Effect of ethanol on crystallization of the polymorphs of L-histidine
NASA Astrophysics Data System (ADS)
Wantha, Lek; Punmalee, Neeranuch; Sawaddiphol, Vanida; Flood, Adrian E.
2018-05-01
It is known that the antisolvents used for crystallization can affect the crystallization outcome and may promote the crystallization of a specific polymorph. In this study L-histidine (L-his) is used as a model substance, and ethanol was selected to be an antisolvent. The formation of the polymorphs of L-his in antisolvent crystallization as a function of supersaturation, ethanol volume fraction, and temperature was studied. The induction time for the antisolvent crystallization was also measured. The results showed that the induction time decreases with higher supersaturation and ethanol volume fraction, indicating that the nucleation rate of L-his from antisolvent crystallization (where water was used as the solvent and ethanol as the antisolvent) increases with higher supersaturation, as expected, and ethanol fraction. At all temperatures studied, the pure metastable polymorph B of L-his was obtained initially at higher ethanol volume fraction and supersaturation, while a mixture of the polymorphs A and B was obtained at lower ethanol volume fraction and supersaturation.
NASA Astrophysics Data System (ADS)
Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.
2014-12-01
The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.
Detoxification and fermentation of pyrolytic sugar for ethanol production.
Wang, Hui; Livingston, Darrell; Srinivasan, Radhakrishnan; Li, Qi; Steele, Philip; Yu, Fei
2012-11-01
The sugars present in bio-oil produced by fast pyrolysis can potentially be fermented by microbial organisms to produce cellulosic ethanol. This study shows the potential for microbial digestion of the aqueous fraction of bio-oil in an enrichment medium to consume glucose and produce ethanol. In addition to glucose, inhibitors such as furans and phenols are present in the bio-oil. A pure glucose enrichment medium of 20 g/l was used as a standard to compare with glucose and aqueous fraction mixtures for digestion. Thirty percent by volume of aqueous fraction in media was the maximum additive amount that could be consumed and converted to ethanol. Inhibitors were removed by extraction, activated carbon, air stripping, and microbial methods. After economic analysis, the cost of ethanol using an inexpensive fermentation medium in a large scale plant is approximately $14 per gallon.
Zhu, Bo; Liu, Jianli; Gao, Weidong
2017-09-01
This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.
Improvement in fermentation characteristics of degermed ground corn by lipid supplementation.
Murthy, Ganti S; Singh, Vijay; Johnston, David B; Rausch, Kent D; Tumbleson, M E
2006-08-01
With rapid growth of fuel ethanol industry, and concomitant increase in distillers dried grains with solubles (DDGS), new corn fractionation technologies that reduce DDGS volume and produce higher value coproducts in dry grind ethanol process have been developed. One of the technologies, a dry degerm, defiber (3D) process (similar to conventional corn dry milling) was used to separate germ and pericarp fiber prior to the endosperm fraction fermentation. Recovery of germ and pericarp fiber in the 3D process results in removal of lipids from the fermentation medium. Biosynthesis of lipids, which is important for cell growth and viability, cannot proceed in strictly anaerobic fermentations. The effects of ten different lipid supplements on improving fermentation rates and ethanol yields were studied and compared to the conventional dry grind process. Endosperm fraction (from the 3D process) was mixed with water and liquefied by enzymatic hydrolysis and was fermented using simultaneous saccharification and fermentation. The highest ethanol concentration (13.7% v/v) was achieved with conventional dry grind process. Control treatment (endosperm fraction from 3D process without lipid supplementation) produced the lowest ethanol concentration (11.2% v/v). Three lipid treatments (fatty acid ester, alkylphenol, and ethoxylated sorbitan ester 1836) were most effective in improving final ethanol concentrations. Fatty acid ester treatment produced the highest final ethanol concentration (12.3% v/v) among all lipid supplementation treatments. Mean final ethanol concentrations of alkylphenol and ethoxylated sorbitan ester 1836 supplemented samples were 12.3 and 12.0% v/v, respectively.
Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.
Egg, R P; Sweeten, J M; Coble, C G
1985-12-01
Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.
Solar vapor generation enabled by nanoparticles.
Neumann, Oara; Urban, Alexander S; Day, Jared; Lal, Surbhi; Nordlander, Peter; Halas, Naomi J
2013-01-22
Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations.
Snitkjær, Pia; Ryapushkina, Julia; Skovenborg, Erik; Astrup, Arne; Bech, Lene Mølskov; Jensen, Morten Georg; Risbo, Jens
2017-09-01
To obtain an understanding of the ethanol loss during cooking of liquid foods containing alcoholic beverages, ethanol concentration was measured as a function of time and remaining volume in meat stocks prepared with wine and beer. A mathematical model describing the decline in volatile compounds during heating of simple liquid foods was derived. The experimental results and the model show that concentration of ethanol at any given time is determined by the initial concentration and a power law function of the remaining volume fraction. The power law function is found to be independent of factors like pot dimensions and temperature. When using a lid to cover the pot during cooking, the model was still valid but the ethanol concentrations decreased more steeply, corresponding to a higher exponent. The results provide a theoretical and empirical guideline for predicting the ethanol concentration in cooked liquid foods. Copyright © 2017 Elsevier Ltd. All rights reserved.
2011-01-01
An experimental investigation of the combustion behavior of nano-aluminum (n-Al) and nano-aluminum oxide (n-Al2O3) particles stably suspended in biofuel (ethanol) as a secondary energy carrier was conducted. The heat of combustion (HoC) was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results. PMID:21711760
Hossain, Mohammed Munawar; Kabir, Mohammad Shah Hafez; Dinar, Md Abu Monsur; Arman, Md Saiful Islam; Rahman, Md Mominur; Hosen, S M Zahid; Dash, Raju; Uddin, Mir Muhammad Nasir
2017-09-26
The objective of the study was to evaluate the antidiarrheal and antinociceptive activities of ethanol extract and its chloroform and pet ether fraction of Phrynium imbricatum (Roxb.) leaves in mice. In the present study, the dried leaves of P. imbricatum were subjected to extraction with ethanol, and then it was fractioned by chloroform and pet ether solvent. Antidiarrheal effects were tested by using castor oil-induced diarrhea, castor oil-induced enteropooling, and gastrointestinal transit test. Antinociceptive activity was evaluated by using the acetic acid-induced writhing test and formalin-induced paw licking test. The standard drug loperamide (5 mg/kg) showed significant (p<0.001) inhibitory activity against castor oil-induced diarrhea, in which all the examined treatments decreased the frequency of defecation and were found to possess an anti-castor oil-induced enteropooling effect in mice by reducing both weight and volume of intestinal content significantly, and reducing the propulsive movement in castor oil-induced gastrointestinal transit using charcoal meal in mice. The results showed that the ethanol extract of P. imbricatum leaves has significant dose-dependent antinociceptive activity, and among its two different fractions, the pet ether fraction significantly inhibited the abdominal writhing induced by acetic acid and the licking times in formalin test at both phases. These findings suggest that the plant may be a potential source for the development of a new antinociceptive drug and slightly suitable for diarrhea, as it exhibited lower activity. Our observations resemble previously published data on P. imbricatum leaves.
Food-grade submicrometer particles from salts prepared using ethanol-in-oil mixtures.
Paques, Jerome P; van der Linden, Erik; Sagis, Leonard M C; van Rijn, Cees J M
2012-08-29
A simple method for preparing food-grade particles in the submicrometer range of ethanol soluble salts using ethanol-in-oil (E/O) mixtures is described. Salts CaCl2·2H2O and MgCl2·6H2O were dissolved in ethanol that subsequently was mixed with a medium-chain triglyceride oil phase. It was found that type and concentration of salt have a significant influence on the miscibility of ethanol and oil phase and on the stability of E/O mixtures. The ethanol phase was evaporated from the mixture at elevated temperatures, and salt particles with dimensions in the submicrometer range (6-400 nm) remained suspended in the oil phase. It was found that the concentration of salt and volume fraction of ethanol in MCT oil have a significant influence on the size distribution of salt particles. The size of CaCl2 and MgCl2 submicrometer particles was ascertained by scanning electron microscopy and dynamic light scattering.
Greenfield, Thomas K.; Nayak, Madhabika B.; Bond, Jason; Patel, Vikram; Trocki, Karen; Pillai, Aravind
2010-01-01
Assessment of heavy drinking patterns is vital for HIV/AIDs studies in India and developing countries. A population survey in northern Goa included urban and rural male drinkers (n = 743) who completed a new Fractional Graduated Frequencies (F-GF) alcohol patterns measure assessing 7 beverage types and drink sizes for the largest daily amount, then drinking frequencies at fractional amounts. The new measure was compared to a simpler quantity-frequency (QF) summary and in a validity subsample of hazardous drinkers (n=56), 28-day diaries of drinking events. Approximately 56% of total volume came from peak drinking (averaging 60 g ethanol/day). For AUDIT-based Hazardous Drinkers, QF and F-GF volumes (drinks/day) were not significantly different from diary volume (correlations .65 and .57, respectively). F-GF well captured the profile of daily amounts in drinking event data. In addition, the F-GF showed evidence of better predicting any sexual risk behavior or partner violence perpetration than the QF measure. Summary drinking pattern measures, especially the new F-GF, are more cost efficient than intensive event records, and appear valid when carefully assessing quantities with local beverage types and drink ethanol content. PMID:20567894
Banerjee, Saikat; Ghosh, Rikhia; Bagchi, Biman
2012-03-29
Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes, such as enzymes, in aqueous binary mixtures.
NASA Astrophysics Data System (ADS)
Warsi; Sholichah, A. R.
2017-11-01
Basil leaf (Ocimum basilicum L.) contains various compounds such as flavonoid, alkaloid, phenol and essential oil, so it needs to be fractionated to find out the flavonoid compound with the greatest potential as an antioxidant. This research was aimed to know the chemical compound, antioxidant potential of ethanolic extract and ethyl acetate fraction from basil leaf. The basil leaf was extracted by maceration using ethanol 70 %. The crude extract was fractionated with ethyl acetate. The ethanolic extract and ethyl acetate fraction were screened of phytochemical content including identification of flavonoids, alkaloids and polyphenolics. The antioxidant activity of the ethanolic extract and ethyl acetate fraction were tested qualitatively with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and phosphomolybdate. Its antioxidant activity was determined quantitatively using DPPH radical scavenging method. Phytochemical screening test showed that ethanolic extract and ethyl acetate fraction from basil leaf contain flavonoids, polyphenolics, and alkaloids. The qualitative analysis of antioxidant activity of ethanolic extract and ethyl acetate fraction from basil leaf showed an antioxidant activity. The IC50 value of ethanolic extract, ethyl acetate fraction and quercetin were 1,374.00±6.20 389.00±1.00 2.10±0.01μg/mL, respectively. The research showed that antioxidant activity of the ethyl acetate fraction more potential than the ethanol extract of the basil leaf, but less than quercetin.
Hydrophobic hydration and the anomalous partial molar volumes in ethanol-water mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ming-Liang; Te, Jerez; Cendagorta, Joseph R.
2015-02-14
The anomalous behavior in the partial molar volumes of ethanol-water mixtures at low concentrations of ethanol is studied using molecular dynamics simulations. Previous work indicates that the striking minimum in the partial molar volume of ethanol V{sub E} as a function of ethanol mole fraction X{sub E} is determined mainly by water-water interactions. These results were based on simulations that used one water model for the solute-water interactions but two different water models for the water-water interactions. This is confirmed here by using two more water models for the water-water interactions. Furthermore, the previous work indicates that the initial decreasemore » is caused by association of the hydration shells of the hydrocarbon tails, and the minimum occurs at the concentration where all of the hydration shells are touching each other. Thus, the characteristics of the hydration of the tail that cause the decrease and the features of the water models that reproduce this type of hydration are also examined here. The results show that a single-site multipole water model with a charge distribution that mimics the large quadrupole and the p-orbital type electron density out of the molecular plane has “brittle” hydration with hydrogen bonds that break as the tails touch, which reproduces the deep minimum. However, water models with more typical site representations with partial charges lead to flexible hydration that tends to stay intact, which produces a shallow minimum. Thus, brittle hydration may play an essential role in hydrophobic association in water.« less
Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies.
Hargreaves, Paulo Iiboshi; Barcelos, Carolina Araújo; da Costa, Antonio Carlos Augusto; Pereira, Nei
2013-04-01
This study evaluated the potential of Kappaphycus alvarezii as feedstock for ethanol production, i.e. ethanol 3G. First, aquatic biomass was subjected to a diluted acid pretreatment. This acid pretreatment generated two streams--a galactose-containing liquid fraction and a cellulose-containing solid fraction, which were investigated to determine their fermentability with the following strategies: a single-stream process (simultaneous saccharification and co-fermentation (SSCF) of both fractions altogether), which achieved 64.3 g L(-1) of ethanol, and a two-stream process (fractions were fermented separately), which resulted in 38 g L(-1) of ethanol from the liquid fraction and 53.0 g L(-1) from the simultaneous saccharification and fermentation (SSF) of the solid fraction. Based on the average fermentable carbohydrate concentration, it was possible to obtain 105 L of ethanol per ton of dry seaweed. These preliminaries results indicate that the use of the macro-algae K. alvarezii has a good potential feedstock for bioethanol production. Copyright © 2013. Published by Elsevier Ltd.
Molecular dynamics simulations of aqueous solutions of ethanolamines.
López-Rendón, Roberto; Mora, Marco A; Alejandre, José; Tuckerman, Mark E
2006-08-03
We report on molecular dynamics simulations performed at constant temperature and pressure to study ethanolamines as pure components and in aqueous solutions. A new geometric integration algorithm that preserves the correct phase space volume is employed to study molecules having up to three ethanol chains. The most stable geometry, rotational barriers, and atomic charges were obtained by ab initio calculations in the gas phase. The calculated dipole moments agree well with available experimental data. The most stable conformation, due to intramolecular hydrogen bonding interactions, has a ringlike structure in one of the ethanol chains, leading to high molecular stability. All molecular dynamics simulations were performed in the liquid phase. The interaction parameters are the same for the atoms in the ethanol chains, reducing the number of variables in the potential model. Intermolecular hydrogen bonding is also analyzed, and it is shown that water associates at low water mole fractions. The force field reproduced (within 1%) the experimental liquid densities at different temperatures of pure components and aqueous solutions at 313 K. The excess and partial molar volumes are analyzed as a function of ethanolamine concentration.
NASA Astrophysics Data System (ADS)
Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory
2018-04-01
This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.
Cheng, Dandan; Zhang, Yingying; Gao, Demin; Zhang, Hongmeng
2014-09-11
Pyrrosia petiolosa is commonly used as a traditional Chinese medicine for treatment of acute pyelonephritis, chronic bronchitis and bronchial asthma. This study aims to evaluate the antibacterial activity of the ethanol extract and its derived fractions of Pyrrosia petiolosa obtained with solvents of different polarities and to perform the anti-inflammatory screening. The powdered aerial parts of Pyrrosia petiolosa were used to extract various fractions with ethanol, petroleum ether, ethyl acetate, N-butanol and aqueous. Qualitative phytochemical screening was performed on the ethanol extract, petroleum ether fraction, ethyl acetate fraction, N-butanol fraction and aqueous fraction. The agar diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were employed to evaluate antibacterial activity of the ethanol extract and fractions. The in vitro cytotoxicity of ethanol extract and fractions was determined using MTT assay. The anti-inflammatory activity was analyzed using the mouse ear swelling induced by xylene. The phytochemical screening revealed the presence of anthraquinones, flavonoids, terpenoids, steroids, saponins, phenols and reducing sugars in the extract and fractions. Antibacterial results showed that petroleum ether fraction and N-butanol fraction inhibited all the tested microorganisms with the maximum inhibition zone of 15.25±0.35 mm. Ethyl acetate fraction also exhibited good antibacterial activity except Pseudomonas aeruginosa ATCC 27853, while extract and aqueous fraction inhibited 8 out of 13 (61.5%) of the tested microorganisms. The MIC values of ethanol extract and fractions ranged from 1.25 to 10.00 mg/mL and most of the MBC values were equal or twice as high as the corresponding MIC values. The in vitro cytotoxicity showed the ethanol extract and fractions exhibited non-toxic or low toxic activity against lung cancer cell lines A549 and mouse spleen cells. In anti-inflammatory experiment, ethanol extract at 5.0 and 10.0 mg/kg exhibited significant anti-inflammatory activity against the mouse ear swelling induced by xylene and the maximum inhibition rate reached as high as 67%. Pyrrosia petiolosa could be a potential candidate for future development of a novel antibacterial and anti-inflammatory agent. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Liu, Jie; Li, Jiding; Chen, Quan; Li, Xiaoduan
2018-04-01
Polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) composite membranes were fabricated and subsequently applied in ethanol recovery from an ethanol-water mixture by pervaporation (PV) using fractional condensation. The effects of feed temperature and feed flow velocity on the pervaporative properties of PDMS/PVDF composite membranes were investigated. Scanning electron microscopy (SEM) results showed that PDMS was coated uniformly on the surface of porous PVDF substrate, and the PDMS separation layer was dense with a thickness of 1.7 µm. Additionally, it was found that with increasing feed temperature, the total flux of the composite membrane increased, whereas the separation factor decreased. As the feed flow velocity increased, the total flux and separation factor increased. Besides, the permeate vapor was condensed by a two-stage fractional condenser maintained at different temperatures. The effects of the condensation conditions on fractions of ethanol-water vapor were studied to concentrate ethanol in product. The fractional condensers proved to be an effective way to enhance the separation efficiency. Under the optimum fractional condensation conditions, the second condenser showed a flux of 1,329 g/m 2 h and the separation factor was increased to 17.2. Furthermore, the long-term operation stability was verified, indicating that the PV system incorporating fractional condensation was a promising approach to separate ethanol from the ethanol-water mixture.
40 CFR 80.40 - Fuel certification procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... volume percent ethanol, or RBOB intended for blending with 10 to 15 volume percent ethanol, that is... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9 percent and no more than 15 percent (by volume) of the gasoline. The ethanol...
40 CFR 80.40 - Fuel certification procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... volume percent ethanol, or RBOB intended for blending with 10 volume percent ethanol, that is intended... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9% and no more than 10% (by volume) of the gasoline. The ethanol content of the...
40 CFR 80.40 - Fuel certification procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... volume percent ethanol, or RBOB intended for blending with 10 to 15 volume percent ethanol, that is... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9 percent and no more than 15 percent (by volume) of the gasoline. The ethanol...
40 CFR 80.40 - Fuel certification procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... volume percent ethanol, or RBOB intended for blending with 10 volume percent ethanol, that is intended... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9% and no more than 10% (by volume) of the gasoline. The ethanol content of the...
40 CFR 80.40 - Fuel certification procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... volume percent ethanol, or RBOB intended for blending with 10 to 15 volume percent ethanol, that is... contain denatured, anhydrous ethanol. The concentration of the ethanol, excluding the required denaturing agent, must be at least 9 percent and no more than 15 percent (by volume) of the gasoline. The ethanol...
Hwang, Yu-Jin; Lee, Eun-Ju; Kim, Haeng-Ran; Hwang, Kyung-A
2013-11-09
Recently, considerable attention has been focused on exploring the potential antioxidant properties of plant extracts or isolated products of plant origin. Prunella vulgaris var. lilacina is widely distributed in Korea, Japan, China, and Europe, and it continues to be used to treat inflammation, eye pain, headache, and dizziness. However, reports on the antioxidant activities of P. vulgaris var. lilacina are limited, particularly concerning the relationship between its phenolic content and antioxidant capacity. In this study, we investigated the antioxidant and anticancer activities of an ethanol extract from P. vulgaris var. lilacina and its fractions. Dried powder of P. vulgaris var. lilacina was extracted with ethanol, and the extract was fractionated to produce the hexane fraction, butanol fraction, chloroform fraction and residual water fraction. The phenolic content was assayed using the Folin-Ciocalteu colorimetric method. Subsequently, the antioxidant activities of the ethanol extract and its fractions were analyzed employing various antioxidant assay methods including DPPH, FRAP, ABTS, SOD activity and production of reactive oxygen species. Additionally, the extract and fractions were assayed for their ability to exert cytotoxic activities on various cancer cells using the MTT assay. We also investigated the expression of genes associated with apoptotic cell death by RT-PCR. The total phenolic contents of the ethanol extract and water fraction of P. vulgaris var. lilacina were 303.66 and 322.80 mg GAE/g dry weight (or fractions), respectively. The results showed that the ethanol extract and the water fraction of P. vulgaris var. lilacina had higher antioxidant content than other solvent fractions, similar to their total phenolic content. Anticancer activity was also tested using the HepG2, HT29, A549, MKN45 and HeLa cancer cell lines. The results clearly demonstrated that the P. vulgaris var. lilacina ethanol extract induced significant cytotoxic effects on the various cancer cell lines, and these effects were stronger than those induced by the P. vulgaris var. lilacina solvent fractions. We also investigated the expression of genes associated with apoptotic cell death. We confirmed that the P. vulgaris var. lilacina ethanol extract and water fraction significantly increased the expression of p53, Bax and Fas. These results suggest that the ethanol extract from P. vulgaris var. lilacina and its fractions could be applied as natural sources of antioxidants and anticancer activities in food and in the pharmaceutical industry.
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol.
Mason-Smith, Nicholas; Duke, Daniel J; Kastengren, Alan L; Traini, Daniela; Young, Paul M; Chen, Yang; Lewis, David A; Edgington-Mitchell, Daniel; Honnery, Damon
2017-04-01
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second with 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. The flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.
Revealing pMDI Spray Initial Conditions: Flashing, Atomisation and the Effect of Ethanol
Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.; ...
2017-01-17
Sprays from pressurised metered-dose inhalers are produced by a transient discharge of a multiphase mixture. Small length and short time scales have made the investigation of the governing processes difficult. Consequently, a deep understanding of the physical processes that govern atomisation and drug particle formation has been elusive. X-ray phase contrast imaging and quantitative radiography were used to reveal the internal flow structure and measure the time-variant nozzle exit mass density of 50 µL metered sprays of HFA134a, with and without ethanol cosolvent. Internal flow patterns were imaged at a magnification of 194 pixels/mm and 7759 frames per second withmore » 150 ps temporal resolution. Spray projected mass was measured with temporal resolution of 1 ms and spatial resolution 6 µm × 5 µm. The flow upstream of the nozzle comprised large volumes of vapour at all times throughout the injection. The inclusion of ethanol prevented bubble coalescence, altering the internal flow structure and discharge. Radiography measurements confirmed that the nozzle exit area is dominantly occupied by vapour, with a peak liquid volume fraction of 13%. Vapour generation in pMDIs occurs upstream of the sump, and the dominant volume component in the nozzle exit orifice is vapour at all times in the injection. Furthermore, the flow in ethanol-containing pMDIs has a bubbly structure resulting in a comparatively stable discharge, whereas the binary structure of propellant-only flows results in unsteady discharge and the production of unrespirable liquid masses.« less
Antimicrobial activities of the rhizome extract of Zingiber zerumbet Linn.
Kader, Golam; Nikkon, Farjana; Rashid, Mohammad Abdur; Yeasmin, Tanzima
2011-10-01
To investigate antimicrobial effects of ethanolic extract of Zingiber zerumbet (Z. zerumbet) (L.) Smith and its chloroform and petroleum ether soluble fractions against pathogenic bacteria and fungi. The fresh rhizomes of Zingiber zerumbet were extracted in cold with ethanol (4.0 L) after concentration. The crude ethanol extract was fractionated by petroleum ether and chloroform to form a suspension of ethanol extract (15.0 g), petroleum ether fraction (6.6 g) and chloroform soluble fraction (5.0 g). The crude ethanol extract and its petroleum ether and chloroform fractions were evaluated for antibacterial and antifungal activity against thirteen pathogenic bacteria and three fungi by the disc diffusion method. Commercially available kanamycin (30 µg/disc) was used as standard disc and blank discs impregnated with the respective solvents were used as negative control. At a concentration of 400 µg/disc, all the samples showed mild to moderate antibacterial and antifungal activity and produced the zone of inhibition ranging from 6 mm to 10 mm. Among the tested samples, the crude ethanol extract showed the highest activity against Vibrio parahemolyticus (V. parahemolyticus). The minimum inhibitory concentration (MIC) of the crude ethanol extract and its fractions were within the value of 128-256 µg/mL against two Gram positive and four Gram negative bacteria and all the samples showed the lowest MIC value against V. parahemolyticus (128 µg/mL). It can be concluded that, potent antibacterial and antifungal phytochemicals are present in ethanol extract of Z. zerumbet (L).
Jarald, E. E.; Joshi, S. B.; Jain, D. C.; Edwin, S.
2013-01-01
Various extracts of flowers of Cassia fistula Linn (Leguminosae) such as petroleum ether (60-80°), chloroform, acetone, ethanol, aqueous, and crude aqueous extracts and two fractions of ethanol extract were tested for antihyperglycemic activity in glucose-overloaded hyperglycemic rats. The effective antihyperglycemic extracts and fraction were tested for their hypoglycemic activity at two dose levels, 200 and 400 mg/kg, respectively. To confirm their utility in higher models, the effective extracts and fraction of C. fistula were subjected to antidiabetic study in an alloxan-induced diabetic model at two dose levels, 200 and 400 mg/kg, respectively. Biochemical parameters like glucose, urea, creatinine, serum cholesterol, serum triglyceride, high-density lipoprotein, low-density lipoprotein, hemoglobin, and glycosylated hemoglobin were also assessed in experimental animals. The petroleum ether and ethanol extracts of C. fistula and the water-soluble fraction of ethanol extract were found to exhibit significant antihyperglycemic activity. The extracts, at the given doses, did not produce hypoglycemia in fasted normal rats, and the fraction exhibited weak hypoglycemic effect after 2 h of the treatment. Treatment of diabetic rats with ethanol extract and water-soluble fraction of this plant restored the elevated biochemical parameters significantly (P<0.05) to the normal level. No activity was found in the petroleum ether extract of the plant. Comparatively, the water-soluble fraction of ethanol extract was found to be more effective than the ethanol extract, and the activity was comparable with that of the standard, glibenclamide (5 mg/kg). PMID:24302797
Achi, N K; Ohaeri, O C; Ijeh, I I; Eleazu, C
2017-02-01
No study to date has investigated the effect of different polar solvent extracts from Cnidoscolus aconitifolius leaves on glycemic control as used in folk medicine. Hence this study which investigated the effect of ethanol extract and fractions of C. aconitifolius leaves on body weights, relative organ weights, serum levels of glucose, lipid profiles and insulin in streptozotocin induced diabetic rats and on oral glucose tolerance of normoglycemic rats. The ethanol extract was partitioned using methanol, hexane and chloroform to obtain different fractions. The ethanol extract, fractions or glibenclamide demonstrated hypoglycemic/therapeutic actions as seen from the reduction of serum glucose but increase in serum insulin and body weights of the diabetic rats at the end of experimentation following their administration, unlike the diabetic control that had significant alteration of these parameters with respect to the normal control. Whereas the diabetic control had significant increase in pancreatic weights with no alteration in the heart weights, the ethanol extract, fractions or glibenclamide had no effect on these organs. The ethanol extract, methanol fractions or glibenclamide showed better hypoglycemic actions than the n-hexane or chloroform fractions at the doses used and results obtained were corroborated by histology. Furthermore, the ethanol extract, n-hexane (at 250mg/kg) and methanol fractions or glibenclamide improved glucose tolerance in glucose loaded normal rats. The methanol fraction (500mg/kg) demonstrated anti-hypercholesterolemic, anti-hypertriglyceridemic and insulin modulatory properties in a manner akin to glibenclamide. Acute toxicity study revealed the non toxicity of the plant CONCLUSION: The study justifies the use of polar solvent extracts of this plant in the management of diabetes mellitus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.
Park, C H; Okos, M R; Wankat, P C
1989-06-05
Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.
Ethanol extracts of saw palmetto contain the indirectly acting sympathomimetic: tyramine.
Chua, Thiam; Simpson, Jamie S; Ventura, Sabatino
2011-01-01
To identify the bioactive components of saw palmetto ethanol extracts that affect contractility in the rat prostate gland. A commercially available saw palmetto ethanol extract was lyophilized then subjected to fractionation using silica gel column chromatography. Composition of fractions was assessed by proton nuclear magnetic resonance ((1)H NMR) spectroscopy and mass spectrometry (MS). Contractile activity of these fractions was evaluated pharmacologically using isolated preparations of rat prostate gland and compared to the activity of crude ethanol extract. Saw palmetto ethanol extract caused contractions of the rat prostate gland which were consistent with indirectly acting sympathomimetic activity. Fractions resulting from chromatography produced contractions of isolated rat prostates that were similar in magnitude to the contractions produced by the crude extracts. Analysis of NMR and mass spectra revealed that this bioactivity was due to tyramine in the active fraction. Tyramine is present in saw palmetto ethanol extracts and causes indirect α(1)-adrenoceptor mediated contractions via the release of noradrenaline from sympathetic neurons. This has clinical implications, as tyramine interacts with MAO inhibitors to cause hypertensive crisis. © 2010 Wiley-Liss, Inc.
Santos, Francisco José Borges Dos; Moura, Dinara Jaqueline; Péres, Valéria Flores; Sperotto, Angelo Regis de Moura; Caramão, Elina Bastos; Cavalcante, Ana Amélia de Carvalho Melo; Saffi, Jenifer
2012-12-18
Bauhinia platypetala Burch. is a traditionally used Brazilian medicinal plant, although no evidence in the literature substantiates the safety of its use. The aim of this study was to investigate the safety of the ethanolic extract and the ethereal fraction of B. platypetala leaves. The identification of chemical compounds from the B. platypetala ethanolic extract and its ethereal fraction was performed by GC/MS and ESI-MS/MS. The plant's toxicological, cytotoxic, mutagenic and genotoxic properties were determined in Saccharomyces cerevisiae strains and V79 cell culture by survival assays and comet assay. The major compound identified in the B. platypetala ethanolic extract is palmitic acid, kaempferitirin and quercitrin, while the B. platypetala ethereal fraction was found to be rich in phytol, gamma-sitosterol and vitamin E. Moreover, the results indicated that the B. platypetala ethanolic extract has an anti-oxidative effect against H(2)O(2) in yeast. In addition, the B. platypetala ethanolic extract did not induce mutagenic effects on the S. cerevisiae N123 strain, but the ethereal fraction of B. platypetala at higher concentrations (250-500 μg/mL) induced cytotoxicity and mutagenicity. A slight cytotoxic effect was observed in mammalian V79 cells; however, both the B. platypetala ethanolic extract and its ethereal fraction were able to induce DNA strand breaks in V79 cells, as detected by the alkaline comet assay. The B. platypetala ethanolic extract has antioxidant action and showed absence of mutagenic effects in yeast S. cerevisiae. On the other hand B. platypetala ethereal fraction is mutagenic and does not show antioxidant activity in yeast. In mammalian cells B. platypetala ethanolic extract and it's ethereal fraction induce cyotoxic and genotoxic action. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Improvement of dry fractionation ethanol fermentation by partial germ supplementation
USDA-ARS?s Scientific Manuscript database
Ethanol fermentation of dry fractionated grits (corn endosperm pieces) containing different levels of germ was studied using the dry grind process. Partial removal of germ fraction allows for marketing the germ fraction and potentially more efficient fermentation. Grits obtained from a dry milling p...
He, Su-hui; Tang, Xiao-lei; Deng, Ye-feng; Chen, Zhang-quan
2011-11-01
To investigate the effect of the ethanol extracts of the starfish Asterias amurensis on the levels of serum IL-4 and IFN-γ in mice. The whole bodies of the starfish were chopped and extracted with ethanol. The ethanol extracts were chromatographed on silica gel column. The separating fractions of the ethanol extracts were intraperitoneally injected into mice, respectively. The levels of serum IL-4 and IFN-γ in mice were detected by ELISA. The ethanol extracts from the starfish were separated through silica gel column chromatography to obtain 8 fractions (I-VIII). The high levels of IL-4 and IFN-γ were produced in serum of the mice injected with fractions III and VIII of the ethanol extracts from the starfish Asterias amurensis. The fractions III and VIIII separated from the ethanol extracts of the starfish Asterias amurensis can stimulate the mice to produce high lelves of IL-4 and IFN-γ, which has the characteristic of natural kill T (NKT) cells activator. It is suggests that there is the active substance that can activate NKT cells in the starfish Asterias amurensis.
Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack
2006-08-05
An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.
Code of Federal Regulations, 2014 CFR
2014-07-01
... FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol Blends § 80.1500 Definitions. The... ethanol. E10 means a gasoline-ethanol blend that contains at least 9.0 and no more than 10.0 volume percent ethanol. E15 means a gasoline-ethanol blend that contains greater than 10.0 volume percent ethanol...
Code of Federal Regulations, 2012 CFR
2012-07-01
... FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol Blends § 80.1500 Definitions. The... ethanol. E10 means a gasoline-ethanol blend that contains at least 9.0 and no more than 10.0 volume percent ethanol. E15 means a gasoline-ethanol blend that contains greater than 10.0 volume percent ethanol...
Code of Federal Regulations, 2013 CFR
2013-07-01
... FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol Blends § 80.1500 Definitions. The... ethanol. E10 means a gasoline-ethanol blend that contains at least 9.0 and no more than 10.0 volume percent ethanol. E15 means a gasoline-ethanol blend that contains greater than 10.0 volume percent ethanol...
Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong
2015-11-01
Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.
Cost of Oil and Biomass Supply Shocks under Different Biofuel Supply Chain Configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uria Martinez, Rocio; Leiby, Paul Newsome; Brown, Maxwell L.
This analysis estimates the cost of selected oil and biomass supply shocks for producers and consumers in the light-duty vehicle fuel market under various supply chain configurations using a mathematical programing model, BioTrans. The supply chain configurations differ by whether they include selected flexibility levers: multi-feedstock biorefineries; advanced biomass logistics; and the ability to adjust ethanol content of low-ethanol fuel blends, from E10 to E15 or E05. The simulated scenarios explore market responses to supply shocks including substitution between gasoline and ethanol, substitution between different sources of ethanol supply, biorefinery capacity additions or idling, and price adjustments. Welfare effects formore » the various market participants represented in BioTrans are summarized into a net shock cost measure. As oil accounts for a larger fraction of fuel by volume, its supply shocks are costlier than biomass supply shocks. Corn availability and the high cost of adding biorefinery capacity limit increases in ethanol use during gasoline price spikes. During shocks that imply sudden decreases in the price of gasoline, the renewable fuel standard (RFS) biofuel blending mandate limits the extent to which flexibility can be exercised to reduce ethanol use. The selected flexibility levers are most useful in response to cellulosic biomass supply shocks.« less
Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line
Mallick, Md. Nasar; Akhtar, Md. Salman; Najm, Mohd. Zeeshan; Tamboli, E. T.; Ahmad, Sayeed; Husain, Syed Akhtar
2015-01-01
Background: The ethanolic extract of Bacopa monnieri contains bacoside A and B, brahmin, cucurbitacins, and betulinic acid. Currently, cucurbitacins have also been reported for their strong anti-tumorigenic and anti-proliferative activity by inducing cell cycle arrest at the G2/M phase and formation of multiplied cells. The present study was carried out to evaluate the in vitro cytotoxic activity of ethanolic extract of dichloromethane (DCM) fraction of B. monnieri on two different cell lines. Materials and Methods: The ethanolic extract of B. monnieri was prepared using soxhlet extraction method and different fractions (hexane, DCM, methanol, acetone, and water) of ethanolic extracts were prepared. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay of ethanolic extract and of all fractions was carried out on MCF-7 and MDA-MB 231 cell lines. The presence of cucurbitacins and betulinic acid in these fractions was confirmed by high-performance thin layer chromatography. Results: The IC50 values of ethanolic extract of B. monnieri in MCF-7 and MDA-MB 231 cell lines were 72.0 μg/mL and 75.0 μg/mL, respectively. The DCM fraction of B. monnieri showed maximum cytotoxic activity among all fraction upto 72 h and was found to be 57.0 μg/mL and 42.0 μg/mL, respectively. Conclusion: The results showed good cytotoxic activity in DCM fraction in both the cell lines may be due to the presence of cucurbitacins and betulinic acid in DCM fraction. PMID:26681894
Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line.
