Sample records for ethanol process design

  1. Fuel ethanol production: process design trends and integration opportunities.

    PubMed

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  2. Optimization of the Ethanol Recycling Reflux Extraction Process for Saponins Using a Design Space Approach

    PubMed Central

    Gong, Xingchu; Zhang, Ying; Pan, Jianyang; Qu, Haibin

    2014-01-01

    A solvent recycling reflux extraction process for Panax notoginseng was optimized using a design space approach to improve the batch-to-batch consistency of the extract. Saponin yields, total saponin purity, and pigment yield were defined as the process critical quality attributes (CQAs). Ethanol content, extraction time, and the ratio of the recycling ethanol flow rate and initial solvent volume in the extraction tank (RES) were identified as the critical process parameters (CPPs) via quantitative risk assessment. Box-Behnken design experiments were performed. Quadratic models between CPPs and process CQAs were developed, with determination coefficients higher than 0.88. As the ethanol concentration decreases, saponin yields first increase and then decrease. A longer extraction time leads to higher yields of the ginsenosides Rb1 and Rd. The total saponin purity increases as the ethanol concentration increases. The pigment yield increases as the ethanol concentration decreases or extraction time increases. The design space was calculated using a Monte-Carlo simulation method with an acceptable probability of 0.90. Normal operation ranges to attain process CQA criteria with a probability of more than 0.914 are recommended as follows: ethanol content of 79–82%, extraction time of 6.1–7.1 h, and RES of 0.039–0.040 min−1. Most of the results of the verification experiments agreed well with the predictions. The verification experiment results showed that the selection of proper operating ethanol content, extraction time, and RES within the design space can ensure that the CQA criteria are met. PMID:25470598

  3. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aden, A.; Ruth, M.; Ibsen, K.

    This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update ofmore » the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and costing for the lignin combustor and boiler turbogenerator was reviewed by Reaction Engineering Inc. (REI) and Merrick & Company reviewed the wastewater treatment. Since then, NREL has engaged Harris Group (Harris) to perform vendor testing, process design, and costing of critical equipment identified during earlier work. This included solid/liquid separation and pretreatment reactor design and costing. Corn stover handling was also investigated to support DOE's decision to focus on corn stover as a feedstock for lignocellulosic ethanol. Working with Harris, process design and costing for these areas were improved through vendor designs, costing, and vendor testing in some cases. In addition to this work, enzyme costs were adjusted to reflect collaborative work between NREL and enzyme manufacturers (Genencor International and Novozymes Biotech) to provide a delivered enzyme for lignocellulosic feedstocks. This report is the culmination of our work and represents an updated process design and cost basis for the process using a corn stover feedstock. The process design and economic model are useful for predicting the cost benefits of proposed research. Proposed research results can be translated into modifications of the process design, and the economic impact can be assessed. This allows DOE, NREL, and other researchers to set priorities on future research with an understanding of potential reductions to the ethanol production cost. To be economically viable, ethanol production costs must be below market values for ethanol. DOE has chosen a target ethanol selling price of $1.07 per gallon as a goal for 2010. The conceptual design and costs presented here are based on a 2010 plant start-up date. The key research targets required to achieve this design and the $1.07 value are discussed in the report.« less

  4. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    PubMed Central

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154

  5. Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAloon, A.; Taylor, F.; Yee, W.

    2000-10-25

    The mature corn-to-ethanol industry has many similarities to the emerging lignocellulose-to-ethanol industry. It is certainly possible that some of the early practitioners of this new technology will be the current corn ethanol producers. In order to begin to explore synergies between the two industries, a joint project between two agencies responsible for aiding these technologies in the Federal government was established. This joint project of the USDA-ARS and DOE/NREL looked at the two processes on a similar process design and engineering basis, and will eventually explore ways to combine them. This report describes the comparison of the processes, each producingmore » 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood. Ass umptions about yield and design improvements possible from continued research were made for the emerging lignocellulose process. In order to compare the lignocellulose-to-ethanol process costs with the commercial corn-to-ethanol costs, it was assumed that the lignocellulose plant was an Nth generation plant, built after the industry had been sufficiently established to eliminate first-of-a-kind costs. This places the lignocellulose plant costs on a similar level with the current, established corn ethanol industry, whose costs are well known. The resulting costs of producing 25 million annual gallons of fuel ethanol from each process were determined. The figure below shows the production cost breakdown for each process. The largest cost contributor in the corn starch process is the feedstock; for the lignocellulosic process it is the capital cost, which is represented by depreciation cost on an annual basis.« less

  6. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass.

    PubMed

    Tao, Ling; Aden, Andy; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E

    2011-12-01

    Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Determine new design and construction techniques for transportation of ethanol and ethanol/gasoline blends in new pipelines.

    DOT National Transportation Integrated Search

    2013-02-15

    The technical tasks in this study included activities to characterize the impact of selected : metallurgical processing and fabrication variables on ethanol stress corrosion cracking (ethanol : SCC) of new pipeline steels, develop a better understand...

  8. Conversion of paper sludge to ethanol, II: process design and economic analysis.

    PubMed

    Fan, Zhiliang; Lynd, Lee R

    2007-01-01

    Process design and economics are considered for conversion of paper sludge to ethanol. A particular site, a bleached kraft mill operated in Gorham, NH by Fraser Papers (15 tons dry sludge processed per day), is considered. In addition, profitability is examined for a larger plant (50 dry tons per day) and sensitivity analysis is carried out with respect to capacity, tipping fee, and ethanol price. Conversion based on simultaneous saccharification and fermentation with intermittent feeding is examined, with ethanol recovery provided by distillation and molecular sieve adsorption. It was found that the Fraser plant achieves positive cash flow with or without xylose conversion and mineral recovery. Sensitivity analysis indicates economics are very sensitive to ethanol selling price and scale; significant but less sensitive to the tipping fee, and rather insensitive to the prices of cellulase and power. Internal rates of return exceeding 15% are projected for larger plants at most combinations of scale, tipping fee, and ethanol price. Our analysis lends support to the proposition that paper sludge is a leading point-of-entry and proving ground for emergent industrial processes featuring enzymatic hydrolysis of cellulosic biomass.

  9. Process design considerations for optimal production of ethanol from lignocellulose using available yeasts, including natural pentose-fermenting yeasts, and their derivatives

    USDA-ARS?s Scientific Manuscript database

    To expand the biomass to fuel ethanol industry, process strategies are needed to foster the production and utilization of microorganisms which can survive and ferment both hexose (C6) and pentose (C5) sugars while exposed to inhibitors (such as ethanol, furfural, and hydroxymethylfurfural, or HMF). ...

  10. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    PubMed

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  11. Designer organisms for photosynthetic production of ethanol from carbon dioxide and water

    DOEpatents

    Lee, James Weifu [Knoxville, TN

    2011-07-05

    The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

  12. [Study on extraction process of Radix Bupleuri].

    PubMed

    Zhao, Lei; Liu, Benliang; Wu, Fuxiang; Tao, Lanping; Liu, Jian

    2004-10-01

    The orthogonal design was used to optimize extraction process of Radix Bupleuri with content of total saponin and yield of the extract as markers. Factors that have been chosen were ethanol concentration, ethanol consumption, extraction times and extraction time. Each factor had three levels. The result showed that the optimum extraction condition was 80% ethanol, 4 times the amount of material, refluxing for 4 times, 60 minutes each time. The optimized process was stable and workable.

  13. Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw.

    PubMed

    Bondesson, Pia-Maria; Galbe, Mats

    2016-01-01

    Pretreatment is an important step in the production of ethanol from lignocellulosic material. Using acetic acid together with steam pretreatment allows the positive effects of an acid catalyst to be retained, while avoiding the negative environmental effects associated with sulphuric acid. Acetic acid is also formed during the pretreatment and hydrolysis of hemicellulose, and is a known inhibitor that may impair fermentation at high concentrations. The purpose of this study was to improve ethanol production from glucose and xylose in steam-pretreated, acetic-acid-impregnated wheat straw by process design of simultaneous saccharification and co-fermentation (SSCF), using a genetically modified pentose fermenting yeast strain Saccharomyces cerevisiae . Ethanol was produced from glucose and xylose using both the liquid fraction and the whole slurry from pretreated materials. The highest ethanol concentration achieved was 37.5 g/L, corresponding to an overall ethanol yield of 0.32 g/g based on the glucose and xylose available in the pretreated material. To obtain this concentration, a slurry with a water-insoluble solids (WIS) content of 11.7 % was used, using a fed-batch SSCF strategy. A higher overall ethanol yield (0.36 g/g) was obtained at 10 % WIS. Ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw through SSCF with a pentose fermenting S. cerevisiae strain was successfully demonstrated. However, the ethanol concentration was too low and the residence time too long to be suitable for large-scale applications. It is hoped that further process design focusing on the enzymatic conversion of cellulose to glucose will allow the combination of acetic acid pretreatment and co-fermentation of glucose and xylose.

  14. Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 liters

    USDA-ARS?s Scientific Manuscript database

    A fermentation process, which was designated the EDGE (enhanced dry grind enzymatic) process, has recently been developed for barley ethanol production. In the EDGE process, in addition to the enzymes normally required for starch hydrolysis, commercial Beta-glucanases were used to hydrolyze (1,3)(1,...

  15. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production.

    PubMed

    Kumar, Deepak; Murthy, Ganti S

    2011-09-05

    While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.

  16. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    PubMed Central

    2011-01-01

    Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies. PMID:21892958

  17. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields.

    PubMed

    Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack

    2006-08-05

    An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.

  18. Low grade bioethanol for fuel mixing on gasoline engine using distillation process

    NASA Astrophysics Data System (ADS)

    Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami

    2017-03-01

    Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.

  19. [Optimization of fuel ethanol production from kitchen waste by Plackett-Burman design].

    PubMed

    Ma, Hong-Zhi; Gong, Li-Juan; Wang, Qun-Hui; Zhang, Wen-Yu; Xu, Wen-Long

    2008-05-01

    Kitchen garbage was chosen to produce ethanol through simultaneous saccharification and fermentation (SSF) by Zymomonas mobilis. Plackett-Burman design was employed to screen affecting parameters during SSF process. The parameters were divided into two parts, enzymes and nutritions. None of the nutritions added showed significant effect during the experiment, which demonstrated that the kitchen garbage could meet the requirement of the microorganism without extra supplementation. Protease and glucoamylase were determined to be affecting factors for ethanol production. Single factor experiment showed that the optimum usage of these two enzymes were both 100 U/g and the corresponding maximum ethanol was determined to be 53 g/L. The ethanol yield could be as high as 44%. The utilization of kitchen garbage to produce ethanol could reduce threaten of waste as well as improve the protein content of the spent. This method could save the ethanol production cost and benefit for the recycle of kitchen garbage.

  20. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    NASA Astrophysics Data System (ADS)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results indicated that it is possible to modulate the product formation by limiting key nutrients of acetyl-CoA pathway and using a continuous fermentation in two-stage fermentor design to improve ethanol yields. The last experimental study was conducted to commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a bench-scale to a pilot scale 100-L fermentor. Results indicated a six-fold improvement in ethanol concentration (25.3 g L-1 at the end of 59 d) compared to previous Clostridium strain P11 and Clostridium carboxidivorans fermentations plus the formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance.

  1. Kinetic modeling of simultaneous saccharification and fermentation of corn starch for ethanol production.

    PubMed

    Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria

    2014-01-01

    Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.

  2. Methodology for the optimal design of an integrated first and second generation ethanol production plant combined with power cogeneration.

    PubMed

    Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François

    2016-08-01

    The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of sodium meta bisulfite on diffusion fermentation of fodder beets for fuel ethanol production. [Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, W.R.; Westby, C.A.

    1987-01-01

    The authors designed and tested a new process for converting fodder beets to ethanol: continuous diffusion-fermentation. This process utilizes the simultaneous diffusion-fermentation concept of the EX-FERM design; however, it overcomes the material handling problems inherent in that system by utilizing a counterflow tubular auger system. This process also eliminates the need for roller mills or presses and dryers which are required for alcohol recovery from solid phase fermentation. The latter is the only other currently feasible procedure for producing distillably worthwhile amounts of ethanol from fodder beets, sweet sorghum, and other similar feedstocks. Results on the use of sodium metamore » bisulfite (SMB) for contamination control with fermenting fodder beet cubes are reported.« less

  4. Lignocellulosic ethanol: Technology design and its impact on process efficiency.

    PubMed

    Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel

    2015-11-01

    This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use of immobilized biocatalysts is considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. [Studies on the extraction and purification of total saponins from Parched Semen Ziziphi Spinosae].

    PubMed

    Wu, Yulan; Ding, Anwei; Bao, Beihua

    2005-03-01

    To study the extraction and purification process of the total saponin from Parched Semen Ziziphi Spinosae with ethanol and macroporous resin. The total saponins were extracted with ethanol and purified with macroporous resin by orthogonal design, taking content and purity of jujuboside A as guideline. The optimum extraction condition was adding 6 times amount of 80% ethanol and refluxing 3 times, for 30 minutes each time. The purification process with macroporous resin HPD-100 was using 0.5% NaOH (150ml), 30% ethanol (150ml) to wash out impurity, and 70% ethanol 50 ml to wash out saponin. The purity of jujuboside A was up to 17.9% and the eluted ratio 72.8%.

  6. Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: Effect of cell concentration and stirring

    PubMed Central

    Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; da Silva, Silvio S

    2015-01-01

    Bioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.g., cell concentration and stirring) on ethanol production from sugarcane bagasse hydrolysate using the yeast Scheffersomyces stipitis immobilized in calcium alginate matrix. A 22 full factorial design of experiment was performed considering the process variables- immobilized cell concentration (3.0, 6.5 and 10.0 g/L) and stirring (100, 200 and 300 rpm). Statistical analysis showed that stirring has the major influence on ethanol production. Maximum ethanol production (8.90 g/l) with ethanol yield (Yp/s) of 0.33 g/g and ethanol productivity (Qp) of 0.185 g/l/h was obtained under the optimized process conditions (10.0 g/L of cells and 100 rpm). PMID:25488725

  7. Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis.

    PubMed

    Sánchez, Óscar J; Cardona, Carlos A

    2012-01-01

    In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Utilization of cellulosic materials through enzyamtic hydrolysis. I. Fermentation of hydrolysate to ethanol and single-cell protein.

    PubMed

    Cysewski, G R; Wilke, C R

    1976-09-01

    Ethanol fermentation studies were conducted with Saccharomyces cerevisiae ATCC "4126, to determine the optimal conditions of oxygen tension and feed sugar concentration. In long-term continuous culture maximum ethanol production was found to occur at 0.07 mmHg oxygen tension and 10% glucose feed concentration. Preliminary process design and cost studies are developed for industrial scale fermentations to produce ethanol and torula yeast from sugars obtained by enzymatic hydrolysis of newsprint.

  9. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    PubMed

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  10. AGRI Grain Power ethanol-for-fuel project feasibility-study report. Volume I. Project conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-04-01

    The AGRI GRAIN POWER (AGP) Project, hereafter referred to as the Project, was formed to evaluate the commercial viability and assess the desireability of implementing a large grain based grass-roots anhydrous ethanol fuel project to be sited near Des Moines, Iowa. This report presents the results of a Project feasibility evaluation. The Project concept is based on involving a very strong managerial, financial and technical joint venture that is extremely expert in all facets of planning and implementing a large ethanol project; on locating the ethanol project at a highly desireable site; on utilizing a proven ethanol process; and onmore » developing a Project that is well suited to market requirements, resource availability and competitive factors. The Project conceptual design is presented in this volume.« less

  11. Spectroscopic investigation into the design of solid-acid catalysts for the low temperature dehydration of ethanol.

    PubMed

    Potter, Matthew E; Aswegen, Sivan V; Gibson, Emma K; Silverwood, Ian P; Raja, Robert

    2016-07-14

    The increased demand for bulk hydrocarbons necessitates research into increasingly sustainable, energy-efficient catalytic processes. Owing to intricately designed structure-property correlations, SAPO-34 has become established as a promising material for the low temperature ethanol dehydration to produce ethylene. However, further optimization of this process requires a precise knowledge of the reaction mechanism at a molecular level. In order to achieve this a range of spectroscopic characterization techniques are required to probe both the interaction with the active site, and also the wider role of the framework. To this end we employ a combination of in situ infra-red and neutron scattering techniques to elucidate the influence of the surface ethoxy species in the activation of both diethyl ether and ethanol, towards the improved formation of ethylene at low temperatures. The combined conclusions of these studies is that the formation of ethylene is the rate determining step, which is of fundamental importance towards the development of this process and the introduction of bio-ethanol as a viable feedstock for ethylene production.

  12. An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces.

    PubMed

    Dutta, Abhijit; Dowe, Nancy; Ibsen, Kelly N; Schell, Daniel J; Aden, Andy

    2010-01-01

    Numerous routes are being explored to lower the cost of cellulosic ethanol production and enable large-scale production. One critical area is the development of robust cofermentative organisms to convert the multiple, mixed sugars found in biomass feedstocks to ethanol at high yields and titers without the need for processing to remove inhibitors. Until such microorganisms are commercialized, the challenge is to design processes that exploit the current microorganisms' strengths. This study explored various process configurations tailored to take advantage of the specific capabilities of three microorganisms, Z. mobilis 8b, S. cerevisiae, and S. pastorianus. A technoeconomic study, based on bench-scale experimental data generated by integrated process testing, was completed to understand the resulting costs of the different process configurations. The configurations included whole slurry fermentation with a coculture, and separate cellulose simultaneous saccharification and fermentation (SSF) and xylose fermentations with none, some or all of the water to the SSF replaced with the fermented liquor from the xylose fermentation. The difference between the highest and lowest ethanol cost for the different experimental process configurations studied was $0.27 per gallon ethanol. Separate fermentation of solid and liquor streams with recycle of fermented liquor to dilute the solids gave the lowest ethanol cost, primarily because this option achieved the highest concentrations of ethanol after fermentation. Further studies, using methods similar to ones employed here, can help understand and improve the performance and hence the economics of integrated processes involving enzymes and fermentative microorganisms.

  13. Impact of parameter fluctuations on the performance of ethanol precipitation in production of Re Du Ning Injections, based on HPLC fingerprints and principal component analysis.

    PubMed

    Sun, Li-Qiong; Wang, Shu-Yao; Li, Yan-Jing; Wang, Yong-Xiang; Wang, Zhen-Zhong; Huang, Wen-Zhe; Wang, Yue-Sheng; Bi, Yu-An; Ding, Gang; Xiao, Wei

    2016-01-01

    The present study was designed to determine the relationships between the performance of ethanol precipitation and seven process parameters in the ethanol precipitation process of Re Du Ning Injections, including concentrate density, concentrate temperature, ethanol content, flow rate and stir rate in the addition of ethanol, precipitation time, and precipitation temperature. Under the experimental and simulated production conditions, a series of precipitated resultants were prepared by changing these variables one by one, and then examined by HPLC fingerprint analyses. Different from the traditional evaluation model based on single or a few constituents, the fingerprint data of every parameter fluctuation test was processed with Principal Component Analysis (PCA) to comprehensively assess the performance of ethanol precipitation. Our results showed that concentrate density, ethanol content, and precipitation time were the most important parameters that influence the recovery of active compounds in precipitation resultants. The present study would provide some reference for pharmaceutical scientists engaged in research on pharmaceutical process optimization and help pharmaceutical enterprises adapt a scientific and reasonable cost-effective approach to ensure the batch-to-batch quality consistency of the final products. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  14. Impacts of retrofitting analysis on first generation ethanol production: process design and techno-economics.

    PubMed

    Rajendran, Karthik; Rajoli, Sreevathsava; Teichert, Oliver; Taherzadeh, Mohammad J

    2015-02-01

    More than half of the bioethanol plants in operation today use corn or grains as raw materials. The downstream processing of mash after fermentation to produce ethanol and distiller grains is an energy-demanding process, which needs retrofitting for optimization. In addition, the fluctuation in the ethanol and grain prices affects the overall profitability of the plant. For this purpose, a process simulation was performed in Aspen Plus(®) based on an existing industrial plant located in Sweden. The simulations were compared using different scenarios including different concentrations of ethanol, using the stillage for biogas production to produce steam instead of distiller grains as a by-product, and altering the purity of the ethanol produced. Using stillage for biogas production, as well as utilizing the steam, reduced the overall energy consumption by 40% compared to the plant in operation. The fluctuations in grain prices had a high impact on the net present value (NPV), where grain prices greater than 349 USD/ton reached a zero NPV. After 20 years, the plant in operation producing 41,600 tons ethanol/year can generate a profit of 78 million USD. Compared to the base case, the less purified ethanol resulted in a lower NPV of 30 million USD.

  15. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

    PubMed

    Oberoi, Harinder Singh; Vadlani, Praveen V; Saida, Lavudi; Bansal, Sunil; Hughes, Joshua D

    2011-07-01

    Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Process design and economics of a flexible ethanol-butanol plant annexed to a eucalyptus kraft pulp mill.

    PubMed

    Pereira, Guilherme C Q; Braz, Danilo S; Hamaguchi, Marcelo; Ezeji, Thaddeus C; Maciel Filho, Rubens; Mariano, Adriano P

    2018-02-01

    This work proposes a strategy, from a process design standpoint, for pulp companies to enter the Brazilian ethanol market. The flexible plant converts eucalyptus-derived glucose to either ethanol or butanol (according to market conditions) and xylose only to butanol production. Depending on the biomass pretreatment technology, Monte Carlo simulations showed that the Net Present Value (NPV) of the flexible plant increases by 20-28% in relation to an ethanol-dedicated plant. Whereas the lower costs of the steam explosion technology turns the investment more attractive (NPV = 184 MMUSD; IRR = 29%), the organosolv technology provides better flexibility to the plant. This work also shows that excessive power consumption is a hurdle in the development of flash fermentation technology chosen for the flexible plant. These results indicate that conventional batch fermentation is preferable if the enzymatic hydrolysis step operates with solids loading up to 20 wt%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Allopregnanolone influences the consummatory processes that govern ethanol drinking in C57BL/6J mice

    PubMed Central

    Ford, Matthew M.; Mark, Gregory P.; Nickel, Jeffrey D.; Phillips, Tamara J.; Finn, Deborah A.

    2007-01-01

    Although systemic allopregnanolone (ALLO; a positive modulator of GABAA receptors) has been shown to enhance ethanol-reinforced responding and to modulate drinking patterns in rodents, the effects of centrally administered ALLO on ethanol intake are not known. The current work examined the effects of intracranial ALLO on operant ethanol self-administration in food- and water-satiated mice, with a procedure designed to estimate ALLO’s influence on appetitive versus consummatory processes. Male C57BL/6J (B6) mice were trained to press an ethanol-appropriate lever by being reinforced with 30-min of continuous access to a 10% ethanol solution. Following surgical implantation of a guide cannula aimed at the lateral ventricle and subsequent habituation to vehicle infusions, ALLO (50–400 ng; ICV) was delivered immediately prior to session start. ALLO doses of 100 and 400 ng were further evaluated for their effects on locomotor behavior within activity chambers. ALLO selectively modulated ethanol intake patterns associated with the onset and maintenance of self-administration, while leaving appetitive (i.e., ethanol seeking) measures unaltered. The effects of ALLO on drinking patterns were dissociable from changes in locomotor behavior, as evidenced by the absence of ALLO’s influence on response frequency and horizontal distance traveled. These findings support the premise that manipulations in brain ALLO levels may influence the regulatory processes governing ethanol consumption. PMID:17376546

  18. Improved ethanol yield and reduced minimum ethanol selling price (MESP) by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 2) Techno-economic analysis

    PubMed Central

    2012-01-01

    Background Our companion paper discussed the yield benefits achieved by integrating deacetylation, mechanical refining, and washing with low acid and low temperature pretreatment. To evaluate the impact of the modified process on the economic feasibility, a techno-economic analysis (TEA) was performed based on the experimental data presented in the companion paper. Results The cost benefits of dilute acid pretreatment technology combined with the process alternatives of deacetylation, mechanical refining, and pretreated solids washing were evaluated using cost benefit analysis within a conceptual modeling framework. Control cases were pretreated at much lower acid loadings and temperatures than used those in the NREL 2011 design case, resulting in much lower annual ethanol production. Therefore, the minimum ethanol selling prices (MESP) of the control cases were $0.41-$0.77 higher than the $2.15/gallon MESP of the design case. This increment is highly dependent on the carbohydrate content in the corn stover. However, if pretreatment was employed with either deacetylation or mechanical refining, the MESPs were reduced by $0.23-$0.30/gallon. Combing both steps could lower the MESP further by $0.44 ~ $0.54. Washing of the pretreated solids could also greatly improve the final ethanol yields. However, the large capital cost of the solid–liquid separation unit negatively influences the process economics. Finally, sensitivity analysis was performed to study the effect of the cost of the pretreatment reactor and the energy input for mechanical refining. A 50% cost reduction in the pretreatment reactor cost reduced the MESP of the entire conversion process by $0.11-$0.14/gallon, while a 10-fold increase in energy input for mechanical refining will increase the MESP by $0.07/gallon. Conclusion Deacetylation and mechanical refining process options combined with low acid, low severity pretreatments show improvements in ethanol yields and calculated MESP for cellulosic ethanol production. PMID:22967479

  19. Ethanol-acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets.

    PubMed

    Jiménez, L; Pérez, I; López, F; Ariza, J; Rodríguez, A

    2002-06-01

    The influence of independent variables in the pulping of wheat straw by use of an ethanol-acetone-water mixture [processing temperature and time, ethanol/(ethanol + acetone) value and (ethanol + acetone)/(ethanol + acetone + water) value] and of the number of PFI beating revolutions to which the pulp was subjected, on the properties of the resulting pulp (yield and Shopper-Riegler index) and of the paper sheets obtained from it (breaking length, stretch, burst index and tear index) was examined. By using a central composite factor design and the BMDP software suite, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 30% at temperatures, times, ethanol/(ethanol + acetone) value, (ethanol + acetone)/(ethanol + acetone + water) value and numbers of PFI beating revolutions in the ranges 140-180 degrees C, 60-120 min, 25-75%, 35-75% and 0-1750, respectively. Using values of the independent variables over the variation ranges considered provided the following optimum values of the dependent variables: 78.17% (yield), 15.21 degrees SR (Shopper-Riegler index), 5265 m (breaking length), 1.94% (stretch), 2.53 kN/g (burst index) and 4.26 mN m2/g (tear index). Obtaining reasonably good paper sheets (with properties that differed by less than 15% from their optimum values except for the burst index, which was 28% lower) entailed using a temperature of 180 degrees C, an ethanol/(ethanol + acetone) value of 50%, an (ethanol + acetone)/(ethanol + acetone + water) value of 75%, a processing time of 60 min and a number of PFI beating revolutions of 1750. The yield was 32% lower under these conditions, however. A comparison of the results provided by ethanol, acetone and ethanol-acetone pulping revealed that the second and third process-which provided an increased yield were the best choices. On the other hand, if the pulp is to be refined, ethanol pulping is the process of choice.

  20. Enzymatic production of ethanol from cellulose using soluble cellulose acetate as an intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downing, K.M.; Ho, C.S.; Zabriskie, D.W.

    1987-01-01

    A two-stage process for the enzymatic conversion of cellulose to ethanol is proposed as an alternative to currently incomplete and relatively slow enzymatic conversion processes employing natural insoluble cellulose. This alternative approach is designed to promote faster and more complete conversion of cellulose to fermentable sugars through the use of a homogeneous enzymatic hydrolysis reaction. Cellulose is chemically dissolved in the first stage to form water-soluble cellulose acetate (WSCA). The WSCA is then converted to ethanol in a simultaneous saccharification-fermentation with Pestalotiopsis westerdijkii enzymes (containing cellulolytic and acetyl esterase components) and yeast.

  1. Process Design and Economics of On-Site Cellulase Production on Various Carbon Sources in a Softwood-Based Ethanol Plant

    PubMed Central

    Barta, Zsolt; Kovacs, Krisztina; Reczey, Kati; Zacchi, Guido

    2010-01-01

    On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5–16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60–78% of the enzyme production cost, which was in the range of 0.42–0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative. PMID:21048869

  2. Process design and economics of on-site cellulase production on various carbon sources in a softwood-based ethanol plant.

    PubMed

    Barta, Zsolt; Kovacs, Krisztina; Reczey, Kati; Zacchi, Guido

    2010-06-28

    On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO(2)-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5-16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60-78% of the enzyme production cost, which was in the range of 0.42-0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative.

  3. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    PubMed

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Re-refining of waste petroleum by competing solubility characteristics

    NASA Astrophysics Data System (ADS)

    Byars, Michael Steven

    1998-11-01

    The United States produces over 1.3 billion gallons of used oil per year. Of the 1.3 billion gallons about 60% is used as fuel, nearly 20% is dumped into the environment, 13% is placed in landfills, 2% is re-refined into lube oil, and the remaining is either used for other purposes or incinerated. This is a great potential source of lubricating oil. The work presented here is a solvent extraction process using a solvent (highly miscible with the oil) and a co-solvent (slightly miscible with the oil). Extractions using isopropanol, ethanol, methyl tert-butylether and methanol are presented. The criteria used for evaluation of the extraction processes are yield, product viscosity index, and ash percent. The solvent/co-solvent combinations of MTBE and ethanol performed best and had the advantage of a common solvent/co-solvent in all extraction steps. The extraction process that provided the best results was a two step process using a combination solvent of MTBE and ethanol. The used oil was first extracted using MTBE/ethanol. The extracted oil was then contacted with a solvent combination composed of 80% ethanol. This solvent combination extracted the remaining additives from the oil. The recovered oil was nearly 60% by weight with a high viscosity index and no ash content. A preliminary battery limits design and economic analysis of the process was performed. A 500 bbl/day plant would have a capital cost of 1.9 million and an annual operation cost of 310,000. The plant as designed would produce 300 bbl/day of lube feedstock and have an ROI of 19%.

  5. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.

    PubMed

    Zhang, Hongsen; Han, Xushen; Wei, Chengxiang; Bao, Jie

    2017-01-01

    An oxidative production process of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth was designed, experimentally investigated, and evaluated. Dry dilute acid pretreated and biodetoxified corn stover was simultaneously saccharified and fermented into 59.80g/L of ethanol (no xylose utilization). 65.39g/L of xylose was obtained in the distillation stillage without any concentrating step after ethanol was distillated. Then the xylose was completely converted into 66.42g/L of xylonic acid by Gluconobacter oxydans. The rigorous Aspen Plus modeling shows that the wastewater generation and energy consumption was significantly reduced comparing to the previous xylonic acid production process using xylose in pretreatment liquid. This study provided a practical process option for xylonic acid production from lignocellulose feedstock with significant reduction of wastewater and energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Importance of stability study of continuous systems for ethanol production.

    PubMed

    Paz Astudillo, Isabel Cristina; Cardona Alzate, Carlos Ariel

    2011-01-10

    Fuel ethanol industry presents different problems during bioreactors operation. One of them is the unexpected variation in the output ethanol concentration from the bioreactor or a drastic fall in the productivity. In this paper, a compilation of concepts and relevant results of several experimental and theoretical studies about dynamic behavior of fermentation systems for bioethanol production with Saccharomyces cerevisiae and Zymomonas mobilis is done with the purpose of understanding the stability phenomena that could affect the productivity of industries producing fuel ethanol. It is shown that the design of high scale biochemical processes for fuel ethanol production must be done based on stability studies. © 2010 Elsevier B.V. All rights reserved.

  7. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.

    PubMed

    Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul

    2016-03-01

    An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.

  8. Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process

    PubMed Central

    2010-01-01

    Background US legislation requires the use of advanced biofuels to be made from non-food feedstocks. However, commercialization of lignocellulosic ethanol technology is more complex than expected and is therefore running behind schedule. This is creating a demand for non-food, but more easily converted, starch-based feedstocks other than corn that can fill the gap until the second generation technologies are commercially viable. Winter barley is such a feedstock but its mash has very high viscosity due to its high content of β-glucans. This fact, along with a lower starch content than corn, makes ethanol production at the commercial scale a real challenge. Results A new fermentation process for ethanol production from Thoroughbred, a winter barley variety with a high starch content, was developed. The new process was designated the EDGE (enhanced dry grind enzymatic) process. In this process, in addition to the normal starch-converting enzymes, two accessory enzymes were used to solve the β-glucan problem. First, β-glucanases were used to hydrolyze the β-glucans to oligomeric fractions, thus significantly reducing the viscosity to allow good mixing for the distribution of the yeast and nutrients. Next, β-glucosidase was used to complete the β-glucan hydrolysis and to generate glucose, which was subsequently fermented in order to produce additional ethanol. While β-glucanases have been previously used to improve barley ethanol production by lowering viscosity, this is the first full report on the benefits of adding β-glucosidases to increase the ethanol yield. Conclusions In the EDGE process, 30% of total dry solids could be used to produce 15% v/v ethanol. Under optimum conditions an ethanol yield of 402 L/MT (dry basis) or 2.17 gallons/53 lb bushel of barley with 15% moisture was achieved. The distillers dried grains with solubles (DDGS) co-product had extremely low β-glucan (below 0.2%) making it suitable for use in both ruminant and mono-gastric animal feeds. PMID:20426816

  9. Designing industrial yeasts for the consolidated bioprocessing of starchy biomass to ethanol

    PubMed Central

    Favaro, Lorenzo; Jooste, Tania; Basaglia, Marina; Rose, Shaunita H.; Saayman, Maryna; Görgens, Johann F.; Casella, Sergio; van Zyl, Willem H.

    2013-01-01

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one step process, is a promising strategy for the effective ethanol production from cheap lignocellulosic and starchy materials. CBP requires a highly engineered microbial strain able to both hydrolyze biomass with enzymes produced on its own and convert the resulting simple sugars into high-titer ethanol. Recently, heterologous production of cellulose and starch-degrading enzymes has been achieved in yeast hosts, which has realized direct processing of biomass to ethanol. However, essentially all efforts aimed at the efficient heterologous expression of saccharolytic enzymes in yeast have involved laboratory strains and much of this work has to be transferred to industrial yeasts that provide the fermentation capacity and robustness desired for large scale bioethanol production. Specifically, the development of an industrial CBP amylolytic yeast would allow the one-step processing of low-cost starchy substrates into ethanol. This article gives insight in the current knowledge and achievements on bioethanol production from starchy materials with industrial engineered S. cerevisiae strains. PMID:22989992

  10. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.

    PubMed

    Hughes, Stephen R; Cox, Elby J; Bang, Sookie S; Pinkelman, Rebecca J; López-Núñez, Juan Carlos; Saha, Badal C; Qureshi, Nasib; Gibbons, William R; Fry, Michelle R; Moser, Bryan R; Bischoff, Kenneth M; Liu, Siqing; Sterner, David E; Butt, Tauseef R; Riedmuller, Steven B; Jones, Marjorie A; Riaño-Herrera, Néstor M

    2015-12-01

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains. © 2015 Society for Laboratory Automation and Screening.

  11. Process Design and Costing of Bioethanol Technology: A Tool for Determining the Status and Direction of Research and Development.

    PubMed

    Wooley; Ruth; Glassner; Sheehan

    1999-10-01

    Bioethanol is a fuel-grade ethanol made from trees, grasses, and waste materials. It represents a sustainable substitute for gasoline in today's passenger cars. Modeling and design of processes for making bioethanol are critical tools used in the U.S. Department of Energy's bioethanol research and development program. We use such analysis to guide new directions for research and to help us understand the level at which and the time when bioethanol will achieve commercial success. This paper provides an update on our latest estimates for current and projected costs of bioethanol. These estimates are the result of very sophisticated modeling and costing efforts undertaken in the program over the past few years. Bioethanol could cost anywhere from $1.16 to $1.44 per gallon, depending on the technology and the availability of low cost feedstocks for conversion to ethanol. While this cost range opens the door to fuel blending opportunities, in which ethanol can be used, for example, to improve the octane rating of gasoline, it is not currently competitive with gasoline as a bulk fuel. Research strategies and goals described in this paper have been translated into cost savings for ethanol. Our analysis of these goals shows that the cost of ethanol could drop by 40 cents per gallon over the next ten years by taking advantage of exciting new tools in biotechnology that will improve yield and performance in the conversion process.

  12. Performance of several Saccharomyces strains for the alcoholic fermentation of sugar-sweetened high-strength wastewaters: Comparative analysis and kinetic modelling.

    PubMed

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A

    2016-12-25

    This work focuses on the performance of ten commercial Saccharomyces yeast strains in the batch alcoholic fermentation of sugars contained in selected industrial wastewaters from the soft drink industry. Fermentation has been applied successfully to treat these effluents prior to their disposal. Although many strains were investigated, similar behaviour was observed between all of the Saccharomyces strains tested. When media were inoculated with 2gL -1 of yeast, all strains were able to completely consume the available sugars in less than 14h. Thus, any of the strains studied in this work could be used in non-conventional wastewater treatment processes based on alcoholic fermentation. However, ethanol production varied between strains, and these differences could be significant from a production point of view. Saccharomyces bayanus produced the most ethanol, with a mean yield of 0.44g ethanol g sugarconsumed -1 and an ethanol specific production rate of 5.96g ethanol (Lh) -1 . As the assayed soft drinks wastewaters contain about 105g sugar /L of fermentable sugars, the concentration of ethanol achieved after the fermentations process was 46.2g ethanol /L. A rigorous kinetic modelling methodology was used to model the Saccharomyces bayanus fermentation process. The kinetic model included coupled mass balances and a minimal number of parameters. A simple unstructured model based on the Andrews equation (substrate inhibition) was developed. This model satisfactorily described biomass growth, sugar consumption and bioethanol production. In addition to providing insights into the fermentative performance of potentially relevant strains, this work can facilitate the design of large-scale ethanol production processes that use wastewaters from the sugar-sweetened beverage industry as feedstock. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    PubMed

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Hemicellulosic Ethanol Production by Immobilized Wild Brazilian Yeast Scheffersomyces shehatae UFMG-HM 52.2: Effects of Cell Concentration and Stirring Rate.

    PubMed

    Antunes, F A F; Santos, J C; Chandel, A K; Milessi, T S S; Peres, G F D; da Silva, S S

    2016-02-01

    The use of sugarcane bagasse hemicellulosic hydrolysates presents an interesting alternative to second generation (2G) ethanol production. Techniques to enhance the fermentation process, e.g., the use of immobilized cells, is one of the key factors for efficient production. Here, the effect of two important parameters (cell concentration in immobilized system and stirring rate) on the 2G ethanol production using the wild Brazilian yeast S. shehatae UFMG-HM 52.2 immobilized in calcium alginate matrix are presented. A 2(2) full factorial design of experiments was carried out to evaluate the effect of cell concentrations in sodium alginate solution for immobilized bead production (3.0, 6.0, and 9.0 g/L) and stirring rate (150, 200, and 250 rpm) for 2G ethanol production. Statistical analysis showed that the use of both variables at low levels enhanced ethanol yield (YP/S). Under these process conditions, YP/S of 0.31 g/g and ethanol productivity (Qp) of 0.12 g/L h were achieved. Results showed the potential of this immobilized yeast in 2G ethanol production from C5 sugars and demonstrate the importance of adequate cell concentration in immobilized systems, a finding that stands to increase bioprocesses yields and productivity.

  15. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.

    PubMed

    Yue, Hairong; Ma, Xinbin; Gong, Jinlong

    2014-05-20

    Ethanol is an attractive end product and a versatile feedstock because a widespread market exists for its commercial use as a fuel additive or a potential substitute for gasoline. Currently, ethanol is produced primarily by fermentation of biomass-derived sugars, particularly those containing six carbons, but coproducts 5-carbon sugars and lignin remain unusable. Another major process for commercial production of ethanol is hydration of ethylene over solid acidic catalysts, yet not sustainable considering the depletion of fossil fuels. Catalytic conversion of synthetic gas (CO + H2) could produce ethanol in large quantities. However, the direct catalytic conversion of synthetic gas to ethanol remains challenging, and no commercial process exists as of today although the research has been ongoing for the past 90 years, since such the process suffers from low yield and poor selectivity due to slow kinetics of the initial C-C bond formation and fast chain growth of the C2 intermediates. This Account describes recent developments in an alternative approach for the synthesis of ethanol via synthetic gas. This process is an integrated technology consisting of the coupling of CO with methanol to form dimethyl oxalate and the subsequent hydrogenation to yield ethanol. The byproduct of the second step (methanol) can be separated and used in circulation as the feedstock for the coupling step. The coupling reaction of carbon monoxide for producing dimethyl oxalate takes place under moderate reaction conditions with high selectivity (∼95%), which ideally leads to a self-closing, nonwaste, catalytic cycling process. This Account also summarizes the progress on the development of copper-based catalysts for the hydrogenation reaction with remarkable efficiencies and stability. The unique lamellar structure and the cooperative effect between surface Cu(0) and Cu(+) species are responsible for the activity of the catalyst with high yield of ethanol (∼91%). The understanding of nature of valence states of Cu could also guide the rational design of Cu-based catalysts for other similar reactions, particularly for hydrogenation catalytic systems. In addition, by regulating the reaction condition and the surface structure of the catalysts, the products in the hydrogenation steps, such as ethanol, methyl glycolate, and ethylene glycol, could be tuned efficiently. This synthetic approach enables a more sustainable ethanol, methyl glycolate, and ethylene glycol synthesis in industry and greatly reduces the dependence on petroleum resources and the emission of the greenhouse gas.

  16. Process design and optimization of novel wheat-based continuous bioethanol production system.

    PubMed

    Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis K; Webb, Colin; Koutinas, Apostolis A

    2007-01-01

    A novel design of a wheat-based biorefinery for bioethanol production, including wheat milling, gluten extraction as byproduct, fungal submerged fermentation for enzyme production, starch hydrolysis, fungal biomass autolysis for nutrient regeneration, yeast fermentation with recycling integrated with a pervaporation membrane for ethanol concentration, and fuel-grade ethanol purification by pressure swing distillation (PSD), was optimized in continuous mode using the equation-based software General Algebraic Modelling System (GAMS). The novel wheat biorefining strategy could result in a production cost within the range of dollars 0.96-0.50 gal(-1) ethanol (dollars 0.25-0.13 L(-1) ethanol) when the production capacity of the plant is within the range of 10-33.5 million gal y(-1) (37.85-126.8 million L y(-1)). The production of value-added byproducts (e.g., bran-rich pearlings, gluten, pure yeast cells) was identified as a crucial factor for improving the economics of fuel ethanol production from wheat. Integration of yeast fermentation with pervaporation membrane could result in the concentration of ethanol in the fermentation outlet stream (up to 40 mol %). The application of a PSD system that consisted of a low-pressure and a high-pressure column and employing heat integration between the high- and low-pressure columns resulted in reduced operating cost (up to 44%) for fuel-grade ethanol production.

  17. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    PubMed

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  18. Pervaporation of model acetone-butanol-ethanol fermentation product solutions using polytetrafluoroethylene membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.

    1993-10-01

    A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.

  19. [Study on extraction and purification technology of Hubei ophiopogon saponins].

    PubMed

    Lin, Yun-Han; Li, Chong-Ming; Li, Xiao-Dong; Xiang, Yang; Zhang, Ya-Qin; Zhang, Xiao-Cun; Liu, Xia

    2013-05-01

    To explore the extraction and purification technology of total saponins from the effective parts of Liriope spicata. Orthogonal design was used. Macroporous resin was selected to separate and purify total saponin from the effective parts of Liriope spicata. The process validation was conducted. The total saponins was determined by Ultraviolet Spectrophotometry. The optimal extraction conditions were as follows: 10 times the amount of ethanol (70%) for each occasion and hot reflux (3 x 2 h). Total saponins was purified by D101 macroporous resin. The concentration of eluting ethanol was 50% - 70%. Ethanol (70%) was selected as the best eluent. The result of process validation was consistent with the study. The process is simple and stable enough to significantly improve the extraction rate of the effective parts. The study can provide reference for the research and production of effective parts of traditional Chinese medicine such as Liriope spicata.

  20. Techno-Economic Analysis of the Deacetylation and Disk Refining Process. Characterizing the Effect of Refining Energy and Enzyme Usage on Minimum Sugar Selling Price and Minimum Ethanol Selling Price

    DOE PAGES

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; ...

    2015-10-29

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibilitymore » of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128–468 kWh/ODMT), cellulase (Novozyme’s CTec3) loading (11.6–28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme’s HTec3) loading (0–5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL’s 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.« less

  1. Techno-Economic Analysis of the Deacetylation and Disk Refining Process. Characterizing the Effect of Refining Energy and Enzyme Usage on Minimum Sugar Selling Price and Minimum Ethanol Selling Price

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibilitymore » of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128–468 kWh/ODMT), cellulase (Novozyme’s CTec3) loading (11.6–28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme’s HTec3) loading (0–5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL’s 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.« less

  2. Techno-economic analysis of the deacetylation and disk refining process: characterizing the effect of refining energy and enzyme usage on minimum sugar selling price and minimum ethanol selling price.

    PubMed

    Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling

    2015-01-01

    A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.

  3. Butanol production in a first-generation Brazilian sugarcane biorefinery: technical aspects and economics of greenfield projects.

    PubMed

    Mariano, Adriano Pinto; Dias, Marina O S; Junqueira, Tassia L; Cunha, Marcelo P; Bonomi, Antonio; Filho, Rubens Maciel

    2013-05-01

    The techno-economics of greenfield projects of a first-generation sugarcane biorefinery aimed to produce ethanol, sugar, power, and n-butanol was conducted taking into account different butanol fermentation technologies (regular microorganism and mutant strain with improved butanol yield) and market scenarios (chemicals and automotive fuel). The complete sugarcane biorefinery with the batch acetone-butanol-ethanol (ABE) fermentation process was simulated using Aspen Plus®. The biorefinery was designed to process 2 million tonne sugarcane per year and utilize 25%, 50%, and 25% of the available sugarcane juice to produce sugar, ethanol, and butanol, respectively. The investment on a biorefinery with butanol production showed to be more attractive [14.8% IRR, P(IRR>12%)=0.99] than the conventional 50:50 (ethanol:sugar) annexed plant [13.3% IRR, P(IRR>12%)=0.80] only in the case butanol is produced by an improved microorganism and traded as a chemical. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Design, construction, operation and costs of a modern small-scale fuel-alcohol plant

    NASA Astrophysics Data System (ADS)

    Leeper, S. A.; Dawley, L. J.; Wolfram, J. H.; Berglund, G. R.; Richardson, J. G.; McAtee, R. E.

    1982-01-01

    The design used for the small-scale fuel alcohol plant (SSFAP) is discussed. By incorporating a microprocessor into the plant design, most plant operations were automated and labor requirements were reduced. Continuous processing made energy conservation possible, thus reducing energy requirements. A low-temperature, continuous plug-flow cooker design made high yields possible. Ethanol was consistently produced at the SSFAP from corn at a yield of 2.6 gallons (anhydrous) per bushel and an energy requirement of 30,000 to 35,000 Btu/gallon (190-proof). In addition, barley, grain dust, and potato waste were converted at the SSFAP. The capacity of the SSFAP is 180,000 gallons per year (300 days operation). Competitively priced ethanol is produced at this capacity.

