastocyst formation compared to strontium.

  5. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    PubMed

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.

  6. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Solvent extracts of the red seaweed Gracilaria fisheri prevent Vibrio harveyi infections in the black tiger shrimp Penaeus monodon.

    PubMed

    Kanjana, Kulwadee; Radtanatip, Tawut; Asuvapongpatana, Somluk; Withyachumnarnkul, Boonsirm; Wongprasert, Kanokpan

    2011-01-01

    Vibriosis is a common bacterial disease that can cause high mortality and morbidity in farmed shrimp. Since compounds from seaweed have been reported to have anti-bacterial and immunostimulant activity, this study was conducted to determine whether solvent extracts from the red seaweed Gracilaria fisheri might be a possible alternative for prevention and treatment of shrimp vibriosis caused by Vibrio harveyi. Seaweed extracts prepared using ethanol, methanol, chloroform and hexane were evaluated for anti-V. harveyi activity by the disc-diffusion method. The ethanol, methanol and chloroform extracts showed activity against a virulent strain of V. harveyi with potency (minimal inhibitory concentrations in the range of 90-190 μg ml(-1)) equivalent to the antibiotic norfloxacin. The ethanol extract was not toxic to the brine shrimp Artemia salina when it was fed to them for enrichment prior to their use, in turn, as feed for postlarvae of Penaeus monodon. Postlarvae fed with these enriched Artemia gave significantly lower mortality than control postlarvae after challenge with V. harveyi. In addition, P. monodon juveniles injected with the ethanol extract showed a significant increase in the total number of haemocytes and an increased proportion of semi-granulocytes and granulocytes when compared to control shrimp. The activities of phenoloxidase and superoxide dismutase were also increased, with an accompanying increase in superoxide anion production. When these juvenile shrimp were challenged with V. harveyi, mortality was markedly reduced compared to that of control shrimp. The results indicated that ethanol extracts of G. fisheri had immunostimulant and antimicrobial activity that could protect P. monodon against V. harveyi. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Acute Ethanol Withdrawal Impairs Contextual Learning and Enhances Cued Learning

    PubMed Central

    Tipps, Megan E.; Raybuck, Jonathan D.; Buck, Kari J.; Lattal, K. Matthew

    2014-01-01

    Background Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. Methods We assess the effects of acute ethanol withdrawal (6 h post-injection with 4 g/kg ethanol) on two forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post-training withdrawal exposure; foreground/background processing; training strength; non-associative effects) is also investigated. Results Acute ethanol withdrawal during training had a bidirectional effect on fear conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. Conclusions Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes. PMID:25684050

  9. Forskolin promotes the development of ethanol tolerance in 6-hydroxydopamine-treated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szabo, G.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    Partial depletion of brain norepinephrine by 6-hydroxydopamine prevents the development of functional tolerance to ethanol in mice. This blockade of tolerance development was overcome by daily intracerebroventricular injections of forskolin. These results suggest that interaction of norepinephrine with post-synaptic ..beta..-adrenergic receptors, and activation of adenylate cyclase, is important for the development of ethanol tolerance. Interaction of norepinephrine with ..cap alpha../sub 1/-adrenergic receptors may be less crucial, since treatment with a phorbol ester activator of protein kinase C did not restore the development of tolerance in mice treated with 6-hydroxydopamine. The importance of the ..beta..-adrenergic receptor-coupled adenylate cyclase system for developmentmore » of ethanol tolerance, in addition to its previously-reported role in long-term potentiation, suggests that this system may influence neuroadaptive processes in general. 26 references, 2 figures.« less

  10. In vivo wireless ethanol vapor detection in the Wistar rat

    PubMed Central

    Cheney, C. Parks; Srijanto, B.; Hedden, D. L.; Gehl, A.; Ferrell, T. L.; Schultz, J.; Engleman, E. A.; McBride, W. J.; O'Connor, S.

    2009-01-01

    Traditional alcohol studies measure blood alcohol concentration to elucidate the biomedical factors that contribute to alcohol abuse and alcoholism. These measurements require large and expensive equipment, are labor intensive, and are disruptive to the subject. To alleviate these problems, we have developed an implantable, wireless biosensor that is capable of measuring alcohol levels for up to six weeks. Ethanol levels were measured in vivo in the interstitial fluid of a Wistar rat after administering 1 g/kg and 2 g/kg ethanol by intraperitoneal (IP) injection. The data were transmitted wirelessly using a biosensor selective for alcohol detection. A low-power piezoresistive microcantilever sensor array was used with a polymer coating suitable for measuring ethanol concentrations at 100% humidity over several hours. A hydrophobic, vapor permeable nanopore membrane was used to screen liquid and ions while allowing vapor to pass to the sensor from the subcutaneous interstitial fluid. PMID:20161283

  11. Effects of naltrexone and LY255582 on ethanol maintenance, seeking, and relapse responding by alcohol-preferring (P) rats.

    PubMed

    Dhaher, Ronnie; Toalston, Jamie E; Hauser, Sheketha R; Bell, Richard L; McKinzie, David L; McBride, William J; Rodd, Zachary A

    2012-02-01

    Research indicates opioid antagonists can reduce alcohol drinking in rodents. However, tests examining the effects of opioid antagonists on ethanol seeking and relapse behavior have been limited. The present study examined the effects of two opioid antagonists on ethanol maintenance, seeking, and relapse responding by alcohol-preferring (P) rats. Adult P rats were self-trained in two-lever operant chambers to self-administer 15% (vol/vol) ethanol on a fixed-ratio 5 (FR5) versus water on a FR1 concurrent schedule of reinforcement in daily 1-h sessions. After 10 weeks, rats underwent extinction training, followed by 2 weeks in their home cages. Rats were then returned to the operant chambers without ethanol or water to measure responses on the ethanol and water levers for four sessions. After a subsequent 2 weeks in the home cage, without access to ethanol, rats were returned to the operant chambers with ethanol and water available. Effects of antagonists on maintenance responding were tested after several weeks of daily 1-h sessions. Naltrexone (NAL; 1-10mg/kg, subcutaneously [s.c.]; n=8/dose), LY255582 (LY; 0.03-1mg/kg, s.c.; n=8/dose), or vehicle were injected 30min before the first session (in the absence of ethanol), following 2 weeks in their home cages, and for four consecutive sessions of ethanol self-administration under maintenance and relapse conditions. Both NAL and LY reduced responses on the ethanol lever without any fluids present, and ethanol self-administration under relapse and on-going drinking conditions, with LY being more potent than NAL. Both NAL and LY were less effective in reducing responding in the absence of ethanol than in reducing ethanol self-administration. Overall, the results indicate that the opioid system is involved in mediating ethanol seeking, and ethanol self-administration under relapse and on-going alcohol drinking, but that different neurocircuits may underlie these behaviors. Published by Elsevier Inc.

  12. Nucleus accumbens lentiviral-mediated gain of function of the oxytocin receptor regulates anxiety- and ethanol-related behaviors in adult mice.

    PubMed

    Bahi, Amine; Al Mansouri, Shamma; Al Maamari, Elyazia

    2016-10-01

    Anxiety is believed to influence ethanol use human in alcoholics. Studies using laboratory animals suggested an interaction between oxytocin and the behavioral effects of ethanol. Our previous study implicated a potential role for the oxytocin receptor (OxtR) in regulating ethanol-conditioned place preference. Here, we examined anxiety and the behavioral responses to ethanol in C57BL/6 mice stereotaxically injected in the nucleus accumbens (NAcc) with lentiviral vectors expressing an empty vector (Mock) or the OxtR cDNA. For anxiety we used the elevated-plus maze, the open-field and the marble-burying tests and for ethanol we used the two-bottle choice paradigm, the wire-hanging and ethanol-induced loss-of-righting-reflex tests. We found that, compared to Mock, OxtR overexpression led to anxiolytic-like behavior without altering spontaneous locomotor activity. Most importantly, we found that, relative to Mock controls, increased expression of the OxtR in the NAcc led to decreased ethanol consumption and preference in the two-bottle choice protocol and increased resistance to ethanol-induced sedation. We also compared the consequence of OxtR modulation on the consumption and preference of saccharin and quinine and found that the two experimental groups did not differ for any tastant. These results provide further evidence that the oxytocin system contributes to the regulation of ethanol drinking and sensitivity and position OxtR as a central molecular mediator of ethanol's effects within the mesolimbic system. Taken together, the current findings suggest that OxtR manipulation may be a relevant strategy to address ethanol use disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less

  14. Agmatine attenuates acquisition but not the expression of ethanol conditioned place preference in mice: a role for imidazoline receptors.

    PubMed

    Sameer, Shaikh M; Chakraborty, Suwarna S; Ugale, Rajesh R

    2013-04-01

    The present study investigated the effect of agmatine on acquisition and expression of ethanol conditioned place preference (CPP) and its modulation by imidazoline agents. Swiss albino mice were treated intraperitoneally with saline or agmatine (20-40 mg/kg) before injection of ethanol (1.25 mg/kg) during conditioning days or on a test day (20-120 mg/kg), to observe the effect on acquisition or expression of CPP, respectively. Agmatine inhibited the acquisition but not the expression of ethanol CPP. Furthermore, both the I₁ receptor antagonist, efaroxan (9 mg/kg) and the I₂ receptor antagonist, BU224 (5 mg/kg) attenuated the agmatine-induced inhibition of the ethanol CPP acquisition. In contrast, the I₂ receptor agonist, 2-BFI (5 mg/kg) and I₁ receptor agonist, moxonidine (0.4 mg/kg) alone, or a combination of their subeffective doses, significantly attenuated the effect of agmatine (20 mg/kg) on acquisition of ethanol CPP. Agmatine or imidazoline agents alone produced neither place preference nor aversion, and at the doses used in the present study did not affect locomotor activity. Thus, agmatine attenuates the acquisition of ethanol CPP at least in part by imidazoline (I₁ or I₂) receptors. In future studies, agmatine or agents acting at the imidazoline receptors could be explored for their therapeutic potential in ethanol dependence.

  15. Comparison of acetic acid and ethanol sclerotherapy for simple renal cysts: clinical experience with 86 patients.

    PubMed

    Cho, Young Jun; Shin, Ji Hoon

    2016-01-01

    To compare the efficacy and treatment session numbers of acetic acid to that of ethanol sclerotherapy for the treatment of simple renal cysts. Between February 2004 and June 2013, 86 patients with simple renal cysts underwent percutaneous aspiration and injection of 50 %-acetic-acid (42 cysts) and 95 %-ethanol (44 cysts). The patient demographics, volume reduction rate, number of treatment sessions, and complications were then analyzed. The volume reduction rate was 94.1 ± 7.6 % in the 50 %-acetic acid group and 94.7 ± 11.7 % in the 95 %-ethanol group, and without a statistical difference. The rates of complete remission, partial remission, and no response were 57.1, 42.9 and 0 %, respectively, for the acetic acid group, and 70.5, 25.0, and 4.5 %, respectively, for the ethanol group. No statistical difference was observed between the two groups. Compared to the acetic acid group, the ethanol group had a higher number of treatment sessions, i.e. 1.10 ± 0.30 in the acetic acid group and 1.80 ± 0.79 in the ethanol group. Mild flank pain was a minor complication that occurred in both groups. Acetic acid seems to have equivalent sclerosing effects on simple renal cysts compared with those of ethanol despites of fewer treatment sessions.

  16. Effect of ethanol on the visual-evoked potential in rat: dynamics of ON and OFF responses.

    PubMed

    Dulinskas, Redas; Buisas, Rokas; Vengeliene, Valentina; Ruksenas, Osvaldas

    2017-01-01

    The effect of acute ethanol administration on the flash visual-evoked potential (VEP) was investigated in numerous studies. However, it is still unclear which brain structures are responsible for the differences observed in stimulus onset (ON) and offset (OFF) responses and how these responses are modulated by ethanol. The aim of our study was to investigate the pattern of ON and OFF responses in the visual system, measured as amplitude and latency of each VEP component following acute administration of ethanol. VEPs were recorded at the onset and offset of a 500 ms visual stimulus in anesthetized male Wistar rats. The effect of alcohol on VEP latency and amplitude was measured for one hour after injection of 2 g/kg ethanol dose. Three VEP components - N63, P89 and N143 - were analyzed. Our results showed that, except for component N143, ethanol increased the latency of both ON and OFF responses in a similar manner. The latency of N143 during OFF response was not affected by ethanol but its amplitude was reduced. Our study demonstrated that the activation of the visual system during the ON response to a 500 ms visual stimulus is qualitatively different from that during the OFF response. Ethanol interfered with processing of the stimulus duration at the level of the visual cortex and reduced the activation of cortical regions.

  17. Alcohol Alters the Activation of ERK1/2, a Functional Regulator of Binge Alcohol Drinking in Adult C57BL/6J Mice

    PubMed Central

    Agoglia, Abigail E.; Sharko, Amanda C.; Psilos, Kelly E.; Holstein, Sarah E.; Reid, Grant T.; Hodge, Clyde W.

    2014-01-01

    Background Binge alcohol drinking is a particularly risky pattern of alcohol consumption that often precedes alcohol dependence and addiction. The transition from binge alcohol drinking to alcohol addiction likely involves mechanisms of synaptic plasticity and learning in the brain. The mitogen-activated protein kinase (MAPK) signaling cascades have been shown to be involved in learning and memory, as well as the response to drugs of abuse, but their role in binge alcohol drinking remains unclear. The present experiments were designed to determine the effects of acute alcohol on extracellular signaling related kinases (ERK1/2) expression and activity, and to determine whether ERK1/2 activity functionally regulates binge-like alcohol drinking. Methods Adult male C57BL/6J mice were injected with ethanol (3.0 mg/kg, IP) 10, 30 or 90 minutes prior to brain tissue collection. Next, mice that were brought to freely consume unsweetened ethanol in a binge-like access procedure were pretreated with the MEK1/2 inhibitor SL327 or the p38 MAP kinase inhibitor SB239063. Results Acute ethanol increased pERK1/2 immunoreactivity relative to vehicle in brain regions known to be involved in drug reward and addiction, including the central amygdala and prefrontal cortex. However, ethanol decreased pERK1/2 immunoreactivity relative to vehicle in the nucleus accumbens core. SB239063 pretreatment significantly decreased ethanol consumption only at doses that also produced nonspecific locomotor effects. SL327 pretreatment significantly increased ethanol, but not sucrose, consumption without inducing generalized locomotor effects. Conclusions These findings indicate that ERK1/2MAPK signaling regulates binge-like alcohol drinking. Since alcohol increased pERK1/2 immunoreactivity relative to vehicle in brain regions known to regulate drug self-administration, SL327 may have blocked this direct pharmacological effect of alcohol and thereby inhibited the termination of binge-like drinking. PMID:25703719

  18. Taste-aversion-prone (TAP) rats and taste-aversion-resistant (TAR) rats differ in ethanol self-administration, but not in ethanol clearance or general consumption.

    PubMed

    Orr, T Edward; Whitford-Stoddard, Jennifer L; Elkins, Ralph L

    2004-05-01

    Taste-aversion (TA)-prone (TAP) rats and TA-resistant (TAR) rats have been developed by means of bidirectional selective breeding on the basis of their behavioral responses to a TA conditioning paradigm. The TA conditioning involved the pairing of an emetic-class agent (cyclophosphamide) with a novel saccharin solution as the conditioned stimulus. Despite the absence of ethanol in the selective breeding process, these rat lines differ widely in ethanol self-administration. In the current study, blood alcohol concentrations (BACs) were determined after 9 days of limited (2 h per day) access to a simultaneous, two-bottle choice of a 10% ethanol in water solution [volume/volume (vol./vol.)] or plain water. The BACs correlated highly with ethanol intake among TAR rats, but an insufficient number of TAP rats yielded measurable BACs to make the same comparison within this rat line. The same rats were subsequently exposed to 24-h access of a two-bottle choice (10% ethanol or plain water) for 8 days. Ethanol consumption during the 24-h access period correlated highly with that seen during limited access. Subsequent TA conditioning with these rats yielded line-typical differences in saccharin preferences. In a separate group of rats, ethanol clearance was determined by measuring BACs at 1, 4, and 7 h after injection of a 2.5-g/kg dose of ethanol. Ethanol clearance was not different between the two lines. Furthermore, the lines did not differ with respect to food and water consumption. Therefore, the TAP rat-TAR rat differences in ethanol consumption cannot be attributed to line differences in ethanol metabolism or in general consummatory behavior. The findings support our contention that the line differences in ethanol consumption are mediated by differences in TA-related mechanisms. The findings are discussed with respect to genetically based differences in the subjective experience of ethanol.

  19. Determination of highly protein bound drugs in plasma using high-performance liquid chromatography and column switching, exemplified by the retinoids.

    PubMed

    Wyss, R; Bucheli, F

    1988-12-02

    During method development for the determination of either isotretinoin, tretinoin and their 4-oxo-metabolites, or etretinate, acitretin and 13-cis-acitretin in plasma using high-performance liquid chromatography and column switching, recovery problems arose, when undiluted plasma samples were injected directly onto the precolumn. These recovery problems may be due to the strong binding of the retinoids to different plasma proteins. Measures to overcome this strong protein binding, such as variation of the injection solution composition and the purge mobile phase, were systematically investigated. Best recoveries were obtained by diluting of plasma with 9 mM sodium hydroxide-acetonitrile (8:2, v/v) and protein precipitation with ethanol for the isotretinoin and etretinate series, respectively, in combination with the use of a purge mobile phase containing ammonium acetate and 10-20% acetonitrile. Less effective was the use of a longer precolumn or heating of the precolumn.

  20. Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode

    NASA Astrophysics Data System (ADS)

    Tian, Gang; Zhang, Xiao-Qing; Zhu, Ming-Song; Zhang, Zhong; Shi, Zheng-Hu; Ding, Min

    2016-03-01

    Simple, rapid and accurate detection of ethanol concentration in blood is very crucial in the diagnosis and management of potential acute ethanol intoxication patients. A novel electrochemical detection method was developed for the quantification of ethanol in human plasma with disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation procedure. Ethanol was detected indirectly by the reaction product of ethanol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD+). Method validation indicated good quantitation precisions with intra-day and inter-day relative standard deviations of ≤9.4% and 8.0%, respectively. Ethanol concentration in plasma is linear ranging from 0.10 to 3.20 mg/mL, and the detection limit is 40.0 μg/mL (S/N > 3). The method shows satisfactory correlation with the reference method of headspace gas chromatography in twenty human plasma samples (correlation coefficient 0.9311). The proposed method could be applied to diagnose acute ethanol toxicity or ethanol-related death.

  1. Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode

    PubMed Central

    Tian, Gang; Zhang, Xiao-Qing; Zhu, Ming-Song; Zhang, Zhong; Shi, Zheng-Hu; Ding, Min

    2016-01-01

    Simple, rapid and accurate detection of ethanol concentration in blood is very crucial in the diagnosis and management of potential acute ethanol intoxication patients. A novel electrochemical detection method was developed for the quantification of ethanol in human plasma with disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation procedure. Ethanol was detected indirectly by the reaction product of ethanol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD+). Method validation indicated good quantitation precisions with intra-day and inter-day relative standard deviations of ≤9.4% and 8.0%, respectively. Ethanol concentration in plasma is linear ranging from 0.10 to 3.20 mg/mL, and the detection limit is 40.0 μg/mL (S/N > 3). The method shows satisfactory correlation with the reference method of headspace gas chromatography in twenty human plasma samples (correlation coefficient 0.9311). The proposed method could be applied to diagnose acute ethanol toxicity or ethanol-related death. PMID:27006081

  2. [Involvement of distal fragment of chromosome 13 in the regulation of sensitivity to ethanol in mice].

    PubMed

    Bazovkina, D V; Kulikov, A V

    2015-01-01

    The role of the fragment 57-65 cM of mouse chromosome 13 was studied in the regulation of ethanol action on locomotor activity, anxiety and sensitivity to hypnotic and hypothermic effects of ethanol. We used male mice of recombinant lines AKR/J and AKR.CBA-D13Mit76C, differing only in this fragment. After acute administration of ethanol only AKR mice showed the increase in the length of traveled distance in the open-field test (p < 0.05), only the AKR.CBA-D13Mit76C mice demonstrated the increase the time spent in the center of open-field arena (p < 0.05). Intact animals of both lines did not differ in sleep duration and intensity of hypothermia induced by injections of high doses of ethanol. At the same time, long-term alcohol treatment led to the weakening of the hypnotic effect of ethanol in the males of both lines compared to intact animals (p < 0.01 for the AKR, p < 0.001 for AKR.CBA-D13Mit76C). Chronic alcoholization led to increased ethanol-induced hypothermia in AKR males compared to intact animals (p < 0.01) and did not affect the intensity of ethanol hypothermic effect in AKR.CBA-D13Mit76C mice. The results suggest the involvement of the distal fragment 57-65 cM of chromosome 13 in the mechanisms of ethanol action in mice.

  3. Effects of acute administration of ethanol on the rat adrenal cortex.

    PubMed

    Milovanović, Tatjana; Budec, Mirela; Balint-Perić, Ljiljana; Koko, Vesna; Todorović, Vera

    2003-09-01

    The purpose of this study was to investigate the effect of a single dose of ethanol on rat adrenal cortex and to determine whether the estrous cycle can influence this effect of ethanol. Adult female Wistar rats showing proestrus or diestrus Day 1 (n = 12) were treated intraperitoneally with ethanol (4 g/kg body weight). Untreated (n = 15) and saline-injected (n = 14) rats were used as controls. The animals were sacrificed by decapitation 0.5 hour after ethanol administration. Stereological analysis was performed on paraffin sections of adrenal glands stained with AZAN, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata and the zona reticularis, numerical density, volume and the mean diameter of adrenocortical cells and of their nuclei, and diameter and length of capillaries. The diameter and volume of adrenocortical cells in the zona fasciculata and the zona reticularis were significantly increased by acute ethanol treatment at proestrus. In the same group of animals, a single dose of ethanol induced significant decrease in numerical density of adrenocortical cells and of their nuclei in all three zones. Increased length of capillaries of the zona fasciculata as well as enhanced level of serum corticosterone was found in ethanol-treated rats at both phases of the estrous cycle, proestrus and diestrus Day 1. The obtained results indicate that a single dose of ethanol activates adrenal cortex in female rats and that the effect is more pronounced on morphometric parameters at proestrus.

  4. Behavioral Characterization of Knockin Mice with Mutations M287L and Q266I in the Glycine Receptor α1 Subunit

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jill M.; Homanics, Gregg E.

    2012-01-01

    We used behavioral pharmacology to characterize heterozygous knockin mice with mutations (Q266I or M287L) in the α1 subunit of the glycine receptor (GlyR) (J Pharmacol Exp Ther 340:304–316, 2012). These mutations were designed to reduce (M287L) or eliminate (Q266I) ethanol potentiation of GlyR function. We asked which behavioral effects of ethanol would be reduced more in the Q266I mutant than the M287L and found rotarod ataxia to be the behavior that fulfilled this criterion. Compared with controls, the mutant mice also differed in ethanol consumption, ethanol-stimulated startle response, signs of acute physical dependence, and duration of loss of righting response produced by ethanol, butanol, ketamine, pentobarbital, and flurazepam. Some of these behavioral changes were mimicked in wild-type mice by acute injections of low, subconvulsive doses of strychnine. Both mutants showed increased acoustic startle response and increased sensitivity to strychnine seizures. Thus, in addition to reducing ethanol action on the GlyRs, these mutations reduced glycinergic inhibition, which may also alter sensitivity to GABAergic drugs. PMID:22037202

  5. Possible cytoprotective mechanism in rats of D-002, an anti-ulcerogenic product isolated from beeswax.

    PubMed

    Carbajal, D; Molina, V; Valdés, S; Arruzazabala, L; Rodeiro, I; Más, R; Magraner, J

    1996-08-01

    D-002 is an anti-ulcerogenic product, isolated from beeswax, which consists of a well-defined mixture of higher primary aliphatic alcohols. It is highly effective against ethanol-induced ulcers. This study was designed to determine if D-002 shows cytoprotective properties on gastric mucosa in ethanol-induced ulcers. The involvement of endogenous prostaglandins in the protective effect of D-002 was also investigated. When a subulcerogenic dose of indomethacin (10 mg kg-1) was injected simultaneously with oral administration of ethanol, oral pre-treatment with D-002 (5-100 mg kg-1) partially inhibited the gastric protection. D-002 (5 and 25 mg kg-1) administered to normal rats significantly increased the soluble mucus content and also prevented its reduction in rats with ethanol-induced ulcers. In addition, D-002 administered at 5 and 25 mg kg-1 prevented the increase of vascular permeability induced by ethanol (60%) and reduced the concentration of thromboxane B2 (TXB2) in gastric mucosa of rats with ethanol-induced ulcers. These results support the hypothesis that the anti-ulcerogenic properties of D-002 could be related to a cytoprotective mechanism.

  6. Matching refractive indices of two fluids and finding interfacial tension for the purpose of fuel spray imaging

    NASA Astrophysics Data System (ADS)

    Liang, Y. H.

    2017-06-01

    This study attempts to prepare a fluid pair for use in spray dynamics investigations. Better understanding the behavior of fuel sprays is one of the things that can help improve the efficiency of internal combustion engines. To address the scattering issue in current imaging methods, the refractive index difference between the injected fluid and the medium that it is injected into is eliminated. Two immiscible fluids (sucrose solution and silicone oil) with the same refractive index was identified, their surface tension to build a model fluid engine system injection was also studied. At the same time, Weber number is found to help correct the difference. Results show that 63.7% mass sucrose solution has the same refractive index as silicone oil, and the sucrose solution/silicone oil interface has a surface tension of 0.08941 N/m, which is roughly four times larger than that of ethanol/air. This means using the sucrose/silicone oil fluid pair to model fuel spray will involve some adjustments to be accurate.

  7. Ceftriaxone, a beta-lactam antibiotic, reduces ethanol consumption in alcohol-preferring rats.

    PubMed

    Sari, Youssef; Sakai, Makiko; Weedman, Jason M; Rebec, George V; Bell, Richard L

    2011-01-01

    Changes in glutamatergic transmission affect many aspects of neuroplasticity associated with ethanol and drug addiction. For instance, ethanol- and drug-seeking behavior is promoted by increased glutamate transmission in key regions of the motive circuit. We hypothesized that because glutamate transporter 1 (GLT1) is responsible for the removal of most extracellular glutamate, up-regulation or activation of GLT1 would attenuate ethanol consumption. Alcohol-preferring (P) rats were given 24 h/day concurrent access to 15 and 30% ethanol, water and food for 7 weeks. During Week 6, P rats received either 25, 50, 100 or 200 mg/kg ceftriaxone (CEF, i.p.), a β-lactam antibiotic known to elevate GLT1 expression, or a saline vehicle for five consecutive days. Water intake, ethanol consumption and body weight were measured daily for 15 days starting on Day 1 of injections. We also tested the effects of CEF (100 and 200 mg/kg, i.p.) on daily sucrose (10%) consumption as a control for motivated behavioral drinking. Statistical analyses revealed a significant reduction in daily ethanol, but not sucrose, consumption following CEF treatment. During the post treatment period, there was a recovery of ethanol intake across days. Dose-dependent increases in water intake were manifest concurrent with the CEF-induced decreases in ethanol intake. Nevertheless, CEF did not affect body weight. An examination of a subset of the CEF-treated ethanol-drinking rats, on the third day post CEF treatment, revealed increases in GTL1 expression levels within the prefrontal cortex and nucleus accumbens. These results indicate that CEF effectively reduces ethanol intake, possibly through activation of GLT1, and may be a potential therapeutic drug for alcohol addiction treatment.

  8. Early ethanol exposure and vinpocetine treatment alter learning- and memory-related proteins in the rat hippocampus and prefrontal cortex.

    PubMed

    Swart, Patricia C; Currin, Christopher B; Russell, Vivienne A; Dimatelis, Jacqueline J

    2017-05-01

    This study investigates the effects of early exposure to ethanol on cognitive function and neural plasticity-related proteins in the rat brain. Sprague-Dawley rats were administered 12% ethanol solution (4 g/kg/day i.p.) or saline from P4 to P9. Vinpocetine, a phosphodiesterase type 1 inhibitor, was tested to determine whether it could reverse any changes induced by early ethanol exposure. Hence, from P25 to P31, ethanol-exposed male rats were injected with vinpocetine (20 mg/kg/day i.p.) or vehicle (DMSO) prior to undergoing behavioral testing in the open field and Morris water maze (MWM) tests. Ethanol exposure did not adversely affect spatial memory in the MWM. A key finding in this study was a significant ethanol-induced change in the function of the phosphorylated extracellular signal-related kinase (P-ERK) signaling pathway in the prefrontal cortex (PFC) and dorsal hippocampus (DH) of rats that did not display overt behavioral deficits. The P-ERK/ERK ratio was decreased in the PFC and increased in the DH of ethanol-exposed rats compared with controls. Rats that received vinpocetine in addition to ethanol did not display any behavioral changes but did show alterations in neural plasticity-related proteins. Mitogen-activated protein kinase phosphatase was increased, whereas brain-derived neurotrophic factor was decreased, in the PFC of vinpocetine-treated ethanol-exposed rats, and phosphorylated-glycogen synthase kinase β and synaptophysin were increased in the DH of these rats. This study provides insight into the long-term effects of early ethanol exposure and its interaction with vinpocetine in the rat brain. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Total body water and lean body mass estimated by ethanol dilution

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Myhre, L. G.; Venters, M. D.; Luft, U. C.

    1977-01-01

    A method for estimating total body water (TBW) using breath analyses of blood ethanol content is described. Regression analysis of ethanol concentration curves permits determination of a theoretical concentration that would have existed if complete equilibration had taken place immediately upon ingestion of the ethanol; the water fraction of normal blood may then be used to calculate TBW. The ethanol dilution method is applied to 35 subjects, and comparison with a tritium dilution method of determining TBW indicates that the correlation between the two procedures is highly significant. Lean body mass and fat fraction were determined by hydrostatic weighing, and these data also prove compatible with results obtained from the ethanol dilution method. In contrast to the radioactive tritium dilution method, the ethanol dilution method can be repeated daily with its applicability ranging from diseased individuals to individuals subjected to thermal stress, strenuous exercise, water immersion, or the weightless conditions of space flights.

  10. MK-801-induced locomotor activity in long-sleep x short-sleep recombinant inbred mouse strains: correlational analysis with low-dose ethanol and provisional quantitative trait loci.

    PubMed

    Zahniser, N R; Negri, C A; Hanania, T; Gehle, V M

    1999-11-01

    Low doses of the N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 (dizocilpine) or ethanol increase locomotor activity to a lesser extent in long-sleep (LS), than in short-sleep (SS), mice. LS mice also have fewer brain [3H]MK-801 binding sites than SS mice. In this study, LSXSS recombinant inbred (RI) mice were used to investigate whether different NMDAR densities contribute to differential MK-801 activation and whether common genes are involved in initial sensitivity to MK-801-and ethanol-induced activation. Locomotor activity was measured for 90 min after saline or MK-801 injection. Quantitative autoradiographic analysis of [3H]MK-801 binding was used to measure densities of NMDARs in seven brain regions. The ethanol (1-2 g/kg) activation scores from Erwin and colleagues (1997) were used for correlational analysis, as was their method for quantitative trait loci (QTL) analysis. Both saline and MK-801 (0.3 mg/kg, given intraperitoneally) induced a continuum of locomotor responses across the LSXSS RI strains. There was a 4-fold range of MK-801 difference scores (MK-801 score-saline baseline), with the RI 9 and RI 4 strains representing low and high responders, respectively. Dose-response experiments with these two strains confirmed that 0.3 mg/kg MK-801 produced significant activation, similar to previous results with LS and SS mice. However, unlike previous LS/SS results, lower densities of NMDARs were not observed in the RI 9 than in the RI 4 mouse brains. No significant genetic correlations were observed between MK-801-induced and ethanol-induced responses in the LSXSS RI mice. Two provisional MK-801 activation QTLs were identified (p < 0.01) on chromosomes 11 and 19, neither in common with those mapped for ethanol activation. Different densities of brain NMDARs are unlikely to account for the differential activation of LSXSS RI mice by MK-801. Additionally, in the RI mice either separate sets of genes regulate low dose MK-801- and ethanol-induced locomotor responses or the overlapping subset of genes controlling these two behaviors is small (< or =10%).

  11. Homogeneous charge combustion of aqueous ethanol

    DOT National Transportation Integrated Search

    2001-02-01

    The goal of this research is to reduce nitrous oxide (NOx) and carbon monoxide (CO) emissions and to retain the performance characteristics of a diesel engine by modifying the in-cylinder combustion process. To accomplish this goal, a direct-injected...

  12. Hydrogen production by conversion of ethanol injected into a microwave plasma

    NASA Astrophysics Data System (ADS)

    Czylkowski, Dariusz; Hrycak, Bartosz; Jasiński, Mariusz; Dors, Mirosław; Mizeraczyk, Jerzy

    2017-12-01

    Reforming of gaseous and liquid hydrocarbon compounds into hydrogen is of high interest. In this paper we present a microwave (2.45 GHz) plasma-based method for hydrogen production by conversion of ethanol (C2H5OH) in the thermal reforming process in nitrogen plasma. In contrast to our earlier investigations, in which C2H5OH vapour was supplied into the microwave plasma region either in the form of a swirl or axial flow, in this experiment we injected C2H5OH vapour directly into the nitrogen microwave plasma flame, behind the microwave plasma generation region. The experimental results were as follows. At an absorbed microwave power of 5 kW, N2 (plasma-generating gas) swirl flow rate of 2700 NL(N2)/h and C2H5OH mass flow rate of 2.7 kg(C2H5OH)/h the hydrogen production rate was 1016 NL(H2)/h, which corresponds to the energy yield of hydrogen production 203 NL(H2)/kWh. After the C2H5OH conversion the outlet gas contained 27.6% (vol.) H2, 10.2% CO, 0.2% CO2, 4.8% CH4, 4.3% C2H2, 3.7% C2H4 and 3.7% C2H6. These results are comparable to those obtained in our earlier investigations, in which different methods of C2H5OH vapour supply to the microwave plasma generation region were employed. Contribution to the Topical Issue: "Advances in Plasma Chemistry", edited by Slobodan Milošević, Nikša Krstulović, and Holger Kersten.

  13. Serum calcium, phosphorus and magnesium responses to massive dosing of cholecalciferol (CC) and 25-OH-CC in young and aged ewes.

    PubMed

    Thomas, B B; Boling, J A; Muir, W M

    1981-01-01

    Twenty-four ewes were divided into two age groups (one-year-old and nine-year-old) and used to determine the influence of cholecalciferol (CC) and 25-OH-CC on serum concentrations of Ca, P, and Mg with time post-injection. The ewes were maintained in slatted-floor pens and fed 800 g per head daily of a diet which analyzed 0.38% calcium, 0.31% phosphorus, and 0.14% magnesium. This diet was fed throughout the 21-day trial. The ewes were injected on days 0 and 7 as follows: (control) 5 ml ethanol; (CC) 50 mg CC in 5 ml ethanol; and (25-OH-CC) 25 mg 25-OH-CC in ethanol. Blood samples were pre-injection (day 0) and on days 1, 2, 3, 5, 7, 9, 12, 17 and 21 of the trial. Serum Ca averaged 10.81, 11.06 and 11.25 mg/100 ml for the one-year-old ewes and 10.51, 11.06 and 11.54 mg/100 ml for the nine-year-olds across sampling times in groups A to C, respectively. Serum P across sampling times averaged 6.58, 7.80 and 9.51 mg/100 ml in one-year-old ewes and were different (P less than .05) from each other. Serum P averaged 7.06, 8.56 and 8.59 mg/100 ml for the nine-year-old ewes. Serum Mg values were 2.51, 2.32 and 2.19 mg/100 ml for the one-year-old and 2.38, 2.14 and 2.00 mg/100 ml for the nine-year-old ewes across all sampling times for control, CC and 25-OH-CC groups, respectively. Serum Mg in one-year-old ewes was lower (P less than .05) in both CC and 25-OH-CC injected ewes than controls, and was lowest (P less than .05) for 25-OH-CC when compared with the control in nine-year-old ewes. External symptoms of hypervitaminosis (reduced feed intake and leg abnormalities) were apparent after the second injection with 25-OH-CC, and were most pronounced in the aged ewes.

  14. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Gano, Anny; Paniccia, Jacqueline E.; Deak, Terrence

    2015-01-01

    Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31–33 days of age) and adult (69–71 days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250 µg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3 hr later for measurement of blood EtOH concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. EtOH challenge, IL-6 and IκBα expression were significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 expression elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults injected with LPS, no corresponding elevations were seen in adolescents after LPS; and (ii) neither adolescents nor adults demonstrated increases in plasma endotoxin concentrations following i.p. or i.g. ethanol administration. Analysis of BECs indicated that, for both routes of exposure, adolescents exhibited lower BECs than adults. Taken together, these data suggest that categorically different mechanisms are involved in the central cytokine response to antigen exposure versus ethanol administration. Furthermore, these findings confirm once again that acute ethanol intoxication is a potent activator of brain cytokines, and calls for future studies to identify the mechanisms underlying age-related differences in the cytokine response observed during ethanol intoxication. PMID:25708278

  15. Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site

    NASA Astrophysics Data System (ADS)

    Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.

    2011-12-01

    There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.

  16. Effect of simvastatin injections on temporomandibular joint inflammation in growing rats.

    PubMed

    George, Mark D; Owen, Callista M; Reinhardt, Adam L; Giannini, Peter J; Marx, David B; Reinhardt, Richard A

    2013-05-01

    Juvenile idiopathic arthritis often affects the temporomandibular joint (TMJ), resulting in facial deformities, and intra-articular injections of anti-inflammatory steroids used in treatment may inhibit bone growth in the developing condyle. The purpose of this pilot study was to evaluate the anti-inflammatory properties of simvastatin (SIM), a bone anabolic drug, compared with the common steroid triamcinolone hexacetonide (TH) in experimental TMJ arthritis of growing rats. Joint inflammation was induced by injecting complete Freund's adjuvant (CFA) into the TMJs of 32 growing (4-week-old) Sprague-Dawley rats while simultaneously receiving 1) ethanol drug carrier, 2) 0.1 mg of SIM, 3) 0.5 mg of SIM, or 4) 0.15 mg of TH. Six rats had no treatment to the TMJ. Animals were euthanized 28 days later, and TMJs were decalcified and stained with hematoxylin-eosin. Histopathologic TMJ results showed that CFA injection along with drug carrier induced increased thickness of the articular layer on the head of the condyle and inflammation of the retrodiscal area (CFA and ethanol). Although both TH and SIM reduced the articular layer thickness, 0.5 mg of SIM was more effective at reducing subsynovial inflammation. Intra-articular simvastatin showed anti-inflammatory properties in this TMJ model, prompting its further study in the growing TMJ, where bone anabolic properties would be important. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Antiarthritic activity of Cynodon dactylon (L.) Pers.