Mallick, Md Nasar; Akhtar, Md Salman; Najm, Mohd Zeeshan; Tamboli, E T; Ahmad, Sayeed; Husain, Syed Akhtar
2015-01-01
The ethanolic extract of Bacopa monnieri contains bacoside A and B, brahmin, cucurbitacins, and betulinic acid. Currently, cucurbitacins have also been reported for their strong anti-tumorigenic and anti-proliferative activity by inducing cell cycle arrest at the G2/M phase and formation of multiplied cells. The present study was carried out to evaluate the in vitro cytotoxic activity of ethanolic extract of dichloromethane (DCM) fraction of B. monnieri on two different cell lines. The ethanolic extract of B. monnieri was prepared using soxhlet extraction method and different fractions (hexane, DCM, methanol, acetone, and water) of ethanolic extracts were prepared. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay of ethanolic extract and of all fractions was carried out on MCF-7 and MDA-MB 231 cell lines. The presence of cucurbitacins and betulinic acid in these fractions was confirmed by high-performance thin layer chromatography. The IC50 values of ethanolic extract of B. monnieri in MCF-7 and MDA-MB 231 cell lines were 72.0 μg/mL and 75.0 μg/mL, respectively. The DCM fraction of B. monnieri showed maximum cytotoxic activity among all fraction upto 72 h and was found to be 57.0 μg/mL and 42.0 μg/mL, respectively. The results showed good cytotoxic activity in DCM fraction in both the cell lines may be due to the presence of cucurbitacins and betulinic acid in DCM fraction.
Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.
2016-07-15
Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogenmore » production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.« less
Inhibitors removal from bio-oil aqueous fraction for increased ethanol production.
Sukhbaatar, Badamkhand; Li, Qi; Wan, Caixia; Yu, Fei; Hassan, El-Barbary; Steele, Philip
2014-06-01
Utilization of 1,6-anhydro-β-d-glucopyranose (levoglucosan) present (11% w/v) in the water fraction of bio-oil for ethanol production will facilitate improvement in comprehensive utilization of total carbon in biomass. One of the major challenges for conversion of anhydrous sugars from the bio-oil water fraction to bio-ethanol is the presence of inhibitory compounds that slow or impede the microbial fermentation process. Removal of inhibitory compounds was first approached by n-butanol extraction. Optimal ratio of n-butanol and bio-oil water fraction was 1.8:1. Removal of dissolved n-butanol was completed by evaporation. Concentration of sugars in the bio-oil water fraction was performed by membrane filtration and freeze drying. Fermentability of the pyrolytic sugars was tested by fermentation of hydrolyzed sugars with Saccharomyces pastorianus lager yeast. The yield of ethanol produced from pyrolytic sugars in the bio-oil water fraction reached a maximum of 98% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tang, Yu Pan; Wang, Huan; Chung, Tai Shung
2015-01-01
The microstructural evolution of a series of triazine framework-based microporous (TFM) membranes under different conditions has been explored in this work. The pristine TFM membrane is in situ fabricated in the course of polymer synthesis via a facile Brønsted-acid-catalyzed cyclotrimerizaiton reaction. The as-synthesized polymer exhibits a microporous network with high thermal stability. The free volume size of the TFM membranes gradually evolved from a unimodal distribution to a bimodal distribution under annealing, as analyzed by positron annihilation lifetime spectroscopy (PALS). The emergence of the bimodal distribution is probably ascribed to the synergetic effect of quenching and thermal cyclization reaction. In addition, the fractional free volume (FFV) of the membranes presents a concave trend with increasing annealing temperature. Vapor sorption tests reveal that the mass transport properties are closely associated with the free volume evolution, which provides an optimal condition for dehydration of biofuels. A promising separation performance with extremely high water permeability has been attained for dehydration of an 85 wt % ethanol aqueous solution at 45 °C. The study on the free volume evolution of the TFM membranes may provide useful insights about the microstructure and mass transport behavior of the microporous polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Accuracy of water displacement hand volumetry using an ethanol and water mixture.
Hargens, Alan R; Kim, Jong-Moon; Cao, Peihong
2014-02-01
The traditional water displacement method for measuring limb volume is improved by adding ethanol to water. Four solutions were tested (pure water, 0.5% ethanol, 3% ethanol, and 6% ethanol) to determine the most accurate method when measuring the volume of a known object. The 3% and 6% ethanol solutions significantly reduced (P < 0.001) the mean standard deviation of 10 measurements of a known sphere (390.1 +/- 0.25 mi) from 2.27 ml with pure water to 0.9 ml using the 3% alcohol solution and to 0.6 using 6% ethanol solution (the mean coefficients of variation were reduced from 0.59% for water to 0.22% for 3% ethanol and 0.16% for 6% ethanol). The spheres' volume measured with pure water, 0.5% ethanol solution, 3% ethanol solution, and 6% ethanol solution was 383.2 +/- 2.27 ml, 384.4 +/- 1.9 ml, 389.4 +/- 0.9 ml, and 390.2 +/- 0.6 ml, respectively. Using the 3% and 6% ethanol solutions to measure hand volume blindly in 10 volunteers significantly reduced the mean coefficient of variation for hand volumetry from 0.91% for water to 0.52% for the 3% ethanol solution (P < 0.05) and to 0.46% for the 6% ethanol solution (P < 0.05). The mean standard deviation from all 10 subjects decreased from 4.2 ml for water to 2.3 ml for 3% ethanol solution and 2.1 ml for the 6% solution. These findings document that the accuracy and reproducibility of hand volume measurements are improved by small additions of ethanol, most likely by reducing surface tension of water.
In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta
2012-01-01
Background Following claims that some plants have antimicrobial activities against infectious microbes, the in vitro antimicrobial activities of different solvent fractions of ethanolic extract of Cryptolepis sanguinolenta were evaluated against eight standard bacteria and clinical isolates. Methods The solvent partitioning protocol involving ethanol, petroleum ether, chloroform, ethyl acetate and water, was used to extract various fractions of dried pulverized Cryptolepis sanguinolenta roots. Qualitative phyto-constituents screening was performed on the ethanol extract, chloroform fraction and the water fraction. The Kirby Bauer disk diffusion method was employed to ascertain the antibiogram of the test organisms while the agar diffusion method was used to investigate the antimicrobial properties of the crude plant extracts. The microplate dilution method aided in finding the MICs while the MBCs were obtained by the method of Nester and friends. The SPSS 16.0 version was used to analyze the percentages of inhibitions and bactericidal activities. Results The phytochemical screening revealed the presence of alkaloids, reducing sugars, polyuronides, anthocyanosides and triterpenes. The ethanol extract inhibited 5 out of 8 (62.5%) of the standard organisms and 6 out of 8 (75%) clinical isolates. The petroleum ether fraction inhibited 4 out of 8 (50%) of the standard microbes and 1 out of 8 (12.5%) clinical isolates. It was also observed that the chloroform fraction inhibited the growth of all the organisms (100%). Average inhibition zones of 14.0 ± 1.0 mm to 24.67 ± 0.58 mm was seen in the ethyl acetate fraction which halted the growth of 3 (37.5%) of the standard organisms. Inhibition of 7 (87.5%) of standard strains and 6 (75%) of clinical isolates were observed in the water fraction. The chloroform fraction exhibited bactericidal activity against all the test organisms while the remaining fractions showed varying degrees of bacteriostatic activity. Conclusion The study confirmed that fractions of Cryptolepis sanguinolenta have antimicrobial activity. The chloroform fraction had the highest activity, followed by water, ethanol, petroleum ether and ethyl acetate respectively. Only the chloroform fraction exhibited bactericidal activity and further investigations are needed to ascertain its safety and prospects of drug development. PMID:22709723
Refining economics of U.S. gasoline: octane ratings and ethanol content.
Hirshfeld, David S; Kolb, Jeffrey A; Anderson, James E; Studzinski, William; Frusti, James
2014-10-07
Increasing the octane rating of the U.S. gasoline pool (currently ∼ 93 Research Octane Number (RON)) would enable higher engine efficiency for light-duty vehicles (e.g., through higher compression ratio), facilitating compliance with federal fuel economy and greenhouse gas (GHG) emissions standards. The federal Renewable Fuels Standard calls for increased renewable fuel use in U.S. gasoline, primarily ethanol, a high-octane gasoline component. Linear programming modeling of the U.S. refining sector was used to assess the effects on refining economics, CO2 emissions, and crude oil use of increasing average octane rating by increasing (i) the octane rating of refinery-produced hydrocarbon blendstocks for oxygenate blending (BOBs) and (ii) the volume fraction (Exx) of ethanol in finished gasoline. The analysis indicated the refining sector could produce BOBs yielding finished E20 and E30 gasolines with higher octane ratings at modest additional refining cost, for example, ∼ 1¢/gal for 95-RON E20 or 97-RON E30, and 3-5¢/gal for 95-RON E10, 98-RON E20, or 100-RON E30. Reduced BOB volume (from displacement by ethanol) and lower BOB octane could (i) lower refinery CO2 emissions (e.g., ∼ 3% for 98-RON E20, ∼ 10% for 100-RON E30) and (ii) reduce crude oil use (e.g., ∼ 3% for 98-RON E20, ∼ 8% for 100-RON E30).
Unusual dewetting of thin polymer films in liquid media containing a poor solvent and a nonsolvent.
Xu, Lin; Sharma, Ashutosh; Joo, Sang Woo; Liu, Hui; Shi, Tongfei
2014-12-16
We investigate the control of pattern size and kinetics in spontaneous dewetting of thin polymer films (polystyrene) that are stable to thermal annealing by annealing in a poor solvent (acetone)/nonsolvent (ethanol or n-hexane) liquid mixture. Dewetting occurs by the formation and growth of circular holes that coalesce to form droplets. The influence of the nature and the volume fraction of the nonsolvents on the contact angle of polymer droplets, number density of holes, and the kinetics of holes formation and growth is studied. Addition of ethanol greatly increases the hole density and slows down the kinetics substantially, while affecting only a small change in wettability. n-Hexane addition shows an interesting nonmonotonic response in decreasing the hole density and contact angle in the volume fraction range of 0-0.3 but an opposite effect beyond that. Although the two nonsolvents chosen cannot by themselves induce dewetting, their relative affinity for the solid substrate vis-à-vis acetone can strongly influence the observed dewetting scenarios that are not understood by the existing theoretical considerations. n-Hexane, for example, has great affinity for silicon substrate. In addition to the changes in wettability, viscosity, and film interfacial tension engendered by the nonsolvents, the possibility of the formation of adsorbed liquid layers at the substrate-polymer interface, which can modify the interfacial friction and slippage, needs to be considered.
Analysis of fractionation in corn-to-ethanol plants
NASA Astrophysics Data System (ADS)
Nelson, Camille
As the dry grind ethanol industry has grown, the research and technology surrounding ethanol production and co-product value has increased. Including use of back-end oil extraction and front-end fractionation. Front-end fractionation is pre-fermentation separation of the corn kernel into 3 fractions: endosperm, bran, and germ. The endosperm fraction enters the existing ethanol plant, and a high protein DDGS product remains after fermentation. High value oil is extracted out of the germ fraction. This leaves corn germ meal and bran as co-products from the other two streams. These 3 co-products have a very different composition than traditional corn DDGS. Installing this technology allows ethanol plants to increase profitability by tapping into more diverse markets, and ultimately could allow for an increase in profitability. An ethanol plant model was developed to evaluate both back-end oil extraction and front-end fractionation technology and predict the change in co-products based on technology installed. The model runs in Microsoft Excel and requires inputs of whole corn composition (proximate analysis), amino acid content, and weight to predict the co-product quantity and quality. User inputs include saccharification and fermentation efficiencies, plant capacity, and plant process specifications including front-end fractionation and backend oil extraction, if applicable. This model provides plants a way to assess and monitor variability in co-product composition due to the variation in whole corn composition. Additionally the co-products predicted in this model are entered into the US Pork Center of Excellence, National Swine Nutrition Guide feed formulation software. This allows the plant user and animal nutritionists to evaluate the value of new co-products in existing animal diets.
Wang, Hong-wu; Liu, Yan-qing; Wang, Yuan-hong
2011-07-01
To investigate the ultrasonic-assisted extract on of total flavonoids from leaves of the Artocarpus heterophyllus. Investigated the effects of ethanol concentration, extraction time, and liquid-solid ratio on flavonoids yield. A 17-run response surface design involving three factors at three levels was generated by the Design-Expert software and experimental data obtained were subjected to quadratic regression analysis to create a mathematical model describing flavonoids extraction. The optimum ultrasonic assisted extraction conditions were: ethanol volume fraction 69.4% and liquid-solid ratio of 22.6:1 for 32 min. Under these optimized conditions, the yield of flavonoids was 7.55 mg/g. The Box-Behnken design and response surface analysis can well optimize the ultrasonic-assisted extraction of total flavonoids from Artocarpus heterophyllus.
NASA Technical Reports Server (NTRS)
Yozgatligil, Ahmet; Choi, Mun Young; Dryer, Frederick L.; Kazakov, Andrei; Dobashi, Ritsu
2003-01-01
This study involves flight experiments (for droplets between 1.5 to 5 mm) and supportive ground-based experiments, with concurrent numerical model development and validation. The experiments involve two fuels: n-heptane, and ethanol. The diagnostic measurements include light extinction for soot volume fraction, two-wavelength pyrometry and thin-filament pyrometry for temperature, spectral detection for OH chemiluminescence, broadband radiometry for flame emission, and thermophoretic sampling with subsequent transmission electron microscopy for soot aerosol property calculations.
Chávez Enciso, N A; Coy-Barrera, E D; Patiño, O J; Cuca, L E; Delgado, Gabriela
2014-05-01
Traditional medicine has provided a number of therapeutic solutions for the control of infectious agents, cancers, and other diseases. After screening a wide variety of Colombian plant extracts, we have identified promising antileishmanial activity in ethanol extracts from Ocotea macrophylla (Lauraceae) and Zanthoxyllum monophyllum (Rutaceae). In this study, we evaluated the in vitro activity of two ethanol extracts, one from Ocotea macrophylla and the other from Zanthoxyllum monophyllum and one alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum, on peritoneal macrophages isolated from golden Syrian hamsters (Mesocricetus auratus) infected with Leishmania panamensis and Leishmania major promastigotes. All of the extracts studied displayed promising (≥2) selectivity indices (S/I), the most significant of which were for ethanol extract of Zanthoxyllum monophyllum against Leishmania panamensis (S/I=12) and alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum against Leishmania major (S/I=11). These results support the use of ethanol extracts and alkaloid fractions isolated from Ocotea macrophylla and Zanthoxyllum monophyllum, respectively; as therapeutic options for cutaneous leishmaniasis.
Cardoso, Nathalia N R; Alviano, Celuta S; Blank, Arie F; Arrigoni-Blank, Maria de Fátima; Romanos, Maria Teresa V; Cunha, Marcel M L; da Silva, Antonio Jorge R; Alviano, Daniela S
2017-12-01
Ocimum basilicum L. (Lamiaceae) has been used in folk medicine to treat headaches, kidney disorders, and intestinal worms. This study evaluates the anti-cryptococcal activity of ethanol crude extract and hexane fraction obtained from O. basilicum var. Maria Bonita leaves. The MIC values for Cryptococcus sp. were obtained according to Clinical and Laboratory Standards Institute in a range of 0.3-2500 μg/mL. The checkerboard assay evaluated the association of the substances tested (in a range of 0.099-2500 μg/mL) with amphotericin B and O. basilicum essential oil for 48 h. The ethanol extract, hexane fraction and associations in a range of 0.3-2500 μg/mL were tested for pigmentation inhibition after 7 days of treatment. The inhibition of ergosterol synthesis and reduction of capsule size were evaluated after the treatment with ethanol extract (312 μg/mL), hexane fraction (78 μg/mL) and the combinations of essential oil + ethanol extract (78 μg/mL + 19.5 μg/mL, respectively) and essential oil + hexane fraction (39.36 μg/mL + 10 μg/mL, respectively) for 24 and 48 h, respectively. The hexane fraction presented better results than the ethanol extract, with a low MIC (156 μg/mL against C. neoformans T 444 and 312 μg/mL against C. neoformans H99 serotype A and C. gattii WM779 serotype C). The combination of the ethanol extract and hexane fraction with amphotericin B and essential oil enhanced their antifungal activity, reducing the concentration of each substance needed to kill 100% of the inoculum. The substances tested were able to reduce the pigmentation, capsule size and ergosterol synthesis, which suggest they have important mechanisms of action. These results provide further support for the use of ethanol extracts of O. basilicum as a potential source of antifungal agents.
Anti-chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon.
Murali, Krishnan Saravana; Sivasubramanian, Srinivasan; Vincent, Savariar; Murugan, Shanmugaraj Bala; Giridaran, Bupesh; Dinesh, Sundaram; Gunasekaran, Palani; Krishnasamy, Kaveri; Sathishkumar, Ramalingam
2015-05-01
To obtain luteolin and apigenin rich fraction from the ethanolic extract of Cynodon dactylon (L.) (C. dactylon) Pers and evaluate the fraction's cytotoxicity and anti-Chikungunya potential using Vero cells. The ethanolic extract of C. dactylon was subjected to silica gel column chromatography to obtain anti-chikungunya virus (CHIKV) fraction. Reverse phase-HPLC and GC-MS studies were carried out to identify the major phytochemicals in the fraction using phytochemical standards. Cytotoxicity and the potential of the fraction against CHIKV were evaluated in vitro using Vero cells. Reduction in viral replication was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR) after treating the viral infected Vero cells with the fraction. Reverse Phase-HPLC and GC-MS studies confirmed the presence of flavonoids, luteolin and apigenin as major phytochemicals in the anti-CHIKV ethanolic fraction of C. dactylon. The fraction was found to exhibit potent viral inhibitory activity (about 98%) at the concentration of 50 µg/mL as observed by reduction in cytopathic effect, and the cytotoxic concentration of the fraction was found to be 250 µg/mL. RT-PCR analyses indicated that the reduction in viral mRNA synthesis in fraction treated infected cells was much higher than the viral infected control cells. Luteolin and apigenin rich ethanolic fraction from C. dactylon can be utilized as a potential therapeutic agent against CHIKV infection as the fraction does not show cytotoxicity while inhibiting the virus. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.
2013-01-01
Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min) and temperature (190–210°C) on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF) to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD). Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in which the slurry from the pretreatment was divided into a solid fraction and a liquid fraction. The solid fraction was subjected to SSF, while the liquid fraction, together with the filtered residual from SSF, was used in AD. Using sulphuric acid in AD did not inhibit the reaction, which may be due to the low concentration of sulphuric acid used. In contrast, a pretreatment step without sulphuric acid resulted not only in higher concentrations of inhibitors, which affected the ethanol yield, but also in lower methane production. PMID:23356481
78 FR 71731 - 2014 Standards for the Renewable Fuel Standard Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... of E85 Consumption c. Proposed Projection of E85 Consumption in 2014 d. Estimating Total Ethanol Consumption in 2014 2. Estimating Availability of Non-Ethanol Renewable Fuel Volumes a. Non-Ethanol Cellulosic... Biofuel c. Option 3: Availability, Growth, and Limits on Ethanol Consumption D. Summary of Proposed Volume...
Sterculia guttata seeds extractives--an effective mosquito larvicide.
Katade, Sushama R; Pawar, Pushpa V; Wakharkar, Radhika D; Deshpande, Nirmala R
2006-08-01
The larvicidal activity of ethanol, chloroform and hexane soxhlet extracts obtained from S. guttata seeds was investigated against the IVth instar larvae of Dengue fever vector, Aedes aegypti and filarial vector, Culex quinquefasciatus. All extracts including fractions of ethanol extract exhibited 100% larval kill within 24 hr exposure period at 500 ppm concentration. Fraction A1 of ethanol was found to be most promising; its LC50 was 21.552 and 35.520 ppm against C. quinquefasciatus and A. aegypti respectively. Naturally occurring S. guttata seed derived fractions merit further study as potential mosquito larval control agents or lead compounds.
Anomalous volume change of gramicidin A in ethanol solutions
NASA Technical Reports Server (NTRS)
Derechin, M.; Hayashi, D. M.; Jordan, B. E.
1975-01-01
Results of studies aimed at clarifying the failure of gramicidin A (GA) to sediment in early experiments are analyzed. In the present work, no sedimentation was observed in pure pentanol or ethanol, while normal sedimentation was observed in ethanol-water mixtures. It is concluded that GA exists in two conformations that differ in volume. Since the apparent specific volume in absolute ethanol sinks to its lowest values on increasing concentration, the GA molecule probably unfolds completely in conditions favorable for dimerization.
Extraction and Isolation of Antineoplastic Pristimerin from Mortonia greggii (Celastraceae).
Mejia-Manzano, Luis Alberto; Barba-Dávila, Bertha A; Gutierrez-Uribe, Janet A; Escalante-Vázquez, Edgardo J; Serna-Saldivar, Sergio O
2015-11-01
The aim of this research was to identify, extract and isolate pristimerin in leaves, stems and roots of the Mexican plant Mortonia greggii (Celastraceae). The principal objective was to determine the best laboratory experimental conditions for the extraction and isolation of this powerful natural anticancer agent from the root tissue. Six experimental factors in solid-liquid pristimerin extraction were analyzed: solvent systems, number of extractions, ratio of plant weight (g)/solvent volume (mL) used, time of extraction, temperature and agitation. A mathematical model was generated for pristimerin purity and yield. Ethanol, first extraction, 0.5 ratio of plant weight/solvent volume (g/mL), 0.5 h, 200 rpm and 49.7°C were optimal conditions for the extraction of this phytochemical. The degree of purification of pristimerin root extract was studied by size-exclusion chromatography (SEC) using Sephadex LH-20 reaching fractions with purification indexes (PI) greater than 2 and recoveries of 28.3%. When fractions with purification indices higher than 1 and less than 2 were accumulated, the recovery of pristimerin increased by about 73.6%. By combining the optimum extracts and SEC purification protocols, an enriched fraction containing 245.6 mg pristimerin was obtained from 100 g of root bark, representing about 14.4%, w/w, pristimerin from the total solids presented in the fraction.
Separation of ovotransferrin and ovomucoid from chicken egg white.
Abeyrathne, E D N S; Lee, H Y; Ahn, D U
2014-04-01
Ovotransferrin and ovomucoid were separated using 2 methods after extracting the ovotransferrin- and ovomucoid-containing fraction from egg white. Diluted egg white (2×) was added to Fe(3+) and treated with 43% ethanol (final concentration). After centrifugation, the supernatant was collected and treated with either a high-level ethanol (61% final concentration) or an acidic salt combination (2.5% ammonium sulfate and 2.5% citric acid) to separate ovotransferrin and ovomucoid. For the high-level of ethanol method, ovotransferrin was precipitated using 61% ethanol. After centrifugation, the precipitant was dissolved in 9 vol. of distilled water and the residual ethanol in the solution was removed using ultrafiltration. The supernatant, mainly containing ovomucoid, was diluted with 4 vol. of water, had ethanol removed, and was then concentrated and used as the ovomucoid fraction. For the acidic salt precipitation method, the ethanol in the supernatant was removed first. The ethanol-free solution was then concentrated and treated with a 2.5% ammonium sulfate and 2.5% citric acid combination. After centrifugation, the precipitant was used as the ovotransferrin and the supernatant as the ovomucoid fraction. The ovomucoid fraction from both of the protocols was further purified by heating at 65°C for 20 min and the impurities were removed by centrifugation. The yields of ovomucoid and ovotransferrin were >96 and >92%, respectively. The purity of ovomucoid was >89% and that of the ovotransferrin was >88%. The ELISA results confirmed that the activity of the separated ovotransferrin was >95%. Both of the protocols separated ovotransferrin and ovomucoid effectively and the methods were simple, fast, and easy to scale up.
Simulation of Pressure-swing Distillation for Separation of Ethyl Acetate-Ethanol-Water
NASA Astrophysics Data System (ADS)
Yang, Jing; Zhou, Menglin; Wang, Yujie; Zhang, Xi; Wu, Gang
2017-12-01
In the light of the azeotrope of ethyl acetate-ethanol-water, a process of pressure-swing distillation is proposed. The separation process is simulated by Aspen Plus, and the effects of theoretical stage number, reflux ratio and feed stage about the pressure-swing distillation are optimized. Some better process parameters are as follows: for ethyl acetate refining tower, the pressure is 500.0 kPa, theoretical stage number is 16, reflux ratio is 0.6, feed stage is 5; for crude ethanol tower, the pressure is 101.3 kPa, theoretical stage number is 15, reflux ratio is 0.3, feed stage is 4; for ethanol tower, the pressure is 101.3 kPa, theoretical stage number is 25, reflux ratio is 1.2, feed stage is 10. The mass fraction of ethyl acetate in the bottom of the ethyl acetate refining tower reaches 0.9990, the mass fraction of ethanol in the top of the ethanol tower tower reaches 0.9017, the mass fraction of water in the bottom of the ethanol tower tower reaches 0.9622, and there is also no ethyl acetate in the bottom of the ethanol tower. With laboratory tests, experimental results are in good agreement with the simulation results, which indicates that the separation of ethyl acetate ethanol water can be realized by the pressure-swing distillation separation process. Moreover, it has certain practical significance to industrial practice.
40 CFR 80.1507 - What are the defenses for acts prohibited under this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Requirements for Gasoline-Ethanol Blends § 80.1507 What are the defenses for acts prohibited under this subpart... applicable maximum and/or minimum volume percent of ethanol. (2) That on each occasion when gasoline is found... checks to reconcile volumes of ethanol in inventory and regular checks of equipment for proper ethanol...
40 CFR 80.1507 - What are the defenses for acts prohibited under this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Requirements for Gasoline-Ethanol Blends § 80.1507 What are the defenses for acts prohibited under this subpart... applicable maximum and/or minimum volume percent of ethanol. (2) That on each occasion when gasoline is found... checks to reconcile volumes of ethanol in inventory and regular checks of equipment for proper ethanol...
40 CFR 80.1507 - What are the defenses for acts prohibited under this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Requirements for Gasoline-Ethanol Blends § 80.1507 What are the defenses for acts prohibited under this subpart... applicable maximum and/or minimum volume percent of ethanol. (2) That on each occasion when gasoline is found... checks to reconcile volumes of ethanol in inventory and regular checks of equipment for proper ethanol...
Kasture, V S; Chopde, C T; Deshmukh, V K
2000-07-01
The ethanolic extracts of leaves of Albizzia lebbeck and flowers of Hibiscus rosa sinesis and the petroleum ether extract of flowers of Butea monosperma exhibited anticonvulsant activity. The bioassay guided fractionation indicated that the anticonvulsant activity lies in the methanolic fraction of chloroform soluble part of ethanolic extract of the leaves of A. lebbeck, acetone soluble part of ethanolic extract of H. rosa sinesis flowers and acetone soluble part of petroleum ether extract of B. monosperma flowers. The fractions protected animals from maximum electro shock, electrical kindling and pentylenetetrazole-induced convulsions in mice. The fractions also inhibited convulsions induced by lithium-pilocarpine and electrical kindling. However, they failed to protect animals from strychnine-induced convulsions. The fractions antagonised the behavioral effects of D-amphetamine and potentiated the pentobarbitone-induced sleep. The fractions raised brain contents of gamma-aminobutyric acid (GABA) and serotonin. These fractions were found to be anxiogenic and general depressant of central nervous system.
Total body water and lean body mass estimated by ethanol dilution
NASA Technical Reports Server (NTRS)
Loeppky, J. A.; Myhre, L. G.; Venters, M. D.; Luft, U. C.
1977-01-01
A method for estimating total body water (TBW) using breath analyses of blood ethanol content is described. Regression analysis of ethanol concentration curves permits determination of a theoretical concentration that would have existed if complete equilibration had taken place immediately upon ingestion of the ethanol; the water fraction of normal blood may then be used to calculate TBW. The ethanol dilution method is applied to 35 subjects, and comparison with a tritium dilution method of determining TBW indicates that the correlation between the two procedures is highly significant. Lean body mass and fat fraction were determined by hydrostatic weighing, and these data also prove compatible with results obtained from the ethanol dilution method. In contrast to the radioactive tritium dilution method, the ethanol dilution method can be repeated daily with its applicability ranging from diseased individuals to individuals subjected to thermal stress, strenuous exercise, water immersion, or the weightless conditions of space flights.
Code of Federal Regulations, 2012 CFR
2012-07-01
... that apply to retailers and wholesale purchaser-consumers of gasoline-ethanol blends that contain greater than 10.0 volume percent ethanol and not more than 15.0 volume percent ethanol? 80.1501 Section 80...) REGULATION OF FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol Blends § 80.1501 What are...
Code of Federal Regulations, 2013 CFR
2013-07-01
... that apply to retailers and wholesale purchaser-consumers of gasoline-ethanol blends that contain greater than 10.0 volume percent ethanol and not more than 15.0 volume percent ethanol? 80.1501 Section 80...) REGULATION OF FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol Blends § 80.1501 What are...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that apply to retailers and wholesale purchaser-consumers of gasoline-ethanol blends that contain greater than 10.0 volume percent ethanol and not more than 15.0 volume percent ethanol? 80.1501 Section 80...) REGULATION OF FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol Blends § 80.1501 What are...
NASA Astrophysics Data System (ADS)
Febriani, K.; Wahyuni, I.; Setiasih, S.; Hudiyono, S.
2017-07-01
The enzyme can be purified by fractional precipitation. This can be done by salt or organic solvent. In this research, purification of bromelain from pineapple core by fractional precipitation was done by 2 compounds, ammonium sulfate, and ethanol. Fractional precipitation by ammonium sulfate proved to be more effective as it yielded a higher specific activity. Specific activity by ethanol and ammonium sulfate is 4.6480 U/mg at 0-60 % saturation and 8.2243 U/mg at 50-80 % saturation.
Kim, Yong Seon; Jang, Ji Yeon; Park, Seong Jik; Um, Byung Hwan
2018-04-01
Fermentation of food waste biomass can be used to produce biochemicals such as lactic acid and ethanol in a cost-effective manner. Korean food waste (KFW) dewatered by a screw press contains 23.1% glucan on a dry basis and is a potential raw material for the production of ethanol and lactic acid through fermentation. This study was conducted to optimize the dilute acid fractionation conditions for KFW fermentation with respect to the H 2 SO 4 concentration (0-0.8% w/v), temperature (130-190 °C), and residence time (1-128 min) using response surface methodology. Dilute sulfuric acid fractionation was carried out using a 30-mL stainless steel reactor under conditions, and then the dilute acid fractionation was scaled-up in 1-L and 7-L stainless steel reactors under the optimal conditions. The hydrolysate was concentrated, liquid-liquid extracted and neutralized for lactic acid and ethanol production. The highest concentration of glucose obtained from the KFW was 26.4 g/L using fractionation with 0.37% w/v H 2 SO 4 at 156 °C for 123.6 min. Using recombinant Saccharomyces cerevisiae containing a codon-optimized lactate dehydrogenase, the yield of lactic acid and ethanol was 77% of the theoretical yield for 17.4 g/L of fermentable sugar at pH 5.5. Additionally, the yield of ethanol produced by Issatchenkia orientalis was 89% of the theoretical yield for 25 g/L of fermentable sugar at pH 3. Copyright © 2018 Elsevier Ltd. All rights reserved.
Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko
2012-01-01
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase-3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase-3 activation in the 7-day–old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration. PMID:22372857
Habib, M. Rowshanul; Karim, M. Rezaul; Hossain, M. Shamim; Mosaddik, M. Ashik; Haque, M. Ekramul
2008-01-01
The crude ethanol extracts (stem and fruits), their fractions and two triterpenes, β-Amyrin and 12-Oleanene 3β, 21β-diol, isolated as a mixture from the chloroform soluble fraction of an ethanolic extract of Duranta repens stem, were evaluated for antibacterial, antifungal activities by the disc diffusion method and cytotoxicity by brine shrimp lethality bioassay. The structures of the two compounds were confirmed by IR, 1H-NMR, 13C-NMR and LC-MS spectral data. The chloroform soluble fraction of stem and ethanol extract of fruits possess potent antishigellosis activity and also exhibited moderate activity against some pathogenic bacteria and fungi but the isolated compound 1 (mixture of β-Amyrin and 12-Oleanene 3β, 21β-diol) showed mild to moderate inhibitory activity to microbial growth. The minimum inhibitory concentrations (MICs) of the extracts (stem and fruits), their fractions and compound 1 were found to be in the range of 32~128 µg/ml. The chloroform soluble fractions of stem and ethanol extract of fruit showed significant cytotoxicity with LC50 value of 0.94 µg/ml and 0.49 µg/ml, respectively against brine shrimp larvae. PMID:23997620
NASA Astrophysics Data System (ADS)
Musfiroh, F. F.; Setiasih, S.; Handayani, S.; Hudiyono, S.; Ilyas, N. M.
2018-01-01
Processed fruit from pineapple is one of largest commodities tropical fruit production in Indonesia and will bring the waste from the skin and core. This study aims to isolate bromelain from the pineapple core (Ananas comusus) are purified by fractionation using ethanol and continued by activity test as an antiplatelets agent by in vivo method using white mice male ddy type with acetosal as positive control. Fractionation of crude enzyme bromelain with ethanol produces highest specific activity on ethanol 30-60% fraction (fraction 2) 3.107 Unit/mg and the protein content 61.25 mg with the degree of purity of 155 times compared to crude enzyme. Antiplatelet aggregation tests from in vivo method shows that faction of bromelain with doses 70 μg/KgBW, 140 μg/KgBW, and 210 μg/KgBW can increase a meaningful bleeding time. The highest percentage of increase shown by the isolate at a dose of 210 μg/KgBW in the amount of 515.10 ± 182.23%, when compared to aspirin (231.20 ± 140.66), the value is relatively higher.
Arroyo, Jorge; Bonilla, Pablo; Moreno-Exebio, Luis; Ronceros, Gerardo; Tomás, Gloria; Huamán, Juana; Raez, Ernesto; Quino, Mariano; Rodriguez-Calzado, Javier
2013-01-01
To determine the gastroprotective and antisecretory effect of ethanol extract from matico leaves (Piper aduncum) in animal models. To evaluate the gastroprotective effect, 220 mice of the Balb C57 strain were used. They were randomized in 22 groups of ten animals each, in which the formation of gastric ulcers was induced with indomethacin. Gastroprotection was determined by evaluating three aspects: inflammation, number of hemorrhagic shocks and number of ulcers. To evaluate the antisecretory effect, 64 white male Holtzman rats were used, which were randomized in eight groups of eight animals, one control and seven groups of treatment with one extract dose level and two phytochemical dose levels. Antisecretion was obtained through the pylorus ligation. Regarding gastroprotection, dichloromethane, chloroform, hexane and methanol extracts decreased inflammation to over 66% (p<0,05). The ethanolic extract shows 100% activity in reducing the number of hemorrhagic bands (p<0,05). The chloroform extract shows antiulcer activity at 75% (p<0,05). In terms of antisecretion, the phytochemical in capsules containing the ethanolic extract achieved 72% reduction of the gastric secretion volume (p<0,01) and 104,3% (p<0,01) PH increase. In experimental conditions, ethanolic extracts, their fractions and phytochemicals have a gastroprotective effect in mice and antisecretory effect in rats.