  5. Solar-Energy Driven Simultaneous Saccharification and Fermentation of Starch to Bioethanol for Fuel-Cell Applications.

    PubMed

    Tabah, Betina; Pulidindi, Indra Neel; Chitturi, Venkateswara Rao; Arava, Leela Mohana Reddy; Gedanken, Aharon

    2015-10-26

    A solar reactor was designed to perform the conversion of starch to ethanol in a single step. An aqueous starch solution (5 wt %) was fed into the reactor bed charged with Baker's yeast (Saccharomyces cerevisiae) and amylase, resulting in approximately 2.5 wt % ethanol collected daily (ca. 25 mL day(-1) ). A significant amount of ethanol (38 g) was collected over 63 days, corresponding to 84 % of the theoretical yield. The production of ethanol without additional energy input highlights the significance of this new process. The ethanol produced was also demonstrated as a potential fuel for direct ethanol fuel cells. Additionally, the secondary metabolite glycerol was fully reduced to a value-added product 1,3-propanediol, which is the first example of a fungal strain (Baker's yeast) converting glycerol in situ to 1,3-propanediol. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nexant, Inc., San Francisco, California

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosenmore » for detailed study because of the available resources.« less

  8. Impact of cultivar selection and process optimization on ethanol yield from different varieties of sugarcane

    PubMed Central

    2014-01-01

    Background The development of ‘energycane’ varieties of sugarcane is underway, targeting the use of both sugar juice and bagasse for ethanol production. The current study evaluated a selection of such ‘energycane’ cultivars for the combined ethanol yields from juice and bagasse, by optimization of dilute acid pretreatment optimization of bagasse for sugar yields. Method A central composite design under response surface methodology was used to investigate the effects of dilute acid pretreatment parameters followed by enzymatic hydrolysis on the combined sugar yield of bagasse samples. The pressed slurry generated from optimum pretreatment conditions (maximum combined sugar yield) was used as the substrate during batch and fed-batch simultaneous saccharification and fermentation (SSF) processes at different solid loadings and enzyme dosages, aiming to reach an ethanol concentration of at least 40 g/L. Results Significant variations were observed in sugar yields (xylose, glucose and combined sugar yield) from pretreatment-hydrolysis of bagasse from different cultivars of sugarcane. Up to 33% difference in combined sugar yield between best performing varieties and industrial bagasse was observed at optimal pretreatment-hydrolysis conditions. Significant improvement in overall ethanol yield after SSF of the pretreated bagasse was also observed from the best performing varieties (84.5 to 85.6%) compared to industrial bagasse (74.5%). The ethanol concentration showed inverse correlation with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-hydrolysis. The overall assessment of the cultivars showed greater improvement in the final ethanol concentration (26.9 to 33.9%) and combined ethanol yields per hectare (83 to 94%) for the best performing varieties with respect to industrial sugarcane. Conclusions These results suggest that the selection of sugarcane variety to optimize ethanol production from bagasse can be achieved without adversely affecting juice ethanol and cane yield, thus maintaining first generation ethanol production levels while maximizing second generation ethanol production. PMID:24725458

  9. Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons.

    PubMed

    Junqueira, Tassia L; Chagas, Mateus F; Gouveia, Vera L R; Rezende, Mylene C A F; Watanabe, Marcos D B; Jesus, Charles D F; Cavalett, Otavio; Milanez, Artur Y; Bonomi, Antonio

    2017-01-01

    Ethanol production from lignocellulosic feedstocks (also known as 2nd generation or 2G ethanol process) presents a great potential for reducing both ethanol production costs and climate change impacts since agricultural residues and dedicated energy crops are used as feedstock. This study aimed at the quantification of the economic and environmental impacts considering the current and future scenarios of sugarcane biorefineries taking into account not only the improvements of the industrial process but also of biomass production systems. Technology assumptions and scenarios setup were supported by main companies and stakeholders, involved in the lignocellulosic ethanol production chain from Brazil and abroad. For instance, scenarios considered higher efficiencies and lower residence times for pretreatment, enzymatic hydrolysis, and fermentation (including pentoses fermentation); higher sugarcane yields; and introduction of energy cane (a high fiber variety of cane). Ethanol production costs were estimated for different time horizons. In the short term, 2G ethanol presents higher costs compared to 1st generation (1G) ethanol. However, in the long term, 2G ethanol is more competitive, presenting remarkable lower production cost than 1G ethanol, even considering some uncertainties regarding technology and market aspects. In addition, environmental assessment showed that both 1G (in the medium and long term) and 2G ethanol can reduce climate change impacts by more than 80% when compared to gasoline. This work showed the great potential of 2G ethanol production in terms of economic and environmental aspects. These results can support new research programs and public policies designed to stimulate both production and consumption of 2G ethanol in Brazil, accelerating the path along the learning curve. Some examples of mechanisms include: incentives to the establishment of local equipment and enzyme suppliers; and specific funding programs for the development and use of energy cane.

  10. Potential air emission impacts of cellulosic ethanol production at seven demonstration refineries in the United States.

    PubMed

    Jones, Donna Lee

    2010-09-01

    This paper reports on the estimated potential air emissions, as found in air permits and supporting documentation, for seven of the first group of precommercial or "demonstration" cellulosic ethanol refineries (7CEDF) currently operating or planning to operate in the United States in the near future. These seven refineries are designed to produce from 330,000 to 100 million gal of ethanol per year. The overall average estimated air emission rates for criteria, hazardous, and greenhouse gas pollutants at the 7CEDF are shown here in terms of tons per year and pounds per gallon of ethanol produced. Water use rates estimated for the cellulosic ethanol refineries are also noted. The air emissions are then compared with similar estimates from a U.S. cellulosic ethanol pilot plant, a commercial Canadian cellulosic ethanol refinery, four commercial U.S. corn ethanol refineries, and U.S. petroleum refineries producing gasoline. The U.S. Environmental Protection Agency (EPA) air pollution rules that may apply to cellulosic ethanol refineries are also discussed. Using the lowest estimated emission rates from these cellulosic ethanol demonstration facilities to project air emissions, EPA's major source thresholds for criteria and hazardous air pollutants might not be exceeded by cellulosic ethanol refineries that produce as high as 25 million gal per year of ethanol (95 ML). Emissions are expected to decrease at cellulosic ethanol refineries as the process matures and becomes more commercially viable.

  11. Aspergillus oryzae-Saccharomyces cerevisiae Consortium Allows Bio-Hybrid Fuel Cell to Run on Complex Carbohydrates.

    PubMed

    Jahnke, Justin P; Hoyt, Thomas; LeFors, Hannah M; Sumner, James J; Mackie, David M

    2016-02-04

    Consortia of Aspergillus oryzae and Saccharomyces cerevisiae are examined for their abilities to turn complex carbohydrates into ethanol. To understand the interactions between microorganisms in consortia, Fourier-transform infrared spectroscopy is used to follow the concentrations of various metabolites such as sugars (e.g., glucose, maltose), longer chain carbohydrates, and ethanol to optimize consortia conditions for the production of ethanol. It is shown that with proper design A. oryzae can digest food waste simulants into soluble sugars that S. cerevisiae can ferment into ethanol. Depending on the substrate and conditions used, concentrations of 13% ethanol were achieved in 10 days. It is further shown that a direct alcohol fuel cell (FC) can be coupled with these A. oryzae-enabled S. cerevisiae fermentations using a reverse osmosis membrane. This "bio-hybrid FC" continually extracted ethanol from an ongoing consortium, enhancing ethanol production and allowing the bio-hybrid FC to run for at least one week. Obtained bio-hybrid FC currents were comparable to those from pure ethanol-water mixtures, using the same FC. The A. oryzae-S. cerevisiae consortium, coupled to a bio-hybrid FC, converted food waste simulants into electricity without any pre- or post-processing.

  12. Process economics of renewable biorefineries: butanol and ethanol production in integrated bioprocesses from lignocellulosics and other industrial by-products

    USDA-ARS?s Scientific Manuscript database

    This chapter provides process economic details on production of butanol from lignocellulosic biomass and glycerol in integrated bioreactors where numerous unit operations are combined. In order to compare various processes, economic evaluations were performed using SuperPro Designer Software (versio...

  13. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation

    PubMed Central

    2013-01-01

    Background VHG fermentation is a promising process engineering strategy aiming at improving ethanol titer, and thus saving energy consumption for ethanol distillation and distillage treatment. However, sustained process oscillation was observed during continuous VHG ethanol fermentation, which significantly affected ethanol fermentation performance of the system. Results Sustained process oscillation was investigated in continuous VHG ethanol fermentation, and stresses exerted on yeast cells by osmotic pressure from unfermented sugars and ethanol inhibition developed within the fermentation system were postulated to be major factors triggering this phenomenon. In this article, steady state was established for continuous ethanol fermentation with LG medium containing 120 g/L glucose, and then 160 g/L non-fermentable xylose was supplemented into the LG medium to simulate the osmotic stress on yeast cells under the VHG fermentation condition, but the fermentation process was still at steady state, indicating that the impact of osmotic stress on yeast cells was not the main reason for the process oscillation. However, when 30 g/L ethanol was supplemented into the LG medium to simulate the ethanol inhibition in yeast cells under the VHG fermentation condition, process oscillation was triggered, which was augmented with extended oscillation period and exaggerated oscillation amplitude as ethanol supplementation was increased to 50 g/L, but the process oscillation was gradually attenuated when the ethanol supplementations were stopped, and the steady state was restored. Furthermore, gas stripping was incorporated into the continuous VHG fermentation system to in situ remove ethanol produced by Saccharomyces cerevisiae, and the process oscillation was also attenuated, but restored after the gas stripping was interrupted. Conclusions Experimental results indicated that ethanol inhibition rather than osmotic stress on yeast cells is one of the main factors triggering the process oscillation under the VHG fermentation condition, and in the meantime gas stripping was validated to be an effective strategy for attenuating the process oscillation. PMID:24041271

  14. [Study on the extraction process and macroporous resin for purification of Timosaponin B II].

    PubMed

    Liu, Yan-Ping; Ding, Yue; Zhang, Tong; Wang, Bing; Cai, Zhen-Zhen; Tao, Jian-Sheng

    2013-06-01

    To optimize the extraction process and macroporous resin for purification of Timosaponin B II from Anemarrhena asphodeloides. Orthogonal design L9 (34) was employed to optimize the circumfluence extraction conditions by taking the extraction yield of Timosaponin B II as index. The absorption-desorption characteristics of eight kinds of macroporous resins were evaluated, then the best resin was chosen to optimize the purification process conditions. The optimum extraction conditions were as follows: the herb was extracted for 2 times (2 hours each time) with 8.5-fold 50% ethanol at the first time and 6-fold 50% ethanol at the second time. HPD100 resin showed a good property for the absorption-desorption of Timosaponin B II. The optimum technological conditions of HPD100 resin were as follows:the solution concentration was 0.23 mg/mL, the amount of saturated adsorption at 4/5 body volumn (BV) resin, the HPD100 resin was washed with 3 BV water and 6 BV 20% ethanol solution to remove the impurity, then the Timosaponin B II was desorbed by 5 BV ethanol solution. The purity of Timosaponin B II was about 50%. The optimized extraction process and purification is stable, efficient and suitable for industrial production.

  15. [Study on extraction and purification process of total ginsenosides from Radix Ginseng].

    PubMed

    Xie, Li-Ling; Ren, Li; Lai, Xian-Sheng; Cao, Jun-Hui; Mo, Quan-Yi; Chen, Wei-Wen

    2009-10-01

    To optimize the technological parameters of the extraction and purification process of total ginsenosides from Radix Ginseng. With the contents of ginsenoside Rg1, ginsenoside Re and ginsenoside Rb1, the orthogonal design was adopted to optimize the extraction process. The purification process was studied by optimizing the elutive ratio of total ginsenosides as the marker. HPLC and spectrophotometer were employed for the study. The optimum conditions were as follows:Using 8 times volume of 75% ethanol extracting for 120 minutes and 2 times, the extraction temperature was 85 degrees C. AB-8 macroporous resin was selected, and the eluant was 4 BV 70% ethanol. The optimal conditions of extracting and purifying the total ginsenosides from Radix Ginseng is feasible.

  16. Solvent exchange in a metal–organic framework single crystal monitored by dynamic in situ X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Jordan M.; Walton, Ian M.; Bateman, Gage

    2017-07-25

    Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamicin situX-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal–organic framework [Co(AIP)(bpy) 0.5(H 2O)]·2H 2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.

  17. Hydrogen Generation by Koh-Ethanol Plasma Electrolysis Using Double Compartement Reactor

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Sasiang, Johannes; Dewi Rosalina, Chandra; Budikania, Trisutanti

    2018-03-01

    This study has successfully investigated the generation of hydrogen using double compartment reactor with plasma electrolysis process. Double compartment reactor is designed to achieve high discharged voltage, high concentration, and also reduce the energy consumption. The experimental results showed the use of double compartment reactor increased the productivity ratio 90 times higher compared to Faraday electrolysis process. The highest hydrogen production obtained is 26.50 mmol/min while the energy consumption can reach up 1.71 kJ/mmol H2 at 0.01 M KOH solution. It was shown that KOH concentration, addition of ethanol, cathode depth, and temperature have important effects on hydrogen production, energy consumption, and process efficiency.

  18. Experimental study on the adsorptive-distillation for dehydration of ethanol-water mixture using natural and synthetic zeolites

    NASA Astrophysics Data System (ADS)

    Megawati, Wicaksono, D.; Abdullah, M. S.

    2017-03-01

    This research studied adsorptive-distillation (AD) for dehydration of ethanol-water mixture using natural and synthetic zeolites as adsorbent for ethanol purification. Especially, the effect of purification time is recorded and studied to evaluate performance of designed AD equipment. This AD was performed in a batch condition using boiling flask covered with heating mantle and it was maintained at 78°C temperature and 1 atm pressure. The initial ethanol volume was 300 mL with 93.8% v/v concentration. The synthetic zeolite type used was zeolite 3A. The flowed vapour was condensed using water as a cooling medium. Every 5 minutes of time duration the samples were collected until the vapour could not be condensed in that condition and then be analyzed its concentration using Gas-Chromatography. Experiment shows that the designed AD equipment could increase ethanol concentration at first 5 minutes with highest ethanol concentration achieved using synthetic zeolite (97.47% v/v). However, ethanol concentration from AD process using natural zeolite only reached 96.5% v/v. Thus, synthetic zeolite as adsorbent could pass azeotropic point, but natural zeolite fail. The ratio of adsorbed water per adsorbent for natural and synthetic zeolites are about 0.023 and 0.056 gwater/gads, respectively, at 50 minutes of time. Finally, synthetic zeolite (at 55 minutes the value of C/C0 is about 0.85 and the average outlet water concentration is 4.70 mole/L) as adsorbent for AD of ethanol water is better than natural zeolite (at 55 minutes the value of C/C0 is about 0.63 and the average outlet water concentration is 6.43 mole/L).

  19. Field to fuel: developing sustainable biorefineries.

    PubMed

    Jenkins, Robin; Alles, Carina

    2011-06-01

    Life-cycle assessment (LCA) can be used as a scientific decision support technique to quantify the environmental implications of various biorefinery process, feedstock, and integration options. The goal of DuPont's integrated corn biorefinery (ICBR) project, a cost-share project with the United States Department of Energy, was to demonstrate the feasibility of a cellulosic ethanol biorefinery concept. DuPont used LCA to guide research and development to the most sustainable cellulosic ethanol biorefinery design in its ICBR project and will continue to apply LCA in support of its ongoing effort with joint venture partners. Cellulosic ethanol is a biofuel which has the potential to provide a sustainable solution to the nation's growing concerns around energy supply and climate change. A successful biorefinery begins with sustainable removal of biomass from the field. Michigan State University (MSU) used LCA to estimate the environmental performance of corn grain, corn stover, and the corn cob portion of the stover, grown under various farming practices for several corn growing locations in the United States Corn Belt. In order to benchmark the future technology options for producing cellulosic ethanol with existing technologies, LCA results for fossil energy consumption and greenhouse gas (GHG) emissions are compared to alternative ethanol processes and conventional gasoline. Preliminary results show that the DuPont ICBR outperforms gasoline and other ethanol technologies in the life-cycle impact categories considered here.

  20. The bed nucleus of the stria terminalis regulates ethanol-seeking behavior in mice.

    PubMed

    Pina, Melanie M; Young, Emily A; Ryabinin, Andrey E; Cunningham, Christopher L

    2015-12-01

    Drug-associated stimuli are considered important factors in relapse to drug use. In the absence of drug, these cues can trigger drug craving and drive subsequent drug seeking. One structure that has been implicated in this process is the bed nucleus of the stria terminalis (BNST), a chief component of the extended amygdala. Previous studies have established a role for the BNST in cue-induced cocaine seeking. However, it is unclear if the BNST underlies cue-induced seeking of other abused drugs such as ethanol. In the present set of experiments, BNST involvement in ethanol-seeking behavior was assessed in male DBA/2J mice using the conditioned place preference procedure (CPP). The BNST was inhibited during CPP expression using electrolytic lesions (Experiment 1), co-infusion of GABAA and GABAB receptor agonists muscimol and baclofen (M+B; Experiment 2), and activation of inhibitory designer receptors exclusively activated by designer drugs (hM4Di-DREADD) with clozapine-N-oxide (CNO; Experiment 3). The magnitude of ethanol CPP was reduced significantly by each of these techniques. Notably, infusion of M+B (Exp. 2) abolished CPP altogether. Follow-up studies to Exp. 3 showed that ethanol cue-induced c-Fos immunoreactivity in the BNST was reduced by hM4Di activation (Experiment 4) and in the absence of hM4Di, CNO did not affect ethanol CPP (Experiment 5). Combined, these findings demonstrate that the BNST is involved in the modulation of cue-induced ethanol-seeking behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Aspergillus oryzae–Saccharomyces cerevisiae Consortium Allows Bio-Hybrid Fuel Cell to Run on Complex Carbohydrates

    PubMed Central

    Jahnke, Justin P.; Hoyt, Thomas; LeFors, Hannah M.; Sumner, James J.; Mackie, David M.

    2016-01-01

    Consortia of Aspergillus oryzae and Saccharomyces cerevisiae are examined for their abilities to turn complex carbohydrates into ethanol. To understand the interactions between microorganisms in consortia, Fourier-transform infrared spectroscopy is used to follow the concentrations of various metabolites such as sugars (e.g., glucose, maltose), longer chain carbohydrates, and ethanol to optimize consortia conditions for the production of ethanol. It is shown that with proper design A. oryzae can digest food waste simulants into soluble sugars that S. cerevisiae can ferment into ethanol. Depending on the substrate and conditions used, concentrations of 13% ethanol were achieved in 10 days. It is further shown that a direct alcohol fuel cell (FC) can be coupled with these A. oryzae-enabled S. cerevisiae fermentations using a reverse osmosis membrane. This “bio-hybrid FC” continually extracted ethanol from an ongoing consortium, enhancing ethanol production and allowing the bio-hybrid FC to run for at least one week. Obtained bio-hybrid FC currents were comparable to those from pure ethanol—water mixtures, using the same FC. The A. oryzae–S. cerevisiae consortium, coupled to a bio-hybrid FC, converted food waste simulants into electricity without any pre- or post-processing. PMID:27681904

  2. Quantifying second generation ethanol inhibition: Design of Experiments approach and kinetic model development.

    PubMed

    Schneiderman, Steven J; Johnson, Roger W; Menkhaus, Todd J; Gilcrease, Patrick C

    2015-03-01

    While softwoods represent a potential feedstock for second generation ethanol production, compounds present in their hydrolysates can inhibit fermentation. In this study, a novel Design of Experiments (DoE) approach was used to identify significant inhibitory effects on Saccharomyces cerevisiae D5A for the purpose of guiding kinetic model development. Although acetic acid, furfural and 5-hydroxymethyl furfural (HMF) were present at potentially inhibitory levels, initial factorial experiments only identified ethanol as a significant rate inhibitor. It was hypothesized that high ethanol levels masked the effects of other inhibitors, and a subsequent factorial design without ethanol found significant effects for all other compounds. When these non-ethanol effects were accounted for in the kinetic model, R¯(2) was significantly improved over an ethanol-inhibition only model (R¯(2)=0.80 vs. 0.76). In conclusion, when ethanol masking effects are removed, DoE is a valuable tool to identify significant non-ethanol inhibitors and guide kinetic model development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Synthesis of nanoparticles using ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jia Xu

    The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shellmore » catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a "green" chemistry method.« less

  4. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  5. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  6. The influence of white and blue silica gels as adsorbents in adsorptive-distillation of ethanol-water mixture

    NASA Astrophysics Data System (ADS)

    Megawati, Jannah, Reni Ainun; Rahayuningtiyas, Indi

    2017-01-01

    This research studied the difference of white and blue silica gels when used as an adsorbent for ethanol purification that is processed via Adsorptive-Distillation (AD) at 1 atm pressure. The effect of process duration to purification process is also recorded and studied to evaluate the performance of designed AD equipment. The experiment was conducted using boiling flask covered with a heating mantle and the temperature was maintained at 78°C. The vapour flowed into the adsorbent column and was condensed using water as a cooling medium. The initial ethanol concentration was 90.8% v/v and volume was 300 mL. Experiment shows that designed AD equipment could be used to purify ethanol. The average vapour velocity was about 39.29 and 45.91 m/s for white and blue silica gels, respectively, which is considered very high. Therefore the saturated adsorption could not be obtained. Highest ethanol concentration achieved using white silica gel is about 96.671% v/v after 50 minutes. Thus AD with white silica gel showed good performance and passed azeotropic point. But AD with blue silica gel showed a different result, the adsorption of blue silica gel failed to break the azeotropic point. The outlet average water concentration for white and blue silica gels is 3.54 and 3.42 mole/L. Based on the weight ratio of adsorbed water per adsorbent, at 55th minutes of time; this ratio of blue silica gel is about 0.053 gwater/gads. The time required by the blue silica to achieve 0.5 wwater-adsorbed/wwater-initial is 45 minutes, and the average outlet water concentration is 3.42 mole/L. Meanwhile, the time required by a white silica to complete 0.5 wwater-adsorbed/wwater-initial is 35 minutes, and the average outlet water level is 3.54 mole/L. Based on the results, the blue silica as an adsorbent for AD of ethanol-water mixture is better than white silica gel.

  7. Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China.

    PubMed

    Gnansounou, E; Dauriat, A; Wyman, C E

    2005-06-01

    Reducing the use of non-renewable fossil energy reserves together with improving the environment are two important reasons that drive interest in the use of bioethanol as an automotive fuel. Conversion of sugar and starch to ethanol has been proven at an industrial scale in Brazil and the United States, respectively, and this alcohol has been able to compete with conventional gasoline due to various incentives. In this paper, we examined making ethanol from the sugar extracted from the juice of sweet sorghum and/or from the hemicellulose and cellulose in the residual sorghum bagasse versus selling the sugar from the juice or burning the bagasse to make electricity in four scenarios in the context of North China. In general terms, the production of ethanol from the hemicellulose and cellulose in bagasse was more favorable than burning it to make power, but the relative merits of making ethanol or sugar from the juice was very sensitive to the price of sugar in China. This result was confirmed by both process economics and analysis of opportunity costs. Thus, a flexible plant capable of making both sugar and fuel-ethanol from the juice is recommended. Overall, ethanol production from sorghum bagasse appears very favorable, but other agricultural residues such as corn stover and rice hulls would likely provide a more attractive feedstock for making ethanol in the medium and long term due to their extensive availability in North China and their independence from other markets. Furthermore, the process for residue conversion was based on particular design assumptions, and other technologies could enhance competitiveness while considerations such as perceived risk could impede applications.

  8. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    PubMed Central

    Slade, Raphael; Bauen, Ausilio; Shah, Nilay

    2009-01-01

    Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy intensive steps in enzyme production to be reduced, or if other process synergies are available. If biofuels policy in the EU remains contingent on favourable environmental performance then the multi-scale nature of bioenergy supply chains presents a genuine challenge. Lignocellulosic ethanol holds promise for emission reductions, but maximising greenhouse gas savings will not only require efficient supply chain design but also a better understanding of the spatial and temporal factors which affect overall performance. PMID:19682352

  9. Optimization of prehydrolysis time and substrate feeding to improve ethanol production by simultaneous saccharification and fermentation of furfural process residue.

    PubMed

    He, Jianlong; Zhang, Wenbo; Liu, Xiaoyan; Xu, Ning; Xiong, Peng

    2016-11-01

    Ethanol is a very important industrial chemical. In order to improve ethanol productivity using Saccharomyces cerevisiae in fermentation from furfural process residue, we developed a process of simultaneous saccharification and fermentation (SSF) of furfural process residue, optimizing prehydrolysis cellulase loading concentration, prehydrolysis time, and substrate feeding strategy. The ethanol concentration obtained from the optimized process was 19.3 g/L, corresponding 76.5% ethanol yield, achieved by running SSF for 48 h from 10% furfural process residue with prehydrolysis at 50°C for 4 h and cellulase loading of 15 FPU/g furfural process residue. For higher ethanol concentrations, fed-batch fermentation was performed. The optimized fed-batch process increased the ethanol concentration to 37.6 g/L, 74.5% yield, obtained from 10% furfural process residue with two additions of 5% substrate at 12 and 24 h. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Design methodology for integrated downstream separation systems in an ethanol biorefinery

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh Rohani, Navid

    Energy security and environmental concerns have been the main drivers for a historic shift to biofuel production in transportation fuel industry. Biofuels should not only offer environmental advantages over the petroleum fuels they replace but also should be economically sustainable and viable. The so-called second generation biofuels such as ethanol which is the most produced biofuel are mostly derived from lignocellulosic biomasses. These biofuels are more difficult to produce than the first generation ones mainly due to recalcitrance of the feedstocks in extracting their sugar contents. Costly pre-treatment and fractionation stages are required to break down lignocellulosic feedstocks into their constituent elements. On the other hand the mixture produced in fermentation step in a biorefinery contains very low amount of product which makes the subsequent separation step more difficult and more energy consuming. In an ethanol biorefinery, the dilute fermentation broth requires huge operating cost in downstream separation for recovery of the product in a conventional distillation technique. Moreover, the non-ideal nature of ethanol-water mixture which forms an iseotrope at almost 95 wt%, hinders the attainment of the fuel grade ethanol (99.5 wt%). Therefore, an additional dehydration stage is necessary to purify the ethanol from its azeotropic composition to fuel-grade purity. In order to overcome the constraint pertaining to vapor-liquid equilibrium of ethanol-water separation, several techniques have been investigated and proposed in the industry. These techniques such as membrane-based technologies, extraction and etc. have not only sought to produce a pure fuel-grade ethanol but have also aimed at decreasing the energy consumption of this energy-intensive separation. Decreasing the energy consumption of an ethanol biorefinery is of paramount importance in improving its overall economics and in facilitating the way to displacing petroleum transportation fuel and obtaining energy security. On the other hand, Process Integration (PI) as defined by Natural Resource Canada as the combination of activities which aim at improving process systems, their unit operations and their interactions in order to maximize the efficiency of using water, energy and raw materials can also help biorefineries lower their energy consumptions and improve their economics. Energy integration techniques such as pinch analysis adopted by different industries over the years have ensured using heat sources within a plant to supply the demand internally and decrease the external utility consumption. Therefore, adopting energy integration can be one of the ways biorefinery technology owners can consider in their process development as well as their business model in order to improve their overall economics. The objective of this thesis is to propose a methodology for designing integrated downstream separation in a biorefinery. This methodology is tested in an ethanol biorefinery case study. Several alternative separation techniques are evaluated in their energy consumption and economics in three different scenarios; stand-alone without energy integration, stand-alone with internal energy integration and integrated-with Kraft. The energy consumptions and capital costs of separation techniques are assessed in each scenario and the cost and benefit of integration are determined and finally the best alternative is found through techno-economic metrics. Another advantage of this methodology is the use of a graphical tool which provides insights on decreasing energy consumption by modifying the process condition. The pivot point of this work is the use of a novel energy integration method called Bridge analysis. This systematic method which originally is intended for retrofit situation is used here for integration with Kraft process. Integration potentials are identified through this method and savings are presented for each design. In stand-alone with internal integration scenario, the conventional pinch method is used for energy analysis. The results reveal the importance of energy integration in reducing energy consumption. They also show that in an ethanol biorefinery, by adopting energy integration in the conventional distillation separation, we can achieve greater energy saving compared to other alternative techniques. This in turn suggests that new alternative technologies which imply big risks for the company might not be an option for reducing the energy consumption as long as an internal and external integration is incorporated in the business model of an ethanol biorefinery. It is also noteworthy that the methodology developed in this work can be extended as a future work to include a whole biorefinery system. (Abstract shortened by UMI.).

  11. 40 CFR 80.1610 - Standards and requirements for producers and importers of denatured fuel ethanol and other...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... producers and importers of denatured fuel ethanol and other oxygenates designated for use in transportation... requirements for producers and importers of denatured fuel ethanol and other oxygenates designated for use in transportation fuel. Beginning January 1, 2017, producers and importers of denatured fuel ethanol (DFE) or other...

  12. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

    PubMed

    Spronk, D B; Dumont, G J H; Verkes, R J; De Bruijn, E R A

    2014-07-01

    Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring. The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates. Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design. Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed. A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

  13. Phenotypic and Genetic Effects of Contrasting Ethanol Environments on Physiological and Developmental Traits in Drosophila melanogaster

    PubMed Central

    Castañeda, Luis E.; Nespolo, Roberto F.

    2013-01-01

    A central problem in evolutionary physiology is to understand the relationship between energy metabolism and fitness-related traits. Most attempts to do so have been based on phenotypic correlations that are not informative for the evolutionary potential of natural populations. Here, we explored the effect of contrasting ethanol environments on physiological and developmental traits, their genetic (co)variances and genetic architecture in Drosophila melanogaster. Phenotypic and genetic parameters were estimated in two populations (San Fernando and Valdivia, Chile), using a half-sib family design where broods were split into ethanol-free and ethanol-supplemented conditions. Our findings show that metabolic rate, body mass and development times were sensitive (i.e., phenotypic plasticity) to ethanol conditions and dependent on population origin. Significant heritabilities were found for all traits, while significant genetic correlations were only found between larval and total development time and between development time and metabolic rate for flies of the San Fernando population developed in ethanol-free conditions. Posterior analyses indicated that the G matrices differed between ethanol conditions for the San Fernando population (mainly explained by differences in genetic (co)variances of developmental traits), whereas the Valdivia population exhibited similar G matrices between ethanol conditions. Our findings suggest that ethanol-free environment increases the energy available to reduce development time. Therefore, our results indicate that environmental ethanol could modify the process of energy allocation, which could have consequences on the evolutionary response of natural populations of D. melanogaster. PMID:23505567

  14. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    NASA Astrophysics Data System (ADS)

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-08-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  15. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: simulation of field observations

    USGS Publications Warehouse

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-01-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  16. 40 CFR 80.1645 - Sample retention requirements for producers and importers of denaturant designated as suitable...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... producers and importers of denaturant designated as suitable for the manufacture of denatured fuel ethanol... suitable for the manufacture of denatured fuel ethanol meeting federal quality requirements. Beginning January 1, 2017, or on the first day that any producer or importer of ethanol denaturant designates a...

  17. [Analyze nanofiltration separation rule of chlorogenic acid from low concentration ethanol by Donnan effect and solution-diffusion effect].

    PubMed

    Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping

    2017-07-01

    To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.

  18. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic fermentation performance for sustainable bio-ethanol production. PMID:22839110

  19. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading

    DOE PAGES

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; ...

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  20. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS 2 catalyst, (ii) mixed oxygenates (a mixture of C 2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  1. Suitability of anaerobic digestion effluent as process water for corn fuel ethanol fermentation.

    PubMed

    Wang, Ke; Zhang, Jian-Hua; Liu, Pei; Mao, Zhong-Gui

    2014-01-01

    A corn fuel ethanol plant integrated with anaerobic digestion treatment of thin stillage increases the net energy balance. Furthermore, the anaerobic digestion effluent (ADE) can be reused as a potential substitute for process water in the ethanol fermentation. In this study, the suitability of ADE as process water for corn ethanol fermentation was investigated by analyzing the potential inhibitory components in the ADE. It was found that ammonium influenced the growth and metabolism of Saccharomyces cerevisiae. Maximum ethanol production was obtained when the concentration of ammonium nitrogen was 200 mg/L, and ammonium could replace urea as the nitrogen source for S. cerevisiae under this concentration. In the ethanol fermentation with a higher concentration of ammonium, more glycerol was produced, thereby resulting in the decrease of ethanol production. In addition, components except ammonium in the ADE caused no inhibition to ethanol production. These results suggest that ADE could be reused as process water for corn ethanol fermentation without negative effect when ammonium concentration is well controlled.

  2. The potential environmental impact of waste from cellulosic ethanol production.

    PubMed

    Menetrez, Marc Y

    2010-02-01

    The increasing production of ethanol has been established as an important contributor to future energy independence. Although ethanol demand is increasing, a growing economic trend in decreased profitability and resource conflicts have called into question the future of grain-based ethanol production. Growing emphasis is being placed on utilizing cellulosic feedstocks to produce ethanol, and the need for renewable resources has made the development of cellulosic ethanol a national priority. Cellulosic ethanol production plants are being built in many areas of the United States to evaluate various feedstocks and processes. The waste streams from many varying processes that are being developed contain a variety of components. Differences in ethanol generation processes and feedstocks are producing waste streams unique to biofuel production, which could be potentially harmful to the environment if adequate care is not taken to manage those risks. Waste stream management and utilization of the cellulosic ethanol process are equally important components of the development of this industry.

  3. Pretreatment optimization of Sorghum pioneer biomass for bioethanol production and its scale-up.

    PubMed

    Koradiya, Manoj; Duggirala, Srinivas; Tipre, Devayani; Dave, Shailesh

    2016-01-01

    Based on one parameter at a time, saccharification of delignified sorghum biomass by 4% and 70% v/v sulfuric acid resulted in maximum 30.8 and 33.8 g% sugar production from biomass respectively. The Box Behnken Design was applied for further optimization of acid hydrolysis. As a result of the designed experiment 36.3g% sugar production was achieved when 3% v/v H2SO4 treatment given for 60 min at 180°C. The process was scaled-up to treat 2 kg of biomass. During the screening of yeast cultures, isolate C, MK-I and N were found to be potent ethanol producers from sorghum hydrolyzate. Culture MK-I was the best so used for scale up of ethanol production up to 25 L capacity, which gave a yield of 0.49 g ethanol/g sugar from hydrolyzate obtained from 2 kg of sorghum biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Models and signal processing for an implanted ethanol bio-sensor.

    PubMed

    Han, Jae-Joon; Doerschuk, Peter C; Gelfand, Saul B; O'Connor, Sean J

    2008-02-01

    The understanding of drinking patterns leading to alcoholism has been hindered by an inability to unobtrusively measure ethanol consumption over periods of weeks to months in the community environment. An implantable ethanol sensor is under development using microelectromechanical systems technology. For safety and user acceptability issues, the sensor will be implanted subcutaneously and, therefore, measure peripheral-tissue ethanol concentration. Determining ethanol consumption and kinetics in other compartments from the time course of peripheral-tissue ethanol concentration requires sophisticated signal processing based on detailed descriptions of the relevant physiology. A statistical signal processing system based on detailed models of the physiology and using extended Kalman filtering and dynamic programming tools is described which can estimate the time series of ethanol concentration in blood, liver, and peripheral tissue and the time series of ethanol consumption based on peripheral-tissue ethanol concentration measurements.

  5. 75 FR 16388 - Approval and Promulgation of Implementation Plans; Commonwealth of Kentucky: Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... ``chemical process plants'' that produce ethanol through a natural fermentation process (hereafter referred... for excluding ``chemical process plants'' that produce ethanol through a natural fermentation process... facilities that produce ethanol by natural fermentation processes. Kentucky's February 5, 2010, SIP...

  6. Optimization of a low-cost defined medium for alcoholic fermentation--a case study for potential application in bioethanol production from industrial wastewaters.

    PubMed

    Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A

    2016-01-25

    In bioethanol production processes, the media composition has an impact on product concentration, yields and the overall process economics. The main purpose of this research was to develop a low-cost mineral-based supplement for successful alcoholic fermentation in an attempt to provide an economically feasible alternative to produce bioethanol from novel sources, for example, sugary industrial wastewaters. Statistical experimental designs were used to select essential nutrients for yeast fermentation, and its optimal concentrations were estimated by Response Surface Methodology. Fermentations were performed on synthetic media inoculated with 2.0 g L(-1) of yeast, and the evolution of biomass, sugar, ethanol, CO2 and glycerol were monitored over time. A mix of salts [10.6 g L(-1) (NH4)2HPO4; 6.4 g L(-1) MgSO4·7H2O and 7.5 mg L(-1) ZnSO4·7H2O] was found to be optimal. It led to the complete fermentation of the sugars in less than 12h with an average ethanol yield of 0.42 g ethanol/g sugar. A general C-balance indicated that no carbonaceous compounds different from biomass, ethanol, CO2 or glycerol were produced in significant amounts in the fermentation process. Similar results were obtained when soft drink wastewaters were tested to evaluate the potential industrial application of this supplement. The ethanol yields were very close to those obtained when yeast extract was used as the supplement, but the optimized mineral-based medium is six times cheaper, which favorably impacts the process economics and makes this supplement more attractive from an industrial viewpoint. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Interactions between ethanol and cigarette smoke in a mouse lung carcinogenesis model.

    PubMed

    Balansky, Roumen; Ganchev, Gancho; Iltcheva, Marietta; Nikolov, Manasi; La Maestra, S; Micale, Rosanna T; Steele, Vernon E; De Flora, Silvio

    2016-12-12

    Both ethanol and cigarette smoke are classified as human carcinogens. They can synergize, especially in tissues of the upper aerodigestive tract that are targeted by both agents. The main objective of the present study was to evaluate the individual and combined effects of ethanol and smoke in the respiratory tract, either following transplacental exposure and/or postnatal exposure. We designed two consecutive studies in mouse models by exposing Swiss H mice to oral ethanol and/or inhaled mainstream cigarette smoke for up to 4 months, at various prenatal and postnatal life stages. Clastogenic effects and histopathological alterations were evaluated after 4 and 8 months, respectively. Ethanol was per se devoid of clastogenic effects in mouse peripheral blood erythrocytes. However, especially in mice exposed both transplacentally throughout pregnancy and in the postnatal life, ethanol administration was associated not only with liver damage but also with pro-angiogenetic effects in the lung by stimulating the proliferation of blood vessels. In addition, these mice developed pulmonary emphysema, alveolar epithelial hyperplasias, microadenomas, and benign tumors. On the other hand, ethanol interfered in the lung carcinogenesis process resulting from the concomitant exposure of mice to smoke. In fact, ethanol significantly attenuated some smoke-related preneoplastic and neoplastic lesions in the respiratory tract, such as alveolar epithelial hyperplasia, microadenomas, and even malignant tumors. In addition, ethanol attenuated cigarette smoke clastogenicity. In conclusion, preclinical studies provide evidence that, in spite of its pulmonary toxicity, ethanol may mitigate some noxious effects of cigarette smoke in the respiratory tract. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Process engineering economics of bioethanol production.

    PubMed

    Galbe, Mats; Sassner, Per; Wingren, Anders; Zacchi, Guido

    2007-01-01

    This work presents a review of studies on the process economics of ethanol production from lignocellulosic materials published since 1996. Our objective was to identify the most costly process steps and the impact of various parameters on the final production cost, e.g. plant capacity, raw material cost, and overall product yield, as well as process configuration. The variation in estimated ethanol production cost is considerable, ranging from about 0.13 to 0.81 US$ per liter ethanol. This can be explained to a large extent by actual process differences and variations in the assumptions underlying the techno-economic evaluations. The most important parameters for the economic outcome are the feedstock cost, which varied between 30 and 90 US$ per metric ton in the papers studied, and the plant capacity, which influences the capital cost. To reduce the ethanol production cost it is necessary to reach high ethanol yields, as well as a high ethanol concentration during fermentation, to be able to decrease the energy required for distillation and other downstream process steps. Improved pretreatment methods, enhanced enzymatic hydrolysis with cheaper and more effective enzymes, as well as improved fermentation systems present major research challenges if we are to make lignocellulose-based ethanol production competitive with sugar- and starch-based ethanol. Process integration, either internally or externally with other types of plants, e.g. heat and power plants, also offers a way of reducing the final ethanol production cost.

  9. Optimization of extraction process by response surface methodology and preliminary structural analysis of polysaccharides from defatted peanut (Arachis hypogaea) cakes.

    PubMed

    Song, Yi; Du, Bingjian; Zhou, Ting; Han, Bing; Yu, Fei; Yang, Rui; Hu, Xiaosong; Ni, Yuanying; Li, Quanhong

    2011-02-01

    In this work, response surface methodology was used to determine optimum conditions for extraction of polysaccharides from defatted peanut cake. A central composite design including independent variables, such as extraction temperature (x(1)), extraction time (x(2)), and ethanol concentration (x(3)) was used. Selected response which evaluates the extraction process was polysaccharide yield, and the second-order model obtained for polysaccharide yield revealed coefficient of determination of 97.81%. The independent variable with the largest effect on response was ethanol concentration (x(3)). The optimum extraction conditions were found to be extraction temperature 48.7°C, extraction time 1.52 h, and ethanol concentration of 61.9% (v/v), respectively. Under these conditions, the extraction efficiency of polysaccharide can increase to 25.89%. The results of structural analysis showed that the main composition of defatted peanut cake polysaccharide was α-galactose. 2010 Elsevier Ltd. All rights reserved.

  10. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  11. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    PubMed

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes

    NASA Astrophysics Data System (ADS)

    Nwachukwu, Raymond E. S.

    In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a fermentation to estimate hydrogen production using a respirometer, the hydrogen yield and volumetric rate of 1.06 mol/mol-glycerol and 217 ml/l/h, respectively were obtained from 6% P-glycerol in 72 h by E. aerogenes S012. The result was higher from R-glycerol, which produced hydrogen yield and productivity of 1.83 mol/mol-glycerol and 326 ml/l/h, respectively.

  13. Kinetic model of continuous ethanol fermentation in closed-circulating process with pervaporation membrane bioreactor by Saccharomyces cerevisiae.

    PubMed

    Fan, Senqing; Chen, Shiping; Tang, Xiaoyu; Xiao, Zeyi; Deng, Qing; Yao, Peina; Sun, Zhaopeng; Zhang, Yan; Chen, Chunyan

    2015-02-01

    Unstructured kinetic models were proposed to describe the principal kinetics involved in ethanol fermentation in a continuous and closed-circulating fermentation (CCCF) process with a pervaporation membrane bioreactor. After ethanol was removed in situ from the broth by the membrane pervaporation, the secondary metabolites accumulated in the broth became the inhibitors to cell growth. The cell death rate related to the deterioration of the culture environment was described as a function of the cell concentration and fermentation time. In CCCF process, 609.8 g L(-1) and 750.1 g L(-1) of ethanol production were obtained in the first run and second run, respectively. The modified Gompertz model, correlating the ethanol production with the fermentation period, could be used to describe the ethanol production during CCCF process. The fitting results by the models showed good agreement with the experimental data. These models could be employed for the CCCF process technology development for ethanol fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol

    NASA Astrophysics Data System (ADS)

    Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.

    2017-04-01

    Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.

  15. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, C.S.; Chriswell, C.D.

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

  16. Process of concentrating ethanol from dilute aqueous solutions thereof

    DOEpatents

    Oulman, Charles S. [Ames, IA; Chriswell, Colin D. [Slater, IA

    1981-07-07

    Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

  17. Bioethanol Production By Utilizing Cassava Peels Waste Through Enzymatic And Microbiological Hydrolysis

    NASA Astrophysics Data System (ADS)

    Witantri, R. G.; Purwoko, T.; Sunarto; Mahajoeno, E.

    2017-07-01

    Cassava peels waste contains, cellulose which is quite high at 43.626%, this is a potential candidate as a raw for bioethanol production. The purpose of this study was to determine the performance of the enzymatic hydrolysis, microbiological (Effective microbe) and fermentation in cassava peel waste is known from the results of quantitative measurement of multiple ethanol parameters (DNS Test, pH, ethanol concentration). This research was carried out in stages, the first stage is hydrolysis with completely randomized design with single factor variation of the catalyst, consisting of three levels ie cellulase enzymes, multienzyme and effective microbial EM4. The second stage is fermentation with factorial randomized block design, consisting of three groups of variations of catalyst, and has two factors: variations of fermipan levels 1, 2, 3% and the duration of fermentation, 2,4,6 days. The parameters in the test is a reducing sugar, pH and concentration of ethanol. The results showed that variation of hydrolysis treatment, fermentation time, and fermipan levels has real effect on the fermentation process. On average the highest ethanol content obtained from the treatment with multienzyme addition, with the addition of 2% fermipan levels and on the 2nd day of fermentation that is equal to 3.76%.

  18. Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings

    PubMed Central

    2014-01-01

    Background Economically feasible cellulosic ethanol production requires that the process can be operated at high solid loadings, which currently imparts technical challenges including inefficient mixing leading to heat and mass transfer limitations and high concentrations of inhibitory compounds hindering microbial activity during simultaneous saccharification and fermentation (SSF) process. Consequently, there is a need to develop cost effective processes overcoming the challenges when working at high solid loadings. Results In this study we have modified the yeast cultivation procedure and designed a SSF process to address some of the challenges at high water insoluble solids (WIS) content. The slurry of non-detoxified pretreated spruce when used in a batch SSF at 19% (w/w) WIS was found to be inhibitory to Saccharomyces cerevisiae Thermosacc that produced 2 g l-1 of ethanol. In order to reduce the inhibitory effect, the non-washed solid fraction containing reduced amount of inhibitors compared to the slurry was used in the SSF. Further, the cells were cultivated in the liquid fraction of pretreated spruce in a continuous culture wherein the outflow of cell suspension was used as cell feed to the SSF reactor in order to maintain the metabolic state of the cell. Enhanced cell viability was observed with cell, enzyme and substrate feed in a SSF producing 40 g l-1 ethanol after 96 h corresponding to 53% of theoretical yield based on available hexose sugars compared to 28 g l-1 ethanol in SSF with enzyme and substrate feed but no cell feed resulting in 37% of theoretical yield at a high solids loading of 20% (w/w) WIS content. The fed-batch SSF also significantly eased the mixing, which is usually challenging in batch SSF at high solids loading. Conclusions A simple modification of the cell cultivation procedure together with a combination of yeast, enzyme and substrate feed in a fed-batch SSF process, made it possible to operate at high solids loadings in a conventional bioreactor. The proposed process strategy significantly increased the yeast cell viability and overall ethanol yield. It was also possible to obtain 4% (w/v) ethanol concentration, which is a minimum requirement for an economical distillation process. PMID:24713027

  19. Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings.