    PubMed

    Bhangale, Jitendra; Acharya, Sanjeev

    2014-03-01

    Cynodon dactylon (L.) (Poaceae) is traditionally used herb to treat fevers, skin diseases and rheumatic affections. The ethanolic extract of C. dactylon was found to be safe at all the dose levels (100, 200 and 400 mg/kg, orally) and there was no mortality up to the dose of 5000 mg/kg of extract when administered orally. C. dactylon showed significant antiarthritic activity against Freund's complete adjuvant induced arthritis in rats. Treatment with C. dactylon significantly reduced the mean percentage change in injected and non injected paw, ankle diameter, clinical severity and significantly increased body weight. Results were confirmed using biochemical parameters; there was a significant improvement in the levels of Hb and RBC in C. dactylon treated rats. The increased levels of WBC, ESR, C- reactive protein (CRP) and TNFalpha were significantly suppressed in C. dactylon treated rats. C. dactylon showed protective effect in arthritic joints but it has been supported by an improvement in bone lesions rather than in cartilage lesions. It can be concluded that ethanolic extract of C. dactylon at a dose of 400 mg/kg is effective in improving haematological level, CRP and reducing TNFalpha level. Phytochemical screening showed the presence of alkaloids, flavonoids and glycosides in ethanolic extract. All the above results support the traditional uses of the plant in the treatment of rheumatoid arthritis.

  18. [Ethanol changes sensitivity of Kupffer cells to endotoxin].

    PubMed

    Yamashina, Shunhei; Ikejima, Kenichi; Enomoto, Nobuyuki; Takei, Yoshiyuki; Sato, Nobuhiro

    2003-10-01

    Gut-derived endotoxin plays an important role in alcoholic liver injury. Intestinal sterilization with antibiotics (polymyxin B and neomycin) or inactivation of Kupffer cells with gadolinium chloride can prevent early alcohol-induced liver injury in the Tsukamoto-French model. Although short-term administration of alcohol enhances endotoxin hepatotoxicity, a majority of studies report that short-term ethanol inactivates Kupffer cells. It is therefore paradoxical that Kupffer cells are involved in alcoholic liver injury based on in vivo data with gadolinium chloride and antibiotics, yet ethanol blunts activation of isolated Kupffer cells. Accordingly, this review focuses on understanding this paradox by studying the temporal effect of ethanol in vivo on the response of subsequently isolated Kupffer cells. Mice were given ethanol intragastrically, and LPS was injected later. One hour after ethanol treatment, serum transaminases after LPS were 60% of control, while ethanol increased these parameters about 3-fold 21 hours after ethanol. Pretreatment with antibiotics blocked these effects of ethanol. Two hours after ethanol administration, the LPS-induced increases in intracellular calcium concentration and TNF alpha release by Kupffer cells was diminished by 50% of control, and these parameters were reciprocally enhanced two-fold at 24 hours. Sterilization of the gut with antibiotics blocked both effects of ethanol on intracellular calcium concentration and TNF alpha release. Twenty-four hours after ethanol, CD14 in Kupffer cells was elevated to about five-fold. In Kupffer cells from mice treated with ethanol 1 hour earlier, IRAK expression and activity and NF kappa B were decreased to 50-60% of control. In contrast, in Kupffer cells from mice treated with ethanol 21 hours earlier, LPS-induced TNF alpha production, expression and activity of IRAK were increased 1.5-fold over controls, while NF kappa B activation was elevated 3-fold. Kupffer cells isolated from rodents early after ethanol exhibited tolerance to LPS, whereas sensitization was observed later. In conclusion, acute ethanol alters the expression of endotoxin receptors and intracellular signaling molecules, and causes both tolerance and sensitization of Kupffer cells to endotoxin. It is postulated that tolerance of Kupffer cells contributes to the impairment of innate immune system in alcoholism, while sensitization to endotoxin enhances progression of alcoholic liver injury.

  19. Acute ethanol treatment increases level of progesterone in ovariectomized rats.

    PubMed

    Budec, Mirela; Koko, Vesna; Milovanović, Tatjana; Balint-Perić, Ljiljana; Petković, Aleksandra

    2002-04-01

    To determine whether an increased level of progesterone in adult female rats after acute ethanol treatment, described previously in our study, is the result of activation of adrenal glands, we analyzed adrenal cortex morphologically and measured serum levels of corticosterone and progesterone in ovariectomized rats. In addition, a possible involvement of the opioid system in an observed phenomenon was tested. Adult female Wistar rats were ovariectomized, and 3 weeks after surgery they were treated intraperitoneally with (a) ethanol (4 g/kg), (b) naltrexone (5 mg/kg), followed by ethanol (4 g/kg) 45 min later, and (c) naltrexone (5 mg/kg), followed by saline 45 min later. Untreated and saline-injected rats were used as controls. The animals were killed 0.5 h after ethanol administration. Morphometric analysis was carried out on paraffin sections of adrenal glands, stained with hematoxylin-eosin, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata, and the zona reticularis; numerical density, volume, and the mean diameter of adrenocortical cells and of their nuclei; and mean diameter and length of capillaries. The results showed that acute ethanol treatment significantly increased absolute volume of the zona fasciculata and length of its capillaries but did not alter other stereological parameters. Also, serum levels of corticosterone and progesterone were enhanced. Pretreatment with naltrexone had no effect on ethanol-induced changes. These findings are consistent with our previous hypothesis that an ethanol-induced increase of the progesterone level in adult female rats originates from the adrenal cortex.

  20. Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity

    PubMed Central

    Greenberg, Gian D.; Phillips, Tamara J.; Crabbe, John C.

    2017-01-01

    Nest building has been used to assess thermoregulatory behavior and positive motivational states in mice. There are known genetic influences on ethanol withdrawal severity as well as individual/thermoregulatory nest building. Withdrawal Seizure-Prone (WSP-1, WSP-2) and Withdrawal Seizure-Resistant (WSR-1, WSR-2) mice were selectively bred for high vs low handling-induced convulsion (HIC) severity, respectively, during withdrawal from chronic ethanol vapor inhalation. They also differ in HIC severity during withdrawal from an acute, 4 g/kg ethanol injection. In our initial study, withdrawal from an acute dose of ethanol dose-dependently impaired nest building over the initial 24 h of withdrawal in genetically segregating Withdrawal Seizure Control (WSC) mice. In two further studies, acute ethanol withdrawal suppressed nest building for up to two days in WSP-1 females. Deficits in nest building from ethanol were limited to the initial 10 h of withdrawal in WSR-1 females and to the initial 24 h of withdrawal in WSP-1 and WSR-1 males. Effects of ethanol on nest building for up to two days were found in WSP-2 and WSR-2 mice of both sexes. Nest building deficits in female mice from the first replicate could not be explained by a general decrease in locomotor behavior. These results suggest that nest building is a novel behavioral phenotype for indexing the severity of acute ethanol withdrawal, and that genes contributing to this trait differ from those affecting acute withdrawal HIC severity. PMID:27503811

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda ofmore » 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.« less

  2. Effects of acute ethanol administration and chronic stress exposure on social investigation and 50kHz ultrasonic vocalizations in adolescent and adult male Sprague-Dawley rats.

    PubMed

    Willey, Amanda R; Spear, Linda P

    2013-04-01

    Adolescents drink largely in social situations, likely in an attempt to facilitate social interactions. This study sought to examine alterations in the incentive salience of a social stimulus following repeated stress exposure and acute ethanol administration in adolescent and adult male Sprague-Dawley rats. Subjects were either exposed to 5days of restraint stress, chronic variable stress (CVS), which consisted of a different stressor every day, or non-stressed. On test day, the animals were injected with 0, 0.25, 0.5, or 0.75g/kg ethanol and placed in a social approach test in which they could see, hear, and smell a social conspecific, but could not physically interact with it. All the animals showed an interest in the social stimulus, with adolescents engaging in more social investigation than adults. Restraint stressed adults showed ethanol-induced increases in social investigation, while ethanol effects were not seen in any other group. An ethanol-associated increase in 50kHz ultrasonic vocalization (USV) production was only evident in restraint stressed adolescents following 0.75g/kg ethanol. 50kHz USVs were not correlated with time spent investigating the social stimulus in any test condition. These results show that age differences in the facilitatory effects of ethanol on incentive salience of social stimuli are moderated by stress, with the facilitation of social approach by ethanol only evident in restraint stressed adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Impact of local steroid or statin treatment of experimental temporomandibular joint arthritis on bone growth in young rats.

    PubMed

    Holwegner, Callista; Reinhardt, Adam L; Schmid, Marian J; Marx, David B; Reinhardt, Richard A

    2015-01-01

    Juvenile idiopathic arthritis in temporomandibular joints (TMJs) is often treated with intra-articular steroid injections, which can inhibit condylar growth. The purpose of this study was to compare simvastatin (a cholesterol-lowering drug that reduces TMJ inflammation) with the steroid triamcinolone hexacetonide in experimental TMJ arthritis. Joint inflammation was induced by injecting complete Freund's adjuvant (CFA) into the TMJs of 40 growing Sprague Dawley rats; 4 other rats were left untreated. In the same intra-articular injection, one of the following was applied: (1) 0.5 mg of simvastatin in ethanol carrier, (2) ethanol carrier alone, (3) 0.15 mg of triamcinolone hexacetonide, (4) 0.5 mg of simvastatin and 0.15 mg of triamcinolone hexacetonide, or (5) nothing additional to the CFA. The animals were killed 28 days later, and their mandibles were evaluated morphometrically and with microcomputed tomography. The analysis showed that the TMJs subjected to CFA alone had decreased ramus height compared with those with no treatment (P <0.05). Groups that had injections containing the steroid overall had decreases in weight, ramus height, and bone surface density when compared with the CFA-alone group (P <0.0001). Groups that had injections containing simvastatin, however, had overall increases in weight (P <0.0001), ramus height (P <0.0001), condylar width (P <0.05), condylar bone surface density (P <0.05), and bone volume (P <0.0001) compared with the groups receiving the steroid injections, and they were not different from the healthy (no treatment) group. Treatment of experimentally induced arthritis in TMJs with intra-articular simvastatin preserved normal condylar bone growth. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  4. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less

  5. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol.

    PubMed

    Mason-Smith, Nicholas; Duke, Daniel J; Kastengren, Alan L; Traini, Daniela; Young, Paul M; Chen, Yang; Lewis, David A; Edgington-Mitchell, Daniel; Honnery, Damon

    2017-04-01

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second with 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. The flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.

  6. Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol

    DOE PAGES

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.; ...

    2017-01-17

    Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less

  7. Acute administration of 3-nitropropionic acid, a reactive oxygen species generator, boosts ethanol-induced locomotor stimulation. New support for the role of brain catalase in the behavioural effects of ethanol.

    PubMed

    Manrique, Héctor M; Miquel, Marta; Aragon, Carlos M G

    2006-12-01

    The antioxidant enzyme catalase by reacting with H(2)O(2), forms the compound known as compound I (catalase-H(2)O(2)). This compound is able to oxidise ethanol to acetaldehyde in the CNS. It has been demonstrated that 3-nitropropionic acid (3-NPA) induces the activity of the brain catalase-H(2)O(2) system. In this study, we tested the effect of 3-NPA on both the brain catalase-H(2)O(2) system and on the acute locomotor effect of ethanol. To find the optimal interval for the 3-NPA-ethanol interaction mice were treated with 3-NPA 0, 45, 90 and 135min before an ethanol injection (2.4mg/kg). In a second study, 3-NPA (0, 15, 30 or 45mg/kg) was administered SC to animals 90min before saline or several doses of ethanol (1.6 or 2.4g/kg), and the open-field behaviour was registered. The specificity of the effect of 3-NPA (45mg/kg) was evaluated on caffeine (10mg/kg IP) and cocaine (4mg/kg)-induced locomotion. The prevention of 3-NPA effects on both ethanol-induced locomotion and brain catalase activity by L-carnitine, a potent antioxidant, was also studied. Nitropropionic acid boosted ethanol-induced locomotion and brain catalase activity after 90min. The effect of 3-NPA was prevented by l-carnitine administration. These results indicate that 3-NPA enhanced ethanol-induced locomotion by increasing the activity of the brain catalase system.

  8. Acute illness-induced behavioral alterations are similar to those observed during withdrawal from acute alcohol exposure

    PubMed Central

    Richey, Laura; Doremus-Fitzwater, Tamara L.; Buck, Hollin M.; Deak, Terrence

    2012-01-01

    Exposure to an immunogen results in a constellation of behavioral changes collectively referred to as “sickness behaviors,” with alterations in cytokine expression previously shown to contribute to this sickness response. Since behaviors observed during ethanol withdrawal are strikingly similar to sickness behaviors, we hypothesized that behavioral manifestations of ethanol withdrawal might be an expression of sickness behaviors induced by ethanol-related changes in peripheral and/or central cytokine expression. Accordingly, behaviors exhibited during a modified social investigation test were first characterized in male rats following an acute injection of lipopolysaccharide (LPS; 100 μg/kg). Subsequently, behavioral changes after either a high (4-g/kg; Experiment 2) or low dose (0.5 g/kg; Experiment 3) of ethanol were also examined in the same social investigation test, as well as in the forced-swim test (FST; Experiment 4). Results from these experiments demonstrated similar reductions in both exploration and social investigatory behavior during acute illness and ethanol withdrawal, while a seemingly paradoxical decrease in immobility was observed in the FST during acute ethanol withdrawal. In follow-up studies, neither indomethacin (Experiment 5) nor interleukin-1 receptor antagonist (Experiment 6) pre-exposure reversed the ethanol withdrawal-induced behavioral changes observed in this social investigation test. Taken together, these studies demonstrate that the behavioral sequelae of acute illness and ethanol withdrawal are similar in nature, while antagonist studies suggest that these behavioral alterations are not reversed by blockade of IL-1 receptors or inhibition of prostaglandin synthesis. Though a direct mechanistic link between cytokines and the expression of acute ethanol withdrawal-related behaviors has yet to be found, future studies examining the involvement of brain cytokines as potential mediators of ethanol effects are greatly needed. PMID:22921768

  9. Attenuation of Ethanol Withdrawal by Ceftriaxone-Induced Upregulation of Glutamate Transporter EAAT2

    PubMed Central

    Abulseoud, Osama A; Camsari, Ulas M; Ruby, Christina L; Kasasbeh, Aimen; Choi, Sun; Choi, Doo-Sup

    2014-01-01

    Alcohol withdrawal syndrome (AWS) is a potentially fatal outcome of severe alcohol dependence that presents a significant challenge to treatment. Although AWS is thought to be driven by a hyperglutamatergic brain state, benzodiazepines, which target the GABAergic system, comprise the first line of treatment for AWS. Using a rat model of ethanol withdrawal, we tested whether ceftriaxone, a β-lactam antibiotic known to increase the expression and activity of glutamate uptake transporter EAAT2, reduces the occurrence or severity of ethanol withdrawal manifestations. After a 2-week period of habituation to ethanol in two-bottle choice, alcohol-preferring (P) and Wistar rats received ethanol (4.0 g/kg) every 6 h for 3–5 consecutive days via gavage. Rats were then deprived of ethanol for 48 h during which time they received ceftriaxone (50 or 100 mg/kg, IP) or saline twice a day starting 12 h after the last ethanol administration. Withdrawal manifestations were captured by continuous video recording and coded. The evolution of ethanol withdrawal was markedly different for P rats vs Wistar rats, with withdrawal manifestations occurring >12 h later in P rats than in Wistar rats. Ceftriaxone 100 mg/kg per injection twice per day (200 mg/kg/day) reduced or abolished all manifestations of ethanol withdrawal in both rat variants and prevented withdrawal-induced escalation of alcohol intake. Finally, ceftriaxone treatment was associated with lasting upregulation of ethanol withdrawal-induced downregulation of EAAT2 in the striatum. Our data support the role of ceftriaxone in alleviating alcohol withdrawal and open a novel pharmacologic avenue that requires clinical evaluation in patients with AWS. PMID:24452391

  10. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.

    PubMed

    Qutachi, Omar; Vetsch, Jolanda R; Gill, Daniel; Cox, Helen; Scurr, David J; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A; Shakesheff, Kevin M; Rahman, Cheryl V

    2014-12-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84±24μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37°C to form scaffold structures. The average compressive strength of the scaffolds after 24h at 37°C was 0.9±0.1MPa, and the average Young's modulus was 9.4±1.2MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54±38μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Opioid system of the brain and ethanol.

    PubMed

    Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T

    2009-04-01

    Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.

  12. The neuroprotective effects of an ethanolic turmeric (Curcuma longa L.) extract against trimethyltin-induced oxidative stress in rats.

    PubMed

    Yuliani, Sapto; Mustofa; Partadiredja, Ginus

    2018-03-07

    Oxidative stress is known to contribute to the pathogenesis of neurodegenerative disorders. An ethanolic turmeric (Curcuma longa L.) extract containing curcumin has been reported to produce antioxidant effects. The present study aims to investigate the possible neuroprotective effects of the ethanolic turmeric extract against trimethyltin (TMT)-induced oxidative stress in Sprague Dawley rats. The ethanolic turmeric extract and citicoline were administered to the TMT exposed rats from day 1 to day 28 of the experiment. The TMT injection was administered on day 8 of the experiment. The plasma and brain malondialdehyde (MDA) and reduced glutathione (GSH) levels, and the activities of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes in the brain were examined at the end of the experiment. The administration of 200 mg/kg bw of the ethanolic turmeric extract prevented oxidative stress by decreasing the plasma and brain MDA levels and increasing the SOD, CAT, and GPx enzyme activities and GSH levels in the brain. These effects seem to be comparable to those of citicoline. The ethanolic turmeric extract at a dose of 200 mg/kg bw may exert neuroprotective effects on TMT-exposed Sprague Dawley rats by preventing them from oxidative stress.

  13. HPLC Plasma Assay of a Novel Anti-MRSA Compound, Kaempferol-3-O-Alpha-L-(2",3"-di-p-coumaroyl)rhamnoside, from Sycamore Leaves.

    PubMed

    Zhang, Yiguan; Valeriote, Frederick; Swartz, Kenneth; Chen, Ben; Hamann, Mark T; Rodenburg, Douglas L; McChesney, James D; Shaw, Jiajiu

    2015-08-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a serious pathogen that is resistant to current antibiotic therapy. Thus, there is an urgent need for novel antimicrobial agents that can effectively combat these new strains of drug-resistant "superbugs". Recently, fractionation of an extract from Platanus occidentalis (American sycamore) leaves produced an active kaempferol molecule, 3-O-alpha-L-(2",3"-di-p-coumaroyl)rhamnoside (KCR), in four isomeric forms; all four isomers exhibit potent anti-MRSA activity. In order to further the preclinical development of KCR as a new antibiotic class, we developed and validated a simple analytical method for assaying KCR plasma concentration. Because KCR will be developed as a new drug, although comprising four stereoisomers, the analytical method was devised to assay the total amount of all four isomers. In the present work, both a plasma processing procedure and an HPLC method have been developed and validated. Mouse plasma containing KCR was first treated with ethanol and then centrifuged. The supernatant was dried, suspended in ethanol, centrifuged, and the supernatant was injected into an HPLC system comprising a Waters C18, a mobile phase composing methanol, acetonitrile, and trifluoroacetic acid and monitored at 313 nm. The method was validated by parameters including a good linear correlation, a limit of quantification of 0.27 microg/mL, and high accuracy. In summary, this method allows a rapid analysis of KCR in the plasma samples for pharmacokinetics studies.

  14. HPLC Plasma Assay of a Novel Anti-MRSA Compound, Kaempferol-3-O-Alpha-L-(2",3"-di-p-coumaroyl)rhamnoside, from Sycamore Leaves

    PubMed Central

    Zhang, Yiguan; Valeriote, Frederick; Swartz, Kenneth; Chen, Ben; Hamann, Mark T.; Rodenburg, Douglas L.; McChesney, James D.

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a serious pathogen that is resistant to current antibiotic therapy. Thus, there is an urgent need for novel antimicrobial agents that can effectively combat these new strains of drug-resistant “superbugs”. Recently, fractionation of an extract from Platanus occidentalis (American sycamore) leaves produced an active kaempferol molecule, 3-O-alpha-L-(2",3"-di-p-coumaroyl)rhamnoside (KCR), in four isomeric forms; all four isomers exhibit potent anti-MRSA activity. In order to further the preclinical development of KCR as a new antibiotic class, we developed and validated a simple analytical method for assaying KCR plasma concentration. Because KCR will be developed as a new drug, although comprising four stereoisomers, the analytical method was devised to assay the total amount of all four isomers. In the present work, both a plasma processing procedure and an HPLC method have been developed and validated. Mouse plasma containing KCR was first treated with ethanol and then centrifuged. The supernatant was dried, suspended in ethanol, centrifuged, and the supernatant was injected into an HPLC system comprising a Waters C18, a mobile phase composing methanol, acetonitrile, and trifluoroacetic acid and monitored at 313 nm. The method was validated by parameters including a good linear correlation, a limit of quantification of 0.27 µg/mL, and high accuracy. In summary, this method allows a rapid analysis of KCR in the plasma samples for pharmacokinetics studies. PMID:26434123

  15. The neurological safety of epidural parecoxib in rats.

    PubMed

    Kim, Yang Hyun; Lee, Pyung Bok; Park, Jeongmi; Lim, Young Jin; Kim, Yong Chul; Lee, Sang Chul; Ahn, Wonsik

    2011-12-01

    Epidural injection of cyclooxygenase-2 inhibitors has been suggested as a useful therapeutic modality in pain management in animal studies and clinical settings. Direct epidural administration of parecoxib, a highly selective cyclooxygenase-2 inhibitor, may have advantages over its parenteral administration regarding required dose, side effects, and efficacy. However, no animal studies have been performed to investigate the possible neurotoxicity of epidurally injected parecoxib. Therefore, the present study was performed to assess the neurotoxicity of epidurally injected parecoxib in rats. Rats (n=45) were randomly divided into three groups: normal saline group (group N, n=15), ethanol group (group E, n=15), and parecoxib group (group P, n=15). 0.3 mL of epidural parecoxib (6 mg) and the same volume of epidural ethanol or normal saline were injected into the epidural space. Neurologic assessment was performed 3, 7 and 21 days after the injection by pinch toe testing. Histologic changes were evaluated for vacuolation of the dorsal funiculus, chromatolytic changes of the motor neurons, neuritis, and meningeal inflammation. All rats in groups N and P showed normal response to pinch-toe testing and had a normal gait at each observation point. Histological examination showed no evidence suggestive of neuronal body or axonal lesions, gliosis, or myelin sheet damage in group N or P at any time. However, all rats in group E showed sensory-motor dysfunction, behavioral change, or histopathological abnormalities. No neurotoxicity on the spinal cord or abnormalities in sensorimotor function or behavior was noted in rats that received epidural parecoxib. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats

    PubMed Central

    Morales, Melissa; McGinnis, Molly M.; McCool, Brian A.

    2016-01-01

    The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10 mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions. PMID:26515190

  17. The CRF-1 receptor antagonist, CP-154,526, attenuates stress-induced increases in ethanol consumption by BALB/cJ mice.

    PubMed

    Lowery, Emily G; Sparrow, Angela M; Breese, George R; Knapp, Darin J; Thiele, Todd E

    2008-02-01

    Corticotropin-releasing factor (CRF) signaling modulates neurobiological responses to stress and ethanol, and may modulate observed increases in ethanol consumption following exposure to stressful events. The current experiment was conducted to further characterize the role of CRF1 receptor (CRF1R) signaling in stress-induced increases in ethanol consumption in BALB/cJ and C57BL/6N mice. Male BALB/cJ and C57BL/6N mice were given continuous access to 8% (v/v) ethanol and water for the duration of the experiment. When a baseline of ethanol consumption was established, animals were exposed to 5 minutes of forced swim stress on each of 5 consecutive days. Thirty minutes before each forced swim session, animals were given an intraperitoneal injection of a 10 mg/kg dose of CP-154,526, a selective CRF1R antagonist, or an equal volume of vehicle. The effect of forced swim stress exposure on consumption of a 1% (w/v) sucrose solution was also investigated in an ethanol-naïve group of BALB/cJ mice. Exposure to forced swim stress significantly increased ethanol consumption by the BALB/cJ, but not of the C57BL/6N, mice. Stress-induced increases in ethanol consumption were delayed and became evident approximately 3 weeks after the first stressor. Additionally, forced swim stress did not cause increases of food or water intake and did not promote delayed increases of sucrose consumption. Importantly, BALB/cJ mice pretreated with the CRF1R antagonist showed blunted stress-induced increases in ethanol intake, and the CRF1R antagonist did not influence the ethanol drinking of non-stressed mice. The present results provide evidence that CRF1R signaling modulates the delayed increase of ethanol consumption stemming from repeated exposure to a stressful event in BALB/cJ mice.

  18. Activated mesenchymal stem cell administration inhibits chronic alcohol drinking and suppresses relapse-like drinking in high-alcohol drinker rats.

    PubMed

    Ezquer, Fernando; Quintanilla, María Elena; Morales, Paola; Ezquer, Marcelo; Lespay-Rebolledo, Carolyne; Herrera-Marschitz, Mario; Israel, Yedy

    2017-10-18

    Neuroinflammation has been reported to follow chronic ethanol intake and may perpetuate alcohol consumption. Present studies determined the effect of human mesenchymal stem cells (hMSCs), known for their anti-inflammatory action, on chronic ethanol intake and relapse-like ethanol intake in a post-deprivation condition. Rats were allowed 12-17 weeks of chronic voluntary ethanol (10% and 20% v/v) intake, after which a single dose of activated hMSCs (5 × 10 5 ) was injected into a brain lateral ventricle. Control animals were administered vehicle. After assessing the effect of hMSCs on chronic ethanol intake for 1 week, animals were deprived of ethanol for 2 weeks and thereafter an ethanol re-access of 60 min was allowed to determine relapse-like intake. A single administration of activated hMSCs inhibited chronic alcohol consumption by 70% (P < 0.001), an effect seen within the first 24 hours of hMSCs administration, and reduced relapse-like drinking by 80% (P < 0.001). In the relapse-like condition, control animals attain blood ethanol ('binge-like') levels >80 mg/dl. The single hMSC administration reduced relapse-like blood ethanol levels to 20 mg/dl. Chronic ethanol intake increased by 250% (P < 0.001) the levels of reactive oxygen species in hippocampus, which were markedly reduced by hMSC administration. Astrocyte glial acidic fibrillary protein immunoreactivity, a hallmark of neuroinflammation, was increased by 60-80% (P < 0.001) by chronic ethanol intake, an effect that was fully abolished by the administration of hMSCs. This study supports the neuroinflammation-chronic ethanol intake hypothesis and suggest that mesenchymal stem cell administration may be considered in the treatment of alcohol use disorders. © 2017 Society for the Study of Addiction.

  19. Chronic ethanol exposure increases voluntary home cage intake in adult male, but not female, Long-Evans rats.

    PubMed

    Morales, Melissa; McGinnis, Molly M; McCool, Brian A

    2015-12-01

    The current experiment examined the effects of 10 days of chronic intermittent ethanol (CIE) exposure on anxiety-like behavior and home cage ethanol intake using a 20% intermittent access (M, W, F) paradigm in male and female Long-Evans rats. Withdrawal from alcohol dependence contributes to relapse in humans and increases in anxiety-like behavior and voluntary ethanol consumption in preclinical models. Our laboratory has shown that 10 days of CIE exposure produces both behavioral and neurophysiological alterations associated with withdrawal in male rats; however, we have yet to examine the effects of this exposure regime on ethanol intake in females. During baseline, females consumed more ethanol than males but, unlike males, did not show escalations in intake. Rats were then exposed to CIE and were again given intermittent access to 20% ethanol. CIE males increased their intake compared to baseline, whereas air-exposed males did not. Ethanol intake in females was unaffected by CIE exposure. Notably, both sexes expressed significantly elevated withdrawal-associated anxiety-like behavior in the plus maze. Finally, rats were injected with the cannabinoid CB1 receptor antagonist, SR141716A (0, 1, 3, 10mg/kg, i.p.) which reduced ethanol intake in both sexes. However, females appear to be more sensitive to lower doses of this CB1 receptor antagonist. Our results show that females consume more ethanol than males; however, they did not escalate their intake using the intermittent access paradigm. Unlike males, CIE exposure had no effect on drinking in females. It is possible that females may be less sensitive than males to ethanol-induced increases in drinking after a short CIE exposure. Lastly, our results demonstrate that males and females may have different pharmacological sensitivities to CB1 receptor blockade on ethanol intake, at least under the current conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Ayahuasca and Its DMT- and β-carbolines - Containing Ingredients Block the Expression of Ethanol-Induced Conditioned Place Preference in Mice: Role of the Treatment Environment.

    PubMed

    Cata-Preta, Elisangela G; Serra, Yasmim A; Moreira-Junior, Eliseu da C; Reis, Henrique S; Kisaki, Natali D; Libarino-Santos, Matheus; Silva, Raiany R R; Barros-Santos, Thaísa; Santos, Lucas C; Barbosa, Paulo C R; Costa, José L; Oliveira-Lima, Alexandre J; Berro, Lais F; Marinho, Eduardo A V

    2018-01-01

    Ayahuasca is a hallucinogenic beverage produced from the decoction of Banisteriopsis caapi (Bc) and Psychotria viridis (Pv), β-carboline- and N,N -dimethyltryptamine(DMT)-containing plants, respectively. Accumulating evidence suggests that ayahuasca may have therapeutic effects on ethanol abuse. It is not known, however, whether its effects are dependent on the presence of DMT or if non-DMT-containing components would have therapeutic effects. The aim of the present study was to investigate the rewarding properties of ayahuasca (30, 100, and 300 mg/kg, orally), Bc (132, 440, and 1320 mg/kg, orally) and Pv (3.75, 12.5 and 37.5 mg/kg, i.p.) extracts and their effects on ethanol (1.8 g/kg, i.p.) reward using the conditioned place preference (CPP) paradigm in male mice. Animals were conditioned with ayahuasca, Bc or Pv extracts during 8 sessions. An intermediate, but not a high, dose of ayahuasca induced CPP in mice. Bc and Pv did not induce CPP. Subsequently, the effects of those extracts were tested on the development of ethanol-induced CPP. Ayahuasca, Bc or Pv were administered before ethanol injections during conditioning sessions. While Bc and Pv exerted no effects on ethanol-induced CPP, pretreatment with ayahuasca blocked the development of CPP to ethanol. Finally, the effects of a post-ethanol-conditioning treatment with ayahuasca, Bc or Pv on the expression of ethanol-induced CPP were tested. Animals were conditioned with ethanol, and subsequently treated with either ayahuasca, Bc or Pv in the CPP environment previously associated with saline or ethanol for 6 days. Animals were then reexposed to ethanol and ethanol-induced CPP was quantified on the following day. Treatment with all compounds in the ethanol-paired environment blocked the expression of ethanol-induced CPP. Administration of an intermediate, but not a high, dose of ayahuasca and Bc, as well as Pv administration, in the saline-paired compartment blocked the expression of ethanol-induced CPP. The present study sheds light into the components underlying the therapeutic effects of ayahuasca on ethanol abuse, indicating that ayahuasca and its plant components can decrease ethanol reward at doses that do not exert abuse liability. Importantly, the treatment environment seems to influence the therapeutic effects of ayahuasca and Bc, providing important insights into clinical practice.

  1. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    PubMed

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. (c) 2007 Wiley Periodicals, Inc.

  2. Long term outcome of treatment of vertebral body hemangiomas with direct ethanol injection and short segment stabilization.

    PubMed

    Chandra, P Sarat; Singh, Pankaj; K, Rajender; Agarwal, Deepak; Tandon, Vivek; Kale, S S; Sarkar, Chitra

    2018-06-08

    Vertebral body (VH) hemangiomas with myelopathy are difficult to manage. To evaluate the role of intra-operative ethanol embolization, surgical decompression and instrumented short segment fusion in VH with myelopathy and long-term outcome (>24 months). Prospective study: Symptomatic VH with cord compression with myelopathy. Excluded: pathological fractures, and/or deformity or multi-level pathologies. Surgery consisted of intra-operative bilateral pedicular absolute alcohol (<1% hydrated ethyl alcohol) injection, laminectomy and cord decompression at the level of pathology followed by a short segment instrumented fusion using pedicle screws. 33 patients (Mean 26.9 + 13.2, range: 10-68 years, 18 females). myelopathy all (5 paraplegic), sphincter involvement (13), and mid back/ lower pain (7). Pre-operative American Spinal Injury Association (ASIA) scores: A(7), B(11), C(6), D(8) and E(1). Majority had single vertebral involvement (30), 3 multiple level. Six underwent surgery earlier (1 alcohol embolization here). Mean surgical time: 124+39 minutes, average blood: 274+80 cc. Mean amount of absolute alcohol injected: 14.6+5.7 cc. (2 requiring 20 & 25 cc). Immediate embolization achieved in all, allowing laminectomy and soft-tissue hemangioma removal easily. Post-surgery, 1 patient had transient deterioration, rest all patients improved (sphincters improved in 9) at a follow up ranging 28-103 months (mean 47.6+22.3). Follow-up ASIA scores: E(26), D(4), B(2) & C(1). All patients showed evidence of bone sclerosis and relief of cord compression on follow-up imaging. This is largest study in literature showing excellent improvement, low re-operation rates following ethanol embolization and short segment fixation. Copyright © 2018. Published by Elsevier Inc.

  3. Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing.

    PubMed

    Mokhtarieh, Amir Abbas; Lee, Jieun; Kim, Semi; Lee, Myung Kyu

    2018-06-01

    Previously a scalable and extrusion-free method has been developed for efficient liposomal encapsulation of DNA by twice stepwise mixing of lipids in ethanol and DNA solution using T-shape mixing chamber. In this study, we prepared nanoliposomes encapsulating siRNA by simply discontinuous mixing of lipids in ethanol/ether/water mixture and acidic siRNA solution without use of special equipment. The simple mixing siRNA/liposomal particles (siRNA/SMLs) prepared using ethanol/ether/water (3:1:1) mixture showed 120.4 ± 20.2 nm particle size, 0.174 ± 0.033 polydispersity and 86.5 ± 2.76% siRNA encapsulation rate. In addition, the SMLs almost completely protected the encapsulated siRNA from RNase A digestion. Coupling of anti-human epidermal growth factor receptor (EGFR) Fab' to siRNA/SMLs enhanced EGFR-specific cell penetration of SMLs and induced siRNA dependent gene silencing. Unexpectedly, the Cy5.5-labeled Fab' showed almost no in vivo targeting to the xenografted A549 tumors in SCID-NOD mice. However, multiple injection of the unmodified siRNA/SMLs accumulated in the tumors and induced siRNA-dependent in vivo gene silencing. These results demonstrate that the siRNA/SMLs can be used as a siRNA delivery tool for gene therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  5. Attenuation and cross-attenuation in taste aversion learning in the rat: Studies with ionizing radiation, lithium chloride and ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1988-12-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO)more » disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less

  6. Alterations of reward mechanisms in bulbectomised rats.

    PubMed

    Grecksch, Gisela; Becker, Axel

    2015-06-01

    The positive association between alcoholism and depression is a common clinical observation. We investigated the relationship between depression and reward mechanisms using a validated animal model for depressive-like behaviour, the olfactory bulbectomy in rats. The effects of bilateral olfactory bulbectomy on reward mechanisms were studied in two different experimental paradigms - the voluntary self-administration of ethanol and the conditioned place preference to alcohol injection and compared to the effects of ethanol on locomotor activity and body core temperature. The voluntary ethanol intake was increased significantly in bulbectomised rats in a drinking experiment and also after a period of abstinence. Conditioned place preference (CPP) was induced in all animals. However, bulbectomised rats needed a higher dose of alcohol to produce CPP. The sedative effect of ethanol on locomotor activity was reduced in bulbectomised animals. Measurement of body temperature revealed a dose-dependent hypothermic effect of ethanol in both groups. These results suggest that the reward mechanisms may be altered in this animal model as a common phenomenon associated with depression. Furthermore, they support the hypothesis that the addictive and/or rewarding properties of some drugs of abuse may be modified in depression. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Attenuation and cross-attenuation in taste aversion learning in the rat: studies with ionizing radiation, lithium chloride and ethanol.

    PubMed

    Rabin, B M; Hunt, W A; Lee, J

    1988-12-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.

  8. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Tomoki, E-mail: s13220@u-shizuoka-ken.ac.jp; Morita, Akihito, E-mail: moritaa@u-shizuoka-ken.ac.jp; Mori, Nobuko, E-mail: morin@b.s.osakafu-u.ac.jp

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, themore » roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.« less

  9. Determination of Ethanol in Kombucha Products: Single-Laboratory Validation, First Action 2016.12.

    PubMed

    Ebersole, Blake; Liu, Ying; Schmidt, Rich; Eckert, Matt; Brown, Paula N

    2017-05-01

    Kombucha is a fermented nonalcoholic beverage that has drawn government attention due to the possible presence of excess ethanol (≥0.5% alcohol by volume; ABV). A validated method that provides better precision and accuracy for measuring ethanol levels in kombucha is urgently needed by the kombucha industry. The current study validated a method for determining ethanol content in commercial kombucha products. The ethanol content in kombucha was measured using headspace GC with flame ionization detection. An ethanol standard curve ranging from 0.05 to 5.09% ABV was used, with correlation coefficients greater than 99.9%. The method detection limit was 0.003% ABV and the LOQ was 0.01% ABV. The RSDr ranged from 1.62 to 2.21% and the Horwitz ratio ranged from 0.4 to 0.6. The average accuracy of the method was 98.2%. This method was validated following the guidelines for single-laboratory validation by AOAC INTERNATIONAL and meets the requirements set by AOAC SMPR 2016.001, "Standard Method Performance Requirements for Determination of Ethanol in Kombucha."

  10. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yanyan; Gao, Chao; Shi, Yanru

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin.more » The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.« less

  11. Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity.

    PubMed

    Greenberg, Gian D; Phillips, Tamara J; Crabbe, John C

    2016-10-15

    Nest building has been used to assess thermoregulatory behavior and positive motivational states in mice. There are known genetic influences on ethanol withdrawal severity as well as individual/thermoregulatory nest building. Withdrawal Seizure-Prone (WSP-1, WSP-2) and Withdrawal Seizure-Resistant (WSR-1, WSR-2) mice were selectively bred for high vs low handling-induced convulsion (HIC) severity, respectively, during withdrawal from chronic ethanol vapor inhalation. They also differ in HIC severity during withdrawal from an acute, 4g/kg ethanol injection. In our initial study, withdrawal from an acute dose of ethanol dose-dependently impaired nest building over the initial 24h of withdrawal in genetically segregating Withdrawal Seizure Control (WSC) mice. In two further studies, acute ethanol withdrawal suppressed nest building for up to two days in WSP-1 females. Deficits in nest building from ethanol were limited to the initial 10h of withdrawal in WSR-1 females and to the initial 24h of withdrawal in WSP-1 and WSR-1 males. Effects of ethanol on nest building for up to two days were found in WSP-2 and WSR-2 mice of both sexes. Nest building deficits in female mice from the first replicate could not be explained by a general decrease in locomotor behavior. These results suggest that nest building is a novel behavioral phenotype for indexing the severity of acute ethanol withdrawal, and that genes contributing to this trait differ from those affecting acute withdrawal HIC severity. Published by Elsevier Inc.

  12. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process.