Phytochemical Characterization of an Adaptogenic Preparation from Rhodiola heterodonta
Grace, Mary H.; Yousef, Gad G.; Kurmukov, Anvar G.; Raskin, Ilya; Lila, Mary Ann
2013-01-01
The phytochemical constituents of a biologically active, standardized, 80% ethanol extract of Rhodiola heterodonta were characterized. The extract was fractionated over a Sephadex LH-20 column to afford two main fractions representing two classes of secondary metabolites: phenylethanoids and proanthocyanidins. This fractionation facilitated the identification and quantification of individual compounds in the fractions and sub-fractions using HPLC, and LC-MS. The major compounds in the phenylethanoid fraction were heterodontoside, tyrosol methyl ether, salidroside, viridoside, mongrhoside, tyrosol, and the cyanogenic glucoside rhodiocyanoside A. These seven compounds comprised 17.4% of the EtOH extract. Proanthocyanidins ranged from oligomers to polymers based on epigallocatechin and gallate units. The main identified oligomeric compounds in the proanthocyanidin fraction were epigallocatechin gallate, epigallocatechin-epigallocatechin-3-O-gallate and 3-O-galloylepigallocatechin-epigallocatechin-3-O-gallate, which constituted 1.75% of the ethanol extract. Tyrosol methyl ether, mongrhoside, and the two proanthocyanidin dimers were reported for the first time from this species in this study. Intraperitoneal injection of the 80% ethanol extract increased survival time of mice under hypoxia by 192%, as an indication of adaptogenic activity. PMID:19768982
40 CFR 80.1504 - What acts are prohibited under this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol..., cause or permit the sale or introduction of gasoline containing greater than 10.0 volume percent ethanol... 10.0 volume percent ethanol into any flex-fuel vehicle. (b) Sell, offer for sale, dispense, or...
40 CFR 80.1504 - What acts are prohibited under this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol..., cause or permit the sale or introduction of gasoline containing greater than 10.0 volume percent ethanol... 10.0 volume percent ethanol into any flex-fuel vehicle. (b) Sell, offer for sale, dispense, or...
40 CFR 80.1504 - What acts are prohibited under this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Additional Requirements for Gasoline-Ethanol..., cause or permit the sale or introduction of gasoline containing greater than 10.0 volume percent ethanol... 10.0 volume percent ethanol into any flex-fuel vehicle. (b) Sell, offer for sale, dispense, or...
Effect of ZnO facet on ethanol steam reforming over Co/ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Ning; Zhang, He; Davidson, Stephen D.
2016-01-01
The effects of ZnO facets on ethanol steam reforming (ESR) were investigated over Co/ZnO catalysts synthesized using ZnO with different fractions of (10-10) non-polar facet. Co supported on ZnO with a higher fraction of (10-10) non-polar facet shows higher C-C cleavage activity and higher selectivity to CO2 (lower selectivity to CO) compared with Co supported on ZnO with less (10-10) non-polar facet exposed. The improved ethanol steam reforming performances are attributed to the high fraction of metallic Co stabilized by the ZnO (10-10) non-polar facet, which enhanced C-C cleavage and water-gas-shift (WGS) activities.
Investigation of Municipal Solid Waste to Alcohol Conversion for Army Use
1992-03-01
fuel ethanol and other byproducts. To convert the cellulosic fraction of MSW to fermentable sugars, the first process uses a single stage of dilute acid...ethanol and other byproducts. To convert the cellulosic fraction of MSW to fermentable sugars, the first process uses a single stage of dilute acid...of the cellulosic fraction to produce fermentable sugars. The first process, developed by the Tennessee Valley Authority (TVA), employs a single
Xia, Yu; Wang, Yinhang; Li, Wei; Ma, Chunhui; Liu, Shouxin
2017-12-01
Cavitation hybrid rotation, which was and is still looked upon as an unavoidable nuisance in the flow systems, for extraction processing intensification of active chemical compounds from natural products. In this study, a homogenization-assisted cavitation hybrid rotation extraction method was applied to extract dihydroquercetin (DHQ) from larch (Larix gmelinii) wood root. The extraction parameters were optimized in single factor experiments with the DHQ extraction yields as the response values. The optimum conditions were as follows: number of extractions, three; ethanol volume fraction for the extraction, 60%; liquid-solid ratio for homogenization, 10mL/g; homogenization time, 8min; liquid-solid ratio for cavitation extraction, 9mL/g, and cavitation extraction time, 35min. Under these conditions, the DHQ content in extract was 4.50±0.02mg/g, and the extraction efficiency was higher than those of traditional techniques. Cavitation can be effectively used to improve the extraction rate by increasing the mass transfer rates and possible rupture of cell wall due to formation of microcavities leading to higher product yields with reduced processing time and solvent consumption. After the extraction process, macroporous resin column chromatography was used to concentrate and purify the DHQ. Three resins were selected from fifteen macroporous resins for further investigation of their performance. Among these resins, AB-8 resin exhibited relatively better adsorption capacities and desorption ratios for DHQ. The ethanol volume fraction of the solutions for sample loading and desorption, and flow rates for loading and desorption were optimized for the macroporous resin column chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.
The lignol approach to biorefining of woody biomass to produce ethanol and chemicals.
Arato, Claudio; Pye, E Kendall; Gjennestad, Gordon
2005-01-01
Processes that produce only ethanol from lignocellulosics display poor economics. This is generally overcome by constructing large facilities having satisfactory economies of scale, thus making financing onerous and hindering the development of suitable technologies. Lignol Innovations has developed a biorefining technology that employs an ethanol-based organosolv step to separate lignin, hemicellulose components, and extractives from the cellulosic fraction of woody biomass. The resultant cellulosic fraction is highly susceptible to enzymatic hydrolysis, generating very high yields of glucose (>90% in 12-24 h) with typical enzyme loadings of 10-20 FPU (filter paper units)/g. This glucose is readily converted to ethanol, or possibly other sugar platform chemicals, either by sequential or simultaneous saccharification and fermentation. The liquor from the organosolv step is processed by well-established unit operations to recover lignin, furfural, xylose, acetic acid, and a lipophylic extractives fraction. The process ethanol is recovered and recycled back to the process. The resulting recycled process water is of a very high quality, low BOD5, and suitable for overall system process closure. Significant benefits can be attained in greenhouse gas (GHG) emission reductions, as per the Kyoto Protocol. Revenues from the multiple products, particularly the lignin, ethanol and xylose fractions, ensure excellent economics for the process even in plants as small as 100 mtpd (metric tonnes per day) dry woody biomass input a scale suitable for processing wood residues produced by a single large sawmill.
Multilevel composition fractionation process for high-value utilization of wheat straw cellulose.
Chen, Hong-Zhang; Liu, Zhi-Hua
2014-01-01
Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass. The present study concerns the fractionation of wheat straw using steam explosion, coupled with ethanol extraction, and that this facilitates the establishment of sugars and lignin platform and enables the production of regenerated cellulose films. The results showed that the hemicellulose fractionation yield was 73% under steam explosion at 1.6 MPa for 5.2 minutes, while the lignin fractionation yield was 90% by ethanol extraction at 160°C for 2 hours and with 60% ethanol (v/v). The cellulose yield reached up to 93% after steam explosion coupled with ethanol extraction. Therefore, cellulose sugar, hemicellulose sugar, and lignin platform were established effectively in the present study. Long fibers (retained by a 40-mesh screening) accounted for 90% of the total cellulose fibers, and the glucan conversion of short fibers was 90% at 9.0 hours with a cellulase loading of 25 filter paper units/g cellulose in enzymatic hydrolysis. Regenerated cellulose film was prepared from long fibers using [bmim]Cl, and the tensile strength and breaking elongation was 120 MPa and 4.8%, respectively. The cross-section of regenerated cellulose film prepared by [bmim]Cl displayed homogeneous structure, which indicated a dense architecture and a better mechanical performance. Multilevel composition fractionation process using steam explosion followed by ethanol extraction was shown to be an effective process by which wheat straw could be fractionated into different polymeric fractions with high yields. High-value utilization of wheat straw cellulose was achieved by preparing regenerated cellulose film using [bmim]Cl.
Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko
2012-05-01
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Antimicrobial activity of Carpolobia lutea extracts and fractions.
Nwidu, Lucky L; Nwafor, Paul A; Vilegas, Wagner
2012-01-01
Carpolobia lutea (G. Don) (Polygalaceae) is a tropical medicinal plant putative in traditional medicines against gonorrhea, gingivitis, infertility, antiulcer and malaria. The present study evaluated the antimicrobial, antifungal and antihelicobacter effects of extracts C. lutea leaf, stem and root. The extracts were examined using the disc-diffusion and Microplates of 96 wells containing Muller-Hinton methods against some bacterial strains: Eschericia coli (ATCC 25922), E. coli (ATCC10418), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), Staphyllococus aureus (ATCC 6571), Enterococcus faecalis (ATCC 29212) and Bacillus subtilis (NCTC 8853) and four clinical isolates: one fungi (Candida albican) and three bacteria (Salmonella, Sheigella and staphylococcus aureus). The Gram-positive bacteria: Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 19659) and the Gram-negative bacteria: Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Cândida albicans (ATCC 18804) and Helicobacter pylori (ATCC 43504). Some of these extracts were found to be active against some tested strains but activity against H. pylori was >1000mg/ml and good fungistatic activity against C. albican. The MIC against C. albican is in the order n-HF > CHF > ETF= EAF.The order of potency of fraction was the ethanol root > n-HF leaf > ethanol fraction stem > chloroform fraction leaf = ethyl acetate fraction leaf. Polyphenols were demonstrated in ethanol fraction, ethyl acetate fraction, crude ethyl acetate extract and ethanol extract, respectively. These polyphenols isolated may partly explain and support the use of C. lutea for the treatment of infectious diseases in traditional Ibibio medicine of Nigeria.
Widiyanti, Prihartini; Prajogo, Bambang; Widodo, Agustinus
2018-01-01
Justicia gendarussa Burm.f. has an anti-HIV activity. This study was conducted to evaluate the effects of incubation periods on the cytotoxicity and virucidal activities of the J. gendarussa leaves extract on MOLT-4 cells. The cytotoxicity assay was evaluated by using the WST-1 test with incubation periods of 3 days and 5 days. The virucidal activity test was determined by measuring the inhibitory activities on the syncytium formation. The cytotoxicity assay showed the value of CC 50 on MOLT-4 cell culture with the test material of 70% ethanol extract of J. gendarussa leaves as much as 3928.620 µg /mL and 3176.581 µg /mL (incubation day 3 and day 5, respectively); fractionated-70% ethanol extract = 81782.428 µg /mL and 12175.870 µg/mL; and water extract = 16372.689 µg/mL and 2946.117 µg/mL. The test results of the virucidal activities (inhibit ≥ 90% the formation of syncytium) of 70% ethanol extract of J. gendarussa leaves is at a concentration 250 µg/mL, 500 µg/mL and 1000 µg/mL (3-day incubation) and 250 µg/mL (5-day incubation); and fractionated-70% ethanol extract at a concentration 250 µg /mL, 500 µg/mL and 1000 µg/mL (3-day incubation) and 1000 µg/mL (5-day incubation). 70% ethanol extract, fractionated-70% ethanol extract, and water extract of J. gendarussa leaves were relatively nontoxic toward MOLT-4 cells, and fractionated-70% ethanol extract had better potentials in virucidal activities.
Coleman, Leon G.; Oguz, Ipek; Lee, Joohwi; Styner, Martin; Crews, Fulton T.
2013-01-01
Ethanol treatment on postnatal day seven (P7) causes robust brain cell death and is a model of late gestational alcohol exposure (Ikonomidou et al., 2000). To investigate the long-term effects of P7 ethanol treatment on adult brain, mice received either two doses of saline or ethanol on P7 (2.5g/kg, s.c., 2 hours apart) and were assessed as adults (P82) for brain volume (using postmortem MRI) and cellular architecture (using immunohistochemistry). Adult mice that received P7 ethanol had reduced MRI total brain volume (4%) with multiple brain regions being reduced in both males and females. Immunohistochemistry indicated reduced frontal cortical parvalbumin immunoreactive (PV+IR) interneurons (18-33%) and reduced Cux1+IR layer II pyramidal neurons (15%) in both sexes. Interestingly, markers of adult hippocampal neurogenesis differed between sexes, with only ethanol treated males showing increased doublecortin and Ki67 expression (52 and 57% respectively) in the dentate gyrus, consistent with increased neurogenesis compared to controls. These findings suggest that P7 ethanol treatment causes persistent reductions in adult brain volume and frontal cortical neurons in both males and females. Increased adult neurogenesis in males, but not females, is consistent with differential adaptive responses to P7 ethanol toxicity between the sexes. One day of ethanol exposure, e.g. P7, causes persistent adult brain dysmorphology. PMID:22572057
Junyong Zhu; Ronald Sabo; Xiaolin Luo
2011-01-01
This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...
Berger, I; Barrientos, A C; Cáceres, A; Hernández, M; Rastrelli, L; Passreiter, C M; Kubelka, W
1998-09-01
The activities of crude plant extracts of five plants popularly used in Guatemala against bacterial and protozoal infections and some of their fractions have been evaluated against the trypomastigote and epimastigote forms of Trypanosoma cruzi in vitro. The most active fraction of Neurolaena lobata has also been screened in vivo. Main in vitro activities against trypomastigotes have been observed for the hexane and ethanol extracts of N. lobata (Asteraceae). Both extracts were also active against epimastigotes, whereas all other extracts tested had no effect on epimastigotes. For the hexane extracts of Petiveria alliacea (Phytolaccaceae) and Tridax procumbens (Asteraceae) a marked inhibition of trypomastigotes has been found. Also the ethanol extracts of Byrsonima crassifolia (Malpighiaceae) leafs and Gliricidia sepium (Papilionaceae) bark showed some trypanocidal activity. Fraction 2 of the ethanol extract of N. lobata was highly active against T. cruzi as well in vitro as in vivo. The chloroforme fraction of P. alliacea showed a high inhibition of trypomastigotes in vitro. Also three fractions of the active extract of B. crassifolia inhibited T. cruzi trypomastigotes. No fraction of G. sepium bark extract showed a marked trypanocidal activity.
Fagnani, Rafael; de Araújo, João Paulo Andrade; Botaro, Bruno Garcia
2018-05-01
Milk ethanol stability is not only associated with microbiological acidification, but is a phenomenon with many variables that influence the balance of soluble salts, mainly calcium ion activity. On this basis, we wanted to find out more about milk ethanol stability by studying its relationship with milk protein fractions and others major components. The influence of milk composition on ethanol stability was assessed through a predictive model comprising 180 individual raw milk samples. An additional model was used to assess the ethanol stability status as a response to the proteins fractions quantified by electrophoresis. Of the total samples, 68% were classified as stable and 32% as unstable to alcohol. Milk ethanol instability increased at low values of lactose content and high values of ash percentage. α-Lactalbumin (α-La) was also associated with ethanol stability, and the higher the α-La percentage the lower were the chances of ethanol instability. The lower values of α-La in unstable milk samples might be related to lower content of lactose, as α-La promotes lactose synthesis, a key component for the osmotic balance of milk and thus its ethanol stability. This is the first field report linking ethanol stability indirectly with α-La. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.
Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M
2006-02-01
The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.
Kim, Hoon; Kwak, Bong-Shin; Hong, Hee-Do; Suh, Hyung-Joo; Shin, Kwang-Soon
2016-06-01
Four polysaccharide fractions were isolated from young barley leaves treated with or without pectinase followed by ethanol fractionation. Among the polysaccharide fractions, BLE-P isolated from pectinase digested with a high molecular weight had the most enhanced macrophage stimulatory activity, indicating that pectinase digestion of barley leaf is a useful method for enhancement of its activity. BLE-P was further purified by column chromatography to identify the chemical and structural properties. BLE-P-I eluted in void volume fraction showed potent macrophage stimulatory activity. Monosaccharide composition and linkage analysis indicated that at least three kinds of polysaccharide, that is, glucuronoarabinoxylan (GAX; 40-45%), rhamnogalacturonan-I (RG-I) with branching mainly involving a type II arabinogalactan (AG-II) side chain (30-35%), and linear glucan such as starch and cellulose (less than 10%) coexisted in BLE-P-I. Given the association with macrophage stimulatory activity, it is likely that the GAX and to the RG-I polysaccharide branched with an AG-II side chain may be important for expression of the activity in barley leaf. Copyright © 2016 Elsevier B.V. All rights reserved.
Larssen, Trond Bjerke; Viste, Asgaut; Horn, Arild; Haldorsen, Ingfrid Salvesen; Espeland, Ansgar
2016-09-01
To assess long-term results after single-session alcohol sclerotherapy of symptomatic benign liver cysts performed with maximum 20 min of exposure to alcohol. We included 47 patients aged 32-88 years (42 women, 5 men) with 51 benign non-parasitic liver cysts that were exposed to ethanol for 7-20 min in a single sclerotherapy session and were followed for at least 24 months. Each cyst was emptied before injecting ethanol (10% of cyst volume, but maximum 100 mL) into it. The patient rotated from side to side to facilitate contact between ethanol and the whole cyst wall. Pre-treatment cyst volume was defined as the volume of aspirated cyst fluid after complete emptying of the cyst. Follow-up cyst volume was estimated based on computed tomography images. Cyst volumes were 30-4900 (median 520) mL at pre-treatment and 0-230 (median 1) mL at 24-193 (median 56) months follow-up, a reduction of 83-100% (median 99.7%). No cyst required repeated treatment during the follow-up. Median volume reduction was 99.7% at median 49 months of follow-up for 35 cysts exposed to ethanol for 7-10 min vs. 99.6% at median 75 months of follow-up for 16 cysts exposed for 20 min (p = 0.83, Mann-Whitney test). Ethanol intoxication occurred in one patient. There were no other complications except for pain. Long-term results of single-session alcohol sclerotherapy performed with maximum 20 min of exposure to ethanol were satisfactory with no sign of recurrence of cyst fluid.
Release of ethanol to the atmosphere during use of consumer cleaning products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooley, J.; Nazaroff, W.W.; Hodgson, A.T.
1990-08-01
Liquid laundry and hand dish washing detergents contain volatile organic compounds, including ethanol, that may be liberated during use and contribute to photochemical air pollution. In this study, the release of ethanol to the atmosphere during simulated household use of liquid detergents was measured. Three replicate experiments, plus a blank, were conducted in a 20-m{sup 3} environmental chamber for each of four conditions: typical dish washing (DT), high-release dish washing (DH), typical laundry (LT), and high-release laundry (LH). Average amounts of ethanol transferred to the atmosphere per use (and the fraction of ethanol used so liberated) were 32 mg (0.038)more » for DT, 100 mg (0.049) for DH, 18 mg (0.002) for LT, and 110 mg (0.011) for LH. Thus, a large fraction of the ethanol added to wash solutions with liquid detergents is discharged to the sewer rather than transferred to the atmosphere during use.« less
Sideridou, Irini D; Karabela, Maria M; Vouvoudi, Evagelia Ch
2008-08-01
This study evaluated the influence of water and ethanol sorption on the volumetric dimensional changes of resins prepared by light curing of Bis-GMA, Bis-EMA, UDMA, TEGDMA or D(3)MA. The resin specimens (15mm diameterx1mm height) were immersed in water or ethanol 37+/-1 degrees C for 30 days. Volumetric changes of specimens were obtained via accurate mass measurements using Archimedes principle. The specimens were reconditioned by dry storage in an oven at 37+/-1 degrees C until constant mass was obtained and then immersed in water or ethanol for 30 days. The volumetric changes of specimens were determined and compared to those obtained from the first sorption. Resins showed similar volume increase during the first and second sorptions of water or ethanol. The volume increase due to water absorption is in the following order: poly-TEGDMA>poly-Bis-GMA>poly-UDMA>poly-Bis-EMA>poly-D(3)MA. On the contrary, the order in ethanol is poly-Bis-GMA>poly-UDMA>poly-TEGDMA>poly-Bis-EMA approximately poly-D(3)MA. The volume increase was found to depend linearly on the amount of water or ethanol absorbed. In the choice of monomers for preparation of composite resin matrix the volume increase in the resin after immersion in water or ethanol must be taken into account. Resins of Bis-EMA and D(3)MA showed the lowest values.
Neurodevelopmental effects of inhaled vapors of gasoline and ethanol in rats
Gasoline-ethanol blends comprise the major fraction of the fuel used in the US automotive fleet. To address uncertainties regarding the health risks associated with exposure to gasoline with more than 10% ethanol, we are assessing the effects of prenatal exposure to inhaled vapor...
Protoscolicidal and immunomodulatory activity of Ziziphora tenuior extract and its fractions.
Shahnazi, Mojtaba; Azadmehr, Abbas; Andalibian, Ammar; Hajiaghaee, Reza; Saraei, Mehrzad; Alipour, Mahmood
2016-11-01
To evaluate the scolicidal and immunomodulatory effect of the Ziziphora tenuior (Z. tenuior) extract and its fractions. Protoscolices were treated with six concentrations (3, 5, 10, 25, 50, and 100 mg/mL) of Z. tenuior extract and its fractions (ethanol, petroleum ether, ethyl acetate and chloroform) in periods of 10, 20, 30, 40, 50 and 60 min, and viability of protoscolices was evaluated using the 1.0% eosin. To examine the immunomodulatory effects of Ziziphora and its fractions on macrophage cells, the non-toxic concentration of extract and different fractions determined by MTT assay, and the Griess reaction was used to measure the level of nitrite as an indicator of nitric oxide by the macrophage cells in 10, 100 and 200 μg/mL in 24 h at 37 °C. In this study, the Z. tenuior extract at 10 mg/mL concentration was able to kill all protoscolices during 20 min. By increasing the concentration to 25 mg/mL, the scolicidal time reduced to 10 min. Regarding the effect of different fractions of Z. tenuior, the ethanolic fraction showed the highest scolicidal activity. The extract demonstrated an inhibitory effect on the activity of macrophages and reduced nitric oxide production. Although the petroleum ether and ethanolic fractions of the extract reduced nitric oxide production, nevertheless, this effect was only significant at 10 and 100 μg/mL concentrations (P < 0.05). The Z. tenuior extract and its fractions were effective against protoscolices yet the effect of total extract was considerable. Our findings indicates that the extract and its ethanolic and petroleum ether fractions could have anti-inflammatory properties. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Chen, Yefu; Dong, Boyu; Qin, Weijun; Xiao, Dongguang
2010-09-01
To the aim of efficient utilization of both of xylose and cellulose, a laboratory xylose/cellulose fractionation and separate fermentation (XCFSF) bioethanol process was performed. Three xylose/cellulose fractionation strategies: (A) dilute sulfur acid hydrolysis and detoxification, (B) lime pretreatment and xylanase hydrolysis, (C) bio-treatment with Phanerochaete chrysosporium and xylanase hydrolysis were applied to corn cobs. As a result, the maximum xylose yields obtained from A, B and C fractionation methods were 78.47%, 57.84% and 42.54%, respectively, and 96.81%, 92.14% and 80.34% of cellulose were preserved in the corresponding solid residues. The xylose dissolved in acid and enzymatic hydrolysates was fermented to ethanol by Candida shahatae and the cellulose remaining in solid residues was converted to ethanol by simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae. Finally, for A, B, C fractionation methods, 70.40%, 52.87%, 39.22% of hemicellulose and 89.77%, 84.30%, 71.90% of cellulose in corn cobs was converted to ethanol, respectively. Copyright 2010 Elsevier Ltd. All rights reserved.
Efficacy and Safety of Ethanol Ablation for Branchial Cleft Cysts.
Ha, E J; Baek, S M; Baek, J H; Shin, S Y; Han, M; Kim, C-H
2017-12-01
Branchial cleft cyst is a common congenital lesion of the neck. This study evaluated the efficacy and safety of ethanol ablation as an alternative treatment to surgery for branchial cleft cyst. Between September 2006 and October 2016, ethanol ablation was performed in 22 patients who refused an operation for a second branchial cleft cyst. After the exclusion of 2 patients who were lost to follow-up, the data of 20 patients were retrospectively evaluated. All index masses were confirmed as benign before treatment. Sonography-guided aspiration of the cystic fluid was followed by injection of absolute ethanol (99%) into the lesion. The injected volume of ethanol was 50%-80% of the volume of fluid aspirated. Therapeutic outcome, including the volume reduction ratio, therapeutic success rate (volume reduction ratio of >50% and/or no palpable mass), and complications, was evaluated. The mean index volume of the cysts was 26.4 ± 15.7 mL (range, 3.8-49.9 mL). After ablation, the mean volume of the cysts decreased to 1.2 ± 1.1 mL (range, 0.0-3.5 mL). The mean volume reduction ratio at last follow-up was 93.9% ± 7.9% (range, 75.5%-100.0%; P < .001). Therapeutic success was achieved in all nodules (20/20, 100%), and the symptomatic ( P < .001) and cosmetic ( P < .001) scores had improved significantly by the last follow-up. In 1 patient, intracystic hemorrhage developed during the aspiration; however, no major complications occurred in any patient. Ethanol ablation is an effective and safe treatment for patients with branchial cleft cysts who refuse, or are ineligible for, an operation. © 2017 by American Journal of Neuroradiology.
Lee, Hye Min; Gupta, Ravi; Kim, Sun Hyung; Wang, Yiming; Rakwal, Randeep; Agrawal, Ganesh Kumar; Kim, Sun Tae
2015-05-01
High-abundance proteins (HAPs) hamper in-depth proteome study necessitating development of a HAPs depletion method. Here, we report a novel ethanol precipitation method (EPM) for HAPs depletion from total tuber proteins. Ethanol showed a dose-dependent effect on depletion of sporamin from sweet potato and patatin from potato tubers, respectively. The 50% ethanol was an optimal concentration. 2DE analysis of EPM-prepared sweet potato proteins also revealed enrichment of storage proteins (SPs) in ethanol supernatant (ES) resulting in detection of new low-abundance proteins in ethanol pellet (EP), compared to total fraction. The ES fraction showed even higher trypsin inhibitor activity than total proteins, further showing the efficacy of EPM in enrichment of sporamin in ES fraction. Application of this method was demonstrated for comparative proteomics of two sweet potato cultivars (Hwang-geum and Ho-bac) and purification of SP (sporamin) in its native form, as examples. Comparative proteomics identified many cultivar specific protein spots and selected spots were confidently assigned for their protein identity using MALDI-TOF-TOF analysis. Overall, the EPM is simple, reproducible, and economical for depletion of SPs and is suitable for downstream proteomics study. This study opens a door for its potential application to other tuber crops or fruits rich in carbohydrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Sheng; Zhao, Yang; Zhang, Junqing; Huang, Xiaoxing; Wang, Yifei; Xu, Xiaotao; Zheng, Bin; Zhou, Xue; Tian, Huajie; Liu, Li; Mei, Qibing
2015-06-20
The fructus Alpinia oxyphylla Miq. (AOM) has been used for treating diarrhea with spleen deficiency and gastralgia for thousands of years. A number of traditional Chinese medicine formulae provide AOM as an alternative herbal treatment for diarrhea, but the scientific basis for this usage has not been well defined. In this study, we tried to investigate the antidiarrheal activity and possible mechanisms of Fructus AOM, aiming to enrich our understanding to the scientific meanings and theoretical significance of Fructus AOM in clinical practice. The fructus of AOM collected from Hainan province in China were macerated in the 95% ethanol to obtain the crude 95% ethanol extract, followed by subjected to chromatographic separation over a Diaion HP20 column to obtain 90% and 50% ethanol eluted fractions. The activities of the crude extract and fractions on castor oil induced acute diarrhea, rhubarb induced chronic diarrhea, gastrointestinal transit (GIT) in mice, and contractions of isolated guinea-pig ileum were evaluated. Additionally, nitric oxide (NO), gastrointestinal peptides gastrin (GAS), motilin (MTL) and somatostatin (SS) levels that related to gastrointestinal motilities were detected to demonstrate the potential mechanisms. Ultimately, LC-MS/MS method was utilized to ensure the chemical consistency. The 95% ethanol extract and 90% ethanol eluted fraction significantly delayed the onset time and decreased the wet faeces proportion compared with control group in the castor oil induced acute diarrhea mice. In terms of further evaluation of antidiarrheal activity, the 95% ethanol extract and 90% ethanol elution displayed significant inhibition of the intestinal propulsion at the two highest oral doses of 20 g crude drug/kg and 1g/kg. Moreover the 95% ethanol extract (10 and 20 g crude drug/kg) and 90% ethanol elution (0.5 and 1g/kg) could significantly inhibit the GIT, which was partially attributed to the increase in NO and SS levels, and the decreased MTL. In vitro spontaneous contractions of the isolated guinea pig ileum induced by carbachol, neostigmine and histamine were attenuated by both the extract and elution. Phytochemical analysis of 95% ethanol extract and its fractions identified the presence of diphenylheptanes, sesquiterpenes, and flavones as the major components. Our in vivo and in vitro data could partly support and justify the traditional usage of Fructus AOM on the treatment of diarrhea in traditional medicine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Autoshaping of ethanol drinking: an animal model of binge drinking.
Tomie, Arthur; di Poce, Jason; Derenzo, Christopher C; Pohorecky, Larissa A
2002-01-01
To examine the hypothesis that Pavlovian autoshaping provides an animal learning model of drug abuse, two studies evaluated the induction of ethanol drinking by autoshaping procedures. In Experiment 1, the sipper tube conditioned stimulus (CS) contained saccharin/ethanol solution and was repeatedly paired with food as an unconditioned stimulus (US). The CS-US paired group consumed more of the 0.1% saccharin-6% ethanol solution than did the CS-US random group, revealing that autoshaping conditioned responses (CR) induce ethanol drinking not attributable to pseudo-conditioning. Experiment 2 employed saccharin-fading procedures and showed that the paired vs random group differences in ethanol drinking were maintained, even as the saccharin was eliminated from the solution. The results show that Pavlovian autoshaping procedures induce high volumes of ethanol drinking when the presentation of a sipper tube containing an ethanol solution precedes the response-independent delivery of food. The high volume of ethanol consumed in a brief period of time suggests that Pavlovian autoshaping may be a model of binge drinking.
de Almeida, Ana Beatriz Albino; Luiz-Ferreira, Anderson; Cola, Maíra; Di Pietro Magri, Luciana; Batista, Leonia Maria; de Paiva, Joseilson Alves; Trigo, José Roberto; Souza-Brito, Alba R M
2012-04-01
Arctium lappa L. has been used in folk medicine as a diuretic, depurative, and digestive stimulant and in dermatological conditions. The mechanisms involved in the anti-ulcerogenic activity of the sesquiterpene onopordopicrin (ONP)-enriched fraction (termed the ONP fraction), obtained from A. lappa leaves, were studied. The gastroprotective mechanism of the ONP fraction was evaluated in experimental in vivo models in rodents, mimicking this disease in humans. ONP fraction (50 mg/kg, p.o.) significantly inhibited the mucosal injury induced by ethanol/HCl solution (75%), indomethacin/bethanecol (68.9%), and stress (58.3%). When the ONP fraction was investigated in pylorus ligature, it did not induce alteration in the gastric volume but did modify the pH and total acid concentration of gastric juice. ONP fraction significantly increased serum somatostatin levels (82.1±4.1 vs. control group 12.7±4 pmol/L) and decreased serum gastrin levels (62.6±6.04 vs. control group 361.5±8.2 μU/mL). Mucus production was not significantly altered by the ONP fraction. Gastroprotection by the ONP fraction was completely inhibited by N-ethylmaleimide treatment and did not modify the effect in the animals pretreated with l-N(G)-nitroarginine methyl ester. These results suggest an antisecretory mechanism involved with the antiulcerogenic effect of the ONP fraction. However, only endogenous sulfhydryls play an important role in gastroprotection of the ONP fraction.
Microemulsification: an approach for analytical determinations.
Lima, Renato S; Shiroma, Leandro Y; Teixeira, Alvaro V N C; de Toledo, José R; do Couto, Bruno C; de Carvalho, Rogério M; Carrilho, Emanuel; Kubota, Lauro T; Gobbi, Angelo L
2014-09-16
We address a novel method for analytical determinations that combines simplicity, rapidity, low consumption of chemicals, and portability with high analytical performance taking into account parameters such as precision, linearity, robustness, and accuracy. This approach relies on the effect of the analyte content over the Gibbs free energy of dispersions, affecting the thermodynamic stabilization of emulsions or Winsor systems to form microemulsions (MEs). Such phenomenon was expressed by the minimum volume fraction of amphiphile required to form microemulsion (Φ(ME)), which was the analytical signal of the method. Thus, the measurements can be taken by visually monitoring the transition of the dispersions from cloudy to transparent during the microemulsification, like a titration. It bypasses the employment of electric energy. The performed studies were: phase behavior, droplet dimension by dynamic light scattering, analytical curve, and robustness tests. The reliability of the method was evaluated by determining water in ethanol fuels and monoethylene glycol in complex samples of liquefied natural gas. The dispersions were composed of water-chlorobenzene (water analysis) and water-oleic acid (monoethylene glycol analysis) with ethanol as the hydrotrope phase. The mean hydrodynamic diameter values for the nanostructures in the droplet-based water-chlorobenzene MEs were in the range of 1 to 11 nm. The procedures of microemulsification were conducted by adding ethanol to water-oleic acid (W-O) mixtures with the aid of micropipette and shaking. The Φ(ME) measurements were performed in a thermostatic water bath at 23 °C by direct observation that is based on the visual analyses of the media. The experiments to determine water demonstrated that the analytical performance depends on the composition of ME. It shows flexibility in the developed method. The linear range was fairly broad with limits of linearity up to 70.00% water in ethanol. For monoethylene glycol in water, in turn, the linear range was observed throughout the volume fraction of analyte. The best limits of detection were 0.32% v/v water to ethanol and 0.30% v/v monoethylene glycol to water. Furthermore, the accuracy was highly satisfactory. The natural gas samples provided by the Petrobras exhibited color, particulate material, high ionic strength, and diverse compounds as metals, carboxylic acids, and anions. These samples had a conductivity of up to 2630 μS cm(-1); the conductivity of pure monoethylene glycol was only 0.30 μS cm(-1). Despite such downsides, the method allowed accurate measures bypassing steps such as extraction, preconcentration, and dilution of the sample. In addition, the levels of robustness were promising. This parameter was evaluated by investigating the effect of (i) deviations in volumetric preparation of the dispersions and (ii) changes in temperature over the analyte contents recorded by the method.
Vasavi, H S; Arun, A B; Rekha, P D
2016-02-01
Inhibition of quorum sensing (QS), a cell-density dependent regulation of gene expression in bacteria by autoinducers is an attractive strategy for the development of antipathogenic agents. In this study, the anti-QS activity of the ethanolic extract of the traditional herb Centella asiatica was investigated by the biosensor bioassay using Chromobacterium violaceum CV026. The effect of ethyl acetate fraction (CEA) from the bioassay-guided fractionation of ethanol extract on QS-regulated violacein production in C. violaceum ATCC12472 and pyocyanin production, proteolytic and elastolytic activities, swarming motility, and biofilm formation in Pseudomonas aeruginosa PAO1 were evaluated. Possible mechanism of QS-inhibitory action on autoinducer activity was determined by measuring the acyl homoserine lactone using C. violaceum ATCC31532. Anti-QS compounds in the CEA fraction were identified using thin layer chromatography biosensor overlay assay. Ethanol extract of C. asiatica showed QS inhibition in C. violaceum CV026. Bioassay-guided fractionation of ethanol extract revealed that CEA was four times more active than the ethanol extract. CEA, at 400 μg/mL, completely inhibited violacein production in C. violaceum ATCC12472 without significantly affecting growth. CEA also showed inhibition of QS-regulated phenotypes, namely, pyocyanin production, elastolytic and proteolytic activities, swarming motility, and biofilm formation in P. aeruginosa PAO1 in a concentration-dependent manner. Thin layer chromatography of CEA with biosensor overlay showed anti-QS spot with an Rf value that corresponded with that of standard kaempferol. The anti-QS nature of C. asiatica herb can be further exploited for the formulation of drugs targeting bacterial infections where pathogenicity is mediated through QS. Copyright © 2014. Published by Elsevier B.V.
40 CFR 80.1403 - Which fuels are not subject to the 20% GHG thresholds?
Code of Federal Regulations, 2012 CFR
2012-07-01
... baseline volume of ethanol that is produced from facilities and any expansions all of which commenced... produced by those facilities described in paragraph (d) of this section, only the ethanol volume (to the...