    PubMed

    Koppram, Rakesh; Olsson, Lisbeth

    2014-04-08

    Economically feasible cellulosic ethanol production requires that the process can be operated at high solid loadings, which currently imparts technical challenges including inefficient mixing leading to heat and mass transfer limitations and high concentrations of inhibitory compounds hindering microbial activity during simultaneous saccharification and fermentation (SSF) process. Consequently, there is a need to develop cost effective processes overcoming the challenges when working at high solid loadings. In this study we have modified the yeast cultivation procedure and designed a SSF process to address some of the challenges at high water insoluble solids (WIS) content. The slurry of non-detoxified pretreated spruce when used in a batch SSF at 19% (w/w) WIS was found to be inhibitory to Saccharomyces cerevisiae Thermosacc that produced 2 g l-1 of ethanol. In order to reduce the inhibitory effect, the non-washed solid fraction containing reduced amount of inhibitors compared to the slurry was used in the SSF. Further, the cells were cultivated in the liquid fraction of pretreated spruce in a continuous culture wherein the outflow of cell suspension was used as cell feed to the SSF reactor in order to maintain the metabolic state of the cell. Enhanced cell viability was observed with cell, enzyme and substrate feed in a SSF producing 40 g l-1 ethanol after 96 h corresponding to 53% of theoretical yield based on available hexose sugars compared to 28 g l-1 ethanol in SSF with enzyme and substrate feed but no cell feed resulting in 37% of theoretical yield at a high solids loading of 20% (w/w) WIS content. The fed-batch SSF also significantly eased the mixing, which is usually challenging in batch SSF at high solids loading. A simple modification of the cell cultivation procedure together with a combination of yeast, enzyme and substrate feed in a fed-batch SSF process, made it possible to operate at high solids loadings in a conventional bioreactor. The proposed process strategy significantly increased the yeast cell viability and overall ethanol yield. It was also possible to obtain 4% (w/v) ethanol concentration, which is a minimum requirement for an economical distillation process.

  20. Magnetic resonance microscopy-based analyses of the neuroanatomical effects of gestational day 9 ethanol exposure in mice

    PubMed Central

    Parnell, Scott E.; Holloway, Hunter T.; O’Leary-Moore, Shonagh K.; Dehart, Deborah B.; Paniaqua, Beatriz; Oguz, Ipek; Budin, Francois; Styner, Martin A.; Johnson, G. Allan; Sulik, Kathleen K.

    2013-01-01

    Animal model-based studies have shown that ethanol exposure during early gestation induces developmental stage-specific abnormalities of the face and brain. The exposure time-dependent variability in ethanol’s teratogenic outcomes is expected to contribute significantly to the wide spectrum of effects observed in humans with fetal alcohol spectrum disorder (FASD). The work presented here employs a mouse FASD model and magnetic resonance microscopy (MRM; high resolution magnetic resonance imaging) in studies designed to further our understanding of the developmental stage-specific defects of the brain that are induced by ethanol. At neurulation stages, i.e. at the beginning of gestational day (GD) 9 and again 4 hours later, time-mated C57Bl/6J dams were intraperitoneally administered 2.9 g/kg ethanol or vehicle. Ethanol-exposed fetuses were collected on GD 17, processed for MRM analysis, and results compared to comparably staged controls. Linear and volume measurements as well as shape changes for numerous individual brain regions were determined. GD 9 ethanol exposure resulted in significantly increased septal region width, reduction of cerebellar volume, and enlargement of all of the ventricles. Additionally, the results of shape analyses showed that many areas of the ethanol-exposed brains including the cerebral cortex, hippocampus and right striatum were significantly misshapen. These data demonstrate that ethanol can induce dysmorphology that may not be obvious based on volumetric analyses alone, highlight the asymmetric aspects of ethanol-induced defects, and add to our understanding of ethanol’s developmental stage-dependent neuroteratogenesis. PMID:23911654

  1. Process for producing ethanol from plant biomass using the fungus paecilomyces sp.

    DOEpatents

    Wu, Jung Fu

    1989-01-01

    A process for producing ethanol from plant biomass is disclosed. The process in cludes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces, which has the ability to ferment both cellobiose and xylose to ethanol, is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate.

  2. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    DOEpatents

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  3. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis.

    PubMed

    Han, Jeehoon; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A; Maravelias, Christos T

    2015-04-01

    The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock.

    PubMed

    Sánchez-Segado, S; Lozano, L J; de Los Ríos, A P; Hernández-Fernández, F J; Godínez, C; Juan, D

    2012-01-01

    A process for the production of ethanol from carob (Ceratonia siliqua) pods was designed and an economic analysis was carried out for a hypothetical plant. The plant was assumed to perform an aqueous extraction of sugars from the pods followed by fermentation and distillation to produce ethanol. The total fixed capital investment for a base case process with a capacity to transform 68,000 t/year carob pod was calculated as 39.61 millon euros (€) with a minimum bioethanol production cost of 0.51 €/L and an internal rate of return of 7%. The plant was found to be profitable at carob pod prices lower than 0.188 €/kg. An increase in the transformation capacity of the plant from 33,880 to 135,450 t/year was calculated to result in an increase in the internal rate of return from 5.50% to 13.61%. The obtained results show that carob pod is a promising alternative source for bioethanol production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae.

    PubMed

    Bátori, Veronika; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2015-01-01

    Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w) crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v) were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m(3) of ethanol (22% improvement), around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m(3) ethanol/year.

  6. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology].

    PubMed

    Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue

    2010-03-01

    To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.

  7. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions.

    PubMed

    Galafassi, Silvia; Merico, Annamaria; Pizza, Francesca; Hellborg, Linda; Molinari, Francesco; Piškur, Jure; Compagno, Concetta

    2011-08-01

    Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step fermentation strategy: the first step under aerobic conditions for fast production of biomass from mixtures of hexoses and pentoses, followed by a second step under oxygen limitation to promote ethanol production. Under these conditions we obtained biomass and ethanol production on synthetic lignocellulosic hydrolysates, with ethanol yields ranging from 0.2 to 0.3 g g(-1) sugar. Hexoses, xylose and arabinose were consumed at the end of the process, resulting in 13 g l(-1) of ethanol, even in the presence of furfural. Our studies showed that Brettanomyces/Dekkera yeasts have clear potential for further development for industrial processes aimed at production of ethanol from renewable sources.

  8. Performance of biofuel processes utilising separate lignin and carbohydrate processing.

    PubMed

    Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku

    2015-09-01

    Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic anaerobic bacteria.

    PubMed

    Dhiman, Saurabh Sudha; David, Aditi; Shrestha, Namita; Johnson, Glenn R; Benjamin, Kenneth M; Gadhamshetty, Venkataramana; Sani, Rajesh K

    2017-11-01

    The one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process was developed for simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic (growing at 65°C) anaerobic bacteria. Unlike existing waste to energy technologies, the CRUDE process obviates the need for any pre-treatment or enzyme addition. A High-Temperature-High-Pressure (HTHP) distillation technique was also applied that facilitated efficient use of fermentation medium, inoculum recycling, and in-situ ethanol collection. For material balancing of the process, each characterized component was represented in terms of C-mol. Recovery of 94% carbon at the end confirmed the operational efficiency of CRUDE process. The overall energy retaining efficiency calculated from sugars to ethanol was 1262.7kJdryweightkg -1 of volatile solids using HTHP. These results suggest that the CRUDE process can be a starting point for the development of a commercial ethanol production process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.

    PubMed

    Paschos, Thomas; Xiros, Charilaos; Christakopoulos, Paul

    2015-03-12

    Fusarium oxysporum is a filamentous fungus which has attracted a lot of scientific interest not only due to its ability to produce a variety of lignocellulolytic enzymes, but also because it is able to ferment both hexoses and pentoses to ethanol. Although this fungus has been studied a lot as a cell factory, regarding applications for the production of bioethanol and other high added value products, no systematic study has been performed concerning its ethanol tolerance levels. In aerobic conditions it was shown that both the biomass production and the specific growth rate were affected by the presence of ethanol. The maximum allowable ethanol concentration, above which cells could not grow, was predicted to be 72 g/L. Under limited aeration conditions the ethanol-producing capability of the cells was completely inhibited at 50 g/L ethanol. The lignocellulolytic enzymatic activities were affected to a lesser extent by the presence of ethanol, while the ethanol inhibitory effect appears to be more severe at elevated temperatures. Moreover, when the produced ethanol was partially removed from the broth, it led to an increase in fermenting ability of the fungus up to 22.5%. The addition of F. oxysporum's system was shown to increase the fermentation of pretreated wheat straw by 11%, in co-fermentation with Saccharomyces cerevisiae. The assessment of ethanol tolerance levels of F. oxysporum on aerobic growth, on lignocellulolytic activities and on fermentative performance confirmed its biotechnological potential for the production of bioethanol. The cellulolytic and xylanolytic enzymes of this fungus could be exploited within the biorefinery concept as their ethanol resistance is similar to that of the commercial enzymes broadly used in large scale fermentations and therefore, may substantially contribute to a rational design of a bioconversion process involving F. oxysporum. The SSCF experiments on liquefied wheat straw rich in hemicellulose indicated that the contribution of the metabolic system of F. oxysporum in a co-fermentation with S. cerevisiae may play a secondary role.

  11. Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood.

    PubMed

    Katsimpouras, Constantinos; Kalogiannis, Konstantinos G; Kalogianni, Aggeliki; Lappas, Angelos A; Topakas, Evangelos

    2017-01-01

    Lignocellulosic biomass is an abundant and inexpensive resource for biofuel production. Alongside its biotechnological conversion, pretreatment is essential to enable efficient enzymatic hydrolysis by making cellulose susceptible to cellulases. Wet oxidation of biomass, such as acetone/water oxidation, that employs hot acetone, water, and oxygen, has been found to be an attractive pretreatment method for removing lignin while producing less degradation products. The remaining enriched cellulose fraction has the potential to be utilized under high gravity enzymatic saccharification and fermentation processes for the cost-competing production of bioethanol. Beech wood residual biomass was pretreated following an acetone/water oxidation process aiming at the production of high concentration of cellulosic ethanol. The effect of pressure, reaction time, temperature, and acetone-to-water ratio on the final composition of the pretreated samples was studied for the efficient utilization of the lignocellulosic feedstock. The optimal conditions were acetone/water ratio 1:1, 40 atm initial pressure of 40 vol% O 2 gas, and 64 atm at reaction temperature of 175 °C for 2 h incubation. The pretreated beech wood underwent an optimization step studying the effect of enzyme loading and solids content on the enzymatic liquefaction/saccharification prior to fermentation. In a custom designed free-fall mixer at 50 °C for either 6 or 12 h of prehydrolysis using an enzyme loading of 9 mg/g dry matter at 20 wt% initial solids content, high ethanol concentration of 75.9 g/L was obtained. The optimization of the pretreatment process allowed the efficient utilization of beech wood residual biomass for the production of high concentrations of cellulosic ethanol, while obtaining lignin that can be upgraded towards high-added-value chemicals. The threshold of 4 wt% ethanol concentration that is required for the sustainable bioethanol production was surpassed almost twofold, underpinning the efficient conversion of biomass to ethanol and bio-based chemicals on behalf of the biorefinery concept.

  12. Fuel From Farms: A Guide to Small-Scale Ethanol Production.

    ERIC Educational Resources Information Center

    Solar Energy Research Inst., Golden, CO.

    Ethanol and blends of ethanol and gasoline (such as gasohol) offer a near-term fuel alternative to oil. The focus of this handbook is upon the small-scale production of ethanol using farm crops as the source of raw materials. Provided are chapters on ethanol production procedures, feedstocks, plant design, and financial planning. Also presented…

  13. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A simple scaled down system to mimic the industrial production of first generation fuel ethanol in Brazil.

    PubMed

    Raghavendran, Vijayendran; Basso, Thalita Peixoto; da Silva, Juliana Bueno; Basso, Luiz Carlos; Gombert, Andreas Karoly

    2017-07-01

    Although first-generation fuel ethanol is produced in Brazil from sugarcane-based raw materials with high efficiency, there is still little knowledge about the microbiology, the biochemistry and the molecular mechanisms prevalent in the non-aseptic fermentation environment. Learning-by-doing has hitherto been the strategy to improve the process so far, with further improvements requiring breakthrough technologies. Performing experiments at an industrial scale are often expensive, complicated to set up and difficult to reproduce. Thus, developing an appropriate scaled down system for this process has become a necessity. In this paper, we present the design and demonstration of a simple and effective laboratory-scale system mimicking the industrial process used for first generation (1G) fuel ethanol production in the Brazilian sugarcane mills. We benchmarked this system via the superior phenotype of the Saccharomyces cerevisiae PE-2 strain, compared to other strains from the same species: S288c, baker's yeast, and CEN.PK113-7D. We trust that such a system can be easily implemented in different laboratories worldwide, and will allow a better understanding of the S. cerevisiae strains that can persist and dominate in this industrial, non-aseptic and peculiar environment.

  15. Development of a Scale-up Tool for Pervaporation Processes

    PubMed Central

    Thiess, Holger; Strube, Jochen

    2018-01-01

    In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. PMID:29342956

  16. Energy production, distribution, and pollution controls: Combining engineering and economic analysis to enhance efficiency and policy design

    NASA Astrophysics Data System (ADS)

    Perkis, David F.

    Three published articles are presented which focus on enhancing various aspects of the energy supply chain. While each paper adopts a different methodology, all three combine engineering data and/or techniques with economic analysis to improve efficiency or policy design within energy markets. The first paper combines a chemical engineering plant design model with an economic assessment of product enhancements within an ethanol production facility. While a new chemical process is shown to achieve greater ethanol yields, the animal feed by-products are denatured and decrease in value due to the degradation of a key nutritional amino acid. Overall, yield increases outweigh any costs, providing additional value to firms adopting this process. The second paper uses a mixed integer linear model to assess the optimal location of cellulosic ethanol production facilities within the state of Indiana. Desired locations with low costs are linked to regions with high yield corn growth, as these areas provide an abundance of corn stover, a by-product of corn and a cellulosic source of ethanol. The third paper implements experimental economic methods to assess the effectiveness of policies intended to control prices in emissions permit markets. When utilizing reserve permit auctions as an alternative to setting explicit maximum prices, prices are elevated beyond the theoretical predictions of the model within the conditions of the experiment. The most likely cause of higher prices is the negotiating power provided to sellers by grandfathering permits as evidenced by higher than expected welfare gains to sellers. Before presenting the articles, a discussion is introduced regarding the role of assumptions used by economists. For each article, a key assumption is highlighted and the consequences of making a different assumption are provided. Whether the consequences are large or small, the benefits of elucidating our models with assumptions based on real world behaviors are clearly demonstrated.

  17. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae

    PubMed Central

    Bátori, Veronika; Ferreira, Jorge A.; Taherzadeh, Mohammad J.; Lennartsson, Patrik R.

    2015-01-01

    Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w) crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v) were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m3 of ethanol (22% improvement), around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m3 ethanol/year. PMID:26682213

  18. Dry-grind processing using amylase corn and superior yeast to reduce the exogenous enzyme requirements in bioethanol production.

    PubMed

    Kumar, Deepak; Singh, Vijay

    2016-01-01

    Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry can reduce the total external enzyme usage by more than 80 %, and combining their use with in situ removal of ethanol during fermentation allows efficient high-solid fermentation.

  19. Improvement in fermentation characteristics of degermed ground corn by lipid supplementation.

    PubMed

    Murthy, Ganti S; Singh, Vijay; Johnston, David B; Rausch, Kent D; Tumbleson, M E

    2006-08-01

    With rapid growth of fuel ethanol industry, and concomitant increase in distillers dried grains with solubles (DDGS), new corn fractionation technologies that reduce DDGS volume and produce higher value coproducts in dry grind ethanol process have been developed. One of the technologies, a dry degerm, defiber (3D) process (similar to conventional corn dry milling) was used to separate germ and pericarp fiber prior to the endosperm fraction fermentation. Recovery of germ and pericarp fiber in the 3D process results in removal of lipids from the fermentation medium. Biosynthesis of lipids, which is important for cell growth and viability, cannot proceed in strictly anaerobic fermentations. The effects of ten different lipid supplements on improving fermentation rates and ethanol yields were studied and compared to the conventional dry grind process. Endosperm fraction (from the 3D process) was mixed with water and liquefied by enzymatic hydrolysis and was fermented using simultaneous saccharification and fermentation. The highest ethanol concentration (13.7% v/v) was achieved with conventional dry grind process. Control treatment (endosperm fraction from 3D process without lipid supplementation) produced the lowest ethanol concentration (11.2% v/v). Three lipid treatments (fatty acid ester, alkylphenol, and ethoxylated sorbitan ester 1836) were most effective in improving final ethanol concentrations. Fatty acid ester treatment produced the highest final ethanol concentration (12.3% v/v) among all lipid supplementation treatments. Mean final ethanol concentrations of alkylphenol and ethoxylated sorbitan ester 1836 supplemented samples were 12.3 and 12.0% v/v, respectively.

  20. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material inmore » thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.« less

  1. Automated UV-C mutagenesis of Kluyveromyces marxianus NRRL Y-1109 and selection for microaerophilic growth and ethanol production at elevated temperature on biomass sugars.

    PubMed

    Hughes, Stephen R; Bang, Sookie S; Cox, Elby J; Schoepke, Andrew; Ochwat, Kate; Pinkelman, Rebecca; Nelson, Danielle; Qureshi, Nasib; Gibbons, William R; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Cote, Gregory L; Rich, Joseph O; Jones, Marjorie A; Cedeño, David; Doran-Peterson, Joy; Riaño-Herrera, Nestor M; Rodríguez-Valencia, Nelson; López-Núñez, Juan C

    2013-08-01

    The yeast Kluyveromyces marxianus is a potential microbial catalyst for fuel ethanol production from a wide range of biomass substrates. To improve its growth and ethanol yield at elevated temperature under microaerophilic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C using automated protocols on a robotic platform for picking and spreading irradiated cultures and for processing the resulting plates. The plates were incubated under anaerobic conditions on xylose or glucose for 5 mo at 46 °C. Two K. marxianus mutant strains (designated 7-1 and 8-1) survived and were isolated from the glucose plates. Both mutant strains, but not wild type, grew aerobically on glucose at 47 °C. All strains grew anaerobically at 46 °C on glucose, galactose, galacturonic acid, and pectin; however, only 7-1 grew anaerobically on xylose at 46 °C. Saccharomyces cerevisiae NRRL Y-2403 did not grow at 46 °C on any of these substrates. With glucose as a carbon source, ethanol yield after 3 d at 46 °C was higher for 8-1 than for wild type (0.51 and 0.43 g ethanol/g glucose, respectively). With galacturonic acid as a carbon source, the ethanol yield after 7 d at 46 °C was higher for 7-1 than for wild type (0.48 and 0.34 g ethanol/g galacturonic acid, respectively). These mutant strains have potential application in fuel ethanol production at elevated temperature from sugar constituents of starch, sucrose, pectin, and cellulosic biomass.

  2. Process model and economic analysis of ethanol production from sugar beet raw juice as part of the cleaner production concept.

    PubMed

    Vučurović, Damjan G; Dodić, Siniša N; Popov, Stevan D; Dodić, Jelena M; Grahovac, Jovana A

    2012-01-01

    The batch fermentation process of sugar beet processing intermediates by free yeast cells is the most widely used method in the Autonomous Province of Vojvodina for producing ethanol as fuel. In this study a process and cost model was developed for producing ethanol from raw juice. The model can be used to calculate capital investment costs, unit production costs and operating costs for a plant producing 44 million l of 99.6% pure ethanol annually. In the sensitivity analysis the influence of sugar beet and yeast price, as well as the influence of recycled biomass on process economics, ethanol production costs and project feasibility was examined. The results of this study clearly demonstrate that the raw material costs have a significant influence on the expenses for producing ethanol. Also, the optimal percentage of recycled biomass turned out to be in the range from 50% to 70%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria

    PubMed Central

    Haft, Rembrandt J. F.; Keating, David H.; Schwaegler, Tyler; Schwalbach, Michael S.; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M.; Kotlajich, Matthew V.; Pohlmann, Edward L.; Ong, Irene M.; Grass, Jeffrey A.; Kiley, Patricia J.; Landick, Robert

    2014-01-01

    The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol. PMID:24927582

  4. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1)more » mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  5. The influence of actuator materials and nozzle designs on electrostatic charge of pressurised metered dose inhaler (pMDI) formulations.

    PubMed

    Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela

    2014-05-01

    To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols. Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC. The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series. The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.

  6. The commercial performance of cellulosic ethanol supply-chains in Europe

    PubMed Central

    Slade, Raphael; Bauen, Ausilio; Shah, Nilay

    2009-01-01

    Background The production of fuel-grade ethanol from lignocellulosic biomass resources has the potential to increase biofuel production capacity whilst minimising the negative environmental impacts. These benefits will only be realised if lignocellulosic ethanol production can compete on price with conventional fossil fuels and if it can be produced commercially at scale. This paper focuses on lignocellulosic ethanol production in Europe. The hypothesis is that the eventual cost of production will be determined not only by the performance of the conversion process but by the performance of the entire supply-chain from feedstock production to consumption. To test this, a model for supply-chain cost comparison is developed, the components of representative ethanol supply-chains are described, the factors that are most important in determining the cost and profitability of ethanol production are identified, and a detailed sensitivity analysis is conducted. Results The most important cost determinants are the cost of feedstocks, primarily determined by location and existing markets, and the value obtained for ethanol, primarily determined by the oil price and policy incentives. Both of these factors are highly uncertain. The best performing chains (ethanol produced from softwood and sold as a low percentage blend with gasoline) could ultimately be cost competitive with gasoline without requiring subsidy, but production from straw would generally be less competitive. Conclusion Supply-chain design will play a critical role in determining commercial viability. The importance of feedstock supply highlights the need for location-specific assessments of feedstock availability and price. Similarly, the role of subsidies and policy incentives in creating and sustaining the ethanol market highlights the importance of political engagement and the need to include political risks in investment appraisal. For the supply-chains described here, and with the cost and market parameters selected, selling ethanol as a low percentage blend with gasoline will maximise ethanol revenues and minimise the need for subsidies. It follows, therefore, that the market for low percentage blends should be saturated before markets for high percentage blends. PMID:19192294

  7. Side draw control design for a high purity multi-component distillation column.

    PubMed

    A Udugama, Isuru; Munir, M T; Kirkpatrick, Rob; Young, Brent R; Yu, Wei

    2018-05-01

    Industrial methanol production involves a multi component feed containing methanol, water and trace levels of ethanol being refined to produce AA grade methanol at high product recovery. Due to practical constraints, the bottoms discharge of the column is primarily water with only trace of methanol impurities. As a result of these constraints, ethanol, which is a non-key middle boiling component gets "trapped" near the side draw of the column forming an ethanol bulge, which in turn results in non-linear, inverse, time and state varying behaviour of the side draw ethanol composition. In this work, we established that the existence of the ethanol bulge creates the complex process behaviour of the side draw ethanol composition and that this bulge needs to be explicitly controlled. This type of explicit composition bulge analysis and subsequent control has not been attempted on methanol distillation columns before. For this purpose a novel, robust and practical side draw control scheme to detect and remedy the excess ethanol bulge movement using override control is presented. The side draw controller, together with other regulatory controllers is shown to maintain on-specification operations of the column. Disturbance rejection tests carried out illustrate that the side draw control scheme will keep the column operating within commercial specification. It is also shown that a traditional DV control structure is unable to achieve this objective. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.

    PubMed

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-05-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process.

  9. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite

    PubMed Central

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-01-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box–Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  10. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology.

    PubMed

    Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal

    2013-06-01

    To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries.

  11. Optoelectronic sensor device for monitoring ethanol concentration in winemaking applications

    NASA Astrophysics Data System (ADS)

    Jiménez-Márquez, F.; Vázquez, J.; Úbeda, J.; Rodríguez-Rey, J.; Sánchez-Rojas, J. L.

    2015-05-01

    The supervision of key variables such as sugar, alcohol, released CO2 and microbiological evolution in fermenting grape must is of great importance in the winemaking industry. However, the fermentation kinetics is assessed by monitoring the evolution of the density as it varies during a fermentation, since density is an indicator of the total amount of sugars, ethanol and glycerol. Even so, supervising the fermentation process is an awkward and non-comprehensive task, especially in wine cellars where production rates are massive, and enologists usually measure the density of the extracted samples from each fermentation tank manually twice a day. This work aims at the design of a fast, low-cost, portable and reliable optoelectronic sensor for measuring ethanol concentration in fermenting grape must samples. Different sets of model solutions, which contain ethanol, fructose, glucose, glycerol dissolved in water and emulate the grape must composition at different stages of the fermentation, were prepared both for calibration and validation. The absorption characteristics of these model solutions were analyzed by a commercial spectrophotometer in the NIR region, in order to identify key wavelengths from which valuable information regarding the sample composition can be extracted. Finally, a customized optoelectronic prototype based on absorbance measurements at two wavelengths belonging to the NIR region was designed, fabricated and successfully tested. The system, whose optoelectronics is reduced after a thorough analysis to only two LED lamps and their corresponding paired photodiodes operating at 1.2 and 1.3 μm respectively, calculates the ethanol content by a multiple linear regression.

  12. Alternative Fuels Data Center: Ethanol Fuel Basics

    Science.gov Websites

    ethanol. Ethanol Energy Balance In the United States, 95% of ethanol is produced from the starch in corn demonstrates a positive energy balance, meaning that the process of producing ethanol fuel does not require energy balance of ethanol because the feedstocks are either waste, co-products of another industry (wood

  13. Development of a more efficient process for production of fuel ethanol from bamboo.

    PubMed

    Sun, Zhao-Yong; Wang, Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2015-06-01

    A process for production of fuel ethanol from bamboo treated with concentrated sulfuric acid has been previously proposed. To improve efficiency of the process, we tested saccharification with 70 weight% (wt%) sulfuric acid, acid-sugar separation by ion exclusion, addition of nutrients to the ethanol fermentation, and bioconversion of xylose to xylitol. A high efficiency of both sugar recovery (82.5 %) and acid recovery (97.5 %) was achieved in the saccharification process and in the continuous acid-sugar separation using a modified anion exchange resin, respectively. Reduction of the amount of mineral salts added to the saccharified liquid after acid-sugar separation did not negatively affect performance of the continuous ethanol fermentation. The ethanol yield and productivity were 93.7 % and 6 g/l h, respectively, at 35 °C and pH 4.0. And the ethanol yield and productivity were almost the same even at pH 3.5. Moreover, the xylose remaining in the fermented mash was efficiently converted to xylitol in batch fermentation by Candida tropicalis strain 2.1776. These results demonstrate a more efficient process for the production of fuel ethanol from bamboo.

  14. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    PubMed

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the cellulosic ethanol industry.

  15. Efficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis.

    PubMed

    Eom, In-Yong; Yu, Ju-Hyun; Jung, Chan-Duck; Hong, Kyung-Sik

    2015-01-01

    Oil palm trunk (OPT) is a valuable bioresource for the biorefinery industry producing biofuels and biochemicals. It has the distinct feature of containing a large amount of starch, which, unlike cellulose, can be easily solubilized by water when heated and hydrolyzed to glucose by amylolytic enzymes without pretreatment for breaking down the biomass recalcitrance. Therefore, it is suggested as beneficial to extract most of the starch from OPT through autoclaving and subsequent amylolytic hydrolysis prior to pretreatment. However, this treatment requires high capital and operational costs, and there could be a high probability of microbial contamination during starch processing. In terms of biochemical conversion of OPT, this study aimed to develop a simple and efficient ethanol conversion process without any chemical use such as acids and bases or detoxification. For comparison with the proposed efficient ethanol conversion process, OPT was subjected to hydrothermal treatment at 180 °C for 30 min. After enzymatic hydrolysis of PWS, 43.5 g of glucose per 100 g dry biomass was obtained, which corresponds to 81.3 % of the theoretical glucose yield. Through subsequent alcohol fermentation, 81.4 % ethanol yield of the theoretical ethanol yield was achieved. To conduct the proposed new process, starch in OPT was converted to ethanol through enzymatic hydrolysis and subsequent fermentation prior to hydrothermal treatment, and the resulting slurry was subjected to identical processes that were applied to control. Consequently, a high-glucose yield of 96.3 % was achieved, and the resulting ethanol yield was 93.5 %. The proposed new process was a simple method for minimizing the loss of starch during biochemical conversion and maximizing ethanol production as well as fermentable sugars from OPT. In addition, this methodology offers the advantage of reducing operational and capital costs due to minimizing the process for ethanol production by excluding expensive processes related to detoxification prior to enzymatic hydrolysis and fermentation such as washing/conditioning and solid-liquid separation of pretreated slurry. The potential future use of xylose-digestible microorganisms could further increase the ethanol yield from the proposed process, thereby increasing its effectiveness for the conversion of OPT into biofuels and biochemicals.

  16. Progress in ethanol production from corn kernel by applying cooking pre-treatment.

    PubMed

    Voca, Neven; Varga, Boris; Kricka, Tajana; Curic, Duska; Jurisic, Vanja; Matin, Ana

    2009-05-01

    In order to improve technological properties of corn kernel for ethanol production, samples were treated with a hydrothermal pre-treatment of cooking (steaming), prior to drying. Two types of cooking process parameters were applied; steam pressure of 0.5 bars during a 10 min period, and steam pressure of 1.5 bars during a 30 min period. Afterwards, samples were dried at four different temperatures, 70, 90, 110 and 130 degrees C. Control sample was also submitted to the aforementioned drying parameters. Since the results showed that starch utilization, due to the gelatinization process, was considerably higher in the samples pre-treated before the ethanol production process, it was found that the cooking treatment had a positive effect on ethanol yield from corn kernel. Therefore, the highest ethanol yield was found in the corn kernel samples cooked for 30 min at steam pressure 1.5 bars and dried at 130 degrees C. Due to the similarity of processes used for starch fermentation, introduction of cooking pre-treatment will not significantly increase the overall ethanol production costs, whereas it will result in significantly higher ethanol yield.

  17. Economic evaluation of United States ethanol production from ligno-cellulosic feedstocks

    NASA Astrophysics Data System (ADS)

    Choi, Youn-Sang

    This paper evaluates the economic feasibility and economy-wide impacts of the U. S. ethanol production from lignocellulosic feedstocks (LCF) using Tennessee Valley Authority's (TVA's) dilute acid hydrolysis process. A nonlinear mathematical programming model of a single ethanol producer, whose objective is profit maximization, is developed. Because of differences in their chemical composition and production process, lignocellulosic feedstocks are divided into two groups: Biomass feedstocks, which refer to crop residues, energy crops and woody biomass, and municipal solid waste (MSW). Biomass feedstocks are more productive and less costly in producing ethanol and co-products, while MSW generates an additional income to the producer from a tipping fee and recycling. The analysis suggests that, regardless of types of feedstocks used, TVA's conversion process can enhance the economic viability of ethanol production as long as furfural is produced from the hemicellulose fraction of feedstocks as a co-product. The high price of furfural makes it a major factor in determining the economic feasibility of ethanol production. Along with evaluating economic feasibility of LCF-to-ethanol production, the optimal size of a plant producing ethanol using TVA's conversion process is estimated. The larger plant would have the advantage of economies of scale, but also have a disadvantage of increased collection and transportation costs for bulky biomass from more distant locations. We assume that the plant is located in the state of Missouri and utilizes only feedstocks produced in the state. The results indicate that the size of a plant using Biomass feedstocks is much bigger than one using MSW. The difference of plant sizes results from plant location and feedstock availability. One interesting finding is that energy crops are not feasible feedstocks for LCF-to-ethanol production due to their high price. Next, a static CGE model is developed to estimate the U.S. economy-wide impacts of the current ethanol production with a government subsidy and the LCF-to-ethanol production using TVA's dilute acid hydrolysis process. The model is innovative in three ways. First, a production subsidy is explicitly included in the model. Second, co-products are explicitly accounted for in ethanol production. Third, ethanol and gasoline are treated as perfect demand substitutes, as are the co-products and the manufacturing sector's output. The CGE model shows that current ethanol production expands grain crop production by creating an additional demand. In contrast, LCF-to-ethanol production has adverse impacts on grain crop production because Biomass feedstocks substitute for grain in the production of ethanol. The LCF-to-ethanol production also discourages the manufacturing industry because co-products displace a part of intermediate input demand for manufacturing outputs. It is also found that, even though ethanol production using TVA's conversion technology with MSW is economically viable, it is not favorable to the economy. Finally, the results suggest that ethanol production from Biomass feedstocks using TVA's dilute acid hydrolysis process is beneficial to the U.S. economy.

  18. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    PubMed

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock

    PubMed Central

    2014-01-01

    Background Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). Results The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. Conclusions A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable. PMID:24559312

  20. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock.

    PubMed

    Macrelli, Stefano; Galbe, Mats; Wallberg, Ola

    2014-02-21

    Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable.

  1. Ethanol production from glycerol using immobilized Pachysolen tannophilus during microaerated repeated-batch fermentor culture.

    PubMed

    Cha, Hye-Geun; Kim, Yi-Ok; Choi, Woon Yong; Kang, Do-Hyung; Lee, Hyeon-Yong; Jung, Kyung-Hwan

    2015-03-01

    Herein, we established a repeated-batch process for ethanol production from glycerol by immobilized Pachysolen tannophilus. The aim of this study was to develop a more practical and applicable ethanol production process for biofuel. In particular, using industrial-grade medium ingredients, the microaeration rate was optimized for maximization of the ethanol production, and the relevant metabolic parameters were then analyzed. The microaeration rate of 0.11 vvm, which is far lower than those occurring in a shaking flask culture, was found to be the optimal value for ethanol production from glycerol. In addition, it was found that, among those tested, Celite was a more appropriate carrier for the immobilization of P. tannophilus to induce production of ethanol from glycerol. Finally, through a repeated-batch culture, the ethanol yield (Ye/g) of 0.126 ± 0.017 g-ethanol/g-glycerol (n = 4) was obtained, and this value was remarkably comparable with a previous report. In the future, it is expected that the results of this study will be applied for the development of a more practical and profitable long-term ethanol production process, thanks to the industrial-grade medium preparation, simple immobilization method, and easy repeated-batch operation.

  2. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    PubMed

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage. Accounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses.

  3. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization

    PubMed Central

    2014-01-01

    Background Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Results Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles substitutes at a higher rate for soybean meal, oil replacement requirements intensify and positively feedback to elevate estimates of land usage. Conclusions Accounting for anticipated technological changes in the corn ethanol system is important for understanding the associated land base ascribed, and may aid in calibrating parameters for land use models in biofuel life-cycle analyses. PMID:24725504

  4. Simulation of Pressure-swing Distillation for Separation of Ethyl Acetate-Ethanol-Water

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Zhou, Menglin; Wang, Yujie; Zhang, Xi; Wu, Gang

    2017-12-01

    In the light of the azeotrope of ethyl acetate-ethanol-water, a process of pressure-swing distillation is proposed. The separation process is simulated by Aspen Plus, and the effects of theoretical stage number, reflux ratio and feed stage about the pressure-swing distillation are optimized. Some better process parameters are as follows: for ethyl acetate refining tower, the pressure is 500.0 kPa, theoretical stage number is 16, reflux ratio is 0.6, feed stage is 5; for crude ethanol tower, the pressure is 101.3 kPa, theoretical stage number is 15, reflux ratio is 0.3, feed stage is 4; for ethanol tower, the pressure is 101.3 kPa, theoretical stage number is 25, reflux ratio is 1.2, feed stage is 10. The mass fraction of ethyl acetate in the bottom of the ethyl acetate refining tower reaches 0.9990, the mass fraction of ethanol in the top of the ethanol tower tower reaches 0.9017, the mass fraction of water in the bottom of the ethanol tower tower reaches 0.9622, and there is also no ethyl acetate in the bottom of the ethanol tower. With laboratory tests, experimental results are in good agreement with the simulation results, which indicates that the separation of ethyl acetate ethanol water can be realized by the pressure-swing distillation separation process. Moreover, it has certain practical significance to industrial practice.

  5. Techno-economic analysis of different pretreatment processes for lignocellulosic-based bioethanol production.

    PubMed

    da Silva, André Rodrigues Gurgel; Torres Ortega, Carlo Edgar; Rong, Ben-Guang

    2016-10-01

    In this work, a method based on process synthesis, simulation and evaluation has been used to setup and study the industrial scale lignocellulosic bioethanol productions processes. Scenarios for pretreatment processes of diluted acid, liquid hot water and ammonia fiber explosion were studied. Pretreatment reactor temperature, catalyst loading and water content as well as solids loading in the hydrolysis reactor were evaluated regarding its effects on the process energy consumption and bioethanol concentration. The best scenarios for maximizing ethanol concentration and minimizing total annual costs (TAC) were selected and their minimum ethanol selling price was calculated. Ethanol concentration in the range of 2-8% (wt.) was investigated after the pretreatment. The best scenarios maximizing the ethanol concentration and minimizing TAC obtained a reduction of 19.6% and 30.2% respectively in the final ethanol selling price with respect to the initial base case. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor.

    PubMed

    Wang, Qingji; Kou, Xueying; Liu, Chang; Zhao, Lianjing; Lin, Tingting; Liu, Fangmeng; Yang, Xueli; Lin, Jun; Lu, Geyu

    2018-03-01

    In this work, ethanol gas sensor with high performance was fabricated successfully with hierarchical CoO/SnO 2 heterojunction by two-steps hydrothermal method. The response value of CoO/SnO 2 sensor is up to 145 at 250 °C when exposed to 100 ppm ethanol gas, which is much higher than that (13.5) of SnO 2 sensor. These good sensing performances mainly attribute to the formation of the CoO/SnO 2 heterojunction, which makes great variation of resistance in air and ethanol gas. Thus, the combination of n-type SnO 2 and p-type CoO provides an effective strategy to design new ethanol gas sensors. The unique nanostructure also played an important role in detecting ethanol, due to its contribution in facilitating the transport rate of the ethanol gas molecules. Also, we provide a general two-step strategy for designing the heterojunction based on the SnO 2 nanostructure. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effects of ethanol on methyl mercury toxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamashiro, H.; Arakaki, M.; Akagi, H.

    1986-01-01

    This study was designed to investigate the effect of different doses of ethanol on the morbidity, mortality, and distribution of mercury in the tissues of groups of rats treated orally once daily with methyl mercury chloride (MMC: 5 mg/kg d) for 10 consecutive days. Ethanol potentiated the toxicity of methyl mercury in terms of neurological manifestations (hindleg crossings and abnormal gait) and mortality. The magnitude of effect depended on the concentration of ethanol administered. The concentration of mercury in the kidney and brain also increased with the dose of ethanol given. These findings indicate that epidemiologic studies designed to evaluatemore » methyl mercury toxicity must take into account the multiple environmental burdens that can affect the population cumulatively and simultaneously.« less

  8. Online monitoring of Mezcal fermentation based on redox potential measurements.

    PubMed

    Escalante-Minakata, P; Ibarra-Junquera, V; Rosu, H C; De León-Rodríguez, A; González-García, R

    2009-01-01

    We describe an algorithm for the continuous monitoring of the biomass and ethanol concentrations as well as the growth rate in the Mezcal fermentation process. The algorithm performs its task having available only the online measurements of the redox potential. The procedure combines an artificial neural network (ANN) that relates the redox potential to the ethanol and biomass concentrations with a nonlinear observer-based algorithm that uses the ANN biomass estimations to infer the growth rate of this fermentation process. The results show that the redox potential is a valuable indicator of the metabolic activity of the microorganisms during Mezcal fermentation. In addition, the estimated growth rate can be considered as a direct evidence of the presence of mixed culture growth in the process. Usually, mixtures of microorganisms could be intuitively clear in this kind of processes; however, the total biomass data do not provide definite evidence by themselves. In this paper, the detailed design of the software sensor as well as its experimental application is presented at the laboratory level.

  9. Fate of virginiamycin through the fuel ethanol production process

    USDA-ARS?s Scientific Manuscript database

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process wa...

  10. Techno-economic analysis of ethanol production from sugarcane bagasse using a Liquefaction plus Simultaneous Saccharification and co-Fermentation process.

    PubMed

    Gubicza, Krisztina; Nieves, Ismael U; Sagues, William J; Barta, Zsolt; Shanmugam, K T; Ingram, Lonnie O

    2016-05-01

    A techno-economic analysis was conducted for a simplified lignocellulosic ethanol production process developed and proven by the University of Florida at laboratory, pilot, and demonstration scales. Data obtained from all three scales of development were used with Aspen Plus to create models for an experimentally-proven base-case and 5 hypothetical scenarios. The model input parameters that differed among the hypothetical scenarios were fermentation time, enzyme loading, enzymatic conversion, solids loading, and overall process yield. The minimum ethanol selling price (MESP) varied between 50.38 and 62.72 US cents/L. The feedstock and the capital cost were the main contributors to the production cost, comprising between 23-28% and 40-49% of the MESP, respectively. A sensitivity analysis showed that overall ethanol yield had the greatest effect on the MESP. These findings suggest that future efforts to increase the economic feasibility of a cellulosic ethanol process should focus on optimization for highest ethanol yield. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2016-11-01

    An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    PubMed

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Economic analysis of fuel ethanol production from winter hulled barley by the EDGE (Enhanced Dry Grind Enzymatic) process.

    PubMed

    Nghiem, Nhuan P; Ramírez, Edna C; McAloon, Andrew J; Yee, Winnie; Johnston, David B; Hicks, Kevin B

    2011-06-01

    A process and cost model was developed for fuel ethanol production from winter barley based on the EDGE (Enhanced Dry Grind Enzymatic) process. In this process, in addition to β-glucanases, which are added to reduce the viscosity of the mash, β-glucosidase is also added to completely hydrolyze the oligomers obtained during the hydrolysis of β-glucans to glucose. The model allows determination of capital costs, operating costs, and ethanol production cost for a plant producing 40 million gallons of denatured fuel ethanol annually. A sensitivity study was also performed to examine the effects of β-glucosidase and barley costs on the final ethanol production cost. The results of this study clearly demonstrate the economic benefit of adding β-glucosidase. Lower ethanol production cost was obtained compared to that obtained without β-glucosidase addition in all cases except one where highest β-glucosidase cost allowance and lowest barley cost were used. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. 76 FR 36875 - Approval and Promulgation of Implementation Plans; South Carolina: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... ethanol through a natural fermentation process (hereafter referred to as the ``Ethanol Rule'') from the... exception of the phrase ``except ethanol production facilities producing ethanol by natural fermentation...

  15. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background While the ethanol production from biomass by consolidated bioprocess (CBP) is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF) is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. Results Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF) as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v) of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8–12 FPU/ml throughout the one-pot process. When 50–300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7–46.3 g/l and 0.15–0.18 (g ethanol/g SF), respectively. In 3-l fermentor with 50–300 g SF/l, the ethanol concentration and yield were 9.5–35.1 g/l with their yields of 0.12–0.19 (g/g) respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol. Conclusion A. cellulolyticus cells produce cellulase using SF. Subsequently, the produced cellulase saccharifies the SF, and then liberated reducing sugars are converted to ethanol by S. cerevisiae. These reactions were carried out in the one-pot process with two different microorganisms in a single reactor, which does require neither an addition of extraneous cellulase nor any pretreatment of cellulose. Collectively, the one-pot bioethanol production process with two different microorganisms could be an alternative strategy for a practical bioethanol production using biomass. PMID:22938388

  16. Chronic nicotine treatment differentially modifies acute nicotine and alcohol actions on GABA(A) and glutamate receptors in hippocampal brain slices.

    PubMed

    Proctor, William R; Dobelis, Peter; Moritz, Anna T; Wu, Peter H

    2011-03-01

    Tobacco and alcohol are often co-abused producing interactive effects in the brain. Although nicotine enhances memory while ethanol impairs it, variable cognitive changes have been reported from concomitant use. This study was designed to determine how nicotine and alcohol interact at synaptic sites to modulate neuronal processes. Acute effects of nicotine, ethanol, and both drugs on synaptic excitatory glutamatergic and inhibitory GABAergic transmission were measured using whole-cell recording in hippocampal CA1 pyramidal neurons from brain slices of mice on control or nicotine-containing diets. Acute nicotine (50 nM) enhanced both GABAergic and glutamatergic synaptic transmission; potentiated GABA(A) receptor currents via activation of α7* and α4β2* nAChRs, and increased N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor currents through α7* receptors. While ethanol (80 mM) also increased GABA(A) currents, it inhibited NMDA currents. Although ethanol had no effect on AMPA currents, it blocked nicotine-induced increases in NMDA and AMPA currents. Following chronic nicotine treatment, acute nicotine or ethanol did not affect NMDA currents, while the effects of GABAergic responses were not altered. Acute ethanol ingestion selectively attenuated nicotine enhancement of excitatory glutamatergic NMDA and AMPA receptor function, suggesting an overall reduction in excitatory output from the hippocampus. It also indicated that ethanol could decrease the beneficial effects of nicotine on memory performance. In addition, chronic nicotine treatment produced tolerance to the effects of nicotine and cross-tolerance to the effects of ethanol on glutamatergic activity, leading to a potential increase in the use of these drugs. British Journal of Pharmacology © 2011 The British Pharmacological Society. No claim to original US government works.

  17. Differential expression of ethanol-induced hypothermia in adolescent and adult rats induced by pretest familiarization to the handling/injection procedure.

    PubMed

    Ristuccia, Robert C; Hernandez, Michael; Wilmouth, Carrie E; Spear, Linda P

    2007-04-01

    Previous work examining ethanol's autonomic effects has found contrasting patterns of age-related differences in ethanol-induced hypothermia between adolescent and adult rats. Most studies have found adolescents to be less sensitive than adults to this effect, although other work has indicated that adolescents may be more sensitive than adults under certain testing conditions. To test the hypothesis that adolescents show more ethanol hypothermia than adults when the amount of disruption induced by the test procedures is low, but less hypothermia when the experimental perturbation is greater, the present study examined the consequences of manipulating the amount of perturbation at the time of testing on ethanol-induced hypothermia in adolescent and adult rats. The amount of test disruption was manipulated by administering ethanol through a chronically indwelling gastric cannula (low perturbation) versus via intragastric intubation (higher perturbation) in Experiment 1 or by either familiarizing animals to the handling and injection procedure for several days pretest or leaving them unmanipulated before testing in Experiment 2. The results showed that the handling manipulation, but not the use of gastric cannulae, altered the expression of ethanol-induced hypothermia differentially across age. When using a familiarization protocol sufficient to reduce the corticosterone response to the handling and injection procedure associated with testing, adolescents showed greater hypothermia than adults. In contrast, the opposite pattern of age differences in hypothermia was evident in animals that were not manipulated before the test day. Surprisingly, however, this difference across testing circumstances was driven by a marked reduction in hypothermia among adults who had been handled before testing, with handling having relatively little impact on ethanol hypothermia among adolescents. Observed differences between adolescents and adults in the autonomic consequences of ethanol were dramatically influenced by whether animals were familiarized with the handling/injection process before testing. Under these circumstances, adolescents were less susceptible than adults to the impact of experimental perturbation on ethanol-induced hypothermia. These findings suggest that seemingly innocuous aspects of experimental design can influence conclusions reached on ontogenetic differences in sensitivity to ethanol, at least when indexed by ethanol-induced hypothermia.