    PubMed

    Barta, Zsolt; Reczey, Kati; Zacchi, Guido

    2010-09-15

    Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.

  13. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

    PubMed Central

    2010-01-01

    Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330

  14. Determination of the efficiency of ethanol oxidation in a proton exchange membrane electrolysis cell

    NASA Astrophysics Data System (ADS)

    Altarawneh, Rakan M.; Majidi, Pasha; Pickup, Peter G.

    2017-05-01

    Products and residual ethanol in the anode and cathode exhausts of an ethanol electrolysis cell (EEC) have been analyzed by proton NMR and infrared spectrometry under a variety of operating conditions. This provides a full accounting of the fate of ethanol entering the cell, including the stoichiometry of the ethanol oxidation reaction (i.e. the average number of electrons transferred per ethanol molecule), product distribution and the crossover of ethanol and products through the membrane. The reaction stoichiometry (nav) is the key parameter that determines the faradaic efficiency of both EECs and direct ethanol fuel cells. Values determined independently from the product distribution, amount of ethanol consumed, and a simple electrochemical method based on the dependence of the current on the flow rate of the ethanol solution are compared. It is shown that the electrochemical method yields results that are consistent with those based on the product distribution, and based on the consumption of ethanol when crossover is accounted for. Since quantitative analysis of the cathode exhaust is challenging, the electrochemical method provides a valuable alternative for routine determination of nav, and hence the faradaic efficiency of the cell.

  15. Intravenous Alcohol Self-Administration in the P Rat

    PubMed Central

    Windisch, Kyle A.; Kosobud, Ann E. K.; Czachowski, Cristine L.

    2014-01-01

    Alcohol consumption produces a complex array of effects that can be divided into two types: the explicit pharmacological effects of ethanol (which can be temporally separate from time of intake) and the more temporally “relevant” effects (primarily olfactory and taste) that bridge the time from intake to onset of the pharmacological effects. Intravenous (IV) self-administration of ethanol limits the confounding “non-pharmacological” effects associated with oral consumption, allows for controlled and precise dosing, and bypasses first order absorption kinetics, allowing for more direct and better-controlled assessment of alcohol’s effect on the brain. IV ethanol self-administration has been reliably demonstrated in mouse and human experimental models; however, models of IV self-administration have been historically problematic in the rat. An operant multiple-schedule study design was used to elucidate the role of each component of a compound IV-ethanol plus oral-sucrose reinforcer. Male alcohol-preferring P rats had free access to both food and water during all IV self-administration sessions. Animals were trained to press a lever for orally delivered 1% sucrose (1S) on a fixed ratio 4 schedule, and then surgically implanted with an indwelling jugular catheter. Animals were then trained to respond on a multiple FR4-FR4 schedule composed of alternating 2.5-min components across 30-min sessions. For the multiple schedule, two components were used: an oral 1S only and an oral 1S plus IV 20% ethanol (25 mg/kg/injection). Average total ethanol intake was 0.47 ± 0.04 g/kg. We found significantly higher earning of sucrose-only reinforcers and greater sucrose-lever error responding relative to the compound oral-sucrose plus IV-ethanol reinforcer. These response patterns suggest that sucrose, not ethanol, was responsible for driving overall responding. The work with a compound IV ethanol-oral sucrose reinforcer presented here suggests that the existing intravenous ethanol self-administration methodology cannot overcome the aversive properties of ethanol via this route in the rat. PMID:24835637

  16. α6β2 nicotinic acetylcholine receptors influence locomotor activity and ethanol consumption.

    PubMed

    Kamens, Helen M; Peck, Colette; Garrity, Caitlin; Gechlik, Alex; Jenkins, Brenita C; Rajan, Akshat

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system have been implicated in ethanol behaviors. In particular, work in genetically engineered mice has demonstrated that α6-containing nAChRs are involved in ethanol consumption and sedation. A limitation of these studies is that the alteration in the receptor was present throughout development. The recently described α6β2 antagonist, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), now makes it possible to test for the involvement of these receptors using a pharmacological approach. The aim of this study was to examine the role of α6β2 nAChRs in ethanol behaviors using a pharmacological approach. Adolescent C57BL/6J mice were treated with bPiDI 30 min prior to testing the mice for binge-like ethanol consumption in the drinking-in-the-dark (DID) test, ethanol-induced motor incoordination using the balance beam, and ethanol-induced sedation using the Loss of Righting Reflex (LORR) paradigm. Adolescent animals were chosen because they express a high amount of α6 mRNA relative to adult animals. Control studies were also performed to determine the effect of bPiDI on locomotor activity and ethanol metabolism. Female mice treated with 20 mg/kg bPiDI had reduced locomotor activity compared to saline-treated animals during the first 30 min following an acute injection. Pretreatment with the α6β2 antagonist reduced adolescent ethanol consumption but also reduced saccharin consumption. No significant effects were observed on ethanol-induced ataxia, sedation, or metabolism. This study provides evidence that α6β2 nAChRs are involved in locomotor activity as well as ethanol and saccharin consumption in adolescent animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Ethanol Mediated Inhibition of Synaptic Vesicle Recycling at Amygdala Glutamate Synapses Is Dependent upon Munc13-2

    PubMed Central

    Gioia, Dominic A.; Alexander, Nancy; McCool, Brian A.

    2017-01-01

    Chronic exposure to alcohol produces adaptations within the basolateral amygdala (BLA) that are associated with the development of anxiety-like behaviors during withdrawal. In part, these adaptations are mediated by plasticity in glutamatergic synapses occurring through an AMPA receptor mediated form of post-synaptic facilitation in addition to a unique form of presynaptic facilitation. In comparison to the post-synaptic compartment, relatively less is understood about the mechanisms involved in the acute and chronic effects of ethanol in the presynaptic terminal. Previous research has demonstrated that glutamatergic terminals in the mouse BLA are sensitive to ethanol mediated inhibition of synaptic vesicle recycling in a strain-dependent fashion. Importantly, the strain-dependent differences in presynaptic ethanol sensitivity are in accordance with known strain-dependent differences in ethanol/anxiety interactions. In the present study, we have used a short-hairpin RNA to knockdown the expression of the presynaptic Munc13-2 protein in C57BL/6J mice, whose BLA glutamate terminals are normally ethanol-insensitive. We injected this shRNA, or a scrambled control virus, into the medial prefrontal cortex (mPFC) which sends dense projections to the BLA. Accordingly, this knockdown strategy reduces the expression of the Munc13-2 isoform in mPFC terminals within the BLA and alters presynaptic terminal function in C57BL/6J mice in a manner that phenocopies DBA/2J glutamate terminals which are normally ethanol-sensitive. Here, we provide evidence that manipulation of this single protein, Munc13-2, renders C57BL/6J terminals sensitive to ethanol mediated inhibition of synaptic vesicle recycling and post-tetanic potentiation. Furthermore, we found that this ethanol inhibition was dose dependent. Considering the important role of Munc13 proteins in synaptic plasticity, this study potentially identifies a molecular mechanism regulating the acute presynaptic effects of ethanol to the long lasting adaptations in the BLA that occur during chronic ethanol exposure. PMID:28785200

  18. Overexpression of 5-HT(1B) mRNA in nucleus accumbens shell projection neurons differentially affects microarchitecture of initiation and maintenance of ethanol consumption.

    PubMed

    Furay, Amy R; Neumaier, John F; Mullenix, Andrew T; Kaiyala, Karl K; Sandygren, Nolan K; Hoplight, Blair J

    2011-02-01

    Serotonin 1B (5-HT(1B)) heteroreceptors on nucleus accumbens shell (NAcSh) projection neurons have been shown to enhance the voluntary consumption of alcohol by rats, presumably by modulating the activity of the mesolimbic reward pathway. The present study examined whether increasing 5-HT(1B) receptors expressed on NAcSh projection neurons by means of virus-mediated gene transfer enhances ethanol consumption during the initiation or maintenance phase of drinking and alters the temporal pattern of drinking behavior. Animals received stereotaxic injections of viral vectors expressing either 5-HT(1B) receptor and green fluorescent protein (GFP) or GFP alone. Home cages equipped with a three-bottle (water and 6 and 12% ethanol) lickometer system recorded animals' drinking behaviors continuously, capturing either initiation or maintenance of drinking behavior patterns. Overexpression of 5-HT(1B) receptors during initiation increased consumption of 12% ethanol during both forced-access and free-choice consumption. There was a shift in drinking pattern for 6% ethanol with an increase in number of drinking bouts per day, although the total number of drinking bouts for 12% ethanol was not different. Finally, increased 5-HT(1B) expression induced more bouts with very high-frequency licking from the ethanol bottle sippers. During the maintenance phase of drinking, there were no differences between groups in total volume of ethanol consumed; however, there was a shift toward drinking bouts of longer duration, especially for 12% ethanol. This suggests that during maintenance drinking, increased 5-HT(1B) receptors facilitate longer drinking bouts of more modest volumes. Taken together, these results indicate that 5-HT(1B) receptors expressed on NAcSh projection neurons facilitate ethanol drinking, with different effects during initiation and maintenance of ethanol-drinking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Central effects of ethanol interact with endogenous mu opioid activity to control isolation-induced analgesia in maternally separated infant rats

    PubMed Central

    Nizhnikov, Michael E.; Kozlov, Andrey P.; Kramskaya, Tatiana. A.; Varlinskaya, Elena I.; Spear, Norman E.

    2014-01-01

    Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12–day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol–mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu- opioid activity that increases the pup’s sensitivity to appetitive taste stimulation and the anxiolytic effects of 0.5 g/kg ethanol that decreases behaviors otherwise competing with independent ingestive activity. PMID:24315831

  20. Paclitaxel loaded phospholipid-based gel as a drug delivery system for local treatment of glioma.

    PubMed

    Chen, Tijia; Gong, Ting; Zhao, Ting; Liu, Xing; Fu, Yao; Zhang, Zhirong; Gong, Tao

    2017-08-07

    Paclitaxel (PTX) is a chemotherapeutic agent and has been widely used in clinic against human cancer. However, it has limited application in brain tumor treatment due to the poor penetration of blood brain barrier. Local delivery system is a promising carrier of PTX in the treatment of glioma. A biodegradable phospholipid-based gel (PG) system was developed for intratumoral injection and evaluated in brain glioma-bearing mice model. PTX loaded PG was composed of phospholipid, ethanol, medium chain triglyceride, triacetin and PTX. It was prepared by a very simple method. The system was a transparent solution with good fluidity, while turned into a gel after phase-transition when ethanol diffused. Both in vitro dissolution and in vivo imaging study proved the sustained release effect of PG system. In vivo tolerability study showed a better tolerability after mice treated with PTX PG compared with free PTX. The survival time of brain glioma-bearing mice after treatment with PTX PG was significantly prolonged compared with mice treated by free PTX (P<0.05). In conclusion, this study developed a novel PG based local PTX delivery system with simple preparation method, good tolerability and high therapeutic efficacy. It has a great potential to improve the clinical management of glioma. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modulation of elevated plus maze behavior after chronic exposure to the anabolic steroid 17alpha-methyltestosterone in adult mice.

    PubMed

    Rojas-Ortiz, Yoel Antonio; Rundle-González, Valerie; Rivera-Ramos, Isamar; Jorge, Juan Carlos

    2006-01-01

    Exposure to supraphysiological doses of androgens may disrupt affective components of behavior. In this study, behavior of adult C57Bl/6 male mice was studied after exposure to the anabolic androgenic steroid (AAS) 17alpha-methyltestosterone (17alpha-meT; 7.5 mg/kg) via a subcutaneous osmotic pump for 17 days. Controls received vehicle implants (0.9% NaCl + 30% cyclodextrine). On day 15, experimental animals were challenged with an ethanol (EtOH) injection (i.p.; 1 g/kg) while controls received saline injections. Five minutes after the injection, animals were tested in an automated elevated plus maze (EPM) or in automated activity chambers. In addition, injection-free animals were tested for ethanol consumption on day 16 after an overnight water deprivation period. Whereas chronic exposure to 17alpha-meT did not modulate open arm behavior, EtOH-exposed animals made more entries into the open arms than controls (P < 0.05). A significant reduction of risk assessment behaviors (rearing, flat approach behavior, and stretch attended posture) over the EPM was noted for EtOH-exposed animals whereas a reduction in stretch attended postures was observed among 17alpha-meT-exposed animals. Locomotor activity, and light-dark transitions in activity chambers remained unaltered. Exposure to AAS did not modulate EtOH consumption. Our data suggest that exposure to a supraphysiological dose of 17alpha-meT has minimal effects on exploratory-based anxiety.

  2. Sequential Injection Chromatography with an Ultra-short Monolithic Column for the Low-Pressure Separation of α-Tocopherol and γ-Oryzanol in Vegetable Oils and Nutrition Supplements.

    PubMed

    Thaithet, Sujitra; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai

    2017-01-01

    A low-pressure separation procedure of α-tocopherol and γ-oryzanol was developed based on a sequential injection chromatography (SIC) system coupled with an ultra-short (5 mm) C-18 monolithic column, as a lower cost and more compact alternative to the HPLC system. A green sample preparation, dilution with a small amount of hexane followed by liquid-liquid extraction with 80% ethanol, was proposed. Very good separation resolution (R s = 3.26), a satisfactory separation time (10 min) and a total run time including column equilibration (16 min) were achieved. The linear working range was found to be 0.4 - 40 μg with R 2 being more than 0.99. The detection limits of both analytes were 0.28 μg with the repeatability within 5% RSD (n = 7). Quantitative analyses of the two analytes in vegetable oil and nutrition supplement samples, using the proposed SIC method, agree well with the results from HPLC.

  3. Percutaneous ethanol injection of hyperfunctioning thyroid nodules: long-term follow-up in 125 patients.

    PubMed

    Tarantino, Luciano; Francica, Giampiero; Sordelli, Ignazio; Sperlongano, Pasquale; Parmeggiani, Domenico; Ripa, Carmine; Parmeggiani, Umberto

    2008-03-01

    The purpose of this study was to assess the long-term efficacy of percutaneous ethanol injection (PEI) for the treatment of hyperfunctioning thyroid nodules. One hundred twenty-five patients (88 women, 37 men; age range, 17-76 years; mean age, 53 years) with 127 hyperfunctioning thyroid nodules (volume, 1.2-90 mL; mean, 10.3 mL) were treated with PEI. There were 1-11 PEI sessions per patient (average, 3.9) performed, with injection of 1-14 mL of ethanol per session (total injected ethanol per patient, 3-108 mL; mean, 14.0 mL). Efficacy of the treatment was assessed with color Doppler sonography; scintigraphy; and free triiodothyronine (FT3), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) assays. Follow-up (9-144 months; median, 60 months) was performed with TSH and color Doppler sonography every 2 months for 6 months and every 6 months thereafter. Three (2.4%) of 125 patients refused completion of PEI therapy because of pain. Results are reported in 122 patients with 124 nodules. All 122 patients showed posttreatment normal levels of FT3, FT4, and TSH. A complete cure (absent uptake in the nodule and recovery of normal uptake in the thyroid parenchyma) was obtained in 113 (93%) of 122 patients-115 (92.7%) of 124 treated nodules. Residual hyperfunctioning nodular tissue along with decreased thyroid parenchyma uptake (partial cure) was present in nine patients accounting for nine (7.3%) of 124 nodules. Rates of complete cure after PEI were: overall nodules, 115 (92.7%) of 124; nodules < or = 10 mL, 63 (94.0%) of 67; nodules > 10 to < or = 30 mL, 32 (91.4%) of 35; nodules > 30 to < or = 60 mL, 17 (89.5%) of 19; nodules > 60 mL, three (100%) of three. The overall rate of major complications (transient laryngeal nerve damage, two patients; abscess and hematoma, one patient each) was four (3.2%) of 125 patients. Follow-up examinations showed marked shrinkage of 112 treated nodules ranging from 50% to 90% of the pretreatment volume (mean, 66%) and new growth of hyperfunctioning tissue in four patients at color Doppler sonography and scintigraphy at 12, 18, 18, and 48 months' follow-up, respectively. However, all patients remained euthyroid (low or normal TSH and normal FT3 and FT4) during follow-up. PEI of hyperfunctioning thyroid nodules seems to be an effective and safe alternative to traditional treatment. It also appears to be effective in patients with hyperfunctioning thyroid nodules larger than 30 mL.

  4. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV ofmore » IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.« less

  5. Tolerance to disulfiram induced by chronic alcohol intake in the rat.

    PubMed

    Tampier, Lutske; Quintanilla, María Elena; Israel, Yedy

    2008-06-01

    Disulfiram, an inhibitor of aldehyde dehydrogenase used in the treatment of alcoholism, is an effective medication when its intake is supervised by a third person. However, its therapeutic efficacy varies widely, in part due to the fact that disulfiram is a pro-drug that requires its transformation into an active form and because it shows a wide range of secondary effects which often prevent the use of doses that ensure full therapeutic effectiveness. In this preclinical study in rats we report the development of tolerance to disulfiram induced by the chronic ingestion of ethanol, an additional source of variation for the actions of disulfiram with possible therapeutic significance, We also addresses the likely mechanism of this effect. Wistar-derived rats bred for generations as high ethanol drinkers (UChB) were trained for either 3 days (Group A) or 30 days (Group B) to choose between ethanol (10% v/v) or water, which were freely available from 2 bottles on a 24-hour basis. Subsequently, animals in both groups were administered disulfiram or cyanamide (another inhibitor of aldehyde dehydrogenase) and ethanol intake in this free choice paradigm was determined. Animals were also administered a standard dose of 1 g ethanol/kg (i.p) and arterial blood acetaldehyde was measured. Disulfiram (12.5 and 25 mg/kg) and cyanamide (10 mg/kg) markedly inhibited ethanol intake (up to 60 to 70%) in animals that had ethanol access for only 3 days (Group A). However both drugs were inactive in inhibiting ethanol intake in animals that had consumed ethanol for 30 days (Group B). Following the injection of 1 g ethanol/kg, arterial blood acetaldehyde levels reached levels of 150 and 300 microM for disulfiram and cyanamide respectively, values which were virtually identical regardless of the length of prior ethanol intake of the animals. Chronic ethanol intake in high-drinker rats leads to marked tolerance to the aversive effects of disulfiram and cyanamide on ethanol intake despite the presence of consistently high levels of blood acetaldehyde. These findings may have implications for the use of disulfiram for the treatment of alcoholism in humans.

  6. Alteration of glutamate/GABA balance during acute alcohol intoxication in rats: effect of Xingnaojing injection.

    PubMed

    Wei, Jingjing; Yao, Limei; Yang, Lei; Zhao, Wei; Shi, Si; Cai, Qingyan; Chen, Dingsheng; Li, Weirong; Wang, Qi

    2015-05-26

    Xingnaojing Injection (XNJI) is a modern Chinese formula came from famous Chinese medicine An Gong Niu Huang Pill. XNJI has been used for treatment of cerebral diseases and stroke in China, and is approved by the State Food and Drug Administration of China for the treatment of acute alcohol intoxication (AAI). XNJI belongs to the ethnopharmacological family of medicines. In this study, we investigated the mechanisms of the XNJI effect on AAI. To investigate the effects of XNJI on glutamate, gamma-aminobutyric acid (GABA) and related receptor in lateral hypothalamic area (LHA) of AAI rat. Adult male Sprague-Dawley rats were implanted with microdialysis probes in LHA. Rats were randomly divided into control, model, 1.36mg/kg XNJI, 0.68mg/kg XNJI and 0.34mg/kg XNJI groups. During microdialysis, baseline samples were collected from 1h to 2.5h; thereafter, the rats were given an intraperitoneal injection of 52% ethanol, 5.2g/kg, or saline for control group. Twenty minutes later, three doses of XNJI was given by unilateral injection respectively, while saline for control and model groups, and samples were collected for the next 4h. The extracellular glutamate and GABA levels were measured in the LHA by a high performance liquid chromatography coupled with fluorescence detector (HPLC-FLU). The expression levels of related receptors N-methyl-d-aspartate receptor (NR) subunit NR2A, NR2B and GABAA were analyzed by reverse transcription polymerase chain reaction (RT-PCR). Ethanol (5.2g/kg) significantly decreased the extracellular levels of glutamate and increased extracellular GABA in LHA. On the other hand ethanol significantly decreased NR2A and NR2B mRNAs expression, and increase GABAA mRNA expression. XNJI could increase the extracellular level of glutamate and decrease that of GABA; moreover, induced an increase in NR2A and NR2B mRNA expression, and a decrease in GABAA mRNA expression in LHA. The current changes in glutamate, GABA and mRNA expressions of related receptors in LHA after injection of XNJI suggest that changes in these neurotransmitters and receptors as a potential mechanism of action for AAI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Mitigation of postnatal ethanol-induced neuroinflammation ameliorates trace fear memory deficits in juvenile rats.

    PubMed

    Goodfellow, Molly J; Shin, Youn Ju; Lindquist, Derick H

    2018-02-15

    Impairments in behavior and cognition are common in individuals diagnosed with fetal alcohol spectrum disorders (FASD). In this study, FASD model rats were intragastrically intubated with ethanol (5g/kg/day; 5E), sham-intubated (SI), or maintained as naïve controls (NC) over postnatal days (PD) 4-9. Ethanol exposure during this human third trimester-equivalent period induces persistent impairments in hippocampus-dependent learning and memory. The ability of ibuprofen (IBU), a non-steroidal anti-inflammatory drug, to diminish ethanol-induced neuroinflammation and rescue deficits in hippocampus-dependent trace fear conditioning (TFC) was investigated in 5E rats. Phosphate buffered saline vehicle (VEH) or IBU was injected 2h following ethanol exposure over PD4-9, followed by quantification of inflammation-related genes in the dorsal hippocampus of PD10 rats. The 5E-VEH rats exhibited significant increases in Il1b and Tnf, but not Itgam or Gfap, relative to NC, SI-VEH, and 5E-IBU rats. In separate groups of PD31-33 rats, conditioned fear (freezing) was significantly reduced in 5E-VEH rats during TFC testing, but not acquisition, compared to SI-VEH and, critically, 5E-IBU rats. Results suggest neuroimmune activation in response to ethanol within the neonate hippocampus contributes to later-life cognitive dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Interest of new alkylsulfonylhydrazide-type compound in the treatment of alcohol use disorders.

    PubMed

    Jeanblanc, Jérôme; Bourguet, Erika; Sketriené, Diana; Gonzalez, Céline; Moroy, Gautier; Legastelois, Rémi; Létévé, Mathieu; Trussardi-Régnier, Aurélie; Naassila, Mickaël

    2018-06-01

    Recent preclinical research suggested that histone deacetylase inhibitors (HDACIs) and specifically class I HDAC selective inhibitors might be useful to treat alcohol use disorders (AUDs). The objective of this study was to find a new inhibitor of the HDAC-1 isoenzyme and to test its efficacy in an animal model of AUDs. In the present study, we prepared new derivatives bearing sulfonylhydrazide-type zinc-binding group (ZBG) and evaluated these compounds in vitro on HDAC-1 isoenzyme. The most promising compound was tested on ethanol operant self-administration and relapse in rats. We showed that the alkylsulfonylhydrazide-type compound (ASH) reduced by more than 55% the total amount of ethanol consumed after one intracerebroventricular microinjection, while no effect was observed on motivation of the animals to consume ethanol. In addition, one ASH injection in the central amygdala reduced relapse. Our study demonstrated that a new compound designed to target HDAC-1 is effective in reducing ethanol intake and relapse in rats and further confirm the interest of pursuing research to study the exact mechanism by which such inhibitor may be useful to treat AUDs.

  9. Initial subjective reward to alcohol in Sprague-Dawley rats.

    PubMed

    Nentwig, Todd B; Myers, Kevin P; Grisel, Judith E

    2017-02-01

    Initial subjective response to the rewarding properties of alcohol predicts voluntary consumption and the risk for alcohol use disorders. We assessed the initial subjective reward to alcohol in rats using a single exposure conditioned place preference (SE-CPP) paradigm. Sprague-Dawley rats demonstrate preference for a context paired with a single systemic injection of ethanol (1.0 g/kg, delivered intraperitoneally). However, expression of SE-CPP in males depended on pairing ethanol with the first exposure of two (ethanol; saline) to the conditioning apparatus and procedures, while conditioning day did not appreciably affect SE-CPP in females, consistent with the view that females experience heightened addiction vulnerability. This model offers researchers a high throughput assay for investigating factors that influence alcohol reward and may point the way toward more effective prevention and treatment efforts. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature

    PubMed Central

    Qutachi, Omar; Vetsch, Jolanda R.; Gill, Daniel; Cox, Helen; Scurr, David J.; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A.; Shakesheff, Kevin M.; Rahman, Cheryl V.

    2014-01-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  11. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol.

    PubMed

    Dhouib, H; Jallouli, M; Draief, M; Bouraoui, S; El-Fazâa, S

    2015-12-01

    Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol may moderate the effect of nicotine administered independently by counteractive interactions between these two drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats.

    PubMed

    Kumar, Jaya; Hapidin, Hermizi; Bee, Yvonne-Tee Get; Ismail, Zalina

    2013-11-26

    Abstinence from chronic ethanol consumption leads to the manifestation of a variety of symptoms attributed to central nervous system hyperexcitability, such as increased irritability, anxiety, and restlessness. Recent studies have demonstrated the importance of metabotropic glutamate receptor 5 (mGluR5) in addictive behaviours. This study investigates the effects of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on ethanol withdrawal induced anxiety using two behavioural paradigms. Male Wistar rats were fed a Modified Liquid Diet (MLD) containing low fat cow milk, sucrose, and maltodextrin with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into ethanol withdrawal, the rats were intraperitoneally injected with normal saline and MPEP (2.5, 5.0, 10, 20, 30 mg/kg) and were assessed for ethanol withdrawal induced anxiety-like syndrome using an automated elevated plus maze and an open field. MPEP at 10 mg/kg significantly attenuated ethanol withdrawal induced anxiety without any compromising effects on locomotor activities. Despite reversing several indices of ethanol withdrawal induced anxiety in both the elevated plus maze and the open field, low doses of MPEP (2.5, 5 mg/kg) significantly compromised the locomotor activities of ethanol withdrawn rats. High doses of MPEP (20 and 30 mg/kg) significantly attenuated withdrawal anxiety when tested in the elevated plus maze but not in the open field. Administration of MPEP (2.5, 5, 10, 20, 30 mg/kg) has no significant compromising effect on the locomotor activities of ethanol naïve rats. Despite significantly reducing withdrawal anxiety in both behavioural paradigms at 10 mg/kg, the compromising effects of low and high doses of MPEP must be further explored along with the therapeutic efficiency of this drug for relieving withdrawal induced anxiety.

  13. Effects of the mGluR5 antagonist MPEP on ethanol withdrawal induced anxiety-like syndrome in rats

    PubMed Central

    2013-01-01

    Abstinence from chronic ethanol consumption leads to the manifestation of a variety of symptoms attributed to central nervous system hyperexcitability, such as increased irritability, anxiety, and restlessness. Recent studies have demonstrated the importance of metabotropic glutamate receptor 5 (mGluR5) in addictive behaviours. This study investigates the effects of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) on ethanol withdrawal induced anxiety using two behavioural paradigms. Male Wistar rats were fed a Modified Liquid Diet (MLD) containing low fat cow milk, sucrose, and maltodextrin with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into ethanol withdrawal, the rats were intraperitoneally injected with normal saline and MPEP (2.5, 5.0, 10, 20, 30 mg/kg) and were assessed for ethanol withdrawal induced anxiety-like syndrome using an automated elevated plus maze and an open field. MPEP at 10 mg/kg significantly attenuated ethanol withdrawal induced anxiety without any compromising effects on locomotor activities. Despite reversing several indices of ethanol withdrawal induced anxiety in both the elevated plus maze and the open field, low doses of MPEP (2.5, 5 mg/kg) significantly compromised the locomotor activities of ethanol withdrawn rats. High doses of MPEP (20 and 30 mg/kg) significantly attenuated withdrawal anxiety when tested in the elevated plus maze but not in the open field. Administration of MPEP (2.5, 5, 10, 20, 30 mg/kg) has no significant compromising effect on the locomotor activities of ethanol naïve rats. Despite significantly reducing withdrawal anxiety in both behavioural paradigms at 10 mg/kg, the compromising effects of low and high doses of MPEP must be further explored along with the therapeutic efficiency of this drug for relieving withdrawal induced anxiety. PMID:24279870

  14. Pavlovian drug-sickness pairings result in the conditioning of an antisickness response.

    PubMed

    Lett, B T

    1983-10-01

    After a drug conditioned stimulus (CS) has been injected prior to lithium chloride as the unconditioned stimulus (US) on five occasions, the drug CS becomes able to evoke a conditioned antisickness response (CAR). This CAR is implied by the finding that the CS drug mitigates the conditioned saccharin aversion produced by lithium when it is administered in the interval between saccharin consumption and lithium injection. The following drugs were tested and are listed in approximate order of their effectiveness in producing a conditioned antisickness effect: pentobarbital, ethanol, morphine, amphetamine, and chlordiazepoxide.

  15. Recovery and identification of bacterial DNA from illicit drugs.

    PubMed

    Cho, Kaymann T; Richardson, Michelle M; Kirkbride, K Paul; McNevin, Dennis; Nelson, Michelle; Pianca, Dennis; Roffey, Paul; Gahan, Michelle E

    2014-02-01

    Bacterial infections, including Bacillus anthracis (anthrax), are a common risk associated with illicit drug use, particularly among injecting drug users. There is, therefore, an urgent need to survey illicit drugs used for injection for the presence of bacteria and provide valuable information to health and forensic authorities. The objectives of this study were to develop a method for the extraction of bacterial DNA from illicit drugs and conduct a metagenomic survey of heroin and methamphetamine seized in the Australian Capital Territory during 2002-2011 for the presence of pathogens. Trends or patterns in drug contamination and their health implications for injecting drug users were also investigated. Methods based on the ChargeSwitch(®)gDNA mini kit (Invitrogen), QIAamp DNA extraction mini kit (QIAGEN) with and without bead-beating, and an organic phenol/chloroform extraction with ethanol precipitation were assessed for the recovery efficiency of both free and cellular bacterial DNA. Bacteria were identified using polymerase chain reaction and electrospray ionization-mass spectrometry (PCR/ESI-MS). An isopropanol pre-wash to remove traces of the drug and diluents, followed by a modified ChargeSwitch(®) method, was found to efficiently lyse cells and extract free and cellular DNA from Gram-positive and Gram-negative bacteria in heroin and methamphetamine which could then be identified by PCR/ESI-MS. Analysis of 12 heroin samples revealed the presence of DNA from species of Comamonas, Weissella, Bacillus, Streptococcus and Arthrobacter. No organisms were detected in the nine methamphetamine samples analysed. This study develops a method to extract and identify Gram-positive and Gram-negative bacteria from illicit drugs and demonstrates the presence of a range of bacterial pathogens in seized drug samples. These results will prove valuable for future work investigating trends or patterns in drug contamination and their health implications for injecting drug users as well as enabling forensic links between seizures to be examined. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of repeated cocaine exposure and withdrawal on voluntary ethanol drinking, and the expression of glial glutamate transporters in mesocorticolimbic system of P rats.

    PubMed

    Hammad, Alaa M; Althobaiti, Yusuf S; Das, Sujan C; Sari, Youssef

    2017-07-01

    Glutamatergic neurotransmission within the brain's reward circuits plays a major role in the reinforcing properties of both ethanol and cocaine. Glutamate homeostasis is regulated by several glutamate transporters, including glutamate transporter type 1 (GLT-1), cystine/glutamate transporter (xCT), and glutamate aspartate transporter (GLAST). Cocaine exposure has been shown to induce a dysregulation in glutamate homeostasis and a decrease in the expression of GLT-1 and xCT in the nucleus accumbens (NAc). In this study, alcohol preferring (P) rats were exposed to free-choice of ethanol (15% and 30%) and/or water for five weeks. On Week 6, rats were administered (i.p.) cocaine (10 and 20mg/kg) or saline for 12 consecutive days. This study tested two groups of rats: the first group was euthanized after seven days of repeated cocaine i.p. injection, and the second group was deprived from cocaine for five days and euthanized at Day 5 after cocaine withdrawal. Only repeated cocaine (20mg/kg, i.p.) exposure decreased ethanol intake from Day 3 through Day 8. Co-exposure of cocaine and ethanol decreased the relative mRNA expression and the expression of GLT-1 in the NAc but not in the medial prefrontal cortex (mPFC). Importantly, co-exposure of cocaine and ethanol decreased relative expression of xCT in the NAc but not in the mPFC. Our findings demonstrated that chronic cocaine exposure affects ethanol intake; and ethanol and cocaine co-abuse alters the expression of glial glutamate transporters. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Comparison of the effects of the uncompetitive N-methyl-D-aspartate antagonist (+-)-5-aminocarbonyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (ADCI) with its structural analogs dizocilpine (MK-801) and carbamazepine on ethanol withdrawal seizures.

    PubMed

    Grant, K A; Snell, L D; Rogawski, M A; Thurkauf, A; Tabakoff, B

    1992-03-01

    The ability of [(+-)-5-aminocarbonyl-10,11-dihydro-5H-di-benzo [a,d]cyclohepten-5,10-imine (ADCI) and its structural analogs dizocilipine (MK-801) and carbamazepine to block ethanol withdrawal seizures was tested in mice made physically dependent upon ethanol. Three injections of either ADCI (ranging from 1.0-10.0 mg/kg), dizocilpine (ranging from 0.1-1.0 mg/kg) or carbamazepine (ranging from 17-50 mg/kg) were administered during the first 7 hr of ethanol withdrawal. The severity of ethanol withdrawal seizures was rated during the first 11 hr of withdrawal and again at 24 hr after withdrawal of ethanol. ADCI and dizocilpine suppressed the severity and occurrence of the withdrawal seizures in a dose-dependent fashion, whereas carbamazepine was ineffective in blocking the withdrawal seizures. The relative potencies of dizocilpine, ADCI and carbamazepine in suppressing ethanol withdrawal seizures corresponded with the relative potencies of the compounds in displacing [3H]dizocilpine from mouse cortical membrane preparations. These findings are consistent with the suggestion that blockade of N-methyl-D-aspartate-mediated neurotransmission is an effective treatment for decreasing ethanol withdrawal seizures. ADCI also blocked the occurrence of withdrawal-associated whole body tremors, whereas dizocilpine and carbamazepine were ineffective in blocking the tremors. The doses of ADCI, dizocilpine and carbamazepine that resulted in motor incoordination on an accelerating rotarod task were determined in groups of naive mice. Dizocilpine in doses as low as 0.3 mg/kg produced a decreased ability to remain on the rotarod, whereas ADCI up to 30 mg/kg did not affect rotarod performance.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. N-acetylcysteine treatment blocks the development of ethanol-induced behavioural sensitization and related ΔFosB alterations.

    PubMed

    Morais-Silva, Gessynger; Alves, Gabrielle Cunha; Marin, Marcelo T

    2016-11-01

    Ethanol addiction is a serious public health problem that still needs more effective pharmacological treatment. A key factor in the development and maintenance of this disease is the advent of neuroadaptations in the mesocorticolimbic brain pathway upon chronic ethanol abuse. In general, these neuroadaptations are maladaptive and affect numerous neurotransmitter systems and intracellular molecules. One of these molecules is ΔFosB, a transcription factor that is altered after chronic drug use. Behavioural sensitization is a useful model for the study of the neuroadaptations related to addiction. Recent works have shown a role for the imbalance of glutamatergic neurotransmission in the symptoms found in addicted people. In this sense, the treatment with N-acetylcysteine, a l-cysteine prodrug that acts by restoring extrasynaptic concentrations of glutamate through the activation of cystine-glutamate antiporter, has shown promising results in the treatment of addiction. Thus, an animal model of behavioural sensitization was used to evaluate the effects of N-acetylcysteine treatment in the behavioural and molecular alterations induced by chronic ethanol administration. Swiss mice were subject to 13 days of daily ethanol administration to induce behavioural sensitization. Two hours before each ethanol administration and locomotor activity evaluation, the animals received intraperitoneally N-acetylcysteine injections. Immediately after the last test session, their brains were removed for ΔFosB and cystine-glutamate antiporter quantification. It was found that N-acetylcysteine treatment blocked ethanol-induced behavioural sensitization, the increase of ΔFosB content in the prefrontal cortex, and its reduction in the nucleus accumbens. The results suggest a possible use of N-acetylcysteine in ethanol-related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  20. Biofuel effect on flame propagation and soot formation in a DISI engine

    NASA Astrophysics Data System (ADS)

    Irimescu, A.; Merola, S. S.; Di Iorio, S.; Vaglieco, B. M.

    2017-10-01

    The use of biofuels, especially in transportation and industrial processes, is seen as one of the most effective solutions to promote the reduction of greenhouse gases and pollutant emissions, as well as to lighten the dependence from petro-fuel producers. Biofuels are defined as a wide range of energy sources derived from biomass. In this category, alcohols produced through fermentation, such as ethanol and butanol, are considered some of the most suitable alternatives for transportation purposes. The benefits of bio-ethanol addition to gasoline have always been recognized for practical reasons. Apart from the variety of sources which it can be produced from, ethanol can raise the octane rating, given its improved anti-knock characteristics, allowing the use of higher compression ratios and higher thermal efficiency. However, ethanol’s high latent heat of vaporization can cause problems during cold-start due to poor evaporation. On the other hand, in hot climates ethanol fuelling can result in adverse effects such as vapour lock. Butanol can be considered as an emergent alternative fuel. Normal butanol has several well-known advantages when compared to ethanol, including increased energy content, greater miscibility with transportation fuels, and lower propensity for water absorption. Despite of these pros, the costs of n-butanol production are higher due to lower yields compared to ethanol. Moreover, vaporization remains a critical aspect of this biofuel. Understanding the effect of biofuels on in-cylinder combustion processes is a key-point for the optimization of fuel flexibility and achieving lower CO2 emissions. To this aim, a combined thermodynamic and optical investigation was performed on a direct injection spark ignition engine fuelled with ethanol, butanol and gasoline. Fuels were compared by fixing the injection and spark ignition strategies. Thermodynamic measurements were coupled with optical investigations based on cycle resolved flame visualization. Optimized procedures of image processing were applied to follow the evolution of the flame front in terms of morphological parameters and to evaluate the local distribution of diffusive flames induced by oxidation of fuel deposits during late combustion. These data were correlated with exhaust gas measurements. The experiments confirmed that the chemical-physical specifications of the tested fuels strongly influenced the temporal and spatial evolution of the flame front. Moreover, different distributions and intensities of diffusive flames were observed. These results demonstrated the effect of the fuel on the deposits amount and distribution in the combustion chamber, at fixed operative conditions.

  1. Recombinant yeast with improved ethanol tolerance and related methods of use

    DOEpatents

    Gasch, Audrey P [Madison, WI; Lewis, Jeffrey A [Madison, WI

    2012-05-15

    The present invention provides isolated Elo1 and Mig3 nucleic acid sequences capable of conferring increased ethanol tolerance on recombinant yeast and methods of using same in biofuel production, particularly ethanol production. Methods of bioengineering yeast using the Elo1 and, or, Mig3 nucleic acid sequences are also provided.