40 CFR 80.1403 - Which fuels are not subject to the 20% GHG thresholds?
Code of Federal Regulations, 2014 CFR
2014-07-01
... baseline volume of ethanol that is produced from facilities and any expansions all of which commenced... produced by those facilities described in paragraph (d) of this section, only the ethanol volume (to the...
40 CFR 80.1403 - Which fuels are not subject to the 20% GHG thresholds?
Code of Federal Regulations, 2013 CFR
2013-07-01
... baseline volume of ethanol that is produced from facilities and any expansions all of which commenced... produced by those facilities described in paragraph (d) of this section, only the ethanol volume (to the...
Composition and ethanol production potential of cotton gin residues.
Agblevor, Foster A; Batz, Sandra; Trumbo, Jessica
2003-01-01
Cotton gin residue (CGR) collected from five cotton gins was fractionated and characterized for summative composition. The major fractions of the CGR varied widely between cotton gins and consisted of clean lint (5-12%),hulls (16-48%), seeds (6-24%), motes (16-24%), and leaves (14-30%). The summative composition varied within and between cotton gins and consisted of ash (7.9-14.6%), acid-insoluble material (18-26%), xylan (4-15%),and cellulose (20-38%). Overlimed steam-exploded cotton gin waste was readily fermented to ethanol by Escherichia coli KO11. Ethanol yields were feedstock and severity dependent and ranged from 58 to 92.5% of the theoretical yields. The highest ethanol yield was 191 L (50 gal)/t, and the lowest was 120 L (32 gal)/t.
Maas, Ronald HW; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans
2008-01-01
Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis). PMID:18699996
What information can frictional properties of polymer brushes tell us?
NASA Astrophysics Data System (ADS)
Zhang, Zhenyu; Moxey, Mark; Morse, Andrew; Armes, Steven; Lewis, Andrew; Geoghegan, Mark; Leggett, Graham
2013-03-01
We have used friction force microscopy (FFM) to quantitatively examine surface grown zwitterionic polymer brushes: poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC), and to establish the correlation between its frictional behaviour to other intrinsic properties. In a good solvent, it was found that the coefficient of friction (μ) decreased with increasing film thickness. We conclude that the amount of bound solvent increases as the brush length increases, causing the osmotic pressure to increase and yielding a reduced tendency for the brush layer to deform under applied load. When measured in a series of alcohol/water mixtures, a significant increase in μ was observed for ethanol/water mixtures at a volume fraction of 90%. This is attributed to brush collapse due to co-nonsolvency, leading to loss of hydration of the brush chains and hence substantially reduced lubrication. We show that single asperity contact mechanics is strongly dependent on solvent quality. Friction-load relationship was found linear in methanol (good solvent), but sub-linear in water and ethanol (moderate solvent).
Phenolic compounds and antioxidant properties of arabinoxylan hydrolysates from defatted rice bran.
Yuwang, Prachit; Sulaeva, Irina; Hell, Johannes; Henniges, Ute; Böhmdorfer, Stefan; Rosenau, Thomas; Chitsomboon, Benjamart; Tongta, Sunanta
2018-01-01
The water unextractable arabinoxylans (WUAX) contain beneficial phenolic compounds that can be used for food rather than for animal feed. The antioxidant activities of defatted rice bran obtained by xylanase-aided extraction is reported herein. The chemical and molecular characteristics of extracted fractions were investigated. The WUAX hydrolysate precipitated by 0-60% ethanol (F60), 60-90% ethanol (F6090), and more than 90% ethanol (F90) had decreased molar masses with increasing ethanol concentration. The fractions of interest, F60 and F6090, contained 75% arabinoxylans with ferulic acid as the major bound phenolic acid, followed by p-coumaric acid. According to chemical-based antioxidant assays F60 and F6090 exhibited higher diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric iron reducing ability than F90 which contained minor contents of small sugars and free phenolic acids. In cell-based antioxidant assays, using the fluorescent 2',7'-dichlorofluorescein diacetate probe, all three fractions were potent intracellular scavengers. The high molar mass of WUAX hydrolysates with high amount of bound phenolics contributes to the chemical-based antioxidant activity. All fractions of WUAX hydrolysates showed high potent intracellular scavenging activity regardless of molar mass, content and the component of bound phenolics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Pourhashem, Ghasideh; Adler, Paul R.; McAloon, Andrew J.; Spatari, Sabrina
2013-06-01
Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy. We examine the life cycle greenhouse gas (GHG) emission and techno-economic cost tradeoffs for alternative uses of the lignin fraction of agricultural residues (corn stover, and wheat and barley straw) produced within a 2000 dry metric ton per day ethanol biorefinery in three locations in the United States. We compare three scenarios in which the lignin is (1) used as a land amendment to replace soil organic carbon (SOC); (2) separated, dried and sold as a coal substitute to produce electricity; and (3) used to produce electricity onsite at the biorefinery. Results from this analysis indicate that for life cycle GHG intensity, amending the lignin to land is lowest among the three ethanol production options (-25 to -2 g CO2e MJ-1), substituting coal with lignin is second lowest (4-32 g CO2e MJ-1), and onsite power generation is highest (36-41 g CO2e MJ-1). Moreover, the onsite power generation case may not meet RFS2 cellulosic fuel requirements given the uncertainty in electricity substitution. Options that use lignin for energy do so at the expense of SOC loss. The lignin-land amendment option has the lowest capital cost among the three options due to lower equipment costs for the biorefinery’s thermal energy needs and use of biogas generated onsite. The need to purchase electricity and uncertain market value of the lignin-land amendment could raise its cost compared to onsite power generation and electricity co-production. However, assuming a market value (50-100/dry Mg) for nutrient and soil carbon replacement in agricultural soils, and potentially economy of scale residue collection prices at higher collection volumes associated with low SOC loss, the lignin-land amendment option is economically and environmentally preferable, with the lowest GHG abatement costs relative to gasoline among the three lignin co-product options we consider.
Hernández, Yuliana Rosas; García Serrano, Luz Arcelia; Maruri, Daniel Tapia; Jiménez Aparicio, Antonio Ruperto; Camacho Díaz, Brenda Hildeliza; Arenas Ocampo, Martha Lucía
2018-04-04
The main objective of this work was to optimize the process of fractionation of the bagasse of Agave angustifolia Haw, applying organosolv assisted with microwaves. The DCC was used to evaluate the effect of independent variables such as ethanol concentration (40, 50, and 60%) and reaction time (1, 1.5, and 2 h) on yield, cellulose and lignin percentages. Lignocellulosic fractions (F1 and F2) were obtained by means of organosolv assisted with microwave in an open system (atmospheric pressure) and a closed system (controlled pressure). The lignocellulosic fractions were microstructurally characterized. The highest extraction yields (70.39%) were reached in the open system at 50% ethanol for 1.5 h. The highest percentages of LK (5.05%) were obtained in the closed system at 60% ethanol for 2 h. The SEM photomicrograph showed that the microstructure of F1 was retained even after treatment with 60% ethanol for 2 h, and the exposure of the fibrillar part was observed obtaining the disposition of pectin.
Shibuya, Masafumi; Sasaki, Kengo; Tanaka, Yasuhiro; Yasukawa, Masahiro; Takahashi, Tomoki; Kondo, Akihiko; Matsuyama, Hideto
2017-07-01
A membrane process combining nanofiltraion (NF) and forward osmosis (FO) was developed for the sugar concentration with the aim of high bio-ethanol production from the liquid fraction of rice straw. The commercial NF membrane, ESNA3, was more adequate for removal of fermentation inhibitors (such as acetic acid) than the FO membrane, whereas the commercial FO membrane, TFC-ES, was more adequate for concentration of the sugars than the NF membrane. The liquid fraction was subjected to the following process: NF concentration with water addition (NF (+H2O) )→enzymatic hydrolysis→FO concentration. This NF (+H2O) -FO hybrid process generated a total sugar content of 107g·L -1 . Xylose-assimilating S. cerevisiae produced 24g·L -1 ethanol from the liquid fraction that was diluted 1.5-fold and then concentrated by the NF (+H2O) -FO hybrid process. The NF (+H2O) -FO hybrid process has the potential for optimized ethanol production from pretreated lignocellulosic biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.
2015-03-01
A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.
Corseuil, Henry Xavier; Gomez, Diego E; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J J
2015-03-01
A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Agustini, S.; Wahyuono, R. A.; Sawitri, D.; Risanti, D. D.
2013-09-01
Since its first development, efforts to improve efficiency of Dye Sensitized Solar Cell (DSSC) are continuously carried out, either through selection of dye materials, the type of semiconductor, counter electrode design or the sandwiched structure. It is widely known that anatase and rutile are phases of TiO2 that often being used for fabrication of DSSC. Rutile is thermodynamically more stable phase having band-gap suitable for absorption of sunlight spectrum. On the other hand, anatase has higher electrical conductivity, capability to adsorp dye as well as higher electron diffusion coefficient than those of rutile. Present research uses mangosteen pericarp and Rhoeo spathacea extracted in ethanol as natural dye containing anthocyanin. These dyes were characterized by using UV-Vis and FTIR, showing that the absorption maxima peaks obtained at 389 nm and 413 nm, for mangosteen and Rhoeo spathacea, respectively. The nano TiO2 was prepared by means of co-precipitation method. The particle size were 9-11 nm and 54.5 nm for anatase and rutile, respectively, according to Scherrer's equation. DSSCs were fabricated in various volume fractions of anatase and rutile TiO2. The fabricated DSSCs were tested under 17 mW/cm2 of solar irradiation. The current-voltage (I-V) characteristic of DSSCs employing 75%: 25% volume fraction of anatase and rutile TiO2 have outstanding result than others. The highest conversion efficiencies of 0.037% and 0.013% are obtained for DSSC employing natural dye extract from mangosteen pericarp and Rhoeo spathacea, respectively.
40 CFR 86.101 - General applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... procedures. For example, if you are testing an ethanol-fueled vehicle, perform diagnostics in your evaporative emission enclosure with ethanol and propane. (9) For exhaust emission testing with ethanol-gasoline blends that have less than 25% ethanol by volume, if you use NMHC-to-NMOG conversion factors...
Methods to recover value-added co-products from dry grind processing of grains into fuel ethanol
USDA-ARS?s Scientific Manuscript database
Three methods were described to fractionate condensed distillers solubles (CDS) into several new co-products, including a protein-mineral fraction and a glycerol fraction by a chemical method; a protein fraction, an oil fraction and a glycerol-mineral fraction by a physical method; or a protein frac...
Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources
ERIC Educational Resources Information Center
Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa
2010-01-01
In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…
Maruyama, Hiroe; Sakamoto, Takashi; Araki, Yoko; Hara, Hideaki
2010-06-23
Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food.
2010-01-01
Background Bee pollen, a honeybee product, is the feed for honeybees prepared themselves by pollens collecting from plants and has been consumed as a perfect food in Europe, because it is nutritionally well balanced. In this study, we aimed to investigate the anti-inflammatory effect of bee pollen from Cistus sp. of Spanish origin by a method of carrageenan-induced paw edema in rats, and to investigate the mechanism of anti-inflammatory action and also to elucidate components involved in bee pollen extracted with ethanol. Methods The bee pollen bulk, its water extract and its ethanol extract were administered orally to rats. One hour later, paw edema was produced by injecting of 1% solution of carrageenan, and paw volume was measured before and after carrageenan injection up to 5 h. The ethanol extract and water extract were measured COX-1 and COX-2 inhibitory activities using COX inhibitor screening assay kit, and were compared for the inhibition of NO production in LPS-stimulated RAW 264.7 cells. The constituents of bee pollen were purified from the ethanol extract subjected to silica gel or LH-20 column chromatography. Each column chromatography fractions were further purified by repeated ODS or silica gel column chromatography. Results The bee pollen bulk mildly suppressed the carrageenan-induced paw edema and the water extract showed almost no inhibitory activity, but the ethanol extract showed relatively strong inhibition of paw edema. The ethanol extract inhibited the NO production and COX-2 but not COX-1 activity, but the water extract did not affect the NO production or COX activities. Flavonoids were isolated and purified from the ethanol extract of bee pollen, and identified at least five flavonoids and their glycosides. Conclusions It is suggested that the ethanol extract of bee pollen show a potent anti-inflammatory activity and its effect acts via the inhibition of NO production, besides the inhibitory activity of COX-2. Some flavonoids included in bee pollen may partly participate in some of the anti-inflammatory action. The bee pollen would be beneficial not only as a dietary supplement but also as a functional food. PMID:20573205
Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.
Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J
2004-01-01
Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.
Maurel, Delphine B; Jaffré, Christelle; O'Brien, Emmanuelle Simon; Tournier, Carine C; Houchi, Hakim; Benhamou, Claude-Laurent; Naassila, Mickael
2013-01-01
Different models are used to study the effects of chronic alcohol consumption on bone tissue in the rat. However, the current models take several months to show indices of osteopenia as observed in chronic drinkers. Numerous studies have supported that chronic and intermittent exposure to ethanol vapors has predictive validity as a model of alcohol dependence in humans. However, this model has never been applied to bone research to study its effects on the parameters that define osteopenia. This was the goal of this study in the rat. Male Wistar rats were exposed to ethanol vapor inhalation (n = 6) or air (controls, n = 6). Animals were exposed to chronic (11 weeks) and intermittent (14 hours a day) ethanol vapor reaching stable blood alcohol levels (BALs; 150 to 250 mg/dl) at the end of the third week of inhalation. After the sacrifice, right and left femur and tibia were dissected free of fat and connective tissue and bone mineral density (BMD) was assessed by dual X-ray absorptiometry. The microarchitecture of the femur was studied using microcomputed tomography. The BMD of the left and right femurs and the left tibia was lower in the ethanol group compared with the control group. The bone volume fraction (BV/TV) and the bone surface density (BS/TV) were lower in the ethanol group compared with control animals. The trabecular number (Tb.N) was lower in the ethanol group while the trabecular spacing was higher. The decrease in the BMD, BV/TV, and Tb.N is in the same range as what is observed in human drinkers and what is reported with other animal alcohol models (Lieber-DeCarli liquid diet, ethanol in the tap water). Therefore, this model could be useful to study the effects of chronic alcohol consumption in the bone research field and has the advantage of controlling easily targeted BALs. Copyright © 2012 by the Research Society on Alcoholism.
NASA Astrophysics Data System (ADS)
Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang
2018-05-01
The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.
Effects of acute administration of ethanol on the rat adrenal cortex.
Milovanović, Tatjana; Budec, Mirela; Balint-Perić, Ljiljana; Koko, Vesna; Todorović, Vera
2003-09-01
The purpose of this study was to investigate the effect of a single dose of ethanol on rat adrenal cortex and to determine whether the estrous cycle can influence this effect of ethanol. Adult female Wistar rats showing proestrus or diestrus Day 1 (n = 12) were treated intraperitoneally with ethanol (4 g/kg body weight). Untreated (n = 15) and saline-injected (n = 14) rats were used as controls. The animals were sacrificed by decapitation 0.5 hour after ethanol administration. Stereological analysis was performed on paraffin sections of adrenal glands stained with AZAN, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata and the zona reticularis, numerical density, volume and the mean diameter of adrenocortical cells and of their nuclei, and diameter and length of capillaries. The diameter and volume of adrenocortical cells in the zona fasciculata and the zona reticularis were significantly increased by acute ethanol treatment at proestrus. In the same group of animals, a single dose of ethanol induced significant decrease in numerical density of adrenocortical cells and of their nuclei in all three zones. Increased length of capillaries of the zona fasciculata as well as enhanced level of serum corticosterone was found in ethanol-treated rats at both phases of the estrous cycle, proestrus and diestrus Day 1. The obtained results indicate that a single dose of ethanol activates adrenal cortex in female rats and that the effect is more pronounced on morphometric parameters at proestrus.
Antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit.
Noreen, Shabana; Shaheen, Ghazala; Akram, Muhammad; Rashid, Abid; Shah, Syed Muhammad Ali
2016-07-01
The objective of present study was to evaluate the antiurease and anti-oxidant activity of Vaccinium macrocarpon fruit. The parent extract was ethanolic extract while its sub fractions were prepared in n-hexane, chloroform and n-butanol. The method based on scavenging activity and reduction capability of 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH). N-butanol fraction was the most effective antioxidant with 87.0±1.15 activity but the activity was less than ascorbic acid i.e. 93.74±0.12. Highly significant urease inhibition was shown by crude ethanolic extract (71.00±0.2a) with IC50 (392.66±2.1) followed by aqueous fraction (68.00±0.5e) with IC50 (159.83±2.8). The results of crude ethanolic extract and aqueous extracts were highly significant (p<0.05) than standard Thiourea. Present study showed that Vaccinium macrocarpon exhibits potent antiurease and antioxidant activities.
Iakovlev, Mikhail; van Heiningen, Adriaan
2012-08-01
SO(2)-ethanol-water (SEW) lignocellulosic fractionation has the potential to overcome the present techno-economic barriers that hinder the commercial implementation of renewable transportation fuel production. In this study, SEW fractionation of spruce wood chips is examined for its ability to separate the main wood components, hemicelluloses, lignin, and cellulose, and the potential to recover SO(2) and ethanol from the spent fractionation liquid. Therefore, overall sulfur and carbohydrate mass balances are established. 95-97 % of the charged SO(2) remains in the liquid and can be fully recovered by distillation. During fractionation, hemicelluloses and lignin are effectively dissolved, whereas cellulose is preserved in the solid (fibre) phase. Hemicelluloses are hydrolysed, producing up to 50 % monomeric sugars, whereas dehydration and oxidation of carbohydrates are insignificant. The latter is proven by the closed carbohydrate material balances as well as by the near absence of corresponding by-products (furfural, hydroxymethylfurfural (HMF) and aldonic acids). In addition, acid methanolysis/GC and acid hydrolysis/high performance anion exchange chromatography (HPAEC) methods for the carbohydrate determination are compared. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qian, Mao; Yi, Li; Song-Lin, Li; Jie, Yang; Ping-Hu, Zhang; Qiang, Wang
2014-01-01
To evaluate the chemical profiles and cytotoxic effects among the total saponin fraction (TSF), 25% ethanol fraction (25EF), 50% ethanol fraction (50EF), and 85% ethanol fraction (85EF) prepared by macroporous resin from the leaves of Panax notoginseng. The simultaneous determination of thirteen main saponins, as well as the chemical profiles of saponin fractions of different polarity, was made by HPLC-DAD and LC-ESI-MS(n) analysis. The cytotoxic effects were determined against KP4 cells (human pancreatic cancer), NCI-H727 cells (human lung cancer), HepG2 cells (human hepatocellular cancer), and SGC-7901 cells (human gastric adenocarcinoma). Chemical analysis indicated that 85EF possessed the most abundant cytotoxic protopanaxadiol saponins, including the marker saponins F2, 20(R)-Rg3, 20(S)-Rg3, and Rh2. The MTT assay showed that 85EF also had the strongest cytotoxic effects among the four fractions. 25EF showed no anti-proliferative effects, while 50EF and TSF exhibited weak anti-proliferative activity. From the aspect of comprehensive utilization of resources, 85EF, enriched with low polarity PPD group saponins, is a new alternative source of anticancer saponins, and a promising botanical preparation for further anticancer studies. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
The cytotoxic effect of Elephantopus scaber Linn extract against breast cancer (T47D) cells
NASA Astrophysics Data System (ADS)
Sulistyani, N.; Nurkhasanah
2017-11-01
Breast cancer is one of the main cause of death. Elephantopus scaber Linn (ES) which has been used as a traditional medicine contains an antitumor compounds. This study aimed to explore the active fraction from ethanolic extract of ES as anticancer and to determine its inhibition effect on the cell proliferation cycle of breast cancer (T47D) cells. The ES leaf was macerated with ethanol and then evaporated to get the concentrated extract. The extract was fractionated using petroleum ether, chloroform, and methanol respectively. The cytotoxic activity of each fraction was carried out with MTT method, and the inhibition of cell cycle test were observed by flowcytometry method. The result showed that ES and the fractions have cytotoxic activity against T47D cell lines with IC50 values of extract, petroleum ether, chloroform, and methanol fractions were 58.36±2.38, 132.17±9.69, 7.08±2.11, and 572.89±69.23 µg/mL. The inhibition effect of ethanol extract on the lifecycle of cells was occured in sub G1 phase. There was no prolonging of G1, S, G2/M and polyploidy phase of T47D cell lines. The chloroform fraction of ES is the most cytotoxic fraction against T47D cells without prolonging the cell lifecycle.
Sclerotherapy of renal cysts using acetic acid: a comparison with ethanol sclerotherapy.
Cho, D S; Ahn, H S; Kim, S I; Kim, Y S; Kim, S J; Jeon, G S; Won, J H
2008-12-01
This study compared percutaneous sclerotherapy using 50% acetic acid with that using 99% ethanol for patients with simple renal cysts. The study included 72 simple renal cysts in 64 patients (male/female ratio = 31/33; age range, 31-75 years). Under fluoroscopic guidance, the cyst fluid was aspirated completely. Sclerotherapy was then performed using 50% acetic acid for 32 cysts and 99% ethanol for 40 cysts. The volumes of each renal cyst before and after sclerotherapy were compared using ultrasonography or CT. Medical records were reviewed to analyse any complications. The mean follow-up period was 21.5 months (range, 3-75 months). The mean remnant volume of the cyst after sclerotherapy was 2.6% of the initial volume in the acetic acid group and 14.0% in the ethanol group. The rates of complete remission, partial remission and treatment failure were 90.6%, 9.4% and 0%, respectively, in the acetic acid group, and 60.0%, 30.0% and 10.0%, respectively, in the ethanol group. There were no complications related to sclerotherapy in either group. In conclusion, acetic acid is a safe and effective sclerosing agent, with clinical results superior to those of ethanol, and is an alternative to ethanol for sclerotherapy of renal cysts.
Methods to recover value-added coproducts from dry grind processing of grains into fuel ethanol.
Liu, Keshun; Barrows, Frederic T
2013-07-31
Three methods are described to fractionate condensed distillers solubles (CDS) into several new coproducts, including a protein-mineral fraction and a glycerol fraction by a chemical method; a protein fraction, an oil fraction and a glycerol-mineral fraction by a physical method; or a protein fraction, an oil fraction, a mineral fraction, and a glycerol fraction by a physicochemical method. Processing factors (ethanol concentration and centrifuge force) were also investigated. Results show that the three methods separated CDS into different fractions, with each fraction enriched with one or more of the five components (protein, oil, ash, glycerol and other carbohydrates) and thus having different targeted end uses. Furthermore, because glycerol, a hygroscopic substance, was mostly shifted to the glycerol or glycerol-mineral fraction, the other fractions had much faster moisture reduction rates than CDS upon drying in a forced air oven at 60 °C. Thus, these methods could effectively solve the dewatering problem of CDS, allowing elimination of the current industrial practice of blending distiller wet grains with CDS for drying together and production of distiller dried grains as a standalone coproduct in addition to a few new fractions.
Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T
2016-07-01
Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction. © 2015 Society for the Study of Addiction.
Wang, Hua-Mei; Fu, Ting-Ming; Guo, Li-Wei
2013-06-01
This study is to report the influence of conditions in spray drying process on physical and chemical properties and lung inhaling performance of Panax notoginseng Saponins - Tanshinone II A composite particles. According to the physical and chemical properties of the two types of components within the composite particles, three solvent systems were selected including ethanol, ethanol : acetone (9 : 1, v/v) and ethanol : acetone (4 : 1, v/v), and three inlet temperature: 110 degrees C, 120 degrees C, 130 degrees C to prepare seven different composite particle samples; each sample was characterized using laser diffraction, scanning electron microscopy (SEM), dynamic vapour sorption (DVS) and atomic force microscope (AFM), and their aerodynamic behavior was evaluated by a Next Generation Impactor (NGI). The results indicate that under the conditions of using the mixed solvent system of ethanol--acetone volume ratio of 9 : 1, and the inlet temperature of 110 degrees C, the resulting composite particles showed rough surface, with more tanshinone II A distributing in the outer layer, such composite particles have the best lung inhaling performance and the fine particle fraction (FPF) close to 60%. Finally it is concluded that by adjusting the conditions in co-spray drying process, the distribution amount and existence form of tanshinone II A in the outer layer of the particles can be changed so that to enhance lung inhaling performance of the drug composite particles.
Fraction from human and rat liver which is inhibitory for proliferation of liver cells.
Chen, T S; Ottenweller, J; Luke, A; Santos, S; Keeting, P; Cuy, R; Lea, M A
1989-01-01
A comparative study was undertaken with human and rat liver of a fraction reported to have growth inhibitory activity when prepared from rat liver. Fractions which were soluble in 70% ethanol and insoluble in 87% ethanol were prepared from liver cytosols. Electrophoretic analysis under denaturing conditions indicated that there were several quantitative or qualitative differences in the fractions from the two species. Fractions from both human and rat liver were found to be inhibitory for the incorporation of 3H-thymidine into DNA of foetal chick hepatocytes. Under conditions in which the rat fraction inhibited precursor incorporation into DNA of rat liver epithelial cells there was not a significant inhibitory effect with the fraction from human liver. DNA synthesis in a rat hepatoma cell line was not significantly inhibited by preparations from either species. The data suggested that corresponding fractions from both rat and human liver could have inhibitory effects on precursor incorporation into DNA but the magnitude of the effects and target cell specificity may differ.
Thiruvenkadam, G; Asokan, Sharath; John, Baby; Priya, Pr Geetha
2016-01-01
Successful obturation in the primary teeth demands complete dryness of the root canal system. The purpose of this study was to determine the effect of 95% ethanol as the final irrigant before root canal obturation in primary teeth. A total of 20 extracted primary mandibular canines were biomechanically prepared and pre-obturated volume of each tooth was assessed using spiral computed tomography (CT). The specimens were divided into two groups (n = 10): group 1, Metapex group; group 2, zinc oxide eugenol group. Each group was further divided randomly into two subgroups (n = 5): subgroup 1, canals were dried with 95% ethanol; subgroup 2, canals were blot dried with paper points with the last one appearing dry. All canals were obturated and the postobturated volume of each tooth was measured. The percentage of obturated volume (POV) was calculated using the formula: (postobturated volume/preobturated volume) × 100. The POV between the groups was statistically analyzed using Mann-Whitney test and Wilcoxon Signed rank test appropriately. Root canals that were dried with ethanol showed better obturation than using paper points alone and the difference was statistically significant in both group 1 (p < 0.001) and group 2 (p < 0.002). Drying of the root canal system with 95% ethanol can result in better obturation in the primary teeth. How to cite this article: Thiruvenkadam G, Asokan S, John B, Geetha Priya PR. Effect of 95% Ethanol as a Final Irrigant before Root Canal Obturation in Primary Teeth: An in vitro Study. Int J Clin Pediatr Dent 2016;9(1):21-24.
Chakravarti, Bandana; Maurya, Ranjani; Siddiqui, Jawed Akhtar; Bid, Hemant Kumar; Rajendran, S M; Yadav, Prem P; Konwar, Rituraj
2012-06-26
Wrightia tomentosa Roem. & Schult. (Apocynaceae) is known in the traditional medicine for anti-cancer activity along with other broad indications like snake and scorpion bites, renal complications, menstrual disorders etc. However, the anti-cancer activity of this plant or its constituents has never been studied systematically in any cancer types so far. To evaluate the anti-cancer activities of the ethanolic extract of W. tomentosa and identified constituent active molecule(s) against breast cancer. Powdered leaves of W. tomentosa were extracted with ethanol. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa were tested for its anti-proliferative and pro-apoptotic effects in breast cancer cells MCF-7 and MDA-MB-231. The ethanolic extract, subsequent hexane fractions and fraction F-4 of W. tomentosa inhibited the proliferation of human breast cancer cell lines, MCF-7 and MDA-MB-231. The fraction F-4 obtained from hexane fraction inhibited proliferation of MCF-7 and MDA-MB-231 cells in concentration and time dependent manner with IC₅₀ of 50 μg/ml and 30 μg/ml for 24 h, 28 μg/ml and 22 μg/ml for 48 h and 25 μg/ml and 20 μg/ml for 72 h respectively. The fraction F-4 induced G1 cell cycle arrest, reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and subsequent apoptosis. Apoptosis is indicated in terms of increased Bax/Bcl-2 ratio, enhanced Annexin-V positivity, caspase 8 activation and DNA fragmentation. The active molecule isolated from fraction F-4, oleanolic acid and urosolic acid inhibited cell proliferation of MCF-7 and MDA-MB-231 cells at IC₅₀ value of 7.5 μM and 7.0 μM respectively, whereas there is devoid of significant cell inhibiting activity in non-cancer originated cells, HEK-293. In both MCF-7 and MDA-MB-231, oleanolic acid and urosolic acid induced cell cycle arrest and apoptosis as indicated by significant increase in Annexin-V positive apoptotic cell counts. Our results suggest that W. tomentosa extracts has significant anti-cancer activity against breast cancer cells due to induction of apoptosis pathway. Olenolic and urosolic acid are important constituent molecules in the extract responsible for anti-cancer activity of W. tomentosa.
Kameswara Rao, B; Giri, R; Kesavulu, M M; Apparao, C
2001-01-01
The effect of administration of different doses of Pterocarpus santalinus L. bark extracts in normal and diabetic rats, on blood glucose levels was evaluated in this study. Among the three fractions (aqueous, ethanol and hexane), ethanolic fraction at the dose of 0.25 g/kg body weight showed maximum antihyperglycemic activity. The same dose did not cause any hypoglycemic activity in normal rats. The results were compared with the diabetic rats treated with glibenclamide and the antihyperglycemic activity of ethanolic extract of PS bark at the dose of 0.25 g/kg b.w. was found to be more effective than that of glibenclamide.
2012-01-01
Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics. PMID:22410131
Total alkaloid content in various fractions of Tabernaemonata sphaerocarpa Bl. (Jembirit) leaves
NASA Astrophysics Data System (ADS)
Salamah, N.; Ningsih, D. S.
2017-11-01
Tabernaemontana sphaerocarpa Bl. (Jembirit) is one of the Apocynaceae family plants containing alkaloid compound. Traditionally, it is used as an anti-inflammatory medicine. It is found to have a new bisindole alkaloid compound that shows a potent cytotoxic activity in human cancer. This study aimed to know the total alkaloid content in some fractions of ethanolic extract of T. sphaerocarpa Bl. leaf powder was extracted by maceration method in 70% ethanol solvent. Then, the extract was fractionated in a separatory funnel using water, ethyl acetate, and hexane. The total alkaloid content in each fraction was analyzed with visible spectrophotometric methods based on the reaction with Bromocresol Green (BCG). The total alkaloids in water fraction and ethyl acetate fraction were (0.0312±0.0009)% and (0.0281±0.0014)%, respectively. Meanwhile, the total alkaloid content in hexane was not detected. The statistical analysis, performed in SPSS, resulted in a significant difference between the total alkaloids in water fraction and ethyl acetate fraction. The total alkaloid in water fraction of T. sphaerocarpa Bl. was higher than the one in ethyl acetate fraction.
A Quantitative Gas Chromatographic Ethanol Determination.
ERIC Educational Resources Information Center
Leary, James J.
1983-01-01
Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)
Multi-stage continuous (chemostat) culture fermentation (MCCF) with variable fermentor volumes was carried out to study utilizing glucose and xylose for ethanol production by means of mixed sugar fermentation (MSF). Variable fermentor volumes were used to enable enhanced sugar u...
Reviving the carbohydrate economy via multi-product lignocellulose biorefineries.
Zhang, Y-H Percival
2008-05-01
Before the industrial revolution, the global economy was largely based on living carbon from plants. Now the economy is mainly dependent on fossil fuels (dead carbon). Biomass is the only sustainable bioresource that can provide sufficient transportation fuels and renewable materials at the same time. Cellulosic ethanol production from less costly and most abundant lignocellulose is confronted with three main obstacles: (1) high processing costs (dollars /gallon of ethanol), (2) huge capital investment (dollars approximately 4-10/gallon of annual ethanol production capacity), and (3) a narrow margin between feedstock and product prices. Both lignocellulose fractionation technology and effective co-utilization of acetic acid, lignin and hemicellulose will be vital to the realization of profitable lignocellulose biorefineries, since co-product revenues would increase the margin up to 6.2-fold, where all purified lignocellulose co-components have higher selling prices (> approximately 1.0/kg) than ethanol ( approximately 0.5/kg of ethanol). Isolation of large amounts of lignocellulose components through lignocellulose fractionation would stimulate R&D in lignin and hemicellulose applications, as well as promote new markets for lignin- and hemicellulose-derivative products. Lignocellulose resource would be sufficient to replace significant fractionations (e.g., 30%) of transportation fuels through liquid biofuels, internal combustion engines in the short term, and would provide 100% transportation fuels by sugar-hydrogen-fuel cell systems in the long term.
On the conflicting findings of Role of Cellulose-Crystallinity in Enzume Hydrolysis of Biomass
Umesh Agarwal; Sally Ralph
2014-01-01
In the field of conversion of biomass to ethanol, an important area of research is the enzymatic hydrolysis of cellulose. Once cellulose is converted to glucose, it can be easily fermented to ethanol. As the cellulosic ethanol technology stands now, costly pretreatments and high dosages of cellulases are needed to achieve complete hydrolysis of the cellulose fraction...
Rasineni, Karuna; McVicker, Benita L.; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.
2013-01-01
Background Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g. Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol damaged hepatocytes. Since these Rab GTPases are crucial regulators of protein trafficking, we examined the effect ethanol administration has on hepatic Rab protein content and association with LDs. Methods Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. Results Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in ethanol-fed rats. Rabs 1, 2, 3d, 5, 7 and 18 were analyzed in post-nuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5 and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed ethanol-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an ethanol-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in ethanol-fed rat sections. Conclusion Chronic ethanol feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease. PMID:24117505
Ai, Guomin; Sun, Tong; Dong, Xiuzhu
2014-08-15
Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.
Acute ethanol treatment increases level of progesterone in ovariectomized rats.
Budec, Mirela; Koko, Vesna; Milovanović, Tatjana; Balint-Perić, Ljiljana; Petković, Aleksandra
2002-04-01
To determine whether an increased level of progesterone in adult female rats after acute ethanol treatment, described previously in our study, is the result of activation of adrenal glands, we analyzed adrenal cortex morphologically and measured serum levels of corticosterone and progesterone in ovariectomized rats. In addition, a possible involvement of the opioid system in an observed phenomenon was tested. Adult female Wistar rats were ovariectomized, and 3 weeks after surgery they were treated intraperitoneally with (a) ethanol (4 g/kg), (b) naltrexone (5 mg/kg), followed by ethanol (4 g/kg) 45 min later, and (c) naltrexone (5 mg/kg), followed by saline 45 min later. Untreated and saline-injected rats were used as controls. The animals were killed 0.5 h after ethanol administration. Morphometric analysis was carried out on paraffin sections of adrenal glands, stained with hematoxylin-eosin, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata, and the zona reticularis; numerical density, volume, and the mean diameter of adrenocortical cells and of their nuclei; and mean diameter and length of capillaries. The results showed that acute ethanol treatment significantly increased absolute volume of the zona fasciculata and length of its capillaries but did not alter other stereological parameters. Also, serum levels of corticosterone and progesterone were enhanced. Pretreatment with naltrexone had no effect on ethanol-induced changes. These findings are consistent with our previous hypothesis that an ethanol-induced increase of the progesterone level in adult female rats originates from the adrenal cortex.