  18. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  19. Replacing process water and nitrogen sources with biogas slurry during cellulosic ethanol production.

    PubMed

    You, Yang; Wu, Bo; Yang, Yi-Wei; Wang, Yan-Wei; Liu, Song; Zhu, Qi-Li; Qin, Han; Tan, Fu-Rong; Ruan, Zhi-Yong; Ma, Ke-Dong; Dai, Li-Chun; Zhang, Min; Hu, Guo-Quan; He, Ming-Xiong

    2017-01-01

    Environmental issues, such as the fossil energy crisis, have resulted in increased public attention to use bioethanol as an alternative renewable energy. For ethanol production, water and nutrient consumption has become increasingly important factors being considered by the bioethanol industry as reducing the consumption of these resources would decrease the overall cost of ethanol production. Biogas slurry contains not only large amounts of wastewater, but also the nutrients required for microbial growth, e.g., nitrogen, ammonia, phosphate, and potassium. Therefore, biogas slurry is an attractive potential resource for bioethanol production that could serve as an alternative to process water and nitrogen sources. In this study, we propose a method that replaces the process water and nitrogen sources needed for cellulosic ethanol production by Zymomonas mobilis with biogas slurry. To test the efficacy of these methods, corn straw degradation following pretreatment with diluted NaOH and enzymatic hydrolysis in the absence of fresh water was evaluated. Then, ethanol fermentation using the ethanologenic bacterial strain Z. mobilis ZMT2 was conducted without supplementing with additional nitrogen sources. After pretreatment with 1.34% NaOH (w/v) diluted in 100% biogas slurry and continuous enzymatic hydrolysis for 144 h, 29.19 g/L glucose and 12.76 g/L xylose were generated from 30 g dry corn straw. The maximum ethanol concentration acquired was 13.75 g/L, which was a yield of 72.63% ethanol from the hydrolysate medium. Nearly 94.87% of the ammonia nitrogen was depleted and no nitrate nitrogen remained after ethanol fermentation. The use of biogas slurry as an alternative to process water and nitrogen sources may decrease the cost of cellulosic ethanol production by 10.0-20.0%. By combining pretreatment with NaOH diluted in biogas slurry, enzymatic hydrolysis, and ethanol fermentation, 56.3 kg of ethanol was produced by Z. mobilis ZMT-2 through fermentation of 1000 kg of dried corn straw. In this study, biogas slurry replaced process water and nitrogen sources during cellulosic ethanol production. The results suggest that biogas slurry is a potential alternative to water when pretreating corn straw and, thus, has important potential applications in cellulosic ethanol production from corn straw. This study not only provides a novel method for utilizing biogas slurry, but also demonstrates a means of reducing the overall cost of cellulosic ethanol.

  20. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    PubMed

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  1. Continuous xylose fermentation by Candida shehatae in a two-stage reactor

    Treesearch

    M. A. Alexander; T. W. Chapman; T. W. Jeffries

    1988-01-01

    Recent work has identified ethanol toxicity as a major factor preventing continuous production of ethanol at the concentrations obtainable in batch culture. In this paper we investigate the use of a continuous two-stage bioreactor design to circumvent toxic effects of ethanol. Biomass is produced via continuous culture in the first stage reactor in which ethanol...

  2. Pilot-scale submersed cultivation of R. microsporus var. oligosporus in thin stillage, a dry-grind corn-to-ethanol co-product

    NASA Astrophysics Data System (ADS)

    Erickson, Daniel Thomas

    An innovative process to add value to a corn-to-ethanol co-product, Thin stillage, was studied for pilot-scale viability. A 1500L bioreactor was designed, operated, and optimized to cultivate Rhizopus microsporus var. oligosporus via submersed fermentation in Thin Stillage. The biomass was harvested and processed into a feed suitable for storage and ultimately for animal feeding trials. Characterization of the biomass and feed trials revealed that there is substantial potential as a nutrient dense feed supplement with 41.1% protein, 26.3% fat, and metabolizable energy on s dried basis. The amino acid profile is superior to that of DDGS, with most notably 1.7% Lys on dried basis. This process produces a significantly more nutrient dense product than DDGS, and could increase water-reclaimation in a dry-grind corn to ethanol plant. Industrially it would replace the energy intensive process of converting thin stillage into syrup that adds only $10-25/ton to DDG, while maintaining production of DDG. Using thin stillage as used a growth media for R. microsporus var. oligosporus, should not only lead to saving in energy costs, but also generate a high-value co-product which could lead to economic gains. Also there is still unexplored potential of enzymes, chitin, and co-culturing to further add value.

  3. Potential feedstock sources for ethanol production in Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahmani, Mohammad; Hodges, Alan

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production.more » However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.« less

  4. An engineering and economic evaluation of quick germ-quick fiber process for dry-grind ethanol facilities: analysis.

    PubMed

    Rodríguez, Luis F; Li, Changying; Khanna, Madhu; Spaulding, Aslihan D; Lin, Tao; Eckhoff, Steven R

    2010-07-01

    An engineering economic model, which is mass balanced and compositionally driven, was developed to compare the conventional corn dry-grind process and the pre-fractionation process called quick germ-quick fiber (QQ). In this model, documented in a companion article, the distillers dried grains with solubles (DDGS) price was linked with its protein and fiber content as well as with the long-term average relationship with the corn price. The detailed economic analysis showed that the QQ plant retrofitted from conventional dry-grind ethanol plant reduces the manufacturing cost of ethanol by 13.5 cent/gallon and has net present value of nearly $4 million greater than the conventional dry-grind plant at an interest rate of 4% in 15years. Ethanol and feedstock price sensitivity analysis showed that the QQ plant gains more profits when ethanol price increases than conventional dry-grind ethanol plant. An optimistic analysis of the QQ process suggests that the greater value of the modified DDGS would provide greater resistance to fluctuations in corn price for QQ facilities. This model can be used to provide decision support for ethanol producers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  5. Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase.

    PubMed

    Moreno, Antonio D; Ibarra, David; Ballesteros, Ignacio; González, Alberto; Ballesteros, Mercedes

    2013-05-01

    In this study, the thermotolerant yeast Kluyveromyces marxianus CECT 10875 was compared to the industrial strain Saccharomyces cerevisiae Ethanol Red for lignocellulosic ethanol production. For it, whole slurry from steam-exploded wheat straw was used as raw material, and two process configurations, simultaneous saccharification and fermentation (SSF) and presaccharification and simultaneous saccharification and fermentation (PSSF), were evaluated. Compared to S. cerevisiae, which was able to produce ethanol in both process configurations, K. marxianus was inhibited, and neither growth nor ethanol production occurred during the processes. However, laccase treatment of the whole slurry removed specifically lignin phenols from the overall inhibitory compounds present in the slurry and triggered the fermentation by K. marxianus, attaining final ethanol concentrations and yields comparable to those obtained by S. cerevisiae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Production of gluten and germ by ethanol fermentation of raw corn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    The Illinois ethanol fuel industry has grown to be an important part of our state's economy over the past 10 years. It provides an additional market for Illinois' abundant corn production, provides many industrial jobs, and substitutes a home-grown renewable energy resource for imported oil. More than 30 percent of all gasoline sold in Illinois contains 10 percent ethanol. The economics of producing ethanol from corn is strongly affected by the byproduct value and by the energy required in the production process. This document reports on efforts to research a new microbial process that would improve the ethanol fermentation processmore » in both these areas. The new process allows direct fermentation of corn starch to ethanol without the usual requirement of cooking the corn. This reduces the amount of energy needed for production and recovers the protein-containing gluten and oil-containing germ with all of the original food value intact.« less

  7. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    PubMed

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes.

    PubMed

    Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus

    2006-12-21

    We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line.

  9. Functional genomics analysis of low concentration of ethanol in human hepatocellular carcinoma (HepG2) cells. Role of genes involved in transcriptional and translational processes

    PubMed Central

    Castaneda, Francisco; Rosin-Steiner, Sigrid; Jung, Klaus

    2007-01-01

    We previously found that ethanol at millimolar level (1 mM) activates the expression of transcription factors with subsequent regulation of apoptotic genes in human hepatocellular carcinoma (HCC) HepG2 cells. However, the role of ethanol on the expression of genes implicated in transcriptional and translational processes remains unknown. Therefore, the aim of this study was to characterize the effect of low concentration of ethanol on gene expression profiling in HepG2 cells using cDNA microarrays with especial interest in genes with transcriptional and translational function. The gene expression pattern observed in the ethanol-treated HepG2 cells revealed a relatively similar pattern to that found in the untreated control cells. The pairwise comparison analysis demonstrated four significantly up-regulated (COBRA1, ITGB4, STAU2, and HMGN3) genes and one down-regulated (ANK3) gene. All these genes exert their function on transcriptional and translational processes and until now none of these genes have been associated with ethanol. This functional genomic analysis demonstrates the reported interaction between ethanol and ethanol-regulated genes. Moreover, it confirms the relationship between ethanol-regulated genes and various signaling pathways associated with ethanol-induced apoptosis. The data presented in this study represents an important contribution toward the understanding of the molecular mechanisms of ethanol at low concentration in HepG2 cells, a HCC-derived cell line. PMID:17211498

  10. Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distillers' grains.

    PubMed

    Kim, Youngmi; Mosier, Nathan; Ladisch, Michael R

    2008-08-01

    Distillers' grains (DG), a co-product of a dry grind ethanol process, is an excellent source of supplemental proteins in livestock feed. Studies have shown that, due to its high polymeric sugar contents and ease of hydrolysis, the distillers' grains have potential as an additional source of fermentable sugars for ethanol fermentation. The benefit of processing the distillers' grains to extract fermentable sugars lies in an increased ethanol yield without significant modification in the current dry grind technology. Three different potential configurations of process alternatives in which pretreated and hydrolyzed distillers' grains are recycled for an enhanced overall ethanol yield are proposed and discussed in this paper based on the liquid hot water (LHW) pretreatment of distillers' grains. Possible limitations of each proposed process are also discussed. This paper presents a compositional analysis of distillers' grains, as well as a simulation of the modified dry grind processes with recycle of distillers' grains. Simulated material balances for the modified dry grind processes are established based on the base case assumptions. These balances are compared to the conventional dry grind process in terms of ethanol yield, compositions of its co-products, and accumulation of fermentation inhibitors. Results show that 14% higher ethanol yield is achievable by processing and hydrolyzing the distillers' grains for additional fermentable sugars, as compared to the conventional dry grind process. Accumulation of fermentation by-products and inhibitory components in the proposed process is predicted to be 2-5 times higher than in the conventional dry grind process. The impact of fermentation inhibitors is reviewed and discussed. The final eDDGS (enhanced dried distillers' grains) from the modified processes has 30-40% greater protein content per mass than DDGS, and its potential as a value-added process is also analyzed. While the case studies used to illustrate the process simulation are based on LHW pretreated DG, the process simulation itself provides a framework for evaluation of the impact of other pretreatments.

  11. Yeasts in sustainable bioethanol production: A review.

    PubMed

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  12. Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production.

    PubMed

    Qin, Lei; Zhao, Xiong; Li, Wen-Chao; Zhu, Jia-Qing; Liu, Li; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Improving ethanol concentration and reducing enzyme dosage are main challenges in bioethanol refinery from lignocellulosic biomass. Ethylenediamine (EDA) pretreatment is a novel method to improve enzymatic digestibility of lignocellulose. In this study, simultaneous saccharification and co-fermentation (SSCF) process using EDA-pretreated corn stover was analyzed and optimized to verify the constraint factors on ethanol production. Highest ethanol concentration was achieved with the following optimized SSCF conditions at 6% glucan loading: 12-h pre-hydrolysis, 34 °C, pH 5.4, and inoculum size of 5 g dry cell/L. As glucan loading increased from 6 to 9%, ethanol concentration increased from 33.8 to 48.0 g/L, while ethanol yield reduced by 7%. Mass balance of SSCF showed that the reduction of ethanol yield with the increasing solid loading was mainly due to the decrease of glucan enzymatic conversion and xylose metabolism of the strain. Tween 20 and BSA increased ethanol concentration through enhancing enzymatic efficiency. The solid-recycled SSCF process reduced enzyme dosage by 40% (from 20 to 12 mg protein/g glucan) to achieve the similar ethanol concentration (~ 40 g/L) comparing to conventional SSCF. Here, we established an efficient SSCF procedure using EDA-pretreated biomass. Glucose enzymatic yield and yeast viability were regarded as the key factors affecting ethanol production at high solid loading. The extensive analysis of SSCF would be constructive to overcome the bottlenecks and improve ethanol production in cellulosic ethanol refinery.

  13. 75 FR 55988 - Approval and Promulgation of Implementation Plans; Commonwealth of Kentucky; Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... exclude facilities that produce ethanol through a natural fermentation process from the definition of... action on Kentucky's provisions to exclude facilities that produce ethanol through a natural fermentation... facilities that produce ethanol through a natural fermentation process from the definition of ``chemical...

  14. Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production.

    PubMed

    Wang, Ruifei; Unrean, Pornkamol; Franzén, Carl Johan

    2016-01-01

    High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. The fundamental challenges of such processes are related to the high viscosity and inhibitor contents of the medium. Poor mass transfer and inhibition of the yeast lead to decreased ethanol yield, titre and productivity. In the present work, high-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations. For high-solid SSCF process of SO2-catalyzed steam pre-treated wheat straw, the boosted solubilisation of WIS achieved by having all enzyme loaded at the beginning of the process is crucial for increased rates of both enzymatic hydrolysis and SSCF. A kinetic model was adapted to simulate the release of sugars during separate hydrolysis as well as during SSCF. Feeding of solid substrate to reach the instantaneous WIS content of 13 % (w/w) was carried out when 60 % of the cellulose was hydrolysed, according to simulation results. With this approach, accumulated WIS additions reached more than 20 % (w/w) without encountering mixing problems in a standard bioreactor. Feeding fresh cells to the SSCF reactor maintained the fermentation activity, which otherwise ceased when the ethanol concentration reached 40-45 g L(-1). In lab scale, the optimized multi-feed SSCF produced 57 g L(-1) ethanol in 72 h. The process was reproducible and resulted in 52 g L(-1) ethanol in 10 m(3) scale at the SP Biorefinery Demo Plant. SSCF of WIS content up to 22 % (w/w) is reproducible and scalable with the multi-feed SSCF configuration and model-aided process design. For simultaneous saccharification and fermentation, the overall efficiency relies on balanced rates of substrate feeding and conversion. Multi-feed SSCF provides the possibilities to balance interdependent rates by systematic optimization of the feeding strategies. The optimization routine presented in this work can easily be adapted for optimization of other lignocellulose-based fermentation systems.

  15. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Lignocellulosic ethanol production at high-gravity: challenges and perspectives.

    PubMed

    Koppram, Rakesh; Tomás-Pejó, Elia; Xiros, Charilaos; Olsson, Lisbeth

    2014-01-01

    In brewing and ethanol-based biofuel industries, high-gravity fermentation produces 10-15% (v/v) ethanol, resulting in improved overall productivity, reduced capital cost, and reduced energy input compared to processing at normal gravity. High-gravity technology ensures a successful implementation of cellulose to ethanol conversion as a cost-competitive process. Implementation of such technologies is possible if all process steps can be performed at high biomass concentrations. This review focuses on challenges and technological efforts in processing at high-gravity conditions and how these conditions influence the physiology and metabolism of fermenting microorganisms, the action of enzymes, and other process-related factors. Lignocellulosic materials add challenges compared to implemented processes due to high inhibitors content and the physical properties of these materials at high gravity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States.

    PubMed

    Cai, Hao; Dunn, Jennifer B; Wang, Zhichao; Han, Jeongwoo; Wang, Michael Q

    2013-10-02

    The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA's Renewable Fuel Standard program.

  18. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States

    PubMed Central

    2013-01-01

    Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or with vinasse fertigation. Forage sorghum-based ethanol can achieve a 49% WTW GHG emission reduction when ethanol plants meet process energy demands with CHP. In the case of forage sorghum and an integrated sweet sorghum pathway, the use of a portion of feedstock to fuel CHP systems significantly reduces fossil fuel consumption and GHG emissions. Conclusions This study provides new insight into life-cycle energy use and GHG emissions of multiple sorghum-based ethanol production pathways in the US. Our results show that adding sorghum feedstocks to the existing options for ethanol production could help in meeting the requirements for volumes of renewable, advanced and cellulosic bioethanol production in the US required by the EPA’s Renewable Fuel Standard program. PMID:24088388

  19. Modeling and parameter identification of the simultaneous saccharification-fermentation process for ethanol production.

    PubMed

    Ochoa, Silvia; Yoo, Ahrim; Repke, Jens-Uwe; Wozny, Günter; Yang, Dae Ryook

    2007-01-01

    Despite many environmental advantages of using alcohol as a fuel, there are still serious questions about its economical feasibility when compared with oil-based fuels. The bioethanol industry needs to be more competitive, and therefore, all stages of its production process must be simple, inexpensive, efficient, and "easy" to control. In recent years, there have been significant improvements in process design, such as in the purification technologies for ethanol dehydration (molecular sieves, pressure swing adsorption, pervaporation, etc.) and in genetic modifications of microbial strains. However, a lot of research effort is still required in optimization and control, where the first step is the development of suitable models of the process, which can be used as a simulated plant, as a soft sensor or as part of the control algorithm. Thus, toward developing good, reliable, and simple but highly predictive models that can be used in the future for optimization and process control applications, in this paper an unstructured and a cybernetic model are proposed and compared for the simultaneous saccharification-fermentation process (SSF) for the production of ethanol from starch by a recombinant Saccharomyces cerevisiae strain. The cybernetic model proposed is a new one that considers the degradation of starch not only into glucose but also into dextrins (reducing sugars) and takes into account the intracellular reactions occurring inside the cells, giving a more detailed description of the process. Furthermore, an identification procedure based on the Metropolis Monte Carlo optimization method coupled with a sensitivity analysis is proposed for the identification of the model's parameters, employing experimental data reported in the literature.

  20. Efficient process for producing saccharides and ethanol from a biomass feedstock

    DOEpatents

    Okeke, Benedict C.; Nanjundaswamy, Ananda K.

    2017-04-11

    Described herein is a process for producing saccharides and ethanol from biomass feedstock that includes (a) producing an enzyme composition by culturing a fungal strain(s) in the presence of a lignocellulosic medium, (b) using the enzyme composition to saccharify the biomass feedstock, and (c) fermenting the saccharified biomass feedstock to produce ethanol. The process is scalable and, in certain aspects, is capable of being deployed on farms, thereby allowing local production of saccharides and ethanol and resulting in a reduction of energy and other costs for farm operators. Optional steps to improve the biomass-to-fuel conversion efficiency are also contemplated, as are uses for byproducts of the process described herein.

  1. Novel process combining anaerobic-aerobic digestion and ion exchange resin for full recycling of cassava stillage in ethanol fermentation.

    PubMed

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2017-04-01

    A novel cleaner ethanol production process has been developed. Thin stillage is treated initially by anaerobic digestion followed by aerobic digestion and then further treated by chloride anion exchange resin. This allows the fully-digested and resin-treated stillage to be completely recycled for use as process water in the next ethanol fermentation batch, which eliminates wastewater discharges and minimizes consumption of fresh water. The method was evaluated at the laboratory scale. Process parameters were very similar to those found using tap water. Maximal ethanol production rate in the fully-recycled stillage was 0.9g/L/h, which was similar to the 0.9g/L/h found with the tap water control. The consumption of fresh water was reduced from 4.1L/L (fresh water/ethanol) to zero. Compared with anaerobically-aerobically digested stillage which had not been treated with resin, the fermentation time was reduced by 28% (from 72h to 52h) and reached the level achieved with tap water. This novel process can assist in sustainable development of the ethanol industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Role of adenosine and the orexinergic perifornical hypothalamus in sleep-promoting effects of ethanol.

    PubMed

    Sharma, Rishi; Sahota, Pradeep; Thakkar, Mahesh M

    2014-03-01

    Strong clinical and preclinical evidence suggests that acute ethanol promotes sleep. However, very little is known about how and where ethanol acts to promote sleep. We hypothesized that ethanol may induce sleep by increasing extracellular levels of adenosine and inhibiting orexin neurons in the perifornical hypothalamus. Experiments 1 and 2: Within-Subject Design; Experiment 3: Between-Subject Design. N/A. N/A. N/A. Using adult male Sprague-Dawley rats as our animal model, we performed three experiments to test our hypothesis. Our first experiment examined the effect of A1 receptor blockade in the orexinergic perifornical hypothalamus on sleep- promoting effects of ethanol. Bilateral microinjection of the selective A1 receptor antagonist 1,3-dipropyl-8-phenylxanthine (500 μM; 250 nL/side) into orexinergic perifornical hypothalamus significantly reduced nonrapid eye movement sleep with a concomitant increase in wakefulness, suggesting that blockade of adenosine A1 receptor attenuates ethanol-induced sleep promotion. Our second experiment examined adenosine release in the orexinergic perifornical hypothalamus during local ethanol infusion. Local infusion of pharmacologically relevant doses of ethanol significantly and dose-dependently increased adenosine release. Our final experiment used c-Fos immunohistochemistry to examine the effects of ethanol on the activation of orexin neurons. Acute ethanol exposure significantly reduced the number of orexin neurons containing c-Fos, suggesting an inhibition of orexin neurons after ethanol intake. Based on our results, we believe that ethanol promotes sleep by increasing adenosine in the orexinergic perifornical hypothalamus, resulting in A1 receptor-mediated inhibition of orexin neurons.

  3. Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.

    PubMed

    Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui

    2013-11-01

    An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development of an ethanol model using social insects: IV. Influence of ethanol on the aggression of Africanized honey bees (Apis mellifera L.).

    PubMed

    Abramson, Charles I; Place, Aaron J; Aquino, Italo S; Fernandez, Andrea

    2004-06-01

    Experiments were designed to determine whether ethanol influenced aggression in honey bees. Two experiments are reported. In Exp. 1, harnessed honey bees were fed a 1%, 5%, 10%, or 20% ethanol solution. Two control groups received either a sucrose solution only or no pretreatment, respectively. The dependent variable was the number of sting extensions over 10 min. Analysis showed that aggression in harnessed bees was not influenced by prior ethanol consumption. Because there was some suspicion that the extension of the sting apparatus may be hindered by harnessing, and the authors wanted to use a design that increased ecological validity, Exp. 2 was conducted with free-flying bees. Sucrose or 20% ethanol solutions were placed in front of beehives, and the number of stings on a leather patch dangled in front of the hive served as the dependent variable. The experiment was terminated after 5 hr. because bees exposed to ethanol became dangerously aggressive. A unique aspect of the study was that Africanized honey bees were used.

  5. Microlayered flow structure around an acoustically levitated droplet under a phase-change process.

    PubMed

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction.

  6. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds.

    PubMed

    Rocha, Maria Valderez Ponte; de Matos, Leonardo José Brandão Lima; Lima, Larissa Pinto de; Figueiredo, Pablo Marciano da Silva; Lucena, Izabelly Larissa; Fernandes, Fabiano André Narciso; Gonçalves, Luciana Rocha Barros

    2014-09-01

    This study evaluates the production of biodiesel and ethanol from spent coffee grounds (SCG). The extraction of oil from SCG, biodiesel production and ethanol production processes were studied. The liquid-to-solid ratio and temperature were evaluated in the ultrasound-assisted extraction of the oil from SCG. The highest yield (12%) was obtained using 4 mL g(-1) liquid-to-solid ratio at 60°C for 45 min. The process to produce biodiesel showed a yield of 97% into fatty acid methyl esters (FAME). The highest glucose yield (192 mg g SCG(-1)) was obtained by hydrolysis with 0.4 mol L(-1) sulfuric acid at 121°C for 15 min. The hydrolysate was used as fermentation medium for ethanol production by Saccharomyces cerevisiae obtaining 19.0 g L(-1) at 10h of process of ethanol with a yield of ethanol and productivity of 0.50 g g(-1) and 1.90 g L(-1)h(-1), respectively. Spent coffee grounds were considered a potential feedstock for biodiesel and ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Pie waste - A component of food waste and a renewable substrate for producing ethanol.

    PubMed

    Magyar, Margaret; da Costa Sousa, Leonardo; Jayanthi, Singaram; Balan, Venkatesh

    2017-04-01

    Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Conversion of Carbon Dioxide into Ethanol by Electrochemical Synthesis Method Using Cu-Zn Electrode

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadan, S.; Fariduddin, S.; Aminudin, A. R.; Hayatri, A. K.

    2018-01-01

    Research on conversion of carbon dioxide into ethanol has been done. The conversion process is carried out in a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor. As cathode was used Cu-Zn, while as anode carbon was utilized. Variations of voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis were performed to determine the optimum conditions to convert carbon dioxide into ethanol. Sample of the electrochemical synthesis process was analyzed by gas chromatography. From the result, it is found that the optimum conditions of the electrochemical synthesis process of carbon dioxide conversion into ethanol are voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis are 3 volts, 0.4 M and 90 minutes with the ethanol concentration of 10.44%.

  9. Differential Expression of Ethanol-Induced Hypothermia in Adolescent and Adult Rats Induced by Pretest Familiarization to the Handling/Injection Procedure

    PubMed Central

    Ristuccia, Robert C.; Hernandez, Michael; Wilmouth, Carrie E.; Spear, Linda P.

    2007-01-01

    Background Previous work examining ethanol’s autonomic effects has found contrasting patterns of age-related differences in ethanol-induced hypothermia between adolescent and adult rats. Most studies have found adolescents to be less sensitive than adults to this effect, although other work has indicated that adolescents may be more sensitive than adults under certain testing conditions. To test the hypothesis that adolescents show more ethanol hypothermia than adults when the amount of disruption induced by the test procedures is low, but less hypothermia when the experimental perturbation is greater, the present study examined the consequences of manipulating the amount of perturbation at the time of testing on ethanol-induced hypothermia in adolescent and adult rats. Methods The amount of test disruption was manipulated by administering ethanol through a chronically indwelling gastric cannula (low perturbation) versus via intragastric intubation (higher perturbation) in Experiment 1 or by either familiarizing animals to the handling and injection procedure for several days pretest or leaving them unmanipulated before testing in Experiment 2. Results The results showed that the handling manipulation, but not the use of gastric cannulae, altered the expression of ethanol-induced hypothermia differentially across age. When using a familiarization protocol sufficient to reduce the corticosterone response to the handling and injection procedure associated with testing, adolescents showed greater hypothermia than adults. In contrast, the opposite pattern of age differences in hypothermia was evident in animals that were not manipulated before the test day. Surprisingly, however, this difference across testing circumstances was driven by a marked reduction in hypothermia among adults who had been handled before testing, with handling having relatively little impact on ethanol hypothermia among adolescents. Conclusions Observed differences between adolescents and adults in the autonomic consequences of ethanol were dramatically influenced by whether animals were familiarized with the handling/injection process before testing. Under these circumstances, adolescents were less susceptible than adults to the impact of experimental perturbation on ethanol-induced hypothermia. These findings suggest that seemingly innocuous aspects of experimental design can influence conclusions reached on ontogenetic differences in sensitivity to ethanol, at least when indexed by ethanol-induced hypothermia. PMID:17374036

  10. The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology

    PubMed Central

    Jorge, Aguirre Joya; Heliodoro, De La Garza Toledo; Alejandro, Zugasti Cruz; Ruth, Belmares Cerda; Noé, Aguilar Cristóbal

    2013-01-01

    Objective To extract, quantify, and evaluate the phenolic content in Opuntia ficus-indica skin for their antioxidant capacity with three different methods (ABTS, DPPH, and lipid oxidation) and to optimize the extraction conditions (time, temperature and ethanol concentration) in a reflux system. Methods The extraction process was done using a reflux system. A San Cristobal II experimental design with three variables and three levels was used. The variables evaluated were time of extraction (h), concentration of ethanol (%, v/v) and temperature (°C). The extraction process was optimized using a response surface methodology. Results It was observed that at higher temperature more phenolic compounds were extracted, but the antioxidant capacity was decreased. The optimum conditions for phenolic compounds extraction and antioxidant capacity mixing the three methods were as follows: 45% of ethanol, 80 °C and 2 hours of extraction. Values obtained in our results are little higher that other previously reported. Conclusions It can be concluded the by-products of Opuntia ficus-indica represent a good source of natural antioxidants with possible applications in food, cosmetics or drugs industries. PMID:23730555

  11. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    PubMed

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  12. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum

    DOE PAGES

    Thompson, R. Adam; Layton, Donovan S.; Guss, Adam M.; ...

    2015-10-21

    Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model smore » capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. Furthermore, the model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites.« less

  13. Integration options for high energy efficiency and improved economics in a wood-to-ethanol process.

    PubMed

    Sassner, Per; Zacchi, Guido

    2008-04-15

    There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41-0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production cost reductions almost independently of each other.

  14. 75 FR 73017 - Approval and Promulgation of Implementation Plans; Georgia: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... produce ethanol through a natural fermentation process from the definition of ``chemical process plants... facilities that produce ethanol through a natural fermentation process from the definition of ``chemical...

  15. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

    PubMed

    Gombert, Andreas K; van Maris, Antonius J A

    2015-06-01

    Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. One-Pot Synthesis of Mesoporous Ni-Ti-Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol.

    PubMed

    Gonçalves, Alexandre A S; Faustino, Patrícia B; Assaf, José M; Jaroniec, Mietek

    2017-02-22

    One-pot synthesis of nanostructured ternary oxides of Ni, Al, and Ti was designed and performed via evaporation induced self-assembly (EISA). For the purpose of comparison, analogous oxides were also prepared by the impregnation method. The resulting materials were applied in two catalytic reactions: steam reforming of ethanol (SRE) for H 2 production (subjected to prior activation with H 2 ) and ethanol dehydration (ED; used without prior activation), to in situ analyze carbon accumulation by ethylene depletion when ethanol interacts with acidic sites present on the support. Modification of Ni-Al mixed oxides with titania was shown to have several benefits. CO 2 , NH 3 , and propylamine sorption data indicate a decrease in the strength of acidic and basic sites after addition of titania, which in turn slowed down the carbon accumulation during the ED reaction. These changes in interactions between ethanol and byproducts with the support led to different reaction pathways in SRE, indicating that the catalysts obtained by EISA with titania addition showed higher ethylene selectivity and CO 2 /CO ratios. The opposite was observed for the impregnated catalysts, which were less coke-stable during ED reactions and showed no ethylene selectivity in SRE. Carbon formed during ED reactions was shown to be thermodynamically less favorable and easier to decompose in the presence of titania. All catalysts studied displayed similar and high selectivities (∼80%) and yields (∼5.3 mol H2 /mol ethanol ) toward H 2 , which place them among the most active and selective catalysts for SRE. These results indicate the importance of tailoring the support surface acidity to achieve high reforming performance and higher selectivity toward SRE, one of the key processes to produce cleaner and efficient fuels. For an efficient reforming process, the yield of byproducts is low but still they affect the catalyst stability in the long-run, thus this work may impact future studies toward development of near-zero coke catalysts.

  17. Ethanol precipitation for purification of recombinant antibodies.

    PubMed

    Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois

    2014-10-20

    Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Recent trends in bioethanol production from food processing byproducts.

    PubMed

    Akbas, Meltem Yesilcimen; Stark, Benjamin C

    2016-11-01

    The widespread use of corn starch and sugarcane as sources of sugar for the production of ethanol via fermentation may negatively impact the use of farmland for production of food. Thus, alternative sources of fermentable sugars, particularly from lignocellulosic sources, have been extensively investigated. Another source of fermentable sugars with substantial potential for ethanol production is the waste from the food growing and processing industry. Reviewed here is the use of waste from potato processing, molasses from processing of sugar beets into sugar, whey from cheese production, byproducts of rice and coffee bean processing, and other food processing wastes as sugar sources for fermentation to ethanol. Specific topics discussed include the organisms used for fermentation, strategies, such as co-culturing and cell immobilization, used to improve the fermentation process, and the use of genetic engineering to improve the performance of ethanol producing fermenters.

  19. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymaticmore » hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.« less

  20. Cost analysis of cassava cellulose utilization scenarios for ethanol production on flowsheet simulation platform.

    PubMed

    Zhang, Jian; Fang, Zhenhong; Deng, Hongbo; Zhang, Xiaoxi; Bao, Jie

    2013-04-01

    Cassava cellulose accounts for one quarter of cassava residues and its utilization is important for improving the efficiency and profit in commercial scale cassava ethanol industry. In this study, three scenarios of cassava cellulose utilization for ethanol production were experimentally tested under same conditions and equipment. Based on the experimental results, a rigorous flowsheet simulation model was established on Aspen plus platform and the cost of cellulase enzyme and steam energy in the three cases was calculated. The results show that the simultaneous co-saccharification of cassava starch/cellulose and ethanol fermentation process (Co-SSF) provided a cost effective option of cassava cellulose utilization for ethanol production, while the utilization of cassava cellulose from cassava ethanol fermentation residues was not economically sound. Comparing to the current fuel ethanol selling price, the Co-SSF process may provide an important choice for enhancing cassava ethanol production efficiency and profit in commercial scale. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Carbon membranes for efficient water-ethanol separation.

    PubMed

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-28

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  2. Carbon membranes for efficient water-ethanol separation

    NASA Astrophysics Data System (ADS)

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-01

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  3. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach.

    PubMed

    Quintero, Julián A; Moncada, Jonathan; Cardona, Carlos A

    2013-07-01

    In this study a techno-economic analysis of the production of bioethanol from four lignocellusic (Sugarcane bagasse, Coffee cut-stems, Rice Husk, and Empty Fruit Bunches) residues is presented for the Colombian case. The ethanol production was evaluated using Aspen Plus and Aspen Process Economic Analyzer carrying out the simulation and the economic evaluation, respectively. Simulations included the composition of lignocellulosic residues, which was determined experimentally. It was found that empty fruit bunches presents the highest ethanol yield from a dry basis point of view (313.83 L/t), while rice husk produced less ethanol (250.56 L/t). The ethanol production cost was assessed for the standalone ethanol plant and the ethanol plant coupled with a cogeneration system. Moreover, ethanol production cost using EFB was the lowest with (0.49 US$/L) and without (0.58 US$/L) cogeneration scheme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment.

    PubMed

    Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin

    2016-05-01

    Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies.

    PubMed

    Hargreaves, Paulo Iiboshi; Barcelos, Carolina Araújo; da Costa, Antonio Carlos Augusto; Pereira, Nei

    2013-04-01

    This study evaluated the potential of Kappaphycus alvarezii as feedstock for ethanol production, i.e. ethanol 3G. First, aquatic biomass was subjected to a diluted acid pretreatment. This acid pretreatment generated two streams--a galactose-containing liquid fraction and a cellulose-containing solid fraction, which were investigated to determine their fermentability with the following strategies: a single-stream process (simultaneous saccharification and co-fermentation (SSCF) of both fractions altogether), which achieved 64.3 g L(-1) of ethanol, and a two-stream process (fractions were fermented separately), which resulted in 38 g L(-1) of ethanol from the liquid fraction and 53.0 g L(-1) from the simultaneous saccharification and fermentation (SSF) of the solid fraction. Based on the average fermentable carbohydrate concentration, it was possible to obtain 105 L of ethanol per ton of dry seaweed. These preliminaries results indicate that the use of the macro-algae K. alvarezii has a good potential feedstock for bioethanol production. Copyright © 2013. Published by Elsevier Ltd.

  6. Valorization of sugar-to-ethanol process waste vinasse: A novel biorefinery approach using edible ascomycetes filamentous fungi.

    PubMed

    Nair, Ramkumar B; Taherzadeh, Mohammad J

    2016-12-01

    The aim of the present work was to study the integration of edible ascomycetes filamentous fungi into the existing sugar- or molasses-to-ethanol processes, to grow on vinasse or stillage and produce ethanol and protein-rich fungal biomass. Two fungal strains, Neurospora intermedia and Aspergillus oryzae were examined in shake flasks and airlift-bioreactors, resulting in reduction of vinasse COD by 34% and viscosity by 21%. Utilization of glycerol and sugars were observed, yielding 202.4 or 222.8g dry fungal biomass of N. intermedia or A. oryzae respectively, per liter of vinasse. Integration of the current process at an existing ethanol facility producing about 100,000m 3 of ethanol per year could produce around 200,000-250,000tons of dry fungal biomass (40-45% protein) together with about 8800-12,600m 3 extra ethanol (8.8-12.6% of production-rate improvement). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  8. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    PubMed Central

    2012-01-01

    Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the sale of excess electricity and if the cost of enzymes continues to fall. PMID:22502801

  9. Granular starch hydrolysis for fuel ethanol production

    NASA Astrophysics Data System (ADS)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  10. Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser

    Science.gov Websites

    alternate equivalent dispenser design to be submitted for approval. Each jurisdiction has its own process grant a waiver or variance on a case-by-case basis for alternative equivalent dispensers for mid- to procedures used to evaluate the product. The group of manufacturers and industry partners interested in

  11. Anaerobic thermophilic culture

    DOEpatents

    Ljungdahl, Lars G.; Wiegel, Jurgen K. W.

    1981-01-01

    A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

  12. BIOFUEL AND BIOENERGY PRODUCTION FROM SUGAR BEETS

    EPA Science Inventory

    A design spreadsheet model for sizing and analyzing the integrated ethanol and biogas production system, a prototype of the ethanol and biogas production system in the laboratory that has been tested and documented with performance data, and a design and operating manual for t...

  13. Influence of ethanol on the metabolism of alprazolam.

    PubMed

    Huang, Zhibin; Xu, Zhiru; Wang, Hao; Zhao, Z Q; Rao, Yulan

    2018-06-01

    Alprazolam is a commonly used benzodiazepine in clinical practice, and when coingested with ethanol, alprazolam can increase behavioral irritability and aggression. However, the mechanism of its interaction with ethanol remains unknown. The pharmacokinetics of alprazolam was studied in vivo in rat experiments involving the simultaneous administration of alprazolam and ethanol, and the interactions between ethanol and alprazolam were investigated in vitro in human liver microsomes. In silico molecular docking was applied to analyze the change in the CYP3A4-alprazolam-binding conformation when ethanol was coadministered with alprazolam. Compared with alprazolam administered alone (2 mg/kg), the C max of alprazolam increased when ethanol was simultaneously administered at 3 g/kg. The concentrations of alprazolam significantly increased by 39%, 17%, 105%, and 642% at 5, 10, 30, and 120 min intervals in the brain when coadministered with ethanol, respectively. Molecular docking results suggested that the conformation of CYP3A4 with alprazolam changed when ethanol was bound to the SER119 residue, which seems critical in the process of CYP3A4-alprazolam binding. Ethanol might increase the toxicity of alprazolam by inhibiting the activity of CYP3A4, although other pharmacokinetic processes may be affected. Ethanol could change the conformation of CYP3A4 and affect alprazolam binding.

  14. Preparation of a collagen/polymer hybrid gel designed for tissue membranes. Part I: controlling the polymer-collagen cross-linking process using an ethanol/water co-solvent.

    PubMed

    Nam, Kwangwoo; Kimura, Tsuyoshi; Funamoto, Seiichi; Kishida, Akio

    2010-02-01

    The drawback with collagen/2-methacryloyloxyethyl phosphorylcholine (MPC) polymer hybrid gels (collagen/phospholipid polymer hybrid gels) prepared in alkaline morpholinoethane sulfonic acid (MES) aqueous solution is that the cross-linking rate between the polymer and the collagen is low. To solve this problem, ethanol has been adopted as the reaction solvent, to prevent 1-ethyl-3-(3-dimethylaminopropyl)-1-carbodiimide hydrochloride (EDC) hydrolysis. Alterations in the ethanol mole concentration changed the cross-linking rate between the MPC polymer and the collagen gel. Prevention of EDC hydrolysis is clearly observed; protonation of carboxyl groups implies that the ratio of ethanol to water should be controlled. The polymer shows signs of penetration into the collagen gel layer, thus forming a totally homogeneous phase gel. This affects the mechanical strength of the collagen gel, making the gel much stiffer and brittle with an increase in the swelling ratio, as compared with that prepared in MES buffer. However, it is possible to obtain a collagen/phospholipid polymer hybrid gel with a high polymer portion and the cross-linking rate can be successfully controlled.

  15. The lignol approach to biorefining of woody biomass to produce ethanol and chemicals.

    PubMed

    Arato, Claudio; Pye, E Kendall; Gjennestad, Gordon

    2005-01-01

    Processes that produce only ethanol from lignocellulosics display poor economics. This is generally overcome by constructing large facilities having satisfactory economies of scale, thus making financing onerous and hindering the development of suitable technologies. Lignol Innovations has developed a biorefining technology that employs an ethanol-based organosolv step to separate lignin, hemicellulose components, and extractives from the cellulosic fraction of woody biomass. The resultant cellulosic fraction is highly susceptible to enzymatic hydrolysis, generating very high yields of glucose (>90% in 12-24 h) with typical enzyme loadings of 10-20 FPU (filter paper units)/g. This glucose is readily converted to ethanol, or possibly other sugar platform chemicals, either by sequential or simultaneous saccharification and fermentation. The liquor from the organosolv step is processed by well-established unit operations to recover lignin, furfural, xylose, acetic acid, and a lipophylic extractives fraction. The process ethanol is recovered and recycled back to the process. The resulting recycled process water is of a very high quality, low BOD5, and suitable for overall system process closure. Significant benefits can be attained in greenhouse gas (GHG) emission reductions, as per the Kyoto Protocol. Revenues from the multiple products, particularly the lignin, ethanol and xylose fractions, ensure excellent economics for the process even in plants as small as 100 mtpd (metric tonnes per day) dry woody biomass input a scale suitable for processing wood residues produced by a single large sawmill.

  16. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion.

    PubMed

    Techaparin, Atiya; Thanonkeo, Pornthap; Klanrit, Preekamol

    The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS) countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR) and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45°C and 13% (v/v), respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40°C and 43°C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37°C with an ethanol concentration of 72.69g/L, a productivity of 1.59g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ) at 40°C were achieved using the Box-Behnken experimental design (BBD). The maximal ethanol concentration obtained during fermentation was 89.32g/L, with a productivity of 2.48g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  17. Synthesis of zeolite from rice husk ash waste of brick industries as hydrophobic adsorbent for fuel grade ethanol purification

    NASA Astrophysics Data System (ADS)

    Purnomo, A.; Alhanif, M.; Khotimah, C.; Zuhra, UA; Putri, BR; Kumoro, AC

    2017-11-01

    A lot of researchers have devoted on ethanol utilization as renewable energy to substitute petroleum based gasoline. When ethanol is being used as a new fuel candidate, it should have at least of 99.5% purity. Usually produced via sugar fermentation process, further purification of ethanol from other components in fermentation broth to obtain its fuel grade is a crucial step. The purpose of this research is to produce synthetic zeolite as hydrophobic adsorbent from rice husk ash for ethanol-water separation and to investigate the influence of weight, adsorption time and initial ethanol concentration on zeolite adsorption capacity. This research consisted of rice husk silica extraction, preparation of hydrophobic zeolite adsorbent, physical characterization using SEM, EDX and adsorption test for an ethanol-water solution. Zeolite with highest adsorption capacity was obtained with 15: 1 alumina silica composition. The best adsorption condition was achieved when 4-gram hydrophobic zeolite applied for adsorption of 100 mL of 10% (v/v) ethanol-water solution for 120 minutes, which resulted in ethanol with 98.93% (v/v) purity. The hydrophobic zeolite from rice husk ash is a potential candidate as an efficient adsorbent to purify raw ethanol into fuel grade ethanol. Implementation of this new adsorbent for ethanol production in commercial scale may reduce the energy consumption of that usually used for the distillation processes.

  18. Brief ethanol exposure and stress-related factors disorganize neonatal breathing plasticity during the brain growth spurt period in the rat.

    PubMed

    Macchione, A F; Anunziata, F; Haymal, B O; Abate, P; Molina, J C

    2018-04-01

    The effects of early ethanol exposure upon neonatal respiratory plasticity have received progressive attention given a multifactorial perspective related with sudden infant death syndrome or hypoxia-associated syndromes. The present preclinical study was performed in 3-9-day-old pups, a stage in development characterized by a brain growth spurt that partially overlaps with the 3rd human gestational trimester. Breathing frequencies and apneas were examined in pups receiving vehicle or a relatively moderate ethanol dose (2.0 g/kg) utilizing a whole body plethysmograph. The experimental design also considered possible associations between drug administration stress and exteroceptive cues (plethysmographic context or an artificial odor). Ethanol exposure progressively exerted a detrimental effect upon breathing frequencies. A test conducted at PD9 when pups were under the state of sobriety confirmed ethanol's detrimental effects upon respiratory plasticity (breathing depression). Pre-exposure to the drug also resulted in a highly disorganized respiratory response following a hypoxic event, i.e., heightened apneic episodes. Associative processes involving drug administration procedures and placement in the plethysmographic context also affected respiratory plasticity. Pups that experienced intragastric administrations in close temporal contiguity with such a context showed diminished hyperventilation during hypoxia. In a 2nd test conducted at PD9 while pups were intoxicated and undergoing hypoxia, an attenuated hyperventilatory response was observed. In this test, there were also indications that prior ethanol exposure depressed breathing frequencies during hypoxia and a recovery normoxia phase. As a whole, the results demonstrated that brief ethanol experience and stress-related factors significantly disorganize respiratory patterns as well as arousal responses linked to hypoxia in neonatal rats.