  2. Forced ethanol ingestion by Wistar rats from a juvenile age increased voluntary alcohol consumption in adulthood, with the involvement of orexin-A.

    PubMed

    Mendoza-Ruiz, Luis-Gabriel; Vázquez-León, Priscila; Martínez-Mota, Lucía; Juan, Eduardo Ramírez San; Miranda-Páez, Abraham

    2018-08-01

    Human adolescents who drink alcohol are more likely to become alcoholics in adulthood. Alcohol administration (intraperitoneally) or drinking (in a 2-bottle free choice paradigm) during the juvenile/adolescent age of rats promotes voluntary alcohol consumption in adulthood. On the other hand, there is growing evidence that the orexinergic system plays a role in several rewarded behaviors, including alcohol ingestion. Since it is unknown what effect is exerted in adulthood by forced oral ethanol intake and/or administration of orexin-A (OX-A) in juvenile rats, the present study aimed to evaluate this question. A group of male Wistar rats was forced to drink ethanol (10% v/v) as the only liquid in the diet from weaning (postnatal day 21) to postnatal day 67 (46 days), followed by a forced withdrawal period. An age-matched group was raised drinking tap water (control). OX-A or its vehicle was microinjected intracerebroventricularly (i.c.v.) (1 nmol/0.6 μL) to explore its effect as well. Locomotor activity and voluntary ethanol consumption were later assessed in all groups. The rats forced to consume ethanol early in life showed an elevated level of ambulation and alcohol ingestion in adulthood. A single injection of OX-A increased locomotor activity and acute ethanol intake in rats with or without prior exposure to alcohol at the juvenile stage. In conclusion, forced ethanol consumption in juvenile rats led to increased voluntary alcohol drinking behavior during adulthood, an effect likely facilitated by OX-A. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Acute exposure to ethanol on gestational day 15 affects social motivation of female offspring.

    PubMed

    Varlinskaya, Elena I; Mooney, Sandra M

    2014-03-15

    Alterations in social behavior are a hallmark of many neurodevelopmental disorders in humans. In rodents, social behavior is affected by prenatal insults. The outcomes are dependent on the timing of the insult as well as the sex and age of the animal tested. The limbic system is particularly important for social behavior, and a peak of neurogenesis within this system occurs on gestational day (G)15. Neurons appear particularly vulnerable to ethanol insult around the time they become post-mitotic. We tested the hypothesis that acute exposure to ethanol on G15 would result in significant social behavior deficits. Accordingly, Long Evans pregnant females were injected with ethanol (2.9 g/kg) or an equivalent volume of saline on G15. Offspring were assessed in a modified social interaction test on postnatal day (P) 28, P42, or P75, i.e., during early adolescence, late adolescence, or young adulthood. Prenatal ethanol exposure decreased social investigation in P28 females and transformed social preference into social avoidance in 75-day-old females. Contact behavior, play fighting, and locomotor activity differed as a function of age, but were not significantly affected by ethanol exposure. Males demonstrated significantly more contact behavior and play fighting at P42 than at P28 or P70, whereas there were no age-related changes in females. Adult females showed more locomotor activity than adult males. Overall, prenatal ethanol exposure on G15 enhanced social anxiety in females, with these effects seen in adulthood only. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Short-term and long-term ethanol administration inhibits the placental uptake and transport of valine in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, R.V.; Schenker, S.; Henderson, G.I.

    1981-08-01

    Ethanol ingestion during pregnancy causes a pattern of fetal/neonatal dysfunction called the FAS. The effects of short- and long-term ethanol ingestion on the placental uptake and maternal-fetal transfer of valine were studied in rats. The in vivo placental uptake and fetal uptake were estimated after injection of 0.04 micromol of /sub 14/C-valine intravenously on day 20 of gestation in Sprague-Dawley rats. Short-term ethanol ingestion (4 gm/kg) caused a significant reduction in the placental uptake of /sub 14/C-valine by 33%, 60%, and 30%, and 31% at 2.5, 5, 10, and 15 min after valine administration, respectively (p less than 0.01), andmore » a similar significant reduction occurred in the fetal uptake of /sub 14/C-valine (p less than 0.01). Long-term ethanol ingestion prior to and throughout gestation resulted in a 47% reduction in placental valine uptake (p less than 0.01) and a 46% reduction in fetal valine uptake (p less than 0.01). Long-term ethanol feeding from day 4 to day 20 of gestation caused a 32% reduction in placental valine uptake (p less than 0.01) and a 26% reduction in fetal valine uptake (p less than 0.01). We conclude that both short- and long-term ingestion of ethanol inhibit the placental uptake and maternal-fetal transfer of an essential amino acid--valine. An alteration of placental function may contribute to the pathogenesis of the FAS.« less

  5. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: chemical, microbial and isotope assessment of a 1D flow-through experiment.

    PubMed

    Vidal-Gavilan, G; Carrey, R; Solanas, A; Soler, A

    2014-10-01

    Nitrate-removal through enhanced in situ biodenitrification (EISB) is an existing alternative for the recovery of groundwater quality, and is often suggested for use in exploitation wells pumping at small flow-rates. Innovative approaches focus on wider-scale applications, coupling EISB with water-management practices and new monitoring tools. However, before this approach can be used, some water-quality issues such as the accumulation of denitrification intermediates and/or of reduced compounds from other anaerobic processes must be addressed. With such a goal, a flow-through experiment using 100mg-nitrate/L groundwater was built to simulate an EISB for an alluvial aquifer. Heterotrophic denitrification was induced through the periodic addition of a C source (ethanol), with four different C addition strategies being evaluated to improve the quality of the denitrified water. Chemical, microbial and isotope analyses of the water were performed. Biodenitrification was successfully stimulated by the daily addition of ethanol, easily achieving drinking water standards for both nitrate and nitrite, and showing an expected linear trend for nitrogen and oxygen isotope fractionation, with a εN/εO value of 1.1. Nitrate reduction to ammonium was never detected. Water quality in terms of remaining C, microbial counts, and denitrification intermediates was found to vary with the experimental time, and some secondary microbial respiration processes, mainly manganese reduction, were suspected to occur. Carbon isotope composition from the remaining ethanol also changed, from an initial enrichment in (13)C-ethanol compared to the value of the injected ethanol (-30.6‰), to a later depletion, achieving δ(13)C values well below the initial isotope composition (to a minimum of -46.7‰). This depletion in the heavy C isotope follows the trend of an inverse fractionation. Overall, our results indicated that most undesired effects on water quality may be controlled through the optimization of the C/N ratio determined from the amounts of injected ethanol vs. the amount of nitrate in groundwater, with a smaller C/N ratio causing a lower level of undesired impurities. Furthermore, the authors suggest that the biofilm life-time has a direct effect on microbial population and hence affects biodenitrification performance, influencing the accumulation of nitrite over time. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Anti-allodynic and Anti-hyperalgesic effects of an ethanolic extract and xylopic acid from the fruits of Xylopia aethiopica in murine models of neuropathic pain

    PubMed Central

    Ameyaw, Elvis O.; Woode, Eric; Boakye-Gyasi, Eric; Abotsi, Wonder K.M.; Kyekyeku, James Oppong; Adosraku, Reimmel K.

    2014-01-01

    Background: Fruit extracts of Xylopia aethiopica are used traditionally in the management of pain disorders including headache and neuralgia. An animal model of vincristine-induced sensory neuropathy was developed after repeated intraperitoneal injection in rats and used in the present work to study the effects of the ethanolic extract of X. aethiopica (XAE) and its diterpene xylopic acid (XA) in vincristine-induced neuropathic pain. Materials and Methods: Vincristine (0.1 mg kg-1 day-1) was administered during two cycles of five consecutive days to induce chemotherapy-induced neuropathic pain. Static tactile anti-allodynic, anti-hyperalgesic, and cold anti-allodynic effects of XAE (30-300 mg kg-1) and XA (10-100 mg kg-1) were assessed using Von Frey filaments of bending forces of 4, 8, and 15 g, the Randall-Selitto paw pressure test, and cold water (4.5°C), respectively. Results: Administration of vincristine caused the development of allodynia and hyperalgesia with no significant motor deficit, spontaneous pain, and foot deformity. XAE (30-300 mg kg-1) and XA (10-100 mg kg-1) exhibited anti-hyperalgesic, tactile, and cold anti-allodynic properties with XA exhibiting greater potency than XAE. Pregabalin (10-100 mg kg-1) used as control produced similar effect. Conclusion: These findings establish the anti-allodynic and anti-hyperalgesic effects of the ethanolic fruit XAE and its major diterpene XA in vincristine-induced neuropathtic pain. PMID:24761123

  7. Comparison of methods for extracting kafirin proteins from sorghum distillers dried grains with solubles.

    PubMed

    Wang, Ying; Tilley, Michael; Bean, Scott; Sun, X Susan; Wang, Donghai

    2009-09-23

    Use of coproducts generated during fermentation is important to the overall economics of biofuel production. The main coproduct from grain-based ethanol production is distillers dried grains with solubles (DDGS). High in protein, DDGS is a potential source of protein for many bioindustrial applications such as adhesives and resins. The objective of this research was to characterize the composition as well as chemical and physical properties of kafirin proteins from sorghum DDGS with various extraction methods including use of acetic acid, HCl-ethanol and NaOH-ethanol under reducing conditions. Extraction conditions affected purity and thermal properties of the extracted kafirin proteins. Extraction yields of 44.2, 24.2, and 56.8% were achieved by using acetic acid, HCl-ethanol and NaOH-ethanol, respectively. Acetic acid and NaOH-ethanol produced protein with higher purity than kafirins extracted with the HCl-ethanol protocol. The acetic acid extraction protocol produced protein with the highest purity, 98.9%. Several techniques were used to evaluate structural, molecular and thermal properties of kairin extracts. FTIR showed alpha-helix dominated in all three samples, with only a small portion of beta-sheet present. Electrophoresis results showed alpha(1), alpha(2) band and beta kafirins were present in all three extracts. Glass transition peaks of the extracts were shown by DSC to be approximately 230 degrees C. Kafirin degraded at 270-290 degrees C. Size exclusion chromatography revealed that the acetic acid and HCl-ethanol based extraction methods tended to extract more high molecular weight protein than the NaOH-ethanol based method. Reversed phase high-performance liquid chromatography showed that the gamma kafirins were found only in extracts from the NaOH-ethanol extraction method.

  8. Evidence for the gastric cytoprotective effect of centrally injected agmatine.

    PubMed

    Zádori, Zoltán S; Tóth, Viktória E; Fehér, Ágnes; Philipp, Kirsch; Németh, József; Gyires, Klára

    2014-09-01

    Agmatine (decarboxylated arginine) exerts cytoprotective action in several tissues, such as in the brain, heart or kidneys, but there is still controversy over the effects of agmatine on the gastric mucosa. The aim of the present study was to reveal the potential gastroprotective action of agmatine by using an acid-independent ulcer model to clarify which receptors and peripheral factors are involved in it. Gastric mucosal damage was induced by acidified ethanol. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. It was found that agmatine given intracerebroventricularly (i.c.v., 0.044-220 nmol/rat) significantly inhibited the development of ethanol-induced mucosal damage, while in the case of intraperitoneal injection (0.001-50mg/kg i.p.) it had only a minor effect. The central gastroprotective action of agmatine was completely antagonized by mixed alpha2-adrenoceptor and imidazoline I1 receptor antagonists (idazoxan, efaroxan), but only partially by yohimbine (selective alpha2-adrenoceptor antagonist) and AGN 192403 (selective I1 receptor ligand, putative antagonist). It was also inhibited by the non-selective opioid-receptor antagonist naloxone and the selective δ-opioid receptor antagonist naltrindole, but not by β-funaltrexamine and nor-Binaltorphimine (selective μ- and κ-opioid receptor antagonists, respectively). Furthermore, the effect of agmatine was antagonized by bilateral cervical vagotomy and by pretreatment with indomethacin and NG-nitro-l-arginine. Agmatine also reversed the ethanol-induced reduction of gastric mucosal CGRP and somatostatin content, but did not have any significant effect on gastric motor activity. These results indicate that agmatine given centrally induces gastric cytoprotection, which is mediated by central imidazoline I1 receptors, alpha2-adrenoceptors and δ-opioid receptors. Activation of these receptors induces the release of different mucosal protective factors, such as NO, prostaglandins, CGRP and somatostatin by a vagal-dependent mechanism. Alterations of gastric motility are not likely to contribute to the observed protective effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Effects of three drying methods of post space dentin bonding used in a direct resin composite core build-up method.

    PubMed

    Iwashita, Taichi; Mine, Atsushi; Matsumoto, Mariko; Nakatani, Hayaki; Higashi, Mami; Kawaguchi-Uemura, Asuka; Kabetani, Tomoshige; Tajiri, Yuko; Imai, Dai; Hagino, Ryosuke; Miura, Jiro; Minamino, Takuya; Yatani, Hirofumi

    2018-06-14

    The purpose of this study was to evaluate drying methods for post space dentin bonding in a direct resin composite core build-up method. Experiment 1: Four root canal plastic models, having diameters of 1.0 or 1.8mm and parallel or tapered shapes, were prepared. After drying each post space using three drying methods (air drying, paper-point drying, or ethanol drying, which involves filling the space with 99.5 vol% ethanol followed by air drying), the residual liquid in the models was weighed. Experiment 2: Thirty endodontically treated single-root teeth were dried using the above-described drying methods and filled with dual-cure resin composite. The bonded specimens were sectioned into square beams of approximately 1mm 2 for microtensile bond strength (μTBS) testing. Nine teeth were observed through transmission electron microscopy (TEM) and micro computed tomography (μCT). The weight of residual liquid and μTBS were analyzed using Scheffé multiple comparison. Experiment 1: The results of air drying were significantly different from those of paper-point drying (p<0.001) and ethanol drying (p<0.001), and no significant difference was observed between paper-point drying and ethanol drying. Experiment 2: The μTBS significantly decreased in the order of ethanol drying, paper-point drying, and air drying (air drying/ethanol drying: p<0.001, air drying/paper-point drying: p=0.048, ethanol drying/paper-point drying: p=0.032). TEM and μCT observation revealed a sufficient dentin/adhesive interface in the ethanol drying group. Ethanol drying was found to be more effective for post space dentin bonding, as compared with air drying and paper-point drying. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Room-temperature cold-welding of gold nanoparticles for enhancing the electrooxidation of carbon monoxide.

    PubMed

    Liu, Cai; Li, Yong-Jun; Sun, Shi-Gang; Yeung, Edward S

    2011-04-21

    A cold-welding strategy is proposed to rapidly join together Au nanoparticles (AuNPs) into two-dimensional continuous structures for enhancing the electrooxidation of carbon monoxide by injecting a mixture of ethanol and tolulene into the bottom of a AuNP solution. © The Royal Society of Chemistry 2011

  11. Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.

    2017-01-01

    Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.

  12. Improved embryo development in Japanese black cattle by in vitro fertilization using ovum pick-up plus intracytoplasmic sperm injection with dithiothreitol.

    PubMed

    Oikawa, Toshinori; Itahashi, Tomoko; Numabe, Takashi

    2016-01-01

    The purpose of this study was to determine whether dithiothreitol (DTT) treatment of sperm and ethanol activation improve embryo production by intracytoplasmic sperm injection (ICSI). Further, we compared ICSI with standard in vitro fertilization (IVF) in oocytes obtained from cattle. We demonstrated that DTT reduced the disulfide bond in the bovine sperm head. Using oocytes obtained from a slaughterhouse, ICSI-DTT treatment without ethanol showed the highest rate of blastocyst formation. We applied these results to fertilization using ovum pick-up (OPU). Eleven Japanese black cattle served as donors for OPU plus standard IVF (OPU-IVF). Of them, four donors with low embryo development rates were selected to determine whether embryo development was enhanced by OPU plus ICSI (OPU-ICSI). We assessed effects on embryo development following IVF and ICSI in oocytes obtained using OPU. Blastocyst rates were significantly higher for OPU-ICSI than for OPU-IVF. Our results suggest that OPU-ICSI improves the blastocyst development rate in donors with low embryo production compared with the standard OPU-IVF.

  13. Improved embryo development in Japanese black cattle by in vitro fertilization using ovum pick-up plus intracytoplasmic sperm injection with dithiothreitol

    PubMed Central

    OIKAWA, Toshinori; ITAHASHI, Tomoko; NUMABE, Takashi

    2015-01-01

    The purpose of this study was to determine whether dithiothreitol (DTT) treatment of sperm and ethanol activation improve embryo production by intracytoplasmic sperm injection (ICSI). Further, we compared ICSI with standard in vitro fertilization (IVF) in oocytes obtained from cattle. We demonstrated that DTT reduced the disulfide bond in the bovine sperm head. Using oocytes obtained from a slaughterhouse, ICSI-DTT treatment without ethanol showed the highest rate of blastocyst formation. We applied these results to fertilization using ovum pick-up (OPU). Eleven Japanese black cattle served as donors for OPU plus standard IVF (OPU-IVF). Of them, four donors with low embryo development rates were selected to determine whether embryo development was enhanced by OPU plus ICSI (OPU-ICSI). We assessed effects on embryo development following IVF and ICSI in oocytes obtained using OPU. Blastocyst rates were significantly higher for OPU-ICSI than for OPU-IVF. Our results suggest that OPU-ICSI improves the blastocyst development rate in donors with low embryo production compared with the standard OPU-IVF. PMID:26460690

  14. Increased Extracellular Glutamate In the Nucleus Accumbens Promotes Excessive Ethanol Drinking in Ethanol Dependent Mice

    PubMed Central

    Griffin III, William C; Haun, Harold L; Hazelbaker, Callan L; Ramachandra, Vorani S; Becker, Howard C

    2014-01-01

    Using a well-established model of ethanol dependence and relapse, this study examined adaptations in glutamatergic transmission in the nucleus accumbens (NAc) and their role in regulating voluntary ethanol drinking. Mice were first trained to drink ethanol in a free-choice, limited access (2 h/day) paradigm. One group (EtOH mice) received repeated weekly cycles of chronic intermittent ethanol (CIE) exposure with intervening weeks of test drinking sessions, whereas the remaining mice (CTL mice) were similarly treated but did not receive CIE treatment. Over repeated cycles of CIE exposure, EtOH mice exhibited significant escalation in drinking (up to ∼3.5 g/kg), whereas drinking remained relatively stable at baseline levels (2–2.5 g/kg) in CTL mice. Using in vivo microdialysis procedures, extracellular glutamate (GLUEX) levels in the NAc were increased approximately twofold in EtOH mice compared with CTL mice, and this difference was observed 7 days after final CIE exposure, indicating that this hyperglutamatergic state persisted beyond acute withdrawal. This finding prompted additional studies examining the effects of pharmacologically manipulating GLUEX in the NAc on ethanol drinking in the CIE model. The non-selective glutamate reuptake antagonist, threo-β-benzyloxyaspartate (TBOA), was bilaterally microinjected into the NAc and found to dose-dependently increase drinking in nondependent (CTL) mice to levels attained by dependent (EtOH) mice. TBOA also further increased drinking in EtOH mice. In contrast, reducing glutamatergic transmission in the NAc via bilateral injections of the metabotropic glutamate receptor-2/3 agonist LY379268 reduced drinking in dependent (EtOH) mice to nondependent (CTL) levels, whereas having a more modest effect in decreasing ethanol consumption in CTL mice. Taken together, these data support an important role of glutamatergic transmission in the NAc in regulating ethanol drinking. Additionally, these results indicate that ethanol dependence produces adaptations that favor elevated glutamate activity in the NAc which, in turn, promote excessive levels of ethanol consumption associated with dependence. PMID:24067300

  15. Intravenous alcohol self-administration in the P rat.

    PubMed

    Windisch, Kyle A; Kosobud, Ann E K; Czachowski, Cristine L

    2014-08-01

    Alcohol consumption produces a complex array of effects that can be divided into two types: the explicit pharmacological effects of ethanol (which can be temporally separate from time of intake) and the more temporally "relevant" effects (primarily olfactory and taste) that bridge the time from intake to onset of the pharmacological effects. Intravenous (IV) self-administration of ethanol limits the confounding "non-pharmacological" effects associated with oral consumption, allows for controlled and precise dosing, and bypasses first order absorption kinetics, allowing for more direct and better-controlled assessment of alcohol's effect on the brain. IV ethanol self-administration has been reliably demonstrated in mouse and human experimental models; however, models of IV self-administration have been historically problematic in the rat. An operant multiple-schedule study design was used to elucidate the role of each component of a compound IV-ethanol plus oral-sucrose reinforcer. Male alcohol-preferring P rats had free access to both food and water during all IV self-administration sessions. Animals were trained to press a lever for orally delivered 1% sucrose (1S) on a fixed ratio 4 schedule, and then surgically implanted with an indwelling jugular catheter. Animals were then trained to respond on a multiple FR4-FR4 schedule composed of alternating 2.5-min components across 30-min sessions. For the multiple schedule, two components were used: an oral 1S only and an oral 1S plus IV 20% ethanol (25 mg/kg/injection). Average total ethanol intake was 0.47 ± 0.04 g/kg. We found significantly higher earning of sucrose-only reinforcers and greater sucrose-lever error responding relative to the compound oral-sucrose plus IV-ethanol reinforcer. These response patterns suggest that sucrose, not ethanol, was responsible for driving overall responding. The work with a compound IV ethanol-oral sucrose reinforcer presented here suggests that the existing intravenous ethanol self-administration methodology cannot overcome the aversive properties of ethanol via this route in the rat. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The immunomodulatory effect of Zingiber cassumunar ethanolic extract on phagocytic activity, nitrit oxide and reaxtive oxygen intermediate secretions of macrophage in mice

    NASA Astrophysics Data System (ADS)

    Nurkhasanah; Santoso, R. D.; Fauziah, R.

    2017-11-01

    Immunomodulators could protect the body from a variety of infectious agents and boost immunity. Zingiber cassumunar rhizome or bangle potentially showed as an immunomodulator through increasing of macrophage activity in vitro. The objective of the study was to determine the effect of Z. cassumunar rhizome ethanolic extract on phagocytic activity, nitrite oxide (NO) and reactive oxygen intermediate (ROI) secretions in macrophages in vivo. A total of 200 g of Z. cassumunar rhizome was powdered, macerated in 96% ethanol and evaporated to get concentrated extract. Mice were divided into 5 groups as follow: the normal group was given by water only, the negative control group was given by a 0.94% CMC-Na suspension, the treatment groups were given by 250, 500 and 1000 mg/kgBW, respectively, of Z. cassumunar ethanolic extract. The extract was administered orally for 7 days. On the 8th day the mice were injected intraperitoneally 0.7 mg/kg BW of lipopolysaccharide. Four hours later macrophage was isolated. Furthermore, the determination of the phagocytic activity, NO and ROI secretions levels of macrophage were performed. The treatments of 250, 500 and 1000 mg/kg BW of Z. cassumunar ethanolic extract significantly increase the ROI and NO secretions levels (p<0.05), but did not increase the phagocytic activity (p>0.05) of macrophage. Z. cassumunar ethanolic extract have immunomodulatory effect in vivo.

  17. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the combination of engine and fuel system is not knock limited, multiple fuel injection events maintain thermal efficiency while improving engine-out emissions (e.g. CO, UHC, and particulate number).« less

  18. An in situ-forming phospholipid-based phase transition gel prolongs the duration of local anesthesia for ropivacaine with minimal toxicity.

    PubMed

    Li, Hanmei; Liu, Tao; Zhu, Yuxuan; Fu, Qiang; Wu, Wanxia; Deng, Jie; Lan, Li; Shi, Sanjun

    2017-08-01

    An injectable, phospholipid-based phase transition gel (PPTG) has been developed for prolonging the release of ropivacaine (RO) for local anesthesia. PPTG was prepared by mixing phospholipids, medium-chain triglyceride and ethanol. Prior to injection, the PPTG is in a sol state with low viscosity. After subcutaneous injection, the PPTG rapidly forms a gel in situ, which acts as a drug release depot as verified by in vitro release profiles and in vivo pharmacokinetics. Administering RO-PPTG to rats led to a significantly smaller initial burst release than administering RO solution or RO base suspension. Nerve blockade in guinea pigs lasted 3-fold longer after injection of RO-PPTG than after injection of RO solution. RO-PPTG showed good biocompatibility and excellent degradability in vivo. These results suggest that this PPTG-based depot system may be useful for sustained release of local anesthetics to prolong analgesia without causing systemic toxicity. The sustained release of local anesthetics at the surgical site after a single injection is the optimal method to control post-surgical pain. In situ forming implant is an attractive alternative for the sustained release of local anesthetics. However, its practical use is highly limited by certain drawbacks including high viscosity, involved toxic organic solvents and fast drug release. To date, phospholipids-based phase transition gel (PPTG) is emerging for clinical development because of the non-toxicity, biocompatibility and ready availability of phospholipids in body. Thus, we present a novel strategy for sustained release of local anesthetics to control post-surgical pain based on PPTG, which showed a prolonged duration of nerve blockade and excellent biocompatibility. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Pharmacological Proprieties of the Ethanol Extract of Muehlenbeckia platyclada (F. Muell.) Meisn. Leaves

    PubMed Central

    Fagundes, Leopoldina Leonor; Vieira, Glauciemar Del-Vechio; de Pinho, José de Jesus R. G.; Yamamoto, Célia Hitomi; Alves, Maria Silvana; Stringheta, Paulo César; de Sousa, Orlando Vieira

    2010-01-01

    Antinociceptive and anti-inflammatory activities of the Muehlenbeckia platyclada leaves’ ethanol extract were investigated in animal models. The extract (p.o.) reduced the number of abdominal contortions induced by acetic acid by 21.57% (400 mg/kg). After intraplantar injection of formalin, a dose of 400 mg/kg (p.o.) inhibited the time spent paw licking in the first phase (26.43%), while the second phase was inhibited by 10.90 and 36.65% at the doses of 200 and 400 mg/kg, respectively. The extract (p.o.) increased the reaction time on a hot plate at a dose of 400 mg/kg (32.68 and 40.30%) after 60 and 90 minutes of treatment, respectively. The paw edema was reduced by extract (p.o.) at doses of 100 (15.46 and 16.67%), 200 (22.68 and 25.64%) and 400 mg/kg (29.50 and 37.33%) after 3 to 4 h of carrageenan application, respectively. Doses of 100, 200 and 400 mg/kg (p.o.), administered 4 h after the carrageenan injection, reduced the exudate volume (11.28, 21.54 and 45.13%), while leukocyte migration was reduced by 21.21 and 29.70% at the doses of 200 and 400 mg/kg, respectively. These results indicate that the ethanol extract from M. platyclada may constitute a potential target for the discovery of new molecules with antinociceptive and anti-inflammatory activities that can be explored for their therapeutic use. PMID:21152311

  20. Calcium hydroxide associated with a new vehicle: Psidium cattleianum leaf extracts. Tissue response evaluation.

    PubMed

    Valentim, Diego; Bueno, Carlos Roberto Emerenciano; Marques, Vanessa Abreu Sanches; Vasques, Ana Maria Veiga; Cury, Marina Tolomei Sandoval; Cintra, Luciano Tavares Angelo; Dezan, Eloi

    2017-07-03

    The aim of this study was to evaluate edemogenic activity and subcutaneous inflammatory reaction induced by Psidium cattleianum leaf extracts associated with Ca(OH)2. Thirty male Wistar rats, split equally into three groups [aqueous extract + Ca(OH)2; ethanolic extract + Ca(OH)2; and propylene glycol + Ca(OH)2], were assessed every 3 h or 6 h (five animals in each period). Under general anesthesia, 0.2 mL of 1% Evans blue per 100 g of body weight was injected into the penile vein and each combination to be evaluated was subcutaneously injected into the dorsal region 30 min thereafter. Edemogenic activity was analyzed by spectrophotometry (λ=630 nm). For inflammatory reaction analysis, 50 rats received four polyethylene tubes (three experimental groups) and an empty tube (control group). The assessments were made at 7, 15, 30, 60, and 90 days, followed by hematoxylin-eosin staining and by the assignment of scores for evaluation of tissue response intensity. Ethanolic extract + Ca(OH)2 yielded the largest edemogenic activity at 3 h. Intergroup differences at 6 h were not significant. The histological analysis showed progressive repair over time (p<0.05) and aqueous and ethanolic extracts produced similar responses to those of the control and Ca(OH)2 + propylene glycol groups. Psidium cattleianum leaf extracts used as Ca(OH)2 vehicles evoked similar tissue response when compared to Ca(OH)2 associated with propylene glycol.

  1. Plant tissue-based chemiluminescence biosensor for ethanol.

    PubMed

    Huang, Yuming; Wu, Fangqiong

    2006-07-01

    A plant tissue-based chemiluminescence biosensor for ethanol based on using mushroom (Agaricus bisporus) tissue as the recognition element is proposed in this paper. The principle for ethanol sensing relies on the luminol-potassium hexacyanoferrate(III)-hydrogen peroxide transducer reaction, in which hydrogen peroxide is produced from the ethanol enzymatic catalytic oxidation by oxygen under the catalysis of alcohol oxidase in the tissue column. Under optimum conditions, the method allowed the measurement of ethanol in the range of 0.001 - 2 mmol/l with a detection limit (3 sigma) of 0.2 micromol/l. The relative standard deviation (RSD) was 4.14% (n = 11) for 0.05 mmol/l ethanol. The proposed method has been applied to the determination of ethanol in biological fluids and beverages with satisfactory results.

  2. The new kisspeptin derivative - kissorphin (KSO) - attenuates acute hyperlocomotion and sensitization induced by ethanol and morphine in mice.

    PubMed

    Gibula-Bruzda, Ewa; Marszalek-Grabska, Marta; Gawel, Kinga; Trzcinska, Roza; Silberring, Jerzy; Kotlinska, Jolanta H

    2017-11-01

    Kissorphin (KSO) is a new peptide derived from kisspeptin-10. This peptide possesses neuropeptide FF (NPFF)-like biological activity in vitro; NPFF, in many cases, inhibits opioid and ethanol effects in rodents. Therefore, the current study explored the influence of KSO on acute ethanol- and morphine-induced hyperactivity, and on the development and expression of locomotor sensitization induced by these drugs. In the present study, sensitization to locomotor effects was induced by repeated exposure to ethanol (2.4 g/kg, intraperitoneally [i.p.], 1 × 4 days) or morphine (10 mg/kg, subcutaneously [s.c.], 1 × 7 days). We found that KSO (1-10 nmol/300 μL, intravenously [i.v.]) did not have an impact on locomotor activity of naïve mice. However, it reduced both acute ethanol- (10 nmol/300 μL) and morphine-induced hyperactivity (3 and 10 nmol/300 μL). Pretreatment of animals with KSO (10 nmol/300 μL), before every ethanol or morphine injection during development of sensitization or before the ethanol or morphine challenge, attenuated the development, as well as the expression of locomotor sensitization to both substances. Moreover, prior administration of the NPFF receptor antagonist RF9 (10 nmol/300 μL, i.v.) inhibited the ability of KSO (10 nmol/300 μL) to reduce the expression of ethanol and morphine sensitization. KSO given alone, at all used doses, did not influence the motor coordination measured via the rotarod test. The results from this study show that KSO effectively attenuated acute and repeated effects of ethanol and morphine. Thus, KSO possesses NPFF-like anti-opioid activity in these behavioral studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Ethanol Seeking by Long Evans Rats Is Not Always a Goal-Directed Behavior

    PubMed Central

    Mangieri, Regina A.; Cofresí, Roberto U.; Gonzales, Rueben A.

    2012-01-01

    Background Two parallel and interacting processes are said to underlie animal behavior, whereby learning and performance of a behavior is at first via conscious and deliberate (goal-directed) processes, but after initial acquisition, the behavior can become automatic and stimulus-elicited (habitual). With respect to instrumental behaviors, animal learning studies suggest that the duration of training and the action-outcome contingency are two factors involved in the emergence of habitual seeking of “natural” reinforcers (e.g., sweet solutions, food or sucrose pellets). To rigorously test whether behaviors reinforced by abused substances such as ethanol, in particular, similarly become habitual was the primary aim of this study. Methodology/Principal Findings Male Long Evans rats underwent extended or limited operant lever press training with 10% sucrose/10% ethanol (10S10E) reinforcement (variable interval (VI) or (VR) ratio schedule of reinforcement), or with 10% sucrose (10S) reinforcement (VI schedule only). Once training and pretesting were complete, the impact of outcome devaluation on operant behavior was evaluated after lithium chloride injections were paired with the reinforcer, or unpaired 24 hours later. After limited, but not extended instrumental training, lever pressing by groups trained under VR with 10S10E and under VI with 10S was sensitive to outcome devaluation. In contrast, responding by both the extended and limited training 10S10E VI groups was not sensitive to ethanol devaluation during the test for habitual behavior. Conclusions/Significance Operant behavior by rats trained to self-administer an ethanol-sucrose solution showed variable sensitivity to a change in the value of ethanol, with relative insensitivity developing sooner in animals that received time-variable ethanol reinforcement during training sessions. One important implication, with respect to substance abuse in humans, is that initial learning about the relationship between instrumental actions and the opportunity to consume ethanol-containing drinks can influence the time course for the development or expression of habitual ethanol seeking behavior. PMID:22870342

  4. Hepatoprotective effects of Arctium lappa Linne on liver injuries induced by chronic ethanol consumption and potentiated by carbon tetrachloride.

    PubMed

    Lin, Song-Chow; Lin, Chia-Hsien; Lin, Chun-Ching; Lin, Yun-Ho; Chen, Chin-Fa; Chen, I-Cheng; Wang, Li-Ya

    2002-01-01

    Arctium lappa Linne (burdock) is a perennial herb which is popularly cultivated as a vegetable. In order to evaluate its hepatoprotective effects, a group of rats (n = 10) was fed a liquid ethanol diet (4 g of absolute ethanol/ 80 ml of liquid basal diet) for 28 days and another group (n = 10) received a single intraperitoneal injection of 0.5 ml/kg carbon tetrachloride (CCl(4)) in order to potentiate the liver damage on the 21st day (1 day before the beginning of A. lappa treatment). Control group rats were given a liquid basal diet which did not contain absolute ethanol. When 300 mg/kg A. lappa was administered orally 3 times per day in both the 1-day and 7-day treatment groups, some biochemical and histopathological parameters were significantly altered, both in the ethanol group and the groups receiving ethanol supplemented with CCl(4). A. lappa significantly improved various pathological and biochemical parameters which were worsened by ethanol plus CCl(4)-induced liver damage, such as the ethanol plus CCl(4)-induced decreases in total cytochrome P-450 content and NADPH-cytochrome c reductase activity, increases in serum triglyceride levels and lipid peroxidation (the deleterious peroxidative and toxic malondialdehyde metabolite may be produced in quantity) and elevation of serum transaminase levels. It could even restore the glutathione content and affect the histopathological lesions. These results tended to imply that the hepatotoxicity induced by ethanol and potentiated by CCl(4) could be alleviated with 1 and 7 days of A. lappa treatment. The hepatoprotective mechanism of A. lappa could be attributed, at least in part, to its antioxidative activity, which decreases the oxidative stress of hepatocytes, or to other unknown protective mechanism(s). Copyright 2002 National Science Council, ROC and S. Karger AG, Basel

  5. Identifying microbial carbon sources during ethanol and toluene biodegradation in a pilot-scale experimental aquifer system using isotopic analysis

    NASA Astrophysics Data System (ADS)

    Clay, S.; McLeod, H.; Smith, J. E.; Roy, J. W.; Slater, G. F.

    2013-12-01

    Combining ethanol with gasoline has become increasingly common in order to create more environmentally conscience transportation fuels. These blended fuels are favourable alternatives since ethanol is a non-toxic and highly labile renewable biomass-based resource which is an effective fuel oxygenate that reduces air pollution. Recent research however, has indicated that upon accidental release into groundwater systems, the preferential microbial metabolism of ethanol can cause progressively reducing conditions leading to slower biodegradation of petroleum hydrocarbons. Therefore, the presence of ethanol can result in greater persistence of BTEX compounds and longer hydrocarbon plumes in groundwater systems. Microbial biodegradation and community carbon sources coupled to aqueous geochemistry were monitored in a pilot-scale laboratory tank (80cm x 525cm x 175cm) simulating an unconfined sand aquifer. Dissolved ethanol and toluene were continuously injected into the aquifer at a controlled rate over 330 days. Carbon isotope analyses were performed on phospholipid fatty acid (PLFA) samples collected from 4 different locations along the aquifer. Initial stable carbon isotope values measured over days 160-185 in the bacterial PLFA ranged from δ13C = -10 to -21‰, which is indicative of dominant ethanol incorporation by the micro-organisms based on the isotopic signature of ethanol derived from corn, a C4 plant. A negative shift to δ13C = -10 to -30‰ observed over days 185-200, suggests a change in microbial metabolisms associated with less ethanol incorporation. This generally corresponds to a decrease in ethanol concentrations from day 40 to full attenuation at approximately day 160, and the onset of toluene depletion observed on day 120 and continuing thereafter. In addition, aqueous methane concentrations first detected on day 115 continued to rise to 0.38-0.70 mmol/L at all monitoring locations, demonstrating a significant redox shift to low energy methanogenic metabolisms. On-going archaeal lipid analyses are expected to capture the establishment of methanogenic communities and provide insight into carbon use by these communities. Furthermore, radiocarbon analysis will aid in tracking the biodegradation of ethanol and toluene. Ultimately this research aims to illustrate the preferential biodegradation of ethanol in a gasoline mixture, and identify the carbon sources utilized by an evolving microbial community using isotopic analyses to improve assessments and remediation strategies at sites contaminated with ethanol-blended fuels.

  6. The effects of repeated nitroglycerin administrations in rats; modeling migraine-related endpoints and chronification.

    PubMed

    Harris, Hannah M; Carpenter, Jessica M; Black, Jonathan R; Smitherman, Todd A; Sufka, Kenneth J

    2017-06-01

    Rodent models typically use a single nitroglycerin injection to induce migraine, yet migraine in clinical populations presents as recurrent episodes. Further, these models quantify behavioral endpoints that do not align with the clinical features of episodic migraine or migraine chronification and therefore may limit translational relevance. Rats received 5 nitroglycerin (10mg/kg/2ml), propylene glycol/ethanol vehicle, or saline injections every third day over 15days. Behavioral endpoints were assessed 110min post nitroglycerin administration and included time spent light/dark chambers for photophobia as well as activity, facial pain expressions, and tactile allodynia. Animals administered nitroglycerin displayed photophobia, decreased activity, and increased facial pain expression. Similar alterations in photophobia and activity were seen in the vehicle treated animals, but these tended to diminish by the 4th or 5th injection. The presentation of spontaneous tactile allodynia was observed in the nitroglycerin group by the 5th episode. Most NTG migraine models entail a single NTG administration and quantification of evoked allodynia. This paradigm employs recurring NTG episodes and clinically-relevant measures of photophobia, hypoactivity and facial grimace endpoints as well as introduces a novel arena apparatus to quantify spontaneous allodynia. This repeated NTG procedure and endpoint measures aligns with the frequency and clinical presentation of episodic migraine and its chronification, respectively. Further, propylene glycol ethanol vehicle contributes to migraine endpoints. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Treatment of hyperfunctioning thyroid nodules with percutaneous ethanol injection: Eight years' experience.