Ronpirin, Chalinee; Pattarachotanant, Nattaporn; Tencomnao, Tewin
2016-01-01
This study was aimed at investigating the antioxidant activity of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. and their biological effect on human keratinocytes affected by the ultraviolet B (UVB), a major cause of cell damage and skin cancer through induction of DNA damage, production of reactive oxygen species (ROS), and apoptosis. The richest antioxidant activity was found in ethanol fraction of M. indica (21.32 ± 0.66 mg QE/g dry weight), while the lowest one was found in aqueous fractions of M. indica and C. nucifera (1.76 ± 2.10 and 1.65 ± 0.38 mg QE/g dry weight, respectively). Ethanol and aqueous fractions of A. carambola (250 µg/mL) significantly reduced the number of apoptotic cells. The expression of cleaved caspase 3 in UVB-treated group was significantly greater than that in untreated group. Both fractions of A. carambola (50, 100, and 250 µg/mL) significantly decreased the expression of cleaved caspase 3. Regarding the induction of DNA repair, ethanol (100 and 250 µg/mL) and aqueous (50, 100 and 250 µg/mL) fractions of A. carambola significantly decreased the percentage of cyclobutane pyrimidine dimers (CPD). Taken together, our results suggest that both fractions of A. carambola may be potentially developed for dermal applications.
Autoshaping of ethanol drinking in rats: effects of ethanol concentration and trial spacing.
Tomie, Arthur; Wong, Karlvin; Apor, Khristine; Patterson-Buckendahl, Patricia; Pohorecky, Larissa A
2003-11-01
In two studies, we evaluated the effects of ethanol concentration and trial spacing on Pavlovian autoshaping of ethanol drinking in rats. In these studies, the brief insertion of an ethanol sipper conditioned stimulus (CS) was followed by the response-independent presentation of food unconditioned stimulus (US), inducing sipper CS-directed drinking conditioned responses (CRs) in all rats. In Experiment 1, the ethanol concentration in the sipper CS [0%-16% volume/volume (vol./vol.), in increments of 1%] was systematically increased within subjects across autoshaping sessions. Groups of rats received sipper CS-food US pairings (Paired/Ethanol), a CS-US random procedure (Random/Ethanol), or water sipper CS paired with food US (Paired/Water). In Experiment 2, saccharin-fading procedures were used to initiate, in the Ethanol group, drinking of 6% (vol./vol.) ethanol in 0.1% saccharin or, in the Water group, drinking of tap water in 0.1% saccharin. After elimination of saccharin, and across days, the duration of access to the sipper CS during each autoshaping trial was increased (5, 10, 12.5, 15, 17.5, and 20 s), and subsequently, across days, the duration of the mean intertrial interval (ITI) was increased (60, 90, 120, and 150 s). In Experiment 1, Paired/Ethanol and Random/Ethanol groups showed higher intake of ethanol, in terms of grams per kilogram of body weight, at higher ethanol concentrations, with more ethanol intake recorded in the Paired/Ethanol group. In Experiment 2, the Ethanol group drank more than was consumed by the Water group, and, for both groups, fluid intake increased with longer ITIs. Results support the suggestion that autoshaping contributes to sipper CS-directed ethanol drinking.
Dilute alkali pretreatment of softwood pine: A biorefinery approach.
Safari, Ali; Karimi, Keikhosro; Shafiei, Marzieh
2017-06-01
Dilute alkali pretreatment was performed on softwood pine to maximize ethanol and biogas production via a biorefinery approach. Alkali pretreatments were performed with 0-2% w/v NaOH at 100-180°C for 1-5h. The liquid fraction of the pretreated substrates was subjected to anaerobic digestion. The solid fraction of the pretreatment was used for separate enzymatic hydrolysis and fermentation. High ethanol yields of 76.9‒78.0% were achieved by pretreatment with 2% (w/v) NaOH at 180°C. The highest biogas yield of 244mL/g volatile solid (at 25°C, 1bar) was achieved by the pretreatment with 1% (w/v) NaOH at 180°C. The highest gasoline equivalent (sum of ethanol and methane) of 197L per ton of pinewood and the lowest ethanol manufacturing cost of 0.75€/L was obtained after pretreatment with 1% NaOH at 180°C for 5h. The manufacturing cost of ethanol from untreated wood was 4.12€/L. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oleskowicz-Popiel, Piotr; Kádár, Zsófia; Heiske, Stefan; Klein-Marcuschamer, Daniel; Simmons, Blake A; Blanch, Harvey W; Schmidt, Jens Ejbye
2012-01-01
The addition of a biorefinery to an organic farm was investigated, where ethanol was produced from germinated rye grains and whey, and the effluent was separated into two streams: the protein-rich solid fraction, to be used as animal feed, and the liquid fraction, which can be co-digested with clover grass silage to produce biogas. A method for ethanol production from rye was applied by utilizing inherent amylase activity from germination of the seed. Biogas potential of ethanol fermentation effluent was measured through anaerobic digestion trials. The effluent from the trials was assumed to serve as natural fertilizer. A technoeconomic analysis was also performed; total capital investment was estimated to be approximately 4 M USD. Setting a methane selling price according to available incentives for "green electricity" (0.72 USD/m(3)) led to a minimum ethanol selling price of 1.89 USD/L (project lifetime 25 yr, at a discount rate 10%). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Weinblatt, H.; Reddy, T. S.; Turhollow, A., Jr.
1982-01-01
Energy currently used in grain production, the effect of ethanol production on agricultural energy consumption, energy credits for ethanol by-products, and land availability and the potential for obtaining ethanol from grain are discussed. Dry milling, wet milling, sensitivity analysis, potential for reduced energy consumption are also discussed.
Zhang, Shuangling; Han, Yue
2018-01-01
Novel rutin-loaded zein-sodium caseinate nanoparticles (ZP) with antioxidant activity in aqueous medium were investigated. The results showed that the sodium caseinate concentrations, dosages of rutin and ethanol volume fractions significantly affected the zein nanoparticles' characteristics. Concerning the antioxidant properties, the highest values of rutin loaded ZP obtained using 2, 2-diphenyl-1-picrylhydrazyl scavenging and 2 and 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) decolourisation assays were 52.7% and 71.2%, respectively, and the total antioxidant capacity was 0.40 nmol g-1. The results suggest that zein-sodium caseinate nanoparticles can be used as a new nano carrier system for rutin or other water insoluble active ingredients.
Han, Yue
2018-01-01
Novel rutin-loaded zein-sodium caseinate nanoparticles (ZP) with antioxidant activity in aqueous medium were investigated. The results showed that the sodium caseinate concentrations, dosages of rutin and ethanol volume fractions significantly affected the zein nanoparticles’ characteristics. Concerning the antioxidant properties, the highest values of rutin loaded ZP obtained using 2, 2-diphenyl-1-picrylhydrazyl scavenging and 2 and 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) decolourisation assays were 52.7% and 71.2%, respectively, and the total antioxidant capacity was 0.40 nmol g-1. The results suggest that zein-sodium caseinate nanoparticles can be used as a new nano carrier system for rutin or other water insoluble active ingredients. PMID:29579133
Aldana, Jennyfer; Téllez, Nohemí; Gamboa, Fredy
2013-01-01
Dental caries is a multifactorial infectious disease that leads to the destruction of dental hard tissue. The main goal of research into medicinal plants is to seek compounds with antimicrobial activity for subsequent use in prevention strategies and control of infectious diseases. The aim of this study was to evaluate the antimicrobial activity of fractions and subfractions obtained from Elaeagia utilis against Streptococcus mutans, Streptococcus sobrinus and Lactobacillus acidophilus. The plant material was collected in the town of Alban (Cundinamarca, Colombia), which is located at an altitude of 2245 meters above sea level. Two extracts were obtained by cold maceration of E. utilis leaves in (a) petroleum ether extract and (b) ethanol extract. Fractions were obtained from the petroleum ether extract by column vacuum chromatography, and from the ethanol extract by continuous liquid/liquid partitioning. The antimicrobial activity of fractions and subfractions was evaluated by the well diffusion method. At a concentration of 10 mg/well, several fractions from both extracts showed antimicrobial activity against S. mutans, S. sobrinus and L. acidophilus. Among the ethanol extract fractions, the dichloromethane fraction had notably greater antimicrobial activity. It was sub-partitioned, yielding three subfractions with inhibitory activity, of which the most active was MeOH: H2O (Bp) with minimum inhibitory concentration 0.1 mg/well on the 3 study bacteria. Terpenes, sesquiterpenlactones and simple phenolic compounds were identified in it. In conclusion, this study shows the antimicrobial potential of fractions and subfractions obtained from extracts of E. utilis leaves against bacteria that are important in dental caries.
2014-01-01
Background Antioxidant compounds like phenols and flavonoids scavenge free radicals and thus inhibit the oxidative mechanisms that lead to control degenerative and other diseases. The aim of this study was to investigate the antioxidant activity in vitro, total phenolic and flavonoid contents in ethanol extracts and fractions of Crescentia cujete leaves and stem bark. Methods Crescentia cujete leaves and bark crude ethanol extract (CEE) and their partitionates petroleum ether (PEF), chloroform (CHF), ethyl acetate (EAF) and aqueous (AQF) were firstly prepared. Different established testing methods, such as 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical, ferric reducing power (FRP), and total antioxidant capacity (TAC) assays were used to detect the antioxidant activity. Further, the total yield, total phenolic (TPC) and total flavonoid contents (TFC) of CEE and all the fractions were determined. Ethanol extracts of both leaves and stem bark were also subjected to preliminary phytochemical screening to detect the presence of secondary metabolites, using standard phytochemical methods (Thin layer chromatography and spray reagents). Results Phytochemical screening of crude ethanol extract of both leaves and stem bark revealed the presence of steroids, flavonoids, saponins, tannins, glycosides and terpenoids. All the fractions and CEE of leaves and bark exhibited antioxidant activities, however, EAF of leaves showing the highest antioxidant activity based on the results of DPPH, FRP and TAC assay tests. The above fraction has shown the significant DPPH scavenging activity (IC50 = 8.78 μg/ml) when compared with standard ascorbic acid (IC50 =7.68 μg/ml). The TAC and FRP activities increased with increasing crude extract/fractions content. The TPC (371.23 ± 15.77 mg GAE/g extract) and TFC (144.64 ± 5.82 mg QE/g extract) of EAF of leaves were found significantly higher as compared to other solvent fractions for both leaves and bark. TPC were highly correlated with the antioxidant activity (R2 = 0.9268 and 0.8515 in DPPH test for leaves and bark, respectively). Conclusion The results of the study show that leaves of C. cujete possesses significant free radical scavenging properties compared with stem bark and a clear correlation exists between the antioxidant activity and phenolic content. PMID:24495381
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-04-01
The AGRI GRAIN POWER (AGP) Project, hereafter referred to as the Project, was formed to evaluate the commercial viability and assess the desireability of implementing a large grain based grass-roots anhydrous ethanol fuel project to be sited near Des Moines, Iowa. This report presents the results of a Project feasibility evaluation. The Project concept is based on involving a very strong managerial, financial and technical joint venture that is extremely expert in all facets of planning and implementing a large ethanol project; on locating the ethanol project at a highly desireable site; on utilizing a proven ethanol process; and onmore » developing a Project that is well suited to market requirements, resource availability and competitive factors. The Project conceptual design is presented in this volume.« less
Antiproliferative and apoptotic activities of extracts of Asclepias subulata.
Rascón Valenzuela, Luisa Alondra; Jiménez Estrada, Manuel; Velázquez Contreras, Carlos Arturo; Garibay Escobar, Adriana; Medina Juárez, Luis Angel; Gámez Meza, Nohemi; Robles Zepeda, Ramón Enrique
2015-01-01
Asclepias subulata Decne. (Apocynaceae) is a shrub used in the Mexican traditional medicine for the treatment of cancer. The objective of this study was to evaluate the antiproliferative activity of methanol extract of aerial parts of A. subulata and its fractions against different cancer cell lines. Additionally, we analyzed the mechanism of action of the active fractions. Methanol extract fractions were prepared by serial extraction with n-hexane, ethyl acetate, and ethanol. The antiproliferative activity of methanol extract and its fractions was evaluated, against several murine (M12.C3.F6, RAW 264.7, and L929) and human (HeLa, A549, PC-3, LS 180, and ARPE-19) cell lines by the MTT assay, using concentrations of 0.4-400 µg/mL for 48 h. Ethanol and residual fractions were separated using silica gel column. Apoptosis induction of cancer cells was evaluated by Annexin and JC-1 staining using flow cytometry. Methanol extract and its fractions showed antiproliferative activity against all human cancer cell lines tested. Methanol extract had the highest antiproliferative activity on A549 and HeLa cells (IC50 values < 0.4 and 8.7 µg/mL, respectively). Ethanol and residual fractions exerted significant antiproliferative effect on A549 (IC50 < 0.4 µg/mL) and PC3 cells (IC50 1.4 and 5.1 µg/mL). Apoptotic assays showed that CEF7, CEF9, CRF6, and CRF5 fractions induced mitochondrial depolarization in A549 cells, 70, 73, 77, and 80%, respectively. Those fractions triggered the apoptosis mitochondrial pathway. Our data show that A. subulata extracts have potent antiproliferative properties on human cancer cell lines. This plant should be considered an important source of potent anticancer compounds.
Creeth, J. Michael; Bhaskar, K. Ramakrishnan; Donald, Alastair S. R.; Morgan, Walter T. J.
1974-01-01
1. The glycoprotein components of a human ovarian-cyst fluid were isolated by a solvent [95% (w/w) phenol]-extraction procedure; the phenol-insoluble water-soluble glycoprotein was further fractionated by (NH4)2SO4 and by ethanol to yield eight fractions. 2. The fractions were analysed in terms of amino acids, fucose, galactose, N-acetylglucosamine, N-acetylgalactosamine and sialic acid. Variations occurred, particularly in the proportion of peptide; these were partly correlated with varying extent of serological activity. 3. The fractions were characterized physicochemically in terms of buoyant density and degree of spreading in a density gradient, sedimentation velocity and molecular weight; their partial specific volumes and specific refraction increments were also determined. 4. The fractions showed wide variations in their sedimentation-velocity and density-gradient patterns, and gave evidence of pauci-dispersity in density. The fraction regarded as the most typical blood-group-specific glycoprotein sedimented as a single rapidly spreading peak and was of high molecular weight. 5. Significant correlations were observed between the physical properties of the glycoprotein fractions and the amount of their peptide component. The buoyant densities and sedimentation coefficients varied in a manner that suggested the existence of two families of glycoproteins. 6. It is suggested that variability in the extent of glycosylation, or in the degree of cross-linking, might account for the two families of glycoproteins, and that the extent of cross-linkage might also be a factor determining the solubility of these glycoproteins in hot saturated (NH4)2SO4. ImagesFig. 1.PLATE 1 PMID:4219280
A Classroom Demonstration of Water-Induced Phase Separation of Alcohol-Gasoline Biofuel Blends
ERIC Educational Resources Information Center
Mueller, Sherry A.; Anderson, James E.; Wallington, Timothy J.
2009-01-01
A significant issue associated with ethanol-gasoline blends is the phase separation that occurs with the addition of small volumes of water, producing an ethanol-deficient gasoline layer and an ethanol-rich aqueous layer. The gasoline layer may have a lower-than-desired octane rating due to the decrease in ethanol content, resulting in engine…
Phytochemical and antimicrobial activities of the Daniellia oliveri leaves.
Ahmadu, A; Haruna, A K; Garba, M; Ehinmidu, J O; Sarker, S D
2004-12-01
The n-butanol soluble part and four chromatographic fractions of the aqueous ethanolic extract of the leaves of Daniellia oliveri were investigated for antimicrobial properties. All fractions showed activity against Staphylococcus aureus. A chromatographic fraction showed significant activity against the fungus Tricophyton rubrum.
Thongwat, Damrongpan; Ganranoo, Lucksagoon; Chokchaisiri, Ratchanaporn
2014-11-01
The use of insecticides can cause adverse effects in vector control, a plant bio-insecticide is an advantageous substitute. Currently, the promising mosquito larvicidal activity from plant extracts has been reported worldwide, including Thailand. In this study, the endocarp of Pereskia bleo (Kunth) DC. fruit was extracted with distilled water and ethanol. Crudes and fractionated groups of the extracts were evaluated for their larvicidal efficacy against the 3rd instar larvae of Aedes aegypti. At 48 hours of exposure, it was found that the activities of the extracts were higher than 24-hour's. The ethanolic extracts showed stronger activities than the aqueous ones, indicating the lower LC50 values of both crude and fractionated group extracts. The most toxic activity was found in a fractionated group of the ethanolic extract, E-Gr3, with significantly lowest LC50 values of 707.94 and 223.12 ppm for 24- and 48-hour detection times, respectively. The bioassay results indicated the larvicidal property against the Ae. aegypti mosquito of the P. bleo plant extracts. A safety for non-target organisms or an action on other mosquito vectors of this plant, should be further investigated.
Zou, Ying; Zhao, Mouming; Yang, Kun; Lin, Lianzhu; Wang, Yong
2017-08-15
The black garlic juice is popular for its nutritive value. Enrichment of antioxidants is needed to make black garlic extract an effective functional ingredient. Five macroporous resins were evaluated for their capacity in adsorbing antioxidants in black garlic juice. XAD-16 resin was chosen for further study due to its high adsorption and desorption ratios. Pseudo-second-order kinetics (q e =625μmol Trolox equiv/g dry resin, k 2 =0.0001463) and Freundlich isotherm models (ΔH=-10.1547kJ/mol) were suitable for describing the whole exothermic and physical adsorption processes of the antioxidants from black garlic juice on XAD-16 resin. The antioxidants and phenolics were mostly enriched in 40% ethanol fraction by XAD-16 resin column chromatography. The black garlic extract and its fractions could protect erythrocytes against AAPH-induced hemolysis in dose-dependent manners. The pretreatment of AAPH-damaged erythrocytes with 40% ethanol fractions (2.5mg/mL) significantly decreased the hemolysis ratios from 53.58% to 3.79%. The 40% ethanol fraction possessing strong intracellular antioxidant activity could be used as a functional food ingredient. Copyright © 2017 Elsevier B.V. All rights reserved.
Phytochemical investigations and antioxidant potential of roots of Leea macrophylla (Roxb.).
Mahmud, Zobaer Al; Bachar, Sitesh C; Hasan, Choudhury Mahmood; Emran, Talha Bin; Qais, Nazmul; Uddin, Mir Muhammad Nasir
2017-07-06
Oleanolic acid (NZ-15), 7 α, 28-olean diol (NZ-38) and Stigmasterol (NZ-14) were isolated from the ethanolic extracts of the roots of Leea macrophylla (Family: Leeaceae) by using chromatographic analysis. This is the first report of isolation of these compounds from this plant. Their structures were constructed by spectroscopic analysis and by comparing the data with the published one. Subsequently the ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property. The ethanolic extract was fractionated with two organic solvents and all the fractions were studied to evaluate their in vitro antioxidant property by DPPH free radical scavenging assay, superoxide anion radical scavenging assay, nitric oxide radical scavenging assay, and reducing power assay. In the DPPH free radical scavenging assay and superoxide radical scavenging assay, the ethyl acetate soluble fraction of ethanolic extract revealed the highest free radical scavenging activity with IC 50 value of 2.65 and 155.62 μg/ml, respectively as compared to standard ascorbic acid (IC 50 value of 5.8 and 99.66 μg/ml). Ethyl acetate fraction also possessed highest reducing power activity with an EC50 value of 15.27 μg/ml compared to ascorbic acid (EC 50 0.91 μg/ml). On the other hand, the carbon tetrachloride fraction exhibited most significant NO scavenging activity with IC 50 value of 277.8 μg/ml that was even higher than that of standard ascorbic acid (IC 50 value 356.04 μg/ml). In addition, the total phenolic contents of these extract and fractions were evaluated using Folin-Ciocalteu reagent and varied from 7.93 to 50.21 mg/g dry weight expressed as gallic acid equivalents (GAE). This study showed that different extracts of roots of L. macrophylla possess potential DPPH, superoxide, and NO free radical scavenging activities. The antioxidant activities of the plant extracts might be due to the presence of oleanolic acid, oleanolic acid derivative 7 α, 28-olean diol and stigmasterol.
Alassali, Ayah; Cybulska, Iwona; Galvan, Alejandro Ríos; Thomsen, Mette Hedegaard
2017-02-01
In this study Salicornia sinus-persica, a succulent halophyte was assessed for its potential to be used as a feedstock for bioethanol production. For such succulent, salty, green biomasses, direct fractionation and fermentation allow for water preservation in the process. Fresh biomass of S. sinus-persica was collected and split into two fractions by wet fractionation; liquid (juice) and solid (pulp). Sugar contents were found to be 1.0-1.5% for the juice fraction and 50% (w/w) for the fresh pulp. Direct fermentation of the juice using Saccharomyces cerevisiae showed no salt inhibition of the yeast and ethanol yields of ~70% were achieved. A pretreatment study was carried out for the pulp fraction applying mild hydrothermal pretreatment. Cellulose convertibility was found to be significantly higher for severity factors above 2.00, and the highest ethanol yield (76.91 ± 3.03%) was found at process severity of 3.06 (170 °C, 10 min).
Bolling, Bradley W; Parkin, Kirk L
2008-11-26
The fractionation of soy flour directed by a cellular bioassay for induction of phase 2 detoxification enzymes was used to identify quinone reductase (QR) inducing agents. A phospholipid-depleted, 80% methanol-partitioned isolate from a crude ethanol extract of soy flour was resolved using normal phase medium-pressure liquid chromatography (MPLC). Early eluting fractions were found to be the most potent QR inducing agents among the separated fractions. Fraction 2 was the most potent, doubling QR at <2 mug/mL. Further fractionation of this isolate led to the identification of several constituents. Fatty acids and sn-1 and sn-2 monoacylglycerols were identified, but were not highly potent QR inducers. Benzofuran-3-carbaldehyde, 4-hydroxybenzaldeyde, 4-ethoxybenzoic acid, 4-ethoxycinnamic acid, benzofuran-2-carboxylic ethyl ester, and ferulic acid ethyl ester (FAEE) were also identified as QR inducing constituents of this fraction. FAEE was the most potent of the identified constituents, doubling QR specific activity at 3.2 muM in the cellular bioassay.
Carlotto, Juliane; da Silva, Luisa M; Dartora, Nessana; Maria-Ferreira, Daniele; Sabry, Diego de A; Filho, Arquimedes P S; de Paula Werner, Maria F; Sassaki, Guilherme L; Gorin, Philip A J; Iacomini, Marcello; Cipriani, Thales R; de Souza, Lauro M
2015-04-01
Leaves of Arctium lappa contain several mono- and dicaffeoylquinic acids, as evaluated by liquid chromatography-mass spectrometry. In order to investigate the protection on gastric mucosa against ulcers, rats were treated with fractions from leaf extract prior to ethanol-induced ulcers. The original fraction obtained as ethanol soluble fraction from hot aqueous extract was able to protect de gastric mucosa, and this effect was retained in the ethyl acetate fraction, obtained from liquid/liquid fractionation. The main compound in this fraction was isolated and chemically characterized by nuclear magnetic resonance and mass spectrometry, assisted by isopropylidene derivatization which gave rise a mass increment of 40 units. Therefore, the underivatized compound that had m/z 515.119 [M-H](-) was shifted to m/z 555.151, being confirmed as 1,3-O-dicaffeoylquinic acid, which presented an ED50 of 57 µg kg(-1) on gastric protection, lesser than the therapeutic concentration of omeprazole (40 mg kg(-1)). Copyright © 2014 Elsevier B.V. All rights reserved.
Less and less-influence of volume on hand coverage and bactericidal efficacy in hand disinfection.
Kampf, Günter; Ruselack, Sigunde; Eggerstedt, Sven; Nowak, Nicolas; Bashir, Muhammad
2013-10-10
Some manufacturers recommend using 1.1 mL per application of alcohol-based handrubs for effective hand disinfection. However, whether this volume is sufficient to cover both hands, as recommended by the World Health Organization, and fulfills current efficacy standards is unknown. This study aimed to determine hand coverage for three handrubs (two gels based on 70% v/v and 85% w/w ethanol and a foam based on 70% v/v ethanol) applied at various volumes. Products were tested at product volumes of 1.1 mL, 2 mL, 2.4 mL as well as 1 and 2 pump dispenser pushes; the foam product was tested in addition at foam volumes of 1.1 mL, 2 mL, and 2.4 mL. Products were supplemented with a fluorescent dye and 15 participants applied products using responsible application techniques without any specific steps but the aim of completely covering both hands. Coverage quality was determined under ultraviolet light by two blinded investigators. Efficacy of the three handrubs was determined according to ASTM E 1174-06 and ASTM E 2755-10. For each experiment, the hands of 12 participants were contaminated with Serratia marcescens and the products applied as recommended (1.1 mL for 70% v/v ethanol products; 2 mL for the 85% w/w ethanol product). Log10-reduction was calculated. Volumes < 2 mL yielded high rates of incomplete coverage (67%-87%) whereas volumes ≥ 2 mL gave lower rates (13%-53%). Differences in coverage were significant between the five volumes tested for all handrubs (p < 0.001; two-way ANOVA) but not between the three handrubs themselves (p = 0.796). Application of 1.1 mL of 70% v/v ethanol rubs reduced contamination by 1.85 log10 or 1.60 log10 (ASTM E 1174-06); this failed the US FDA efficacy requirement of at least 2 log10. Application of 2 mL of the 85% w/w ethanol rub reduced contamination by 2.06 log10 (ASTM E 1174-06), fulfilling the US FDA efficacy requirement. Similar results were obtained according to ASTM E 2755-10. Our data indicated that handrubs based on 70% ethanol (v/v) with a recommended volume of 1.1 mL per application do not ensure complete coverage of both hands and do not achieve current ASTM efficacy standards.
Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Adisakwattana, Sirichai
2015-07-18
Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. The aim of this study was to investigate the antidiabetic activity of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin (STZ) induced diabetic rats. The aqueous ethanol extract and n-butanol fraction of Moringa stenopetala leaves hydroalcoholic (500 mg/kg body weight) and metformin (150 mg/kg body weight) were administered to diabetic rats. Blood glucose, lipid profiles, liver and kidney function were examined after 14 days of experiment. Histopathological profile of the pancreas was also observed in diabetic rats at the end of study. An oral sucrose challenge test was also carried out to assess the post prandial effect of the extract. Oral administration of the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves (500 mg/kg body weight) and metformin (150 mg/kg) significantly reduced blood glucose level (P<0.05), improved serum lipid profiles, liver enzymes and kidney functions in diabetic rats after 14 days. The extracts also improved damage of islet of Langerhan's in diabetic rats. The plant material reduced the post-prandial glucose level (P<0.001) at the dose of 750 mg/kg. These findings revealed that both the aqueous ethanol and n-butanol extracts of Moringa stenopetala leaves possess antihyperglycemic and antihyperlipidemic properties, and alleviate STZ-induced pancreatic damage in diabetic rats. The beneficial effects of plant material in inhibition of diabetes-induced complications are being investigated.
Inhibition of urease by extracts derived from 15 Chinese medicinal herbs.
Shi, Da-Hua; Liu, Yu-Wei; Liu, Wei-Wei; Gu, Zhi-Feng
2011-07-01
Helicobacter pylori is a major causative factor in gastritis-like disorders, and urease plays a key role in Helicobacter pylori colonizing and persisting in the mucous layer of the human stomach. In China, a variety of Chinese medicinal herbs have been prescribed to attenuate or eradicate gastritis-like disorders. However, little is known about the urease inhibition of Chinese medicinal herbs. The present study was conducted to investigate the urease inhibition activities of the ethanol and water extracts of 15 Chinese medicinal herbs. The ethanol and water extracts derived from 15 medicinal herbs, traditionally used for the treatment of gastritis-like disorders in China, were tested for urease-inhibition activity using the phenol red method. Screened at 10 µg/mL, 14 ethanol extracts and 10 water extracts showed urease inhibition. The ethanol extracts of Magnolia officinalis Rehd. et Wils. (Magnoliaceae) and Cassia obtusifolia L. (Leguminosae) possessed inhibition rates higher than 50% with IC₅₀ values of 6.5 and 12.3 µg/mL, respectively. After fractionating successively, the petroleum ether fraction of the ethanol extracts of Magnolia officinalis showed the best activity with 90.8% urease inhibition at a concentration of 10 µg/mL. The bioautography of the petroleum ether fraction indicated the existence of the urease inhibitors in the herb. The present results indicated that some Chinese medicinal herbs might treat gastritis-like disorders via the inhibition of Helicobacter pylori urease and the further possibility for discovering useful novel urease inhibitors from the Chinese medicinal herbs.
Chatatikun, Moragot; Chiabchalard, Anchalee
2017-11-09
Ultraviolet radiation from sunlight induces overproduction of reactive oxygen species (ROS) resulting in skin photoaging and hyperpigmentation disorders. Novel whitening and anti-wrinkle compounds from natural products have recently become of increasing interest. The purpose of this study was to find products that reduce ROS in 14 Thai plant extracts. To determine total phenolic and flavonoid content, antioxidant activity, anti-tyrosinase activity and anti-collagenase activity, we compared extracts of 14 Thai plants prepared using different solvents (petroleum ether, dichloromethane and ethanol). Antioxidant activities were determined by DPPH and ABTS assays. Total phenolic content of the 14 Thai plants extracts was found at the highest levels in ethanol followed by dichloromethane and petroleum ether extracts, respectively, while flavonoid content was normally found in the dichloromethane fraction. Scavenging activity ranged from 7 to 99% scavenging as assessed by DPPH and ABTS assays. The ethanol leaf extract of Ardisia elliptica Thunb. had the highest phenolic content, antioxidant activity and collagenase inhibition, while Cassia alata (L.) Roxb. extract had the richest flavonoid content. Interestingly, three plants extracts, which were the ethanolic fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb., had high antioxidant content and activity, and significantly inhibited both tyrosinase and collagenase. Our finding show that the ethanol fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb. show promise as potential ingredients for cosmetic products such as anti-wrinkle agents and skin whitening products.
Oyeleke, Sabitiu A; Ajayi, Abayomi M; Umukoro, Solomon; Aderibigbe, A O; Ademowo, Olusegun George
2018-08-10
The stem bark of Theobroma cacao L. have been used for the treatment of inflammation, toothache, measles and malaria in ethnomedicine. However, the anti-inflammatory activity of Theobroma cacao stem bark has not been fully elucidated. The anti-inflammatory activity of Theobroma cacao stem bark ethanol extract and its fractions was investigated in this study. The anti-inflammatory effect of ethanol extract of Theobroma cacao stem bark (EETc) and its dichloromethane (DCMF), ethylacetate (EAF) and aqueous (AQF) fractions was investigated in erythrocytes membrane stabilizing assay and carrageenan-induced paw oedema. The anti-inflammatory activity of the EAF and EETc was investigated in carrageenan induced-granuloma air pouch models. The extract and fractions showed significant membrane stabilizing action on rat erythrocytes cell membrane. The oral administration of DCMF, EAF and AQF (250 mg/kg) significantly inhibited paw oedema induced by carrageenan (41.3%, 55.0% and 45.0%, respectively) compared to control group. The EAF (62.5, 125 and 250 mg/kg) and EETc (250 mg/kg) significantly inhibited exudates formation in carrageenan air pouch by (63.8, 71.5, 74.5, 64.3%) at 24 h and by (69.4%, 75.7%, 77.1% and 68.4%) at 72 h respectively. The EETc and EAF significantly reduced neutrophil counts, protein, nitrite, Tumor necrosis factor (TNF-α) and malondialdehyde (MDA) but increased reduced glutathione (GSH) levels compared to control in pouch exudates. The HPLC fingerprint of EAF revealed presence of caffeic acid, rutin, ferulic acid and morin. Ethanol extract of Theobroma cacao and its ethylacetate fraction demonstrated anti-inflammatory activity partly by reducing neutrophil migration and inflammatory mediator production. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Stephen C.; Ratcliff, Matthew; McCormick, Robert
In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol's effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, withmore » non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments. Detailed hydrocarbon analysis was applied to fuel samples and to distillate fractions, and used as input for the initial droplet composition. With composition calculated throughout the distillation, the changing HOV and other physical properties can be found using reference data. The droplet can thus be modeled in terms of energy transfer, which in turn provides the transient mass transfer, droplet temperature, and droplet diameter. Model predictions suggest that non-ideal vapor-liquid equilibrium along with an increase in HOV can alter the droplet composition evolution. Results predict that the presence of ethanol causes enrichment of the higher boiling fractions (T90+) in the aromatic components as well as lengthens the droplet lifetime. A simulation of the evaporation process in a transient environment as experienced within an engine cylinder predicts a decrease in mixing time of the heaviest fractions of the fuel prior to spark initiation, possibly explaining observations linking ethanol to PM.« less
Burke, Stephen C.; Ratcliff, Matthew; McCormick, Robert; ...
2017-03-28
In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol's effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, withmore » non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments. Detailed hydrocarbon analysis was applied to fuel samples and to distillate fractions, and used as input for the initial droplet composition. With composition calculated throughout the distillation, the changing HOV and other physical properties can be found using reference data. The droplet can thus be modeled in terms of energy transfer, which in turn provides the transient mass transfer, droplet temperature, and droplet diameter. Model predictions suggest that non-ideal vapor-liquid equilibrium along with an increase in HOV can alter the droplet composition evolution. Results predict that the presence of ethanol causes enrichment of the higher boiling fractions (T90+) in the aromatic components as well as lengthens the droplet lifetime. A simulation of the evaporation process in a transient environment as experienced within an engine cylinder predicts a decrease in mixing time of the heaviest fractions of the fuel prior to spark initiation, possibly explaining observations linking ethanol to PM.« less
Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Li, Fabing; Men, Zhiwei; Li, Shuo; Wang, Shenghan; Li, Zhanlong; Sun, Chenglin
2018-01-01
Raman spectra of ethanol-water binary solutions have been observed at room temperature and atmospheric pressure. We find that with increasing ethanol concentration, the symmetric and asymmetric Osbnd H stretching vibrational mode (3286 and 3434 cm- 1) of water are shifted to lower frequency and the weak shoulder peak at 3615 cm- 1 (free OH) disappears. These results indicate that ethanol strengthens hydrogen bonds in water. Simultaneously, our experiment shows that Raman shifts of ethanol reverses when the volume ratio of ethanol and the overall solution is 0.2, which demonstrates that ethanol-water structure undergoes a phase transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-04-01
The AGRI GRAIN POWER (AGP) project, hereafter referred to as the Project, was formed to evaluate the commercial viability and assess the desireability of implementing a large grain based grass-roots anhydrous ethanol fuel project to be sited near Des Moines, Iowa. This report presents the results of a Project feasibility evaluation. The Project concept is based on involving a very strong managerial, financial and technical joint venture that is extremely expert in all facets of planning and implementing a large ethanol project; on locating the ethanol project at a highly desireable site; on utilizing a proven ethanol process; and onmore » developing a Project that is well suited to market requirements, resource availability and competitive factors. The results of marketing, economic, and financial studies are reported in this volume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-04-01
The AGRI GRAIN POWER (AGP) project, hereafter referred to as the Project, was formed to evaluate the commercial viability and assess the desireability of implementing a large grain based grass-roots anhydrous ethanol fuel project to be sited near Des Moines, Iowa. This report presents the results of a Project feasibility evaluation. The Project concept is based on involving a very strong managerial, financial and technical joint venture that is extremely expert in all facets of planning and implementing a large ethanol project; on locating the ethanol project at a highly desireable site; on utilizing a proven ethanol process; and onmore » developing a Project that is well suited to market requirements, resource availability and competitive factors. This volume contains the results of the environmental, health, safety, and socio-economic studies.« less
Toquero, Cristina; Bolado, Silvia
2014-04-01
Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L. Copyright © 2014 Elsevier Ltd. All rights reserved.