  19. Technique of ethanol food grade production with batch distillation and dehydration using starch-based adsorbent

    NASA Astrophysics Data System (ADS)

    Widjaja, Tri; Altway, Ali; Ni'mah, Hikmatun; Tedji, Namira; Rofiqah, Umi

    2015-12-01

    Development and innovation of ethanol food grade production are becoming the reasearch priority to increase economy growth. Moreover, the government of Indonesia has established regulation for increasing the renewable energy as primary energy. Sorghum is cerealia plant that contains 11-16% sugar that is optimum for fermentation process, it is potential to be cultivated, especially at barren area in Indonesia. The purpose of this experiment is to learn about the effect of microorganisms in fermentation process. Fermentation process was carried out batchwise in bioreactor and used 150g/L initial sugar concentration. Microorganisms used in this experiment are Zymomonas mobilis mutation (A3), Saccharomyces cerevisiae and mixed of Pichia stipitis. The yield of ethanol can be obtained from this experiment. For ethanol purification result, distillation process from fermentation process has been done to search the best operation condition for efficiency energy consumption. The experiment for purification was divided into two parts, which are distillation with structured packing steel wool and adsorption (dehydration) sequencely. In distillation part, parameters evaluation (HETP and pressure drop) of distillation column that can be used for scale up are needed. The experiment was operated at pressure of 1 atm. The distillation stage was carried out at 85 °C and reflux ratio of 0.92 with variety porosities of 20%, 40%, and 60%. Then the adsorption process was done at 120°C and two types of adsorbent, which are starch - based adsorbent with ingredient of cassava and molecular sieve 3A, were used. The adsorption process was then continued to purify the ethanol from impurities by using activated carbon. This research shows that the batch fermentation process with Zymomonas mobilis A3 obtain higher % yield of ethanol of 40,92%. In addition to that, for purification process, the best operation condition is by using 40% of porosity of stuctured packing steel wool in distillation stage and starch-based adsorbent in adsorption stage, which can obtain ethanol content of 92,15% with acetic acid percentage of 0,001% and the rest is water. This result is qualified for ethanol food grade specification which is between 90 - 94 % of ethanol with maximum percentage of acetic acid is 0,003%, and passes in fusel oil and isopropyl alcohol test.

  20. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Results Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. Conclusions This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved ethanol yield. PMID:23537043

  1. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.

    PubMed

    Pagliardini, Julien; Hubmann, Georg; Alfenore, Sandrine; Nevoigt, Elke; Bideaux, Carine; Guillouet, Stephane E

    2013-03-28

    Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved ethanol yield.

  2. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration.

    PubMed

    Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar

    2014-07-02

    Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.

  3. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    PubMed

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  4. THERMOREGULATION AT A HIGH AMBIENT TEMPERATURE FOLLOWING THE ORAL ADMINISTRATION OF ETHANOL IN THE RAT

    EPA Science Inventory

    This study was designed to assess the thermoregulatory mechanisms responsible for the elevation in body temperature following ethanol administration when exposed to a high ambient temperature (Ta). ale rats of the Fischer 344 strain were gavaged with 20% ethanol at doses of 0, 2....

  5. A Simple Laboratory Exercise for Ethanol Production by Immobilized Bakery Yeasts ("Saccharomyces Cerevisiae")

    ERIC Educational Resources Information Center

    Vullo, Diana L.; Wachsman, Monica B.

    2005-01-01

    This laboratory experiment was designed for Chemistry, Food Technology, Biology, and Chemical Engineering undergraduate students. This laboratory experience shows the advantages of immobilized bakery yeasts in ethanol production by alcoholic fermentation. The students were able to compare the ethanol production yields by free or calcium alginate…

  6. Impact of an acid fungal protease in high gravity fermentation for ethanol production using Indian sorghum as a feedstock.

    PubMed

    Gohel, V; Duan, G; Maisuria, V B

    2013-01-01

    This study evaluated the conventional jet cooking liquefaction process followed by simultaneous saccharification and fermentation (SSF) at 30% and 35% dry solids (DS) concentration of Indian sorghum feedstock for ethanol production, with addition of acid fungal protease or urea. To evaluate the efficacy of thermostable α-amylase in liquefaction at 30% and 35% DS concentration of Indian sorghum, liquefact solubility, higher dextrins, and fermentable sugars were analyzed at the end of the process. The liquefact was further subjected to SSF using yeast. In comparison with urea, addition of an acid fungal protease during SSF process was observed to accelerate yeast growth (μ), substrate consumption (Q(s)), ultimately ethanol yield based on substrate (Y(p/s)) and ethanol productivity based on fermentation time (Q(p)). The fermentation efficiency and ethanol recovery were determined for both concentrations of Indian sorghum and found to be increased with use of acid fungal protease in SSF process. Copyright © 2013 American Institute of Chemical Engineers.

  7. Solving ethanol production problems with genetically modified yeast strains.

    PubMed

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  8. Solving ethanol production problems with genetically modified yeast strains

    PubMed Central

    Abreu-Cavalheiro, A.; Monteiro, G.

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast. PMID:24516432

  9. Microlayered flow structure around an acoustically levitated droplet under a phase-change process

    PubMed Central

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction. PMID:28725723

  10. Performance comparison of ethanol and butanol production in a continuous and closed-circulating fermentation system with membrane bioreactor.

    PubMed

    Chen, Chunyan; Long, Sihua; Li, Airong; Xiao, Guoqing; Wang, Linyuan; Xiao, Zeyi

    2017-03-16

    Since both ethanol and butanol fermentations are urgently developed processes with the biofuel-demand increasing, performance comparison of aerobic ethanol fermentation and anerobic butanol fermentation in a continuous and closed-circulating fermentation (CCCF) system was necessary to achieve their fermentation characteristics and further optimize the fermentation process. Fermentation and pervaporation parameters including the average cell concentration, glucose consumption rate, cumulated production concentration, product flux, and separation factor of ethanol fermentation were 11.45 g/L, 3.70 g/L/h, 655.83 g/L, 378.5 g/m 2 /h, and 4.83, respectively, the corresponding parameters of butanol fermentation were 2.19 g/L, 0.61 g/L/h, 28.03 g/L, 58.56 g/m 2 /h, and 10.62, respectively. Profiles of fermentation and pervaporation parameters indicated that the intensity and efficiency of ethanol fermentation was higher than butanol fermentation, but the stability of butanol fermentation was superior to ethanol fermentation. Although the two fermentation processes had different features, the performance indicated the application prospect of both ethanol and butanol production by the CCCF system.

  11. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts.

    PubMed

    Xin, Fengxue; Dong, Weiliang; Jiang, Yujia; Ma, Jiangfeng; Zhang, Wenming; Wu, Hao; Zhang, Min; Jiang, Min

    2018-06-01

    Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.

  12. Surface nanobubble nucleation dynamics during water-ethanol exchange

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Ohl, Claus-Dieter

    2015-11-01

    Water-ethanol exchange has been a promising nucleation method for surface attached nanobubbles since their discovery. In this process, water and ethanol displace each other sequentially on a substrate. As the gas solubility is 36 times higher in ethanol than water, it was suggested that the exchange process leads to transient supersaturation and is responsible for the nanobubble nucleation. In this work, we visualize the nucleation dynamics by controllably mixing water and ethanol. It depicts the temporal evolution of the conventional exchange in a single field of view, detailing the conditions for surface nanobubble nucleation and the flow field that influences their spatial organization. This technique can also pattern surface nanobubbles with variable size distribution.

  13. Oral chronic ethanol administration to rodents by agar gel diet.

    PubMed

    Bykov, I; Palmén, M; Piirainen, L; Lindros, K O

    2004-01-01

    Chronic ethanol administration to rodents requires specially designed equipment and is labor intensive. Here we report a new procedure. A commercial liquid diet preparation was made into a gel by addition of 0.5% agar. The gel, containing 5.3% ethanol, was offered in Falcon tubes equipped with a feeding opening. The gel consumption by C57/Bl mice resulted in high blood ethanol levels (average 43 mM). After 6 weeks, marked liver steatosis and significantly increased serum alanine aminotransferase levels had developed. Administration of ethanol in a nutritionally adequate gel provides a simple method for studies on chronic ethanol effects in rodents.

  14. A Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.

    ERIC Educational Resources Information Center

    Blair, Brittain A.

    This guide is a competency-based vocational curriculum designed to provide educators with viable ethanol (100 percent alcohol) engine conversion procedures stated in simple terms and set in a flexible educational environment. The curriculum is designed so that educators can form various combinations of instructional activities and resource…

  15. Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation.

    PubMed

    Sun, Zhao-Yong; Tang, Yue-Qin; Iwanaga, Tomohiro; Sho, Tomohiro; Kida, Kenji

    2011-12-01

    An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L -1) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration

    DOE PAGES

    Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.; ...

    2016-04-01

    Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In thismore » work, we achieved approximately 230 g L -1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L -1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. As a result, the potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.« less

  17. DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L -1) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.

    Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In thismore » work, we achieved approximately 230 g L -1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L -1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. As a result, the potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.« less

  18. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process.

    PubMed

    Barta, Zsolt; Reczey, Kati; Zacchi, Guido

    2010-09-15

    Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.

  19. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

    PubMed Central

    2010-01-01

    Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat. PMID:20843330

  20. Genomic Evaluation of Thermoanaerobacter spp. for the Construction of Designer Co-Cultures to Improve Lignocellulosic Biofuel Production

    PubMed Central

    Verbeke, Tobin J.; Zhang, Xiangli; Henrissat, Bernard; Spicer, Vic; Rydzak, Thomas; Krokhin, Oleg V.; Fristensky, Brian; Levin, David B.; Sparling, Richard

    2013-01-01

    The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript. PMID:23555660

  1. Recent Advances on Bioethanol Dehydration using Zeolite Membrane

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-07-01

    Renewable energy has gained increasing attention throughout the world. Bioethanol has the potential to replace existing fossil fuel usage without much modification in existing facilities. Bioethanol which generally produced from fermentation route produces low ethanol concentration. However, fuel grade ethanol requires low water content to avoid engine stall. Dehydration process has been increasingly important in fuel grade ethanol production. Among all dehydration processes, pervaporation is considered as the most promising technology. Zeolite possesses high potential in pervaporation of bioethanol into fuel grade ethanol. Zeolite membrane can either remove organic (ethanol) from aqueous mixture or water from the mixture, depending on the framework used. Hydrophilic zeolite membrane, e.g. LTA, can easily remove water from the mixture leaving high ethanol concentration. On the other hand, hydrophobic zeolite membrane, e.g. silicate-1, can remove ethanol from aqueous solution. This review presents the concept of bioethanol dehydration using zeolite membrane. Special attention is given to the performance of selected pathway related to framework selection.

  2. Kansas Ethanol Lyons Approval

    EPA Pesticide Factsheets

    This update August 9, 2016 letter from EPA approves, with modifications, the petition from Kansas Ethanol, LLC, Lyons facility, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel

  3. Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production.

    PubMed

    Groves, Stephanie; Liu, Jifei; Shonnard, David; Bagley, Susan

    2013-07-01

    Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.

  4. Integration options for high energy efficiency and improved economics in a wood-to-ethanol process

    PubMed Central

    Sassner, Per; Zacchi, Guido

    2008-01-01

    Background There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. Results For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41–0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Conclusion Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production cost reductions almost independently of each other. PMID:18471311

  5. Technical/commercial feasibility study of the production of fuel-grade ethanol from corn: 100-million-gallon-per-year production facility in Myrtle Grove, Louisiana

    NASA Astrophysics Data System (ADS)

    1982-05-01

    The technical and economic feasibility of producing motor fuel alcohol from corn in a 100 million gallon per year plant to be constructed in Myrtle Grove, Louisiana is evaluated. The evaluation includes a detailed process design using proven technology, a capital cost estimate for the plant, a detailed analysis of the annual operating cost, a market study, a socioeconomic, environmental, health and safety analysis, and a complete financial analysis. Several other considerations for production of ethanol were evaluated including: cogeneration and fuel to be used in firing the boilers; single by-products vs. multiple by-products; and use of boiler flue gas for by-product drying.

  6. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation.

    PubMed

    Paluch, Andrew S; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L

    2015-01-28

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  7. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    NASA Astrophysics Data System (ADS)

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  8. 40 CFR 80.1502 - What are the survey requirements related to gasoline-ethanol blends?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surveys, including sample collection, transportation, storage, and analysis. (4) Survey Plan Design... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What are the survey requirements... Requirements for Gasoline-Ethanol Blends § 80.1502 What are the survey requirements related to gasoline-ethanol...

  9. 40 CFR 80.1502 - What are the survey requirements related to gasoline-ethanol blends?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surveys, including sample collection, transportation, storage, and analysis. (4) Survey Plan Design... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What are the survey requirements... Requirements for Gasoline-Ethanol Blends § 80.1502 What are the survey requirements related to gasoline-ethanol...

  10. 40 CFR 80.1502 - What are the survey requirements related to gasoline-ethanol blends?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surveys, including sample collection, transportation, storage, and analysis. (4) Survey Plan Design... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the survey requirements... Requirements for Gasoline-Ethanol Blends § 80.1502 What are the survey requirements related to gasoline-ethanol...

  11. 75 FR 81868 - Approval and Promulgation of Implementation Plans; Kentucky: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... ethanol through a natural fermentation process from the definition of ``chemical process plants'' in the... through a natural fermentation process from the definition of ``chemical process plants'' in the major NSR... facilities producing ethanol by natural fermentation under the North American Industry Classification System...

  12. Pervaporation behavior and integrated process for concentrating lignocellulosic ethanol through polydimethylsiloxane (PDMS) membrane.

    PubMed

    Chen, Jingwen; Zhang, Hongman; Wei, Ping; Zhang, Lin; Huang, He

    2014-02-01

    The effects of by-products from ethanol fermentation and hydrolysates of lignocelluloses on ethanol diffusion through polydimethylsiloxane (PDMS) membranes with/without silicalite-1 were investigated. A pervaporation process was integrated with lignocellulosic fermentation to concentrate bioethanol using bare PDMS membranes. Results showed that yeasts, solid particles, and salts increased ethanol flux and selectivity through the membranes (PDMS with/without silicalite-1), whereas glucose exerted negative effects on the performance. On bare PDMS membrane, the performance was not obviously affected by the existence of aliphatic acids. However, on PDMS-silicalite-1 membrane, a remarkable decrease in ethanol selectivity and a rapid growth of total flux in the presence of aliphatic acids were observed. These phenomena were due to the interaction of acids with silanol (Si-OH) groups to break the dense membrane surface. On the PDMS membranes with/without silicalite-1, degradation products of lignocellulosic hydrolysates such as furfural and hydroxyacetone slightly influenced separation performance. These results revealed that an integrated process can effectively eliminate product inhibition, improve ethanol productivity, and enhance the glucose conversion rate.

  13. Trends in biotechnological production of fuel ethanol from different feedstocks.

    PubMed

    Sánchez, Oscar J; Cardona, Carlos A

    2008-09-01

    Present work deals with the biotechnological production of fuel ethanol from different raw materials. The different technologies for producing fuel ethanol from sucrose-containing feedstocks (mainly sugar cane), starchy materials and lignocellulosic biomass are described along with the major research trends for improving them. The complexity of the biomass processing is recognized through the analysis of the different stages involved in the conversion of lignocellulosic complex into fermentable sugars. The features of fermentation processes for the three groups of studied feedstocks are discussed. Comparative indexes for the three major types of feedstocks for fuel ethanol production are presented. Finally, some concluding considerations on current research and future tendencies in the production of fuel ethanol regarding the pretreatment and biological conversion of the feedstocks are presented.

  14. Effects of high-dose ethanol intoxication and hangover on cognitive flexibility.

    PubMed

    Wolff, Nicole; Gussek, Philipp; Stock, Ann-Kathrin; Beste, Christian

    2018-01-01

    The effects of high-dose ethanol intoxication on cognitive flexibility processes are not well understood, and processes related to hangover after intoxication have remained even more elusive. Similarly, it is unknown in how far the complexity of cognitive flexibility processes is affected by intoxication and hangover effects. We performed a neurophysiological study applying high density electroencephalography (EEG) recording to analyze event-related potentials (ERPs) and perform source localization in a task switching paradigm which varied the complexity of task switching by means of memory demands. The results show that high-dose ethanol intoxication only affects task switching (i.e. cognitive flexibility processes) when memory processes are required to control task switching mechanisms, suggesting that even high doses of ethanol compromise cognitive processes when they are highly demanding. The EEG and source localization data show that these effects unfold by modulating response selection processes in the anterior cingulate cortex. Perceptual and attentional selection processes as well as working memory processes were only unspecifically modulated. In all subprocesses examined, there were no differences between the sober and hangover states, thus suggesting a fast recovery of cognitive flexibility after high-dose ethanol intoxication. We assume that the gamma-aminobutyric acid (GABAergic) system accounts for the observed effects, while they can hardly be explained by the dopaminergic system. © 2016 Society for the Study of Addiction.

  15. Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw.

    PubMed

    Ko, Jordon; Su, Wen-Jun; Chien, I-Lung; Chang, Der-Ming; Chou, Sheng-Hsin; Zhan, Rui-Yu

    2010-02-01

    The rice straw, an agricultural waste from Asians' main provision, was collected as feedstock to convert cellulose into ethanol through the enzymatic hydrolysis and followed by the fermentation process. When the two process steps are performed sequentially, it is referred to as separate hydrolysis and fermentation (SHF). The steps can also be performed simultaneously, i.e., simultaneous saccharification and fermentation (SSF). In this research, the kinetic model parameters of the cellulose saccharification process step using the rice straw as feedstock is obtained from real experimental data of cellulase hydrolysis. Furthermore, this model can be combined with a fermentation model at high glucose and ethanol concentrations to form a SSF model. The fermentation model is based on cybernetic approach from a paper in the literature with an extension of including both the glucose and ethanol inhibition terms to approach more to the actual plants. Dynamic effects of the operating variables in the enzymatic hydrolysis and the fermentation models will be analyzed. The operation of the SSF process will be compared to the SHF process. It is shown that the SSF process is better in reducing the processing time when the product (ethanol) concentration is high. The means to improve the productivity of the overall SSF process, by properly using aeration during the batch operation will also be discussed.

  16. Single temperature liquefaction process at different operating pHs to improve ethanol production from Indian rice and corn feedstock.

    PubMed

    Gohel, V; Ranganathan, K; Duan, G

    2017-04-21

    Conventional grain ethanol manufacturing is a high-temperature energy-intensive process comprising of multiple-unit operations when combined with lower ethanol recovery results in higher production cost. In liquefaction, jet cooking accounts for significant energy cost, while strong acid or base used for pH adjustment presents a safety hazard. A need is felt for sustainable ethanol manufacturing process that is less hazardous, consumes lower energy, and operates in a low pH range of 4.50-5.50. A single temperature liquefaction (STL) process that could efficiently operate at lower liquefaction temperature over a pH range of 4.50-5.50 was developed using rice and corn feedstock. Ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 481.2 ± 1.5, 492.4 ± 1.5, and 493.6 ± 1.5 L MT -1 rice, respectively. Similarly, ethanol recovery witnessed at pH 4.5, 5.0, and 5.5 are 404.6 ± 1.3, 413.9 ± 0.8, and 412.4 ± 1.8 L MT -1 corn, respectively. The improvement in ethanol recovery is attributed to higher starch conversion by alpha-amylase even at pH as low as 4.50. Thus, the STL process operated at pH lower than 5.20 is poised to enhance sustainability by offering dual advantage of energy as well as chemical saving.

  17. Predictive microbiology for cosmetics based on physicals, chemicals and concentration parameters.

    PubMed

    Ghalleb, S; De Vaugelade, S; Sella, O; Lavarde, M; Mielcarek, C; Pense-Lheritier, A-M; Pirnay, S

    2015-02-01

    Challenge test (CT) is essential to assure the efficiency of the preservative system in products. A previous study realized by our staff in 2012, carried out to evaluate the influence of three parameters (ethanol, pH and water) on the microbiological cosmetics products conservation. Following this work, a correlation between aw (based on the glycerine concentration) and the selected parameter has been demonstrated. In the present study, smaller limits of ethanol, pH and glycerine were applied to determinate CT necessity. Sixteen stables O/W cosmetics creams with different concentration of ethanol (1-19%), glycerine (3-16%) and different pH (6-11) were formulated. To evaluate the efficiency of the different formulations, CTs were performed according to the International Standard ISO 11930:2012. To determine the influence of the parameters, a D-optimal plan generated by Design Expert(®) was applied. Design of Experiments software offers to plan, estimate and control the statistics and models for factorial and no-factorial designs. Challenge tests results show that 10 formula passed criteria A, two passed criteria B and four are not conform. Mostly, an ethanol concentration higher than 16% exempts products of CT. It has been shown that an ethanol concentration between 10.5% and 16%, and an glycerine concentration >10%; or if the ethanol concentration is between 5% and 10.5%, glycerine is >6% and pH is ≥10, the CT is not required. Ethanol has a significant impact on conservation and especially when it is correlated with glycerine and pH. Finally, a glycerine concentration higher than 16% exempts products of CT. Following the analysis of the different concentration, a correlation between glycerine and ethanol that directly influence microbiological protection of cosmetics products has been established. Indeed, by controlling ethanol, pH and glycerine, many products may be exempted from the CT. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  18. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.

    PubMed

    Thompson, R Adam; Layton, Donovan S; Guss, Adam M; Olson, Daniel G; Lynd, Lee R; Trinh, Cong T

    2015-11-01

    Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model's capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. The model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. EFFECT OF ENDOSPERM HARDNESS ON AN ETHANOL PROCESS USING A GRANULAR STARCH HYDROLYZING ENZYME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, P; W Liu, D B; Johnston, K D

    Granular starch hydrolyzing enzymes (GSHE) can hydrolyze starch at low temperature (32°C). The dry grind process using GSHE (GSH process) has fewer unit operations and no changes in process conditions (pH 4.0 and 32°C) compared to the conventional process because it dispenses with the cooking and liquefaction step. In this study, the effects of endosperm hardness, protease, urea, and GSHE levels on GSH process were evaluated. Ground corn, soft endosperm, and hard endosperm were processed using two GSHE levels (0.1 and 0.4 mL per 100 g ground material) and four treatments of protease and urea addition. Soft and hard endospermmore » materials were obtained by grinding and sifting flaking grits from a dry milling pilot plant; classifications were confirmed using scanning electron microscopy. During 72 h of simultaneous granular starch hydrolysis and fermentation (GSHF), ethanol and glucose profiles were determined using HPLC. Soft endosperm resulted in higher final ethanol concentrations compared to ground corn or hard endosperm. Addition of urea increased final ethanol concentrations for soft and hard endosperm. Protease addition increased ethanol concentrations and fermentation rates for soft endosperm, hard endosperm, and ground corn. The effect of protease addition on ethanol concentrations and fermentation rates was most predominant for soft endosperm, less for hard endosperm, and least for ground corn. Samples (soft endosperm, hard endosperm, or corn) with protease resulted in higher (1.0% to 10.5% v/v) ethanol concentration compared to samples with urea. The GSH process with protease requires little or no urea addition. For fermentation of soft endosperm, GSHE dose can be reduced. Due to nutrients (lipids, minerals, and soluble proteins) present in corn that enhance yeast growth, ground corn fermented faster at the beginning than hard and soft endosperm.« less

  20. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash.

    PubMed

    Dias, Marina O S; Junqueira, Tassia L; Cavalett, Otávio; Cunha, Marcelo P; Jesus, Charles D F; Rossell, Carlos E V; Maciel Filho, Rubens; Bonomi, Antonio

    2012-01-01

    Ethanol production from lignocellulosic materials is often conceived considering independent, stand-alone production plants; in the Brazilian scenario, where part of the potential feedstock (sugarcane bagasse) for second generation ethanol production is already available at conventional first generation production plants, an integrated first and second generation production process seems to be the most obvious option. In this study stand-alone second generation ethanol production from surplus sugarcane bagasse and trash is compared with conventional first generation ethanol production from sugarcane and with integrated first and second generation; simulations were developed to represent the different technological scenarios, which provided data for economic and environmental analysis. Results show that the integrated first and second generation ethanol production process from sugarcane leads to better economic results when compared with the stand-alone plant, especially when advanced hydrolysis technologies and pentoses fermentation are included. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. 76 FR 55572 - Approval and Promulgation of Implementation Plans; Georgia: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...) Exclude facilities that produce ethanol through a natural fermentation process from the definition of... 24060) which exclude facilities that produce ethanol through a natural fermentation process from the...

  2. The Effects of Voltage and Concentration of Sodium Bicarbonate on Electrochemical Synthesis of Ethanol from Carbon Dioxide Using Brass as Cathode

    NASA Astrophysics Data System (ADS)

    Ramadan, Septian; Fariduddin, Sholah; Rizki Aminudin, Afianti; Kurnia Hayatri, Antisa; Riyanto

    2017-11-01

    The effects of voltage and concentration of sodium bicarbonate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide into ethanol. The conversion process is carried out using a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor equipped with a cathode and anode. As the cathode was used brass, while as the anode carbon was utilized. Sample of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced. The optimum electrochemical synthesis conditions to convert carbon dioxide into ethanol are voltage and concentration of sodium bicarbonate are 3 volts and 0.4 M with ethanol concentration of 1.33%.

  3. Increased Sensitivity to Alcohol Induced Changes in ERK Map Kinase Phosphorylation and Memory Disruption in Adolescent as Compared to Adult C57BL/6J Mice

    PubMed Central

    Spanos, Marina; Besheer, Joyce; Hodge, Clyde W.

    2012-01-01

    Adolescence is a critical period of brain development that is accompanied by increased probability of risky behavior, such as alcohol use. Emerging research indicates that adolescents are differentially sensitive to the behavioral effects of acute ethanol as compared to adults but the neurobiological mechanisms of this effect remain to be fully elucidated. This study was designed to evaluate effects of acute ethanol on extracellular signal-regulated kinase phosphorylation (p-ERK1/2) in mesocorticolimbic brain regions. We also sought to determine if age-specific effects of ethanol on p-ERK1/2 are associated with ethanol-induced behavioral deficits on acquisition of the hippocampal-dependent novel object recognition (NOR) test. Adolescent and adult C57BL/6J mice were administered acute ethanol (0 0.5, 1, or 3 g/kg, i.p.). Brains were removed 30-min post injection and processed for analysis of p-ERK1/2 immunoreactivity (IR). Additional groups of mice were administered ethanol (0 or 1 g/kg) prior to the NOR test. Analysis of p-ERK1/2 IR showed that untreated adolescent mice had significantly higher levels of p-ERK1/2 IR in the nucleus accumbens shell, basolateral amygdala (BLA), central amygdala (CeA), and medial prefrontal cortex (mPFC) as compared to adults. Ethanol (1 g/kg) selectively reduced p-ERK1/2 IR in the dentate gyrus and increased p-ERK1/2 IR in the BLA only in adolescent mice. Ethanol (3 g/kg) produced the same effects on p-ERK1/2 IR in both age groups with increases in CeA and mPFC, but a decrease in the dentate gyrus, as compared to age-matched saline controls. Pretreatment with ethanol (1 g/kg) disrupted performance on the NOR test specifically in adolescents, which corresponds with the ethanol-induced inhibition of p-ERK1/2 IR in the hippocampus. These data show that adolescent mice have differential expression of basal p-ERK1/2 IR in mesocorticolimbic brain regions. Acute ethanol produces a unique set of changes in ERK1/2 phosphorylation in the adolescent brain that are associated with disruption of hippocampal-dependent memory acquisition. PMID:22348893

  4. Effect of corn stover compositional variability on minimum ethanol selling price (MESP).

    PubMed

    Tao, Ling; Templeton, David W; Humbird, David; Aden, Andy

    2013-07-01

    A techno-economic sensitivity analysis was performed using a National Renewable Energy Laboratory (NREL) 2011 biochemical conversion design model varying feedstock compositions. A total of 496 feedstock near infrared (NIR) compositions from 47 locations in eight US Corn Belt states were used as the inputs to calculate minimum ethanol selling price (MESP), ethanol yield (gallons per dry ton biomass feedstock), ethanol annual production, as well as total installed project cost for each composition. From this study, the calculated MESP is $2.20 ± 0.21 (average ± 3 SD) per gallon ethanol. Copyright © 2013. Published by Elsevier Ltd.

  5. Design of a lamella settler for biomass recycling in continuous ethanol fermentation process.

    PubMed

    Tabera, J; Iznaola, M A

    1989-04-20

    The design and application of a settler to a continuous fermentation process with yeast recycle were studied. The compact lamella-type settler was chosen to avoid large volumes associated with conventional settling tanks. A rationale of the design method is covered. The sedimentation area was determined by classical batch settling rate tests and sedimentation capacity calculation. Limitations on the residence time of the microorganisms in the settler, rather than sludge thickening considerations, was the approach employed for volume calculation. Fermentation rate tests with yeast after different sedimentation periods were carried out to define a suitable residence time. Continuous cell recycle fermentation runs, performed with the old and new sedimentation devices, show that lamella settler improves biomass recycling efficiency, being the process able to operate at higher sugar concentrations and faster dilution rates.

  6. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    NASA Astrophysics Data System (ADS)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA’s requirements for cellulosic biofuel if the leakage rate is higher than 9.7%. For the small biorefinery, there are no GHG emission benefits in the production of biomethane if the leakage rate is higher than 11.5%. Compared to system expansion, the use of energy and market value allocation methods generally results in higher estimates of GHG emissions for the primary biorefinery products (i.e., smaller reductions in emissions compared to reference systems).

  7. Power-grade butanol recovery and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noon, R.

    1982-02-12

    As an alternative to the traditional recovery systems, it was proposed in a previous publication that the n-butanol/acetone/ethanol fermentation products could be recovered as a power grade fuel blend and used directly as a fuel. This would affect a savings in process energy requirements because each chemical component would not have to be processed individually to technical grade purity. Further, some residual water could be tolerated in the fuel blend. To develop such a power grade fuel recovery scheme beyond the conceptual stage, the Energy Research and Resource Division of the Kansas Energy Office undertook a two-fold program to demonstratemore » and test a power grade butanol/acetone/ethanol fuel recovery system, and further to demonstrate the feasibility of using the fuel blend in a standard type engine. A development program was initiated to accomplish the following objectives: design and test an operational power grade butanol recovery plant that would operate at one liter per hour output; and test and assess the performance of power grade butanol in a spark ignition automotive engine. This project has demonstrated that recovery of a power grade butanol fuel blend is simple and can be accomplished at a considered energy advantage over ethanol. It was further demonstrated that such a power grade blend works well in a typical spark ignition engine.« less

  8. Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, B.

    1980-05-01

    The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will bemore » digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.« less

  9. Electrocatalytic behavior of a nanocomposite of Ni/Pd supported by carbonized PVA nanofibers towards formic acid, ethanol and urea oxidation: A physicochemical and electro-analysis study

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Yasin, Ahmed S.; Barakat, Nasser A. M.; Song, Seung A.; Lee, Ha Eun; Kim, Seong Su

    2018-03-01

    A nanocomposite of Ni/Pd supported by carbonized poly-vinyl alcohol (PVA) nanofibers (NFs) was synthesized via electrospinning followed by calcination under an argon atmosphere. The as-synthesized NFs were studied using physicochemical analyses, such as field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTsbnd IR) and X-ray photoelectron spectroscopy (XPS), to investigate the morphology, crystallinity, effect of carbonization and surface chemistry of the NFs, respectively. Cyclic voltammetry (CV) and chronoamperometry (CA) were utilized to study the performance of the NFs towards electrooxidation reactions. The designed NFs present superior electrocatalytic behavior in an acid medium towards formic acid oxidation, as well as urea and ethanol oxidation in an alkaline medium. The electrocatalytic performance of the bimetallic NFs appears to arise from the assembly of bimetallic Ni/Pd@NFs based on PVA, which has hydroxyl groups. These hydroxyl groups can decrease the negative processes that occur as a result of metal-metal interactions, such as the aggregation process. This study introduces a novel non-precious electrocatalyst to facilitate the commercialization of fuel cells based on formic acid, urea and ethanol.

  10. Combination of decentralized waste drying and SSF techniques for household biowaste minimization and ethanol production.

    PubMed

    Sotiropoulos, A; Vourka, I; Erotokritou, A; Novakovic, J; Panaretou, V; Vakalis, S; Thanos, T; Moustakas, K; Malamis, D

    2016-06-01

    The results of the demonstration of an innovative household biowaste management and treatment scheme established in two Greek Municipalities for the production of lignocellulosic ethanol using dehydrated household biowaste as a substrate, are presented within this research. This is the first time that biowaste drying was tested at a decentralized level for the production of ethanol using the Simultaneous Saccharification and Fermentation (SSF) process, at a pilot scale in Greece. The decentralized biowaste drying method proved that the household biowaste mass and volume reduction may reach 80% through the dehydration process used. The chemical characteristics related to lignocellulosic ethanol production have proved to differ substantially between seasons thus; special attention should be given to the process applied for ethanol production mainly regarding the enzyme quality and quantity used during the pretreatment stage. The maximum ethanol production achieved was 29.12g/L, approximately 60% of the maximum theoretical yield based on the substrate's sugar content. The use of the decentralized waste drying as an alternative approach for household biowaste minimization and the production of second generation ethanol is considered to be a promising approach for efficient biowaste management and treatment in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Evaluating the impact of ammonia fiber expansion (AFEX) pretreatment conditions on the cost of ethanol production.

    PubMed

    Bals, Bryan; Wedding, Chris; Balan, Venkatesh; Sendich, Elizabeth; Dale, Bruce

    2011-01-01

    Ammonia fiber expansion (AFEX) pretreatment is an ammonia-based process for improving the susceptibility of lignocellulosic biomass to enzymatic attack. Four parameters--ammonia loading, water loading, reaction temperature, and residence time--can be varied in order to optimize AFEX pretreatment. The effect of these parameters on process economics of ethanol production was studied using a leading biorefinery model. Ammonia loading and residence time had the greatest impact on the economics of ethanol production, primarily due to processing costs for the chilled water condenser and the capital cost of the AFEX reactor. Water loading and reaction temperature had only modest impact on process economics. In addition, the impact of pretreatment conditions on makeup ammonia requirements was explored experimentally, which ranged from 15 to 25 g ammonia/kg biomass. Overall, pretreatment conditions can change the costs of ethanol production by up to 35 cents per gallon ethanol in an 850 ton/day refinery. By linking the results obtained from this Aspen model to experimental results for ethanol production and makeup ammonia recovery, this study can be used to create an economic optimum for AFEX pretreatment in contrast with simply maximizing fermentable sugar production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  13. A novel cell factory for efficient production of ethanol from dairy waste.

    PubMed

    Liu, Jianming; Dantoft, Shruti Harnal; Würtz, Anders; Jensen, Peter Ruhdal; Solem, Christian

    2016-01-01

    Sustainable and economically feasible ways to produce ethanol or other liquid fuels are becoming increasingly relevant due to the limited supply of fossil fuels and the environmental consequences associated with their consumption. Microbial production of fuel compounds has gained a lot of attention and focus has mostly been on developing bio-processes involving non-food plant biomass feedstocks. The high cost of the enzymes needed to degrade such feedstocks into its constituent sugars as well as problems due to various inhibitors generated in pretreatment are two challenges that have to be addressed if cost-effective processes are to be established. Various industries, especially within the food sector, often have waste streams rich in carbohydrates and/or other nutrients, and these could serve as alternative feedstocks for such bio-processes. The dairy industry is a good example, where large amounts of cheese whey or various processed forms thereof are generated. Because of their nutrient-rich nature, these substrates are particularly well suited as feedstocks for microbial production. We have generated a Lactococcus lactis strain which produces ethanol as its sole fermentation product from the lactose contained in residual whey permeate (RWP), by introducing lactose catabolism into a L. lactis strain CS4435 (MG1363 Δ(3) ldh, Δpta, ΔadhE, pCS4268), where the carbon flow has been directed toward ethanol instead of lactate. To achieve growth and ethanol production on RWP, we added corn steep liquor hydrolysate (CSLH) as the nitrogen source. The outcome was efficient ethanol production with a titer of 41 g/L and a yield of 70 % of the theoretical maximum using a fed-batch strategy. The combination of a low-cost medium from industrial waste streams and an efficient cell factory should make the developed process industrially interesting. A process for the production of ethanol using L. lactis and a cheap renewable feedstock was developed. The results demonstrate that it is possible to achieve sustainable bioconversion of waste products from the dairy industry (RWP) and corn milling industry (CSLH) to ethanol and the process developed shows great potential for commercial realization.

  14. 75 FR 62024 - Approval and Promulgation of Implementation Plans; State of Mississippi: Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... the NSR major source permitting requirements ``chemical process plants'' that produce ethanol through a natural fermentation process (hereafter referred to as the ``Ethanol Rule''). See 72 FR 24060. EPA...

  15. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    PubMed

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  16. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    EPA Science Inventory

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...

  17. [Extraction Optimization of Rhizome of Curcuma longa by Response Surface Methodology and Support Vector Regression].

    PubMed

    Zhou, Pei-pei; Shan, Jin-feng; Jiang, Jian-lan

    2015-12-01

    To optimize the optimal microwave-assisted extraction method of curcuminoids from Curcuma longa. On the base of single factor experiment, the ethanol concentration, the ratio of liquid to solid and the microwave time were selected for further optimization. Support Vector Regression (SVR) and Central Composite Design-Response Surface Methodology (CCD) algorithm were utilized to design and establish models respectively, while Particle Swarm Optimization (PSO) was introduced to optimize the parameters of SVR models and to search optimal points of models. The evaluation indicator, the sum of curcumin, demethoxycurcumin and bisdemethoxycurcumin by HPLC, were used. The optimal parameters of microwave-assisted extraction were as follows: ethanol concentration of 69%, ratio of liquid to solid of 21 : 1, microwave time of 55 s. On those conditions, the sum of three curcuminoids was 28.97 mg/g (per gram of rhizomes powder). Both the CCD model and the SVR model were credible, for they have predicted the similar process condition and the deviation of yield were less than 1.2%.

  18. Pretreatment of empty fruit bunch from oil palm for fuel ethanol production and proposed biorefinery process.

    PubMed

    Tan, Liping; Yu, Yongcheng; Li, Xuezhi; Zhao, Jian; Qu, Yinbo; Choo, Yuen May; Loh, Soh Kheang

    2013-05-01

    This study evaluates the effects of some pretreatment processes to improve the enzymatic hydrolysis of oil palm empty fruit bunch (EFB) for ethanol production. The experimental results show that the bisulfite pretreatment was practical for EFB pretreatment. Moreover, the optimum pretreatment conditions of the bisulfite pretreatment (180 °C, 30 min, 8% NaHSO3, 1% H2SO4) were identified. In the experiments, a biorefinery process of EFB was proposed to produce ethanol, xylose products, and lignosulfonates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  20. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOEpatents

    Gaddy, James L.; Clausen, Edgar C.

    1992-01-01

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  1. Quality by design for herbal drugs: a feedforward control strategy and an approach to define the acceptable ranges of critical quality attributes.

    PubMed

    Yan, Binjun; Li, Yao; Guo, Zhengtai; Qu, Haibin

    2014-01-01

    The concept of quality by design (QbD) has been widely accepted and applied in the pharmaceutical manufacturing industry. There are still two key issues to be addressed in the implementation of QbD for herbal drugs. The first issue is the quality variation of herbal raw materials and the second issue is the difficulty in defining the acceptable ranges of critical quality attributes (CQAs). To propose a feedforward control strategy and a method for defining the acceptable ranges of CQAs for the two issues. In the case study of the ethanol precipitation process of Danshen (Radix Salvia miltiorrhiza) injection, regression models linking input material attributes and process parameters to CQAs were built first and an optimisation model for calculating the best process parameters according to the input materials was established. Then, the feasible material space was defined and the acceptable ranges of CQAs for the previous process were determined. In the case study, satisfactory regression models were built with cross-validated regression coefficients (Q(2) ) all above 91 %. The feedforward control strategy was applied successfully to compensate the quality variation of the input materials, which was able to control the CQAs in the 90-110 % ranges of the desired values. In addition, the feasible material space for the ethanol precipitation process was built successfully, which showed the acceptable ranges of the CQAs for the concentration process. The proposed methodology can help to promote the implementation of QbD for herbal drugs. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    PubMed

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  3. Integrated bioethanol production to boost low-concentrated cellulosic ethanol without sacrificing ethanol yield.

    PubMed

    Xu, Youjie; Zhang, Meng; Roozeboom, Kraig; Wang, Donghai

    2018-02-01

    Four integrated designs were proposed to boost cellulosic ethanol titer and yield. Results indicated co-fermentation of corn flour with hydrolysate liquor from saccharified corn stover was the best integration scheme and able to boost ethanol titers from 19.9 to 123.2 g/L with biomass loading of 8% and from 36.8 to 130.2 g/L with biomass loadings of 16%, respectively, while meeting the minimal ethanol distillation requirement of 40 g/L and achieving high ethanol yields of above 90%. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass is able to significantly enhance ethanol concentration to reduce energy cost for distillation without sacrificing ethanol yields. This novel method could be extended to any pretreatment of biomass from low to high pH pretreatment as demonstrated in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial Dekkera/Brettanomyces bruxellensis strain.

    PubMed

    Reis, Alexandre Libanio Silva; de Fátima Rodrigues de Souza, Raquel; Baptista Torres, Rochane Regina Neves; Leite, Fernanda Cristina Bezerra; Paiva, Patrícia Maria Guedes; Vidal, Esteban Espinosa; de Morais, Marcos Antonio

    2014-01-01

    The discovery of a novel yeast with a natural capacity to produce ethanol from lignocellulosic substrates (second-generation ethanol) is of great significance for bioethanol technology. While there are some yeast strains capable of assimilating cellobiose in aerobic laboratory conditions, the predominant sugar in the treatment of lignocellulosic material, little is known about this ability in real industrial conditions. Fermentations designed to simulate industrial conditions were conducted in synthetic medium with glucose, sucrose, cellobiose and hydrolyzed pre-treated cane bagasse as a different carbon source, with the aim of further characterizing the fermentation capacity of a promising Dekkera bruxellensis yeast strain, isolated from the bioethanol process in Brazil. As a result, it was found (for the first time in oxygen-limiting conditions) that the strain Dekkera bruxellensis GDB 248 could produce ethanol from cellobiose. Moreover, it was corroborated that the cellobiase activity characterizes the enzyme candidate in semi-purified extracts (β-glucosidase). In addition, it was demonstrated that GDB 248 strain had the capacity to produce a higher acetic acid concentration than ethanol and glycerol, which confirms the absence of the Custer effect with this strain in oxygen-limiting conditions. Moreover, it is also being suggested that D. bruxellensis could benefit Saccharomyces cerevisiae and outcompete it in the industrial environment. In this way, it was confirmed that D. bruxellensis GDB 248 has the potential to produce ethanol from cellobiose, and is a promising strain for the fermentation of lignocellulosic substrates.

  5. New insights into respirable protein powder preparation using a nano spray dryer.

    PubMed

    Bürki, K; Jeon, I; Arpagaus, C; Betz, G

    2011-04-15

    In this study the Nano Spray Dryer B-90 (BÜCHI Labortechnik AG, Flawil, Switzerland) was evaluated with regard to the drying of proteins and the preparation of respirable powders in the size range of 1-5 μm. β-galactosidase was chosen as a model protein and trehalose was added as a stabilizer. The influence of inlet temperature, hole size of the spray cap membrane and ethanol concentration in the spray solution was studied using a 3³ full factorial design. The investigated responses were enzyme activity, particle size, span, yield and shelf life. Furthermore, the particle morphology was examined. The inlet temperature as well as the interaction of inlet temperature and spray cap size significantly influenced the enzyme activity. Full activity was retained with the optimized process. The particle size was affected by the hole size of the spray cap membrane and the ethanol content. The smallest cap led to a monodisperse particle size distribution and the greatest yield of particles of respirable size. Higher product recovery was achieved with lower inlet temperatures, higher ethanol contents and smaller cap sizes. Particle morphology differed depending on the cap size. The protein exhibited higher storage stability when spray dried without ethanol and when a larger spray cap size was used. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier.

    PubMed

    Wenzel, Jonathan; Storer Samaniego, Cheryl; Wang, Lihua; Burrows, Laron; Tucker, Evan; Dwarshuis, Nathan; Ammerman, Michelle; Zand, Ali

    2017-03-01

    The black walnut, Junglas nigra, is indigenous to eastern North America, and abscission of its fruit occurs around October. The fruit consists of a husk, a hard shell, and kernel. The husk is commonly discarded in processing, though it contains phenolic compounds that exhibit antioxidant and antimicrobial properties. For this study, black walnut husks were extracted using supercritical carbon dioxide with an ethanol modifier. The effects of temperature, ethanol concentration, and drying of walnut husks prior to extraction upon antioxidant potential were evaluated using a factorial design of experiments. The solvent density was held constant at 0.75 g/mL. The optimal extraction conditions were found to be 68°C and 20 wt-% ethanol in supercritical carbon dioxide. At these conditions, the antioxidant potential as measured by the ferric reducing ability of plasma (FRAP) assay was 0.027 mmol trolox equivalent/g (mmol TE/g) for dried walnut husk and 0.054 mmol TE/g for walnut husks that were not dried. Antioxidant potential was also evaluated using the total phenolic content (TPC) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assays and the FRAP assay was found to linearly correlate to the TPC assay.

  7. Thermal resistance of Saccharomyces yeast ascospores in beers.

    PubMed

    Milani, Elham A; Gardner, Richard C; Silva, Filipa V M

    2015-08-03

    The industrial production of beer ends with a process of thermal pasteurization. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeasts used to produce top and bottom fermenting beers, respectively. In this research, first the sporulation rate of 12 Saccharomyces strains was studied. Then, the thermal resistance of ascospores of three S. cerevisiae strains (DSMZ 1848, DSMZ 70487, Ethanol Red(®)) and one strain of S. pastorianus (ATCC 9080) was determined in 4% (v/v) ethanol lager beer. D60 °C-values of 11.2, 7.5, 4.6, and 6.0 min and z-values of 11.7, 14.3, 12.4, and 12.7 °C were determined for DSMZ 1848, DSMZ 70487, ATCC 9080, and Ethanol Red(®), respectively. Lastly, experiments with 0 and 7% (v/v) beers were carried out to investigate the effect of ethanol content on the thermal resistance of S. cerevisiae (DSMZ 1848). D55 °C-values of 34.2 and 15.3 min were obtained for 0 and 7% beers, respectively, indicating lower thermal resistance in the more alcoholic beer. These results demonstrate similar spore thermal resistance for different Saccharomyces strains and will assist in the design of appropriate thermal pasteurization conditions for preserving beers with different alcohol contents. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Contamination issues in continuous fermentation for ethanol production

    USDA-ARS?s Scientific Manuscript database

    Continuous fermentation processes are employed by corn wet milling plants all over world to convert starch to ethanol. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields. Contaminants compete with inoculate...

  9. 75 FR 55798 - North American Bioproducts Corporation; Filing of Food Additive Petition (Animal Use); Penicillin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... antimicrobial processing aid in fuel- ethanol fermentations with respect to its consequent presence in by... antimicrobial processing aid in fuel- ethanol fermentations with respect to its consequent presence in by...