    PubMed

    Monzani, F; Caraccio, N; Goletti, O; Casolaro, A; Lippolis, P V; Cavina, E; Miccoli, P

    1998-01-01

    The aim of our study was to define the long-term efficacy and safety of percutaneous ethanol injection (PEI) for the treatment of autonomous thyroid nodule (ATN), and to optimise the clinical usefulness of such a therapy. We treated 132 patients with ATN (30 M and 102 F, aged 47.5+/-12.9 years; mean+/-SD), in case other established treatments were refused or contraindicated. Eighty-five patients were affected by toxic adenoma and 47 suffered from pre-toxic nodules. Ethanol was administered weekly under sonographic control, in 7 sessions (range 2-16). During PEI treatment, 26 toxic elderly patients were treated with methimazole and propranolol. Three possible outcomes were identified for statistical analysis: failure (persistent suppression of extra nodular tissue uptake, along with elevated free thyroid hormone and undetectable TSH levels); partial cure (normal free thyroid hormone and low/undetectable TSH levels); complete cure (normal thyroid hormone and TSH levels; restored extra nodular uptake). The patients were followed for up to 8.5 years (median 76 months). PEI therapy was well tolerated by all patients though a mild to moderate local pain occurred in about 30% of sessions. Complete cure was achieved in all pre-toxic patients and in 60 (70.6%) patients with toxic adenoma, while partial cure was observed in 11 cases (12.9%) and failure in 14 (16.5%). A significant shrinkage of nodule volume was observed in all patients (p = 0.0001), while those with toxic nodules larger than 30 mL showed a significantly lower response rate to PEI (p < 0.05). At controls, only one patient developed subclinical hypothyroidism while, among partially cured patients, five relapsed. The administration of methimazole and/or propranolol did not modify PEI outcome. In conclusion, we suggest that PEI therapy may be the treatment of choice in patients with pre-toxic thyroid adenoma where therapy is least necessary- despite the nodule volume. Though ethanol injection therapy of toxic thyroid nodules may be troublesome for the need of multiple sessions, it appears an effective alternative procedure in patients at poor surgical risk, and in younger patients in whom radioiodine is contraindicated. Since a special technical skill in intervention procedures is required, PEI therapy may be suitable only for patients living nearby a trained centre.

  8. Conventional and dense gas techniques for the production of liposomes: a review.

    PubMed

    Meure, Louise A; Foster, Neil R; Dehghani, Fariba

    2008-01-01

    The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.

  9. Detection of volatile organic compounds through a sensing film of TiO II doped with organic dyes deposited on an optical fiber

    NASA Astrophysics Data System (ADS)

    Muñoz A., S.; Ramos M., J.; Martínez H., C.; Castillo M., J.; Beltrán P., G.; Palomino M., R.

    2007-03-01

    The necessity of detection and recognition of different types of gases, such as volatile organic compounds, which are frequently found in food and beverage industries among others, requires the development of different types of sensors. In this work, an application of optical fiber for the detection of volatile organic compounds, particularly ethanol is presented. The sensor was constructed removing a portion of the cladding and depositing instead a sensing titanium dioxide (TiO II) film doped with an organic dye (rhodamine 6G) by the sol-gel method. The sensor response was measured in a Teflon chamber where the sample to be measured was injected. A He-Ne laser beam was coupled to the fiber and the variation in the output power was measured which indicates the gas presence. The difference between the output power with and without gas gives a measure of the concentration that exists in the chamber. The experimental results showed that for an ethanol concentration range from 0 to 10500 ppm, the response of the sensor was approximately linear with a correlation coefficient of 0.9924.

  10. Purification of aflatoxin B1 antibody for the development of aflatoxin biosensor

    NASA Astrophysics Data System (ADS)

    Prihantoro, E. A. B.; Saepudin, E.; Ivandini, T. A.

    2017-07-01

    Aflatoxin B1 (AFB1) is produced from agricultural products especially peanuts overgrown with aspergillus flavus during the post-harvest process. Aflatoxin is classified as a highly toxic and carcinogenic substance to humans by the International Agency for Research on Cancer (IARC), WHO. This research was conducted to develop the AFB1 biosensor using antibody that specifically binds to aflatoxin B1. This antibody was produced by injecting an AFB1 hapten-protein (immunogen) to a rabbit. Antibody was obtained from rabbit's blood serum and purified using Protein A affinity chromatography and precipitation at the isoelectric point. The result showed that purification using protein A contains antibody of 4.0 mg/mL, whereas purification using precipitation at isoelectric pH contains antibody of 0.3 mg/mL. The pure antibody was tested for its specificity against AFB1, tetrahydrofuran (THF), dimethyl formamide (DMF), bovine serum albumin (BSA), and ethanol. The result revealed that THF, BSA, and ethanol were bound to antibody, while DMF showed no interaction. It was concluded that the polyclonal antibody which have been successfully purified from rabbit's blood serum using protein A affinity chromatography and precipitation methods showed an unspecific identification.

  11. Method for producing ethanol and co-products from cellulosic biomass

    DOEpatents

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  12. Sequential injection titration method using second-order signals: determination of acidity in plant oils and biodiesel samples.

    PubMed

    del Río, Vanessa; Larrechi, M Soledad; Callao, M Pilar

    2010-06-15

    A new concept of flow titration is proposed and demonstrated for the determination of total acidity in plant oils and biodiesel. We use sequential injection analysis (SIA) with a diode array spectrophotometric detector linked to chemometric tools such as multivariate curve resolution-alternating least squares (MCR-ALS). This system is based on the evolution of the basic specie of an acid-base indicator, alizarine, when it comes into contact with a sample that contains free fatty acids. The gradual pH change in the reactor coil due to diffusion and reaction phenomenona allows the sequential appearance of both species of the indicator in the detector coil, recording a data matrix for each sample. The SIA-MCR-ALS method helps to reduce the amounts of sample, the reagents and the time consumed. Each determination consumes 0.413ml of sample, 0.250ml of indicator and 3ml of carrier (ethanol) and generates 3.333ml of waste. The frequency of the analysis is high (12 samples h(-1) including all steps, i.e., cleaning, preparing and analysing). The utilized reagents are of common use in the laboratory and it is not necessary to use the reagents of perfect known concentration. The method was applied to determine acidity in plant oil and biodiesel samples. Results obtained by the proposed method compare well with those obtained by the official European Community method that is time consuming and uses large amounts of organic solvents.

  13. A combined simple bubbling method with high performance liquid chromatography purification strategy, higher radiochemical yield and purity and faster preparation of carbon-11-raclopride.

    PubMed

    Huang, Huacheng; Ning, Yanli; Zhang, Bucheng; Lou, Cen

    2015-01-01

    Carbon-11-raclopride (¹¹C-R) is a positron-emitting radiotracer successfully used for the study of cognitive control and widely applied in PET imaging. A simple automated preparation of ¹¹C-R by using the reaction of carbon-(11)-methyl triflate (¹¹C-MeOTF) or ¹¹C-methyl iodide (¹¹C-MeI) with demethylraclopride is described. Specifically we used a simple setup applied an additional "U" reaction vessel for ¹¹C-MeOTf compared with ¹¹C-MeI and assessed the influence of several solvents and of the amount of the percussor for ¹¹C-methylation of demethylraclopride by the bubbling method. The reversal of retention order between product and its precursor has been achieved for ¹¹C-R, enabling collection of the purified ¹¹C-R by using the HPLC column after shorter retention time. By the improved radiosynthesis and purification strategy, ¹¹C-R could be prepared with higher radiochemical yield than that of the previous studies. The yield for ¹¹C-MeOTf was 76% and for ¹¹C-CH3I >26% and with better radiochemical purity (>99% based on both ¹¹C-MeOTf and ¹¹C-MeI) as compared to the previously obtained purity of ¹¹C-R using HPLC method with acetonitrile as a part of mobile phase. Furthermore, by using ethanol as the organic modifier, residual solvent analysis prior to human injection could be avoided and ¹¹C-R could be injected directly following simple dilution and sterile filtration. Improved radiosynthesis and HPLC purification in combination with ethanol containing eluent, extremely shortened the time for preparation of ¹¹C-R, gave a higher radiochemical yield and purity for ¹¹C-R and can be used for multiple and faster synthesis of ¹¹C-R and probably for other ¹¹C-labeled radiopharmaceuticals.

  14. Thermodynamic analysis of fuels in gas phase: ethanol, gasoline and ethanol - gasoline predicted by DFT method.

    PubMed

    Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T

    2015-10-01

    This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.

  15. [Comparison of acetonitrile, ethanol and chromatographic column to eliminate high-abundance proteins in human serum].

    PubMed

    Li, Yin; Liao, Ming; He, Xiao; Zhou, Yi; Luo, Rong; Li, Hongtao; Wang, Yun; He, Min

    2012-11-01

    To compare the effects of acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal to eliminate high-abundance proteins in human serum. Elimination of serum high-abundance proteins performed with acetonitrile precipitation, ethanol precipitation and multiple affinity chromatography column Human 14 removal. Bis-Tris Mini Gels electrophoresis and two-dimensional gel electrophoresis to detect the effect. Grey value analysis from 1-DE figure showed that after serum processed by acetonitrile method, multiple affinity chromatography column Human 14 removal method and ethanol method, the grey value of albumin changed into 157.2, 40.8 and 8.2 respectively from the original value of 19. 2-DE analysis results indicated that using multiple affinity chromatography column Human 14 method, the protein points noticeable increased by 137 compared to the original serum. After processed by acetonitrile method and ethanol method, the protein point reduced, but the low abundance protein point emerged. The acetonitrile precipitation could eliminate the vast majority of high abundance proteins in serum and gain more proteins of low molecular weight, ethanol precipitation could eliminate part of high abundance proteins in serum, but low abundance proteins less harvested, and multiple affinity chromatography column Human 14 method could effectively removed the high abundance proteins, and keep a large number of low abundance proteins.

  16. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  17. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    PubMed

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Experimental Studies of Diestrol-Micro Emulsion Fuel in a Direct Injection Compression Ignition Engine under Varying Injection Pressures and Timings

    NASA Astrophysics Data System (ADS)

    Kannan, Gopal Radhakrishnan

    2018-02-01

    The research work on biodiesel becomes more attractive in the context of limited availability of petroleum fuels and rapid increase of harmful emissions from diesel engine using conventional fossil fuels. The present investigation has dealt with the influence of biodiesel-diesel-ethanol (diestrol) water micro emulsion fuel (B60D20E20M) on the performance, emission and combustion characteristics of a diesel engine under different injection pressure and timing. The results revealed that the maximum brake thermal efficiency of 32.4% was observed at an injection pressure of 260 bar and injection timing of 25.5°bTDC. In comparison with diesel, micro emulsion fuel showed reduction in carbon monoxide (CO) and total hydrocarbon (THC) by 40 and 24%, respectively. Further, micro emulsion fuel decreased nitric oxide (NO) emission and smoke emission by 7 and 20.7%, while the carbon dioxide (CO2) emission is similar to that of diesel.

  19. Natural and Enhanced Attenuation of Soil and Groundwater at the Monument Valley, Arizona, DOE Legacy Waste Site—10281

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, W.J.; Miller, D.E.; Morris, S.A.

    2010-03-07

    The U.S. Department of Energy (DOE), the Navajo Nation, and the University of Arizona are exploring natural and enhanced attenuation remedies for groundwater contamination at a former uranium-ore processing site near Monument Valley, Arizona. DOE removed radioactive tailings from the Monument Valley site in 1994. Nitrate and ammonium, waste products of the milling process, remain in an alluvial groundwater plume spreading from the soil source where tailings were removed. Planting and irrigating two native shrubs, fourwing saltbush and black greasewood, markedly reduced both nitrate and ammonium in the source area over an 8-year period. Total nitrogen dropped from 350 mg/kgmore » in 2000 to less than 200 mg/kg in 2008. Most of the reduction is attributable to irrigation-enhanced microbial denitrification rather than plant uptake. However, soil moisture and percolation flux monitoring show that the plantings control the soil water balance in the source area, preventing additional leaching of nitrogen compounds. Enhanced denitrification and phytoremediation also look promising for plume remediation. Microcosm experiments, nitrogen isotopic fractionation analysis, and solute transport modeling results suggest that (1) up to 70 percent of nitrate in the plume has been lost through natural denitrification since the mill was closed in 1968, and (2) injection of ethanol may accelerate microbial denitrification in plume hot spots. A field-scale ethanol injection pilot study is underway. Landscape-scale remote sensing methods developed for the project suggest that transpiration from restored native phreatophyte populations rooted in the aquifer could limit further expansion of the plume. An evaluation of landfarm phytoremediation, the irrigation of native shrub plantings with high nitrate water pumped from the alluvial aquifer, is also underway.« less

  20. Antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Linn.) in streptozotocin-induced diabetic rats.

    PubMed

    Petchi, Ramesh R; Parasuraman, S; Vijaya, C

    2013-09-01

    To study the antidiabetic and antihyperlipidemic effects of an ethanolic extract of the whole plant of Tridax procumbens (Asteraceae) in streptozotocin-induced diabetic rats. The whole plant of T. procumbens was collected in different regions of Madurai districts, Tamil Nadu. The air dried whole plant of T. procumbens was extracted with ethanol (95%) in a Soxhlet apparatus for 72 h. Diabetes was induced in male Wistar rats by streptozotocin (50 mg/jk, i.p.) and nicotinamide (120 mg/kg, i.p) injection. The dry mass of the extract was used for preliminary phytochemical and pharmacological analysis. Diabetic rats were treated with glibenclamide (0.25 mg/kg, p.o.) or T. procumbens extract (250 and 500 mg/k, p.o.) for 21 consecutive days. The blood samples were collected at regular intervals to access hypoglycemic effect of an ethanolic extract of the whole plant of T. procumbens. At the end of the experiment, serum lipid profile and liver enzymes levels were analyzed for all the experimental animals and compared with diabetic control. The preliminary phytochemical analysis of an ethanolic extract of the whole plant of T. procumbens indicated the presence of alkaloids, tannins, flavonoids, saponins, and phenolic compounds. The ethanolic extract of the whole plant of T. procumbens at 250 and 500 mg/kg has significant antidiabetic and antihyperlipidemic activities. The diabetic control animals exhibited a significant decrease in body weight compared with control animals. T. procumbens inhibited streptozotocin-induced weight loss and significantly alter the lipid levels. The ethanolic extract of the whole plant of T. procumbens showed significant antidiabetic and antihyperlipidemic activities against streptozotocin-induced diabetes in rats.

  1. Single-session alcohol sclerotherapy of symptomatic liver cysts using 10-20 min of ethanol exposure: no recurrence at 2-16 years of follow-up.

    PubMed

    Larssen, Trond Bjerke; Viste, Asgaut; Horn, Arild; Haldorsen, Ingfrid Salvesen; Espeland, Ansgar

    2016-09-01

    To assess long-term results after single-session alcohol sclerotherapy of symptomatic benign liver cysts performed with maximum 20 min of exposure to alcohol. We included 47 patients aged 32-88 years (42 women, 5 men) with 51 benign non-parasitic liver cysts that were exposed to ethanol for 7-20 min in a single sclerotherapy session and were followed for at least 24 months. Each cyst was emptied before injecting ethanol (10% of cyst volume, but maximum 100 mL) into it. The patient rotated from side to side to facilitate contact between ethanol and the whole cyst wall. Pre-treatment cyst volume was defined as the volume of aspirated cyst fluid after complete emptying of the cyst. Follow-up cyst volume was estimated based on computed tomography images. Cyst volumes were 30-4900 (median 520) mL at pre-treatment and 0-230 (median 1) mL at 24-193 (median 56) months follow-up, a reduction of 83-100% (median 99.7%). No cyst required repeated treatment during the follow-up. Median volume reduction was 99.7% at median 49 months of follow-up for 35 cysts exposed to ethanol for 7-10 min vs. 99.6% at median 75 months of follow-up for 16 cysts exposed for 20 min (p = 0.83, Mann-Whitney test). Ethanol intoxication occurred in one patient. There were no other complications except for pain. Long-term results of single-session alcohol sclerotherapy performed with maximum 20 min of exposure to ethanol were satisfactory with no sign of recurrence of cyst fluid.

  2. Water Consumption in the Production of Ethanol and Petroleum Gasoline

    NASA Astrophysics Data System (ADS)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  3. Alcohol biosensing by polyamidoamine (PAMAM)/cysteamine/alcohol oxidase-modified gold electrode.

    PubMed

    Akin, Mehriban; Yuksel, Merve; Geyik, Caner; Odaci, Dilek; Bluma, Arne; Höpfner, Tim; Beutel, Sascha; Scheper, Thomas; Timur, Suna

    2010-01-01

    A highly stable and sensitive amperometric alcohol biosensor was developed by immobilizing alcohol oxidase (AOX) through Polyamidoamine (PAMAM) dendrimers on a cysteamine-modified gold electrode surface. Ethanol determination is based on the consumption of dissolved oxygen content due to the enzymatic reaction. The decrease in oxygen level was monitored at -0.7 V vs. Ag/AgCl and correlated with ethanol concentration. Optimization of variables affecting the system was performed. The optimized ethanol biosensor showed a wide linearity from 0.025 to 1.0 mM with 100 s response time and detection limit of (LOD) 0.016 mM. In the characterization studies, besides linearity some parameters such as operational and storage stability, reproducibility, repeatability, and substrate specificity were studied in detail. Stability studies showed a good preservation of the bioanalytical properties of the sensor, 67% of its initial sensitivity was kept after 1 month storage at 4 degrees C. The analytical characteristics of the system were also evaluated for alcohol determination in flow injection analysis (FIA) mode. Finally, proposed biosensor was applied for ethanol analysis in various alcoholic beverage as well as offline monitoring of alcohol production through the yeast cultivation. Copyright 2010 American Institute of Chemical Engineers

  4. The impact of physicochemical property interactions of iso -octane/ethanol blends on ignition timescales

    DOE PAGES

    Barraza-Botet, Cesar L.; Luecke, Jon; Zigler, Bradley T.; ...

    2018-03-20

    This work presents new measurements of liquid fuel ignition delay times of iso-octane and ethanol fuel blends obtained from an ignition quality tester at the National Renewable Energy Laboratory (NREL IQT), which are compared to previous ignition delay data from the University of Michigan rapid compression facility (UM RCF), at the same experimental conditions. Pressure-time histories were used to determine liquid fuel ignition delays at global stoichiometric non-premixed conditions for iso-octane, ethanol and iso-octane/ethanol blends of 25, 50, 75% by volume in mixtures of 10% oxygen diluted in nitrogen. Temperatures ranging from 880 to 970 K were studied at amore » pressure of 10 atm. By comparing total ignition delay times from the NREL IQT with chemical ignition delay times from the UM RCF, the contributions of physical phenomena were quantified as representative time scales for spray injection, breakup and evaporation processes, and for gas-phase turbulent mixing. Regression analyses were developed for ignition time scales as function of blend level and charge temperature. Non-dimensional analyses were also carried out to determine the relative effects of physical time scales with respect to chemical ignition delay times.« less

  5. The impact of physicochemical property interactions of iso -octane/ethanol blends on ignition timescales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraza-Botet, Cesar L.; Luecke, Jon; Zigler, Bradley T.

    This work presents new measurements of liquid fuel ignition delay times of iso-octane and ethanol fuel blends obtained from an ignition quality tester at the National Renewable Energy Laboratory (NREL IQT), which are compared to previous ignition delay data from the University of Michigan rapid compression facility (UM RCF), at the same experimental conditions. Pressure-time histories were used to determine liquid fuel ignition delays at global stoichiometric non-premixed conditions for iso-octane, ethanol and iso-octane/ethanol blends of 25, 50, 75% by volume in mixtures of 10% oxygen diluted in nitrogen. Temperatures ranging from 880 to 970 K were studied at amore » pressure of 10 atm. By comparing total ignition delay times from the NREL IQT with chemical ignition delay times from the UM RCF, the contributions of physical phenomena were quantified as representative time scales for spray injection, breakup and evaporation processes, and for gas-phase turbulent mixing. Regression analyses were developed for ignition time scales as function of blend level and charge temperature. Non-dimensional analyses were also carried out to determine the relative effects of physical time scales with respect to chemical ignition delay times.« less

  6. An Accelerated Release Method of Risperidone Loaded PLGA Microspheres with Good IVIVC.

    PubMed

    Hu, Xiaoqin; Zhang, Jianwei; Tang, Xuemei; Li, Mingyuan; Ma, Siyu; Liu, Cheng; Gao, Yue; Zhang, Yue; Liu, Yan; Yu, Fanglin; Yang, Yang; Guo, Jia; Li, Zhiping; Mei, Xingguo

    2018-01-01

    A long release period lasting several days or several weeks is always needed and thereby it is tedious and time consuming to screen formulations of such microspheres with so long release period and evaluate their release profiles in vitro with conventional long-term or "real-time" release method. So, an accelerated release testing of such system is necessary for formulation design as well as quality control purpose. The purpose of this study is to obtain an accelerated release method of risperidone loaded poly(lactic-co-glycolic acid) (PLGA) microspheres with good in vitro/in vivo correlation (IVIVC). Two formulations of risperidone loaded PLGA microspheres used for evaluating IVIVC were prepared by O/W method. The accelerated release condition was optimized by investigating the effect of pH, osmotic pressure, temperature and ethanol concentration on the release of risperidone from microspheres and the in vitro accelerated release profiles of risperidone from PLGA microspheres were obtained under this optimized accelerated release condition. The plasma concentration of risperidone were also detected after subcutaneous injection of risperidone loaded microspheres to rats. The in vivo cumulative absorption profiles were then calculated using Wagner-Nelson model, Loo- Riegelman model and numerical convolution model, respectively. The correlation between in vitro accelerated release and in vivo cumulative absorption were finally evaluated with Least Square Method. It was shown that temperature and ethanol concentration significantly affected the release of risperidone from the microspheres while pH and osmotic pressure of release media slightly affected the release behavior of risperidone. The in vitro release of risperidone from microspheres were finally undergone in PBS (pH7.0, 300mosm) with 20% (V/V) ethanol at 45°C. The sustained and complete release of risperidone was observed in both formulations under the accelerated release condition although these two release profiles were dissimilar. The correlation coefficients (R2) of IVIVC were all above 0.95 and the slopes were all between 0.9564 and 1.1868 in spite of fitted model and microsphere formulation. An in vitro accelerated release method of risperidone microspheres with good IVIVC was established in this paper and this accelerated release method was supposed to have great potential in both in vivo performance prediction and quality control for risperidone loaded PLGA microspheres. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Neurosteroid Modulators of GABAA Receptors Differentially Modulate Ethanol Intake Patterns in Male C57BL/6J Mice

    PubMed Central

    Ford, Matthew M.; Nickel, Jeffrey D.; Phillips, Tamara J.; Finn, Deborah A.

    2006-01-01

    Background Allopregnanolone (ALLO) and structurally related endogenous neurosteroids are potent modulators of GABAA receptor function at physiologically relevant concentrations. Accumulating evidence implicates a modulatory role for ALLO in behavioral processes underlying ethanol self-administration, discrimination and reinstatement. The purpose of this study was to evaluate the impact of exogenous neurosteroid challenges with the agonist ALLO and the partial agonist/antagonist epipregnanolone (EPI) on the microarchitecture of ethanol drinking patterns. Methods Male C57BL/6J mice were initiated to consume an unsweetened 10% v/v ethanol solution (10E) by a saccharin fading procedure during daily 2-hour limited access sessions beginning 1 hour after dark phase onset. Cumulative lick responses were recorded for 10E and water using lickometer circuits. After establishing 10E intake baselines, mice were habituated to vehicle injection (VEH; 20% w/v β-cyclodextrin; i.p.), and then were treated with either VEH or neurosteroid immediately prior to the drinking session. Each mouse received a series of ALLO doses (3.2, 10, 17 and 24 mg/kg) alone and EPI doses (0.15, 1, 3 and 10 mg/kg) alone in a counterbalanced within-group design. Results The GABAA receptor positive modulator, ALLO, dose-dependently modulated overall ethanol intake throughout the 2-hr session with the 3.2 mg/kg dose eliciting a significant increase whereas the 24 mg/kg dose produced a significant suppression of ethanol intake versus vehicle pretreatment. ALLO-evoked alterations in intake corresponded with a significant, dose-dependent alterations in bout frequency and inter-bout interval. ALLO also elicited robust, dose-dependent elevations in 10E licks during the initial 5-minutes of access, but subsequently resulted in a dose-dependent suppression of 10E licks during session minutes 20–80. In contrast, the partial agonist/antagonist neurosteroid, EPI, exhibited no influence on any consumption parameter evaluated. Conclusions The present findings suggest that GABAA receptor-active neurosteroids may modulate the regulatory processes that govern the onset, maintenance, and termination of drinking episodes. The differential influence of ALLO and EPI on ethanol intake patterns may reflect an alteration in GABAergic inhibitory tone that is likely due to each neurosteroid’s pharmacological profile at GABAA receptors. Manipulation of endogenous ALLO may prove a useful strategy for diminishing excessive intake and protecting against the loss of regulatory control over drinking. PMID:16205363

  8. Behavioral and biochemical effects of ethanol withdrawal in zebrafish.

    PubMed

    da Silva Chaves, Suianny Nayara; Felício, Gabriel Rocha; Costa, Bruna Patrícia Dutra; de Oliveira, Witallo Etevaldo Araújo; Lima-Maximino, Monica Gomes; Siqueira Silva, Diógenes Henrique de; Maximino, Caio

    2018-06-01

    Chronic alcohol use induces adaptations and toxicity that can induce symptoms of anxiety, autonomic hyperarousal, and epileptic seizures when alcohol is removed (withdrawal syndrome). Zebrafish has recently gained wide attention as a behavioral model to study the neurobehavioral effects of acute and chronic alcohol use, including withdrawal. The literature, however, is very contradictory on findings regarding withdrawal effects, with some studies reporting increased anxiety, while others report no effect. A meta-analytic approach was taken to find the sources of this heterogeneity, and ethanol concentration during exposure and exposure duration were found to be the main sources of variation. A conceptual replication was also made using continuous exposure for 16 days in waterborne ethanol (0.5%) and assessing anxiety-like behavior in the light/dark test after 60 min withdrawal. Withdrawal was shown to reduce preference for darkness, consistent with decreased anxiety, but to increase risk assessment, consistent with increased anxiety. Animals were also subjected to the withdrawal protocol and injected with pilocarpine in a sub-convulsive dose to assess susceptibility to epileptic seizure-like behavior. The protocol was sufficient to increase susceptibility to epileptic seizure-like behavior in animals exposed to ethanol. Finally, withdrawal also decreased catalase activity in the brain, but not in the head kidney, suggesting mechanisms associated with the behavioral effects of ethanol withdrawal. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. [Effect of ethanol gasoline and unleaded gasoline on exhaust emissions of EFI vehicles with TWC].

    PubMed

    Wang, Chun-jie; Wang, Wei; Tang, Da-gang; Cui, Ping

    2004-07-01

    The injectors' flow-rate of all test vehicles that each was fixed with a three-way catalytic converter (TWC) and Electronic Fuel Injection System (EFI) was tested including before and after vehicles operated on unleaded and ethanol gasoline respectively running for a long time on real road. The three main engine-out exhaust emissions (HC, CO and NOx) from vehicles operating on different fuels were also analyzed by exhaust testing procedure for the whole light-duty vehicle. Test results showed that comparing with unleaded gasoline and ethanol gasoline has a remarkable effect on decreasing engine-out exhaust emissions of CO and HC (both at about ten percent) and the exhaust emissions of CO, HC and NOx from vehicles with TWC respectively. When burning with unleaded gasoline the three main pollutants from vehicles with TWC have already or nearly reached Europe Exhaust First Standard, after changing to ethanol gasoline CO has drastically decreased at about thirty percent, while HC and NOx decreased at about eighteen and ten percent respectively, at this time which they were all above Europe Exhaust Standard First or nearly reached Europe Exhaust Second Standard; ethanol gasoline has also other better performance such as a slight cleaning function on injectors, a slower deteriorative trend of engine-out CO and HC and a longer operating life-span of TWC.

  10. Short-Chain Polysaccharide Analysis in Ethanol-Water Solutions.

    PubMed

    Yan, Xun

    2017-07-01

    This study demonstrates that short-chain polysaccharides, or oligosaccharides, could be sufficiently separated with hydrophilic interaction LC (HILIC) conditions and quantified by evaporative light-scattering detection (ELSD). The multianalyte calibration approach improved the efficiency of calibrating the nonlinear detector response. The method allowed easy quantification of short-chain carbohydrates. Using the HILIC method, the oligosaccharide solubility and its profile in water/alcohol solutions at room temperature were able to be quantified. The results showed that the polysaccharide solubility in ethanol-water solutions decreased as ethanol content increased. The results also showed oligosaccharides to have minimal solubility in pure ethanol. In a saturated maltodextrin ethanol (80%) solution, oligosaccharide components with a degree of polymerization >12 were practically insoluble and contributed less than 0.2% to the total solute dry weight. The HILIC-ELSD method allows for the identification and quantification of low-MW carbohydrates individually and served as an alternative method to current gel permeation chromatography procedures.

  11. Peripheral Administration of Ethanol Results in a Correlated Increase in Dopamine and Serotonin Within the Posterior Ventral Tegmental Area

    PubMed Central

    Deehan, Gerald A.; Knight, Christopher P.; Waeiss, R. Aaron; Engleman, Eric A.; Toalston, Jamie E.; McBride, William J.; Hauser, Sheketha R.; Rodd, Zachary A.

    2016-01-01

    Aims Two critical neurotransmitter systems regulating ethanol (EtOH) reward are serotonin (5-HT) and dopamine (DA). Within the posterior ventral tegmental area (pVTA), 5-HT receptors have been shown to regulate DA neuronal activity. Increased pVTA neuronal activity has been linked to drug reinforcement. The current experiment sought to determine the effect of EtOH on 5-HT and DA levels within the pVTA. Methods Wistar rats were implanted with cannula aimed at the pVTA. Neurochemical levels were determined using standard microdialysis procedures with concentric probes. Rats were randomly assigned to one of the five groups (n = 41; 7–9 per group) that were treated with 0–3.0 g/kg EtOH (intraperitoneally). Results Ethanol produced increased extracellular DA levels in the pVTA that resembled an inverted U-shape dose–response curve with peak levels (~200% of baseline) at the 2.25 g/kg dose. The increase in DA levels was observed for an extended period of time (~100 minutes). The effects of EtOH on extracellular 5-HT levels in the pVTA also resembled an inverted U-shape dose–response curve. However, increased 5-HT levels were only observed during the initial post-injection sample. The increases in extracellular DA and 5-HT levels were significantly correlated. Conclusion The data indicate intraperitoneal EtOH administration stimulated the release of both 5-HT and DA within the pVTA, the levels of which were significantly correlated. Overall, the current findings suggest that the ability of EtOH to stimulate DA activity within the mesolimbic system may be modulated by increases in 5-HT release within the pVTA. Short summary Two critical neurotransmitter systems regulating ethanol reward are serotonin and dopamine. The current experiment determined that intraperitoneal ethanol administration increased serotonin and dopamine levels within the pVTA (levels were significantly correlated). The current findings suggest the ability of EtOH to stimulate serotonin and dopamine activity within the mesolimbic system. PMID:27307055

  12. Evaluation of GABAergic neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one as a neurobiological substrate for the anti-anxiety effect of ethanol in rats.

    PubMed

    Hirani, Khemraj; Sharma, Ajay N; Jain, Nishant S; Ugale, Rajesh R; Chopde, Chandrabhan T

    2005-07-01

    Acute systemic ethanol administration is known to elevate plasma and cerebral levels of neuroactive steroid 3alpha-hydroxy-5alpha-pregnane-20-one (3alpha, 5alpha-THP; allopregnanolone) to a concentration sufficient to potentiate GABA(A) receptors. We have earlier demonstrated that 3alpha, 5alpha-THP mediates the antidepressant-like effect of ethanol in Porsolt forced swim test. The aim of the present study is to explain the relationship between endogenous GABAergic neurosteroids and anxiolytic effect of ethanol in Sprague-Dawley rats. The mediation of 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol was assessed by pharmacological interactions of ethanol with various endogenous neurosteroidal modulators and using simulated physiological conditions of altered neurosteroid content in elevated plus maze (EPM) test. Pretreatment of 3alpha, 5alpha-THP (0.5-2.5 mug/rat, i.c.v.) or neurosteroidogenic agents such as 3alpha, 5alpha-THP precursor progesterone (5 or 10 mg/kg, i.p.), 11-beta hydroxylase inhibitor metyrapone (50 or 100 mg/kg, i.p.) or the GABA(A) receptor agonist muscimol (25 ng/rat, i.c.v.) significantly potentiated the anti-anxiety effect of ethanol (1 g/kg, i.p.). On the other hand, the GABAergic antagonistic neurosteroid dehydroepiandrosterone sulphate (DHEAS) (1 mg/kg, i.p.), the GABA(A) receptor blocker bicuculline (1 mg/kg, i.p.), the 5alpha-reductase inhibitor finasteride (50 x 2 mg/kg, s.c.) or the mitochondrial diazepam binding inhibitory receptor antagonist PK11195 (1 mg/kg, i.p.) reduced ethanol-induced preference of time spent and number of entries into open arms. Anti-anxiety effect of ethanol was abolished in adrenalectomized (ADX) rats as compared to sham-operated control. This ADX-induced blockade was restored by prior systemic injection of progesterone, signifying the contribution of peripheral steroidogenesis in ethanol anxiolysis. Socially isolated animals known to exhibit decreased brain 3alpha, 5alpha-THP and GABA(A) receptor functions displayed reduced sensitivity to the effects of ethanol and 3alpha, 5alpha-THP in EPM test. Our results demonstrated the contributory role of neuroactive steroid 3alpha, 5alpha-THP in the anti-anxiety effect of ethanol. It is speculated that ethanol-induced modulation of endogenous GABAergic neurosteroids, especially 3alpha, 5alpha-THP, might be crucial pertinent to the etiology of 'trait' anxiety (tension reduction) and ethanol abuse.

  13. Accuracy of water displacement hand volumetry using an ethanol and water mixture.

    PubMed

    Hargens, Alan R; Kim, Jong-Moon; Cao, Peihong

    2014-02-01

    The traditional water displacement method for measuring limb volume is improved by adding ethanol to water. Four solutions were tested (pure water, 0.5% ethanol, 3% ethanol, and 6% ethanol) to determine the most accurate method when measuring the volume of a known object. The 3% and 6% ethanol solutions significantly reduced (P < 0.001) the mean standard deviation of 10 measurements of a known sphere (390.1 +/- 0.25 mi) from 2.27 ml with pure water to 0.9 ml using the 3% alcohol solution and to 0.6 using 6% ethanol solution (the mean coefficients of variation were reduced from 0.59% for water to 0.22% for 3% ethanol and 0.16% for 6% ethanol). The spheres' volume measured with pure water, 0.5% ethanol solution, 3% ethanol solution, and 6% ethanol solution was 383.2 +/- 2.27 ml, 384.4 +/- 1.9 ml, 389.4 +/- 0.9 ml, and 390.2 +/- 0.6 ml, respectively. Using the 3% and 6% ethanol solutions to measure hand volume blindly in 10 volunteers significantly reduced the mean coefficient of variation for hand volumetry from 0.91% for water to 0.52% for the 3% ethanol solution (P < 0.05) and to 0.46% for the 6% ethanol solution (P < 0.05). The mean standard deviation from all 10 subjects decreased from 4.2 ml for water to 2.3 ml for 3% ethanol solution and 2.1 ml for the 6% solution. These findings document that the accuracy and reproducibility of hand volume measurements are improved by small additions of ethanol, most likely by reducing surface tension of water.

  14. Estimation methods and parameter assessment for ethanol yields from total soluble solids of sweet sorghum

    USDA-ARS?s Scientific Manuscript database

    Estimation methods and evaluation of ethanol yield from sweet sorghum (Sorghum bicolor (L.) Moench.) based on agronomic production traits and juice characteristics is important for developing parents and inbred lines of sweet sorghum that can be used by the bio-ethanol industry. The objectives of th...

  15. [Simultaneous determination of delta13C values of glycerol and ethanol in wine by liquid chromatography coupled with isotope ratio mass spectrometry].

    PubMed

    Li, Xuemin; Jia, Guangqun; Cao, Yanzhong; Zhang, Jinjie; Wang, Lei; Sun, Huiyuan

    2013-12-01

    A novel procedure was established for the characterization of delta13C values of glycerol and ethanol in wine by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing the separation of glycerol and ethanol from wine matrix were optimized. The precision and accuracy of the proposed method were 0.15 per thousand to 0.26 per thousand and 0.11 per thousand to 0.28 per thousand, respectively. The results obtained for 40 wine samples displayed that the delta13C value of glycerol ranged from--26.87 per thousand to--32.96 per thousand and that of ethanol ranged from--24.06 per thousand to--28.29 per thousand. Close correlations (R = 0.82) were obtained between the delta13C values of glycerol and ethanol. The proposed method didn't need complex sample treatment, and the delta13C values of glycerol and ethanol in wine can be simultaneously determined, thus improving the method in terms of simplicity and speed compared with traditional methods.

  16. Multilayer white lighting polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiong; Wang, Shu; Heeger, Alan J.

    2006-08-01

    Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.

  17. Ignition Characterization Test Results for the LO2/Ethanol Propellant Combination

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Robinson, Phillip J.; Veith, Eric M.

    2006-01-01

    A series of contracts were issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) under the auspices of the Exploration Systems Mission Directorate to develop and expand the maturity of candidate technologies considered to be important for future space exploration. One such technology was to determine the viability of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 was issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilized liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporated a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. The preferred RCS approach for the dual thrust RCE was to utilize pressure-fed liquid oxygen (LOX) and ethanol propellants; however, previous dual thrust feasibility testing incorporated GOX/Ethanol igniters as opposed to LOX/Ethanol igniters in the design. GOX/Ethanol was easier to ignite, but this combination had system design implications of providing GOX for the igniters. A LOX/Ethanol igniter was desired; however, extensive LOX/Ethanol ignition data over the anticipated operating range for the dual thrust RCE did not exist. Therefore, Aerojet designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. LOX, encompassing potential two-phase flow conditions anticipated being present in real mission applications. A workhorse igniter was designed to accommodate the hll LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the latent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. permitted oxygen state points to be determined in the igniter oxidizer manifold, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, m. Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 210 R LOX to 486 R GOX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5. Pulsing is required in typical RCS engines; therefore, the workhorse igniter was pulse tested to verify the ability to provide the required ignition for a pulsing RCE. The minimum electrical pulse width (EPW) of the dual thrust RCE was 0.080 seconds.