Abu-Gharbieh, Eman; Shehab, Naglaa Gamil
2017-04-18
Hyperglycemia is a complicated condition accompanied with high incidence of infection and dyslipidemia. This study aimed to explore the phyto-constituents of Crataegus azarolus var. eu- azarolus Maire leaves, and to evaluate the therapeutic potentials particularly antimicrobial, antihyperglycemic and antihyperlipidemic of the extract and the isolated compound (3β-O-acetyl ursolic acid). Total phenolics and flavonoidal contents were measured by RP-HPLC analysis. Free radicals scavenging activity of different extraction solvents was tested in-vitro on DPPH free radicals. The antimicrobial activity of the ethanolic extract and its fractions as well as the isolated compounds were evaluated in-vitro on variable microorganisms. Animal models were used to evaluate the antihyperglycemic and antihyperlipidemic activities of the ethanolic extract along with the isolated compound (3β-O acetyl ursolic acid). RP- HPLC analysis of the phenolics revealed high content of rutin, salicylic and ellagic acids. Six compounds belonging to triterpenes and phenolics were isolated from chloroform and n-butanol fractions namely: ursolic acid, 3β-O-acetyl ursolic acid, ellagic acid, quercetin 3-O-β methyl ether, rutin and apigenin7-O-rutinoside. Ethanolic extract showed the highest DPPH radical scavenger activity compared to other solvents. Ethanolic extract, hexane fraction, ursolic acid, 3β-O acetyl ursolic acid and quercetin 3-O-methyl ether showed variable antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Administration of the ethanolic extract or 3β-O acetyl ursolic acid orally to the mice reduced blood glucose significantly in a time- and dose-dependent manner. Ethanolic extract significantly reduced LDL-C, VLDL-C, TC and TG and increased HDL-C in rats. Ethanolic extract and 3β-O acetyl ursolic acid reduced in-vitro activity of pancreatic lipase. This study reveals that Crataegus azarolus var. eu- azarolus Maire has the efficiency to control hyperglycemia with its associated complications. This study is the first to evaluate antihyperglycemic and antihyperlipidemic potentials of 3β-O acetyl ursolic acid.
Ronpirin, Chalinee; Pattarachotanant, Nattaporn
2016-01-01
This study was aimed at investigating the antioxidant activity of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. and their biological effect on human keratinocytes affected by the ultraviolet B (UVB), a major cause of cell damage and skin cancer through induction of DNA damage, production of reactive oxygen species (ROS), and apoptosis. The richest antioxidant activity was found in ethanol fraction of M. indica (21.32 ± 0.66 mg QE/g dry weight), while the lowest one was found in aqueous fractions of M. indica and C. nucifera (1.76 ± 2.10 and 1.65 ± 0.38 mg QE/g dry weight, respectively). Ethanol and aqueous fractions of A. carambola (250 µg/mL) significantly reduced the number of apoptotic cells. The expression of cleaved caspase 3 in UVB-treated group was significantly greater than that in untreated group. Both fractions of A. carambola (50, 100, and 250 µg/mL) significantly decreased the expression of cleaved caspase 3. Regarding the induction of DNA repair, ethanol (100 and 250 µg/mL) and aqueous (50, 100 and 250 µg/mL) fractions of A. carambola significantly decreased the percentage of cyclobutane pyrimidine dimers (CPD). Taken together, our results suggest that both fractions of A. carambola may be potentially developed for dermal applications. PMID:27057195
Ahmed, Shakeel; Liu, Huimin; Ahmad, Aqeel; Akram, Waheed; Abdelrahman, Eman K N; Ran, Fengming; Ou, Wuling; Dong, Shuang; Cai, Qian; Zhang, Qiyun; Li, Xiaohua; Hu, Sheng; Hu, Xuebo
2017-01-01
The increasing of multidrug resistance in bacterial associated infections has impaired the current antimicrobial therapy and it forces the search for other alternatives. In this study, we aimed to find the in vitro antibacterial activity of seed coat of Trachycarpus fortunei against a panel of clinically important bacterial species. Ethanolic extracts of target tissues were fractionated through macro porous resin by column chromatography, using ethanol as an organic solvent with a concentration gradient of 0-100%, each along with 20% concentration increment. The minimum inhibitory (MIC) concentrations of all fractions were measured. It is found that 20% ethanolic fraction showed the most significant inhibition against tested bacterial species. All fractions were analyzed by Ultra-Performance Liquid Chromatography/mass spectrometry (UPLC/MS) and compounds were identified by comparing mass spectra with standard libraries. By pairing the identified compounds from different fractions with the antibacterial activity of each fraction, it was shown that compounds stearamide (7), 1-(4-Fluorophenyl)-2-(methylthio)-1H-imidazole-5-carboxylic acid (9) and 2,4,5 triacetoxybiphenyl (10) topped in the list for anti-bacterial activity. Further experiment with pure chemicals verified that compounds 9 and 10 have antibacterial activity against Gram-negative bacteria. Whereas, the lowest MIC value (39.06 μg/mL) was obtained by compound 10 against Staphylococcus epidermidis . Hence, the seed coat of T. fortunei with its antimicrobial spectrum could be a good candidate for further bactericidal research.
Ahmed, Shakeel; Liu, Huimin; Ahmad, Aqeel; Akram, Waheed; Abdelrahman, Eman K. N.; Ran, Fengming; Ou, Wuling; Dong, Shuang; Cai, Qian; Zhang, Qiyun; Li, Xiaohua; Hu, Sheng; Hu, Xuebo
2017-01-01
The increasing of multidrug resistance in bacterial associated infections has impaired the current antimicrobial therapy and it forces the search for other alternatives. In this study, we aimed to find the in vitro antibacterial activity of seed coat of Trachycarpus fortunei against a panel of clinically important bacterial species. Ethanolic extracts of target tissues were fractionated through macro porous resin by column chromatography, using ethanol as an organic solvent with a concentration gradient of 0–100%, each along with 20% concentration increment. The minimum inhibitory (MIC) concentrations of all fractions were measured. It is found that 20% ethanolic fraction showed the most significant inhibition against tested bacterial species. All fractions were analyzed by Ultra-Performance Liquid Chromatography/mass spectrometry (UPLC/MS) and compounds were identified by comparing mass spectra with standard libraries. By pairing the identified compounds from different fractions with the antibacterial activity of each fraction, it was shown that compounds stearamide (7), 1-(4-Fluorophenyl)-2-(methylthio)-1H-imidazole-5-carboxylic acid (9) and 2,4,5 triacetoxybiphenyl (10) topped in the list for anti-bacterial activity. Further experiment with pure chemicals verified that compounds 9 and 10 have antibacterial activity against Gram-negative bacteria. Whereas, the lowest MIC value (39.06 μg/mL) was obtained by compound 10 against Staphylococcus epidermidis. Hence, the seed coat of T. fortunei with its antimicrobial spectrum could be a good candidate for further bactericidal research. PMID:29046668
Ibrahim, Mohammed Auwal; Koorbanally, Neil Anthony; Islam, Shahidul
2016-09-01
Vitex doniana is an important African medicinal plant traditionally used for the treatment of many diseases including type 2 diabetes (T2D). In this study, ethyl acetate, ethanol and aqueous extracts of the stem bark, root and leaf of V. doniana were analyzed for in vitro anti-oxidative activity and the results indicated that the ethanolic extract of the leaves had the best anti-oxidative activity. Subsequently, the ethanolic extract of the leaves was partitioned between hexane, dichloromethane, ethyl acetate and water. The aqueous fraction had a significantly ( p < 0.05) higher phenolics content and also showed the best anti-oxidative activity within the fractions. Furthermore, the aqueous fraction demonstrated significantly (p < 0.05) more potent inhibitory activities against α-glucosidase and α-amylase than other fractions. Steady state kinetics analysis revealed that the aqueous fraction inhibited both (α-glucosidase and (α-amylase activities in a non-competitive manner with inhibition binding constant (Ki) values of 5.93 and 167.44 μg/mL, respectively. Analysis of the aqueous fraction by GC-MS showed the presence of resorcinol, 4-hydroxybenzoic acid, 3,4,5-trimethoxyphenol and 2,4'-dihydroxychalcone identified by their mass fragmentation patterns and comparison to standard spectra. The results obtained in this study showed that V doniana leaves have a good in vitro anti-T2D potential possibly elicited through phenolics.
The anti-gastric ulcer effect of Gynostemma pentaphyllum Makino.
Rujjanawate, C; Kanjanapothi, D; Amornlerdpison, D
2004-07-01
Gynostemma pentaphyllum is an oriental medicinal herb reputed to have broad-spectrum activities. The plant's principal saponin components are structurally similar to those found in ginseng plants and this similarity is assumed to be responsible for the claimed activities. The present study was undertaken to evaluate a G. pentaphyllum butanol fraction (GPB) for its anti-gastric ulcer activity using experimental models. Oral administration of the GPB at 200 and 400 mg/kg body wt. significantly inhibited gastric ulcer formation induced by indomethacin, HCl/EtOH and water-immersion restraint stress in rats. In pylorus-ligated rats, pretreatment with the GPB had no effect on gastric volume, pH or acidity output, thus indicating a lack of anti-secretory effect. In ethanol-induced ulcerated rats, gastric wall mucus and hexosamine content were markedly preserved by GPB pretreatment. The findings indicate that the butanol fraction of G. pentaphyllum possesses gastroprotective potential related to the preservation of gastric mucus synthesis and secretion.
2014-01-01
Background Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). Results The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. Conclusions A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable. PMID:24559312
Macrelli, Stefano; Galbe, Mats; Wallberg, Ola
2014-02-21
Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol production. A combined 1G + 2G ethanol plant could potentially outperform a 1G plant in terms of NPV, depending on market wholesale prices of ethanol and electricity. Therefore, although it is more expensive than 1G ethanol production, 2G ethanol production can make the integrated 1G + 2G process more profitable.
Yao, Lan; Yang, Haitao; Yoo, Chang Geun; ...
2018-02-06
To investigate the interactions between acid pretreated switchgrass lignin and cellobiohydrolase (CBH), three different lignin fractions were isolated from dilute acid pretreated switchgrass by (i) ethanol extraction, followed by (ii) dioxane/H2O extraction, and (iii) cellulase treatment, respectively. Structural properties of each lignin fraction were elucidated by GPC, 13C-NMR, and 2D-HSQC NMR analyses. The adsorptions of CBH to the isolated lignin fractions were also studied by Langmuir adsorption isotherms. Ethanol-extractable lignin fraction, mainly composed of syringyl (S) and guaiacyl (G) units, had the lowest molecular weight, while dioxane/H2O-extracted lignin fraction had the lowest S/G ratio with higher content of p-coumaric acidmore » (pCA) unit. The residual lignin fraction after enzymatic treatment had the highest S/G ratio without hydroxyphenyl (H) unit. Strong associations were found between lignin properties such as lignin composition and S/G ratio and its non-productive enzyme adsorption factors including the maximum adsorption capacity and binding strength.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Lan; Yang, Haitao; Yoo, Chang Geun
To investigate the interactions between acid pretreated switchgrass lignin and cellobiohydrolase (CBH), three different lignin fractions were isolated from dilute acid pretreated switchgrass by (i) ethanol extraction, followed by (ii) dioxane/H2O extraction, and (iii) cellulase treatment, respectively. Structural properties of each lignin fraction were elucidated by GPC, 13C-NMR, and 2D-HSQC NMR analyses. The adsorptions of CBH to the isolated lignin fractions were also studied by Langmuir adsorption isotherms. Ethanol-extractable lignin fraction, mainly composed of syringyl (S) and guaiacyl (G) units, had the lowest molecular weight, while dioxane/H2O-extracted lignin fraction had the lowest S/G ratio with higher content of p-coumaric acidmore » (pCA) unit. The residual lignin fraction after enzymatic treatment had the highest S/G ratio without hydroxyphenyl (H) unit. Strong associations were found between lignin properties such as lignin composition and S/G ratio and its non-productive enzyme adsorption factors including the maximum adsorption capacity and binding strength.« less
Rahman, Hazir; Khan, Ilyas; Hussain, Anwar; Shahat, Abdelaaty Abdelaziz; Tawab, Abdul; Qasim, Muhammad; Adnan, Muhammad; Al-Said, Mansour S; Ullah, Riaz; Khan, Shahid Niaz
2018-05-02
Medicinal plants have been founded as traditional herbal medicine worldwide. Most of the plant's therapeutic properties are due to the presence of secondary metabolites such as alkaloids, glycosides, tannins and volatile oil. The present investigation analyzed the High-Pressure Liquid Chromatography (HPLC) fractions of Glycyrrhiza glabra (Aqueous, Chloroform, Ethanol and Hexane) against multidrug resistant human bacterial pathogens (Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa). All the fractions showed antibacterial activity, were subjected to LC MS/MS analysis for identification of bioactive compounds. Among total HPLC fractions of G. glabra (n = 20), three HPLC fractions showed potential activity against multidrug resistant (MDR) bacterial isolates. Fraction 1 (F1) of aqueous extracts, showed activity against A. baumannii (15 ± 0.5 mm). F4 from hexane extract of G. glabra showed activity against S. aureus (10 ± 0.2 mm). However, F2 from ethanol extract exhibited activity against S. aureus (10 ± 0.3 mm). These active fractions were further processed by LC MS/MS analysis for the identification of compounds. Ellagic acid was identified in the F1 of aqueous extract while 6-aldehydo-isoophiopogonone was present in F4 of hexane extract. Similarly, Liquirtigenin was identified in F2 of ethanol. Glycyrrhiza glabra extracts HPLC fractions showed anti-MDR activity. Three bioactive compounds were identified in the study. 6-aldehydo-isoophiopogonone and Liquirtigenin were for the first time reported in G. glabra. Further characterization of the identified compounds will be helpful for possible therapeutic uses against infectious diseases caused by multidrug resistant bacteria.
Plexcitonics: Coupled and Plasmon-Exciton Systems with Tailorable Properties
2013-11-14
demonstrated efficient steam generation from aqueous nanoparticles solutions without heating the bulk volume of the liquid. Application in ethanol ...solutions without heating the bulk volume of the liquid. Applications in ethanol distillation and sanitation have been demonstrated. Key Accomplishments...nanoparticle surface. This state-selective population of adsorbate resonances could be exploited to prepare reactants in specific states on nanoparticle
McRae, Jacqui M; Ziora, Zyta M; Kassara, Stella; Cooper, Matthew A; Smith, Paul A
2015-05-06
Changes in ethanol concentration influence red wine astringency, and yet the effect of ethanol on wine tannin-salivary protein interactions is not well understood. Isothermal titration calorimetry (ITC) was used to measure the binding strength between the model salivary protein, poly(L-proline) (PLP) and a range of wine tannins (tannin fractions from a 3- and a 7-year old Cabernet Sauvignon wine) across different ethanol concentrations (5, 10, 15, and 40% v/v). Tannin-PLP interactions were stronger at 5% ethanol than at 40% ethanol. The mechanism of interaction changed for most tannin samples across the wine-like ethanol range (10-15%) from a combination of hydrophobic and hydrogen binding at 10% ethanol to only hydrogen binding at 15% ethanol. These results indicate that ethanol concentration can influence the mechanisms of wine tannin-protein interactions and that the previously reported decrease in wine astringency with increasing alcohol may, in part, relate to a decrease tannin-protein interaction strength.
Mohagheghi, Ali; Schell, Daniel J
2010-04-01
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. (c) 2009 Wiley Periodicals, Inc.
Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A
2010-10-13
Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.
Handler, J A; Bradford, B U; Glassman, E B; Forman, D T; Thurman, R G
1987-01-01
Hepatic microsomal fractions from ADH (alcohol dehydrogenase)-negative deermice incubated with an NADPH-generating system metabolized butanol and ethanol at rates around 10 nmol/min per mg. In contrast, cytosolic catalase from ADH-negative deermouse liver oxidized ethanol, but not butanol, when incubated with an H2O2-generating system. Thus butanol is oxidized by cytochrome P-450 in microsomal fractions, but not by cytosolic catalase, in tissues from ADH-negative deermice. In perfused livers from ADH-negative deermice, rates of ethanol uptake at low concentrations of ethanol (1.5 mM) were about 60 mumol/h per g, yet butanol (1.5 mM) uptake was undetectable (less than 4 mumol/h per g). At higher concentrations of alcohol (25-30 mM), rates of ethanol uptake were about 80 mumol/h per g, whereas rates of butanol uptake were only about 9 mumol/h per g. Because rates of butanol metabolism via cytochrome P-450 in deermice were more than an order of magnitude lower than rates of ethanol uptake in livers from ADH-negative deermice, it is concluded that ethanol uptake by perfused livers from ADH-negative deermice is catalysed predominantly via catalase-H2O2. In support of this conclusion, rates of H2O2 generation, which are rate-limiting for the peroxidation of ethanol by catalase, were about 65 mumol/h per g in livers from ADH-negative deermice, values similar to rates of ethanol uptake of about 60 mumol/h per g measured under identical conditions. Rates of ethanol uptake by perfused livers from ADH-positive, but not from ADH-negative, deermice were increased by about 50% by infusion of fructose. Thus it is concluded that the stimulation of hepatic ethanol uptake by fructose is dependent on the presence of ADH. Unexpectedly, fructose decreased rates of ethanol metabolism and H2O2 generation by about 60% in perfused livers from ADH-negative deermice, probably by decreasing activation of fatty acids and thus diminishing rates of peroxisomal beta-oxidation. PMID:3435455
Less and less–influence of volume on hand coverage and bactericidal efficacy in hand disinfection
2013-01-01
Background Some manufacturers recommend using 1.1 mL per application of alcohol-based handrubs for effective hand disinfection. However, whether this volume is sufficient to cover both hands, as recommended by the World Health Organization, and fulfills current efficacy standards is unknown. This study aimed to determine hand coverage for three handrubs (two gels based on 70% v/v and 85% w/w ethanol and a foam based on 70% v/v ethanol) applied at various volumes. Methods Products were tested at product volumes of 1.1 mL, 2 mL, 2.4 mL as well as 1 and 2 pump dispenser pushes; the foam product was tested in addition at foam volumes of 1.1 mL, 2 mL, and 2.4 mL. Products were supplemented with a fluorescent dye and 15 participants applied products using responsible application techniques without any specific steps but the aim of completely covering both hands. Coverage quality was determined under ultraviolet light by two blinded investigators. Efficacy of the three handrubs was determined according to ASTM E 1174-06 and ASTM E 2755-10. For each experiment, the hands of 12 participants were contaminated with Serratia marcescens and the products applied as recommended (1.1 mL for 70% v/v ethanol products; 2 mL for the 85% w/w ethanol product). Log10-reduction was calculated. Results Volumes < 2 mL yielded high rates of incomplete coverage (67%–87%) whereas volumes ≥ 2 mL gave lower rates (13%–53%). Differences in coverage were significant between the five volumes tested for all handrubs (p < 0.001; two-way ANOVA) but not between the three handrubs themselves (p = 0.796). Application of 1.1 mL of 70% v/v ethanol rubs reduced contamination by 1.85 log10 or 1.60 log10 (ASTM E 1174-06); this failed the US FDA efficacy requirement of at least 2 log10. Application of 2 mL of the 85% w/w ethanol rub reduced contamination by 2.06 log10 (ASTM E 1174-06), fulfilling the US FDA efficacy requirement. Similar results were obtained according to ASTM E 2755-10. Conclusions Our data indicated that handrubs based on 70% ethanol (v/v) with a recommended volume of 1.1 mL per application do not ensure complete coverage of both hands and do not achieve current ASTM efficacy standards. PMID:24112994
Galisteo, M; Suárez, A; del Pilar Montilla, M; del Pilar Utrilla, M; Jiménez, J; Gil, A; Faus, M J; Navarro, M
2000-11-01
R. tomentosus is a vegetal species closely related to the culinary rosemary (R. officinalis), a plant reported to contain antihepatotoxic agents. A dried ethanol extract of the aerial parts of Rosmarinus tomentosus (Lamiaceae) and its major fraction separated by column chromatography (fraction F19) were evaluated for antihepatotoxic activity in rats with acute liver damage induced by a single oral dose of thioacetamide. Silymarin was used as a reference antihepatotoxic substance. Pre-treatment with R. tomentosus ethanol extract, fraction F19 or silymarin significantly reduced the impact of thioacetamide toxicity on plasma protein and urea levels as well as on plasma aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase and gamma-glutamyl transpeptidase activities compared with thioacetamide-treated animals (group T). Pre-treatment with R. tomentosus ethanol extract significantly reduced the impact of thioacetamide damage on alkaline phosphatase and gamma-glutamyl transpeptidase activities compared with group T. Silymarin administration significantly reduced alkaline phosphatase and gamma-glutamyl transpeptidase activities compared with group T. Fraction F19 administration reduced only alkaline phosphatase activity compared with group T. According to these data, R. tomentosus extract shows promising antihepatotoxic activity, suggesting the need to isolate the chemical principles responsible for this activity and to study this activity in a model of thioacetamide-induced cirrhosis. Copyright 2000 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Pham Thi, L.; Usacheva, T. R.; Tukumova, N. V.; Koryshev, N. E.; Khrenova, T. M.; Sharnin, V. A.
2016-10-01
The stability constants of monoligand complexes of copper(II) ions with glycyl-glycyl-glycine zwitterions (triglycine, HL±) and triglycinate ions (L-) in a water-ethanol solvent with 0.0, 0.1, 0.3, and 0.5 mole fractions of ethanol at an ionic strength of 0.1 created by sodium perchlorate and temperature T = 298.15 K are determined by means of potentiometric titration. It is found that an increase of ethanol content improves the stability of the investigated complexes, due mainly to the resolvation of ligands.
Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process.
Tan, Li; Sun, Zhaoyong; Zhang, Wenxue; Tang, Yueqin; Morimura, Shigeru; Kida, Kenji
2014-10-01
Distilled grain waste eluted from Chinese spirit making is rich in carbohydrates, and could potentially serve as feedstock for the production of bio-fuel ethanol. Our study evaluated two types of saccharification methods that convert distilled grain waste to monosaccharides: enzymatic saccharification and concentrated H2SO4 saccharification. Results showed that enzymatic saccharification performed unsatisfactorily because of inefficient removal of lignin during pretreatment. Concentrated H2SO4 saccharification led to a total sugar recovery efficiency of 79.0 %, and to considerably higher sugar concentrations than enzymatic saccharification. The process of ethanol production from distilled grain waste based on concentrated H2SO4 saccharification was then studied. The process mainly consisted of concentrated H2SO4 saccharification, solid-liquid separation, decoloration, sugar-acid separation, oligosaccharide hydrolysis, and continuous ethanol fermentation. An improved simulated moving bed system was employed to separate sugars from acid after concentrated H2SO4 saccharification, by which 95.8 % of glucose and 85.8 % of xylose went into the sugar-rich fraction, while 83.3 % of H2SO4 went into the acid-rich fraction. A flocculating yeast strain, Saccharomyces cerevisiae KF-7, was used for continuous ethanol fermentation, which produced an ethanol yield of 91.9-98.9 %, based on glucose concentration.
Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; DeSimone, John A
2005-06-01
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.
Coleman, Leon G.; He, Jun; Lee, Joohwi; Styner, Martin; Crews, Fulton T.
2013-01-01
Background Binge-drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol use disorders. Methods In order to determine if adolescent ethanol binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5g/kg/day i.g., post-natal days P28-37) and assessed during adulthood (P60-P88). An array of neurotransmitter-specific genes, behavioral tests (i.e. reversal learning, prepulse inhibition, and open field), and post-mortem brain structure using MRI and immunohistochemistry, were employed to assess persistent alterations in adult brain. Results At P38, 24 hours after adolescent ethanol (AE) binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38-P88) resulted in decreased neurotransmitter mRNA, e.g. an average decrease of 56%. Following adolescent ethanol treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by adolescent ethanol treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following adolescent ethanol. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. Conclusions Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal forebrain acetylcholine neurons. Loss of cholinergic neurons and forebrain structure could underlie adult reversal learning deficits following adolescent binge drinking. PMID:21223304
Yoshikawa, Masayuki; Sugimoto, Sachiko; Nakamura, Seikou; Sakumae, Hayaka; Matsuda, Hisashi
2007-07-01
The oligoglycoside fraction from the flower buds of Panax ginseng C. A. MEYER (Araliaceae) was found to show protective effects on ethanol-induced gastric mucosal lesions in rats. From the oligoglycoside fraction, new dammarane-type triterpene tetraglycosides, floralginsenosides M, N, O, and P, were isolated together with the major oligoglycosides ginsenoside Rd and Re. The structures of the new floralginsenosides were elucidated on the basis of chemical and physicochemical evidence. Ginsenoside Rd (protopanaxadiol 3,20-O-bisdesmoside) exhibited inhibitory effects on ethanol- and indomethacin-induced gastric mucosal lesions in rats.
Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.J.; Chun, Y.J.
2005-07-01
The separation of four kinds of nitrogen heterocyclic compounds (NHCs) from a model mixture comprising NHCs (indole (In), quinoline (Q), iso-quinoline (iQ), quinaldine (Qu)), three kinds of bicyclic aromatic compounds (BACs; 1-methyl-naphthalene (IMN), 2-methyl naphthalene (2MN), dimethylnaphthalene (DMN)), biphenyl (Bp) and phenyl ether (Pe) was examined by a solvent extraction. The model mixture used as a raw material of this work was prepared according to the components and compositions contained in coal tar fraction (the temperature ranges of fraction: 240-265{sup o}C). An aqueous solution of methanol, ethanol, iso-propyl alcohol, N,N-dimethyl acetamide, DMF, formamide, N-methylformamide/methanol, and formamide/methanol were used as solvents.more » An aqueous solution of formamide was found suitable for separating NHCs contained in coal tar fraction based on distribution coefficient and selectivity. The effect of operation factors on separating NHCs was investigated by the distribution equilibrium using an aqueous solution of formamide. Increasing the operation temperature and the volume ratio of solvent to feed at initial (S/F)(o) resulted in improving the distribution coefficients of each NHC, but increasing the volume fraction of water in the solvent at initial (y(w,O)) resulted in deteriorating the distribution coefficients of each NHC. With increasing y(w,O) and (S/F)(o), the selectivities of each NHC in reference to DMN increased. Increase in operation temperature resulted in decrease in selectivities of each NHC in reference to DMN. At an experimental condition fixed, the sequence of the distribution coefficient and selectivity in reference to DMN for each NHC was In {gt} iQ {gt} Q {gt} Qu, and also the sequence of the distribution coefficient for each BAC was IMN {gt} 2MN {gt} DMN. The sequence of the distribution coefficient for entire compounds analyzed by this work was In {gt} iQ {gt} Q {gt} Qu {gt} BP {gt} 1MN {gt} 2MN {gt} Pe {gt} DMN.« less
Percutaneous ethanol injection of large autonomous hyperfunctioning thyroid nodules.
Tarantino, L; Giorgio, A; Mariniello, N; de Stefano, G; Perrotta, A; Aloisio, V; Tamasi, S; Forestieri, M C; Esposito, F; Esposito, F; Finizia, L; Voza, A
2000-01-01
To verify the effectiveness of percutaneous ethanol injection (PEI) in the treatment of large (>30-mL) hyperfunctioning thyroid nodules. Twelve patients (eight women, four men; age range, 26-76 years) with a large hyperfunctioning thyroid nodule (volume range, 33-90 mL; mean, 46.08 mL) underwent PEI treatment under ultrasonographic (US) guidance. US was used to calculate the volume of the nodules and to assess the diffusion of the ethanol in the lesions during the procedure. When incomplete necrosis of the nodule was depicted at scintigraphy performed 3 months after treatment, additional PEI sessions were performed. Four to 11 PEI sessions (mean, seven) were performed in each patient, with an injection of 3-14 mL of 99.8% ethanol per session (total amount of ethanol per patient, 30-108 mL; mean, 48.5 mL). At scintigraphy after treatment in all patients, recovery of extranodular uptake, absence of uptake in the nodule, and normalization of thyroid-stimulating hormone (thyrotropin) levels were observed. In all patients, US showed volume reductions of 30%-50% after 3 months and 40%-80% after 6-9 months. Side effects were self-limiting in all patients. During the 6-48-month follow-up, no recurrence was observed. PEI is an effective and safe technique for the treatment of large hyperfunctioning thyroid nodules.
NASA Astrophysics Data System (ADS)
Gao, Weihong; Rigout, Muriel; Owens, Huw
2016-12-01
In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation.
NASA Astrophysics Data System (ADS)
Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.
2014-03-01
Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi
Background: Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H, respectively). Three different lignin fractions were extracted using ethanol, followed by p-dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively).Results: Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weightsmore » for the other two lignin fractions were similar. 31P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p-hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β-O-4 linkages with small amounts of β-5 and β–β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L1 > L3 > L2 for the low recalcitrance poplar and H1 > H2 > H3 for the high recalcitrance poplar.Conclusions: Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption ability. Lignins with more phenolic hydroxyl groups had higher CBH binding strength. It was also found that lignin fractions with more condensed aromatics adsorbed more CBH likely attributed to stronger hydrophobic interactions.« less
Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J; Yang, Haitao
2018-01-01
Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H , respectively). Three different lignin fractions were extracted using ethanol, followed by p -dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively). Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weights for the other two lignin fractions were similar. 31 P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p -hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β- O -4 linkages with small amounts of β-5 and β-β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L 1 > L 3 > L 2 for the low recalcitrance poplar and H 1 > H 2 > H 3 for the high recalcitrance poplar. Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption ability. Lignins with more phenolic hydroxyl groups had higher CBH binding strength. It was also found that lignin fractions with more condensed aromatics adsorbed more CBH likely attributed to stronger hydrophobic interactions.
Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; ...
2018-04-04
Background: Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H, respectively). Three different lignin fractions were extracted using ethanol, followed by p-dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively).Results: Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weightsmore » for the other two lignin fractions were similar. 31P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p-hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β-O-4 linkages with small amounts of β-5 and β–β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L1 > L3 > L2 for the low recalcitrance poplar and H1 > H2 > H3 for the high recalcitrance poplar.Conclusions: Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption ability. Lignins with more phenolic hydroxyl groups had higher CBH binding strength. It was also found that lignin fractions with more condensed aromatics adsorbed more CBH likely attributed to stronger hydrophobic interactions.« less
Wolfe, B M; Havel, J R; Marliss, E B; Kane, J P; Seymour, J; Ahuja, S P
1976-02-01
Splanchnic metabolism was studied to quantify changes underlying the fatty liver, hyperlipemia, and hypoglycemia produced by ethanol. Four subjects fasted for 15 h were compared with five subjects fasted for 69 h under basal conditions and during continuous intravenous infusion of sufficient ethanol to give a concentration of 3-5 mM in arterial blood plasma. Splanchnic storage of fatty acids was estimated from the difference between uptake of FFA and secretion of derived products. Basal values for splanchnic uptake of FFA were twofold higher after the 69-h fast while splanchnic storage of fatty acids and production of ketone bodies increased threefold. Values for basal secreation into the blood of triglycerides derived from FFA were similar in the two groups. In both nutritional states, the fraction of FFA taken up in the splanchnic region oxidized to ketone bodies and to CO2 fell when ethanol was given because of preferential oxidation of ethanol to acetate, and the fraction esterified rose. However, systemic transport and splanchnic uptake of FFA fell with ethanol in subjects fasted 15 h, so that neither storage of triglycerides in splanchnic tissues nor secretion into the blood increased. In subjects fasted 69 h, ethanol increased transport of FFA and splanchnic storage of fat. In all but one subject it also increased secretion of triglycerides into the blood. The concentration of glucose in blood fell during ethanol infusion in all five subjects undergoing the 69-h fast. Mean splanchnic glucose production was maintained at about one-half of the pre-ethanol value, despite virtual cessation of splanchnic uptake of lactate and of those amino acids that are metabolized via malate. Quantitative estimates of extrasplanchnic metabolism suggest that enhanced formation of alpha-glycerophosphate from glucose, in addition to impaired hepatic gluconeogenesis, may contribute to ethanol-induced hypoglycemia in man.
Orr, T Edward; Whitford-Stoddard, Jennifer L; Elkins, Ralph L
2004-05-01
Taste-aversion (TA)-prone (TAP) rats and TA-resistant (TAR) rats have been developed by means of bidirectional selective breeding on the basis of their behavioral responses to a TA conditioning paradigm. The TA conditioning involved the pairing of an emetic-class agent (cyclophosphamide) with a novel saccharin solution as the conditioned stimulus. Despite the absence of ethanol in the selective breeding process, these rat lines differ widely in ethanol self-administration. In the current study, blood alcohol concentrations (BACs) were determined after 9 days of limited (2 h per day) access to a simultaneous, two-bottle choice of a 10% ethanol in water solution [volume/volume (vol./vol.)] or plain water. The BACs correlated highly with ethanol intake among TAR rats, but an insufficient number of TAP rats yielded measurable BACs to make the same comparison within this rat line. The same rats were subsequently exposed to 24-h access of a two-bottle choice (10% ethanol or plain water) for 8 days. Ethanol consumption during the 24-h access period correlated highly with that seen during limited access. Subsequent TA conditioning with these rats yielded line-typical differences in saccharin preferences. In a separate group of rats, ethanol clearance was determined by measuring BACs at 1, 4, and 7 h after injection of a 2.5-g/kg dose of ethanol. Ethanol clearance was not different between the two lines. Furthermore, the lines did not differ with respect to food and water consumption. Therefore, the TAP rat-TAR rat differences in ethanol consumption cannot be attributed to line differences in ethanol metabolism or in general consummatory behavior. The findings support our contention that the line differences in ethanol consumption are mediated by differences in TA-related mechanisms. The findings are discussed with respect to genetically based differences in the subjective experience of ethanol.
Antioxidant ability of fractionated apple peel phenolics to inhibit fish oil oxidation.
Sekhon-Loodu, Satvir; Warnakulasuriya, Sumudu N; Rupasinghe, H P Vasantha; Shahidi, Fereidoon
2013-09-01
Polyphenols isolated from frozen and dried apple peels were studied as potential natural antioxidants to stabilize omega-3 polyunsaturated fatty acid (ω3 PUFA) enriched fish oil. The ethanolic extracts of apple peels were fractionated by reversed phase chromatography using gradient elution of 20-100% aqueous ethanol. The collected fractions were analyzed by ultra pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). The total phenolic content and antioxidant capacity of each fraction were evaluated by Folin-Ciocalteu (FC), ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging assays. Inhibition of fish oil oxidation was studied using the thiobarbituric acid reactive substances (TBARS) assay. Polyphenols fractionated using frozen apple peel extract had significantly higher FC, FRAP and DPPH(·) scavenging values than those of dried apple peel (p<0.05). The flavonol-rich fractions inhibited fish oil oxidation by 40-62% at a total phenolic concentration of 200 μg/ml. The fractionated polyphenols from both dried and frozen apple peel showed higher inhibition of lipid oxidation compared to α-tocopherol, butylated hydroxytoluene and crude apple peel extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...
Evaluation of the Simultaneous Production of Xylitol and Ethanol from Sisal Fiber
Damião Xavier, Franklin; Santos Bezerra, Gustavo; Florentino Melo Santos, Sharline; Sousa Conrado Oliveira, Líbia; Luiz Honorato Silva, Flávio; Joice Oliveira Silva, Aleir; Maria Conceição, Marta
2018-01-01
Recent years have seen an increase in the use of lignocellulosic materials in the development of bioproducts. Because sisal fiber is a low cost raw material and is readily available, this work aimed to evaluate its hemicellulose fraction for the simultaneous production of xylitol and ethanol. The sisal fiber presented a higher hemicellulose content than other frequently-employed biomasses, such as sugarcane bagasse. A pretreatment with dilute acid and low temperatures was conducted in order to obtain the hemicellulose fraction. The highest xylose contents (0.132 g·g−1 of sisal fiber) were obtained at 120 °C with 2.5% (v/v) of sulfuric acid. The yeast Candida tropicalis CCT 1516 was used in the fermentation. In the sisal fiber hemicellulose hydrolysate, the maximum production of xylitol (0.32 g·g−1) and of ethanol (0.27 g·g−1) was achieved in 60 h. Thus, sisal fiber presents as a potential biomass for the production of ethanol and xylitol, creating value with the use of hemicellulosic liquor without detoxification and without the additional steps of alkaline pretreatment. PMID:29320469
Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei
2011-04-01
Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.