  10. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    PubMed

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Micro Ethanol Sensors with a Heater Fabricated Using the Commercial 0.18 μm CMOS Process

    PubMed Central

    Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm. PMID:24072022

  12. Integral process assessment of sugarcane agricultural crop residues conversion to ethanol.

    PubMed

    Manfredi, Adriana Paola; Ballesteros, Ignacio; Sáez, Felicia; Perotti, Nora Inés; Martínez, María Alejandra; Negro, María José

    2018-07-01

    This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Micro ethanol sensors with a heater fabricated using the commercial 0.18 μm CMOS process.

    PubMed

    Liao, Wei-Zhen; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-09-25

    The study investigates the fabrication and characterization of an ethanol microsensor equipped with a heater. The ethanol sensor is manufactured using the commercial 0.18 µm complementary metal oxide semiconductor (CMOS) process. The sensor consists of a sensitive film, a heater and interdigitated electrodes. The sensitive film is zinc oxide prepared by the sol-gel method, and it is coated on the interdigitated electrodes. The heater is located under the interdigitated electrodes, and it is used to supply a working temperature to the sensitive film. The sensor needs a post-processing step to remove the sacrificial oxide layer, and to coat zinc oxide on the interdigitated electrodes. When the sensitive film senses ethanol gas, the resistance of the sensor generates a change. An inverting amplifier circuit is utilized to convert the resistance variation of the sensor into the output voltage. Experiments show that the sensitivity of the ethanol sensor is 0.35 mV/ppm.

  14. Process integration possibilities for biodiesel production from palm oil using ethanol obtained from lignocellulosic residues of oil palm industry.

    PubMed

    Gutiérrez, Luis F; Sánchez, Oscar J; Cardona, Carlos A

    2009-02-01

    In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.

  15. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing.

    PubMed

    Tanimura, Ayumi; Kikukawa, Minako; Yamaguchi, Shino; Kishino, Shigenobu; Ogawa, Jun; Shima, Jun

    2015-04-22

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one-step process, is a promising strategy for cost-effective ethanol production from starchy biomass. To gain insights into starch-based ethanol production using CBP, an extensive screening was undertaken to identify naturally occurring yeasts that produce ethanol without the addition of any amylases. Three yeast strains were capable of producing a significant amount of ethanol. Quantitative assays revealed that Scheffersomyces shehatae JCM 18690 was the strain showing the highest ethanol production ability. This strain was able to utilize starch directly, and the ethanol concentration reached 9.21 g/L. We attribute the ethanol-producing ability of this strain to the high levels of glucoamylase activity, fermentation potential and ethanol stress tolerance. This study strongly suggests the possibility of starch-based ethanol production by consolidated bioprocessing using natural yeasts such as S. shehatae JCM 18690.

  16. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing

    PubMed Central

    Tanimura, Ayumi; Kikukawa, Minako; Yamaguchi, Shino; Kishino, Shigenobu; Ogawa, Jun; Shima, Jun

    2015-01-01

    Consolidated bioprocessing (CBP), which integrates enzyme production, saccharification and fermentation into a one-step process, is a promising strategy for cost-effective ethanol production from starchy biomass. To gain insights into starch-based ethanol production using CBP, an extensive screening was undertaken to identify naturally occurring yeasts that produce ethanol without the addition of any amylases. Three yeast strains were capable of producing a significant amount of ethanol. Quantitative assays revealed that Scheffersomyces shehatae JCM 18690 was the strain showing the highest ethanol production ability. This strain was able to utilize starch directly, and the ethanol concentration reached 9.21 g/L. We attribute the ethanol-producing ability of this strain to the high levels of glucoamylase activity, fermentation potential and ethanol stress tolerance. This study strongly suggests the possibility of starch-based ethanol production by consolidated bioprocessing using natural yeasts such as S. shehatae JCM 18690. PMID:25901788

  17. Minimum-sized ideal reactor for continuous alcohol fermentation using immobilized microorganism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, T.; Shimizu, S.

    Recently, alcohol fermentation has gained considerable attention with the aim of lowering its production cost in the production processes of both fuel ethanol and alcoholic beverages. The over-all cost is a summation of costs of various subsystems such as raw material (sugar, starch, and cellulosic substances) treatment, fermentation process, and alcohol separation from water solutions; lowering the cost of the fermentation processes is very important in lowering the total cost. Several new techniques have been developed for economic continuous ethanol production, use of a continuous wine fermentor with no mechanical stirring, cell recycle combined with continuous removal of ethanol undermore » vaccum, a technique involving a bed of yeast admixed with an inert carrier, and use of immobilized yeast reactors in packed-bed column and in a three-stage double conical fluidized-bed bioreactor. All these techniques lead to increases more or less, in reactor productivity, which in turn result in the reduction of the reactor size for a given production rate and a particular conversion. Since an improvement in the fermentation process often leads to a reduction of fermentor size and hence, a lowering of the initial construction cost, it is important to theoretically arrive at a solution to what is the minimum-size setup of ideal reactors from the viewpoint of liquid backmixing. In this short communication, the minimum-sized ideal reactor for continuous alcohol fermentation using immobilized cells will be specifically discussed on the basis of a mathematical model. The solution will serve for designing an optimal bioreactor. (Refs. 26).« less

  18. Commercialization of the Conversion of Bagasse to Ethanol. Summary quarterly report for the period January-September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-02-01

    These studies were intended to further refine sugar yield parameters which effect sugar yield such as feedstock particle size, debris, acid soak time, temperature, dewatering, and pretreatment conditions (such as temperature, reaction time, percentage solids concentration, acid concentration), liquid-solids separation, and detoxification parameters (such as time temperature and mixing of detoxification ingredients). Validate and refine parameters, which affect ethanol yield such as detoxification conditions mentioned above, and to fermenter conditions such as temperature, pH adjustment, aeration, nutrients, and charging sequence. Materials of construction will be evaluated also. Evaluate stillage to determine clarification process and suitability for recycle; evaluate lignocellulosic cakemore » for thermal energy recovery to produce heat and electricity for the process; and Support Studies at UF - Toxin Amelioration and Fermentation; TVA work will provide pre-hydroylsates for the evaluation of BCI proprietary methods of toxin amelioration. Pre-hydrolysates from batch studies will allow the determination of the range of allowable hydrolyze conditions that can be used to produce a fermentable sugar stream. This information is essential to guide selection of process parameters for refinement and validation in the continuous pretreatment reactor, and for overall process design. Additional work will be conducted at UFRFI to develop improved strains that are resistant to inhibitors. The authors are quite optimistic about the long-term prospects for this advancement having recently developed strains with a 25%--50% increase in ethanol production. The biocatalyst platform selected originally, genetically engineered Escherichia coli B, has proven to be quite robust and adaptable.« less

  19. Consolidated bioprocessing strategy for ethanol production from Jerusalem artichoke tubers by Kluyveromyces marxianus under high gravity conditions.

    PubMed

    Yuan, W J; Chang, B L; Ren, J G; Liu, J P; Bai, F W; Li, Y Y

    2012-01-01

    Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase-producing yeast Kluyveromyces marxianus Y179 and fed-batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch-based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l(-1) was achieved when 0·15 g l(-1) K(2) HPO(4) was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Jerusalem artichoke tubers are an alternative to grain-based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the CBP system not only saves energy consumption for ethanol distillation, but also significantly reduces the amount of waste distillage discharged from the distillation system. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Ethanol from municipal cellulosic wastes

    NASA Astrophysics Data System (ADS)

    Parker, A. J., Jr.; Timbario, T. J.; Mulloney, J. A., Jr.

    This paper addresses the use of municipal cellulosic wastes as a feedstock for producing ethanol fuels, and describes the application of enzymatic hydrolysis technology for their production. The concept incorporates recent process technology developments within the framework of an existing industry familiar with large-scale ethanol fermentation (the brewing industry). Preliminary indications are that the cost of producing ethanol via enzymatic hydrolysis in an existing plant with minimal facility modifications (low capital investment) can be significantly less than that of ethanol from grain fermentation.

  1. Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment.

    PubMed

    Peleteiro, Susana; Rivas, Sandra; Alonso, José L; Santos, Valentín; Parajó, Juan C

    2015-09-23

    Ionic liquids (ILs) can play multiple roles in lignocellulose biorefineries, including utilization as agents for the separation of selected compounds or as reaction media for processing lignocellulosic materials (LCM). Imidazolium-based ILs have been proposed for separating target components from LCM biorefinery streams, for example, the dehydration of ethanol-water mixtures or the extractive separation of biofuels (ethanol, butanol) or lactic acid from the respective fermentation broths. As in other industries, ILs are potentially suitable for removing volatile organic compounds or carbon dioxide from gaseous biorefinery effluents. On the other hand, cellulose dissolution in ILs allows homogeneous derivatization reactions to be carried out, opening new ways for product design or for improving the quality of the products. Imidazolium-based ILs are also suitable for processing native LCM, allowing the integral benefit of the feedstocks via separation of polysaccharides and lignin. Even strongly lignified materials can yield cellulose-enriched substrates highly susceptible to enzymatic hydrolysis upon ILs processing. Recent developments in enzymatic hydrolysis include the identification of ILs causing limited enzyme inhibition and the utilization of enzymes with improved performance in the presence of ILs.

  2. No-Cook Process for Ethanol Production Using Indian Broken Rice and Pearl Millet

    PubMed Central

    Gohel, Vipul; Duan, Gang

    2012-01-01

    No-cook process using granular starch hydrolyzing enzyme (GSHE) was evaluated for Indian broken rice and pearl millet. One-factor-at-a-time optimization method was used in ethanol production to identify optimum concentration of GSHE, under yeast fermentation conditions using broken rice and pearl millet as fermentation feedstocks. An acid fungal protease at a concentration of 0.2 kg per metric ton of grain was used along with various dosages of GSHE under yeast fermentation conditions to degrade the grain proteins into free amino nitrogen for yeast growth. To measure the efficacy of GSHE to hydrolyze no-cook broken rice and pearl millet, the chemical composition, fermentation efficiency, and ethanol recovery were determined. In both feedstocks, fermentation efficiency and ethanol recovery obtained through single-step no-cook process were higher than conventional multistep high-temperature process, currently considered the ideal industrial process. Furthermore, the no-cook process can directly impact energy consumption through steam saving and reducing the water cooling capacity needs, compared to conventional high-temperature process. PMID:22518148

  3. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closestmore » to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.« less

  4. Modelling and simulation of a pervaporation process using tubular module for production of anhydrous ethanol

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu

    2017-09-01

    Pervaporation is a potential process for the final step of ethanol biofuel production. In this study, a mathematical model was developed based on the resistance-in-series model and a simulation was carried out using the specialized simulation software COMSOL Multiphysics to describe a tubular type pervaporation module with membranes for the dehydration of ethanol solution. The permeance of membranes, operating conditions, and feed conditions in the simulation were referred from experimental data reported previously in literature. Accordingly, the simulated temperature and density profiles of pure water and ethanol-water mixture were validated based on existing published data.

  5. A new process for preparation of soybean protein concentrate with hexane-aqueous ethanol mixed solvents.

    PubMed

    Zhang, Wei-Nong; Liu, Da-Chuan

    2005-01-01

    A new process for the preparation of soybean protein concentrate (SPC) by directly extracting full-fat soy flour with a mixture of hexane and aqueous ethanol was established. Compared with conventional methods, it has some advantages, such as saving energy and reducing protein denaturation caused by heat action during solvent recovery, because this process saves one step of solvent recovery. The effects of aqueous ethanol concentration and the mixure ratio (hexane to ethanol) on the degree of protein denaturation and product quality were investigated, on the basis of which the orthogonal tests were performed. The optimum technical parameters were obtained by analyzing the results of the orthogonal tests with statistical methods. We found that SPC can be obtained by extracting full-fat soy flour under the following conditions: mixture ratio hexane: 90% ethanol, 9:1, v/v; extraction temperature, 45 degrees C; ratio of solid to solvents, (1:2 w/v); and 5 repeated extractions (15 min each time). The results of quality analysis showed that solubility of the product was improved significantly [nitrogen solubility index (NSI) 46.6%] compared with that for ethanol washing of protein concentrate (NSI 8.7%).

  6. Potential of the waste from beer fermentation broth for bio-ethanol production without any additional enzyme, microbial cells and carbohydrates.

    PubMed

    Ha, Jung Hwan; Shah, Nasrullah; Ul-Islam, Mazhar; Park, Joong Kon

    2011-08-10

    The potential of the waste from beer fermentation broth (WBFB) for the production of bio-ethanol using a simultaneous saccharification and fermentation process without any extra additions of saccharification enzymes, microbial cells or carbohydrate was tested. The major microbial cells in WBFB were isolated and identified. The variations in compositions of WBFB with stock time were investigated. There was residual activity of starch hydrolyzing enzymes in WBFB. The effects of reaction modes e.g. static and shaking on bio-ethanol production were studied. After 7 days of cultivation using the supernatant of WBFB at 30 °C the ethanol concentration reached 103.8 g/L in shaking culture and 91.5 g/L in static culture. Agitation experiments conducted at a temperature-profile process in which temperature was increased from 25 to 67 °C shortened the simultaneous process time. The original WBFB was more useful than the supernatant of WBFB in getting the higher concentration of ethanol and reducing the fermentation time. From this whole study it was found that WBFB is a cheap and suitable source for bio-ethanol production. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effect of acetic acid in recycling water on ethanol production for cassava in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui

    2016-11-01

    Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.

  8. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp.

    PubMed

    Barta, Zsolt; Kreuger, Emma; Björnsson, Lovisa

    2013-04-22

    The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103-128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are primarily suggested. Further, practical investigations on increased substrate concentration in biogas and ethanol production, recycling of the liquid in anaerobic digestion and separation of low solids flows into solid and a liquid fraction for improved reactor applications deserves further attention.

  9. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    PubMed Central

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with higher value products are primarily suggested. Further, practical investigations on increased substrate concentration in biogas and ethanol production, recycling of the liquid in anaerobic digestion and separation of low solids flows into solid and a liquid fraction for improved reactor applications deserves further attention. PMID:23607263

  10. Ethanol-drug absorption interaction: potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations.

    PubMed

    Lennernäs, Hans

    2009-01-01

    Generally, gastric emptying of a drug to the small intestine is controlled by gastric motor activity and is the main factor affecting the onset of absorption. Accordingly, the emptying rate from the stomach is mainly affected by the digestive state, the properties of the pharmaceutical formulation and the effect of drugs, posture and circadian rhythm. Variability in the gastric emptying of drugs is reflected in variability in the absorption rate and the shape of the plasma pharmacokinetic profile. When ethanol interacts with an oral controlled release product, such that the mechanism controlling drug release is impaired, the delivery of the dissolved dose into the small intestine and the consequent absorption may result in dangerously high plasma concentrations. For example, the maximal plasma concentration of hydromorphone has individually been shown to be increased as much as 16 times through in vivo testing as a result of this specific pharmacokinetic ethanol-drug formulation interaction. Thus, a pharmacokinetic ethanol-drug interaction is a very serious safety concern when substantially the entire dose from a controlled release product is rapidly emptied into the small intestine (dose dumping), having been largely dissolved in a strong alcoholic beverage in the stomach during a sufficient lag-time in gastric emptying. Based on the literature, a two hour time frame for screening the in vitro dissolution profile of a controlled release product in ethanol concentrations of up to 40% is strongly supported and may be considered as the absolute minimum standard. It is also evident that the dilution, absorption and metabolism of ethanol in the stomach are processes with a minor effect on the local ethanol concentration and that ethanol exposure will be highly dependent on the volume and ethanol concentration of the fluid ingested, together with the rate of intake and gastric emptying. When and in which patients a clinically significant dose dumping will happen is almost impossible to predict and will depend on drinking behavior and the highly variable gastrointestinal factors of importance for dissolution, transit and absorption. Therefore, controlled release products which show a vulnerability to ethanol during two hours in vitro should be required to demonstrate clinical safety by going through in vivo testing with an alcoholic beverage of up to 40% ethanol and of a sufficient volume (probably 120 mL or more), consumed in a relatively short period of time. Alternatively, such preparations should be reformulated in accordance with quality-by-design principles.

  11. Troubleshooting fermentation in corn wet milling ethanol production

    USDA-ARS?s Scientific Manuscript database

    To convert starch to ethanol, continuous fermentation processes are employed by corn wet milling plants all over world. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields (Abbott and Ingledew 2005, Skinner an...

  12. Conditioning to ethanol in the fruit fly-a study using an inhibitor of ADH.

    PubMed

    Cadieu, N; Cadieu, J -C.; El Ghadraoui, L; Grimal, A; Lamboeuf, Y

    1999-06-01

    To identify processes involved in the choice of ethanol by adult Drosophila, flies homozygous Adh(F), reared in the absence of alcohol were placed in contact with: a) an ethanol-free medium, b) a medium containing ethanol, c) a medium supplemented with 4-methylpyrazole (4-MP, an inhibitor of the ADH pathway), d) a medium containing ethanol and 4-MP. The choice of ethanol over a medium without ethanol was evaluated by measuring the duration of extension of the proboscis of the flies in each of the media. A slight preference for the ethanol-supplemented medium was observed in the naive flies, which was enhanced by previous exposure to ethanol. Exposure to ethanol and 4-MP, however, led to an avoidance of ethanol. There was a reduction in ADH activity on treatment of the flies with 4-MP, and signs of malaise (reduced locomotor activity, loss of balance) were observed in the flies who ingested both ethanol and inhibitor. We concluded that the preference for ethanol stems from an associative learning related to ethanol utilization. Inhibition of enzymes of ADH pathway led to a conditioned aversion due to disturbance of ethanol metabolism giving rise to malaise.

  13. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and overmore » 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.« less

  14. Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells.

    PubMed

    Nielsen, Jens Christian; Senne de Oliveira Lino, Felipe; Rasmussen, Thomas Gundelund; Thykær, Jette; Workman, Christopher T; Basso, Thiago Olitta

    2017-11-01

    The Brazilian sugarcane industry constitutes one of the biggest and most efficient ethanol production processes in the world. Brazilian ethanol production utilizes a unique process, which includes cell recycling, acid wash, and non-aseptic conditions. Process characteristics, such as extensive CO 2 generation, poor quality of raw materials, and frequent contaminations, all lead to excessive foam formation during fermentations, which is treated with antifoam agents (AFA). In this study, we have investigated the impact of industrial AFA treatments on the physiology and transcriptome of the industrial ethanol strain Saccharomyces cerevisiae CAT-1. The investigated AFA included industrially used AFA acquired from Brazilian ethanol plants and commercially available AFA commonly used in the fermentation literature. In batch fermentations, it was shown that industrial AFA compromised growth rates and glucose uptake rates, while commercial AFA had no effect in concentrations relevant for defoaming purposes. Industrial AFA were further tested in laboratory scale simulations of the Brazilian ethanol production process and proved to decrease cell viability compared to the control, and the effects were intensified with increasing AFA concentrations and exposure time. Transcriptome analysis showed that AFA treatments induced additional stress responses in yeast cells compared to the control, shown by an up-regulation of stress-specific genes and a down-regulation of lipid biosynthesis, especially ergosterol. By documenting the detrimental effects associated with chemical AFA, we highlight the importance of developing innocuous systems for foam control in industrial fermentation processes.

  15. 76 FR 16593 - Approval and Promulgation of Implementation Plans; South Carolina: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ... ethanol through a natural fermentation process (hereafter referred to as the ``Ethanol Rule'') from the definition of ``chemical process plants'' in the major NSR permitting program. See 72 FR 24060 (May 1, 2007...

  16. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  17. Fermentative and growth performances of Dekkera bruxellensis in different batch systems and the effect of initial low cell counts in co-cultures with Saccharomyces cerevisiae.

    PubMed

    Meneghin, Maria Cristina; Bassi, Ana Paula Guarnieri; Codato, Carolina Brito; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina

    2013-08-01

    Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Ethanol causes desensitization of receptor-mediated phospholipase C activation in isolated hepatocytes.

    PubMed

    Higashi, K; Hoek, J B

    1991-02-05

    The effect of ethanol on receptor-mediated phospholipase C-linked signal transduction processes was investigated in isolated rat hepatocytes. Pretreatment of the cells with ethanol (6-300 mM) markedly inhibited a subsequent stimulation of phospholipase C by vasopressin, angiotensin II, or epidermal growth factor. By contrast, the effects of the alpha 1-adrenergic agonist phenylephrine and of glucagon were not affected by ethanol pretreatment. Ethanol inhibited the agonist-induced decrease in polyphosphoinositides, the formation of inositol phosphates, and the increase in cytosolic free Ca2+ levels, as detected with the intracellular Ca2+ indicator indo-1. The effects of ethanol were concentration dependent and were pronounced at low concentrations of agonists but were not significant at saturating levels. Pretreatment of the cells with the protein kinase C inhibitor H7 partly prevented the inhibition by ethanol of vasopressin-induced phospholipase C activation. By contrast, pretreatment of the cells with (Rp)-adenosine cyclic 3':5'-phosphorothioate [Rp)-cAMP-S), a competitive inhibitor of protein kinase A, potentiated the inhibitory effect of ethanol on the Ca2+ mobilization by vasopressin. (Rp)-cAMP-S similarly potentiated the inhibition of phospholipase C by the protein kinase C-activating phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The kinase A inhibitor also made the Ca2+ mobilization by phenylephrine sensitive to ethanol, indicating that the formation of cAMP in the cells played a role in suppressing the sensitivity to ethanol. Pretreatment of the cells with ethanol enhanced the inhibitory effects of TPA on the vasopressin-induced phospholipase C activation at all concentrations of the hormone; however, these synergistic effects were prevented when TPA was added prior to ethanol, a condition that prevents the activation of phospholipase C by ethanol. The data indicate that ethanol causes desensitization of the receptor-mediated phospholipase C secondary to the ethanol-induced activation of phospholipase C and activation of protein kinase C. Ethanol treatment also affects the sensitivity of the phospholipase C system to control by protein kinases A and C. The data indicate that ethanol can affect the control of intracellular signal transduction processes in liver cells under physiologically relevant conditions.

  19. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    PubMed Central

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes. PMID:25637996

  20. Designing optimal cell factories: integer programming couples elementary mode analysis with regulation

    PubMed Central

    2012-01-01

    Background Elementary mode (EM) analysis is ideally suited for metabolic engineering as it allows for an unbiased decomposition of metabolic networks in biologically meaningful pathways. Recently, constrained minimal cut sets (cMCS) have been introduced to derive optimal design strategies for strain improvement by using the full potential of EM analysis. However, this approach does not allow for the inclusion of regulatory information. Results Here we present an alternative, novel and simple method for the prediction of cMCS, which allows to account for boolean transcriptional regulation. We use binary linear programming and show that the design of a regulated, optimal metabolic network of minimal functionality can be formulated as a standard optimization problem, where EM and regulation show up as constraints. We validated our tool by optimizing ethanol production in E. coli. Our study showed that up to 70% of the predicted cMCS contained non-enzymatic, non-annotated reactions, which are difficult to engineer. These cMCS are automatically excluded by our approach utilizing simple weight functions. Finally, due to efficient preprocessing, the binary program remains computationally feasible. Conclusions We used integer programming to predict efficient deletion strategies to metabolically engineer a production organism. Our formulation utilizes the full potential of cMCS but adds additional flexibility to the design process. In particular our method allows to integrate regulatory information into the metabolic design process and explicitly favors experimentally feasible deletions. Our method remains manageable even if millions or potentially billions of EM enter the analysis. We demonstrated that our approach is able to correctly predict the most efficient designs for ethanol production in E. coli. PMID:22898474

  1. Tannin extraction pretreatment and very high gravity fermentation of acorn starch for bioethanol production.

    PubMed

    Chao, Bin; Liu, Ruiliang; Zhang, Xueling; Zhang, Xu; Tan, Tianwei

    2017-10-01

    The bioethanol production from a novel non-grain feedstock, acorn starch, was studied in this work. The inhibition of tannin in strain growth was investigated, and the effect of tannin was negligible when the tannin concentration was lower than 1g/L in medium. Therefore, the extraction of tannin was performed using 40% (v/v) ethanol-water solution as the solvent for three times under the conditions of solid/liquid ratio 1:20, 60°C, 3h, by which more than 80% of tannin in acorn was extracted and the content of tannin in acorn decreased from 7.4% (w/w) to 1.5% (w/w). Very high gravity (VHG) fermentation technology was subsequently carried out to achieve a high ethanol concentration at 86.4g/L. A comprehensive process for bioethanol production from acorn starch was designed and a preliminary economic assessment was then performed revealing that this process appeared technically and economically justified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optimization of technological procedure for amygdalin isolation from plum seeds (Pruni domesticae semen)

    PubMed Central

    Savic, Ivan M.; Nikolic, Vesna D.; Savic-Gajic, Ivana M.; Nikolic, Ljubisa B.; Ibric, Svetlana R.; Gajic, Dragoljub G.

    2015-01-01

    The process of amygdalin extraction from plum seeds was optimized using central composite design (CCD) and multilayer perceptron (MLP). The effect of time, ethanol concentration, solid-to-liquid ratio, and temperature on the amygdalin content in the extracts was estimated using both mathematical models. The MLP 4-3-1 with exponential function in hidden layer and linear function in output layer was used for describing the extraction process. MLP model was more superior compared with CCD model due to better prediction ability. According to MLP model, the suggested optimal conditions are: time of 120 min, 100% (v/v) ethanol, solid-to liquid ratio of 1:25 (m/v) and temperature of 34.4°C. The predicted value of amygdalin content in the dried extract (25.42 g per 100 g) at these conditions was experimentally confirmed (25.30 g per 100 g of dried extract). Amygdalin (>90%) was isolated from the complex extraction mixture and structurally characterized by FT-IR, UV, and MS methods. PMID:25972881

  3. Production of cellulosic ethanol from cotton processing residues after pretreatment with dilute sodium hydroxide and enzymatic hydrolysis.

    PubMed

    Fockink, Douglas Henrique; Maceno, Marcelo Adriano Corrêa; Ramos, Luiz Pereira

    2015-01-01

    In this study, production of cellulosic ethanol from two cotton processing residues was investigated after pretreatment with dilute sodium hydroxide. Pretreatment performance was investigated using a 2(2) factorial design and the highest glucan conversion was achieved at the most severe alkaline conditions (0.4g NaOH g(-1) of dry biomass and 120°C), reaching 51.6% and 38.8% for cotton gin waste (CGW) and cotton gin dust (CGD), respectively. The susceptibility of pretreated substrates to enzymatic hydrolysis was also investigated and the best condition was achieved at the lowest total solids (5wt%) and the highest enzyme loading (85mg of Cellic CTec2 g(-1) of dry substrate). However, the highest concentration of fermentable sugars - 47.8 and 42.5gL(-1) for CGD and CGW, respectively - was obtained at 15wt% total solids using this same enzyme loading. Substrate hydrolysates had no inhibitory effects on the fermenting microorganism. Copyright © 2015. Published by Elsevier Ltd.

  4. Efficient approach for bioethanol production from red seaweed Gelidium amansii.

    PubMed

    Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong

    2015-01-01

    Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies.

    PubMed

    Spatari, Sabrina; Bagley, David M; MacLean, Heather L

    2010-01-01

    Lignocellulosic ethanol holds promise for addressing climate change and energy security issues associated with personal transportation through lowering the fuel mixes' carbon intensity and petroleum demand. We compare the technological features and life cycle environmental impacts of near- and mid-term ethanol bioconversion technologies in the United States. Key uncertainties in the major processes: pre-treatment, hydrolysis, and fermentation are evaluated. The potential to reduce fossil energy use and greenhouse gas (GHG) emissions varies among bioconversion processes, although all options studied are considerably more attractive than gasoline. Anticipated future performance is found to be considerably more attractive than that published in the literature as being achieved to date. Electricity co-product credits are important in characterizing the GHG impacts of different ethanol production pathways; however, in the absence of near-term liquid transportation fuel alternatives to gasoline, optimizing ethanol facilities to produce ethanol (as opposed to co-products) is important for reducing the carbon intensity of the road transportation sector and for energy security.

  6. Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?

    PubMed

    Farzad, Somayeh; Mandegari, Mohsen Ali; Guo, Miao; Haigh, Kathleen F; Shah, Nilay; Görgens, Johann F

    2017-01-01

    Driven by a range of sustainability challenges, e.g. climate change, resource depletion and expanding populations, a circular bioeconomy is emerging and expected to evolve progressively in the coming decades. South Africa along with other BRICS countries (Brazil, Russia, India and China) represents the emerging bioeconomy and contributes significantly to global sugar market. In our research, South Africa is used as a case study to demonstrate the sustainable design for the future biorefineries annexed to existing sugar industry. Detailed techno-economic evaluation and Life Cycle Assessment (LCA) were applied to model alternative routes for converting sugarcane residues (bagasse and trash) to selected biofuel and/or biochemicals (ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol and Fischer-Tropsch synthesis, with co-production of surplus electricity) in an energy self-sufficient biorefinery system. Economic assessment indicated that methanol synthesis with an internal rate of return (IRR) of 16.7% and ethanol-lactic acid co-production (20.5%) met the minimum investment criteria of 15%, while the latter had the lowest sensitivity to market price amongst all the scenarios. LCA results demonstrated that sugarcane cultivation was the most significant contributor to environmental impacts in all of the scenarios, other than the furfural production scenario in which a key step, a biphasic process with tetrahydrofuran solvent, had the most significant contribution. Overall, the thermochemical routes presented environmental advantages over biochemical pathways on most of the impact categories, except for acidification and eutrophication. Of the investigated scenarios, furfural production delivered the inferior environmental performance, while methanol production performed best due to its low reagent consumption. The combined techno-economic and environmental assessments identified the performance-limiting steps in the 2G biorefinery design for sugarcane industry and highlighted the technology development opportunities under circular bioeconomy context.

  7. Influence of rice straw cooking conditions in the soda-ethanol-water pulping on the mechanical properties of produced paper sheets.

    PubMed

    Navaee-Ardeh, S; Mohammadi-Rovshandeh, J; Pourjoozi, M

    2004-03-01

    A normalized design was used to examine the influence of independent variables (alcohol concentration, cooking time and temperature) in the catalytic soda-ethanol pulping of rice straw on various mechanical properties (breaking length, burst, tear index and folding endurance) of paper sheets obtained from each pulping process. An equation of each dependent variable as a function of cooking variables (independent variables) was obtained by multiple non-linear regression using the least square method by MATLAB software for developing of empirical models. The ranges of alcohol concentration, cooking time and temperature were 40-65% (w/w), 150-180 min and 195-210 degrees C, respectively. Three-dimensional graphs of dependent variables were also plotted versus independent variables. The optimum values of breaking length, burst and tear index and folding endurance were 4683.7 (m), 30.99 (kN/g), 376.93 (mN m2/g) and 27.31, respectively. However, short cooking time (150 min), high ethanol concentration (65%) and high temperature (210 degrees C) could be used to produce papers with suitable burst and tear index. However, for papers with best breaking length and folding endurance low temperature (195 degrees C) was desirable. Differences between optimum values of dependent variables obtained by normalized design and experimental data were less than 20%.

  8. Cross-beam pulsed laser fabrication of Free-Standing Nanostructured Carbon Nanotubes-Pt-Ceria Anode with unprecedented electroactivity and durability for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Youling; Tabet-Aoul, Amel; Gougis, Maxime; Mohamedi, Mohamed

    2015-01-01

    Owing to its inherent properties such as great capacity to store and release oxygen, lattice oxygen that has a key role in removing the CO poisoning effect, non-toxicity, abundance, low cost and low temperature processing, CeO2 is emerging as a unique class of electrode material for low temperature polymer electrolyte fuel cells such as direct ethanol fuel cells (DEFCs). However, the maximal exploitation of its functional properties is strictly reliant on the availability of optimized synthesis routes that allow tailor-designing, architecturing and manipulation of CeO2 in a precise manner when it is combined with other functional materials. Here we use the cross-beam pulsed laser deposition (CBPLD) technique to synthesize free-standing (binderless) Pt-CeO2 nanostructured thin films onto carbon nanotubes as anodes for ethanol oxidation reaction. Further significance of this work is that it establishes the importance in the design of the catalyst layer architecture. Indeed, we demonstrate here that when CeO2 material is beneath or when it is mixed with Pt, the interactions between Pt with CeO2 are not similar leading inevitably to different electrocatalytic performances. Given proper tailoring synthesis conditions, CBPLD-developed Pt-CeO2 thin films are remarkably stable and provide electrochemical performance much greater than the layer onto layer CeO2/Pt architecture.

  9. Simultaneous production of bio-ethanol and bleached pulp from red algae.

    PubMed

    Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum

    2012-12-01

    The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    PubMed Central

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-01-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance. PMID:27615429

  11. Supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and ethanol for the pretreatment and enzymatic hydrolysis of sugarcane bagasse.

    PubMed

    Silveira, Marcos Henrique Luciano; Vanelli, Bruno Angelo; Corazza, Marcos Lucio; Ramos, Luiz Pereira

    2015-09-01

    The use of green solvents for the partial delignification of milled sugarcane bagasse (1mm particle size) and for the enhancement of its susceptibility to enzymatic hydrolysis was demonstrated. The experiments were carried out for 2h using 40 g of supercritical carbon dioxide combined with 1-butyl-3-methylimidazolium acetate and 15.8 g of ethanol. The effects of temperature (110-180 °C), pressure (195-250 bar) and IL-to-bagasse mass ratio (0:1-1:1) were investigated through a factorial design in which the response variables were the extent of delignification and both anhydroglucose and anhydroxylose contents in the pretreated materials. The highest delignification degree (41%) led to the best substrate for hydrolysis, giving a 70.7 wt% glucose yield after 12h using 5 wt% and Cellic CTec2® (Novozymes) at 10 mg g(-1) total solids. Hence, excellent substrates for hydrolysis were produced with a minimal IL requirement, which could be recovered by ethanol washing for its downstream processing and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  13. A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Zhou, Yun; Meng, Chuanmin; Gao, Zhao; Cao, Xiuxia; Li, Xuhai; Xu, Liang; Zhu, Wenjun; Peng, Xusheng; Zhang, Botao; Lin, Yifeng; Liu, Lixin

    2016-10-01

    Hierarchical nanostructures with much increased surface-to-volume ratio have been of significant interest for prototypical gas sensors. Herein we report a novel resistive gas sensor based on TiO2/V2O5 branched nanoheterostructures fabricated by a facile one-step synthetic process, in which well-matched energy levels induced by the formation of effective heterojunctions between TiO2 and V2O5, a large Brunauer-Emmett-Teller surface area and complete electron depletion for the V2O5 nanobranches induced by the branched-nanofiber structures are all beneficial to the change of resistance upon ethanol exposure. As a result, the ethanol sensing performance of this device shows a lower operating temperature, faster response/recovery behavior, better selectivity and about seven times higher sensitivity compared with pure TiO2 nanofibers. This study not only confirms the gas sensing mechanism for performing enhancement of branched nanoheterostructures, but also proposes a rational approach to the design of nanostructure-based chemical sensors with desirable performance.

  14. A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Liu, Lixin; Meng, Chuanmin; Zhou, Yun; Gao, Zhao; Li, Xuhai; Cao, Xiuxia; Xu, Liang; Zhu, Wenjun

    2016-09-01

    Much greater surface-to-volume ratio of hierarchical nanostructures renders them attract considerable interest as prototypical gas sensors. In this work, a novel resistive gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures is fabricated by a facile one-step synthetic process and the ethanol sensing performance of this device is characterized systematically, which shows faster response/recovery behavior, better selectivity, and higher sensitivity of about 9 times as compared to the pure TiO2 nanofibers. The enhanced sensitivity of the TiO2/Ag0.35V2O5 branched nanoheterostructures should be attributed to the extraordinary branched hierarchical structures and TiO2/Ag0.35V2O5 heterojunctions, which can eventually result in an obvious change of resistance upon ethanol exposure. This study not only indicates the gas sensing mechanism for performance enhancement of branched nanoheterostructures, but also proposes a rational approach to design nanostructure based chemical sensors with desirable performance.

  15. Alternative Fuels Data Center: Ethanol Production

    Science.gov Websites

    States is produced from starch-based crops by dry- or wet-mill processing. Nearly 90% of ethanol plants are dry mills due to lower capital costs. Dry-milling is a process that grinds corn into flour and

  16. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  17. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  18. Development of combined nanofiltration and forward osmosis process for production of ethanol from pretreated rice straw.

    PubMed

    Shibuya, Masafumi; Sasaki, Kengo; Tanaka, Yasuhiro; Yasukawa, Masahiro; Takahashi, Tomoki; Kondo, Akihiko; Matsuyama, Hideto

    2017-07-01

    A membrane process combining nanofiltraion (NF) and forward osmosis (FO) was developed for the sugar concentration with the aim of high bio-ethanol production from the liquid fraction of rice straw. The commercial NF membrane, ESNA3, was more adequate for removal of fermentation inhibitors (such as acetic acid) than the FO membrane, whereas the commercial FO membrane, TFC-ES, was more adequate for concentration of the sugars than the NF membrane. The liquid fraction was subjected to the following process: NF concentration with water addition (NF (+H2O) )→enzymatic hydrolysis→FO concentration. This NF (+H2O) -FO hybrid process generated a total sugar content of 107g·L -1 . Xylose-assimilating S. cerevisiae produced 24g·L -1 ethanol from the liquid fraction that was diluted 1.5-fold and then concentrated by the NF (+H2O) -FO hybrid process. The NF (+H2O) -FO hybrid process has the potential for optimized ethanol production from pretreated lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterization of co-products from producing ethanol by sequential extraction processing of corn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hojilla-Evangelista, M.P.; Johnson, L.A.; Pometto, A.L. III

    1996-12-31

    Sequential Extraction Processing (SEP) is a new process for ethanol production that has potential to produce more valuable co-products than alternative processes. Previous work determined the yields of oil and protein and evaluated their chemical and functional properties. The properties of the crude fiber and spent solids, however, have yet to be studied. This research was conducted to evaluate the potential of SEP corn fiber to increase ethanol conversion and as replacement for gum arabic, and evaluate the potential of SEP starch and fiber to be fermented to ethanol. SEP hemicellulose from crude fiber was readily dispersible in water andmore » its solution (5%) gave low viscosity despite having high solids content. These properties indicated potential utilization as stabilizers, thickeners, and adhesive for coatings and batters in food and industrial products. Enzyme hydrolysis studies and batch fermentation of SEP starch/fiber indicated that SEP crude fiber was more readily accessible to the action of cellulases. More ethanol (about 10%) was produced from the fermentation of SEP starch/fiber than from undegermed or degermed soft dent corn, particularly when the hemicellulose fraction was absent from the SEP fiber.« less

  20. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors

    PubMed Central

    Rudin, Thomas; Wegner, Karsten

    2013-01-01

    A new flame-assisted spray pyrolysis (FASP) reactor design is presented, which allows the use of inexpensive precursors and solvents (e.g., ethanol) for synthesis of nanoparticles (10–20 nm) with uniform characteristics. In this reactor design, a gas-assisted atomizer generates the precursor solution spray that is mixed and combusted with externally fed inexpensive fuel gases (acetylene or methane) at a defined height above the atomizing nozzle. The gaseous fuel feed can be varied to control the combustion enthalpy content of the flame and onset of particle formation. This way, the enthalpy density of the flame is decoupled from the precursor solution composition. Low enthalpy content precursor solutions are prone to synthesis of non-uniform particles (e.g., bimodal particle size distribution) by standard flame spray pyrolysis (FSP) processes. For example, metal nitrates in ethanol typically produce nanosized particles by gas-to-particle conversion along with larger particles by droplet-to-particle conversion. The present FASP design facilitates the use of such low enthalpy precursor solutions for synthesis of homogeneous nanopowders by increasing the combustion enthalpy density of the flame with low-cost, gaseous fuels. The effect of flame enthalpy density on product properties in the FASP configuration is explored by the example of Bi2O3 nanoparticles produced from bismuth nitrate in ethanol. Product powders were characterized by nitrogen adsorption, X-ray diffraction, X-ray disk centrifuge, and transmission electron microscopy. Homogeneous Bi2O3 nanopowders were produced both by increasing the gaseous fuel content and, most notably, by cutting the air entrainment prior to ignition of the spray. PMID:23408113

  1. Water-induced ethanol dewetting transition.

    PubMed

    Ren, Xiuping; Zhou, Bo; Wang, Chunlei

    2012-07-14

    The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.

  2. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform.

    PubMed

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G; Abell, Chris

    2015-05-06

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production.

  3. Paradox effects of binge drinking on response inhibition processes depending on mental workload.

    PubMed

    Stock, Ann-Kathrin; Riegler, Lea; Chmielewski, Witold X; Beste, Christian

    2016-06-01

    Binge drinking is an increasing problem in Western societies, but we are still only beginning to unravel the effects of binge drinking on a cognitive level. While common sense suggests that all cognitive functions are compromised during high-dose ethanol intoxication, several studies suggest that the effects might instead be rather specific. Moreover, some results suggest that the degrees of automaticity and complexity of cognitive operations during response control modulate effects of binge drinking. However, this has not been tested in detail. In the current study, we therefore parametrically modulate cognitive/"mental" workload during response inhibition and examine the effects of high-dose ethanol intoxication (~1.1 ‰) in n = 18 male participants. The results suggest that detrimental effects of high-dose ethanol intoxication strongly depend on the complexity of processes involved in response inhibition. The results revealed strong effects (η (2) = .495) and are in line with findings showing that even high doses of ethanol have very specific effects on a cognitive level. Opposed to common sense, more complex cognitive operations seem to be less affected by a high-dose ethanol intoxication. Complementing this, high-dose ethanol intoxication is increasingly detrimental for action control, as stronger automated response tendencies are in charge and need to be controlled. Binge-like ethanol intoxication may take a heavier toll on cognitive control processes than on automated responses/response tendencies. Therefore, ethanol effects are more pronounced in supposedly "easier" control conditions because those facilitate the formation of automated response tendencies.

  4. Designing an antibacterial acrylic resin using the cosolvent method -Effect of ethanol on the optical and mechanical properties of a cold-cure acrylic resin.

    PubMed

    Nezu, Takashi; Nagano-Takebe, Futami; Endo, Kazuhiko

    2017-09-26

    Antimicrobial cetylpyridinium chloride (CPC) has low miscibility with acrylic resin monomer but can be homogeneously mixed using ethanol as a cosolvent. This study investigated the effects of ethanol addition on the properties of a cold-cure acrylic resin. Ethanol was an excellent cosolvent for CPC and methyl methacrylate monomer (MMA), but the cured resin exhibited a strong change in coloration to yellow (ΔE* ab >8) and a drastically reduced bending strength (from 97 to 25 MPa) and elastic modulus (from 2.7 to 0.6 GPa) when equal volumes of ethanol and monomer were used together, possibly due to the solvation and deactivation of radicals by ethanol. However, these unfavorable effects diminished when the ethanol/MMA ratio was reduced to 0.25, and became smaller when each specimen was depressurized and excess ethanol was removed. Thus, it may be possible to develop a molecularly uniform antibacterial acrylic resin with acceptable color and strength using this simple technique.

  5. Fuel ethanol production from sweet sorghum using repeated-batch fermentation.

    PubMed

    Chohnan, Shigeru; Nakane, Megumi; Rahman, M Habibur; Nitta, Youji; Yoshiura, Takanori; Ohta, Hiroyuki; Kurusu, Yasurou

    2011-04-01

    Ethanol was efficiently produced from three varieties of sweet sorghum using repeated-batch fermentation without pasteurization or acidification. Saccharomyces cerevisiae cells could be recycled in 16 cycles of the fermentation process with good ethanol yields. This technique would make it possible to use a broader range of sweet sorghum varieties for ethanol production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Electrocatalysis of anodic oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  7. Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum

    USDA-ARS?s Scientific Manuscript database

    Background: Contamination of corn mash by lactic acid bacteria (LAB) reduces ethanol yields and the overall efficiency of the ethanol fermentation process, and the industry relies heavily on antibiotics for contamination control. There is a need to develop alternative methods for the control of cont...

  8. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme.

    PubMed

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling; Hansen, Steen Honoré; van de Weert, Marco; Rantanen, Jukka; Yang, Mingshi

    2016-11-20

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed. The aerosol performance of the spray-dried lysozyme from ethanol-water solution was improved compared to that from pure water. The conformation of lysozyme in the ethanol-water solution and spray dried powder was altered, but the native structure of lysozyme was restored upon reconstitution in water after the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme did not compromise the conformation of the protein after drying, while it improved the inhaled aerosol performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ethanol and agriculture: Effect of increased production on crop and livestock sectors. Agricultural economic report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.; Peters, M.; Baumes, H.

    1993-05-01

    Expanded ethanol production could increase US farm income by as much as $1 billion (1.4 percent) by 2000. Because corn is the primary feedstock for ethanol, growers in the Corn Belt would benefit most from improved ethanol technology and heightened demand. Coproducts from the conversion process (corn gluten meal, corn gluten feed, and others) compete with soybean meal, soybean growers in the South may see revenues decline. The US balance of trade would improve with increased ethanol production as oil import needs decline.

  10. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  11. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  12. Microbial fuel cell treatment of ethanol fermentation process water

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  13. The reinforcing properties of ethanol are quantitatively enhanced in adulthood by peri-adolescent ethanol, but not saccharin, consumption in female alcohol-preferring (P) rats.

    PubMed

    Toalston, Jamie E; Deehan, Gerald A; Hauser, Sheketha R; Engleman, Eric A; Bell, Richard L; Murphy, James M; McBride, William J; Rodd, Zachary A

    2015-08-01

    Alcohol drinking during adolescence is associated in adulthood with heavier alcohol drinking and an increased rate of alcohol dependence. Past research in our laboratory has indicated that peri-adolescent ethanol consumption can enhance the acquisition and reduce the rate of extinction of ethanol self-administration in adulthood. Caveats of the past research include reinforcer specificity, increased oral consumption during peri-adolescence, and a lack of quantitative assessment of the reinforcing properties of ethanol. The current experiments were designed to determine the effects of peri-adolescent ethanol or saccharin drinking on acquisition and extinction of oral ethanol self-administration and ethanol seeking, and to quantitatively assess the reinforcing properties of ethanol (progressive ratio). Ethanol or saccharin access by alcohol-preferring (P) rats occurred during postnatal day (PND) 30-60. Animals began operant self-administration of ethanol or saccharin after PND 85. After 10 weeks of daily operant self-administration, rats were tested in a progressive ratio paradigm. Two weeks later, self-administration was extinguished in all rats. Peri-adolescent ethanol consumption specifically enhanced the acquisition of ethanol self-administration, reduced the rate of extinction for ethanol self-administration, and quantitatively increased the reinforcing properties of ethanol during adulthood. Peri-adolescent saccharin consumption was without effect. The data indicate that ethanol consumption during peri-adolescence results in neuroadaptations that may specifically enhance the reinforcing properties of ethanol during adulthood. This increase in the reinforcing properties of ethanol could be a part of biological sequelae that are the basis for the effects of adolescent alcohol consumption on the increase in the rate of alcoholism during adulthood. Published by Elsevier Inc.