  18. Novel microinjector for carrying bone substitutes for bone regeneration in periodontal diseases.

    PubMed

    Tsai, Hsiao-Cheng; Li, Yi-Chen; Young, Tai-Horng; Chen, Min-Huey

    2016-01-01

    Traditionally, guide bone regeneration (GBR) was a widely used method for repairing bone lost from periodontal disease. There were some disadvantages associated with the GBR method, such as the need for a stable barrier membrane and a new creative cavity during the surgical process. To address these disadvantages, the purpose of this study was to evaluate a novel microinjector developed for dental applications. The microinjector was designed to carry bone graft substitutes to restore bone defects for bone regeneration in periodontal diseases. The device would be used to replace the GBR method. In this study, the injected force and ejected volume of substitutes (including air, water, and ethanol) were defined by Hooke's law (n = 3). The optimal particle size of bone graft substitutes was determined by measuring the recycle ratio of bone graft substitutes from the microinjector (n = 3). Furthermore, a novel agarose gel model was used to evaluate the feasibility of the microinjector. The current study found that the injected force was less than 0.4 N for obtaining the ejected volume of approximately 2 mL, and when the particle size of tricalcium phosphate (TCP) was smaller than 0.5 mm, 80% TCP could be ejected from the microinjector. Furthermore, by using an agarose model to simulate the periodontal soft tissue, it was also found that bone graft substitutes could be easily injected into the gel. The results confirmed the feasibility of this novel microinjector for dental applications to carry bone graft substitutes for the restoration of bone defects of periodontal disease. Copyright © 2015. Published by Elsevier B.V.

  19. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    PubMed Central

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  20. Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-type Potassium Channel Activity in the Lateral Habenula.

    PubMed

    Kang, Seungwoo; Li, Jing; Zuo, Wanhong; Fu, Rao; Gregor, Danielle; Krnjevic, Kresimir; Bekker, Alex; Ye, Jiang-Hong

    2017-08-01

    Alcohol use disorders (AUDs) and anxiety disorders (ADs) are often seen concurrently, but their underlying cellular basis is unclear. For unclear reasons, the lateral habenula (LHb), a key brain region involved in the pathophysiology of ADs, becomes hyperactive after ethanol withdrawal. M-type K + channels (M-channels), important regulators of neuronal activity, are abundant in the LHb, yet little is known about their role in AUDs and associated ADs. We report here that in rats at 24 h withdrawal from systemic ethanol administration (either by intraperitoneal injection, 2 g/kg, twice/day, for 7 days; or intermittent drinking 20% ethanol in a two-bottle free choice protocol for 8 weeks), the basal firing rate and the excitability of LHb neurons in brain slices was higher, whereas the amplitude of medium afterhyperpolarization and M-type K + currents were smaller, when compared to ethanol naive rats. Concordantly, M-channel blocker (XE991)-induced increase in the spontaneous firing rate in LHb neurons was smaller. The protein expression of M-channel subunits, KCNQ2/3 in the LHb was also smaller. Moreover, anxiety levels (tested in open field, marble burying, and elevated plus maze) were higher, which were alleviated by LHb inhibition either chemogenetically or by local infusion of the M-channel opener, retigabine. Intra-LHb infusion of retigabine also reduced ethanol consumption and preference. These findings reveal an important role of LHb M-channels in the expression of AUDs and ADs, and suggest that the M-channels could be a potential therapeutic target for alcoholics.

  1. Developing a model of limited-access nicotine consumption in C57Bl/6J mice.

    PubMed

    Kasten, C R; Frazee, A M; Boehm, S L

    2016-09-01

    Although United States smoking rates have been on the decline over the past few decades, cigarette smoking still poses a critical health and economic threat. Very few treatment options for smoking exist, and many of them do not lead to long-term abstinence. Preclinical models are necessary for understanding the effects of nicotine and developing treatments. Current self-administration models of nicotine intake may require surgical procedures and often result in low levels of intake. Further, they do not lend themselves to investigating treatments. The current study sought to develop a limited-access model of nicotine intake using the Drinking-in-the-Dark paradigm, which results in high levels of binge-like ethanol consumption that can be pharmacologically manipulated. The present study found that mice will consume nicotine under a range of parameters. Intakes under the preferred condition of 0.14mg/ml nicotine in 0.2% saccharin reached over 6mg/kg in two hours and were reduced by an injection of R(+)-baclofen. Mecamylamine did not significantly affect nicotine consumption. As nicotine and ethanol are often co-abused, nicotine intake was also tested in the presence of ethanol. When presented in the same bottle, mice altered nicotine intake under various concentrations to maintain consistent levels of ethanol intake. When nicotine and ethanol were presented in separate bottles, mice greatly reduced their nicotine intake while maintaining ethanol intake. In conclusion, these studies characterize a novel model of limited-access nicotine intake that can be pharmacologically manipulated. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Bacterial Membrane Depolarization-Linked Fuel Cell Potential Burst as Signal for Selective Detection of Alcohol.

    PubMed

    Kaushik, Sharbani; Goswami, Pranab

    2018-06-06

    The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols. A graphene-based nanobiocomposite matrix was layered over graphite anode to support cyanobacterial biofilm growth and to facilitate electron transfer. Injection of alcohols into the anodic chamber caused a transient potential burst of the PMFC within 60 s (load 1000 Ω), and the magnitude of potential could be correlated to the ethanol concentrations in the range 0.001-20% with a limit of detection (LOD) of 0.13% ( R 2 = 0.96). The device exhibited higher selectivity toward ethanol than methanol as discerned from the corresponding cell-alcohol interaction constant ( K i ) of 780 and 1250 mM. The concept was then translated to a paper-based PMFC (p-PMFC) (size ∼20 cm 2 ) wherein, the cells were merely immobilized over the anode. The device with a shelf life of ∼3 months detected ethanol within 10 s with a dynamic range of 0.005-10% and LOD of 0.02% ( R 2 = 0.99). The fast response time was attributed to the higher wettability of ethanol on the immobilized cell surface as validated by the contact angle data. Alcohols degraded the cell membrane on the order of ethanol > methanol, enhanced the redox current of the membrane-bound electron carrier proteins, and pushed the anodic band gap toward more negative value. The consequence was the potential burst, the magnitude of which was correlated to the ethanol concentrations. This novel approach has a great application potential for selective, sensitive, rapid, and portable detection of ethanol.

  3. Antidiabetic, antihyperlipidemic, and antioxidant activities of Musa balbisiana Colla. in Type 1 diabetic rats

    PubMed Central

    Borah, Mukundam; Das, Swarnamoni

    2017-01-01

    Objectives: To evaluate the antidiabetic, antihyperlipidemic, and antioxidant activities of the ethanolic extracts of the flowers and inflorescence stalk of Musa balbisiana Colla. in streptozotocin (STZ)-induced Type 1 diabetic rats. Materials and Methods: Diabetes was induced in male Wistar albino rats (150–200 g) by single intraperitoneal injection of STZ (60 mg/kg b.w. i.p.). Albino rats (n = 25) were divided into five groups, of which five animals each. Group A (normal control) and Group B (diabetic control) received normal saline (10 ml/kg/day p.o.), whereas Group C and Group D received 250 mg/kg/day p.o. of flower and inflorescence stalk ethanolic extracts, respectively, for 2 weeks. Group E (diabetic standard) received 6 U/kg/day s.c of Neutral Protamine Hagedorn insulin. Fasting blood sugar, serum insulin, catalase (CAT), malondialdehyde (MDA), and serum lipid profile were estimated at specific intervals of time. Effect of the extracts on intestinal glucose absorption was also evaluated to know the probable mechanism of action. Results: Diabetic control exhibited significant increase in blood glucose, serum cholesterol, triglycerides, low-density lipoprotein, serum MDA levels and decreased serum CAT, and high-density lipoprotein levels which were significantly reverted by flower and inflorescence stalk ethanolic extracts after 2 weeks. Serum insulin levels were in increased (P < 0.05), and intestinal glucose absorption decreased significantly (P < 0.01) in extract-treated groups. Conclusion: Flower and inflorescence stalk of M. balbisiana Colla. possess significant antidiabetic, antihyperlipidemic, and antioxidant activities in STZ-induced Type 1 diabetic rats. PMID:28458426

  4. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism

    PubMed Central

    Kosaraju, Jayasankar; Chinni, Santhivardhan; Roy, Partha Deb; Kannan, Elango; Antony, A. Shanish; Kumar, M. N. Satish

    2014-01-01

    Objective: The present study investigates the neuroprotective activity of ethanol extract of Tinospora cordifolia aerial parts against 6-hydroxy dopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). Materials and Methods: T. cordifolia ethanol extract (TCEE) was standardized with high performance thin layer chromatography using berberine. Experimental PD was induced by intracerebral injection of 6-OHDA (8 μg). Animals were divided into five groups: sham operated, negative control, positive control (levodopa 6 mg/kg) and two experimental groups (n = 6/group). Experimental groups received 200 and 400 mg/kg of TCEE once daily for 30 days by oral gavage. Biochemical parameters including dopamine level, oxidative stress, complex I activity and brain iron asymmetry ratio and locomotor activity including skeletal muscle co-ordination and degree of catatonia were assessed. Results: TCEE exhibited significant neuroprotection by increasing the dopamine levels (1.96 ± 0.20 and 2.45 ± 0.40 ng/mg of protein) and complex I activity (77.14 ± 0.89 and 78.50 ± 0.96 nmol/min/mg of protein) at 200 and 400 mg/kg respectively when compared with negative control group. Iron asymmetry ratio was also significantly attenuated by TCEE at 200 (1.57 ± 0.18) and 400 mg/kg (1.11 ± 0.15) when compared with negative control group. Neuroprotection by TCEE was further supported by reduced oxidative stress and restored locomotor activity in treatment groups. Conclusion: Results show that TCEE possess significant neuroprotection in 6-OHDA induced PD by protecting dopaminergic neurons and reducing the iron accumulation. PMID:24741189

  5. Deflocculants for Tape Casting Barium Titanate.

    DTIC Science & Technology

    1983-07-01

    the individual components of our system in order to determine the effects of water on dispersion properties. The Karl Fischer reagent method (KFR) was...Determined by Karl Fischer Methods Ambient (%) (Dry) % Methyl Ethyl Ketone 0.0338 0.0068* Ethanol 5.1029 0.0161* REX-ethanol 1.8658 0.0059* Barium Titanate...glass jar prior to use. Residual moisture, as determined by Karl Fischer reagent methods , is indicated in Table 11. The Fisher reagent grade ethanol

  6. Parameters of Context-Induced EtOH-Seeking in Alcohol-Preferring (P) Rats: Temporal Analysis, Effects of Repeated Deprivation and Ethanol Priming Injections

    PubMed Central

    Hauser, Sheketha R.; Deehan, Gerald A.; Knight, Christopher P.; Toalston, Jamie E.; McBride, William J.; Rodd, Zachary A.

    2016-01-01

    Background Drug-paired environments can act as stimuli that elicit drug craving. In humans, drug craving is influenced by the amount of time abstinent, number of past periods of abstinence, and inadvertent exposure to the previously abused drug. The current experiments were designed to determine the effects of (a) the duration of abstinence on expression of EtOH-seeking; (b) EtOH priming following a short and long abstinence period; and (c) repeated deprivation cycles on relapse drinking and EtOH-seeking. Methods Rats were allowed to self-administer 15% ethanol (EtOH), processed through extinction training, maintained in a home cage for a designated EtOH-free period, and then reintroduced to the operant context in the absence of EtOH. The experiments examined the effects of: 1) various home cage duration periods (1 to 8 weeks), 2) priming injections of EtOH in the Pavlovian Spontaneous Recovery (PSR; 14 days after extinction) and Reinstatement of Responding (RoR; I day after extinction) models, and 3) exposure to repeated cycles of EtOH access-deprivation on relapse drinking and EtOH-seeking behavior. Results Highest expression of EtOH-seeking was observed following 6 weeks of home-cage maintenance. Priming injections of EtOH were more efficacious at stimulating/enhancing EtOH-seeking in the PSR than RoR model. Exposure to repeated cycles of EtOH deprivation and access enhanced and prolonged relapse drinking and the expression of EtOH-seeking (318 ± 22 responses), which was not observed in rats given equivalent consistent exposure to EtOH (66 ± 11 responses). Discussion Overall, the data indicated that the PSR model has ecological validity; factors that enhance EtOH craving in humans enhance the expression of EtOH seeking in the PSR test. The data also detail factors that need to be examined to determine the biological basis of EtOH-seeking (e.g., neuroadaptations that occur during the incubation period and following repeated cycles of EtOH drinking and abstinence). PMID:27696522

  7. Multivariate calibration on NIR data: development of a model for the rapid evaluation of ethanol content in bakery products.

    PubMed

    Bello, Alessandra; Bianchi, Federica; Careri, Maria; Giannetto, Marco; Mori, Giovanni; Musci, Marilena

    2007-11-05

    A new NIR method based on multivariate calibration for determination of ethanol in industrially packed wholemeal bread was developed and validated. GC-FID was used as reference method for the determination of actual ethanol concentration of different samples of wholemeal bread with proper content of added ethanol, ranging from 0 to 3.5% (w/w). Stepwise discriminant analysis was carried out on the NIR dataset, in order to reduce the number of original variables by selecting those that were able to discriminate between the samples of different ethanol concentrations. With the so selected variables a multivariate calibration model was then obtained by multiple linear regression. The prediction power of the linear model was optimized by a new "leave one out" method, so that the number of original variables resulted further reduced.

  8. Glycosaminoglycan-resistant and pH-sensitive lipid-coated DNA complexes produced by detergent removal method.

    PubMed

    Lehtinen, Julia; Hyvönen, Zanna; Subrizi, Astrid; Bunjes, Heike; Urtti, Arto

    2008-10-21

    Cationic polymers are efficient gene delivery vectors in in vitro conditions, but these carriers can fail in vivo due to interactions with extracellular polyanions, i.e. glycosaminoglycans (GAG). The aim of this study was to develop a stable gene delivery vector that is activated at the acidic endosomal pH. Cationic DNA/PEI complexes were coated by 1,2-dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) (3:2 mol/mol) using two coating methods: detergent removal and mixing with liposomes prepared by ethanol injection. Only detergent removal produced lipid-coated DNA complexes that were stable against GAGs, but were membrane active at low pH towards endosome mimicking liposomes. In relation to the low cellular uptake of the coated complexes, their transfection efficacy was relatively high. PEGylation of the coated complexes increased their cellular uptake but reduced the pH-sensitivity. Detergent removal was thus a superior method for the production of stable, but acid activatable, lipid-coated DNA complexes.

  9. Perinatal choline supplementation does not mitigate motor coordination deficits associated with neonatal alcohol exposure in rats.

    PubMed

    Thomas, Jennifer D; O'Neill, Teresa M; Dominguez, Hector D

    2004-01-01

    Prenatal alcohol exposure can disrupt brain development, leading to a variety of behavioral alterations including learning deficits, hyperactivity, and motor dysfunction. We have been investigating the possibility that perinatal choline supplementation may effectively reduce the severity of alcohol's adverse effects on behavioral development. We previously reported that perinatal choline supplementation can ameliorate alcohol-induced learning deficits and hyperactivity in rats exposed to alcohol during development. The present study examined whether perinatal choline supplementation could also reduce the severity of motor deficits induced by alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4 to 9 via an artificial rearing procedure. Artificially and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4 to 30, whereas the other half received saline vehicle injections. On PD 35-37, subjects were tested on a parallel bar motor task, which requires both balance and fine motor coordination. Ethanol-exposed subjects exhibited significant motor impairments compared to both control groups whose performance did not differ significantly from one another. Perinatal choline treatment did not affect motor performance in either ethanol or control subjects. These data indicate that the beneficial effects of perinatal choline supplementation in ethanol-treated subjects are task specific and suggest that choline is more effective in mitigating cognitive deficits compared to motor deficits associated with developmental alcohol exposure.

  10. Modeling field-scale cosolvent flooding for DNAPL source zone remediation

    NASA Astrophysics Data System (ADS)

    Liang, Hailian; Falta, Ronald W.

    2008-02-01

    A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.

  11. Modeling field-scale cosolvent flooding for DNAPL source zone remediation.

    PubMed

    Liang, Hailian; Falta, Ronald W

    2008-02-19

    A three-dimensional, compositional, multiphase flow simulator was used to model a field-scale test of DNAPL removal by cosolvent flooding. The DNAPL at this site was tetrachloroethylene (PCE), and the flooding solution was an ethanol/water mixture, with up to 95% ethanol. The numerical model, UTCHEM accounts for the equilibrium phase behavior and multiphase flow of a ternary ethanol-PCE-water system. Simulations of enhanced cosolvent flooding using a kinetic interphase mass transfer approach show that when a very high concentration of alcohol is injected, the DNAPL/water/alcohol mixture forms a single phase and local mass transfer limitations become irrelevant. The field simulations were carried out in three steps. At the first level, a simple uncalibrated layered model is developed. This model is capable of roughly reproducing the production well concentrations of alcohol, but not of PCE. A more refined (but uncalibrated) permeability model is able to accurately simulate the breakthrough concentrations of injected alcohol from the production wells, but is unable to accurately predict the PCE removal. The final model uses a calibration of the initial PCE distribution to get good matches with the PCE effluent curves from the extraction wells. It is evident that the effectiveness of DNAPL source zone remediation is mainly affected by characteristics of the spatial heterogeneity of porous media and the variable (and unknown) DNAPL distribution. The inherent uncertainty in the DNAPL distribution at real field sites means that some form of calibration of the initial contaminant distribution will almost always be required to match contaminant effluent breakthrough curves.

  12. Increased Sensitivity to Alcohol Induced Changes in ERK Map Kinase Phosphorylation and Memory Disruption in Adolescent as Compared to Adult C57BL/6J Mice

    PubMed Central

    Spanos, Marina; Besheer, Joyce; Hodge, Clyde W.

    2012-01-01

    Adolescence is a critical period of brain development that is accompanied by increased probability of risky behavior, such as alcohol use. Emerging research indicates that adolescents are differentially sensitive to the behavioral effects of acute ethanol as compared to adults but the neurobiological mechanisms of this effect remain to be fully elucidated. This study was designed to evaluate effects of acute ethanol on extracellular signal-regulated kinase phosphorylation (p-ERK1/2) in mesocorticolimbic brain regions. We also sought to determine if age-specific effects of ethanol on p-ERK1/2 are associated with ethanol-induced behavioral deficits on acquisition of the hippocampal-dependent novel object recognition (NOR) test. Adolescent and adult C57BL/6J mice were administered acute ethanol (0 0.5, 1, or 3 g/kg, i.p.). Brains were removed 30-min post injection and processed for analysis of p-ERK1/2 immunoreactivity (IR). Additional groups of mice were administered ethanol (0 or 1 g/kg) prior to the NOR test. Analysis of p-ERK1/2 IR showed that untreated adolescent mice had significantly higher levels of p-ERK1/2 IR in the nucleus accumbens shell, basolateral amygdala (BLA), central amygdala (CeA), and medial prefrontal cortex (mPFC) as compared to adults. Ethanol (1 g/kg) selectively reduced p-ERK1/2 IR in the dentate gyrus and increased p-ERK1/2 IR in the BLA only in adolescent mice. Ethanol (3 g/kg) produced the same effects on p-ERK1/2 IR in both age groups with increases in CeA and mPFC, but a decrease in the dentate gyrus, as compared to age-matched saline controls. Pretreatment with ethanol (1 g/kg) disrupted performance on the NOR test specifically in adolescents, which corresponds with the ethanol-induced inhibition of p-ERK1/2 IR in the hippocampus. These data show that adolescent mice have differential expression of basal p-ERK1/2 IR in mesocorticolimbic brain regions. Acute ethanol produces a unique set of changes in ERK1/2 phosphorylation in the adolescent brain that are associated with disruption of hippocampal-dependent memory acquisition. PMID:22348893

  13. Performance Test on Compression Ignition Engine by Blending Ethanol and Waste Plastic Pyrolysis Oil with Cetane Additive

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Ganesan, S.; Jeswin Arputhabalan, J.; Chithrala, Varun; Ganesh Bairavan, P.

    2017-05-01

    The demand for diesel fuel is higher than that of petrol throughout the world hence seeking alternative to mineral diesel is a natural choice. Alternative fuels should be easily available at lower cost, environment friendly and fulfill energy needs without modifying engine’s operational parameters. Waste to energy is the trend in the selection of alternate fuels. In this work, Waste Plastic Pyrolysis oil (WPPO), Ethanol, Diesel blend with Cetane additive has been attempted as an alternative fuel. A Twin cylinder, Direct Injection engine was used to assess the engine performance and emission characteristics of waste plastic pyrolysis oil with cetane additive. Experimental results of blended plastic fuel and diesel fuel were compared.

  14. Bioethanol Blending Reduces Nanoparticle, PAH, and Alkyl- and Nitro-PAH Emissions and the Genotoxic Potential of Exhaust from a Gasoline Direct Injection Flex-Fuel Vehicle.

    PubMed

    Muñoz, Maria; Heeb, Norbert V; Haag, Regula; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Comte, Pierre; Czerwinski, Jan

    2016-11-01

    Bioethanol as an alternative fuel is widely used as a substitute for gasoline and also in gasoline direct injection (GDI) vehicles, which are quickly replacing traditional port-fuel injection (PFI) vehicles. Better fuel efficiency and increased engine power are reported advantages of GDI vehicles. However, increased emissions of soot-like nanoparticles are also associated with GDI technology with yet unknown health impacts. In this study, we compare emissions of a flex-fuel Euro-5 GDI vehicle operated with gasoline (E0) and two ethanol/gasoline blends (E10 and E85) under transient and steady driving conditions and report effects on particle, polycyclic aromatic hydrocarbon (PAH), and alkyl- and nitro-PAH emissions and assess their genotoxic potential. Particle number emissions when operating the vehicle in the hWLTC (hot started worldwide harmonized light-duty vehicle test cycle) with E10 and E85 were lowered by 97 and 96% compared with that of E0. CO emissions dropped by 81 and 87%, while CO 2 emissions were reduced by 13 and 17%. Emissions of selected PAHs were lowered by 67-96% with E10 and by 82-96% with E85, and the genotoxic potentials dropped by 72 and 83%, respectively. Ethanol blending appears to reduce genotoxic emissions on this specific flex-fuel GDI vehicle; however, other GDI vehicle types should be analyzed.

  15. IMPACT OF ETHANOL ON THE NATURAL ATTENUATION OF BENZENE, TOLUENE, AND O-XYLENE IN A NORMALLY SULFATE-REDUCING AQUIFER

    EPA Science Inventory

    Two side-by-side field experiments were conducted in a shallow sulfate-reducing aquifer at a former service station site at Vandenberg Air Force Base, CA. On one side, we injected site groundwater amended with 1-3 mg/L benzene, toluene, and o-xylene (B, T, and o-X). On the othe...

  16. Histologic changes in thyroid nodules after percutaneous ethanol injection in patients subsequently operated on due to new focal thyroid lesions.

    PubMed

    Pomorski, Lech; Bartos, Magdalena

    2002-02-01

    This paper reports macro- and microscopic changes in hyperfunctioning thyroid nodules (HTN), initially diagnosed as solitary, in patients treated with percutaneous ethanol injection (PEI). In 78 patients, benign solitary HTN were diagnosed by clinical and hormonal examination. High resolution ultrasonography confirmed the solitary nodule. The results of fine needle aspiration biopsy (FNAB), performed twice, ruled out malignancy of the nodule. The patients were referred for PEI treatment. At 1-year follow-up, newly formed thyroid nodules, whose volumes increased, were detected in five patients (6.4%) with HTN, initially diagnosed as solitary. Therefore, these patients were operated on. Subtotal thyroidectomy was performed. At the intraoperative macroscopic evaluation, a hard fibrous solid mass was found in place of three nodules (n1, n2, n3) following PEI treatment. The middle area of the cut surface of PEI-treated nodules (n4 and n5) in the other two patients was firm and haemorrhagic, surrounded by a fibrous mass. Histolopathologic examination of n1, n2 and n3 revealed fibrosis and hyalinosis. Examination of n4 and n5 showed haemorrhagic necrosis in the middle of the nodules surrounded by fibrous tissue.

  17. Quantification of Neural Ethanol and Acetaldehyde Using Headspace GC-MS

    PubMed Central

    Heit, Claire; Eriksson, Peter; Thompson, David C; Fritz, Kristofer S; Vasiliou, Vasilis

    2016-01-01

    BACKGROUND There is controversy regarding the active agent responsible for alcohol addiction. The theory that ethanol itself was the agent in alcohol drinking behavior was widely accepted until acetaldehyde was found in the brain. The importance of acetaldehyde formation in the brain role is still subject to speculation due to the lack of a method to accurately assay the acetaldehyde levels directly. A highly sensitive GC-MS method to reliably determine acetaldehyde concentration with certainty is needed to address whether neural acetaldehyde is indeed responsible for increased alcohol consumption. METHODS A headspace gas chromatograph coupled to selected ion monitoring mass spectrometry was utilized to develop a quantitative assay for acetaldehyde and ethanol. Our GC-MS approach was carried out using a Bruker Scion 436-GC SQ MS. RESULTS Our approach yields limits of detection of acetaldehyde in the nanomolar range and limits of quantification in the low micromolar range. Our linear calibration includes 5 concentrations with a least square regression greater than 0.99 for both acetaldehyde and ethanol. Tissue analyses using this method revealed the capacity to quantify ethanol and acetaldehyde in blood, brain, and liver tissue from mice. CONCLUSIONS By allowing quantification of very low concentrations, this method may be used to examine the formation of ethanol metabolites, specifically acetaldehyde, in murine brain tissue in alcohol research. PMID:27501276

  18. COMPARISON OF IN VITRO METHODS AND THE IN VIVO METABOLISM OF LINDANE FOR ASSESSING THE EFFECTS OF REPEATED ADMINISTRATION OF ETHANOL ON HEPATIC DRUG METABOLISM

    EPA Science Inventory

    In vitro methods of assessing alterations in drug metabolism and the measurement of lindane metabolites in urine were compared for their ability to determine the influence of ethanol on drug metabolism. Ethanol was administered to young adult female rats daily for seven days at d...

  19. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  20. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  1. Neuroimmunophilin GPI-1046 reduces ethanol consumption in part through activation of GLT1 in alcohol-preferring rats.

    PubMed

    Sari, Y; Sreemantula, S N

    2012-12-27

    We have previously shown that ceftriaxone, β-lactam antibiotic known to upregulate glutamate transporter 1 (GLT1), reduced ethanol intake in alcohol-preferring (P) rats. GLT1 is a glial glutamate transporter that regulates the majority of extracellular glutamate uptake. We tested in this study the effects of neuroimmunophilin GPI-1046 (3-(3-pyridyl)-1-propyl (2S)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidinecarboxylate), known also to upregulate GLT1 expression, in ethanol intake in P rats. Male P rats had concurrent access to free choice of 15% and 30% ethanol, water, and food for five weeks. On Week 6, P rats continued in this drinking and food regimen and they were administered either 10 or 20mg/kg GPI-1046 (i.p.), or a vehicle for five consecutive days. Body weight, ethanol intake, and water consumption were measured daily for 8 days starting on Day 1 of GPI-1046 or vehicle i.p. injections. We have also tested the effect of GPI-1046 (20mg/kg) on daily sucrose (10%) intake. The data revealed significant dose-dependent effects in the reduction of ethanol intake starting 48 h after the first treatment with GPI-1046 throughout treatment and post-treatment periods. There were also dose-dependent increases in water intake. However, GPI-1046 treatment did not affect the body weight of all animals nor sucrose intake. Importantly, GPI-1046 (20mg/kg) increased GLT1 level compared to all groups in nucleus accumbens core (NAc-core). Alternatively, GPI-1046 (10mg/kg) upregulated GLT1 level in NAc-core compared to vehicle (ethanol naïve) group. Moreover, both doses of GPI-1046 increased significantly GLT1 level in the prefrontal cortex (PFC) compared to ethanol naïve vehicle group. GPI-1046 (20mg/kg) increased GLT1 level in PFC compared to naïve control group that was exposed to water and food only. These findings demonstrated that neuroimmunophilin GPI-1046 attenuates ethanol intake in part through the upregulation of GLT1 in PFC and NAc-core. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-03-01

    To date there have been no adequate methods for measuring the heat of vaporization of complex mixtures. This research developed two separate methods for measuring this key property of ethanol and gasoline blends, including the ability to estimate heat of vaporization at multiple temperatures. Methods for determining heat of vaporization of gasoline-ethanol blends by calculation from a compositional analysis and by direct calorimetric measurement were developed. Direct measurement produced values for pure compounds in good agreement with literature. A range of hydrocarbon gasolines were shown to have heat of vaporization of 325 kJ/kg to 375 kJ/kg. The effect of addingmore » ethanol at 10 vol percent to 50 vol percent was significantly larger than the variation between hydrocarbon gasolines (E50 blends at 650 kJ/kg to 700 kJ/kg). The development of these new and accurate methods allows researchers to begin to both quantify the effect of fuel evaporative cooling on knock resistance, and exploit this effect for combustion of hydrocarbon-ethanol fuel blends in high-efficiency SI engines.« less

  3. Methods for increasing the production of ethanol from microbial fermentation

    DOEpatents

    Gaddy, James L [Fayetteville, AR; Arora, Dinesh K [Fayetteville, AR; Ko, Ching-Whan [Fayetteville, AR; Phillips, John Randall [Fayetteville, AR; Basu, Rahul [Bethlehem, PA; Wikstrom, Carl V [Fayetteville, AR; Clausen, Edgar C [Fayetteville, AR

    2007-10-23

    A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.

  4. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  5. Supplemental choline during the periweaning period protects against trace conditioning impairments attributable to post-training ethanol exposure in adolescent rats.

    PubMed

    Hunt, Pamela S

    2012-08-01

    Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of posttraining alcohol administration on trace fear conditioning. Posttraining alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next 3 days animals were administered 2.5 g/kg ethanol or water control, and conditional stimulus (CS)-elicited freezing was measured on PD 34. Results indicated that posttraining alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given posttraining ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development.

  6. SUPPLEMENTAL CHOLINE DURING THE PERIWEANING PERIOD PROTECTS AGAINST TRACE CONDITIONING IMPAIRMENTS DUE TO POST-TRAINING ETHANOL EXPOSURE IN ADOLESCENT RATS

    PubMed Central

    Hunt, Pamela S.

    2012-01-01

    Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of post-training alcohol administration on trace fear conditioning. Post-training alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next three days animals were administered 2.5 g/kg ethanol or water control, and CS-elicited freezing was measured on PD 34. Results indicated that post-training alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given post-training ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development. PMID:22687150

  7. Effect of caffeic acid phenethyl ester on oxidant and anti-oxidant status of liver and serum in a rat model with acute methanol intoxication.

    PubMed

    Yazgan, Ü C; Elbey, B; Kuş, S; Baykal, B; Keskin, I; Yılmaz, A; Şahin, A

    2017-05-01

    Methanol toxicity is one of the major public health problems because it can cause severe morbidity and mortality. Methanol intoxication causes changes in the balance between the production of free radicals and antioxidant capacity. We aimed to investigate the effects of caffeic acid phenethyl ester (CAPE) on the total oxidant status, total antioxidant status (TAS), and oxidative stress index (OSI) parameters of the liver and the serum in a rat model of acute methanol intoxication. Rats were treated with intraperitoneal (i.p.) Methotrexate (MTX) for 7 days. On the 8th day, i.p. Methanol was administered in the methanol, ethanol and CAPE groups. Four hours after methanol treatment, ethanol was injected i.p. in the ethanol group; CAPE (i.p.) in the CAPE group; serum physiologic i.p. in other groups. After 8 hours, rats were killed and the serum and the liver samples were obtained for biochemical analyses. The OSI value was significantly higher in the methanol group compared to the ethanol and CAPE groups. Serum TAS levels of the methanol group were significantly different compared to the control group, but not compared to the MTX group. The amelioration of oxidative stress was greater in the CAPE group compared to the ethanol group but was not statistically significant. This study demonstrates that CAPE treatment ameliorates oxidative stress in the serum and liver in a rat model of acute methanol intoxication.

  8. Separation of ovotransferrin and ovomucoid from chicken egg white.

    PubMed

    Abeyrathne, E D N S; Lee, H Y; Ahn, D U

    2014-04-01

    Ovotransferrin and ovomucoid were separated using 2 methods after extracting the ovotransferrin- and ovomucoid-containing fraction from egg white. Diluted egg white (2×) was added to Fe(3+) and treated with 43% ethanol (final concentration). After centrifugation, the supernatant was collected and treated with either a high-level ethanol (61% final concentration) or an acidic salt combination (2.5% ammonium sulfate and 2.5% citric acid) to separate ovotransferrin and ovomucoid. For the high-level of ethanol method, ovotransferrin was precipitated using 61% ethanol. After centrifugation, the precipitant was dissolved in 9 vol. of distilled water and the residual ethanol in the solution was removed using ultrafiltration. The supernatant, mainly containing ovomucoid, was diluted with 4 vol. of water, had ethanol removed, and was then concentrated and used as the ovomucoid fraction. For the acidic salt precipitation method, the ethanol in the supernatant was removed first. The ethanol-free solution was then concentrated and treated with a 2.5% ammonium sulfate and 2.5% citric acid combination. After centrifugation, the precipitant was used as the ovotransferrin and the supernatant as the ovomucoid fraction. The ovomucoid fraction from both of the protocols was further purified by heating at 65°C for 20 min and the impurities were removed by centrifugation. The yields of ovomucoid and ovotransferrin were >96 and >92%, respectively. The purity of ovomucoid was >89% and that of the ovotransferrin was >88%. The ELISA results confirmed that the activity of the separated ovotransferrin was >95%. Both of the protocols separated ovotransferrin and ovomucoid effectively and the methods were simple, fast, and easy to scale up.

  9. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain

    PubMed Central

    Lewis, Susannah S.; Hutchinson, Mark R.; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

    2013-01-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

  10. A hydro-ethanolic extract of Synedrella nodiflora (L.) Gaertn ameliorates hyperalgesia and allodynia in vincristine-induced neuropathic pain in rats.

    PubMed

    Amoateng, Patrick; Adjei, Samuel; Osei-Safo, Dorcas; Ameyaw, Elvis Ofori; Ahedor, Believe; N'guessan, Benoit Banga; Nyarko, Alexander Kwadwo

    2015-07-01

    The hydro-ethanolic extract of Synedrella nodiflora (L.) Gaertn whole plant has demonstrated analgesic effects in acute pain models. The extract has also demonstrated anticonvulsant effects in murine models of experimental epilepsy. The present study illustrates an evaluation of the hydro-ethanolic extract of the plant for possible analgesic properties in hyperalgesia and allodynia associated with vincristine-induced neuropathy in rats. Neuropathic pain was induced in Sprague-Dawley rats by injecting 100 μg/kg of vincristine sulphate on alternative days for 6 days (days 0, 2, 4, 8, 10 and 12). Vincristine-induced cold allodynia, mechanical hyperalgesia and thermal hyperalgesia were measured pre-vincristine administration and on days 15, 17 and 19 post-vincristine administration. The rats were then treated with S. nodiflora extract (SNE) (100, 300 and 1000 mg/kg), pregabalin (10, 30 and 100 mg/kg) and distilled water as vehicle daily for 5 days and pain thresholds were measured on alternate days for 3 days. SNE and pregabalin produced analgesic properties observed as increased paw withdrawal latencies to mechanical, tactile, cold water stimuli and thermal hyperalgesic tests during the 5 days of treatment. The findings suggest that hydro-ethanolic extract of S. nodiflora possesses anti-hyperalgesic and anti-allodynic effects in vincristine-induced neuropathic pain in rats.

  11. Direct metabolic fingerprinting of commercial herbal tinctures by nuclear magnetic resonance spectroscopy and mass spectrometry.

    PubMed

    Politi, Matteo; Zloh, Mire; Pintado, Manuela E; Castro, Paula M L; Heinrich, Michael; Prieto, Jose M

    2009-01-01

    Tinctures are widely used liquid pharmaceutical preparations traditionally obtained by maceration of one or more medicinal plants in ethanol-water solutions. Such a process results in the extraction of virtually hundreds of structurally diverse compounds with different polarities. Owing to the large chemical diversity of the constituents present in the herbal tinctures, the analytical tools used for the quality control of tinctures are usually optimised only for the detection of single chemical entities or specific class of compounds. In order to overcome the major limitations of the current methods used for analysis of tinctures, a new methodological approach based on NMR spectroscopy and MS spectrometry has been tested with different commercial tinctures. Diffusion-edited 1H-NMR (1D DOSY) and 1H-NMR with suppression of the ethanol and water signals have been applied here for the first time to the direct analysis of commercial herbal tinctures derived from Echinacea purpurea, Hypericum perforatum, Ginkgo biloba and Valeriana officinalis. The direct injection of the tinctures in the MS detector in order to obtain the corresponding metabolic profiles was also performed. Using both NMR and MS methods it was possible, without evaporation or separation steps, to obtain a metabolic fingerprint able to distinguish between tinctures prepared with different plants. Batch-to-batch homogeneity, as well as degradation after the expiry date of a batch, was also investigated. The techniques proposed here represent fast and convenient direct analyses of medicinal herbal tinctures.

  12. Ethanol production from lignocellulose

    DOEpatents

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  13. Formulation of resveratrol entrapped niosomes for topical use.

    PubMed

    Pando, Daniel; Matos, María; Gutiérrez, Gemma; Pazos, Carmen

    2015-04-01

    A new approach to the formulation of resveratrol (RSV) entrapped niosomes for topical use is proposed in this work. Niosomes were formulated with Gelot 64 (G64) as surfactant, and two skin-compatible unsaturated fatty acids (oleic and linoleic acids), commonly used in pharmaceutical formulations, as penetration enhancers. Niosomes were prepared by two different methods: a thin film hydration method with minor modifications followed by a sonication stage (TFH-S), and an ethanol injection modified method (EIM). Niosomes prepared with the EIM method were in the range of 299-402 nm, while the TFH-S method produced larger niosomes in the range of 293-496 nm. Moreover, niosomes with higher RSV entrapment efficiency (EE) and better stability were generated by the EIM method. Ex vivo transdermal experiments, carried out in Franz diffusion cells on newborn pig skin, indicated that niosomes prepared by the EIM method were more effective for RSV penetration in epidermis and dermis (EDD), with values up to 21% for both penetration enhancers tested. The EIM method, which yielded the best RSV-entrapped niosomes, seems to be the most suitable for scaling up. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. The influence of seasonality on the content of goyazensolide and on anti-inflammatory and anti-hyperuricemic effects of the ethanolic extract of Lychnophora passerina (Brazilian arnica).