Ngueguim, Florence Tsofack; Khan, Mohd Parvez; Donfack, Jean Hubert; Tewari, Deepshikha; Dimo, Theophile; Kamtchouing, Pierre; Maurya, Rakesh; Chattopadhyay, Naibedya
2013-06-21
The whole plant or some part of Peperomia pellucida (L.) HBK is used in some parts of Cameroon as a treatment for fracture healing. To evaluate the effect of ethanolic extracts of Peperomia pellucida (L.), a Cameroonian medicinal plant on bone regeneration following bone and marrow injury, and determine the mode of action. Ethanol extract of Peperomia pellucida was administered at 100 and 200mg/kg doses orally to adult female Sprague-Dawley rats having a drill hole injury (0.8mm) in the femur diaphysis. Vehicle (gum-acacia in distilled water) was given to the control group. After 12 days of treatment, animals were euthanized and femur bones collected. Confocal microscopy of calcein labeling at the drill hole site was performed to evaluate bone regeneration. 3-D microarchitecture of drill hole site was analyzed by micorocomputed tomography. Osteogenic effects of the extract were evaluated by assessing mineralized nodule formation of bone marrow stromal cells and expression of osteogenic genes (mRNA level of type-1 collagen, bone morphogenetic protein-2 and osteocalcin genes) in the femur. Ethanol extract from Peperomia Pellucida (L.) dose-dependently induced bone regeneration at the fracture site. At 200mg/kg dose, the extract significantly increased mineral deposition compared to controls. The extract also improved microarchitecture of the regenerating bone evident from increased bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular separation and structure model index. In addition, the extract increased the formation of mineralized nodules from the bone marrow stromal cells. Furthermore, the extract induced the expression of osteogenic genes in the femur including type 1 collagen, osteocalcin and BMP-2, compared to control. Ethanolic extract of P. pellucid (L.) accelerates fracture repair in rats via stimulatory effects on osteoblast differentiation and mineralization, thereby justifying its traditional use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
2014-01-01
Background A decoction of Crassocephallum vitellinum (Benth.) S. Moore (Asteraceae) is used in Kagera Region to treat peptic ulcers. This study seeks to evaluate an aqueous ethanol extract of aerial parts of the plant for safety and efficacy. Methods An 80% ethanolic extract of C. vitellinum at doses of 100, 200, 400 and 800 mg/kg body wt was evaluated for ability to protect Sprague Dawley rats from acidified ethanol gastric ulceration in comparison with 40 mg/kg body wt pantoprazole. The extract and its dichloromethane, ethyl acetate, and aqueous fractions were also evaluated for acute toxicity in mice, brine shrimp toxicity, and antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholera (clinical isolate), and Streptococcus faecalis (clinical isolate). The groups of phytochemicals present in the extract were also determined. Results The ethanolic extract of C. vitellinum dose-dependently protected rat gastric mucosa against ethanol/HCl insult to a maximum of 88.3% at 800 mg/kg body wt, affording the same level of protection as by 40 mg/kg body wt pantoprazole. The extract also exhibited weak antibacterial activity against S. typhi and E. coli, while its ethyl acetate, dichloromethane and aqueous fractions showed weak activity against K. pneumonia, S.typhi, E. coli and V. cholera. The extract was non-toxic to mice up to 5000 mg/kg body wt, and the total extract (LC50 = 37.49 μg/ml) and the aqueous (LC50 = 87.92 μg/ml), ethyl acetate (LC50 = 119.45 μg/ml) and dichloromethane fractions (88.79 μg/ml) showed low toxicity against brine shrimps. Phytochemical screening showed that the extract contains tannins, saponins, flavonoids, and terpenoids. Conclusion The results support the claims by traditional healers that a decoction of C.vitellinum has antiulcer activity. The mechanism of cytoprotection is yet to be determined but the phenolic compounds present in the extract may contribute to its protective actions. However, the dose conferring gastro-protection in the rat is too big to be translated to clinical application; thus bioassay guided fractionation to identify active compound/s or fractions is needed, and use of more peptic ulcer models to determine the mechanism for the protective action. PMID:24552147
Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan
2014-01-01
The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra.
Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan
2014-01-01
The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra. PMID:25054139
Alhudhud, M; Sadiq, S; Ngo, H N; Hidalgo-Cantabrana, C; Ruas-Madiedo, P; van Sinderen, D; Humphreys, P N; Laws, A P
2018-06-15
Three strains of Bifidobacterium breve (JCM 7017, JCM 7019 and JCM 2258) and two strains of Bifidobacterium animalis subsp. lactis (AD011 and A1dOxR) were grown in broth cultures or on plates, and a standard exopolysaccharide extraction method was used in an attempt to recover exocellular polysaccharides. When the extracted materials were analysed by NMR it was clear that mixtures of polysaccharides were being isolated including exopolysaccharides (EPS) cell wall polysaccharides and intracellular polysaccharides. Treatment of the cell biomass from the B. breve strains, or the B. animalis subsp. lactis AD011 strain, with aqueous sodium hydroxide provided a very similar mixture of polysaccharides but without the EPS. The different polysaccharides were partially fractionated by selective precipitation from an aqueous solution upon the addition of increasing percentages of ethanol. The polysaccharides extracted from B. breve JCM 7017 grown in HBM media supplemented with glucose (or isotopically labelled D-glucose-1- 13 C) were characterised using 1D and 2D-NMR spectroscopy. Addition of one volume of ethanol generated a medium molecular weight glycogen (Mw=1×10 5 Da, yield 200 mg/l). The addition of two volumes of ethanol precipitated an intimate mixture of a low molecular weight β-(1→6)-glucan and a low molecular weight β-(1→6)-galactofuranan which could not be separated (combined yield 46 mg/l). When labelled D-glucose-1- 13 C was used as a carbon supplement, the label was incorporated into >95% of the anomeric carbons of each polysaccharide confirming they were being synthesised in situ. Similar 1 H NMR profiles were obtained for polysaccharides recovered from the cells of B. animalis subsp. lactis AD011and A1dOxR (in combination with an EPS), B. breve JCM 7017, B. breve JCM 7019, B. breve JCM 2258 and from an EPS (-ve) mutant of B. breve 7017 (a non-EPS producer).
Raghavendran, Hanumantha Rao Balaji; Sathivel, Arumugam; Devaki, Thiruvengadam
2004-04-01
Effect of pre-treatment with hot water extract of marine brown alga Sargassum polycystum C.Ag. (100 mg/kg body wt, orally for period of 15 days) on HCl-ethanol (150 mM of HCl-ethanol mixture containing 0.15 N HCl in 70% v/v ethanol given orally) induced gastric mucosal injury in rats was examined with respect to lipid peroxides, antioxidant enzyme status, acid/pepsin and glycoproteins in the gastric mucosa. The levels of lipid peroxides of gastric mucosa and volume, acidity of the gastric juice were increased with decreased levels of antioxidant enzymes and glycoproteins were observed in HCl-ethanol induced rats. The rats pre-treated with seaweed extract prior to HCl-ethanol induction reversed the depleted levels of antioxidant enzymes and reduced the elevated levels of lipid peroxides when compared with HCl-ethanol induced rats. The levels of glycoproteins and alterations in the gastric juice were also maintained at near normal levels in rats pre-treated with seaweed extract. The rats given seaweed extract alone did not show any toxicity, which was confirmed by histopathological studies. These results suggest that the seaweed extract contains some anti-ulcer agents, which may maintain the volume/acidity of gastric juice and improve the gastric mucosa antioxidant defense system against HCl-ethanol induced gastric mucosal injury in rats.
Cho, Young Jun; Shin, Ji Hoon
2016-01-01
To compare the efficacy and treatment session numbers of acetic acid to that of ethanol sclerotherapy for the treatment of simple renal cysts. Between February 2004 and June 2013, 86 patients with simple renal cysts underwent percutaneous aspiration and injection of 50 %-acetic-acid (42 cysts) and 95 %-ethanol (44 cysts). The patient demographics, volume reduction rate, number of treatment sessions, and complications were then analyzed. The volume reduction rate was 94.1 ± 7.6 % in the 50 %-acetic acid group and 94.7 ± 11.7 % in the 95 %-ethanol group, and without a statistical difference. The rates of complete remission, partial remission, and no response were 57.1, 42.9 and 0 %, respectively, for the acetic acid group, and 70.5, 25.0, and 4.5 %, respectively, for the ethanol group. No statistical difference was observed between the two groups. Compared to the acetic acid group, the ethanol group had a higher number of treatment sessions, i.e. 1.10 ± 0.30 in the acetic acid group and 1.80 ± 0.79 in the ethanol group. Mild flank pain was a minor complication that occurred in both groups. Acetic acid seems to have equivalent sclerosing effects on simple renal cysts compared with those of ethanol despites of fewer treatment sessions.
Stereological study of rat spleen following acute ethanol treatment.
Budec, M; Milićević, Z; Koko, V
2000-05-01
To investigate the acute effect of ethanol (4 g/kg, i.p.) on spleen adult female Wistar rats were treated intraperitoneally with: a) ethanol (4 g/kg body wt), b) naltrexone (5 mg/kg body wt) followed 45 minutes later by ethanol (4 g/kg body wt) and c) naltrexone (5 mg/kg body wt) alone. Untreated and saline-treated rats were used as controls. Twenty hours after the ethanol treatment the animals were sacrificed and the spleens were removed. A piece of tissue from the central part of each organ was fixed in Bouin's solution. Paraffin sections were stained with hematoxylin-eosin and analysed using stereological measurements. The volume densities of the following tissue compartments: red pulp, white pulp (divided in follicles, periarterioral lymphatic sheath and marginal zone) and the connective tissue were determined. Stereological analysis also included parameters of follicles: the areal numerical density (the number of follicles per 1 mm2 of tissue section), the numerical density (the number of follicles per mm3 of tissue) and the mean follicle diameter. The immunoarchitecture of the spleen was preserved following acute ethanol treatment. Unlike other parameters that were unaffected, ethanol evoked a decrease in both volume density of follicle and the mean follicle diameter. Naltrexone pretreatment had no influence on ethanol-induced changes. The data obtained indicate that a single dose of ethanol has a profound effect on rat spleen affecting the follicles, but the mechanism of its action remains to be elucidated.
Miscanthus x giganteus xylooligosaccharides: Purification andfermentation
USDA-ARS?s Scientific Manuscript database
A procedure was developed to recover xylooligosaccharides (XOS) from Miscanthus x giganteus (MxG) hydrolyzates. MxG hydrolyzates were prepared using autohydrolysis, and XOS rich fractions were acquired using activated carbon adsorption and stepwise ethanol elution. The combined XOS fractions were pu...
Gasparotto, Francielly Mourão; Lívero, Francislaine Aparecida Dos Reis; Palozi, Rhanany Allan Caloi; Ames, Maria Leticia; Nunes, Bruna; Donadel, Guilherme; Ribeiro, Rita de Cassia Lima; Lourenço, Emerson Luiz Botelho; Kassuya, Cândida Aparecida Leite; Junior, Arquimedes Gasparotto
2018-06-21
Excess weight and dyslipidemia are among the most serious health problems in Western societies. These conditions enhance the risk of cardiac disease and have been linked with a higher prevalence of cardiac arrhythmias and sudden death. The present study investigated the cardioprotective effects of Echinodorus grandiflorus on ventricular remodeling in rabbits that were fed a 1% cholesterol-rich diet. We first obtained an ethanol-soluble fraction of E. grandiflorus and performed a detailed phytochemical study by liquid chromatography-DAD/ESI-MS. For 60 days, male rabbits were fed the cholesterol-rich diet or a diet without the addition of cholesterol. After 30 days, different groups of rabbits were treated with the ethanol-soluble fraction of E. grandiflorus (10, 30, and 100 mg/kg, p. o.), simvastatin (2.5 mg/kg), or vehicle once daily for 30 days. At the end of 60 days, the serum lipoprotein ratio, electrocardiographic profile, histopathological alterations, and the cardiac antioxidant defense system were investigated. Echocardiographic analysis showed morphological and functional alterations in cholesterol-rich diet-fed animals, indicating left ventricle hypertrophy. The total cholesterol/high-density lipoprotein ratio and low-density lipoprotein/high-density lipoprotein ratio were significantly higher in cholesterol-rich diet-fed rabbits. Myocardial flaccidity, fatty degeneration, and concentric left ventricular hypertrophy were observed. An increase in lipid peroxidation levels, a decrease in superoxide dismutase activity, and a decrease in reduced glutathione levels were observed in the myocardium of all cholesterol-rich diet-fed rabbits. Treatment with the ethanol-soluble fraction of E. grandiflorus , especially the highest dose, significantly reduced all of these alterations, thus demonstrating the cardioprotective effect of the ethanol-soluble fraction of E. grandiflorus on cardiac changes that are induced by a cholesterol-rich diet. Georg Thieme Verlag KG Stuttgart · New York.
Factors affecting skin tannin extractability in ripening grapes.
Bindon, Keren A; Madani, S Hadi; Pendleton, Phillip; Smith, Paul A; Kennedy, James A
2014-02-05
The acetone-extractable (70% v/v) skin tannin content of Vitis vinifera L. cv. Cabernet Sauvignon grapes was found to increase during late-stage ripening. Conversely, skin tannin content determined following ethanol extraction (10, 20, and 50% v/v) did not consistently reflect this trend. The results indicated that a fraction of tannin became less extractable in aqueous ethanol during ripening. Skin cell walls were observed to become more porous during ripening, which may facilitate the sequestering of tannin as an adsorbed fraction within cell walls. For ethanol extracts, tannin molecular mass increased with advancing ripeness, even when extractable tannin content was constant, but this effect was negligible in acetone extracts. Reconstitution experiments with isolated skin tannin and cell wall material indicated that the selectivity of tannin adsorption by cell walls changed as tannin concentration increased. Tannin concentration, tannin molecular mass, and cell wall porosity are discussed as factors that may influence skin tannin extractability.
Dunham, C Michael; Sipe, Eilynn K; Peluso, LeeAnn
2004-01-01
Background We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO2/FiO2). Methods Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO2/FiO2 was < 350 and decreased spirometric volume was < 1.8 L. Results Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO2/FiO2, and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO2/FiO2 – 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. Conclusions Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO2/FiO2, or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury. PMID:14731306
Wachtel, E; Bach, D; Miller, I R; Borochov, N
2007-05-01
Using differential scanning calorimetry and small and wide-angle X-ray diffraction, we show that, unlike the saturated phosphatidylcholines, for which ethanol induces chain interdigitation in the gel state, and unlike natural phosphatidylserine in which the gel state is almost unaffected by the addition of ethanol, dipalmitoyl phosphatidylserine (DPPS) assumes an ordered structure after incubation at room temperature in the presence of as little as 5% (v/v) ethanol. In the liquid crystalline state, a progressive decrease in the interbilayer spacing is observed as a function of ethanol concentration, similar to what is found for natural phosphatidylserine (PS) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS). The 0.37 molar fraction of cholesterol in the DPPS dispersion in the presence of 10% (v/v) ethanol, does not prevent the formation of the ordered gel.
Hu, Ting; Jiang, Chenbo; Huang, Qilin; Sun, Fengyuan
2016-05-20
An exopolysaccharide (EPS) was fractionated from fermentation media of a Cordyceps sinensis fungus (Cs-HK1) by ethanol precipitation at 2/5 volume ratio of ethanol/media. Its structural characteristics were elucidated by FT-IR, GC, GC-MS, 1D and 2D NMR combined with periodate oxidation, Smith degradation, partial acid hydrolysis, and methylation analysis. Furthermore, the immunomodulatory activity of EPS was evaluated by the model of cyclophosphamide-induced immunosuppression. The results from monosaccharide composition and partial acid hydrolysis indicated that EPS almost consisted of glucose excluding a trace amount of mannose. GC-MS and NMR analysis further confirmed EPS had a linear backbone of (1→3)-β-D-glucopyranosyl residues with a single (1→6)-β-D-glucopyranosyl side-branching unit for every three β-D-glucopyranosyl residues, showing a comb-like β-D-glucan with short and intensive branches, which was responsible for high viscosity. Moreover, EPS could significantly enhance immune organs and stimulate the release of major cytokines TNF-α and INF-γ, suggesting that EPS exhibited protective effect in immunocompromised mice. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kumar, Manish; Prasad, Satyendra K.; Hemalatha, Siva
2016-01-01
Objective. The whole plant of Houttuynia cordata has been reported to have potent antihyperglycemic activity. Therefore, the present study was undertaken to investigate the glucose utilization capacity of bioactive fractions of ethanol extract of Houttuynia cordata (HC) in isolated rat hemidiaphragm. Methods. All the fractions, that is, aqueous (AQ), hexane (HEX), chloroform (CHL), and ethyl acetate (EA), obtained from ethanol extract of H. cordata were subjected to phytochemical standardization use in quercetin as a marker with the help of HPTLC. Further, glucose utilization capacity by rat hemidiaphragm was evaluated in 12 different sets of in vitro experiments. In the study, different fractions from H. cordata as mentioned above were evaluated, where insulin was used as standard and quercetin as a biological standard. Results. Among all the tested fractions, AQ and EA significantly increased glucose uptake by isolated rat hemidiaphragm compared to negative control. Moreover, AQ fractions enhanced the uptake of glucose significantly (p < 0.05) and was found to be more effective than insulin. Conclusions. The augmentation in glucose uptake by hemidiaphragm in presence of AQ and EA fractions may be attributed to the presence of quercetin, which was found to be 7.1 and 3.2% w/w, respectively, in both the fractions. PMID:26925100
Kumar, Manish; Prasad, Satyendra K; Hemalatha, Siva
2016-01-01
Objective. The whole plant of Houttuynia cordata has been reported to have potent antihyperglycemic activity. Therefore, the present study was undertaken to investigate the glucose utilization capacity of bioactive fractions of ethanol extract of Houttuynia cordata (HC) in isolated rat hemidiaphragm. Methods. All the fractions, that is, aqueous (AQ), hexane (HEX), chloroform (CHL), and ethyl acetate (EA), obtained from ethanol extract of H. cordata were subjected to phytochemical standardization use in quercetin as a marker with the help of HPTLC. Further, glucose utilization capacity by rat hemidiaphragm was evaluated in 12 different sets of in vitro experiments. In the study, different fractions from H. cordata as mentioned above were evaluated, where insulin was used as standard and quercetin as a biological standard. Results. Among all the tested fractions, AQ and EA significantly increased glucose uptake by isolated rat hemidiaphragm compared to negative control. Moreover, AQ fractions enhanced the uptake of glucose significantly (p < 0.05) and was found to be more effective than insulin. Conclusions. The augmentation in glucose uptake by hemidiaphragm in presence of AQ and EA fractions may be attributed to the presence of quercetin, which was found to be 7.1 and 3.2% w/w, respectively, in both the fractions.
Microbial metabolism of tholin
NASA Astrophysics Data System (ADS)
Stoker, C. R.; Boston, P. J.; Mancinelli, R. L.; Segal, W.; Khare, B. N.; Sagan, C.
1990-05-01
In this paper, we show that a wide variety of common soil bacteria are able to obtain their carbon and energy needs from tholin (a class of complex organic heteropolymers thought to be widely distributed through the solar system; in this case tholin was produced by passage of electrical discharge through a mixture of methane, ammonia, and water vapor). We have isolated aerobic, anaerobic, and facultatively anaerobic bacteria which are able to use tholin as a sole carbon source. Organisms which metabolize tholin represent a variety of bacterial genera including Clostridium, Pseudomonas, Bacillus, Acinetobacter, Paracoccus, Alcaligenes, Micrococcus, Cornebacterium, Aerobacter, Arthrobacter, Flavobacterium,and Actinomyces. Aerobic tholin-using bacteria were firrst isolated from soils containing unusual or sparse carbon sources. Some of these organisms were found to be facultatively anaerobic. Strictly anaerobic tholin-using bacteria were isolated from both carbon-rich and carbon-poor anaerobic lake muds. In addition, both aerobic and anaerobic tholin-using bacteria were isolated from common soil collected outside the laboratory building. Some, but not all, of the strains that were able to obtain carbon from tholin were also able to obtain their nitrogen requirements from tholin. Bacteria isolated from common soils were tested for their ability to obtain carbon from the water-soluble fraction, the ethanol-soluble fraction, and the water/ethanol-insoluble fraction of the tholin. Of the 3.5 × 10 7 bacteria isolated per gram of common soils, 1.7 0.5, and 0.2%, respectively, were able to obtaib their carbon requirements from the water-soluble fraction, the ethanol-soluble fraction and the water/ethanol-insoluble fraction of the tholin. The palatability of tholins to modern microbes may have implications for the early evolution of microbial life on Earth. Tholins may have formed the base of the food chain for an early heterotrophic biosphere before the evolution of autotrophy on the early Earth. Where tholins are present on other planets, they could possibly be metabolized by contaminant microorganisms transported to these bodies via spacecraft. Thus, the presence of tholins should be taken into account when evaluating the planetary quarantine requirements for probes to other planets.
Abuzeid, Nadir; Kalsum, Sadaf; Koshy, Richin John; Larsson, Marie; Glader, Mikaela; Andersson, Henrik; Raffetseder, Johanna; Pienaar, Elsje; Eklund, Daniel; Alhassan, Muddathir S; AlGadir, Haidar A; Koko, Waleed S; Schön, Thomas; Ahmed Mesaik, M; Abdalla, Omer M; Khalid, Asaad; Lerm, Maria
2014-11-18
The emergence of multidrug-resistant strains of Mycobacterium tuberculosis underscores the need for continuous development of new and efficient methods to determine the susceptibility of isolates of Mycobacterium tuberculosis in the search for novel antimycobacterial agents. Natural products constitute an important source of new drugs, and design and implementation of antimycobacterial susceptibility testing methods are necessary to evaluate the different extracts and compounds. In this study we have explored the antimycobacterial properties of 50 ethanolic extracts from different parts of 46 selected medicinal plants traditionally used in Sudan to treat infectious diseases. Plants were harvested and ethanolic extracts were prepared. For selected extracts, fractionation with hydrophilic and hydrophobic solvents was undertaken. A luminometry-based assay was used for determination of mycobacterial growth in broth cultures and inside primary human macrophages in the presence or absence of plant extracts and fractions of extracts. Cytotoxicity was also assessed for active fractions of plant extracts. Of the tested extracts, three exhibited a significant inhibitory effect on an avirulent strain of Mycobacterium tubercluosis (H37Ra) at the initial screening doses (125 and 6.25µg/ml). These were bark and leaf extracts of Khaya senegalensis and the leaf extract of Rosmarinus officinalis L. Further fractions of these plant extracts were prepared with n-hexane, chloroform, ethyl acetate, n-butanol, ethanol and water, and the activity of these extracts was retained in hydrophobic fractions. Cytotoxicity assays revealed that the chloroform fraction of Khaya senegalensis bark was non-toxic to human monocyte-derived macrophages and other cell types at the concentrations used and hence, further analysis, including assessment of IC50 and intracellular activity was done with this fraction. These results encourage further investigations to identify the active compound(s) within the chloroform fraction of Khaya senegalensis bark. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Joseph, Gladwin; Kelsey, Rick G
2004-05-01
Stem segments from terminal leaders of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, seedlings were sampled in mid-December when cambial cells were dormant. The residual, debudded leaders were resampled again in early May when the cambium was metabolically active. May stems had higher constitutive ethanol concentrations than December stems. This was not the result of cambial hypoxia generated by rapid spring respiration rates, because when aerobic respiration was stimulated by incubating the stems in air at 30 degrees C ethanol production was induced in December, but not in May. Rapid respiration rates at 30 degrees C may have depleted O(2) supplies and induced ethanol production in December stems because dormant, thick-walled cambial cells may be less permeable to CO(2) and O(2), compared with metabolically active, thin-walled cambial cells in May. December stem segments incubated in a N(2) atmosphere at 30 degrees C synthesized 1.8 times more ethanol than segments from May, most likely because spring growth had reduced the soluble sugars available for fermentation. CO(2) efflux from May stems (after 5.5 h of incubation at 30 degrees C) was equal to December stems per unit volume, but greater than December stems per unit surface area. N(2)-induced ethanol concentrations were positively related with CO(2) efflux per unit volume, indicating that rapidly respiring leaders can maintain rapid fermentation rates, provided soluble sugars are readily available. N(2)-induced ethanol and CO(2) efflux per unit volume declined with increasing leader diameter in both seasons, whereas there were no relationships between CO(2) efflux per unit surface area and diameter. Cambium physiology and phenology influence the induction of fermentation and concentrations of ethanol produced in terminal leaders of Douglas-fir, and probably other conifers as well. This needs to be considered when comparing fermentation among species, or comparing individuals from different seasons, or disparate ages within a species.
USDA-ARS?s Scientific Manuscript database
Barley straw was used to demonstrate a process for production of ethanol and astaxanthin as a value-added co-product. Barley straw was pretreated by soaking in aqueous ammonia (SAA) using the previously determined optimum conditions. The pretreated barley straw was first hydrolyzed with Accellerase®...
Recycling paper-pulp waste liquors
NASA Technical Reports Server (NTRS)
Sarbolouki, M. N.
1981-01-01
Papermills in U.S. annually produce 3 million tons of sulfite waste liquor solids; other fractions of waste liquor are monomeric sugars and lignosulfonates in solution. Recovery of lignosulfonates involves precipitation and cross-linking of sulfonates to form useful solid ion-exchange resin. Contamination of sugars recovered from liquor is avoided by first converting them to ethanol, then removing ethanol by distillation.
de Souza Figueiredo, Fabiana; Celano, Rita; de Sousa Silva, Danila; das Neves Costa, Fernanda; Hewitson, Peter; Ignatova, Svetlana; Piccinelli, Anna Lisa; Rastrelli, Luca; Guimarães Leitão, Suzana; Guimarães Leitão, Gilda
2017-01-20
Ampelozizyphus amazonicus Ducke (Rhamnaceae), a medicinal plant used to prevent malaria, is a climbing shrub, native to the Amazonian region, with jujubogenin glycoside saponins as main compounds. The crude extract of this plant is too complex for any kind of structural identification, and HPLC separation was not sufficient to resolve this issue. Therefore, the aim of this work was to obtain saponin enriched fractions from the bark ethanol extract by countercurrent chromatography (CCC) for further isolation and identification/characterisation of the major saponins by HPLC and MS. The butanol extract was fractionated by CCC with hexane - ethyl acetate - butanol - ethanol - water (1:6:1:1:6; v/v) solvent system yielding 4 group fractions. The collected fractions were analysed by UHPLC-HRMS (ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry) and MS n . Group 1 presented mainly oleane type saponins, and group 3 showed mainly jujubogenin glycosides, keto-dammarane type triterpene saponins and saponins with C 31 skeleton. Thus, CCC separated saponins from the butanol-rich extract by skeleton type. A further purification of group 3 by CCC (ethyl acetate - ethanol - water (1:0.2:1; v/v)) and HPLC-RI was performed in order to obtain these unusual aglycones in pure form. Copyright © 2016 Elsevier B.V. All rights reserved.
Luján-Rhenals, D; Morawicki, R; Shi, Z; Ricke, S C
2018-01-02
Soybean meal (SBM) is a product generated from the manufacture of soybean oil and has the potential for use as a source of fermentable sugars for ethanol production or as a protein source for animal feeds. Knowing the levels of nitrogen available from ammonium is a necessary element of the ethanolic fermentation process while identifying the levels of essential amino acids such as lysine is important in determining usage as a feed source. As such the purpose of this study was to quantify total nitrogen and ammonium in the liquid fraction of hydrolyzed SBM and to evaluate total and bioavailable lysine in the solid fraction of the hydrolyzed SBM. The effects of acid concentration, cellulase and β-glucosidase on total and ammonium nitrogen were studied with analysis indicating that higher acid concentrations increased nitrogen compounds with ammonium concentrations ranging from 0.20 to 1.24 g L -1 while enzymatic treatments did not significantly increase nitrogen levels. Total and bioavailable lysine was quantified by use of an auxotrophic gfpmut3 E.coli whole-cell bioassay organism incapable of lysine biosynthesis. Acid and enzymatic treatments were applied with lysine bioavailability increasing from a base of 82% for untreated SBM to up to 97%. Our results demonstrated that SBM has the potential to serve in ethanolic fermentation and as an optimal source essential amino acid lysine.
Zago, Adriana M; Carvalho, Fabiano B; Gutierres, Jessié Martins; Bohnert, Crystiani; Fernandes, Marilda da Cruz; Morandini, Liziane M; Coelho, Helena S; Fogaça, Aline O; Andrade, Cinthia M; Mostardeiro, Marco A; Dalcol, Ionara I; Morel, Ademir F
2018-05-21
This study investigated the antioxidant activity of Cuphea glutinosa (CG) and its effect on Na + , K + -ATPase from cardiac muscle. The ethanolic extract showed higher antioxidant capacity compared to aqueous and ethyl acetate fraction. Ethyl acetate fraction showed β-sitosterol-3-O-β-glucoside, kaempferol, quercetin, isoquercetin, gallic acid methyl ester, and gallic acid. The ethanolic extract also reduced the Na + ,K + -ATPase activity. CG presented a promising antioxidant activity and inhibitory effect on the Na + , K + -ATPase activity, supporting biochemical evidences the popular use of this plant in the treatment of heart failure.
Matsakas, Leonidas; Nitsos, Christos; Raghavendran, Vijayendran; Yakimenko, Olga; Persson, Gustav; Olsson, Eva; Rova, Ulrika; Olsson, Lisbeth; Christakopoulos, Paul
2018-01-01
The main role of pretreatment is to reduce the natural biomass recalcitrance and thus enhance saccharification yield. A further prerequisite for efficient utilization of all biomass components is their efficient fractionation into well-defined process streams. Currently available pretreatment methods only partially fulfill these criteria. Steam explosion, for example, excels as a pretreatment method but has limited potential for fractionation, whereas organosolv is excellent for delignification but offers poor biomass deconstruction. In this article, a hybrid method combining the cooking and fractionation of conventional organosolv pretreatment with the implementation of an explosive discharge of the cooking mixture at the end of pretreatment was developed. The effects of various pretreatment parameters (ethanol content, duration, and addition of sulfuric acid) were evaluated. Pretreatment of birch at 200 °C with 60% v/v ethanol and 1% w/w biomass H 2 SO 4 was proven to be the most efficient pretreatment condition yielding pretreated solids with 77.9% w/w cellulose, 8.9% w/w hemicellulose, and 7.0 w/w lignin content. Under these conditions, high delignification of 86.2% was demonstrated. The recovered lignin was of high purity, with cellulose and hemicellulose contents not exceeding 0.31 and 3.25% w/w, respectively, and ash to be < 0.17% w/w in all cases, making it suitable for various applications. The pretreated solids presented high saccharification yields, reaching 68% at low enzyme load (6 FPU/g) and complete saccharification at high enzyme load (22.5 FPU/g). Finally, simultaneous saccharification and fermentation (SSF) at 20% w/w solids yielded an ethanol titer of 80 g/L after 192 h, corresponding to 90% of the theoretical maximum. The novel hybrid method developed in this study allowed for the efficient fractionation of birch biomass and production of pretreated solids with high cellulose and low lignin contents. Moreover, the explosive discharge at the end of pretreatment had a positive effect on enzymatic saccharification, resulting in high hydrolyzability of the pretreated solids and elevated ethanol titers in the following high-gravity SSF. To the best of our knowledge, the ethanol concentration obtained with this method is the highest so far for birch biomass.
[Inhibition effects of Houttuynia cordata Thunb. on Microcystis aeruginosa].
Liu, Lu; Li, Cheng; Xia, Wentong; Yang, Xiaohui; Zhang, Tingting
2014-05-01
To research the inhibitory effect of Houttuynia cordata Thunb. on Microcystis aeruginosa. M. aeruginosat were treated respectively by H. cordata leaching solution or H. cordata extracts. H. cordata leaching solution extracted by water and the H. cordata extracts extracted by organic solvent (acetone, ethyl acetate, petroleum ether and ethanol, respectively). The inhibition ratios were calculated according to the M. aeruginosa densities, and the allelochemicals of the extract that had the best inhibitiory effect on M. aeruginosa were identified by GC-MS analysis. It was proved that leaching solution of H. cordata and four crude extracts had good inhibitory effect on M. aeruginosa. The inhibitory effects of the four crude extracts were the fraction extracted by ethyl acetate, the fraction extracted by ethanol, the fraction extracted by acetone and the fraction extracted by petroleum ether form strong to weak in turn. Then, the allelochemicals of the fraction extracted by ethyl acetate were indentified, mainly including acetonyldimethylcarbinol, 2,2-dimethyl-3-hexanone, 6-chlorohexanoic and 4-cyanophenyl ester. H. cordata has strong inhibitory effect on water-blooming cyanobacteria and the potential to develop into an ecological M. aeruginosa inhibiting agent.
Kumar, V.; Bhandari, Uma; Tripathi, C. D.; Khanna, Geetika
2014-01-01
Obesity is associated with numerous co-morbidities such as cardiovascular diseases, type 2 diabetes, hypertension and others. Therefore, the present study was planned to investigate the effect of water- soluble fraction of Gymnema sylvestre ethanol extract on biochemical and molecular alterations in obese diabetic rats. Diabetes was induced by single i.v. injection of streptozotocin (45 mg/kg) via tail vein. Obesity was induced by oral feeding of high fat diet for a period of 28 days in diabetic rats. Body weight gain, food intake, water intake, hemodynamic parameters (systolic, diastolic, mean arterial blood pressures and heart rate), serum biochemical parameters (leptin, insulin, lipid levels, apolipoprotein B and glucose), cardiomyocyte apoptosis (cardiac caspase-3, Na+/K+ ATPase activity and DNA fragmentation) organs and visceral fat pad weight and oxidative stress parameters were measured. Oral treatment with water soluble fraction of Gymnema sylvestre ethanol extracts (120 mg/kg/p.o.) for a period of 21 days, resulted in significant reduction in heart rate, mean arterial pressure, serum leptin, insulin, apolipoprotein B, lipids, glucose, cardiac caspase-3 levels, Na+/K+ ATPase activity and DNA laddering, visceral fat pad and organ's weight and improved the antioxidant enzymes levels in the high fat diet induced obesity in diabetic rats. The results of present study reveal that water soluble fraction of Gymnema sylvestre ethanol extract could be useful intervention in the treatment of obesity and type-2 diabetes mellitus. PMID:25284929
Kumar, V; Bhandari, Uma; Tripathi, C D; Khanna, Geetika
2014-07-01
Obesity is associated with numerous co-morbidities such as cardiovascular diseases, type 2 diabetes, hypertension and others. Therefore, the present study was planned to investigate the effect of water- soluble fraction of Gymnema sylvestre ethanol extract on biochemical and molecular alterations in obese diabetic rats. Diabetes was induced by single i.v. injection of streptozotocin (45 mg/kg) via tail vein. Obesity was induced by oral feeding of high fat diet for a period of 28 days in diabetic rats. Body weight gain, food intake, water intake, hemodynamic parameters (systolic, diastolic, mean arterial blood pressures and heart rate), serum biochemical parameters (leptin, insulin, lipid levels, apolipoprotein B and glucose), cardiomyocyte apoptosis (cardiac caspase-3, Na(+)/K(+) ATPase activity and DNA fragmentation) organs and visceral fat pad weight and oxidative stress parameters were measured. Oral treatment with water soluble fraction of Gymnema sylvestre ethanol extracts (120 mg/kg/p.o.) for a period of 21 days, resulted in significant reduction in heart rate, mean arterial pressure, serum leptin, insulin, apolipoprotein B, lipids, glucose, cardiac caspase-3 levels, Na(+)/K(+) ATPase activity and DNA laddering, visceral fat pad and organ's weight and improved the antioxidant enzymes levels in the high fat diet induced obesity in diabetic rats. The results of present study reveal that water soluble fraction of Gymnema sylvestre ethanol extract could be useful intervention in the treatment of obesity and type-2 diabetes mellitus.
de Andrade, Sérgio Faloni; Comunello, Eros; Noldin, Vânia Floriani; Monache, Franco Delle; Cechinel Filho, Valdir; Niero, Rivaldo
2008-01-01
The hexane, chloroform, ethyl acetate and aqueous-soluble fractions from leaves of Maytenus robusta (Celastraceae) were evaluated for their protective actions against ethanol-induced gastric lesions in rats. The treatment with all fractions (150 mg/kg) and omeprazol (30 mg/kg) significantly reduced the lesion index, the total lesion area, and the percentage of lesion, in comparison with the control group (p<0.05). Since the ethyl acetate-soluble fraction was found to be most active in the pylorus ligated model, this fraction was further investigated and resulted in the isolation of triterpene 3,15-dioxo-21alpha-hydroxy friedelane. The triterpene was evaluated in the HCl/ethanol-induced ulcer model in mice. In this assay, both the groups treated with 3,15-dioxo-21alpha-hydroxy friedelane and omeprazol, at a dose of 30 mg/kg, presented a significant reduction in lesion index, total lesion area, and in the percentage of the lesion, when compared with the control group (p<0.05). The result suggests that the antiulcer effect observed in the extract and fractions may be attributed, at least in part, to this compound. Further experiments are underway to determine which antiulcer mechanisms involved in gastroprotection.