  14. [Application of continuous mixing technology in ethanol precipitation process of Salvia miltiorrhiza by using micromixer].

    PubMed

    Gong, Xing-Chu; Shen, Ji-Chen; Qu, Hai-Bin

    2016-12-01

    Continuous pharmaceutical manufacturing is one of the development directions in international pharmaceutical technology. In this study, a continuous mixing technology of ethanol and concentrated extract in the ethanol precipitation of Salvia miltiorrhiza was realized by using a membrane dispersion method. The effects of ethanol flowrate, concentrated extract flowrate, and flowrate ratio on ethanol precipitation results were investigated. With the increase of the flowrates of ethanol and concentrated extract, retention rate of active phenolic acids components was increased, and the total solid removal rate was decreased. The purity of active components in supernatants was mainly affected by the ratio of ethanol flowrate and concentrated extract flowrate. The mixing efficiency of adding ethanol under continuous flow mixing mode in this study was comparable to that of industrial ethanol precipitation. Continuous adding ethanol by using a membrane dispersion mixer is a promising technology with many advantages such as easy enlargement, large production per unit volume, and easy control. Copyright© by the Chinese Pharmaceutical Association.

  15. Electron transport in ethanol & methanol absorbed defected graphene

    NASA Astrophysics Data System (ADS)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  16. Culture conditions supporting inhibitor tolerance and rapid production of ethanol by P. stipitis NRRL Y-7124

    USDA-ARS?s Scientific Manuscript database

    To expand the biomass to fuel ethanol industry, process strategies are needed to foster the production and utilization of microorganisms which can survive and ferment hexose and pentose sugars while exposed to inhibitors (such as ethanol, furfural, and hydroxymethylfurfural (HMF)). Furfural and HMF...

  17. Fermentation technologies for ethanol production from wheat straw by a recombinant bacterium

    USDA-ARS?s Scientific Manuscript database

    Wheat straw, a globally abundant byproduct of wheat production, contains about 70% carbohydrate that could potentially be used as a low cost feedstock for production of fuel ethanol. Typically four process steps are involved in the production of ethanol from any lignocellulosic feedstock – pretreat...

  18. Ethanol immunosuppression in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.R.

    Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2more » production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.« less

  19. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949-2015).

    PubMed

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-02-19

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish.

  20. The Emergence and Challenging Growth of the Bio-Ethanol Innovation System in Taiwan (1949–2015)

    PubMed Central

    Chung, Chao-Chen; Yang, Siang-Cing

    2016-01-01

    This study explores the bio-ethanol innovation system in Taiwan from the perspective of a technology innovation system (TIS). Taiwan is a newly industrialized country and is not currently a main producer of bio-ethanol. This study analyzes the evolution of bio-ethanol innovation system in Taiwan and places a particular emphasis on challenges that present policies face in the context of potential long-term bio-ethanol development. Through an evaluation of the consistency of the present research, technology, development and innovation (RTDI) policies as well as the influence of these policies on the functional dynamics of bio-ethanol innovation system, mechanisms prohibiting the system from flourishing are determined. It is suggested that the production of bio-ethanol in Taiwan would be achieved if the government: (1) fixes long-term targets for both domestic bio-ethanol development and emission reduction; and (2) comprehensively designs a set of interrelated RTDI policies in accordance with the functional pattern of the bio-ethanol innovation system and consistently implements these policies. If such measures were implemented, it is considered that the bio-ethanol innovation system in Taiwan would flourish. PMID:26907306

  1. Phosphoric acid based pretreatment of switchgrass and fermentation of entire slurry to ethanol using a simplified process.

    PubMed

    Wu, Wei; Rondon, Vanessa; Weeks, Kalvin; Pullammanappallil, Pratap; Ingram, Lonnie O; Shanmugam, K T

    2018-03-01

    Switchgrass (Alamo) was pretreated with phosphoric acid (0.75 and 1%, w/w) at three temperatures (160, 175 and 190 °C) and time (5, 7.5 and 10 min) using a steam gun. The slurry after pretreatment was liquefied by enzymes and the released sugars were fermented in a simultaneous saccharification and co-fermentation process to ethanol using ethanologenic Escherichia coli strain SL100. Among the three variables in pretreatment, temperature and time were critical in supporting ethanol titer and yield. Enzyme hydrolysis significantly increased the concentration of furans in slurries, apparently due to release of furans bound to the solids. The highest ethanol titer of 21.2 ± 0.3 g/L ethanol obtained at the pretreatment condition of 190-1-7.5 (temperature-acid concentration-time) and 10% solids loading accounted for 190 ± 2.9 g ethanol/kg of raw switch grass. This converts to 61.7 gallons of ethanol per ton of dry switchgrass, a value that is comparable to other published pretreatment conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, L.; Schell, D.; Davis, R.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costsmore » only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.« less

  3. Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol

    DOE PAGES

    Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray; ...

    2017-08-08

    Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less

  4. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    PubMed

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  5. Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray

    Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less

  6. Reversible thermochromic response based on photonic crystal structure in butterfly wing

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Wang, Guo Ping; Zhang, Wang; Zhang, Di

    2018-01-01

    Subtle responsive properties can be achieved by the photonic crystal (PC) nanostructures of butterfly based on thermal expansion effect. The studies focused on making the sample visually distinct. However, the response is restricted by limited thermal expansion coefficients. We herein report a new class of reversible thermochromic response achieved by controlling the ambient refractive index in butterfly PC structure. The photonic ethanol-filled nanoarchitecture sample is simply assembled by sealing liquid ethanol filling Papilio ulysses butterfly wing. Volatile ethanol is used to modulate the ambient refractive index. The sample is sealed with glasses to ensure reversibility. Liquid ethanol filling butterfly wing demonstrated significant allochroic response to ambient refractive index, which can be controlled by the liquefaction and vaporization of ethanol. This design is capable of converting thermal energy into visual color signals. The mechanism of this distinct response is simulated and proven by band theory. The response properties are performed with different filled chemicals and different structure parameters. Thus, the reversible thermochromic response design might have potential use in the fields such as detection, photonic switch, displays, and so forth.

  7. Aqueous Ethanol Ignition and Engine Studies, Phase I

    DOT National Transportation Integrated Search

    2010-09-01

    Our objectives were to design a micro-dilution tunnel for monitoring engine emissions, measure ignition temperature and heat release from ethanol-water-air mixtures on platinum, and initiate a computational fluid dynamics model of a catalytic igniter...

  8. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes.

    PubMed

    Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2017-12-01

    The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake.

    PubMed

    Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen

    2010-05-01

    Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.

  10. Penicillium purpurogenum cultures under ethanol-induced stress and its correlation with fungal adhesion and biodegrading ability.

    PubMed

    Gomaa, Ola M; Husseiny, Sherif M; Abd El Kareem, Hussein; Talaat, Riham

    2016-10-01

    Fungi are known to be affected by external environmental stimuli, resulting in different stress response effects, which in turn could be used to enhance its biodegrading ability. In a previous study, ethanol was used to manipulate cell-cell and cell-surface interaction to prevent cell loss and maximize the usage of Penicillium purpurogenum cells in the media, a correlation was drawn between ethanol oxidative stress, surface-bound proteins and fungal adhesion. The present study focuses on a more detailed study of the effect of ethanol on the same fungus. The results show that the presence of Yap1p gene and the detection of an oxidized form of glutathione (GSSG) suggest that a stress response might be involved in the adhesion process. The process of adhesion could be described as a signaling process and it is affected by the germ tube formation as an initial step in adhesion. Protein profile showed polymorphism in surface-bound proteins for cultures amended with ethanol when compared to control cultures. Ethanol also affected the DNA polymorphic profile of DNA, rendering the fungus genetically variable. P. purpurogenum produced phenol oxidase enzyme and could be used to degrade total phenols in olive mill waste water without the formation of biofilm on the surface of the containers.

  11. Optimization of enzymatic hydrolysis for ethanol production by simultaneous saccharification and fermentation of wastepaper.

    PubMed

    Sangkharak, Kanokphorn

    2011-11-01

    The present study investigated the development of high sugar production by optimization of an enzymatic hydrolysis process using both conventional and statistical methods, as well as the production of ethanol by the selected wastepaper source. Among four sources of pretreated wastepaper including office paper, newspaper, handbills and cardboard, office paper gave the highest values of cellulose (87.12%) and holocelluloses (89.07%). The effects of the amount of wastepaper, the pretreatment method and the type of enzyme on reducing sugar production from office paper were studied using conventional methods. The highest reducing sugar production (1851.28 µg L(-1); 37.03% conversion of glucose) was obtained from the optimal condition containing 40 mg of office paper, pretreated with stream explosion and hydrolysed with the combination of cellulase from Aspergillus niger and Trichoderma viride at the fixed loading rate of 20 FPU g(-1) sample. The effects of interaction of wastepaper amount and enzyme concentration as well as incubation time were studied by a statistical method using central composite design. The optimal medium composition consisted of 43.97 µg L(-1), 28.14 FPU g(-1) sample and 53.73 h of wastepaper, enzyme concentration and incubation time, respectively, and gave the highest amount of sugar production (2184.22 µg L(-1)) and percentage conversion of glucose (43.68%). The ethanol production from pretreated office paper using Saccharomyces cerevisiae in a simultaneous saccharification and fermentation process was 21.02 g L(-1) after 36 h of cultivation, corresponding to an ethanol volumetric production rate of 0.58 g ethanol L(-1) h(-1).

  12. Acute Ethanol Has Biphasic Effects on Short- and Long-Term Memory in Both Foreground and Background Contextual Fear Conditioning in C57BL/6 Mice

    PubMed Central

    Gulick, Danielle; Gould, Thomas J.

    2009-01-01

    Background Ethanol is a frequently abused, addictive drug that impairs cognitive function. Ethanol may disrupt cognitive processes by altering attention, short-term memory, and/ or long-term memory. Interestingly, some research suggests that ethanol may enhance cognitive processes at lower doses. The current research examined the dose-dependent effects of ethanol on contextual and cued fear conditioning. In addition, the present studies assessed the importance of stimulus salience in the effects of ethanol and directly compared the effects of ethanol on short-term and long-term memory. Methods This study employed both foreground and background fear conditioning, which differ in the salience of contextual stimuli, and tested conditioning at 4 hours, 24 hours, and 1 week in order to assess the effects of ethanol on short-term and long-term memory. Foreground conditioning consisted of 2 presentations of a foot shock unconditioned stimulus (US) (2 seconds, 0.57 mA). Background conditioning consisted of 2 auditory conditioned stimulus (30 seconds, 85 dB white noise)–foot shock (US; 2 seconds, 0.57 mA) pairings. Results For both foreground and background conditioning, ethanol enhanced short-term and long-term memory for contextual and cued conditioning at a low dose (0.25 g/kg) and impaired short-term and long-term memory for contextual and cued conditioning at a high dose (1.0 g/kg). Conclusions These results suggest that ethanol has long-lasting, biphasic effects on short-term and long-term memory for contextual and cued conditioning. Furthermore, the effects of ethanol on contextual fear conditioning are independent of the salience of the context. PMID:17760787

  13. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    PubMed

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.

  14. [Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions].

    PubMed

    Zi, Lihan; Liu, Chenguang; Bai, Fengwu

    2014-02-01

    Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.

  15. Optimization of ultrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk.

    PubMed

    Jha, Pankaj; Das, Arup Jyoti; Deka, Sankar Chandra

    2017-11-01

    Phenolic compounds were extracted from the husk of milled black rice (cv. Poireton) by using a combination of ultrasound assisted extraction and microwave assisted extraction. Extraction parameters were optimized by response surface methodology according to a three levels, five variables Box-Behnken design. The appropriate process variables (extraction temperature and extraction time) to maximize the ethanolic extraction of total phenolic compounds, flavonoids, anthocyanins and antioxidant activity of the extracts were obtained. Extraction of functional components with varying ethanol concentration and microwave time were significantly affected by the process variables. The best possible conditions obtained by RSM for all the factors included 10.02 min sonication time, 49.46 °C sonication temperature, 1:40.79 (w/v) solute solvent ratio, 67.34% ethanol concentration, and 31.11 s microwave time. Under the given solutions, the maximum extraction of phenolics (1.65 mg/g GAE), flavonoids (3.04 mg/100 g), anthocyanins (3.39 mg/100 g) and antioxidants (100%) were predicted, while the experimental values included 1.72 mg/g GAE of total phenolics, 3.01 mg/100 g of flavonoids, 3.36 mg/100 g of anthocyanins and 100% antioxidant activity. The overall results indicated positive impact of co-application of microwave and ultrasound assisted extractions of phenolic compounds from black rice husk.

  16. Bioethanol production involving recombinant C. thermocellum hydrolytic hemicellulase and fermentative microbes.

    PubMed

    Das, Saprativ P; Ravindran, Rajeev; Ahmed, Shadab; Das, Debasish; Goyal, Dinesh; Fontes, Carlos M G A; Goyal, Arun

    2012-07-01

    The enhancement of the biomass productivity of Escherichia coli cells harbouring the truncated 903 bp gene designated as glycoside hydrolase family 43 (GH43) from Clostridium thermocellum showing hemicellulase activity along with its further use in simultaneous saccharification and fermentation (SSF) process is described. (Phosphoric acid) H(3)PO(4)-acetone treatment and ammonia fibre expansion (AFEX) were the pretreatment strategies employed on the leafy biomass of mango, poplar, neem and asoka among various substrates owing to their high hemicellulose content. GH43 showed optimal activity at a temperature of 50 °C, pH 5.4 with stability over a pH range of 5.0-6.2. A 4-fold escalation in growth of the recombinant E. coli cells was observed when grown using repeated batch strategy in LB medium supplemented with glucose as co-substrate. Candida shehatae utilizing pentose sugars was employed for bioethanol production. AFEX pretreatment proved to be better over acid-acetone technique. The maximum ethanol concentration (1.44 g/L) was achieved for AFEX pretreated mango (1%, w/v) followed by poplar with an ethanol titre (1.32 g/L) in shake flask experiments. A 1.5-fold increase in ethanol titre (2.11 g/L) was achieved with mango (1%, w/v) in a SSF process using a table top 2-L bioreactor with 1 L working volume.

  17. Changes in Composition and Phosphorus Profile during Dry Grind Process of Corn into Ethanol and DDGS

    USDA-ARS?s Scientific Manuscript database

    Demand for alternatives to fossil fuels has resulted in a dramatic increase in ethanol production from corn. Dry grind method has been a major process, resulting in a large volume of dried distiller grains with solubles (DDGS) as a co-product. The process consists of grinding, cooking, liquefactio...

  18. Economic analysis of fuel ethanol production from hulled barley by the EDGE (Enhanced Dry Grind Enzymatic) process

    USDA-ARS?s Scientific Manuscript database

    A cost model was developed for fuel ethanol production from barley based on the EDGE (Enhanced Dry Grind Enzymatic) process (Nghiem, et al., 2008). In this process, in addition to beta-glucanases, which is added to reduce the viscosity of the barley mash for efficient mixing, another enzyme, beta-...

  19. Method for producing ethanol and co-products from cellulosic biomass

    DOEpatents

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  20. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...

  1. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  2. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  3. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway

    EPA Science Inventory

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...

  4. Enhancement of ethanol production from green liquor-ethanol-pretreated sugarcane bagasse by glucose-xylose cofermentation at high solid loadings with mixed Saccharomyces cerevisiae strains.

    PubMed

    You, Yanzhi; Li, Pengfei; Lei, Fuhou; Xing, Yang; Jiang, Jianxin

    2017-01-01

    Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an effective conversion process for ethanol production at high solid loading.

  5. Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1.

    PubMed

    Pang, Zong-wen; Liang, Jing-juan; Huang, Ri-bo

    2011-08-01

    A new fungus, Pestalotiopsis sp. XE-1, which produced ethanol from xylose with yield of 0.47 g ethanol/g of consumed xylose was isolated. It also produced ethanol from arabinose, glucose, fructose, mannose, galactose, cellobiose, maltose, and sucrose with yields of 0.38, 0.47, 0.45, 0.46, 0.31, 0.25, 0.31, and 0.34 g ethanol/g of sugar consumed, respectively. It produced maximum ethanol from xylose at pH 6.5, 30°C under a semi-aerobic condition. Acetic acid produced in xylose fermenting process inhibited ethanol production of XE-1. The ethanol yield in the pH-uncontrolled batch fermentation was about 27% lower than that in the pH-controlled one. The ethanol tolerance of XE-1 was higher than most xylose-fermenting, ethanol-producing microbes, but lower than Saccharomyces cerevisiae and Hansenula polymorpha. XE-1 showed tolerance to high concentration of xylose, and was able to grow and produce ethanol even when it was cultivated in 97.71 g/l xylose.

  6. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.

    PubMed

    Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily

    2010-07-01

    Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.

  7. The effects of continuous and intermittent ethanol exposure in adolesence on the aversive properties of ethanol during adulthood.

    PubMed

    Diaz-Granados, Jaime L; Graham, Danielle L

    2007-12-01

    Alcohol abuse among adolescents is prevalent. Epidemiological studies suggest that alcohol abuse during the adolescent developmental period may result in long-term changes such as an increased susceptibility to alcohol-related problems in adulthood. Laboratory findings suggest that alcohol exposure during the adolescent developmental period, as compared with adulthood, may differentially impact subsequent neurobehavioral responses to alcohol. The present study was designed to examine whether ethanol exposure, continuous versus intermittent, during the adolescent developmental period would alter the aversive properties of ethanol in adult C3H mice. Periadolescent (PD28) male C3H mice were exposed to 64 hours of continuous or intermittent ethanol vapor. As a comparison, adult (PD70) C3H mice were also exposed to 64 hours of continuous or intermittent ethanol vapor. Six weeks after ethanol exposure, taste aversion conditioning was carried out on both ethanol pre-exposed and ethanol-naive animals using a 1-trial, 1-flavor taste-conditioning procedure. Ethanol exposure during the periadolescent period significantly attenuated a subsequent ethanol-induced conditioned taste aversion, as compared with control animals. Adult animals exposed to chronic ethanol vapor during adolescence showed less of an aversion to an ethanol-paired flavor than ethanol-naive adults. Intermittent exposure to ethanol vapor during periadolescence produced a greater attenuation. It is suggested that ethanol exposure during the periadolescent period results in long-term neurobehavioral changes, which lessen a conditioned aversion to ethanol in adulthood. It is suggested that this age-related effect may underlie the increased susceptibility to alcohol-related problems which is negatively correlated with the age of onset for alcohol abuse.

  8. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol.

    PubMed

    Li, Jihong; Li, Shizhong; Han, Bing; Yu, Menghui; Li, Guangming; Jiang, Yan

    2013-11-29

    Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions.

  9. A novel cost-effective technology to convert sucrose and homocelluloses in sweet sorghum stalks into ethanol

    PubMed Central

    2013-01-01

    Background Sweet sorghum is regarded as a very promising energy crop for ethanol production because it not only supplies grain and sugar, but also offers lignocellulosic resource. Cost-competitive ethanol production requires bioconversion of all carbohydrates in stalks including of both sucrose and lignocellulose hydrolyzed into fermentable sugars. However, it is still a main challenge to reduce ethanol production cost and improve feasibility of industrial application. An integration of the different operations within the whole process is a potential solution. Results An integrated process combined advanced solid-state fermentation technology (ASSF) and alkaline pretreatment was presented in this work. Soluble sugars in sweet sorghum stalks were firstly converted into ethanol by ASSF using crushed stalks directly. Then, the operation combining ethanol distillation and alkaline pretreatment was performed in one distillation-reactor simultaneously. The corresponding investigation indicated that the addition of alkali did not affect the ethanol recovery. The effect of three alkalis, NaOH, KOH and Ca(OH)2 on pretreatment were investigated. The results indicated the delignification of lignocellulose by NaOH and KOH was more significant than that by Ca(OH)2, and the highest removal of xylan was caused by NaOH. Moreover, an optimized alkali loading of 10% (w/w DM) NaOH was determined. Under this favorable pretreatment condition, enzymatic hydrolysis of sweet sorghum bagasse following pretreatment was investigated. 92.0% of glucan and 53.3% of xylan conversion were obtained at enzyme loading of 10 FPU/g glucan. The fermentation of hydrolyzed slurry was performed using an engineered stain, Zymomonas mobilis TSH-01. A mass balance of the overall process was calculated, and 91.9 kg was achieved from one tonne of fresh sweet sorghum stalk. Conclusions A low energy-consumption integrated technology for ethanol production from sweet sorghum stalks was presented in this work. Energy consumption for raw materials preparation and pretreatment were reduced or avoided in our process. Based on this technology, the recalcitrance of lignocellulose was destructed via a cost-efficient process and all sugars in sweet sorghum stalks lignocellulose were hydrolysed into fermentable sugars. Bioconversion of fermentable sugars released from sweet sorghum bagasse into different products except ethanol, such as butanol, biogas, and chemicals was feasible to operate under low energy-consumption conditions. PMID:24286508

  10. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.

    PubMed

    Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan

    2012-01-01

    In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.

  11. [Process strategy for ethanol production from lignocellulose feedstock under extremely low water usage and high solids loading conditions].

    PubMed

    Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie

    2010-07-01

    The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential.

  12. Comparative study on the conventional and non thermal simultaneous saccharification and fermentation of Manihot glaziovii root starch

    NASA Astrophysics Data System (ADS)

    Hargono, Kumoro, Andri Cahyo; Jos, Bakti

    2015-12-01

    Inconventional ethanol production process, starch is converted into dextrins via liquefaction using α-amylase enzyme at high temperature (90-120°C). Then, dextrins are saccharified by glucoamylase to obtain to monomeric sugars (glucose). Recently, a granular starch hydrolyzing enzymes (GSHE), Stargen 002, was developed to convert starch into dextrins at low temperature (< 32°C) and hydrolyzes dextrins into glucose. The subject of this research was to compare ethanol production using a granular starch hydrolyzing enzymes and conventional enzymatic liquefaction and saccharification in cassava starch processing. Starch slurry concentrations were 20% w/v, and dosage of enzymes 0.50, 1.0 and 2%, respectively, were studied. After 48 hr process the final ethanol concentration for the respective enzyme concentration for conventional process were 34.90, 36.16 and 42.10 g/L, whereas for the non-thermal treatment, final ethanol concentration were 46.4, 57.62 and 59.65 g/L, respectively. By implementation of this non thermal process, the use of energy can be saved by carrying out saccharification step at lower temperature (30°C) could be realized.

  13. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    PubMed

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  14. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, James; Lvov, Yuri; Hegab, Hisham

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticatedmore » research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2 billion gallons of cellulosic ethanol by 2013. Louisiana is well positioned to become a national contributor in cellulosic ethanol, with an excellent growing season, a strong pulp/paper industry, and one of the nation's first cellulosic ethanol demonstration plants. Dr. Palmer in Chemical Engineering at Louisiana Tech University is collaborating with Drs. Lvov and Snow in Chemistry and Dr. Hegab in Mechanical Engineering to capitalize on these advantages by applying nanotechnology to improve the cellulosic ethanol processes. In many of these processes, expensive enzymes are used to convert the cellulose to sugars. The nanotechnology processes developed at Louisiana Tech University can immobilize these enzymes and therefore significantly reduce the overall costs of the process. Estimates of savings range from approximately $32 million at each cellulosic ethanol plant, to $7.5 billion total if the 16 billion gallons of cellulosic ethanol is achieved. This process has the advantage of being easy to apply in a large-scale commercial environment and can immobilize a wide variety or mixture of enzymes for production. Two primary objectives with any immobilization technique are to demonstrate reusability and catalytic activity (both reuse of the immobilized enzyme and reuse of the polymer substrate). The scale-up of the layering-by-layering process has been a focus this past year as some interesting challenges in the surface chemistry have become evident. Catalytic activity of cellulase is highly dependent upon how the feed material is pretreated to enhance digestion. Therefore, efforts this year have been performed this year to characterize our process on a few of the more prevalent pretreatment methods.« less

  15. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds.

    PubMed

    Ghafoor, Kashif; Choi, Yong Hee; Jeon, Ju Yeong; Jo, In Hee

    2009-06-10

    Important functional components from Campbell Early grape seed were extracted by ultrasound-assisted extraction (UAE) technology. The experiments were carried out according to a five level, three variable central composite rotatable design (CCRD). The best possible combinations of ethanol concentration, extraction temperature, and extraction time with the application of ultrasound were obtained for the maximum extraction of phenolic compounds, antioxidant activities, and anthocyanins from grape seed by using response surface methodology (RSM). Process variables had significant effect on the extraction of functional components with extraction time being highly significant for the extraction of phenolics and antioxidants. The optimal conditions obtained by RSM for UAE from grape seed include 53.15% ethanol, 56.03 degrees C temperature, and 29.03 min time for the maximum total phenolic compounds (5.44 mg GAE/100 mL); 53.06% ethanol, 60.65 degrees C temperature, and 30.58 min time for the maximum antioxidant activity (12.31 mg/mL); and 52.35% ethanol, 55.13 degrees C temperature, and 29.49 min time for the maximum total anthocyanins (2.28 mg/mL). Under the above-mentioned conditions, the experimental total phenolics were 5.41 mg GAE/100 mL, antioxidant activity was 12.28 mg/mL, and total anthocyanins were 2.29 mg/mL of the grape seed extract, which is well matched with the predicted values.

  16. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process.

    PubMed

    Rasool, Kashif; Mahmoud, Khaled A; Lee, Dae Sung

    2015-12-15

    This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. L-cysteine-derived ambidextrous gelators of aromatic solvents and ethanol/water mixtures.

    PubMed

    Pal, Amrita; Dey, Joykrishna

    2013-02-19

    A series of L-cysteine-derived double hydrocarbon chain amphiphilic gelators L-(3-alkyl-carbamoylsulfanyl)-2-(3-alkylurido)propionic acid with different hydrocarbon chain lengths (C6-C16) was designed and synthesized. These gelators efficiently gelate only aromatic solvents. The gelation ability increased with the increase of chain length up to C14, but then it dropped with further increase of chain length. The C12 and C14 derivatives also gelled ethanol/water mixtures. The gels were characterized by a number of methods, including FT-IR, NMR, and XRD spectroscopy, electron microscopy, and rheology. The amphiphiles were observed to form either flat lamellar or ribbonlike aggregates in aromatic solvents as well as in ethanol/water mixtures. The gelation in all the solvents employed was observed to be thermoreversible. The gel-to-sol transition temperature as well as mechanical strength of the organogels were observed to increase with the hydrocarbon chain length. Both types of gels of C8-C16 amphiphiles have gel-to-sol transition temperatures above the physiological temperature (310 K). FT-IR and variable temperature (1)H NMR measurements suggested that van der Waals interactions have major contribution in the gelation process. The gel-to-sol transition temperature and mechanical strength of the organogels in ethanol/water mixtures was observed to be higher than those of benzene organogel.

  18. Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process.

    PubMed

    Shinozaki, Yukiko; Kitamoto, Hiroko K

    2011-03-01

    Silage production from rice straw and whole-plant forage paddy rice is increasing in Japan because of decrease in rice consumption. One potential use for this silage is bioethanol production. In this study, we analyzed the effectiveness of three different commercially available cellulases at saccharification of sun-dried rice straw, ensiled rice straw, and rice whole-crop silage (WCS). Furthermore, the ethanol productivity of the simultaneous saccharification and ethanol fermentation process (SSF) from the same plant substrates was analyzed. Among the three kinds of cellulases tested (Novozymes NS50013, Genencor GC220, and Acremonium cellulase), Acremonium cellulase showed the highest ethanol production for the three plant substrates, and the WCS produced the highest ethanol level. Analysis of the enzymatic degradation activity of the cellulases revealed that Acremonium cellulase contained remarkably high glucoamylase and pectinase side activities relative to the other cellulase preparations. The addition of glucoamylase and pectinase to the other two cellulases significantly increased ethanol productivity to levels observed for the Acremonium cellulase preparation, which showed little enhanced performance with the addition of the same enzymes. Finally, we tested whether milling and sterilization had an effect on ethanol production and found that sterilized silage produced higher ethanol levels but that the milling process had no significant effect. These results show that (i) silage made from whole-plant rice can be used for bioethanol production and (ii) the proper selection and combination of commercially available enzymes can make SSF more cost efficient by removing the need for a pre-treatment step. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Social opportunity and ethanol drinking in rats.

    PubMed

    Tomie, Arthur; Burger, Kelly M; Di Poce, Jason; Pohorecky, Larissa A

    2004-11-01

    Two experiments were designed to evaluate the effects of pairings of ethanol sipper conditioned stimulus (CS) with social opportunity unconditioned stimulus (US) on ethanol sipper CS-directed drinking in rats. In both experiments, rats were deprived of neither food nor water, and initiation of drinking of unsweetened 3% ethanol was evaluated, as were the effects of increasing the concentration of unsweetened ethanol (3-10%) across sessions. In Experiment 1, Group Paired (n=8) received 35 trials per session wherein the ethanol sipper CS was presented for 10 s immediately prior to 15 s of social opportunity US. All rats initiated sipper CS-directed drinking of 3% ethanol. Increasing the concentration of ethanol in the sipper CS [(3%, 4%, 6%, 8%, 10% (vol./vol.)] across sessions induced escalation of daily g/kg ethanol intake. To evaluate the hypothesis that the drinking in Group Paired was due to autoshaping, Experiment 2 included a pseudoconditioning control that received sipper CS and social opportunity US randomly with respect to one another. All rats in Group Paired (n=6) and in Group Random (n=6) initiated sipper CS-directed drinking of 3% ethanol and daily mean g/kg ethanol intake in the two groups was comparable. Also comparable was daily g/kg ethanol intake, which increased for both groups with the availability of higher concentrations of ethanol in the sipper CS, up to a maximum of approximately 0.8 g/kg ethanol intake of 10% ethanol. Results indicate that random presentations of ethanol sipper CS and social opportunity US induced reliable initiation and escalation of ethanol intake, and close temporally contiguous presentations of CS and US did not induce still additional ethanol intake. This may indicate that autoshaping CR performance is not induced by these procedures, or that high levels of ethanol intake induced by factors related to pseudoconditioning produces a ceiling effect. Implications for ethanol drinking in humans are discussed.

  20. Novel technologies for enhanced production of ethanol: impact of high productivity on process economics

    USDA-ARS?s Scientific Manuscript database

    In these studies Saccharomyces cerevisiae NRRL Y-566 was used to produce ethanol from a concentrated glucose (250-300 gL-1) solution. When fermentation media were supplemented with CaCO3 and CaCl2, ethanol concentrations, yield, and productivities were improved significantly. In control batch fermen...

  1. EPA Biofuels Research: Effects of Inhaled Ethanol on Cortical Functions in the Offspring of Rats Exposed During Gestation.**

    EPA Science Inventory

    Due to the increased interest in ethanol blends as an alternative fuel source, there is a need to assess their possible health risks to sensitive populations. Specifically, ethanol is known to alter cortical functions such as attention, processing speed, movement, working memory,...

  2. Ethanol fermentation of cassava starch pretreated with alkali

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Y.C.; Lee, S.Y.; Choe, Y.K.

    1986-04-01

    In view of the current industrial process for the conventional ethanol fermentation, in which raw starch materials are heated at 120 degrees C for 2 h, conditions for an alternative process were set: an overall time from saccharification to ethanol fermentation of within 3-4 days, an operation temperature of below 60 degrees C, an ethanol yield of over 93%, and a ratio of raw material to fermentation volume of within 1:4. To meet these conditions, previously a steeping method of starch materials in 0.5N HCl solution at 60 degrees C for 12 h were used, followed by combined actions ofmore » ..cap alpha..-amylase and glucoamylase. The ethanol yield from uncooked cassava starch treated under the conditions described was 95% after fermentation for 3 days with Saccharomyces cerevisiae. However, the use of a relatively higher concentration of acid for steeping is still a problem and gelatinization of starch materials is insufficient. This communication, therefore, describes effects of alkali steeping and structural change of starch granules on the ethanol fermentation. 8 references.« less

  3. Influences of diesel pilot injection on ethanol autoignition - a numerical analysis

    NASA Astrophysics Data System (ADS)

    Burnete, N. V.; Burnete, N.; Jurchis, B.; Iclodean, C.

    2017-10-01

    The aim of this study is to highlight the influences of the diesel pilot quantity as well as the timing on the autoignition of ethanol and the pollutant emissions resulting from the combustion process. The combustion concept presented in this paper requires the injection of a small quantity of diesel fuel in order to create the required autoignition conditions for ethanol. The combustion of the diesel droplets injected in the combustion chamber lead to the creation of high temperature locations that favour the autoignition of ethanol. However, due to the high vaporization enthalpy and the better distribution inside the combustion chamber of ethanol, the peak temperature values are reduced. Due to the lower temperature values and the high burning velocity of ethanol (combined with the fact that there are multiple ignition sources) the conditions required for the formation of nitric oxides are not achieved anymore, thus leading to significantly lower NOx emissions. This way the benefits of the Diesel engine and of the constant volume combustion are combined to enable a more efficient and environmentally friendly combustion process.

  4. Survey of US fuel ethanol plants.

    PubMed

    Saunders, J A; Rosentrater, K A

    2009-07-01

    The ethanol industry is growing in response to increased consumer demands for fuel as well as the renewable fuel standard. Corn ethanol processing creates the following products: 1/3 ethanol, 1/3 distillers grains, and 1/3 carbon dioxide. As the production of ethanol increases so does the generation of its coproducts, and viable uses continually need to be developed. A survey was mailed to operational US ethanol plants to determine current practices. It inquired about processes, equipment used, end products, and desired future directions for coproducts. Results indicated that approximately one-third of plant managers surveyed expressed a willingness to alter current drying time and temperature if it could result in a higher quality coproduct. Other managers indicated hesitation, based on lack of economic incentives, potential cost and return, and capital required. Respondents also reported the desire to use their coproducts in some of the following products: fuels, extrusion, pellets, plastics, and human food applications. These results provide a snapshot of the industry, and indicate that operational changes to the current production of DDGS must be based upon the potential for positive economic returns.

  5. Matt Wecker | NREL

    Science.gov Websites

    acetaldehyde from bacteria. The idea was to short-sheet the ethanol fermentation pathway to produce ; Biochem. (1995) "Fermentation strategies: Acetaldehyde or ethanol?," Process Biochem. (1987

  6. Fuel ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the currentmore » local feedstock requirement.« less

  7. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    PubMed Central

    Zheng, Jun; Rehmann, Lars

    2014-01-01

    Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic) hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs. PMID:25334065

  8. Analysis of Enzymatic Degradation of Cellulose Microfibrils using Quantitative Surface Plasmon Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reiter, Kyle; Raegen, Adam; Allen, Scott; Quirk, Amanda; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2013-03-01

    Cellulose is the largest component of biomass on Earth and, as a result, is a significant potential energy source. The production of cellulosic ethanol as a fuel source requires conversion of cellulose fibers into fermentable sugars. Increasing our understanding of the action of cellulose enzymes (cellulases) on cellulose microfibrils is an important step in developing more efficient industrial processes for the production of cellulosic ethanol. We have used a custom designed Surface Plasmon Resonance imaging (SPRi) device to study the action of cellulases from the Hypocrea jecorinasecretome on bacterial cellulose microfibrils. This has allowed us to determine the rates of action and extent of degradation of cellulose microfibrils on exposure to both individual cellulases and combinations of different classes of cellulases, which has allowed us to investigate synergistic interactions between the cellulases.

  9. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  10. Ecofriendly ethanol-developable processes for electron beam lithography using positive-tone dextrin resist material

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Sugino, Naoto; Hanabata, Makoto; Oshima, Akihiro; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2017-07-01

    From the viewpoints of the utilization of agricultural resources and advanced use of biomass, this study is aimed at expanding the resolution limits of ecofriendly ethanol-developable processes for electron-beam lithography using a positive-tone dextrin resist material with high hydrophilicity on a cellulose-based underlayer. The images of 20-nm-hole and 40-nm-line patterns with an exposure dose of approximately 1800 µC/cm2 were provided by ecofriendly ethanol-developable processes instead of the common development processes using tetramethylammonium hydroxide and organic solvents. The CF4 etching selectivity of the positive-tone dextrin resist material was approximately 10% lower than that of the polymethyl methacrylate used as a reference resist material.

  11. Study of Performance of Coaxial Vacuum Tube Solar Collector on Ethanol Distillation Process

    NASA Astrophysics Data System (ADS)

    Sutomo; Ramelan, A. H.; Mustafa; Tristono, T.

    2017-07-01

    Coaxial vacuum tube solar collectors can generate heat up to 80°C is possibly used for ethanol distillation process that required temperature 79°C only. This study reviews the performance of coaxial collector vacuum tube used for ethanol distillation process. This experimental research was conducted in a closed space using a halogen lamp as a solar radiation simulator. We had done on three different of the radiation values, i.e. 998 W/m2, 878 W/m2 and 782 W/m2. The pressure levels of vacuum tube collector cavity in the research were 1; 0.5; 0.31; 0.179; and 0.043 atmospheres. The Research upgraded the 30% of ethanol to produce the concentration of 77% after distillation. The result shows that the performance of coaxial collector vacuum tube used for ethanol distillation process has the negative correlation to the level of the collector tube cavity pressure. The productivity will increase while the collector tube cavity pressure decreased. Therefore, the collector efficiency has the negative correlation also to the level of collector tube cavity pressure. The best performance achieved when it operated at a pressure of 0.043 atmosphere with radiation intensity 878 W / m2, and the value of efficiency is 57.8%.

  12. Reduction of salt content of fish sauce by ethanol treatment.

    PubMed

    Liu, Yu; Xu, Ying; He, Xiaoxia; Wang, Dongfeng; Hu, Shiwei; Li, Shijie; Jiang, Wei

    2017-08-01

    Fish sauce is a traditional condiment in Southeast Asia, normally containing high concentration of salt. The solubility of salt is lower in ethanol than in water. In the present study, fish sauce was desalted by ethanol treatment (including the processes of ethanol addition, mixing, standing and rotary evaporation). The salt concentration of fish sauce decreased significantly from 29.72 to 19.72 g/100 mL when the treated ethanol concentration was 21% (v/v). The addition of more than 12% (v/v) of ethanol significantly reduced dry weight, total soluble nitrogen content and amino acids nitrogen content. Besides, the quality of fish sauce remained first grade if no more than 21% (v/v) of ethanol was used. Furthermore, sensory analyses showed that ethanol treatment significantly reduced the taste of salty and the odor of ammonia. This study demonstrates that ethanol treatment is a potential way to decrease salt content in fish sauce, which meanwhile limits the losses of nutritional and sensorial values within an acceptable range.

  13. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform

    PubMed Central

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G.; Abell, Chris

    2015-01-01

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production. PMID:25878135

  14. Study of liquid?liquid demixing from drug solution

    NASA Astrophysics Data System (ADS)

    Lafferrère, Laurent; Hoff, Christian; Veesler, Stéphane

    2004-09-01

    In pharmaceutical industry, a deep understanding of the phase diagram is required in design of crystallization processes. We have investigated the phase diagram of a pharmaceutical compound (C 35H 41Cl 2N 3O 2) in a mixture of ethanol/water. This phase diagram exhibits a solid-solid (polymorphism) and a liquid-liquid-phase separation (LLPS) as a function of temperature and drug substance concentration. This study focuses on the LLPS which is metastable with respect to the crystallization of the two polymorphs FI and FII of C 35H 41Cl 2N 3O 2 in an ethanol/water mixture. The LLPS is metastable towards the solubility curve on the whole solvent-solute concentrations and temperature range studied. The LLPS occurred within the metastable zone for crystallization. In our experiments the liquid-liquid-phase transition prevented the drug from crystallizing, while it changed the medium and the conditions of crystallization, which consequently affected the process. The coexistence curves for the liquid phases, also named TL-L boundary, and the spinodal line were measured for a ternary mixture of water-drug-ethanol at atmospheric pressure over a temperature range of 10-50°C. This temperature range corresponds to that used in the crystallization process. Static Light Scattering, HPLC measurements and Karl-Fischer titration were applied to investigate the drug-phase diagram. The isoplethe section of the phase diagram exhibits four regions: one homogeneous (one liquid) and three two-phases (two regions with one liquid+one solid and one region with two liquids), the two solids phases being two polymorphs.

  15. Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D-xylose.

    PubMed

    Slininger, P J; Dien, B S; Lomont, J M; Bothast, R J; Ladisch, M R; Okos, M R

    2014-08-01

    Scheffersomyces (formerly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol production as functions of ethanol, oxygen, and xylose concentrations for both growth and fermentation stages. The model was validated for various growth conditions including batch, cell recycle, batch with in situ ethanol removal and fed-batch. The model provides a summary of basic physiological yeast properties and is an important tool for simulating and optimizing various culture conditions and evaluating various bioreactor designs for ethanol production. © 2014 Wiley Periodicals, Inc.

  16. Utilization of household food waste for the production of ethanol at high dry material content.

    PubMed

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield.

  17. Utilization of household food waste for the production of ethanol at high dry material content

    PubMed Central

    2014-01-01

    Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield. PMID:24401142

  18. USING WASTE TO CLEAN UP THE ENVIRONMENT: CELLULOSIC ETHANOL, THE FUTURE OF FUELS

    EPA Science Inventory

    In the process of converting municipal solid waste (MSW) into ethanol we optimized the first two major steps of pretreatment and enzymatic hydrolysis stages to enhance the sugar yield and to reduce the cost. For the pretreatment process, we tested different parameters of react...

  19. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor.

    PubMed

    Salim, Ahmed; Lim, Sungjoon

    2016-10-28

    In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol's concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes.

  20. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources.

    PubMed

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov; Wang, Jianlong; Angelidaki, Irini

    2017-10-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate production was examined. When substrate concentration was controlled at 100mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700mM, which inhibited the fermentation process. The highest caproate concentration of 8.42g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550mM total carbon). Results obtained in this study can pave the way towards efficient chain elongation from ethanol-rich wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model.

    PubMed

    Pautassi, Ricardo M; Nizhnikov, Michael E; Spear, Norman E

    2009-06-01

    The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.

  2. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.

    2009-01-01

    The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects. PMID:19428502

  3. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    PubMed

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  4. [Studies on extraction process optimization of Panax notogingseng saponins].

    PubMed

    Qu, Lin-hai; Zheng, Ming; Lou, Yi-jia

    2006-06-01

    To optimize the conditions for the extraction of panax notogingseng saponins (PNS). After selected extraction solvent and suitable particle, we employed orthogonal experimental design to examine the conditions for the extraction by determination of PNS. Significant effect was observed only in extraction times. The optimum condition for extraction of PNS was to extract panax notogingseng (Burk.) F. H. Chen with 10 times 70% ethanol for 1.5 hours for 3 times.

  5. [Studies on extraction process optimization of patrinia scabra Bunge saponins].

    PubMed

    Wang, Xue-Xi; Chen, Ru; Li, Shi-Gang; Shen, Wei; Cheng, Wei-Dong; Zhao, Jian-Xiong

    2007-05-01

    To optimize the conditions for the extraction of Patrinia scabra Bunge saponins. Orthogonal experimental design and ultrasonic method were employed to examine the conditions for the extraction by determination of saponins. The optimun condition for the extraction of Patrinia scabra Bunge saponins was as follows: 65% ethanol for 40 minutes, 55 degrees C and 210 watt of ultrasonic efficinecy. The extraction method of Patrinia scabra Bunge sponins is simple and efficient.

  6. Neurosteroid Modulators of GABAA Receptors Differentially Modulate Ethanol Intake Patterns in Male C57BL/6J Mice

    PubMed Central

    Ford, Matthew M.; Nickel, Jeffrey D.; Phillips, Tamara J.; Finn, Deborah A.

    2006-01-01

    Background Allopregnanolone (ALLO) and structurally related endogenous neurosteroids are potent modulators of GABAA receptor function at physiologically relevant concentrations. Accumulating evidence implicates a modulatory role for ALLO in behavioral processes underlying ethanol self-administration, discrimination and reinstatement. The purpose of this study was to evaluate the impact of exogenous neurosteroid challenges with the agonist ALLO and the partial agonist/antagonist epipregnanolone (EPI) on the microarchitecture of ethanol drinking patterns. Methods Male C57BL/6J mice were initiated to consume an unsweetened 10% v/v ethanol solution (10E) by a saccharin fading procedure during daily 2-hour limited access sessions beginning 1 hour after dark phase onset. Cumulative lick responses were recorded for 10E and water using lickometer circuits. After establishing 10E intake baselines, mice were habituated to vehicle injection (VEH; 20% w/v β-cyclodextrin; i.p.), and then were treated with either VEH or neurosteroid immediately prior to the drinking session. Each mouse received a series of ALLO doses (3.2, 10, 17 and 24 mg/kg) alone and EPI doses (0.15, 1, 3 and 10 mg/kg) alone in a counterbalanced within-group design. Results The GABAA receptor positive modulator, ALLO, dose-dependently modulated overall ethanol intake throughout the 2-hr session with the 3.2 mg/kg dose eliciting a significant increase whereas the 24 mg/kg dose produced a significant suppression of ethanol intake versus vehicle pretreatment. ALLO-evoked alterations in intake corresponded with a significant, dose-dependent alterations in bout frequency and inter-bout interval. ALLO also elicited robust, dose-dependent elevations in 10E licks during the initial 5-minutes of access, but subsequently resulted in a dose-dependent suppression of 10E licks during session minutes 20–80. In contrast, the partial agonist/antagonist neurosteroid, EPI, exhibited no influence on any consumption parameter evaluated. Conclusions The present findings suggest that GABAA receptor-active neurosteroids may modulate the regulatory processes that govern the onset, maintenance, and termination of drinking episodes. The differential influence of ALLO and EPI on ethanol intake patterns may reflect an alteration in GABAergic inhibitory tone that is likely due to each neurosteroid’s pharmacological profile at GABAA receptors. Manipulation of endogenous ALLO may prove a useful strategy for diminishing excessive intake and protecting against the loss of regulatory control over drinking. PMID:16205363

  7. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  8. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    PubMed Central

    2012-01-01

    Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics. PMID:22410131

  9. Preclinical Evaluation of Riluzole: Assessments of Ethanol Self-Administration and Ethanol Withdrawal Symptoms

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Hodge, Clyde W.