    PubMed

    de Albuquerque Ugoline, Bruno César; de Souza, Jacqueline; Ferrari, Fernanda Cristina; Ferraz-Filha, Zilma Schimith; Coelho, Grazielle Brandão; Saúde-Guimarães, Dênia Antunes

    2017-02-23

    Lychnophora passerina (Mart ex DC) Gardn (Asteraceae), popularly known as Brazilian arnica, is used in Brazilian folk medicine to treat pain, rheumatism, bruises, inflammatory diseases and insect bites. Investigate the influence of the seasons on the anti-inflammatory and anti-hyperuricemic activities of ethanolic extract of L. passerina and the ratio of the goyazensolide content, main chemical constituent of the ethanolic extract, with these activities. Ethanolic extracts of aerial parts of L. passerina were obtained from seasons: summer (ES), autumn (EA), winter (EW) and spring (EP). The sesquiterpene lactone goyazensolide, major metabolite, was quantified in ES, EA, EW and EP by a developed and validated HPLC-DAD method. The in vivo anti-hyperuricemic and anti-inflammatory effects of the ethanolic extracts from L. passerina and goyazensolide were assayed on experimental model of oxonate-induced hyperuricemia in mice, liver xanthine oxidase (XOD) inhibition and on carrageenan-induced paw edema in mice. HPLC method using aqueous solution of acetic acid 0.01% (v/v) and acetonitrile with acetic acid 0.01% (v/v) as a mobile phase in a gradient system, with coumarin as an internal standard and DAD detection at 270nm was developed. The validation parameters showed linearity in a range within 10.0-150.0µg/ml, with intraday and interday precisions a range of 0.61-3.82. The accuracy values of intraday and interday analysis within 87.58-100.95%. EA showed the highest goyazensolide content. From the third to the sixth hour after injection of carrageenan, treatments with all extracts at the dose of 125mg/kg were able to reduce edema. Goyazensolide (10mg/kg) showed significant reduction of paw swelling from the second hour assay. This sesquiterpene lactone was more active than extracts and presented similar effect to indomethacin. Treatments with ES, EA and EP (125mg/kg) and goyazensolide (10mg/kg) reduced serum urate levels compared to hyperuricemic control group and were able to inhibit liver XOD activity. One of the mechanisms by which ES, EA, EP and goyazensolide exercise their anti-hyperuricemic effect is by the inhibition of liver XOD activity. Goyazensolide was identified as the main compound present in ES, EA, EW and EP and it is shown to be one of the chemical constituents responsible for the anti-inflammatory and anti-hyperuricemic effects of the ethanolic extracts. The anti-inflammatory and anti-hyperuricemic activities of the ethanolic extracts from L. passerina were not proportionally influenced by the variation of goyazensolide content throughout the seasons. The involvement of goyazensolide on in vivo anti-inflammatory and anti-hyperuricemic activities of L.passerina extracts was confirmed, as well as the possibility of participation of other constituents on these effects. This study demonstrated that the aerial parts of L. passerina may be collected in any season for use as anti-inflammatory agent. For use in hyperuricemia, the best seasons for the collection are summer, autumn and spring. The ethanolic extract of L. passerina and goyazensolide can be considered promising agents in the therapeutic of inflammation, hyperuricemia and gout. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Y., E-mail: ono-y@kanagawa-iri.go.jp; Rachi, T.; Yokouchi, M.

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acidmore » concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.« less

  16. Conditioned taste aversion to ethanol in a social context: impact of age and sex.

    PubMed

    Morales, Melissa; Schatz, Kelcie C; Anderson, Rachel I; Spear, Linda P; Varlinskaya, Elena I

    2014-03-15

    Given that human adolescents place a high value on social interactions-particularly while consuming alcohol-the current study utilized a novel social drinking paradigm to examine rewarding and aversive properties of ethanol in non-water deprived rats that were housed and tested in groups of five same-sex littermates. On postnatal day P34 (adolescents) or P69 (adults), rats were habituated to the testing apparatus for 30 min. On the next day, animals were placed into the test apparatus and given 30 min access to a supersaccharin solution (3% sucrose; 0.125% saccharin), followed immediately by an intraperitoneal injection of ethanol (0, 0.25, 0.5, 1.0, 1.5 g/kg). Subsequent intake of the supersacharrin solution was assessed on three consecutive test days. Adolescent males were less sensitive to ethanol's aversive effects than adult males, with adolescent males maintaining an aversion on all three test days only at the 1.5 g/kg dose, whereas adults demonstrated aversions across test days to 1 and 1.5 g/kg. Adolescent females maintained aversions to 1 and 1.5 g/kg across days, whereas adult females continued to show an aversion to the 1.5 g/kg dose only. These opposite patterns of sensitivity that emerged among males and females at each age in the propensity to maintain an ethanol-induced taste aversion under social conditions may contribute to age- and sex-related differences in ethanol intake. Testing in social groups may be useful for future work when studying rodent models of adolescent alcohol use given the importance that human adolescents place on drinking in social settings. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Inhibition of IKKβ Reduces Ethanol Consumption in C57BL/6J Mice.

    PubMed

    Truitt, Jay M; Blednov, Yuri A; Benavidez, Jillian M; Black, Mendy; Ponomareva, Olga; Law, Jade; Merriman, Morgan; Horani, Sami; Jameson, Kelly; Lasek, Amy W; Harris, R Adron; Mayfield, R Dayne

    2016-01-01

    Proinflammatory pathways in neuronal and non-neuronal cells are implicated in the acute and chronic effects of alcohol exposure in animal models and humans. The nuclear factor-κB (NF-κB) family of DNA transcription factors plays important roles in inflammatory diseases. The kinase IKKβ mediates the phosphorylation and subsequent proteasomal degradation of cytosolic protein inhibitors of NF-κB, leading to activation of NF-κB. The role of IKKβ as a potential regulator of excessive alcohol drinking had not previously been investigated. Based on previous findings that the overactivation of innate immune/inflammatory signaling promotes ethanol consumption, we hypothesized that inhibiting IKKβ would limit/decrease drinking by preventing the activation of NF-κB. We studied the systemic effects of two pharmacological inhibitors of IKKβ, TPCA-1 and sulfasalazine, on ethanol intake using continuous- and limited-access, two-bottle choice drinking tests in C57BL/6J mice. In both tests, TPCA-1 and sulfasalazine reduced ethanol intake and preference without changing total fluid intake or sweet taste preference. A virus expressing Cre recombinase was injected into the nucleus accumbens and central amygdala to selectively knock down IKKβ in mice genetically engineered with a conditional Ikkb deletion ( Ikkb F/F ). Although IKKβ was inhibited to some extent in astrocytes and microglia, neurons were a primary cellular target. Deletion of IKKβ in either brain region reduced ethanol intake and preference in the continuous access two-bottle choice test without altering the preference for sucrose. Pharmacological and genetic inhibition of IKKβ decreased voluntary ethanol consumption, providing initial support for IKKβ as a potential therapeutic target for alcohol abuse.

  18. Hepatoprotective activity of sea cucumber Phyllophorus sp. extract in carp (Cyprinus carpio)

    NASA Astrophysics Data System (ADS)

    Sulmartiwi, Laksmi; Triastuti, Juni; Andriyono, Sapto; Umami, Mardiah Rahma

    2017-02-01

    Many procedures continuously in aquaculture and scientific research like tagging and vaccinating cause pain, involving damaging tissue and also cause stress responses in fish. Stress responses in fish influence liver because liver have vital role to supply energy and metabolism. Histology alteration in liver is caused by stress response like changes of vacuolation hepatocyte and characteristic colour. Triterpenoid was known had hepatoprotective activity. One of marine organism contained triterpenoid was sea cucumber. Result of research showed that liver tissue in fish with injected acetic acid 5 % (in upper lip) as pain stimulus have histopathology damages such as pyknosis (medium damage level) and oedema (heavy damage level) after 8 hour injection. Injected Lidocaine 1mg/fish as analgesic drug have histopathology damages such as oedema (heavy damages level), necrosis and pyknosis (low damages level). Injected acetic acid 5 % (in upper lip) and ethanolic extract of sea cucumber Phyllophorus sp. dose 5 mg/50 gr body weight shown histopathology damages such as necrosis, edema (medium damage level) and pyknosis (low damage level).

  19. Impaired TFEB-mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-induced Liver Injury and Steatosis in Mice.

    PubMed

    Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing

    2018-05-18

    Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues CONCLUSIONS: We found chronic ethanol feeding plus an acute binge to reduce hepatic expression of the transcription factor TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect liver from ethanol-induced damage. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. ENVIRONMENTAL IMPACT ASSESSMENT OF BIO-ETHANOL MADE FROM RICE STRAW CONSIDERING LAND OCCUPATION EFFECTS ON ECOSYSTEM

    NASA Astrophysics Data System (ADS)

    Motoshita, Masaharu; Yang, Cuifen; Genchi, Yutaka; Tahara, Kiyotaka; Inaba, Atsushi

    Most of rice straw produced as a byproduct is not or low utilized in Japan. However, it may be available for the production of bio-ethanol without threatening food supply because of its characteristics as one of the lignocellulosic materials. Though it has already been revealed in previous studies that bio-ethanol made from rice straw can contribute to reducing energy consumption and repressing greenhouse gas emissions, effects on ecosystem due to land occupation for rice straw production and ethanol refinery plant have not been evaluated. Thus, environmental impacts of bio-ethanol made from rice straw including effects on ecosystem caused by land occupation were evaluated in this study. Some differences among three representative assessment methods could be found in results of the effect on ecosystem due to land occupation for rice straw production and ethanol refinery plant. However, it is common among all assessment methods that the effect on ecosystem caused by land occupation dominates large part of total environmental impact of ethanol made from rice straw (72-83% of total impact). Bio-ethanol made from rice straw showed larger environmental impact compared to that of gasoline due to land occupation. The improvement of the operating rate and the productivity of ethanol refinery plants is especially necessary for repressing the environm ental impacts related to bio-ethanol production made from rice straw.

  1. Model of voluntary ethanol intake in zebrafish: Effect on behavior and hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Karatayev, O.; Chang, G.-Q.; Algava, D.B.; Leibowitz, S.F

    2014-01-01

    Recent studies in zebrafish have shown that exposure to ethanol in tank water affects various behaviors, including locomotion, anxiety and aggression, and produces changes in brain neurotransmitters, such as serotonin and dopamine. Building on these investigations, the present study had two goals: first, to develop a method for inducing voluntary ethanol intake in individual zebrafish, which can be used as a model in future studies to examine how this behavior is affected by various manipulations, and second, to characterize the effects of this ethanol intake on different behaviors and the expression of hypothalamic orexigenic peptides, galanin (GAL) and orexin (OX), which are known in rodents to stimulate consumption of ethanol and alter behaviors associated with alcohol abuse. Thus, we first developed a new model of voluntary intake of ethanol in fish by presenting this ethanol mixed with gelatin, which they readily consume. Using this model, we found that individual zebrafish can be trained in a short period of time to consume stable levels of 10% or 20% ethanol (v/v) mixed with gelatin and that their intake of this ethanol-gelatin mixture leads to pharmacologically-relevant blood ethanol concentrations which are strongly, positively correlated with the amount ingested. Intake of this ethanol-gelatin mixture increased locomotion, reduced anxiety, and stimulated aggressive behavior, while increasing expression of GAL and OX in specific hypothalamic areas. These findings, confirming results in rats, provide a method in zebrafish for investigating with forward genetics and pharmacological techniques the role of different brain mechanisms in controlling ethanol intake. PMID:25257106

  2. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    PubMed

    Almeida, Eduardo S; Silva, Luiz A J; Sousa, Raquel M F; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation

    PubMed Central

    Canilha, Larissa; Chandel, Anuj Kumar; Suzane dos Santos Milessi, Thais; Antunes, Felipe Antônio Fernandes; Luiz da Costa Freitas, Wagner; das Graças Almeida Felipe, Maria; da Silva, Silvio Silvério

    2012-01-01

    Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production. PMID:23251086

  4. Color and alcohol removal for the simultaneous detection of amino acids and sugars in wine by two-dimensional ion chromatography.

    PubMed

    Fa, Yun; Liu, Yinghui; Xu, Aihua; Yu, Yuexue; Li, Fangfang; Liu, Huizhou

    2017-09-15

    An effective pretreatment method for wine color removal by a PS-DVB SPE cartridge and online alcohol elimination by valve switching was presented. The optimum parameters for color removal were investigated: 40-μm and 100Å poly (styrene)-divinylbenzene (PS-DVB) (0.4g) was selected as the color removal material and 5mL of ethanol (10%) as the elution solvent for sample pretreatment under given condition. Moreover, an accurate and automated two-dimensional ion chromatography method for the simultaneous detection of amino acids and sugars was achieved with two valves after injection without alcohol interference. The method had a mean correlation coefficient of >0.99 and a repeatability of 0.92%-4.30% for eight replicates. The mean recovery of six red wine samples were 97.6%, 96.6%, 96.1%, 95.9%, 97.3% and 96.4% respectively. And this method successfully analyzed the amino acid and sugar contents of six wine samples of different origins. Copyright © 2017. Published by Elsevier B.V.

  5. In Vivo Recording of Neural and Behavioral Correlates of Anesthesia Induction, Reversal, and Euthanasia in Cephalopod Molluscs.

    PubMed

    Butler-Struben, Hanna M; Brophy, Samantha M; Johnson, Nasira A; Crook, Robyn J

    2018-01-01

    Cephalopod molluscs are among the most behaviorally and neurologically complex invertebrates. As they are now included in research animal welfare regulations in many countries, humane and effective anesthesia is required during invasive procedures. However, currently there is no evidence that agents believed to act as anesthetics produce effects beyond immobility. In this study we demonstrate, for the first time, that two of the most commonly used agents in cephalopod general anesthesia, magnesium chloride and ethanol, are capable of producing strong and reversible blockade of afferent and efferent neural signal; thus they are genuine anesthetics, rather than simply sedating agents that render animals immobile but not insensible. Additionally, we demonstrate that injected magnesium chloride and lidocaine are effective local anesthetic agents. This represents a considerable advance for cephalopod welfare. Using a reversible, minimally invasive recording procedure, we measured activity in the pallial nerve of cuttlefish ( Sepia bandensis ) and octopus ( Abdopus aculeatus, Octopus bocki ), during induction and reversal for five putative general anesthetic and two local anesthetic agents. We describe the temporal relationship between loss of behavioral responses (immobility), loss of efferent neural signal (loss of "consciousness") and loss of afferent neural signal (anesthesia) for general anesthesia, and loss of afferent signal for local anesthesia. Both ethanol and magnesium chloride were effective as bath-applied general anesthetics, causing immobility, complete loss of behavioral responsiveness and complete loss of afferent and efferent neural signal. Cold seawater, diethyl ether, and MS-222 (tricaine) were ineffective. Subcutaneous injection of either lidocaine or magnesium chloride blocked behavioral and neural responses to pinch in the injected area, and we conclude that both are effective local anesthetic agents for cephalopods. Lastly, we demonstrate that a standard euthanasia protocol-immersion in isotonic magnesium chloride followed by surgical decerebration-produced no behavioral response and no neural activity during surgical euthanasia. Based on these data, we conclude that both magnesium chloride and ethanol can function as general anesthetic agents, and lidocaine and magnesium chloride can function as local anesthetic agents for cephalopod molluscs.

  6. Brazilian propolis ethanol extract and its component kaempferol induce myeloid-derived suppressor cells from macrophages of mice in vivo and in vitro.

    PubMed

    Kitamura, Hiroshi; Saito, Natsuko; Fujimoto, Junpei; Nakashima, Ken-Ichi; Fujikura, Daisuke

    2018-05-02

    Brazilian green propolis is produced by mixing secretions from Africanized honey bees with exudate, mainly from Baccharis dracunculifolia. Brazilian propolis is especially rich in flavonoids and cinammic acid derivatives, and it has been widely used in folk medicine owing to its anti-inflammatory, anti-viral, tumoricidal, and analgesic effects. Moreover, it is applied to prevent metabolic disorders, such as type 2 diabetes and arteriosclerosis. Previously, we demonstrated that propolis ethanol extract ameliorated type 2 diabetes in a mouse model through the resolution of adipose tissue inflammation. The aims of this study were to identify the immunosuppressive cells directly elicited by propolis extract and to evaluate the flavonoids that induce such cells. Ethanol extract of Brazilian propolis (PEE; 100 mg/kg i.p., twice a week) was injected into lean or high fat-fed obese C57BL/6 mice or C57BL/6 ob/ob mice for one month. Subsequently, immune cells in visceral adipose tissue and the peritoneal cavity were monitored using FACS analysis. Isolated macrophages and the macrophage-like cell line J774.1 were treated with PEE and its constituent components, and the expression of immune suppressive myeloid markers were evaluated. Finally, we injected one of the identified compounds, kaempferol, into C57BL/6 mice and performed FACS analysis on the adipose tissue. Intraperitoneal treatment of PEE induces CD11b + , Gr-1 + myeloid-derived suppressor cells (MDSCs) in visceral adipose tissue and the peritoneal cavity of lean and obese mice. PEE directly stimulates cultured M1 macrophages to transdifferentiate into MDSCs. Among twelve compounds isolated from PEE, kaempferol has an exclusive effect on MDSCs induction in vitro. Accordingly, intraperitoneal injection of kaempferol causes accumulation of MDSCs in the visceral adipose tissue of mice. Brazilian PEE and its compound kaempferol strongly induce MDSCs in visceral adipose tissue at a relatively early phase of inflammation. Given the strong anti-inflammatory action of MDSCs, the induction of MDSCs by PEE and kaempferol is expected to be useful for anti-diabetic and anti-inflammatory therapies.

  7. In Vivo Recording of Neural and Behavioral Correlates of Anesthesia Induction, Reversal, and Euthanasia in Cephalopod Molluscs

    PubMed Central

    Butler-Struben, Hanna M.; Brophy, Samantha M.; Johnson, Nasira A.; Crook, Robyn J.

    2018-01-01

    Cephalopod molluscs are among the most behaviorally and neurologically complex invertebrates. As they are now included in research animal welfare regulations in many countries, humane and effective anesthesia is required during invasive procedures. However, currently there is no evidence that agents believed to act as anesthetics produce effects beyond immobility. In this study we demonstrate, for the first time, that two of the most commonly used agents in cephalopod general anesthesia, magnesium chloride and ethanol, are capable of producing strong and reversible blockade of afferent and efferent neural signal; thus they are genuine anesthetics, rather than simply sedating agents that render animals immobile but not insensible. Additionally, we demonstrate that injected magnesium chloride and lidocaine are effective local anesthetic agents. This represents a considerable advance for cephalopod welfare. Using a reversible, minimally invasive recording procedure, we measured activity in the pallial nerve of cuttlefish (Sepia bandensis) and octopus (Abdopus aculeatus, Octopus bocki), during induction and reversal for five putative general anesthetic and two local anesthetic agents. We describe the temporal relationship between loss of behavioral responses (immobility), loss of efferent neural signal (loss of “consciousness”) and loss of afferent neural signal (anesthesia) for general anesthesia, and loss of afferent signal for local anesthesia. Both ethanol and magnesium chloride were effective as bath-applied general anesthetics, causing immobility, complete loss of behavioral responsiveness and complete loss of afferent and efferent neural signal. Cold seawater, diethyl ether, and MS-222 (tricaine) were ineffective. Subcutaneous injection of either lidocaine or magnesium chloride blocked behavioral and neural responses to pinch in the injected area, and we conclude that both are effective local anesthetic agents for cephalopods. Lastly, we demonstrate that a standard euthanasia protocol—immersion in isotonic magnesium chloride followed by surgical decerebration—produced no behavioral response and no neural activity during surgical euthanasia. Based on these data, we conclude that both magnesium chloride and ethanol can function as general anesthetic agents, and lidocaine and magnesium chloride can function as local anesthetic agents for cephalopod molluscs. PMID:29515454

  8. Co-fermentation of glucose, xylose and/or cellobiose by yeast

    DOEpatents

    Jeffries, Thomas W.; Willis, Laura B.; Long, Tanya M.; Su, Yi-Kai

    2013-09-10

    Provided herein are methods of using yeast cells to produce ethanol by contacting a mixture comprising xylose with a Spathaspora yeast cell under conditions suitable to allow the yeast to ferment at least a portion of the xylose to ethanol. The methods allow for efficient ethanol production from hydrolysates derived from lignocellulosic material and sugar mixtures including at least xylose and glucose or xylose, glucose and cellobiose.

  9. Glucose tracer, kinetics and turnover in monkeys and chickens infused with ethanol, 1,3-butanediol, or fructose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, M.K.

    1985-01-01

    Mixtures of (2-/sup 3/H) and (U-/sup 14/C) glucose were injected as single doses into fasted cynomolgus monkeys to assess glucose tracer kinetics and obtain rates of turnover. Data were treated by stochastic and compartmental analyses and results from both analyses closely agreed. However, (2-/sup 3/H) data analyzed by the compartmental analysis required three pools to fit the glucose disappearance curve while (6-/sup 3/H) data fit a two or three pool model equally well. Turnover rates averaged 4.9-4.0, and 3.0 mg/min x kg/sup -1/ body weight with (2-/sup 3/H), 6-/sup 3/H) and (U-/sup 14/C) glucose tracers, respectively. The data heuristically suggestmore » that the slow turnover pool that was necessary to fit (2-/sup 3/H) glucose data is related to isotope discrimination. The effects of four treatment solutions on (6-/sup 3/H) glucose metabolism in monkeys were examined. The solutions and their rates of infusion (umoles/min x kg/sup -1/) were: (1) ethanol, 110; (2) 1,3-butanediol, 110; (3) fructose, 30; and (4) ethanol pus fructose, 110 and 30, respectively. The glucose clearance rate was lowest during the ethanol plus fructose infusions. Ethanol infusions (222 or 444 umoles/min x kg/sup -1/ body weight) in chickens (1500 g) fasted 64 hours did not cause hypoglycemia although the high dose slightly decreased the rate of glucose turnover 15% (14.0 versus 12.0 mg/min x kg/sup -1/). It was further found that neither the hepatic cytosolic nor the mitochondrial redox state significantly changed in chickens infused with the high dose of ethanol. The unchanged hepatic metabolite ratios in chickens are consistent with their unusual resistance to ethanol-induced hypoglycemia.« less

  10. Overexpression of the Steroidogenic Enzyme Cytochrome P450 Side Chain Cleavage in the Ventral Tegmental Area Increases 3α,5α-THP and Reduces Long-Term Operant Ethanol Self-Administration

    PubMed Central

    Cook, Jason B.; Werner, David F.; Maldonado-Devincci, Antoniette M.; Leonard, Maggie N.; Fisher, Kristen R.; O'Buckley, Todd K.; Porcu, Patrizia; McCown, Thomas J.; Besheer, Joyce; Hodge, Clyde W.

    2014-01-01

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology. PMID:24760842

  11. Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration.

    PubMed

    Cook, Jason B; Werner, David F; Maldonado-Devincci, Antoniette M; Leonard, Maggie N; Fisher, Kristen R; O'Buckley, Todd K; Porcu, Patrizia; McCown, Thomas J; Besheer, Joyce; Hodge, Clyde W; Morrow, A Leslie

    2014-04-23

    Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.

  12. Persistent escalation of alcohol drinking in C57BL/6J mice with intermittent access to 20% ethanol

    PubMed Central

    Hwa, Lara S.; Chu, Adam; Levinson, Sally A.; Kayyali, Tala M.; DeBold, Joseph F.; Miczek, Klaus A.

    2011-01-01

    Background Intermittent access to drugs of abuse, as opposed to continuous access, is hypothesized to induce a kindling-type transition from moderate to escalated use, leading to dependence. Intermittent 24-hour cycles of ethanol access and deprivation can generate high levels of voluntary ethanol drinking in rats. Methods The current study uses C57BL/6J mice (B6) in an intermittent access to 20% ethanol protocol to escalate ethanol drinking levels. Adult male and female B6 mice were given intermittent access to 20% ethanol on alternating days of the week with water available ad libitum. Ethanol consumption during the initial 2 hours of access was compared to a short term, limited access “binge” drinking procedure, similar to drinking-in-the-dark (DID). B6 mice were also assessed for ethanol dependence with handling-induced convulsion (HIC), a reliable measure of withdrawal severity. Results After 3 weeks, male mice given intermittent access to ethanol achieved high stable levels of ethanol drinking in excess of 20 g/kg/24h, reaching above 100 mg/dl BEC, and showed a significantly higher ethanol preference than mice given continuous access to ethanol. Also, mice given intermittent access drank about twice as much as DID mice in the initial 2-hour access period. B6 mice that underwent the intermittent access protocol for longer periods of time displayed more severe signs of alcohol withdrawal. Additionally, female B6 mice were given intermittent access to ethanol and drank significantly more than males (ca. 30 g/kg/24h). Discussion The intermittent access method in B6 mice is advantageous because it induces escalated, voluntary, and preferential per os ethanol intake, behavior that may mimic a cardinal feature of human alcohol dependence, though the exact nature and site of ethanol acting in the brain and blood as a result of intermittent access has yet to be determined. PMID:21631540

  13. Sensitive radioimmunoassay of total thyroxine (T4) in horses using a simple extraction method.

    PubMed

    Tangyuenyong, Siriwan; Nambo, Yasuo; Nagaoka, Kentaro; Tanaka, Tomomi; Watanabe, Gen

    2017-07-28

    Most thyroid hormone determinations in animals are based on immunoassays adapted from those used to test human samples, which may not reflect the actual values of thyroid hormone in horses because of the presence of binding proteins. The aims of the present study were i) to establish a novel radioimmunoassay (RIA) using a more simple and convenient method to separate binding proteins for the measurement of total thyroxine (T4) in horses and ii) to validate the assay by comparing total T4 concentrations in yearling horses raised in different climates. Blood samples were collected from trained yearlings in Hokkaido (temperate climate) and Miyazaki (subtropical climate) in Japan and from adult horses in estrus and diestrus. T4 was extracted from both serum and plasma using modified acid ethanol cryo-precipitation and sodium acetate ethanol methods. Circulating total T4 concentrations were determined by RIA. T4 concentration by sodium acetate ethanol was appropriately detectable rather than sodium salicylate method and was the same as for acid ethanol method. Furthermore, this sodium acetate ethanol method required fewer extraction steps than the other methods. Circulating T4 concentrations in yearlings were 225.98 ± 20.89 ng/ml, which was higher than the previous reference values. With respect to climate, T4 levels in Hokkaido yearlings tended to be higher than those in Miyazaki yearlings throughout the study period. These results indicated that this RIA protocol using a modified sodium acetate ethanol separation technique might be an appropriate tool for specific measurement of total T4 in horses.

  14. Comparison of Collection Methods for Fecal Samples for Discovery Metabolomics in Epidemiologic Studies.

    PubMed

    Loftfield, Erikka; Vogtmann, Emily; Sampson, Joshua N; Moore, Steven C; Nelson, Heidi; Knight, Rob; Chia, Nicholas; Sinha, Rashmi

    2016-11-01

    The gut metabolome may be associated with the incidence and progression of numerous diseases. The composition of the gut metabolome can be captured by measuring metabolite levels in the feces. However, there are little data describing the effect of fecal sample collection methods on metabolomic measures. We collected fecal samples from 18 volunteers using four methods: no solution, 95% ethanol, fecal occult blood test (FOBT) cards, and fecal immunochemical test (FIT). One set of samples was frozen after collection (day 0), and for 95% ethanol, FOBT, and FIT, a second set was frozen after 96 hours at room temperature. We evaluated (i) technical reproducibility within sample replicates, (ii) stability after 96 hours at room temperature for 95% ethanol, FOBT, and FIT, and (iii) concordance of metabolite measures with the putative "gold standard," day 0 samples without solution. Intraclass correlation coefficients (ICC) estimating technical reproducibility were high for replicate samples for each collection method. ICCs estimating stability at room temperature were high for 95% ethanol and FOBT (median ICC > 0.87) but not FIT (median ICC = 0.52). Similarly, Spearman correlation coefficients (r s ) estimating metabolite concordance with the "gold standard" were higher for 95% ethanol (median r s = 0.82) and FOBT (median r s = 0.70) than for FIT (median r s = 0.40). Metabolomic measurements appear reproducible and stable in fecal samples collected with 95% ethanol or FOBT. Concordance with the "gold standard" is highest with 95% ethanol and acceptable with FOBT. Future epidemiologic studies should collect feces using 95% ethanol or FOBT if interested in studying fecal metabolomics. Cancer Epidemiol Biomarkers Prev; 25(11); 1483-90. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. Evaluation of chemical castration with calcium chloride versus surgical castration in donkeys: testosterone as an endpoint marker.

    PubMed

    Ibrahim, Ahmed; Ali, Magda M; Abou-Khalil, Nasser S; Ali, Marwa F

    2016-03-08

    For the last few years, researchers have been interested in developing a method for chemical sterilization which may be a better alternative to surgical castration. An ideal chemical sterilant would be one that effectively arrests spermatogenesis and androgenesis as well as libido with absence of toxic or other side effects. Calcium chloride in various solutions and concentrations has been tested in many animal species, but few studies have been evaluated it in equines as a chemical sterilant. So, the objective of this study was to evaluate the clinical efficacy of chemical castration with 20% calcium chloride dissolved in absolute ethanol in comparison with surgical castration in donkeys based on the changes in the serum testosterone level and the histopathological changes in treated testes. Twelve clinically healthy adult male donkeys were used in this study. Donkeys were divided randomly and equally into two groups: a surgical (S) group (n = 6) and a chemical (C) group (n = 6). Animals in the (S) group were subjected to surgical castration while those in the (C) group received a single bilateral intratesticular injection of 20% calcium chloride dissolved in absolute ethanol (20 ml/testis). Animals were kept under clinical observation for 60 days. Changes in animals' behavior and gross changes in external genitalia were monitored daily. Serum concentrations of testosterone were measured prior to treatment and at 15, 30, 45 and 60 days post-treatment. Testicles in the (C) group were examined histopathologically at the end of the experiment. Chemical castration with intratesticular calcium chloride vs. surgical castration failed to reduce serum concentrations of testosterone throughout the whole duration of the study; however it induced orchitis that was evident by focal necrotic areas in seminiferous tubules, cellular infiltration of neutrophils, proliferative intertubular fibrosis with a compensatory proliferation of Leydig cells. Donkeys tolerated the intratesticular injection of calcium chloride. There were no detectable changes in the general health status of the animals with the exception of swelling in external genitalia, scrotal ulcerations and fistulas. Food and water consumption and the gait of animals remained unaffected. Intratesticular calcium chloride can't be considered an effective method for chemical castration in donkeys.

  16. Emissions characteristics of a diesel engine operating on biodiesel and biodiesel blended with ethanol and methanol.

    PubMed

    Zhu, Lei; Cheung, C S; Zhang, W G; Huang, Zhen

    2010-01-15

    Euro V diesel fuel, pure biodiesel and biodiesel blended with 5%, 10% and 15% of ethanol or methanol were tested on a 4-cylinder naturally-aspirated direct-injection diesel engine. Experiments were conducted under five engine loads at a steady speed of 1800 r/min. The study aims to investigate the effects of the blended fuels on reducing NO(x) and particulate. On the whole, compared with Euro V diesel fuel, the blended fuels could lead to reduction of both NO(x) and PM of a diesel engine, with the biodiesel-methanol blends being more effective than the biodiesel-ethanol blends. The effectiveness of NO(x) and particulate reductions is more effective with increase of alcohol in the blends. With high percentage of alcohol in the blends, the HC, CO emissions could increase and the brake thermal efficiency might be slightly reduced but the use of 5% blends could reduce the HC and CO emissions as well. With the diesel oxidation catalyst (DOC), the HC, CO and particulate emissions can be further reduced. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Attenuation and cross-attenuation in taste-aversion learning in the rat: Studies with ionizing radiation, lithium chloride, and ethanol. Scientific report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1989-01-01

    The pre-exposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride, and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired pre-exposures to lithium chloride blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiationmore » or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning.« less

  18. Separation and purification of fructooligosaccharides on a zeolite fixed-bed column.

    PubMed

    Kuhn, Raquel Cristine; Mazutti, Marcio Antonio; Maugeri Filho, Francisco

    2014-04-01

    Fructooligosaccharides (FOS), a well-known prebiotic product, are obtained by enzymatic synthesis and consist of a mixture of mono- and disaccharides. In this work, a methodology for their separation and purification was developed using a zeolite fixed-bed column. The effects of column temperature (40-60°C), eluent flow rate (0.10-0.14 mL/min), injected to bed volume percent ratio (2.6-5.1%), and ethanol concentration in the eluent (40-60%, v/v) were investigated using a fractionary factorial design (2(4-1)), having the separation efficiency and purity as target responses. Additional experiments were performed as well, where the temperature and ethanol concentration were studied in a central composite design (2(2)). In this work, the zeolite fixed-bed column was shown to be a good alternative for FOS purification, allowing a FOS purity of 90% and separation efficiency of 6.86 between FOS and glucose, using an eluent at 45°C with 60% ethanol concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Phytochemical Characterization of an Adaptogenic Preparation from Rhodiola heterodonta

    PubMed Central

    Grace, Mary H.; Yousef, Gad G.; Kurmukov, Anvar G.; Raskin, Ilya; Lila, Mary Ann

    2013-01-01

    The phytochemical constituents of a biologically active, standardized, 80% ethanol extract of Rhodiola heterodonta were characterized. The extract was fractionated over a Sephadex LH-20 column to afford two main fractions representing two classes of secondary metabolites: phenylethanoids and proanthocyanidins. This fractionation facilitated the identification and quantification of individual compounds in the fractions and sub-fractions using HPLC, and LC-MS. The major compounds in the phenylethanoid fraction were heterodontoside, tyrosol methyl ether, salidroside, viridoside, mongrhoside, tyrosol, and the cyanogenic glucoside rhodiocyanoside A. These seven compounds comprised 17.4% of the EtOH extract. Proanthocyanidins ranged from oligomers to polymers based on epigallocatechin and gallate units. The main identified oligomeric compounds in the proanthocyanidin fraction were epigallocatechin gallate, epigallocatechin-epigallocatechin-3-O-gallate and 3-O-galloylepigallocatechin-epigallocatechin-3-O-gallate, which constituted 1.75% of the ethanol extract. Tyrosol methyl ether, mongrhoside, and the two proanthocyanidin dimers were reported for the first time from this species in this study. Intraperitoneal injection of the 80% ethanol extract increased survival time of mice under hypoxia by 192%, as an indication of adaptogenic activity. PMID:19768982

  20. Simultaneous stable carbon isotopic analysis of wine glycerol and ethanol by liquid chromatography coupled to isotope ratio mass spectrometry.

    PubMed

    Cabañero, Ana I; Recio, Jose L; Rupérez, Mercedes

    2010-01-27

    A novel procedure was established for the simultaneous characterization of wine glycerol and ethanol (13)C/(12)C isotope ratio, using liquid chromatography/isotope ratio mass spectrometry (LC-IRMS). Several parameters influencing separation of glycerol and ethanol from wine matrix were optimized. Results obtained for 35 Spanish samples exposed no significant differences and very strong correlations (r = 0.99) between the glycerol (13)C/(12)C ratios obtained by an alternative method (gas chromatography/isotope ratio mass spectrometry) and the proposed new methodology, and between the ethanol (13)C/(12)C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The accuracy of the proposed method varied from 0.01 to 0.19 per thousand, and the analytical precision was better than 0.25 per thousand. The new developed LC-IRMS method it is the first isotopic method that allows (13)C/(12)C determination of both analytes in the same run directly from a liquid sample with no previous glycerol or ethanol isolation, overcoming technical difficulties associated with complex sample treatment and improving in terms of simplicity and speed.

  1. Effects of ethanol on cocaine self-administration in monkeys responding under a second-order schedule of reinforcement.

    PubMed

    John, William S; Nader, Michael A

    2017-01-01

    Concurrent alcohol use among cocaine abusers is common but the behavioral variables that promote co-abuse are not well understood. The present study examined the effects of intragastric (i.g.) ethanol (EtOH) administration in monkeys responding under a schedule of cocaine reinforcement in which extensive drug seeking was maintained by conditioned stimuli. Four adult male cynomolgus monkeys (Macaca fascicularis) were trained to respond under a second-order fixed-interval (FI) 600s (fixed-ratio (FR) 30:S) schedule of cocaine (0.003-0.56mg/kg/injection) presentation. Sessions ended after 5 injections or 90min had elapsed. Different EtOH doses (0.5-2.0g/kg, i.g.) were administered 30min before the session, typically on Tuesdays and Fridays. Blood ethanol concentrations (BECs) were also assessed. Pattern of FI responding was assessed by determining quarter-life (QL) values. Cocaine self-administration was characterized as an inverted U-shaped function of dose; QL values increased monotonically with dose. EtOH pretreatments dose-dependently decreased self-administration at several cocaine doses in 3 of 4 monkeys. In one animal, EtOH increased low-dose cocaine-maintained responding. For all monkeys, QL values were increased by EtOH when low- and high-cocaine doses were self-administered, suggesting additive effects of EtOH and cocaine. Furthermore, BECs were not altered following cocaine self-administration. The reductions in cocaine self-administration and the increases in QL values following EtOH, suggest that EtOH was enhancing cocaine-related conditioned reinforcement. A better understanding of the behavioral mechanisms that mediate the co-abuse of alcohol and cocaine will lead to improved treatments for both drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats.

    PubMed

    Thomas, Jennifer D; Garrison, Megan; O'Neill, Teresa M

    2004-01-01

    Children exposed to alcohol prenatally suffer from a variety of behavioral alterations, including hyperactivity and learning deficits. Given that women continue to drink alcohol during pregnancy, it is critical that effective interventions and treatments be identified. Previously, we reported that early postnatal choline supplementation can reduce the severity of learning deficits in rats exposed to alcohol prenatally. The present study examined whether choline supplementation can reduce the severity of behavioral alterations associated with alcohol exposure during the third trimester equivalent brain growth spurt. Male neonatal rats were assigned to one of three treatment groups. One group was exposed to alcohol (6.6 g/kg/day) from postnatal days (PD) 4-9 via an artificial rearing procedure. Artificially reared and normally reared control groups were included. One half of subjects from each treatment received daily subcutaneous injections of a choline chloride solution from PD 4-30, whereas the other half received saline vehicle injections. On PD 31-34, after choline treatment was complete, activity level was monitored and, on PD 40-42, subjects were tested on a serial spatial discrimination reversal learning task. Subjects exposed to alcohol were significantly hyperactive compared to controls. The severity of ethanol-induced hyperactivity was attenuated with choline treatment. In addition, subjects exposed to ethanol during the neonatal period committed a significantly greater number of perseverative-type errors on the reversal learning task compared to controls. Exposure to choline significantly reduced the number of ethanol-related errors. Importantly, these behavioral changes were not due to the acute effects of choline, but were related to long-lasting organizational effects of early choline supplementation. These data suggest that early dietary interventions may reduce the severity of fetal alcohol effects.

  3. Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production.

    PubMed

    You, Yang; Wu, Bo; Yang, Yi-Wei; Wang, Yan-Wei; Liu, Song; Zhu, Qi-Li; Qin, Han; Tan, Fu-Rong; Ruan, Zhi-Yong; Ma, Ke-Dong; Dai, Li-Chun; Zhang, Min; Hu, Guo-Quan; He, Ming-Xiong

    2017-01-01

    Environmental issues, such as the fossil energy crisis, have resulted in increased public attention to use bioethanol as an alternative renewable energy. For ethanol production, water and nutrient consumption has become increasingly important factors being considered by the bioethanol industry as reducing the consumption of these resources would decrease the overall cost of ethanol production. Biogas slurry contains not only large amounts of wastewater, but also the nutrients required for microbial growth, e.g., nitrogen, ammonia, phosphate, and potassium. Therefore, biogas slurry is an attractive potential resource for bioethanol production that could serve as an alternative to process water and nitrogen sources. In this study, we propose a method that replaces the process water and nitrogen sources needed for cellulosic ethanol production by Zymomonas mobilis with biogas slurry. To test the efficacy of these methods, corn straw degradation following pretreatment with diluted NaOH and enzymatic hydrolysis in the absence of fresh water was evaluated. Then, ethanol fermentation using the ethanologenic bacterial strain Z. mobilis ZMT2 was conducted without supplementing with additional nitrogen sources. After pretreatment with 1.34% NaOH (w/v) diluted in 100% biogas slurry and continuous enzymatic hydrolysis for 144 h, 29.19 g/L glucose and 12.76 g/L xylose were generated from 30 g dry corn straw. The maximum ethanol concentration acquired was 13.75 g/L, which was a yield of 72.63% ethanol from the hydrolysate medium. Nearly 94.87% of the ammonia nitrogen was depleted and no nitrate nitrogen remained after ethanol fermentation. The use of biogas slurry as an alternative to process water and nitrogen sources may decrease the cost of cellulosic ethanol production by 10.0-20.0%. By combining pretreatment with NaOH diluted in biogas slurry, enzymatic hydrolysis, and ethanol fermentation, 56.3 kg of ethanol was produced by Z. mobilis ZMT-2 through fermentation of 1000 kg of dried corn straw. In this study, biogas slurry replaced process water and nitrogen sources during cellulosic ethanol production. The results suggest that biogas slurry is a potential alternative to water when pretreating corn straw and, thus, has important potential applications in cellulosic ethanol production from corn straw. This study not only provides a novel method for utilizing biogas slurry, but also demonstrates a means of reducing the overall cost of cellulosic ethanol.

  4. Dehydration of ethanol by facile synthesized glucose-based silica.

    PubMed

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2013-02-01

    Bioethanol is considered a potential liquid fuel that can be produced from biomass by fermentation and distillation. Although most of the water is removed by distillation, the purity of ethanol is limited to 95-96 % due to the formation of a low-boiling point, water-ethanol azeotrope. To improve the use of ethanol as a fuel, many methods, such as dehydration, have been proposed to avoid distillation and improve the energy efficiency of extraction. Glucose-based silica, as an adsorbent, was prepared using a simple method, and was proposed for the adsorption of water from water-ethanol mixtures. After adsorption using 0.4 g of adsorbent for 3 h, the initial water concentration of 20 % (water, v/v) was decreased to 10 % (water, v/v). For water concentrations less than 5 % (water, v/v), the adsorbent could concentrate ethanol to 99 % (ethanol, v/v). The Langmuir isotherms used to describe the adsorption of water on an adsorbent showed a correlation coefficient of 0.94. The separation factor of the adsorbent also decreased with decreasing concentration of water in solution.

  5. Efficacy of Trigonella foenum-graecum Seed Extract in Reducing Metabolic and Inflammatory Alterations Associated With Menopause

    PubMed Central

    Abedinzade, Mahmood; Nasri, Sima; Jamal Omodi, Masome; Ghasemi, Elham; Ghorbani, Ahmad

    2015-01-01

    Background: Several experimental and clinical studies support beneficial effects of Trigonella foenum-graecum (fenugreek) in the management of metabolic diseases and inflammatory disorders. Objectives: The purpose of this study was to examine the effect of T. foenum-graecum seed extract in reducing the metabolic and inflammatory alternations associated with menopause. Materials and Methods: In this experimental study, 49 rats were divided into seven groups: (I) sham-control, (II) ovariectomized-control, (III and IV) ovariectomized treated with 50 and 150 mg/kg of T. foenum-graecum seed ethanolic extract, (V and VI) ovariectomized treated with 50 and 150 mg/kg of T. foenum-graecum hexanic extract, (VII) ovariectomized-positive control treated with 10 µg/kg of estradiol. The extracts were injected intraperitoneally one day after ovariectomy and the treatments were lasted for 42 days. Results: Fasting blood glucose and body weight gain increased significantly in the ovariectomized-control group compared with that in the sham animals (P < 0.05). Administration of estradiol and T. foenum-graecum (50 and 150 mg/dL of hexanic extract and 150 mg/kg of ethanolic extract) significantly diminished the increase in glucose and body weight (P < 0.05). The serum level of interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the ovariectomized control group was significantly higher than those in the sham animals (P < 0.05). Both hexanic and ethanolic extracts as well as estradiol were able to decrease level of these cytokines in the serum of ovariectomized rats (P < 0.05). Conclusions: The results of the present study show that administration of T. foenum-graecum corrects metabolic and inflammatory alterations associated with ovariectomy and has a potential for the management of menopause. PMID:26732240

  6. Phytochemical screening and evaluation of cardioprotective activity of ethanolic extract of Ocimum basilicum L. (basil) against isoproterenol induced myocardial infarction in rats

    PubMed Central

    2012-01-01

    Background and the purpose of the study The objectives of the present study were phytochemical screening and study of the effects of ethanolic extract of aerial parts of Ocimum basilicum (basil) on cardiac functions and histopathological changes in isoproterenol-induced myocardial infarction (MI). Methods The leaves of the plant were extracted with ethanol by maceration and subjected to colorimetry to determine flavonoids and phenolic compounds. High-performance TLC analysis and subsequent CAMAG's TLC scanning were performed to quantify rosmarinic acid content. Wistar rats were assigned to 6 groups of normal control, sham, isoproterenol, and treatment with 10, 20, and 40 mg/kg of the extract two times per day concurrent with MI induction. A subcutaneous injection of isoproterenol (100 mg/kg/day) for 2 consecutive days was used to induce MI. Results Phytochemical screening indicated the presence of phenolic compounds (5.36%) and flavonoids (1.86%). Rosmarinic acid was the principal phenolic compound with a 15.74% existence. The ST-segment elevation induced by isoproterenol was significantly suppressed by all doses of the extract. A severe myocardial necrosis and fibrosis with a sharp reduction in left ventricular contractility and a marked increase in left ventricular end-diastolic pressure were seen in the isoproterenol group, all of which were significantly improved by the extract treatment. In addition to in-vitro antioxidant activity, the extract significantly suppressed the elevation of malondialdehyde levels both in the serum and the myocardium. Conclusion The results of the study demonstrate that Ocimum basilicum strongly protected the myocardium against isoproterenol-induced infarction and suggest that the cardioprotective effects could be related to antioxidative activities. PMID:23351503

  7. Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol.

    PubMed

    Daneshkhah, Ali; Shrestha, Sudhir; Siegel, Amanda; Varahramyan, Kody; Agarwal, Mangilal

    2017-03-15

    Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/carbon black (CB) composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO) layer or by treating with infrared (IR). In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC) or PEO dispersed in DEC (PEO/DEC) to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed.

  8. Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene)-Based Sensor Arrays for Detecting Acetone and Ethanol

    PubMed Central

    Daneshkhah, Ali; Shrestha, Sudhir; Siegel, Amanda; Varahramyan, Kody; Agarwal, Mangilal

    2017-01-01

    Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP)/carbon black (CB) composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO) layer or by treating with infrared (IR). In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC) or PEO dispersed in DEC (PEO/DEC) to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed. PMID:28294961

  9. Ethanol Pharmacokinetics in Neonates and Infants

    PubMed Central

    Marek, Elizabeth; Kraft, Walter K.

    2014-01-01

    Introduction Ethanol has been used for years in neonatal and infant liquid medications, yet the pharmacokinetics, pharmacodynamics, and safety of ethanol in this vulnerable population have not been well characterized. The purpose of this review is to raise awareness of ethanol use as an excipient in neonatal and infant medications and to provide insight, based on the available evidence, into clearance rates of ethanol in babies. We also discuss ethanol pharmacokinetics in adults, theoretical pharmacokinetic changes in neonates and infants as it may apply to ethanol disposition, and case reports involving ethanol exposure in neonates and infants. Materials and methods This study was a narrative review in which relevant papers were selected using databases and scientific search engines such as PubMed with the key words ethanol, infant, and newborninfant. Results It remains unclear what ethanol exposure is safe for neonates and infants. The Food and Drug Administration and American Academy of Pediatrics have both taken action, by either setting limits of ethanol content in over-the-counter medications or by recommending restricted exposure to ethanol-containing pediatric formulations. Conclusions Until the short- and long-term health effects of chronic ethanol administration can be further characterized, ethanol-containing medications should be used with caution. PMID:25379066

  10. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    DOEpatents

    Kass, Michael Delos [Oak Ridge, TN; Graves, Ronald Lee [Knoxville, TN; Storey, John Morse Elliot [Oak Ridge, TN; Lewis, Sr., Samuel Arthur; Sluder, Charles Scott [Knoxville, TN; Thomas, John Foster [Powell, TN

    2007-08-21

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  11. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  12. Ethanol-induced conditioned taste avoidance: reward or aversion?

    PubMed

    Liu, Chuang; Showalter, John; Grigson, Patricia Sue

    2009-03-01

    Rats avoid intake of a palatable taste cue when paired with all drugs of abuse tested. Evidence suggests that, at least for morphine and cocaine, rats avoid the taste cue because they are anticipating the rewarding properties of the drug. Thus, the suppressive effects of a rewarding sucrose solution and cocaine, but not those of the putatively aversive agent, lithium chloride (LiCl), are exaggerated in drug-sensitive Lewis rats. Likewise, the suppressive effects of sucrose and morphine, but not those of LiCl, are eliminated by bilateral lesions of the gustatory thalamus. Unlike morphine and cocaine, it is less clear whether rewarding or aversive drug properties are responsible for ethanol-induced suppression of intake of a taste cue. The present set of studies tests whether, like cocaine, ethanol-induced suppression of intake of a taste cue also is greater in the drug-sensitive Lewis rats and whether the suppressive effects of the drug are prevented by bilateral lesions of the taste thalamus. In Experiment 1, fluid-deprived Lewis and Fischer rats were given 5-minute access to 0.15% saccharin and then injected with saline or a range of doses of ethanol (0.5, 0.75, 1.0, or 1.5 g/kg). There was a total of 6 such pairings. In Experiments 2 and 3, Sprague-Dawley rats received bilateral electrophysiologically guided lesions of the gustatory thalamus. After recovery, suppression of intake of the saccharin cue was evaluated following repeated daily pairings with either a high (1.5 g/kg) or a low (0.75 g/kg) dose of ethanol. Ethanol-induced suppression of intake of the saccharin conditioned stimulus (CS) did not differ between the drug-sensitive Lewis rats relative to the less-sensitive Fischer rats. Lesions of the taste thalamus, however, prevented the suppressive effect of the 0.75 g/kg dose of the drug, but had no impact on the suppressive effect of the 1.5 g/kg dose of ethanol. The results suggest that the suppressive effects of ethanol on CS intake are mediated by both rewarding and aversive consequences, varying as a function of dose.

  13. Preparation of penta-O-galloyl-β-D-glucose from tannic acid and plasma pharmacokinetic analyses by liquid-liquid extraction and reverse-phase HPLC.

    PubMed

    Li, Li; Shaik, Ahmad Ali; Zhang, Jinhui; Nhkata, Katai; Wang, Lei; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan

    2011-02-20

    The gallotannin penta-O-galloyl-beta-D-glucose (PGG) has many biological activities including in vivo anti-cancer efficacy. We present in this paper a scaled-up protocol for its preparation in high purity from tannic acid by acidic methanolysis with typical yield of 15%. We also describe a method for the analysis of PGG in mouse plasma by HPLC and its application in preliminary pharmacokinetic studies. A liquid-liquid extraction (LLE) protocol was optimized for the extraction of PGG from mouse plasma. The extraction efficiency for PGG at 1 μg/mL in mouse plasma was 70.0±1.3% (n=5). The limit of detection (LOD) for PGG was approximately 0.2 μg/mL. Preliminary pharmacokinetic parameters of PGG following a single i.p. injection with 5% ethanol/saline vehicle in mice were established. The peak plasma PGG concentrations (C(max)) were approximately 3-4 μM at a dose of 0.5 mg per mouse (∼20 mg/kg) at 2 h post-injection (T(max)). Copyright © 2010 Elsevier B.V. All rights reserved.

  14. [Amperometric biosensor for ethanol analysis in wines and grape must during wine fermentation].

    PubMed

    Shkotova, L V; Slast'ia, E A; Zhyliakova, T A; Soldatkin, O P; Schuhmann, W; Dziadevych, S V

    2005-01-01

    The amperometric biosensor for ethanol determination based on alcohol oxidase immobilised by the method of electrochemical polymerization has been developed. The industrial screen-printed platinum electrodes were used as transducers for creation of amperometric alcohol biosensor. Optimal conditions for electrochemical deposition of an active membrane with alcohol oxidase has been determined. Biosensors are characterised by good reproducibility and operational stability with minimal detection limit of ethanol 8 x 10(-5) M. The good correlation of results for ethanol detection in wine and during wine fermentation by using the developed amperometric biosensor with the data obtained by the standard methods was shown (r = 0.995).

  15. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT ...

    EPA Pesticide Factsheets

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI vehicle tested in this study utilized slightly different fuel injection technology: Vehicle 1 used a 2.4 liter, naturally aspirated, wall-guided GDI; Vehicle 2 used a 1.8 liter, turbocharged GDI engine; Vehicle 3 used a 1.5 liter, turbocharged, spray-guided GDI engine. Vehicle testing was conducted in a temperature controlled chassis dynamometer test cell at 22 °C over the EPA Federal Test Procedure (FTP) and a portion of the Supplemental FTP (SFTP). The FTP was conducted as a three phase cycle with a cold start, hot transient, and warm start phase (also known as the FTP-75 driving cycle). The SFTP consisted of the US06 driving cycle (conducted without the vehicle’s air conditioning on), which provides a more aggressive driving pattern than the FTP. The vehicles operated on 10 percent ethanol blended gasoline (E10). VOC emissions from diluted vehicle exhaust were sampled over each FTP phase and over the Supplemental FTP with SUMMA canisters for EPA Method TO-15 analysis and with DNPH cartridges for carbonyl analysis by EPA Method TO-11A. This presentation will report the impact of driving cycle and GDI technology on speciated MSAT emissions. MSAT emission rates will be compared

  16. Concurrent Lactic and Volatile Fatty Acid Analysis of Microbial Fermentation Samples by Gas Chromatography with Heat Pre-treatment.

    PubMed

    Darwin; WipaCharles; Cord-Ruwisch, Ralf

    2018-01-01

    Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. [Experimental study of bacteriostatic activity of Chinese herbal medicines on primary cariogenic bacteria in vitro].

    PubMed

    Wang, S; Fan, M; Bian, Z

    2001-09-01

    To screen some Chinese herbal medicines for their inhibitory activity on cariogenic bacteria, and investigate their active ingredients, and measure their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC). Active components were isolated from every tested Chinese herbal medicine by means of aqueous extraction and ethanolic extraction. Berberine was purified from Coptis chinensis Fra. Disk agar diffusion method was employed in screening herbs with inhibiting effect on cariogenic bacteria. MIC and MBC were determined by broth dilution method. Against Streptococcus mutans Ingbritt, MBCs of Magnolia officinalis ethanolic extract, Berberine, Coptis chinensis Fra aqueous extract and Coptis chinensis Fra ethanolic extract were 0.488, 0.625, 7.800 and 1.950 g/L respectively. Against Streptococcus sobrinus 6715, MBCs of Magnolia extract, Coptis chinensis Fra ethanolic extract, Rhus chinensis Mill ethanolic extract and Phellodendron chinen ethanolic extract were 0.488, 0.625, 1.950, 3.900, 3.900 and 3.900 g/L respectively. Against Actinomyces viscosus ATCC 19246, MBCs of Berberine, Coptis chinensis Fra aqueous extract, Coptis chinensis Fra ethanolic extract, Rheum palmatum L aqueous extract and Rheum palmatum L ethanolic extract were 1.250, 3.900, 3.900, 15.600 and 31.250 g/L respectively. Magnolia officinalis, Coptis chinensis Fran, Rheum palmatum L aqueous extracts exhibit strong inhibition on cariogenic bacteria. Magnolia officinalis ethanolic extract has the strongest bactericidal effects on Streptococcus mutans and Streptococcus sobrinus.

  18. Analysis of an ethanol precipitate from ileal digesta: evaluation of a method to determine mucin.

    PubMed

    Miner-Williams, Warren M; Moughan, Paul J; Fuller, Malcolm F

    2013-11-06

    The precipitation of mucin using high concentrations of ethanol has been used by many researchers while others have questioned the validity of the technique. In this study, analysis of an ethanol precipitate, from the soluble fraction of ileal digesta from pigs was undertaken using molecular weight profiling and polyacrylamide gel electrophoresis. The precipitate contained 201 mg·g⁻¹ protein, 87% of which had a molecular weight >20 KDa. Polyacrylamide gel electrophoresis stained with Coomassie blue and periodic acid/Schiff, revealed that most glycoprotein had a molecular weight between 37-100 KDa. The molecular weight of glycoprotein in the precipitate was therefore lower than that of intact mucin. These observations indicated that the glycoprotein in the ethanol precipitate was significantly degraded. The large amount of protein and carbohydrate in the supernatant from ethanol precipitation indicated that the precipitation of glycoprotein was incomplete. As a method for determining the concentration of mucin in digesta, ethanol precipitation is unreliable.

  19. Oral chronic ethanol administration to rodents by agar gel diet.

    PubMed

    Bykov, I; Palmén, M; Piirainen, L; Lindros, K O

    2004-01-01

    Chronic ethanol administration to rodents requires specially designed equipment and is labor intensive. Here we report a new procedure. A commercial liquid diet preparation was made into a gel by addition of 0.5% agar. The gel, containing 5.3% ethanol, was offered in Falcon tubes equipped with a feeding opening. The gel consumption by C57/Bl mice resulted in high blood ethanol levels (average 43 mM). After 6 weeks, marked liver steatosis and significantly increased serum alanine aminotransferase levels had developed. Administration of ethanol in a nutritionally adequate gel provides a simple method for studies on chronic ethanol effects in rodents.

  20. Semiconductor Ceramic Mn0.5Fe1.5O3-Fe2O3 from Natural Minerals as Ethanol Gas Sensors

    NASA Astrophysics Data System (ADS)

    Aliah, H.; Syarif, D. G.; Iman, R. N.; Sawitri, A.; Sanjaya WS, M.; Nurul Subkhi, M.; Pitriana, P.

    2018-05-01

    In this research, Mn and Fe-based ceramic gas sensing were fabricated and characterized. This research used natural mineral which is widely available in Indonesia and intended to observe the characteristics of Mn and Fe-based semiconducting material. Fabricating process of the thick films started by synthesizing the ceramic powder of Fe(OH)3 and Mn oxide material using the precipitation method. The deposition from precipitation method previously was calcined at a temperature of 800 °C to produce nanoparticle powder. Nanoparticle powder that contains Mn and Fe oxide was mixed with an organic vehicle (OV) to produce a paste. Then, the paste was layered on the alumina substrate by using the screen printing method. XRD method was utilized to characterize the thick film crystal structure that has been produced. XRD spectra showed that the ceramic layer was formed from the solid Mn0.5Fe1.5O3 (bixbyite) and Fe2O3. In addition, the electrical properties (resistance) examination was held in the room that contains air and ethanol to determine the sensor sensitivity of ethanol gas. The sensor resistance decreases as the ethanol gas was added, showing that the sensor was sensitive to ethanol gas and an n-type semiconductor. Gas sensor exhibit sensitive characterization of ethanol gas on the concentration of (100 to 300) ppm at a temperature of (150 to 200) °C. This showed that the Mn0.5Fe1.5O3-Fe2O3 ceramic semiconductor could be utilized as the ethanol gas detector.

  1. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.

    PubMed

    Huang, Renliang; Guo, Hong; Su, Rongxin; Qi, Wei; He, Zhimin

    2017-03-01

    Recycling cellulases by substrate adsorption is a promising strategy for reducing the enzyme cost of cellulosic ethanol production. However, β-glucosidase has no carbohydrate-binding module (CBM). Thus, additional enzymes are required in each cycle to achieve a high ethanol yield. In this study, we report a new method of recycling cellulases without β-glucosidase supplementation using lignocellulosic substrate, an engineered strain expressing β-glucosidase and Tween 80. The cellulases and Tween 80 were added to an aqueous suspension of diluted sulfuric acid/ammonia-treated corncobs in a simultaneous saccharification and fermentation (SSF) process for ethanol production. Subsequently, the addition of fresh pretreated corncobs to the fermentation liquor and remaining solid residue provided substrates with absorbed cellulases for the next SSF cycle. This method provided excellent ethanol production in three successive SSF cycles without requiring the addition of new cellulases. For a 10% (w/v) solid loading, a cellulase dosage of 30 filter paper units (FPU)/g cellulose, 0.5% Tween 80, and 2 g/L of the engineered strain, approximately 90% of the initial ethanol concentration from the first SSF process was obtained in the next two SSF processes, with a total ethanol production of 306.27 g/kg corncobs and an enzyme productivity of 0.044 g/FPU. Tween 80 played an important role in enhancing cellulase recovery. This new enzyme recycling method is more efficient and practical than other reported methods. Biotechnol. Bioeng. 2017;114: 543-551. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. ANTI INFLAMMATORY ACTIVITY OF MORINGA OLIEFERA. LAM

    PubMed Central

    Rao, K.N. Venkataswera; Gopalakrishnan, V.; Loganathan, V.; Nathan, S. Shanmuganathan

    1999-01-01

    The aqueous and ethanolic (90%) extract of the leaves of M.Oliera Lam (Fam: Moringaceae) were studied for their anti inflammatory action in ale albino rats. Two extracts exhibited maximum action within two hours of challenge. The aqueous extract sowed significant (P<0.01) odema suppression similar to that of Ibuprofen at the first hour of carrageenan injection. The results confirms the folkers claim of the plant. PMID:22556890

  3. 40 CFR 63.2161 - What performance tests and other procedures must I use if I monitor brew ethanol?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equation as specified in paragraph (f) of this section. (2) For each fermentation stage, conduct one run of... fermentation stages do not have to be from the same production run. (3) Do the test at a point in the exhaust-gas stream before you inject any dilution air, which is any air not needed to control fermentation. (4...

  4. [Application of continuous mixing technology in ethanol precipitation process of Salvia miltiorrhiza by using micromixer].

    PubMed

    Gong, Xing-Chu; Shen, Ji-Chen; Qu, Hai-Bin

    2016-12-01

    Continuous pharmaceutical manufacturing is one of the development directions in international pharmaceutical technology. In this study, a continuous mixing technology of ethanol and concentrated extract in the ethanol precipitation of Salvia miltiorrhiza was realized by using a membrane dispersion method. The effects of ethanol flowrate, concentrated extract flowrate, and flowrate ratio on ethanol precipitation results were investigated. With the increase of the flowrates of ethanol and concentrated extract, retention rate of active phenolic acids components was increased, and the total solid removal rate was decreased. The purity of active components in supernatants was mainly affected by the ratio of ethanol flowrate and concentrated extract flowrate. The mixing efficiency of adding ethanol under continuous flow mixing mode in this study was comparable to that of industrial ethanol precipitation. Continuous adding ethanol by using a membrane dispersion mixer is a promising technology with many advantages such as easy enlargement, large production per unit volume, and easy control. Copyright© by the Chinese Pharmaceutical Association.

  5. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  6. Effect of composition and calcination temperature of ceria-zirconia-alumina mixed oxides on catalytic performances of ethanol conversion

    NASA Astrophysics Data System (ADS)

    Chuklina, S. G.; Maslenkova, S. A.; Pylinina, A. I.; Podzorova, L. I.; Ilyicheva, A. A.

    2017-02-01

    In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) - Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria-zirconia-alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol-gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.

  7. Abundant storage protein depletion from tuber proteins using ethanol precipitation method: Suitability to proteomics study.

    PubMed

    Lee, Hye Min; Gupta, Ravi; Kim, Sun Hyung; Wang, Yiming; Rakwal, Randeep; Agrawal, Ganesh Kumar; Kim, Sun Tae

    2015-05-01

    High-abundance proteins (HAPs) hamper in-depth proteome study necessitating development of a HAPs depletion method. Here, we report a novel ethanol precipitation method (EPM) for HAPs depletion from total tuber proteins. Ethanol showed a dose-dependent effect on depletion of sporamin from sweet potato and patatin from potato tubers, respectively. The 50% ethanol was an optimal concentration. 2DE analysis of EPM-prepared sweet potato proteins also revealed enrichment of storage proteins (SPs) in ethanol supernatant (ES) resulting in detection of new low-abundance proteins in ethanol pellet (EP), compared to total fraction. The ES fraction showed even higher trypsin inhibitor activity than total proteins, further showing the efficacy of EPM in enrichment of sporamin in ES fraction. Application of this method was demonstrated for comparative proteomics of two sweet potato cultivars (Hwang-geum and Ho-bac) and purification of SP (sporamin) in its native form, as examples. Comparative proteomics identified many cultivar specific protein spots and selected spots were confidently assigned for their protein identity using MALDI-TOF-TOF analysis. Overall, the EPM is simple, reproducible, and economical for depletion of SPs and is suitable for downstream proteomics study. This study opens a door for its potential application to other tuber crops or fruits rich in carbohydrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The effects of ghrelin antagonists [D-Lys(3) ]-GHRP-6 or JMV2959 on ethanol, water, and food intake in C57BL/6J mice.

    PubMed

    Gomez, Juan L; Ryabinin, Andrey E

    2014-09-01

    Alcohol use and abuse patterns have created a need for novel treatment models. Current research has turned its focus on reward pathways associated with intrinsic necessities, such as feeding. Theories suggest that drugs of abuse seize control of natural reward pathways and dysregulate normal function, leading to chronic addiction. One such pathway involving the hunger stimulating peptide, ghrelin, is the focus of our study. Male C57BL/6J mice were randomly assigned to groups and treated with vehicle or a ghrelin antagonist, either [D-Lys(3) ]-GHRP-6 (DLys) or JMV2959. Three experiments tested ghrelin antagonism using different doses; experiment 1 tested 12 mg/kg JMV2959; experiment 2 tested 15 mg/kg DLys; experiment 3 tested 9 mg/kg JMV2959. Using a 2-bottle choice 24-hour access paradigm, data were collected for ethanol intake, preference, water intake, and food intake at 4 and 24 hours after injection. Experiment 1 showed that 12 mg/kg of JMV2959 decreased ethanol, water, and food intake, without affecting preference. Experiment 2 showed that 15 mg/kg of DLys decreased ethanol intake, preference, and water intake only on the first day of treatment. Experiment 3 showed that 9 mg/kg of JMV2959 decreased only ethanol and food intake. No change was seen during deprivation, and JMV2959 was still effective at reducing ethanol intake upon reintroduction. Despite the change in food intake, there were no differences in body weight throughout the experiments. It should be noted that the majority of significant effects were only found 4 hours postinjection. The results show that compounds that block ghrelin receptor activity are effective at decreasing ethanol intake. However, DLys was only effective at reducing intake and preference on the first day, suggesting a quick tolerance and selectivity for ethanol. JMV2959 consistently reduced ethanol intake, but at the higher dose also reduced all other consummatory behaviors. Thus, ghrelin antagonists provide a viable potential for treatment of alcohol abuse disorders, but further research is needed to determine an appropriate dose and administration paradigm. Copyright © 2014 by the Research Society on Alcoholism.

  9. Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum

    USDA-ARS?s Scientific Manuscript database

    Background: Contamination of corn mash by lactic acid bacteria (LAB) reduces ethanol yields and the overall efficiency of the ethanol fermentation process, and the industry relies heavily on antibiotics for contamination control. There is a need to develop alternative methods for the control of cont...

  10. Evaporation of Binary Sessile Drops: Infrared and Acoustic Methods To Track Alcohol Concentration at the Interface and on the Surface.

    PubMed

    Chen, Pin; Toubal, Malika; Carlier, Julien; Harmand, Souad; Nongaillard, Bertrand; Bigerelle, Maxence

    2016-09-27

    Evaporation of droplets of three pure liquids (water, 1-butanol, and ethanol) and four binary solutions (5 wt % 1-butanol-water-based solution and 5, 25, and 50 wt % ethanol-water-based solutions) deposited on hydrophobic silicon was investigated. A drop shape analyzer was used to measure the contact angle, diameter, and volume of the droplets. An infrared camera was used for infrared thermal mapping of the droplet's surface. An acoustic high-frequency echography technique was, for the first time, applied to track the alcohol concentration in a binary-solution droplet. Evaporation of pure alcohol droplets was executed at different values of relative humidity (RH), among which the behavior of pure ethanol evaporation was notably influenced by the ambient humidity as a result of high hygrometry. Evaporation of droplets of water and binary solutions was performed at a temperature of 22 °C and a mean humidity of approximately 50%. The exhaustion times of alcohol in the droplets estimated by the acoustic method and the visual method were similar for the water-1-butanol mixture; however, the time estimated by the acoustic method was longer when compared with that estimated by the visual method for the water-ethanol mixture due to the residual ethanol at the bottom of the droplet.

  11. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2013-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid enantiomers.

  12. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid enantiomers.

  13. Further investigation of relationships between membrane fluidity and ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Ishmayana, Safri; Kennedy, Ursula J; Learmonth, Robert P

    2017-11-27

    Membrane lipid unsaturation index and membrane fluidity have been related to yeast ethanol stress tolerance in published studies, however findings have been inconsistent. In this study, viability reduction on exposure to 18% (v/v) ethanol was compared to membrane fluidity determined by laurdan generalized polarization. Furthermore, in the determination of viability reduction, we examined the effectiveness of two methods, namely total plate count and methylene violet staining. We found a strong negative correlation between ethanol tolerance and membrane fluidity, indicated by negative Pearson correlation coefficients of - 0.79, - 0.65 and - 0.69 for Saccharomyces cerevisiae strains A12, PDM and K7, respectively. We found that lower membrane fluidity leads to higher ethanol tolerance, as indicated by decreased viability reduction and higher laurdan generalized polarization in respiratory phase compared to respiro-fermentative phase cells. Total plate count better differentiated ethanol tolerance of yeast cells in different growth phases, while methylene violet staining was better to differentiate ethanol tolerance of the different yeast strains at a particular culture phase. Hence, both viability assessment methods have their own advantages and limitations, which should be considered when comparing stress tolerance in different situations.

  14. A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores.

    PubMed

    Nerandzic, Michelle M; Sankar C, Thriveen; Setlow, Peter; Donskey, Curtis J

    2016-01-01

    Background.  Alcohol-based hand sanitizers are the primary method of hand hygiene in healthcare settings, but they lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We previously demonstrated that acidification of ethanol induced rapid sporicidal activity, resulting in ethanol formulations with pH 1.5-2 that were as effective as soap and water washing in reducing levels of C difficile spores on hands. We hypothesized that the addition of dilute peracetic acid (PAA) to acidified ethanol would enhance sporicidal activity while allowing elevation of the pH to a level likely to be well tolerated on skin (ie, >3). Methods.  We tested the efficacy of acidified ethanol solutions alone or in combination with PAA against C difficile and Bacillus subtilis spores in vitro and against nontoxigenic C difficile spores on hands of volunteers. Results.  Acidification of ethanol induced rapid sporicidal activity against C difficile and to a lesser extent B subtilis. The addition of dilute PAA to acidified ethanol resulted in synergistic enhancement of sporicidal activity in a dose-dependent fashion in vitro. On hands, the addition of 1200-2000 ppm PAA enhanced the effectiveness of acidified ethanol formulations, resulting in formulations with pH >3 that were as effective as soap and water washing. Conclusions.  Acidification and the addition of dilute PAA induced rapid sporicidal activity in ethanol. Our findings suggest that it may be feasible to develop effective sporicidal ethanol formulations that are safe and tolerable on skin.

  15. Can 1% chlorhexidine diacetate and ethanol stabilize resin-dentin bonds?

    PubMed Central

    Manso, Adriana Pigozzo; Grande, Rosa Helena Miranda; Bedran-Russo, Ana Karina; Reis, Alessandra; Loguercio, Alessandro D.; Pashley, David Henry; Carvalho, Ricardo Marins

    2014-01-01

    Objectives To examine the effects of the combined use of chlorhexidine and ethanol on the durability of resin-dentin bonds. Methods Forty-eight flat dentin surfaces were etched (32% phosphoric acid), rinsed (15 s) and kept wet until bonding procedures. Dentin surfaces were blot-dried with absorbent paper and re-wetted with water (Water, control), 1% chlorhexidine diacetate in water (CHD/Water), 100% ethanol (Ethanol), or 1% chlorhexidine diacetate in ethanol (CHD/Ethanol) solutions for 30 s. They were then bonded with All Bond 3 (AB3, Bisco) or Excite (EX, Ivoclar-Vivadent) using a smooth, continuous rubbing application (10 s), followed by 15 s gentle air stream to evaporate solvents. The adhesives were light-cured (20 s) and resin composite build-ups constructed for the microtensile method. Bonded beams were obtained and tested after 24-hours, 6-months and 15-months of water storage at 37°C. Storage water was changed every month. Effects of treatment and testing periods were analyzed (ANOVA, Holm-Sidak, p<0.05) for each adhesive. Results There were no interactions between factors for both etch-and-rinse adhesives. AB3 was significantly affected only by storage (p = 0.003). Excite was significantly affected only by treatments (p = 0.048). AB3 treated either with ethanol or CHD/ethanol resulted in reduced bond strengths after 15 months. The use of CHD/ethanol resulted in higher bond strengths values for Excite. Conclusions Combined use of ethanol/1% chlorhexidine diacetate did not stabilize bond strengths after 15 months. PMID:24815823

  16. The thermoregulatory mechanism of melatonin-induced hypothermia in chicken.

    PubMed

    Rozenboim, I; Miara, L; Wolfenson, D

    1998-01-01

    The involvement of melatonin (Mel) in body temperature (Tb) regulation was studied in White Leghorn layers. In experiment 1, 35 hens were injected intraperitoneally with seven doses of Mel (0, 5, 10, 20, 40, 80, or 160 mg Mel/kg body wt) dissolved in ethanol. Within 1 h, Mel had caused a dose-dependent reduction in Tb. To eliminate a possible vehicle effect, 0, 80, and 160 mg/kg body wt Mel dissolved in N-methyl-2-pyrrolidone (NMP) was injected. NMP had no effect on Tb, with Mel again causing a dose-dependent hypothermia. In experiment 2 (n = 30), Mel injected before exposure of layers to heat reduced Tb and prevented heat-induced hyperthermia. Injection after heat stress had begun did not prevent hyperthermia. Under cold stress, Mel induced hypothermia, which was not observed in controls. In experiment 3 (n = 12), Mel injection reduced Tb and increased metatarsal and comb temperatures (but not feathered-skin temperature), respiratory rate, and evaporative water loss. Heart rate rose and then declined, and blood pressure increased 1 h after Mel injection. Heat production rose slightly during the first hour, then decreased in parallel to the Tb decline. We conclude that pharmacological doses of Mel induce hypothermia in hens by increasing nonevaporative skin heat losses and slightly increasing respiratory evaporation.

  17. Ethanol production using a soy hydrolysate-based medium or a yeast autolysate-based medium

    DOEpatents

    Ingram, Lonnie O.

    2000-01-01

    This invention presents a method for the production of ethanol that utilizes a soy hydrolysate-based nutrient medium or a yeast autolysate-based medium nutrient medium in conjunction with ethanologenic bacteria and a fermentable sugar for the cost-effective production of ethanol from lignocellulosic biomass. The invention offers several advantages over presently available media for use in ethanol production, including consistent quality, lack of toxins and wide availability.

  18. Environmentally benign formation of polymeric microspheres by rapid expansion of supercritical carbon dioxide solution with a nonsolvent.

    PubMed

    Matsuyama, K; Mishima, K; Umemoto, H; Yamaguchi, S

    2001-10-15

    A novel method is reported for forming polymer microparticles, which reduce atmospheric emissions of environmentally harmful volatile organic compounds such as toluene and xylene used as paint solvent in paint industry. The polymer microparticles have formed through rapid expansion from supercritical solution with a nonsolvent (RESS-N). Solubilization of poly(styrene)-b-(poly(methyl methacrylate)-co-poly (glycidyl methacrylate)) copolymer(PS-b-(PMMA-co-PGMA), MW = 5000, PS/PMMA/PGMA = 2/5/3), poly(ethylene glycol) (PEG, M. W = 4000), bisphenol A type epoxy resin (EP, MW = 3000), poly(methyl methacrylate) (PMMA; MW = 15000, 75000, 120000), and poly(oxyalkylene) alkylphenyl ether (MW = 4000) in carbon dioxide (CO2) was achieved with the use of small alcohols as cosolvents. The solubility of the PS-b-(PMMA-co-PGMA) is extremely low in either CO2 or ethanol but becomes 20 wt % in a mixture of the two. Because ethanol is a nonsolvent for the polymer, it can be used as a cosolvent in rapid expansion from supercritical solution to produce 1-3 microm particles that do not agglomerate. Obtained polymer particles by RESS-N were applied as powder coatings. The resulting coatings have a smooth and coherent film. The particle size distribution of microspheres was controlled by changing the polymer concentration, preexpansion pressure, temperature, and injection distance. The feed compositions were more effective than the other factors in controlling the particle size. The polymeric microparticles formed by RESS-N method can be utilized to make the thin coating film without anytoxic organic solvents and/or surfactants.

  19. Control of ethanol withdrawal symptoms in mice by phenytoin.

    PubMed

    Sprague, G L; Craigmill, A L

    1976-12-01

    Mice were made physically dependent upon ethanol using either of two methods which involved ethanol vapor inhalation. Following the cessation of exposure to ethanol, the severity of handling-induced convulsions and changes in the response to an electric foot shock (startle reflex) were recorded. Animals given isotonic saline or propylene glycol:ethanol vehicle during withdrawal exhibited handling-induced convulsions, and ethanol (2.0-4.0 g/kg) or phenytoin (5-20 mg/kg) administration during withdrawal resulted in a reduction in the severity of these convulsions. A reduced startle reflex threshold was also evident during withdrawal in mice given isotonic saline or propylene glycol:ethanol vehicle. Ethanol (0.5-4.0 g/kg) or phenytoin (10-20 mg/kg) administration during withdrawal resulted in a significant elevation of the startle reflex threshold compared to control animals. The results are discussed as they relate to others obtained in experimental and clinical studies.

  20. A simple capacitive method to evaluate ethanol fuel samples

    NASA Astrophysics Data System (ADS)

    Vello, Tatiana P.; de Oliveira, Rafael F.; Silva, Gustavo O.; de Camargo, Davi H. S.; Bufon, Carlos C. B.

    2017-02-01

    Ethanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal. Here, we describe the development of a simple, fast and accurate platform based on nanostructured sensors to evaluate ethanol samples. The device fabrication is facile, based on standard microfabrication and thin-film deposition methods. The sensor operation relies on capacitance measurements employing a parallel plate capacitor containing a conformational aluminum oxide (Al2O3) thin layer (15 nm). The sensor operates over the full range water concentration, i.e., from approximately 0% to 100% vol. of water in ethanol, with water traces being detectable down to 0.5% vol. These characteristics make the proposed device unique with respect to other platforms. Finally, the good agreement between the sensor response and analyses performed by gas chromatography of ethanol biofuel endorses the accuracy of the proposed method. Due to the full operation range, the reported sensor has the technological potential for use as a point-of-care analytical tool at gas stations or in the chemical, pharmaceutical, and beverage industries, to mention a few.

Top