    2010-01-01

    Background Many of the neurobehavioral effects of ethanol are mediated by inhibition of excitatory N-methyl-d-aspartate (NMDA) and enhancement of inhibitory γ-amino-butyric-acid (GABA) receptor systems. There is growing interest in drugs that alter these systems as potential medications for problems associated with alcoholism. The drug riluzole, approved for treatment of amyotrophic lateral sclerosis (ALS), inhibits NMDA and enhances GABAA receptor system activity. This study was designed to determine the preclinical efficacy of riluzole to modulate ethanol self-administration and withdrawal. Methods Male C57BL/6J mice were trained to lever press on a concurrent fixed-ratio 1 schedule of ethanol (10% v/v) versus water reinforcement during daily 16-hour sessions. Riluzole (1 to 40 mg/kg, IP) was evaluated on ethanol self-administration after acute and chronic (2 week) treatment. To determine if riluzole influences ethanol withdrawal-associated seizures, mice were fed an ethanol-containing or control liquid diet for 18 days. The effects of a single injection of riluzole (30 mg/kg) were examined on handling-induced convulsions after ethanol withdrawal. Results Acute riluzole (30 and 40 mg/kg) reduced ethanol self-administration during the first 4 hours of the session, which corresponds to the known pharmacokinetics of this drug. Ethanol self-administration was also reduced by riluzole after chronic treatment. Riluzole (30 mg/kg) significantly decreased the severity of ethanol-induced convulsions 2 hours after ethanol withdrawal. Conclusions These results demonstrate that riluzole decreases ethanol self-administration and may reduce ethanol withdrawal severity in mice. Thus, riluzole may have utility in the treatment of problems associated with alcoholism. PMID:19426166

  10. Sensitivity of inbred and selectively bred mice to ethanol.

    PubMed

    Smolen, A; Smolen, T N; van de Kamp, J L

    1987-01-01

    The Long-Sleep (LS) and Short-Sleep (SS) mice were bred for differences in sensitivity to ethanol as measured by duration of loss of the righting response (sleep time). The foundation population was a heterogeneous stock (HS) which was derived from a cross of eight inbred strains. Ethanol-induced sleep time and waking blood and brain ethanol levels were measured in the eight inbred strains, LS, SS and HS mice. The C3H and ISBI strains were quite resistant to ethanol as measured by sleep time, and only one, RIII, was very sensitive. Waking ethanol concentrations were similar for all of the inbreds, implying a narrow range of central nervous system sensitivity to ethanol. The HS mice had relatively short sleep times and blood ethanol levels equal to most of the inbred. The LS mice were significantly more, and the SS mice significantly less sensitive to ethanol than any of the inbreds or HS mice. These studies suggest that the extremes of CNS sensitivities to ethanol manifested by the LS and SS mice cannot be traced to any of the inbred strains, and must have arisen through the selection process by changes in allelic frequencies of those genes conferring ethanol sensitivity and resistance.

  11. Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process.

    PubMed

    Tan, Li; Sun, Zhaoyong; Zhang, Wenxue; Tang, Yueqin; Morimura, Shigeru; Kida, Kenji

    2014-10-01

    Distilled grain waste eluted from Chinese spirit making is rich in carbohydrates, and could potentially serve as feedstock for the production of bio-fuel ethanol. Our study evaluated two types of saccharification methods that convert distilled grain waste to monosaccharides: enzymatic saccharification and concentrated H2SO4 saccharification. Results showed that enzymatic saccharification performed unsatisfactorily because of inefficient removal of lignin during pretreatment. Concentrated H2SO4 saccharification led to a total sugar recovery efficiency of 79.0 %, and to considerably higher sugar concentrations than enzymatic saccharification. The process of ethanol production from distilled grain waste based on concentrated H2SO4 saccharification was then studied. The process mainly consisted of concentrated H2SO4 saccharification, solid-liquid separation, decoloration, sugar-acid separation, oligosaccharide hydrolysis, and continuous ethanol fermentation. An improved simulated moving bed system was employed to separate sugars from acid after concentrated H2SO4 saccharification, by which 95.8 % of glucose and 85.8 % of xylose went into the sugar-rich fraction, while 83.3 % of H2SO4 went into the acid-rich fraction. A flocculating yeast strain, Saccharomyces cerevisiae KF-7, was used for continuous ethanol fermentation, which produced an ethanol yield of 91.9-98.9 %, based on glucose concentration.

  12. New efforts in eastern cottonwood biomass production through breeding and clonal refinement

    Treesearch

    Jason W. Cromer; Randall J. Rousseau; B. Landis Herrin

    2014-01-01

    First generation biofuels (also known as traditional biofuels) primarily use corn to produce ethanol. Newer techniques and knowledge are now allowing ethanol production from renewable resources such as trees that have more complex molecular structures that inhibit access to sugars. Ethanol production is through an enzymatic process which uses cellulose, or pyrolosis...

  13. Getting to Yes or Bailing on No: The Site Selection Process of Ethanol Plants in Wisconsin

    ERIC Educational Resources Information Center

    Tigges, Leann M.; Noble, Molly

    2012-01-01

    Prior studies of ethanol location rest on the assumption that ethanol producers are economic free agents--evaluating sites as if all counties are contenders for their business, weighing the availability of feedstocks along with their infrastructure needs, operating without ties to localities, and being subject to enticement from policy incentives.…

  14. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.

    PubMed

    Huang, Renliang; Guo, Hong; Su, Rongxin; Qi, Wei; He, Zhimin

    2017-03-01

    Recycling cellulases by substrate adsorption is a promising strategy for reducing the enzyme cost of cellulosic ethanol production. However, β-glucosidase has no carbohydrate-binding module (CBM). Thus, additional enzymes are required in each cycle to achieve a high ethanol yield. In this study, we report a new method of recycling cellulases without β-glucosidase supplementation using lignocellulosic substrate, an engineered strain expressing β-glucosidase and Tween 80. The cellulases and Tween 80 were added to an aqueous suspension of diluted sulfuric acid/ammonia-treated corncobs in a simultaneous saccharification and fermentation (SSF) process for ethanol production. Subsequently, the addition of fresh pretreated corncobs to the fermentation liquor and remaining solid residue provided substrates with absorbed cellulases for the next SSF cycle. This method provided excellent ethanol production in three successive SSF cycles without requiring the addition of new cellulases. For a 10% (w/v) solid loading, a cellulase dosage of 30 filter paper units (FPU)/g cellulose, 0.5% Tween 80, and 2 g/L of the engineered strain, approximately 90% of the initial ethanol concentration from the first SSF process was obtained in the next two SSF processes, with a total ethanol production of 306.27 g/kg corncobs and an enzyme productivity of 0.044 g/FPU. Tween 80 played an important role in enhancing cellulase recovery. This new enzyme recycling method is more efficient and practical than other reported methods. Biotechnol. Bioeng. 2017;114: 543-551. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Vascular oxidative stress: a key factor in the development of hypertension associated with ethanol consumption.

    PubMed

    Ceron, Carla S; Marchi, Katia C; Muniz, Jaqueline J; Tirapelli, Carlos R

    2014-01-01

    The observation that the excessive consumption of ethyl alcohol (ethanol) is associated with high blood pressure is nearing its centennial mark. Mechanisms linking ethanol consumption and hypertension are complex and not fully understood. It is established that chronic ethanol consumption leads to hypertension and that this process is a multimediated event involving increased sympathetic activity, stimulation of the renin-angiotensin-aldosterone system with a subsequent increase in vascular oxidative stress and endothelial dysfunction. Under physiological conditions, reactive oxygen species (ROS) play an important role as a signaling molecule in the control of vascular tone and endothelial function. Increased ROS bioavailability is associated with important processes underlying vascular injury in cardiovascular disease such as endothelial dysfunction, vascular remodeling, and inflammation. Studies focusing on molecular mechanisms showed a link between overproduction of ROS in the vasculature and ethanol-induced hypertension. Of the ROS generated in vascular cells, superoxide anion (O2(-)) and hydrogen peroxide (H2O2) appear to be especially important. Ethanol-mediated generation of O2(-) and H2O2 in vascular tissues is associated with elevations in intracellular calcium ([Ca(2+)]i), reduced nitric oxide (NO) bioavailability, endothelial dysfunction and vasoconstriction. O2(-) can also act as a vascular signaling molecule regulating signaling pathways that lead to vascular contraction. Thus, through increased generation of ROS and activation of redox-sensitive pathways, ethanol induces vascular dysfunction, a response that might contribute to the hypertension associated with ethanol consumption. The present article reviews the role of ROS in vascular (patho)biology of ethanol.

  16. Comparative Ethanol-Induced Potentiation of Stimulatory Responses to Dexmethylphenidate Versus Methylphenidate.

    PubMed

    Patrick, Kennerly S; Straughn, Arthur B; Reeves, Owen T; Bernstein, Hilary; Malcolm, Robert

    2015-08-01

    The potentiation of positive subjective responses to immediate-release dexmethylphenidate (d-MPH) or dl-methylphenidate (dl-MPH) by ethanol was investigated over the time course of maximal drug exposure after a single dose. In a 4-way, randomized, crossover study design, 12 men and 12 women normal volunteers received d-MPH (0.15 mg/kg) or dl-MPH (0.3 mg/kg) with or without ethanol (0.6 g/kg). Serial visual analog scales were used as surrogates for drug abuse liability ("high," "good," "like," "stimulated," and "any drug effect"). Combining pure d-MPH with ethanol significantly (P < 0.005) increased the area under the effect curves (AUC(0-5.25h)) of all 5 subscales. The dl-MPH-ethanol combination significantly (P < 0.05) increased these AUCs with the exception of like (P = 0.08). Effects of the pure d-MPH-ethanol combination exhibited delayed potentiation relative to dl-MPH-ethanol. A pharmacokinetic interaction between the l-isomer of dl-MPH and ethanol has previously been shown to increase early exposure to d-MPH. Administration of the pure isomer d-MPH precludes this absorption phase pharmacokinetic interaction with ethanol. This notwithstanding, the pure d-MPH-ethanol combination resulted in comparable, if not greater, cumulative stimulant potentiation than the dl-MPH-ethanol combination. These findings provide evidence of a pharmacodynamic component to d-MPH-ethanol synergistic interactions and carry implications for the rational drug individualization in the treatment of attention-deficit/hyperactivity disorder.

  17. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    NASA Astrophysics Data System (ADS)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  18. Ignition Characterization Test Results for the LO2/Ethanol Propellant Combination

    NASA Technical Reports Server (NTRS)

    Popp, Christopher G.; Robinson, Phillip J.; Veith, Eric M.

    2006-01-01

    A series of contracts were issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) under the auspices of the Exploration Systems Mission Directorate to develop and expand the maturity of candidate technologies considered to be important for future space exploration. One such technology was to determine the viability of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 was issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilized liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporated a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. The preferred RCS approach for the dual thrust RCE was to utilize pressure-fed liquid oxygen (LOX) and ethanol propellants; however, previous dual thrust feasibility testing incorporated GOX/Ethanol igniters as opposed to LOX/Ethanol igniters in the design. GOX/Ethanol was easier to ignite, but this combination had system design implications of providing GOX for the igniters. A LOX/Ethanol igniter was desired; however, extensive LOX/Ethanol ignition data over the anticipated operating range for the dual thrust RCE did not exist. Therefore, Aerojet designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. LOX, encompassing potential two-phase flow conditions anticipated being present in real mission applications. A workhorse igniter was designed to accommodate the hll LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the latent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. permitted oxygen state points to be determined in the igniter oxidizer manifold, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, m. Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 210 R LOX to 486 R GOX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5. Pulsing is required in typical RCS engines; therefore, the workhorse igniter was pulse tested to verify the ability to provide the required ignition for a pulsing RCE. The minimum electrical pulse width (EPW) of the dual thrust RCE was 0.080 seconds.

  19. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    PubMed

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  20. Biofuels: An Alternative to U.S. Air Force Petroleum Fuel Dependency

    DTIC Science & Technology

    2007-12-01

    Ethanol Production 1999-2012 11 Figure 6. Reducing the Cost of Cellulosic Ethanol Production 12 Figure 7. Biodiesel Production Process ...14 Figure 8. Biodiesel Production Capacity, 1999 to 2005 15 Figure 9. Jet Fuel From Algae Process 17...the goal of this biofuels program is to develop an affordable biodiesel alternative production process that will achieve a 60 percent greater energy

  1. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee

    PubMed Central

    Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L

    2008-01-01

    Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103

  2. Non-Toxic Orbital Maneuvering System Engine Development

    NASA Technical Reports Server (NTRS)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  3. Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae.

    PubMed

    Singh, Anita; Bajar, Somvir; Bishnoi, Narsi R

    2017-11-01

    The aim of this work was to study the physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae. Firstly, factors affecting pretreatment were screened out by Plackett-Burman design (PBD) and most significant factors were further optimized by Box-Behnken design (BBD). As shown by experimental study, most significant factors were FeCl 3 concentration (FC), irradiation time (IT) and substrate concentration (SC) affecting pretreatment of cotton stalk among all studied factors. Under optimum conditions of pretreatment FC 0.15mol/l, IT 20min and SC 55g/l, the release of reducing sugar was 6.6g/l. Hydrolysis of pretreated cotton stalk was done by crude on-site produced enzymes and hydrolysate was concentrated. Ethanol production by Saccharomyces cerevisiae using concentrated cotton stalk hydrolysate was 9.8g p /l, with ethanol yield 0.37g p /g s on consumed sugars. The data indicated that microwave FeCl 3 pretreated cotton stalk hydrolyses by crude unprocessed enzyme cocktail was good, and ethanol can be produced by fermentation of hydrolysate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Bismuth molybdate thick films as ethanol sensor

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Kumar, Vipin; Gupta, H. P.; Rastogi, A. C.

    2003-10-01

    Ethanol sensitivity of bismuth molybdate thick films and sintered pellets were investigated. Sintered pellets were prepared by traditional ceramic processing. Thick films were prepared by metallorganic decomposition process. Ethanol gas sensitivity was measured at various temperatures and concentrations. Thick films of alpha phase bismuth molybdate prepared by spray pyrolysis showed a very fast response to ethanol detection. The response time for the bulk samples is about 40 sec which decreased to about 6 sec for thick films at an operating temperature of 300°C. An extremely low level approximately 10 ppm detection and fast response makes this technique ideal for sensor element fabrication for detection and estimation of alcohol in breath-analyzer. Unlike SnO2, the resistance of these sensors is not affected by humidity at the operating temperature.

  5. [Effect of excess ethanol on the growth of yeasts of the genus Candida during continuous cultivation].

    PubMed

    Shkidchenko, A N; Shul'ga, A V; Gurina, L V

    1988-01-01

    The effect of flow rates and a specific ethanol load on the growth of Candida utilis and Candida krusei was studied in the process of one-step and three-step cultivation. The productive capacity of fermenters and the economic coefficient of yeast biomass production were shown to depend on the ability of microbial populations to assimilate a certain quantity of a carbon substrate per unit time. When a specific ethanol load exceeds the optimal one, the respiratory activity of a population and the economic coefficient of growth fall down whereas the accumulation of metabolites in the cultural broth increases. The steady state of biomass can be maintained in the process of continuous cultivation by inhibiting the yeast growth with an excess of ethanol.

  6. A novel process for recovery of fermentation-derived succinic acid: process design and economic analysis.

    PubMed

    Orjuela, Alvaro; Orjuela, Andrea; Lira, Carl T; Miller, Dennis J

    2013-07-01

    Recovery and purification of organic acids produced in fermentation constitutes a significant fraction of total production cost. In this paper, the design and economic analysis of a process to recover succinic acid (SA) via dissolution and acidification of succinate salts in ethanol, followed by reactive distillation to form succinate esters, is presented. Process simulation was performed for a range of plant capacities (13-55 million kg/yr SA) and SA fermentation titers (50-100 kg/m(3)). Economics were evaluated for a recovery system installed within an existing fermentation facility producing succinate salts at a cost of $0.66/kg SA. For a SA processing capacity of 54.9 million kg/yr and a titer of 100 kg/m(3) SA, the model predicts a capital investment of $75 million and a net processing cost of $1.85 per kg SA. Required selling price of diethyl succinate for a 30% annual return on investment is $1.57 per kg. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Surface-enhanced Raman spectroscopic and surface plasmon resonance in situ study of self-assembly of 4-mercaptobenzoic acid on gold surface

    NASA Astrophysics Data System (ADS)

    Thi, Minh Do; Volka, Karel

    2010-07-01

    A feasibility study has been undertaken to assess the suitability of a commercially available SERS substrate for monitoring of self-assembling deposition process. Monolayer self-assembly of 4-mercaptobenzoic acid on SERS active substrate Klarite™ from absolute and acidified ethanol was studied and compared with deposition on SPR substrate from absolute ethanol. Changes in integral intensity of the phenyl bands at 1587 and 1076 cm -1 and ethanol band at 1451 cm -1 allow to follow structural changes in the monolayer. Stability of the monolayer assembled from acidified ethanol in contrast to the pure ethanol was demonstrated.

  8. Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors.

    PubMed

    Blednov, Y A; Borghese, C M; McCracken, M L; Benavidez, J M; Geil, C R; Osterndorff-Kahanek, E; Werner, D F; Iyer, S; Swihart, A; Harrison, N L; Homanics, G E; Harris, R A

    2011-01-01

    GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.

  9. Loss of Ethanol Conditioned Taste Aversion and Motor Stimulation in Knockin Mice with Ethanol-Insensitive α2-Containing GABAA Receptors

    PubMed Central

    Borghese, C. M.; McCracken, M. L.; Benavidez, J. M.; Geil, C. R.; Osterndorff-Kahanek, E.; Werner, D. F.; Iyer, S.; Swihart, A.; Harrison, N. L.; Homanics, G. E.; Harris, R. A.

    2011-01-01

    GABA type A receptors (GABAA-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABAA-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705–714, 2004; Pharmacol Biochem Behav 90:95–104, 2008; J Psychiatr Res 42:184–191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism. PMID:20876231

  10. The effects of nicotine on ethanol-induced conditioned taste aversions in Long-Evans rats.

    PubMed

    Rinker, Jennifer A; Busse, Gregory D; Roma, Peter G; Chen, Scott A; Barr, Christina S; Riley, Anthony L

    2008-04-01

    Overall drug acceptability is thought to be a function of the balance between its rewarding and aversive effects, the latter of which is reportedly affected by polydrug use. Given that nicotine and alcohol are commonly co-used, the present experiments sought to assess nicotine's impact on ethanol's aversive effects within a conditioned taste aversion design. Experiment 1 examined various doses of nicotine (0, 0.4, 0.8, 1.2 mg/kg) to determine a behaviorally active dose, and experiment 2 examined various doses of ethanol (0, 0.5, 1.0, 1.5 g/kg) to determine a dose that produced intermediate aversions. Experiment 3 then examined the aversive effects of nicotine (0.8 mg/kg) and ethanol (1.0 g/kg) alone and in combination. Additionally, nicotine's effects on blood alcohol concentrations (BAC) and ethanol-induced hypothermia were examined. Nicotine and ethanol combined produced aversions significantly greater than those produced by either drug alone or the summed aversive effects of the individual compounds. These effects were unrelated to changes in BAC, but nicotine and ethanol combined produced a prolonged hypothermic effect which may contribute to the increased aversions induced by the combination. These data demonstrate that nicotine may interact with ethanol, increasing ethanol's aversive effects. Although the rewarding effects of concurrently administered nicotine and ethanol were not assessed, these data do indicate that the reported high incidence of nicotine and ethanol co-use is unlikely due to reductions in the aversiveness of ethanol with concurrently administered nicotine. It is more likely attributable to nicotine-related changes in ethanol's rewarding effects.

  11. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    NASA Astrophysics Data System (ADS)

    Goyal, Garima

    Fossil fuels have been the major source for liquid transportation fuels for ages. However, decline in oil reserves and environmental concerns have raised a lot of interest in alternative and renewable energy sources. One promising alternative is the conversion of plant biomass into ethanol. The primary biomass feed stocks currently being used for the ethanol industry have been food based biomass (corn and sugar cane). However, interest has recently shifted to replace these traditional feed-stocks with more abundant, non-food based cellulosic biomass such as agriculture wastes (corn stover) or crops (switch grass). The use of cellulosic biomass as feed stock for the production of ethanol via bio-chemical routes presents many technical challenges not faced with the use of corn or sugar-cane as feed-stock. Recently, a new process called consolidated Bio-processing (CBP) has been proposed. This process combines simultaneous saccharification of lignocellulose with fermentation of the resulting sugars into a single process step mediated by a single microorganism or microbial consortium. Although there is no natural microorganism that possesses all properties of lignocellulose utilization and ethanol production desired for CBP, some bacteria and fungi exhibit some of the essential traits. The yeast Saccharomyces cerevisiae is the most attractive host organism for the usage of this strategy due to its high ethanol productivity at close to theoretical yields (0.51g ethanol/g glucose consumed), high osmo- and ethanol- tolerance, natural robustness in industrial processes, and ease of genetic manipulation. Introduction of the cellulosome, found naturally in microorganisms, has shown new directions to deal with recalcitrant biomass. In this case enzymes work in synergy in order to hydrolyze biomass more effectively than in case of free enzymes. A microbial consortium has been successfully developed, which ensures the functional assembly of minicellulosome on the yeast surface composed of four yeast populations. These yeast populations include: one displaying scaffoldin on its surface and three populations secreting three different cellulases in the medium to hydrolyze the cellulose. The modular nature of the consortium system allows for the fine-tuning of each population by changing their initial inoculum ratio, thereby optimizing the cellulose hydrolysis and hence ethanol production. When comparing the optimized consortium with equal ratio consortium, the optimized one produced almost double the amount of ethanol (1.87 g/l) with a yield of 0.475 g ethanol/g cellulose. To further evaluate the feasibility of using consortium for CBP, it was grown at very low optical density (OD) under anaerobic conditions. Under stressful conditions like low OD and no oxygen, the consortium system was proficient in assembling the cellulosome on its surface and growing on the PAS-avicel as sole carbon source and concomitantly producing ethanol with a yield of 87% of the theoretical value. For the dynamic study of yeast consortium system, quantitative real time PCR was used to enumerate the individual yeast population in the mixed culture. At the end of the cultivation, ratios of each population in this consortium maintained similar number as the initial inoculums ratios, which further confirms the consortium system is suitable for the application of CBP.

  12. Liquid Fuels from Lignins: Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H. L.; Johnson, D. K.

    1986-01-01

    This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

  13. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    PubMed

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  14. Characterization of milled solid residue from cypress liquefaction in sub- and super ethanol.

    PubMed

    Liu, Hua-Min; Liu, Yu-Lan

    2014-01-01

    Cypress liquefaction in sub- and super ethanol was carried out in an autoclave at various temperatures. Milled solid residue (MSR) was isolated from solid residue remaining from the liquefaction process, and its chemical characteristics was comparatively investigated with milled wood lignin (MWL) of cypress by sugar analysis, elemental analysis, FT-IR analysis, gel permeation chromatography, and NMR analysis. Results showed that there were two reactions (de-polymerization and re-polymerization) during the cypress liquefaction in sub- and super ethanol and the re-polymerization reactions were the main reaction at 220-260°C. Considering the stability of side-chain, the stability of lignin side-chain in cypress during liquefaction process in ethanol could be sequenced as follows: β-5>β-β'>β-O-4'. The MSR were mainly from the decomposition and re-polymerization of lignin. This study suggests that characterization of MSR provides a promising method to investigate the mechanisms of cypress liquefaction in ethanol. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Bioethanol production from the dry powder of Jerusalem artichoke tubers by recombinant Saccharomyces cerevisiae in simultaneous saccharification and fermentation.

    PubMed

    Wang, Yi-Zhou; Zou, Shan-Mei; He, Mei-Lin; Wang, Chang-Hai

    2015-04-01

    It has been found that recombinant Saccharomyces cerevisiae 6525 can produce high concentration of ethanol in one-step fermentation from the extract of Jerusalem artichoke tubers or inulin. However, the utilization rate of raw materials was low and the fermentation process was costly and complicated. Therefore, in this study, after the optimum processing conditions for ethanol production in fed-batch fermentation were determined in flask, the recombinant S. cerevisiae 6525 was first used to produce ethanol from the dry powder of Jerusalem artichoke tubers in 5-L agitating fermentor. After 72 h of fermentation, around 84.3 g/L ethanol was produced in the fermentation liquids, and the conversion efficiency of inulin-type sugars to ethanol was 0.453, or 88.6 % of the theoretical value of 0.511. This study showed high feasibility of bioethanol industrial production from the Jerusalem artichoke tubers and provided a basis for it in the future.

  16. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    PubMed

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs.

  17. Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process.

    PubMed

    Roy, Poritosh; Dutta, Animesh; Deen, Bill

    2015-09-01

    Life cycle (LC) of ethanol has been evaluated to determine the environmental and economical viability of ethanol that was derived from biosyngas fermentation process (gasification-biosynthesis). Four scenarios [S1: untreated (raw), S2: treated (torrefied); S3: untreated-chemical looping gasification (CLG), S4: treated-CLG] were considered. The simulated biosyngas composition was used in this evaluation process. The GHG emissions and production cost varied from 1.19 to 1.32 kg-CO2 e/L and 0.78 to 0.90$/L, respectively, which were found to be dependent on the scenarios. The environmental and economical viability was found be improved when untreated feedstock was used instead of treated feedstock. Although the GHG emissions slightly reduced in the case of CLG process, production cost was nominally increased because of the cost incurred by the use of CaO. This study revealed that miscanthus is a promising feedstock for the ethanol industry, even if it is grown on marginal land, which can help abate GHG emissions. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. Real-time understanding of lignocellulosic bioethanol fermentation by Raman spectroscopy

    PubMed Central

    2013-01-01

    Background A substantial barrier to commercialization of lignocellulosic ethanol production is a lack of process specific sensors and associated control strategies that are essential for economic viability. Current sensors and analytical techniques require lengthy offline analysis or are easily fouled in situ. Raman spectroscopy has the potential to continuously monitor fermentation reactants and products, maximizing efficiency and allowing for improved process control. Results In this paper we show that glucose and ethanol in a lignocellulosic fermentation can be accurately monitored by a 785 nm Raman spectroscopy instrument and novel immersion probe, even in the presence of an elevated background thought to be caused by lignin-derived compounds. Chemometric techniques were used to reduce the background before generating calibration models for glucose and ethanol concentration. The models show very good correlation between the real-time Raman spectra and the offline HPLC validation. Conclusions Our results show that the changing ethanol and glucose concentrations during lignocellulosic fermentation processes can be monitored in real-time, allowing for optimization and control of large scale bioconversion processes. PMID:23425590

  19. Exploring the role of curcumin containing ethanolic extract obtained from Curcuma longa (rhizomes) against retardation of wound healing process by aspirin.

    PubMed

    Pawar, Rajesh Singh; Toppo, Fedelic Ashish; Mandloi, Avinash Singh; Shaikh, Shabnam

    2015-01-01

    The aim of the study was to assess the curcumin containing ethanolic extract (EtOH) obtained from Curcuma longa (Cl) against retardation of wound healing by aspirin. Wound healing process was retarded by administering the dose of 150 mg/kg body weight of aspirin orally for 9 days to observe the effect of EtOH obtained from Cl using excision and incision wound model in rats. The various parameters such as % wound contraction, epithelialization period, hydroxyproline, tensile strength were observed at variant time intervals and histopathological study was also performed. Curcumin containing 5% and 10% ethanolic extract ointment have shown significant (P < 0.01) wound healing activity against an aspirin (administered 150 mg/kg body weight orally for 9 days) retarded wound healing process. Topical application of ointment showed significant (P < 0.01) difference as compared to the control group. Histopathological studies also showed healing of the epidermis, increased collagen, fibroblasts and blood vessels. Ethanolic extract of Cl ointment (EtOHCl) containing 10% curcumin displayed remarkable healing process against wound retardation by aspirin.

  20. Materials for Energy Conversion: Materials for Energy Conversion and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atanassov, Plamen

    2017-03-30

    The main objective of this collaborative research project was to identify a formulation and develop a catalyst for electro-oxidation of ethanol. Ethanol is one of the most mass-produced biofuels, and such catalysts will enable the development of Direct Ethanol Fuel Cell technology and through it, will interconnect fuel cells with biofuels. Several catalysts for direct electrochemical oxidation of ethanol have been selected on the principles of rational desig from the knowledge build in studying aqueous oxidation of ethanol. The program involved fundamental study of ethanol oxidation in liquid media, and particularly in alakine solutions. The lessons learned from the heterogeneousmore » catalysis of ethanol thermal oxidation have been applied to the design of an electrocatalyst for direct ethanol fuel cells. The successful chemical compositions are based on PdZn and NiZn allows. The studies reveled the role of the transition metal oxide phase as a co-catalyst and the role of the active support material. To complete the set of materials for ethanol fuel cell, this program also invested n the development of ctalysts for oxygen reduction that are selective against alcohol oxidation. Non-platinum ctalysts based on pyrolyzed macrocycles or similar composites have been studied. This program included also the development of stuctured supports as an integral part of the catalyst development. A new family of materials has been designed based on mesoporous silica templating with synthetic carbon resulting in hierarchicaly porous structure. Structure-to-property relationship of catalysis and catalysts has been the center of this program. This have been engaged in both surface and bulk level and pursued with the tools avialble at the academic institutions and at LANSCE at LANL. The structural studies have been built in interaction with a computational effort on the basis of DFT approach to materials structure and reactivity.« less

  1. Sex differences in adult Wistar rats in the voluntary consumption of ethanol after pre-exposure to ethanol-induced flavor avoidance learning.

    PubMed

    de la Torre, M Lourdes; Escarabajal, M Dolores; Agüero, Ángeles

    2015-10-01

    Vulnerability to ethanol abuse may be a function of the balance between the opposing (aversive and rewarding) motivational effects of the drug. The study of these effects is particularly important for understanding alcohol addiction. Research in this field seems to point out that ethanol effects are determined by a set of internal factors (sex, ethanol intake history, etc.), as well as by environmental conditions surrounding the individual (i.e., stress) and, of course, the interactions between all these factors. This work explores sex differences in sensitivity to aversive effects of ethanol using the procedure of flavor avoidance learning (FAL), as well as the effect of this learning experience on subsequent voluntary ethanol consumption, in adult rats. The results obtained indicated a slight sex based difference in the amount of FAL acquired in that females acquisition was weaker (experiment 1), and a differing influence of previous experience with the aversive effects of ethanol on the voluntary consumption of the drug for each sex (experiment 2). In particular, it was observed that female ethanol-naive rats showed a higher intake level and preference for ethanol than both ethanol-experienced female rats and ethanol-naive male rats. In contrast, the ethanol-experienced male rats showed a greater consumption of and preference for ethanol than ethanol-naive male rats and ethanol-experienced female rats. These data are discussed noting a range of possible explicative factors (sex hormones, hedonic processing, etc.), but further studies are warranted to elucidate the mechanisms by which ethanol pre-exposure influences the subsequent intake of ethanol differently by sex. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A novel inter-fibre light coupling sensor probe using plastic optical fibre for ethanol concentration monitoring at initial production rate

    NASA Astrophysics Data System (ADS)

    Memon, Sanober F.; Lewis, Elfed; Pembroke, J. Tony; Chowdhry, Bhawani S.

    2017-04-01

    A novel, low cost and highly sensitive optical fibre probe sensor for concentration measurement of ethanol solvent (C2H5OH) corresponding to bio-ethanol production rate by an algae is reported. The principle of operation of the sensor is based on inter-fibre light coupling through an evanescent field interaction to couple the light between two multimode fibres mounted parallel to each other at a minimum possible separation i.e. < 1mm. The sensor was fabricated using a low cost 1000um plastic optical fibre (POF) and was characterized for real time measurement in the broadband spectrum including visible and near infra-red. The wavelength dependency of this sensor design was also investigated by post processing analysis of real time data and hence the optimum wavelength range determined. The proposed sensor has shown significant response in the range of 0.005 - 0.1 %v/v (%volume/volume or volume concentration) which depicts the high sensitivity for monitoring very minute changes in concentration corresponding refractive index changes of the solution. Numerically, sensor has shown the sensitivity of 21945 intensity counts/%v/v or 109.7 counts per every 0.0050 %v/v.

  3. Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application.

    PubMed

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-05-04

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.

  4. Dynamic Response of Tapered Optical Multimode Fiber Coated with Carbon Nanotubes for Ethanol Sensing Application

    PubMed Central

    Shabaneh, Arafat; Girei, Saad; Arasu, Punitha; Mahdi, Mohd; Rashid, Suraya; Paiman, Suriati; Yaacob, Mohd

    2015-01-01

    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol. PMID:25946634

  5. Production of bio ethanol from waste potatoes

    NASA Astrophysics Data System (ADS)

    Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali

    2017-03-01

    In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.

  6. Targeting the subthalamic nucleus in a preclinical model of alcohol use disorder.

    PubMed

    Pelloux, Yann; Baunez, Christelle

    2017-07-01

    The subthalamic nucleus (STN) has only recently been considered to have a role in reward processing. In rats, inactivation of the STN by lesion or high-frequency stimulation (HFS) decreases motivation for cocaine but increases motivation for sucrose. For ethanol, the effect of STN lesion depends on the individual's baseline intake; decreasing motivation for ethanol in rats with lower ethanol intake, while increasing motivation for ethanol in rats with higher-but still limited-ethanol intake. However, the involvement of the STN in behaviour more closely resembling some aspects of alcohol use disorder has not been assessed. This study aimed to determine the effect of STN lesions on the escalation of ethanol intake, subsequent increases in the motivation to "work" for ethanol and the choice of ethanol over a non-drug alternative. We found that STN lesion prevented increases in ethanol intake observed during intermittent ethanol access and after a long period of ethanol privation. STN lesion also decreased the motivation to work for ethanol after escalated intake. Surprisingly, STN lesion increased the choice of alcohol over saccharin. This was associated with a blunting of the hedonic responses to the taste of the reinforcement alternatives. These results evidence the involvement of the STN in different ethanol-motivated behaviours and therefore position the STN as an interesting target for the treatment of alcohol use disorders.

  7. Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation.

    PubMed

    Nishimura, Hiroto; Tan, Li; Kira, Noriko; Tomiyama, Shigeo; Yamada, Kazuo; Sun, Zhao-Yong; Tang, Yue-Qin; Morimura, Shigeru; Kida, Kenji

    2017-09-01

    Efficient ethanol production from waste paper requires the addition of expensive nutrients. To reduce the production cost of ethanol from waste paper, a study on how to produce ethanol efficiently by adding kitchen waste (potentially as a carbon source, nutrient source, and acidity regulator) to waste paper was performed and a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation (L+PSSF) was developed. The individual saccharification performances of waste paper and kitchen waste were not influenced by their mixture. Liquefaction of kitchen waste at 90°C prior to presaccharification and simultaneous saccharification and fermentation (PSSF) was essential for efficient ethanol fermentation. Ethanol at concentrations of 46.6 or 43.6g/l was obtained at the laboratory scale after fermentation for 96h, even without pH adjustment and/or the addition of extra nutrients. Similarly, ethanol at a concentration of 45.5g/l was obtained at the pilot scale after fermentation for 48h. The ethanol concentration of L+PSSF of the mixture of waste paper and kitchen waste was comparable to that of PSSF of waste paper with added nutrients (yeast extract and peptone) and pH adjustment using H 2 SO 4 , indicating that kitchen waste is not only a carbon source but also an excellent nutrient source and acidity regulator for fermentation of the mixture of waste paper and kitchen waste. Copyright © 2017. Published by Elsevier Ltd.

  8. Additive Manufacturing of Catalytically Active Living Materials.

    PubMed

    Saha, Abhijit; Johnston, Trevor G; Shafranek, Ryan T; Goodman, Cassandra J; Zalatan, Jesse G; Storti, Duane W; Ganter, Mark A; Nelson, Alshakim

    2018-04-25

    Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.

  9. Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production

    NASA Astrophysics Data System (ADS)

    Oliveira, Alianda Dantas de; Sá, Ananda Franco de; Pimentel, Maria Fernanda; Pacheco, José Geraldo A.; Pereira, Claudete Fernandes; Larrechi, Maria Soledad

    2017-01-01

    This work presents a comprehensive near infrared study for in-line monitoring of the esterification reaction of high acid oils, such as Jatropha curcas oil, using ethanol. Parallel reactions involved in the process were carried out to select a spectral region that characterizes the evolution of the esterification reaction. Using absorbance intensities at 5176 cm- 1, the conversion and kinetic behaviors of the esterification reaction were estimated. This method was applied to evaluate the influence of temperature and catalyst concentration on the estimates of initial reaction rate and ester conversion as responses to a 22 factorial experimental design. Employment of an alcohol/oil ratio of 16:1, catalyst concentration of 1.5% w/w, and temperatures at 65 °C or 75 °C, made it possible to reduce the initial acidity from 18% to 1.3% w/w, which is suitable for transesterification of high free fatty acid oils for biodiesel production. Using the proposed analytical method in the esterification reaction of raw materials with high free fatty acid content for biodiesel makes the monitoring process inexpensive, fast, simple, and practical.

  10. Acetone-butanol-ethanol fermentation of corn stover: current production methods, economic viability and commercial use.

    PubMed

    Baral, Nawa R; Slutzky, Lauren; Shah, Ajay; Ezeji, Thaddeus C; Cornish, Katrina; Christy, Ann

    2016-03-01

    Biobutanol is a next-generation liquid biofuel with properties akin to those of gasoline. There is a widespread effort to commercialize biobutanol production from agricultural residues, such as corn stover, which do not compete with human and animal foods. This pursuit is backed by extensive government mandates to expand alternative energy sources. This review provides an overview of research on biobutanol production using corn stover feedstock. Structural composition, pretreatment, sugar yield (following pretreatment and hydrolysis) and generation of lignocellulose-derived microbial inhibitory compounds (LDMICs) from corn stover are discussed. The review also discusses different Clostridium species and strains employed for biobutanol production from corn stover-derived sugars with respect to solvent yields, tolerance to LDMICs and in situ solvent recovery (integrated fermentation). Further, the economics of cellulosic biobutanol production are highlighted and compared to corn starch-derived ethanol and gasoline. As discussed herein, the economic competitiveness of biobutanol production from corn stover largely depends on feedstock processing and fermentation process design. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. A generalized disjunctive programming framework for the optimal synthesis and analysis of processes for ethanol production from corn stover.

    PubMed

    Scott, Felipe; Aroca, Germán; Caballero, José Antonio; Conejeros, Raúl

    2017-07-01

    The aim of this study is to analyze the techno-economic performance of process configurations for ethanol production involving solid-liquid separators and reactors in the saccharification and fermentation stage, a family of process configurations where few alternatives have been proposed. Since including these process alternatives creates a large number of possible process configurations, a framework for process synthesis and optimization is proposed. This approach is supported on kinetic models fed with experimental data and a plant-wide techno-economic model. Among 150 process configurations, 40 show an improved MESP compared to a well-documented base case (BC), almost all include solid separators and some show energy retrieved in products 32% higher compared to the BC. Moreover, 16 of them also show a lower capital investment per unit of ethanol produced per year. Several of the process configurations found in this work have not been reported in the literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pre-treatment step with Leuconostoc mesenteroides or L. pseudomesenteroides strains removes furfural from Zymomonas mobilis ethanolic fermentation broth.

    PubMed

    Hunter, William J; Manter, Daniel K

    2014-10-01

    Furfural is an inhibitor of growth and ethanol production by Zymomonas mobilis. This study used a naturally occurring (not GMO) biological pre-treatment to reduce that amount of furfural in a model fermentation broth. Pre-treatment involved inoculating and incubating the fermentation broth with strains of Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides. The Leuconostoc strains converted furfural to furfuryl alcohol without consuming large amounts of dextrose in the process. Coupling this pre-treatment to ethanolic fermentation reduced furfural in the broth and improved growth, dextrose uptake and ethanol formation. Pre-treatment permitted ethanol formation in the presence of 5.2 g L(-1) furfural, which was otherwise inhibitive. The pre-treatment and presence of the Leuconostoc strains in the fermentation broth did not interfere with Z. mobilis ethanolic fermentation or the amounts of ethanol produced. The method suggests a possible technique for reducing the effect that furfural has on the production of ethanol for use as a biofuel. Published by Elsevier Ltd.

  13. Process for producing ethanol from syngas

    DOEpatents

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  14. Ethanol exposure can inhibit red spruce ( Picea rubens ) seed germination

    Treesearch

    John R. Butnor; Brittany M. Verrico; Victor Vankus; Stephen R. Keller

    2018-01-01

    Flotation of seeds in solvents is a common means of separating unfilled and filled seeds. While a few protocols for processing red spruce (Picea rubens) seeds recommend ethanol flotation, delayed and reduced germination have been reported. We conducted an ethanol bioassay on seeds previously stored at -20°C to quantify the concentration required to separate red spruce...

  15. Characterization and ethanol potential from giant cassava (Manihot esculenta) stem waste biomass

    NASA Astrophysics Data System (ADS)

    Septia, E.; Supriadi; Suwinarti, W.; Amirta, R.

    2018-04-01

    Manihot esculenta stem waste biomass is promising material for ethanol production since it is unutilized substance from cassava production. Nowadays, cassava is the most common food in Indonesian society. The aims of this study were to identify availability and characteristic of giant cassava (M. esculenta) stem waste biomass for ethanol feedstock. In term of that, four plots with the size of 5m x 5m were made to calculate the total stem biomass obtained after harvesting process. In this study, various concentrations of alkaline were used to degrade lignin from the substrate. The effects of alkaline pretreatment were investigated using TAPPI method and the ethanol yield was estimated using modified NREL protocol. The results showed that the potential dry stem waste biomass from harvesting of M. esculenta was approximately 10.5 ton/ha. Further, alkaline pretreatment of stem waste biomass with 2% of NaOH coupled with the enzymatic saccharification process using meicelase was showed the highest production of sugar to reach of 38.49 % of total reduction sugar and estimated potentially converted to 2,62 L/ha of ethanol. We suggested M. esculenta stem waste biomass could be used as sustainable feedstock for ethanol production in Indonesia.

  16. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel.

    PubMed

    Wang, Zhichao; Dunn, Jennifer B; Han, Jeongwoo; Wang, Michael Q

    2015-01-01

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California's Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller's grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol's life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement credits, and energy consumption for corn oil production and corn oil biodiesel production. This study's results demonstrate that co-product treatment methodology strongly influences corn oil biodiesel life-cycle GHG emissions and can affect how this fuel is treated under the Renewable Fuel and Low Carbon Fuel Standards.

  17. Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production

    PubMed Central

    2013-01-01

    Background Sugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars. In particular, the processing of the intermediates into ethanol is considerably facilitated because it does not require pretreatment or enzymatic treatment in contrast to production from starch raw materials. Moreover, the advantage of thick juice is high solid substance and saccharose content which eliminates problems with the storability of this feedstock. Results The objective of this study were to investigate bioethanol production from thick juice worts and the effects of their concentration, the type of mineral supplement, as well as the dose of yeast inoculum on fermentation dynamics and ethanol yield. The obtained results show that to ensure efficient ethanolic fermentation of high gravity thick juice worts, one needs to use a yeast strain with high ethanol tolerance and a large amount of inoculum. The highest ethanol yield (94.9 ± 2.8% of the theoretical yield) and sugars intake of 96.5 ± 2.9% were obtained after the fermentation of wort with an extract content of 250 g/kg supplemented with diammonium hydrogen phosphate (0.3 g/L of wort) and inoculated with 2 g of Ethanol Red dry yeast per L of wort. An increase in extract content in the fermentation medium from 250 g/L to 280 g/kg resulted in decreased efficiency of the process. Also the distillates originating from worts with an extract content of 250 g/kg were characterized by lower acetaldehyde concentration than those obtained from worts with an extract content of 280 g/kg. Conclusions Under the favorable conditions determined in our experiments, 38.9 ± 1.2 L of 100% (v/v) ethyl alcohol can be produced from 100 kg of thick juice. The obtained results show that the selection of process conditions and the yeast for the fermentation of worts with a higher sugar content can improve the economic performance of the alcohol-distilling industry due to more efficient ethanol production, reduced consumption of cooling water, and energy for ethanol distillation, as well as a decreased volume of fermentation stillage. PMID:24206573

  18. Evaluation of the fermentation of high gravity thick sugar beet juice worts for efficient bioethanol production.

    PubMed

    Dziugan, Piotr; Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr

    2013-11-08

    Sugar beet and intermediates of sugar beet processing are considered to be very attractive feedstock for ethanol production due to their content of fermentable sugars. In particular, the processing of the intermediates into ethanol is considerably facilitated because it does not require pretreatment or enzymatic treatment in contrast to production from starch raw materials. Moreover, the advantage of thick juice is high solid substance and saccharose content which eliminates problems with the storability of this feedstock. The objective of this study were to investigate bioethanol production from thick juice worts and the effects of their concentration, the type of mineral supplement, as well as the dose of yeast inoculum on fermentation dynamics and ethanol yield.The obtained results show that to ensure efficient ethanolic fermentation of high gravity thick juice worts, one needs to use a yeast strain with high ethanol tolerance and a large amount of inoculum. The highest ethanol yield (94.9 ± 2.8% of the theoretical yield) and sugars intake of 96.5 ± 2.9% were obtained after the fermentation of wort with an extract content of 250 g/kg supplemented with diammonium hydrogen phosphate (0.3 g/L of wort) and inoculated with 2 g of Ethanol Red dry yeast per L of wort. An increase in extract content in the fermentation medium from 250 g/L to 280 g/kg resulted in decreased efficiency of the process. Also the distillates originating from worts with an extract content of 250 g/kg were characterized by lower acetaldehyde concentration than those obtained from worts with an extract content of 280 g/kg. Under the favorable conditions determined in our experiments, 38.9 ± 1.2 L of 100% (v/v) ethyl alcohol can be produced from 100 kg of thick juice. The obtained results show that the selection of process conditions and the yeast for the fermentation of worts with a higher sugar content can improve the economic performance of the alcohol-distilling industry due to more efficient ethanol production, reduced consumption of cooling water, and energy for ethanol distillation, as well as a decreased volume of fermentation stillage.

  19. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune.

    PubMed

    Horisawa, Sakae; Ando, Hiromasa; Ariga, Osamu; Sakuma, Yoh

    2015-12-01

    In the present study, ethanol production from polysaccharides or wood chips was conducted in a single reactor under anaerobic conditions using the white rot fungus Schizophyllum commune NBRC 4928, which produces enzymes that degrade lignin, cellulose and hemicellulose. The ethanol yields produced from glucose and xylose were 80.5%, and 52.5%, respectively. The absolute yields of ethanol per microcrystalline cellulose (MCC), xylan and arabinogalactan were 0.26g/g-MCC, 0.0419g/g-xylan and 0.0508g/g-arabinogalactan, respectively. By comparing the actual ethanol yields from polysaccharides with monosaccharide fermentation, it was shown that the rate of saccharification was slower than that in fermentation. S. commune NBRC 4928 is concluded to be suitable for CBP because it can produce ethanol from various types of sugar. From the autoclaved cedar chip, only little ethanol was produced by S. commune NBRC 4928 alone but ethanol production was enhanced by combined use of ethanol fermenting and lignin degrading fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Ethanol production from food waste at high solids content with vacuum recovery technology.

    PubMed

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

Top