Anti-fertility effects of different fractions of Anethum graveolens L. extracts on female rats.
Malihezaman, Monsefi; Mojaba, Masoudi; Elham, Hosseini; Farnaz, Gramifar; Ramin, Miri
2012-01-01
Our previous studies showed the effects of aqueous and ethanol extracts of Anethum graveolens L. (dill) on female infertility. In the present study we investigated whether different fractions of this herb extract can cause infertility in rats. Female rats were divided into the control groups, the groups receiving either a low (0.5 g/kg)) or a high dose (5g/kg) of water, N-butanol, chloroform and ether fractions of the aqueous plant extract, and the groups receiving either a low (0.045 g/kg) or a high dose (0.45 g/kg) of the same fractions of ethanol extract. The mentioned doses were gavaged in 1mL for 10 days. Vaginal smears were prepared daily. Estradiol and progesterone levels were measured. The left oviduct and ovary were removed, their tissue subsequently being prepared in form of histology slides and stained using haematoxylin-eosin and Masson's trichrome. Female rats assigned to each group were mated with males; after that, crown-rump lengths and weights of newborn rats were measured. Results showed that each fraction produced some changes such as hormonal level reduction (chloroform fraction), diestrus phase prolongation and infertility (water fraction), and increase in pregnancy duration (chloroform and ether fractions). We concluded that each fraction comprises only some of the mentioned components and therefore recommended the usage of crude extract, especially the aqueous one, in case infertility aims to be induced.
Rat pancreatic B-cells after chronic alcohol feeding. A morphometric and fine structural study.
Koko, V; Todorović, V; Nikolić, J A; Glisić, R; Cakić, M; Lacković, V; Petronijević, L; Stojković, M; Varagić, J; Janić, B
1995-04-01
Quantitative analysis of the light microscopic and fine structure of rat islet B-cells was carried out in chronic alcoholism. Absolute pancreatic weight and volume were similar in groups C (control) and E (ethanol), but relative pancreatic weight in group E rat was decreased. The results for fasting blood glucose and insulin levels were similar in the two groups of animals. There was a significantly reduced total pancreatic islet volume in E rats. The total number of endocrine cells both per islet and per microns2 of islet was similar in the two groups of animals. The volume density and number of B-cells per islet and per microns2 of islet were not changed in ethanol-treated rats as compared with the control. On the other hand, diameter, surface area and volume of the B-cells and their nuclei were found to be statistically significantly decreased. Histological examination revealed that islet blood vessels were dilated in alcoholic rats. Over the 4-month period of ethanol intake a significant decrease in cell profile area, nuclear profile area and volume density of cytoplasmic granules and an increase in the profile area and volume density of endoplasmic reticulum occurred. The gross histological alteration seen in most B-cells of the ethanol-treated rats was irregularity of the nuclear envelope with deep invagination and with margination of heterochromatin and many empty granules or granules without clear electron dense crystals of insulin. The present results indicate some optical and structural abnormalities of B-cells in chronic alcoholism that may be related to cell dysfunction and may contribute, at least in part, to the endocrine pancreas functional disturbance.
Yano, Yohko F; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo
2006-11-07
In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20 mol % ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.
NASA Astrophysics Data System (ADS)
Yano, Yohko F.; Douguchi, Junya; Kumagai, Atsushi; Iijima, Takao; Tomida, Yukinobu; Miyamoto, Toshiaki; Matsuura, Kazuo
2006-11-01
In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem. Phys. 114, 2382 (2001)]. For pure liquids (water and ethanol), it was found that the high frequency ultrasound does not affect the liquid structure microscopically. For the 20mol% ethanol-water mixture, the estimated ethanol mole fraction in the ultrasonic fountain jet by using the position of the main maximum in the x-ray diffraction profile coincided with that in the reservoir. This result suggests that the ethanol separation is not caused by any distorted liquid structure under the ultrasound irradiation and occurs when or after the generation of the liquid droplet mist.
Fate of Fumonisin B1 in Naturally Contaminated Corn during Ethanol Fermentation
Bothast, R. J.; Bennett, G. A.; Vancauwenberge, J. E.; Richard, J. L.
1992-01-01
Two lots of corn naturally contaminated with fumonisin B1 (15 and 36 ppm) and a control lot (no fumonisin B1 detected) were used as substrates for ethanol production in replicate 8.5-liter yeast fermentations. Ethanol yields were 8.8% for both the control and low-fumonisin corn, while the high-fumonisin corn contained less starch and produced 7.2% ethanol. Little degradation of fumonisin occurred during fermentation, and most was recovered in the distillers' grains, thin stillage, and distillers' solubles fractions. No toxin was detected in the distilled alcohol or centrifuge solids. Ethanol fermentation of fumonisin-contaminated corn coupled with effective detoxification of distillers' grains and aqueous stillage is suggested as a practical process strategy for salvaging contaminated corn. PMID:16348623
Sogut, Ibrahim; Uysal, Onur; Oglakci, Aysegul; Yucel, Ferruh; Kartkaya, Kazim; Kanbak, Gungor
2017-03-01
Alcohol consumption in pregnancy may cause fetal alcohol syndrome (FAS) in the infant. This study aims to investigate prenatal alcohol exposure related neuroapoptosis on the cerebral cortex tissues of newborn rats and possible neuroprotective effects of betaine, folic acid, and combined therapy. Pregnant rats were divided into five experimental groups: control, ethanol, ethanol + betaine, ethanol + folic acid, and ethanol + betaine + folic acid combined therapy groups. We measured cytochrome c release, caspase-3, calpain and cathepsin B and L. enzyme activities. In order to observe apoptotic cells in the early stages, TUNEL method was chosen together with histologic methods such as assessing the diameters of the apoptotic cells, their distribution in unit volume and volume proportion of cortical intact neuron nuclei. Calpain, caspase-3 activities, and cytochrome c levels were significantly increased in alcohol group while cathepsin B and L. activities were also found to be elevated albeit not statistically significant. These increases were significantly reversed by folic acid and betaine + folic acid treatments. While ethanol increased the number of apoptotic cells, this increase was prevented in ethanol + betaine and ethanol + betaine + folic acid groups. Morphometric examination showed that the mean diameter of apoptotic cells was increased with ethanol administration while this increase was reduced by betaine and betaine + folic acid treatments. We observed that ethanol is capable of triggering apoptotic cell death in the newborn rat brains. Furthermore, folic acid, betaine, and combined therapy of these supplements may reduce neuroapoptosis related to prenatal alcohol consumption, and might be effective on preventing fetal alcohol syndrome in infants.
Parnell, Scott E.; Holloway, Hunter T.; O’Leary-Moore, Shonagh K.; Dehart, Deborah B.; Paniaqua, Beatriz; Oguz, Ipek; Budin, Francois; Styner, Martin A.; Johnson, G. Allan; Sulik, Kathleen K.
2013-01-01
Animal model-based studies have shown that ethanol exposure during early gestation induces developmental stage-specific abnormalities of the face and brain. The exposure time-dependent variability in ethanol’s teratogenic outcomes is expected to contribute significantly to the wide spectrum of effects observed in humans with fetal alcohol spectrum disorder (FASD). The work presented here employs a mouse FASD model and magnetic resonance microscopy (MRM; high resolution magnetic resonance imaging) in studies designed to further our understanding of the developmental stage-specific defects of the brain that are induced by ethanol. At neurulation stages, i.e. at the beginning of gestational day (GD) 9 and again 4 hours later, time-mated C57Bl/6J dams were intraperitoneally administered 2.9 g/kg ethanol or vehicle. Ethanol-exposed fetuses were collected on GD 17, processed for MRM analysis, and results compared to comparably staged controls. Linear and volume measurements as well as shape changes for numerous individual brain regions were determined. GD 9 ethanol exposure resulted in significantly increased septal region width, reduction of cerebellar volume, and enlargement of all of the ventricles. Additionally, the results of shape analyses showed that many areas of the ethanol-exposed brains including the cerebral cortex, hippocampus and right striatum were significantly misshapen. These data demonstrate that ethanol can induce dysmorphology that may not be obvious based on volumetric analyses alone, highlight the asymmetric aspects of ethanol-induced defects, and add to our understanding of ethanol’s developmental stage-dependent neuroteratogenesis. PMID:23911654
Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A
2005-06-01
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.
Rebouças, Elce C C; Leal, Sandra; Silva, Susana M; Sá, Susana I
2016-11-01
Ethanol is a macronutrient whose intake is a form of ingestive behavior, sharing physiological mechanisms with food intake. Chronic ethanol consumption is detrimental to the brain, inducing gender-dependent neuronal damage. The hypothalamic arcuate nucleus (ARN) is a modulator of food intake that expresses feeding-regulatory neuropeptides, such as alpha melanocyte-stimulating hormone (α-MSH) and neuropeptide Y (NPY). Despite its involvement in pathways associated with eating disorders and ethanol abuse, the impact of ethanol consumption and withdrawal in the ARN structure and neurochemistry in females is unknown. We used female rat models of 20% ethanol consumption for six months and of subsequent ethanol withdrawal for two months. Food intake and body weights were measured. ARN morphology was stereologically analyzed to estimate its volume, total number of neurons and total number of neurons expressing NPY, α-MSH, tyrosine hydroxylase (TH) and estrogen receptor alpha (ERα). Ethanol decreased energy intake and body weights. However, it did not change the ARN morphology or the expression of NPY, α-MSH and TH, while increasing ERα expression. Withdrawal induced a significant volume and neuron loss that was accompanied by an increase in NPY expression without affecting α-MSH and TH expression. These findings indicate that the female ARN is more vulnerable to withdrawal than to excess alcohol. The data also support the hypothesis that the same pathways that regulate the expression of NPY and α-MSH in long-term ethanol intake may regulate food intake. The present model of long-term ethanol intake and withdrawal induces new physiological conditions with adaptive responses. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deepha, V.; Praveena, R.; Sivakumar, Raman; Sadasivam, K.
2014-03-01
The increasing interests in naturally occurring flavonoids are well known for their bioactivity as antioxidants. The present investigations with combined experimental and theoretical methods are employed to determine the radical scavenging activity and phytochemicals present in Crotalaria globosa, a novel plant source. Preliminary quantification of ethanolic extract of leaves shows high phenolic and flavonoid content than root extract; also it is validated through DPPHrad assay. Further analysis is carried out with successive extracts of leaves of varying polarity of solvents. In DPPHrad and FRAP assays, ethyl acetate fraction (EtOAc) exhibit higher scavenging activity followed by ethanol fraction (EtOH) whereas in NOS assay ethanol fraction is slightly predominant over the EtOAc fraction. The LC-MS analysis provides tentative information about the presence of flavonoid C-glycoside in EtOAc fraction (yellow solid). Presence of flavonoid isorientin has been confirmed through isolation (PTLC) and detected by spectroscopy methods (UV-visible and 1H NMR). Utilizing B3LYP/6-311G (d,p) level of theory the structure and reactivity of flavonoid isoorientin theoretically have been explored. The analysis of the theoretical Bond dissociation energy values, for all Osbnd H sites of isoorientin reveals that minimum energy is required to dissociate H-atom from B-ring than A and C-rings. In order to validate the antioxidant characteristics of isoorientin the relevant molecular descriptors IP, HOMO-LUMO, Mulliken spin density analysis and molecular electrostatic potential surfaces have been computed and interpreted. From experimental and theoretical results, it is proved that isoorientin can act as potent antiradical scavenger in oxidative system.
NASA Astrophysics Data System (ADS)
Burov, D. M.; Ledenkov, S. F.; Vandyshev, V. N.
2013-05-01
Constants of the acid dissociation and complexation of L-phenylalanine (HPhe) with copper(II) ions are determined by potentiometry in aqueous ethanol solutions containing 0 to 0.7 molar fraction of alcohol. Changes in the Gibbs energy for the transfer from water to a binary solvent of L-phenylalanine, Phe- anion, and [CuPhe]+ complex are calculated. It is found that the weakening of solvation of the ligand donor groups in solvents with high ethanol contents is accompanied by an increase in the stability of [CuPhe]+ complex.
Elsyana, Vida; Bintang, Maria; Priosoeryanto, Bambang Pontjo
2016-01-01
Clove mistletoe (Dendrophthoe pentandra (L.) Miq.) is a semiparasitic plant that belongs to Loranthaceae family. Clove mistletoe was traditionally used for cancer treatment in Indonesia. In the present study, we examined cytotoxicity of clove mistletoe leaves extracts against brine shrimps and conducted their antiproliferative activity on K562 (human chronic myelogenous leukemia) and MCM-B2 (canine benign mixed mammary) cancer cell lines in vitro. The tested samples were water extract, ethanol extract, ethanol fraction, ethyl acetate fraction, and n-hexane fraction. Cytotoxicity was screened using Brine Shrimp Lethality Test (BSLT). Antiproliferative activity was conducted using Trypan Blue Dye Method and cells were counted using haemocytometer. The results showed that n-hexane fraction exhibited significant cytotoxicity with LC50 value of 55.31 μg/mL. The n-hexane fraction was then considered for further examination. The n-hexane fraction of clove mistletoe could inhibit growth of K562 and MCM-B2 cancer cell lines in vitro. The inhibition activity of clove mistletoe n-hexane fraction at concentration of 125 μg/mL on K562 cancer cell lines was 38.69%, while on MCM-B2 it was 41.5%. Therefore, it was suggested that clove mistletoe had potential natural anticancer activity. PMID:27099614
Boboescu, Iulian-Zoltan; Gélinas, Malorie; Beigbeder, Jean-Baptiste; Lavoie, Jean-Michel
2017-11-01
Ethanol production using waste biomass represents a very attractive approach. However, there are considerable challenges preventing a wide distribution of these novel technologies. Thus, a fractional-factorial screening of process variables and Saccharomyces cerevisiae yeast inoculum conditions was performed using a synthetic fermentation media. Subsequently, a response-surface methodology was developed for maximizing ethanol yields using a hemicellulosic solution generated through the chemical hydrolysis of steam treatment broth obtained from residual softwood biomass. In addition, nutrient supplementation using starch-based ethanol production by-products was investigated. An ethanol yield of 74.27% of the theoretical maximum was observed for an initial concentration of 65.17g/L total monomeric sugars. The two-step experimental strategy used in this work represents the first successful attempt to developed and use a model to make predictions regarding the optimal ethanol production using both softwood feedstock residues as well as 1st generation ethanol production by-products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ethanol production method and system
Chen, M.J.; Rathke, J.W.
1983-05-26
Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.
Evaluation of percutaneous ethanol injections in benign thyroid nodules.
Perez, Camila Luhm Silva; Fighera, Tayane Muniz; Miasaki, Fabiola; Mesa Junior, Cleo Otaviano; Paz Filho, Gilberto Jorge da; Graf, Hans; Carvalho, Gisah Amaral de
2014-12-01
The objective of this study was to evaluate the efficacy and safety of percutaneous ethanol injection (PEI) in the treatment of benign thyroid nodules. We evaluated 120 patients with benign thyroid nodules. Patients underwent evaluation of serum TSH and free T4, cervical ultrasound, and thyroid scintigraphy (in those with suppressed TSH levels). The application of sterile ethanol 99% was guided by ultrasound, with the injected volume amounting to one-third of the nodule volume. Response was considered complete (reduction of 90%); partial (reduction between 50 and 90%); or none (reduction of < 50%). Autonomous nodules were evaluated for normalization of TSH levels. Among the nodules studied, 30.8% were solid, 56.7% were mixed, 12.5% were cystic, and 21.6% were hyperfunctioning. The initial volume of the treated nodules ranged from 0.9 to 74.8 mL (mean 13.1 ± 12.4 mL). We performed 1-8 sessions of PEI, applying an average of 6.2 mL of ethanol for patient. After 2 years of follow-up, 17% of patients achieved a complete response (94% reduction); 53%, a partial response (70% reduction); and 30%, no response. A reduction in the volume of autonomous nodules was noted in 70% of cases, and 54% had a normalized value of TSH. The main side effect is local pain, lasting less than 24 hours in most cases. This study showed that PEI is a safe and effective procedure for treatment of benign, solid or mixed thyroid nodules. Most cases resulted in significant reduction in nodule volume, with normalization of thyroid function.
USDA-ARS?s Scientific Manuscript database
Oats (Avena sativa L.) were extracted with 80% aqueous ethanol and the extract was successively isolated by liquid-liquid partition to yield n-hexane, ethyl acetate, n-butanol and water layers. Among these extractions the ethyl acetate (EA) layer exhibited the highest total phenolic content (TPC), t...
The Thermodynamics of Drunk Driving
NASA Astrophysics Data System (ADS)
Thompson, Robert Q.
1997-05-01
Chemical and instrumental tests for driving under the influence of alcohol (DUI) measure the concentration of ethanol in the breath (BrAC), while state DUI laws are described in terms of blood alcohol concentration (BAC). Consequently, accurate and fair conversion from BrAC to BAC is crucial to the judicial process. Theoretical treatment of the water-air-ethanol equilibrium system and the related blood-breath-ethanol system, based on principles from general chemistry and biology, yields an equation relating the ratio of BAC to BrAC to the absolute temperature of the breath, the fraction of water in the blood, and the enthalpy and entropy of vaporization of ethanol from aqueous solution. The model equation predicts an average value for the ratio of 2350+100, not significantly different from reported experimental values. An exponential temperature dependence is predicted and has been confirmed experimentally as well. Biological, chemical, and instrumental variables are described along with their contributions to the overall uncertainty in the value of BrAC/BAC. While the forensic science community uses, and debates, a fixed ratio of 2100, the theoretical model suggests that a value of 1880 should be used to reduce the fraction of false positives to <1%.
Dasgupta, Diptarka; Ghosh, Debashish; Bandhu, Sheetal; Adhikari, Dilip K
2017-07-01
Optimum utilization of fermentable sugars from lignocellulosic biomass to deliver multiple products under biorefinery concept has been reported in this work. Alcohol fermentation has been carried out with multiple cell recycling of Kluyveromyces marxianus IIPE453. The yeast utilized xylose-rich fraction from acid and steam treated biomass for cell generation and xylitol production with an average yield of 0.315±0.01g/g while the entire glucose rich saccharified fraction had been fermented to ethanol with high productivity of 0.9±0.08g/L/h. A detailed insight into its genome illustrated the strain's complete set of genes associated with sugar transport and metabolism for high-temperature fermentation. A set flocculation proteins were identified that aided in high cell recovery in successive fermentation cycles to achieve alcohols with high productivity. We have brought biomass derived sugars, yeast cell biomass generation, and ethanol and xylitol fermentation in one platform and validated the overall material balance. 2kg sugarcane bagasse yielded 193.4g yeast cell, and with multiple times cell recycling generated 125.56g xylitol and 289.2g ethanol (366mL). Copyright © 2017 Elsevier GmbH. All rights reserved.
Wang, Wei; Chen, Jun; Cai, Bao-Chang; Fang, Yun
2008-09-01
To study the influencing factors in preparation of brucine liposomes by ammonium sulfate transmembrane gradients. The brucine liposomes were separated by Sephadex G-50, and the influence of various factors on the entrapment efficiencies were investigated. The entrapment efficiency was enhanced by increased ammonium sulfate concentration, ethanol volume and PC concentration. Burcine liposomes prepared by ammonium sulfate transmembrance gradients can get a high entrapment efficiency, the main influencing factors were ammonium sulfate concentration, ethanol volume and PC concentration.
Gong, Xing-Chu; Shen, Ji-Chen; Qu, Hai-Bin
2016-12-01
Continuous pharmaceutical manufacturing is one of the development directions in international pharmaceutical technology. In this study, a continuous mixing technology of ethanol and concentrated extract in the ethanol precipitation of Salvia miltiorrhiza was realized by using a membrane dispersion method. The effects of ethanol flowrate, concentrated extract flowrate, and flowrate ratio on ethanol precipitation results were investigated. With the increase of the flowrates of ethanol and concentrated extract, retention rate of active phenolic acids components was increased, and the total solid removal rate was decreased. The purity of active components in supernatants was mainly affected by the ratio of ethanol flowrate and concentrated extract flowrate. The mixing efficiency of adding ethanol under continuous flow mixing mode in this study was comparable to that of industrial ethanol precipitation. Continuous adding ethanol by using a membrane dispersion mixer is a promising technology with many advantages such as easy enlargement, large production per unit volume, and easy control. Copyright© by the Chinese Pharmaceutical Association.
Antimicrobial activity of tiger's betel (Piper porphyrophyllum N.E. Br., Piperaceae).
Wiart, C; Hannah, N A; Yassim, M; Hamimah, H; Sulaiman, M
2004-09-01
The ethanol extract of leaves of Piper porphyrophyllum N.E. Br. showed a broad spectrum of antibacterial activity. The activity was increased on fractionation (hexane, dichloromethane and aqueous), particularly in the aqueous fraction. No activity was shown against tested Candida albicans. Copyright (c) 2004 John Wiley & Sons, Ltd.
Transurethral ethanol injection therapy of benign prostatic hyperplasia: four-year follow-up.
Sakr, Mostafa; Eid, Ahmed; Shoukry, Mohammed; Fayed, Abdelaziz
2009-02-01
Evaluating long-term (50 months) efficacy of transurethral intraprostatic injection of absolute ethanol to treat benign prostatic hyperplasia (BPH). A prospective study was conducted to evaluate 35 patients with BPH treated by transurethral injection of dehydrated ethanol. Mean age was 66.3 years. Endoscopic injection of 6-12 mL ethanol was carried out at 5-10 sites in the prostate. International Prostate Symptom Score (IPSS), maximum flow rate, prostate volume, postvoid residual and side effects or complications incidence were logged. Mean IPSS +/- standard deviation improved significantly from 22.0 +/- 3.89 preoperatively to 9.85 +/- 2.23 at 50 months follow-up. Mean peak urinary flow rate increased from 5.87 +/- 3.69 mL/s to 16.89 +/- 4.12 after 4 years. Mean residual urine volume had decreased from 68.6 +/- 49.98 mL to 36.02 +/- 20.87 after 4 years (P < 0.05). The prostate volume decreased from 52.67 +/- 20.43 g preoperatively to 49.94 +/- 21.28 g after 4 years (statistically significant). There were no intra-operative complications but post-operative urine retention occurred in all patients requiring catheterization for a mean 6.7 days. Acute epididymitis and chronic prostatitis occurred in two patients. Urethral stricture occurred in one patient. This technique appears to be safe and cost effective. No occurrence of retrograde ejaculation was detected. The long-term effects of ethanol injection of the prostate were satisfactory and acceptable as a minimally invasive therapeutic modality of selected patients.
NASA Astrophysics Data System (ADS)
Ferris, Thomas D.; Farrar, Thomas C.
The temperature dependence of the hydroxyl proton chemical shift and deuterium quadrupolar relaxation time of neat ethanol were measured over the temperature range 190-350 K. The proton isotropic chemical shift varies from 6.2 ppm at 190 K to 4.7 ppm at 350 K. The deuterium NMR relaxation time in ethanol- d 1 varies from 6.2 ms to 309 ms over the same range. Ab initio calculations performed on various ethanol clusters ranging in size from monomer to hexamer show a linear correlation ( R 2 = 0.99) between ≤D, the deuterium quadrupole coupling parameter, and δH, the isotropic proton chemical shift in ppm relative to TMS: ≤D(kHz) = 297.60 - 15.28 δH. The temperature dependence of ≤D ranges from 199.5 kHz at 190 K to 221.4 kHz at 350 K. Using the values for ≤D and the relaxation time data, the temperature dependence of the OD rotational correlation time was found to vary from 282 ps at 190 K to 4.5 ps near the boiling point (350 K). Using these correlation times and bulk viscosity data, the Gierer-Wirtz model predicts a supramolecular cluster volume of about 317 A 3 , the approximate volume of a cyclic pentamer cluter of ethanol molecules. The cluster volume was nearly constant from 340 K to about 290 K.
Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine
NASA Technical Reports Server (NTRS)
Heisey, J. B.; Lestz, S. S.
1981-01-01
A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.
NASA Astrophysics Data System (ADS)
Dharma Putra, Meilana; Abasaeed, Ahmed E.; Zeinelabdeen, Mohamed A.; Gaily, Mohamed H.; Sulieman, Ashraf K.
2014-04-01
About half of worldwide production of dates is unconsumed. Dates contain over 75 % reduced sugars (mostly glucose and fructose with nearly equal amount). Compared to the commercial Saccharomyces cerevisiae wild strain, the strains ATCC 36858 and 36859 could produce high concentration fructose syrups. The fructose fractions obtained were 95.9 and 97.4% for ATCC 36858 and 86.5 and 91.4% for ATCC 36859 at 30 and 33°C, respectively. Fructose yields higher than 90% were obtained using ATCC 36858 compared to those obtained using ATCC 36859 which were 87.3 and 66.1% at 30 and 33°C, respectively. The ethanol yield using ATCC 36858 was higher than that using ATCC 36859 by 16 and 9% at 30 and 33°C, respectively. Through this finding, the production of fructose and ethanol from date extract is a promising process. Moreover, the fructose fractions obtained here (about 90%) are much higher than those obtained with the commercial process, i.e. 55 % fructose syrups.
Duguid, K B; Montross, M D; Radtke, C W; Crofcheck, C L; Wendt, L M; Shearer, S A
2009-11-01
Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require a low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated manually and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0%, 0.4%, or 0.8% NaOH for 2 h at room temperature, washed, autoclaved and saccharified. In addition, dilute sulfuric acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.
Furay, Amy R; Neumaier, John F; Mullenix, Andrew T; Kaiyala, Karl K; Sandygren, Nolan K; Hoplight, Blair J
2011-02-01
Serotonin 1B (5-HT(1B)) heteroreceptors on nucleus accumbens shell (NAcSh) projection neurons have been shown to enhance the voluntary consumption of alcohol by rats, presumably by modulating the activity of the mesolimbic reward pathway. The present study examined whether increasing 5-HT(1B) receptors expressed on NAcSh projection neurons by means of virus-mediated gene transfer enhances ethanol consumption during the initiation or maintenance phase of drinking and alters the temporal pattern of drinking behavior. Animals received stereotaxic injections of viral vectors expressing either 5-HT(1B) receptor and green fluorescent protein (GFP) or GFP alone. Home cages equipped with a three-bottle (water and 6 and 12% ethanol) lickometer system recorded animals' drinking behaviors continuously, capturing either initiation or maintenance of drinking behavior patterns. Overexpression of 5-HT(1B) receptors during initiation increased consumption of 12% ethanol during both forced-access and free-choice consumption. There was a shift in drinking pattern for 6% ethanol with an increase in number of drinking bouts per day, although the total number of drinking bouts for 12% ethanol was not different. Finally, increased 5-HT(1B) expression induced more bouts with very high-frequency licking from the ethanol bottle sippers. During the maintenance phase of drinking, there were no differences between groups in total volume of ethanol consumed; however, there was a shift toward drinking bouts of longer duration, especially for 12% ethanol. This suggests that during maintenance drinking, increased 5-HT(1B) receptors facilitate longer drinking bouts of more modest volumes. Taken together, these results indicate that 5-HT(1B) receptors expressed on NAcSh projection neurons facilitate ethanol drinking, with different effects during initiation and maintenance of ethanol-drinking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.
Lavoie, Serge; Côté, Isabelle; Pichette, André; Gauthier, Charles; Ouellet, Michaël; Nagau-Lavoie, Francine; Mshvildadze, Vakhtang; Legault, Jean
2017-02-22
Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. However, the antiviral activities of these plants have been seldom evaluated on cellular models to validate their in vitro efficiencies. In this study, Cornus canadensis L. (Cornaceae), a plant used in Native American traditional medicine to treat possible antiviral infections, has been selected for further examination. The plant was extracted by decoction and infusion with water, water/ethanol 1:1 and ethanol to obtain extracts similar to those used by Native Americans. The effects of the extracts were tested on herpes simplex virus type-1 (HSV-1) using a plaque reduction assay. Moreover, bioassay-guided fractionation was achieved to isolate bioactive compounds. Water/ethanol 1:1 infusion of C. canadensis leaves were the most active extracts to inhibit virus absorption with EC 50 of about 9 μg mL -1 , whereas for direct mode, both extraction methods using water or water/ethanol 1:1 as solvent were relatively similar with EC 50 ranging from 11 to 17 μg mL -1 . The fractionation led to the identification of active fractions containing hydrolysable tannins. Tellimagrandin I was found the most active compound with an EC 50 of 2.6 μM for the direct mode and 5.0 μM for the absorption mode. Altogether, the results presented in this work support the antiviral activity of Cornus canadensis used in Native American traditional medicine.
Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater co...
Hu, Bing; Han, Lingyu; Gao, Zhiming; Zhang, Ke; Al-Assaf, Saphwan; Nishinari, Katsuyoshi; Phillips, Glyn O; Yang, Jixin; Fang, Yapeng
2018-05-14
Effects of temperature and solvent condition on phase separation-induced molecular fractionation of gum arabic/hyaluronan (GA/HA) mixed solutions were investigated. Two gum arabic samples (EM10 and STD) with different molecular weights and polydispersity indices were used. Phase diagrams, including cloud and binodal curves, were established by visual observation and GPC-RI methods. The molecular parameters of control and fractionated GA, from upper and bottom phases, were measured by GPC-MALLS. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 11% to 18% in STD/HA system and 28% to 55% in EM10/HA system. The phase separation-induced molecular fractionation was further studied as a function of temperature and solvent condition (varying ionic strength and ethanol content). Increasing salt concentration (from 0.5 to 5 mol/L) greatly reduced the extent of phase separation-induced fractionation. This effect may be ascribed to changes in the degree of ionization and shielding of the acid groups. Increasing temperature (from 4 °C to 80 °C) also exerted a significant influence on phase separation-induced fractionation. The best temperature for GA/HA mixture system was 40 °C while higher temperature negatively affected the fractionation due to denaturation and possibly degradation in mixed solutions. Increasing the ethanol content up to 30% showed almost no effect on the phase separation induced fractionation. Copyright © 2018 Elsevier B.V. All rights reserved.
Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars
2016-01-01
One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy. Ethanol yields achieved based on initial cellulose fraction were 27.8% in switchgrass and 27.0% in corn cobs. This study demonstrates that ethanol production from switchgrass and corn cobs is possible following a combined thermochemical and fermentative biorefinery approach, with ethanol yields comparable to results in conventional pretreatments and fermentation processes. The feedstock-independent fermentation ability can easily be assessed with a simple assay.
Cost-effective approach to ethanol production and optimization by response surface methodology.
Uncu, Oya Nihan; Cekmecelioglu, Deniz
2011-04-01
Food wastes disposed from residential and industrial kitchens have gained attention as a substrate in microbial fermentations to reduce product costs. In this study, the potential of simultaneously hydrolyzing and subsequently fermenting the mixed carbohydrate components of kitchen wastes were assessed and the effects of solid load, inoculum volume of baker's yeast, and fermentation time on ethanol production were evaluated by response surface methodology (RSM). The enzymatic hydrolysis process was complete within 6h. Fermentation experiments were conducted at pH 4.5, a temperature of 30°C, and agitated at 150 rpm without adding the traditional fermentation nutrients. The statistical analysis of the model developed by RSM suggested that linear effects of solid load, inoculum volume, and fermentation time and the quadratic effects of inoculum volume and fermentation time were significant (P<0.05). The verification experiments indicated that the developed model could be successfully used to predict ethanol concentration at >90% accuracy. An optimum ethanol concentration of 32.2g/l giving a yield of 0.40g/g, comparable to yields reported to date, was suggested by the model with 20% solid load, 8.9% inoculum volume, and 58.8h of fermentation. The results indicated that the production costs can be lowered to a large extent by using kitchen wastes having multiple carbohydrate components and eliminating the use of traditional fermentation nutrients from the recipe. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zhang, Yuchi; Zhang, Jianxu; Liu, Chunming; Yu, Min; Li, Sainan
2017-02-03
A hyphenated accelerated solvent extraction (ASE) technique was elaborately coupled with centrifugal partition chromatography (CPC), ultra-high-performance liquid chromatography (UHPLC), and photo-diode array detector (PDA). This approach was applied to obtain low-polar ginsenoside fractions from the leaves of Panax ginseng. The CPC fractions were isolated and analyzed using the hyphenated technique, and followed by testing and evaluation of their aromatase inhibitory effects. Subsequently, the aromatase inhibition rates of the compositions in the CPC fractions were calculated using a multivariable linear regression model. A biphasic ethyl acetate/n-butanol/ethanol/water solvent system with respective volume ratios of 10:2:2:8 was used for the ASE and CPC separation of 200g of leaves of P. ginseng raw material. The (lower) aqueous phase of the abovementioned solvent system was used as the extraction solvent. The ginsenosides were subjected to ASE, and the extraction solution was pumped into the sample loop and then directly into the CPC column. The CPC fractions were collected and monitored by an online UHPLC/PDA system at 5-min intervals. The aromatase inhibitory activities of CPC fractions were analyzed by a fluorescence method, with mathematical calculations indicating that the inhibition rates of ginsenosides Rk 1 , Rg 5 , Rs 5 , 20R-Rg 3 , and Rs 4 exceeded 50.00%; indicating that the aforementioned chemical compounds have potential for further development. The results were validated by comparison with authentic standards, indicating that the method used in this research was accurate and advantageous for matrix analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Feng, Lei; Yin, Junyi; Nie, Shaoping; Wan, Yiqun; Xie, Mingyong
2016-10-01
The seeds of Cassia obtusifolia are widely used as a drink in Asia and an additive in food industry. Considerable amounts of water-soluble polysaccharides were found in the whole seeds, while conflicting results on structure characteristics have been reported, and few studies have been reported on physicochemical properties and immunomodulatory activities. In the present study, gradient ethanol precipitation was applied to fractionate the water-soluble polysaccharide (CP), and two sub-fractions CP-30 (30% ethanol precipitate) and CP-40 (40% ethanol precipitate) were obtained. Different rheological properties for CP-30 and CP-40 were found, indicating the differences in structure characteristics between CP-30 and CP-40. Chemical properties, including molecular weight, monosaccharide composition, and glycosidic linkage were investigated. Compared with CP-30, CP-40 had lower molecular weight and higher content of xylose. The immunomodulatory effects of CP, CP-30 and CP-40 were assessed. All of them were found to possess significant immunomodulation activities, while varied effects of them on macrophage functions were observed. The aim of the present study was to develop a simple and efficient method to purify cassia polysaccharides, and investigate their physicochemical properties and biological activities, which was meaningful for their potential use in food industry and folk medicine. Copyright © 2016. Published by Elsevier B.V.
Nwidu, Lucky Legbosi; Airhihen, Blessing; Ahmadu, Augustine
2016-01-01
Background: In Niger Delta, ethnomedicine hydroalcoholic extract of Carpolobia lutea (CL) (Polygalaceae) is used to relieve inflammatory pains. Objectives: The purpose of this study is to evaluate the anti-inflammatory and antinociceptive effects of ethanolic stem extract (ESE) and to fractionate the ESE for the elucidation of bioactive molecules. Materials and Methods: The antinociceptive effects for ESE were tested against two noxious stimuli; chemical (acetic acid-induced writhing and formalin-induced pain) and thermal (hot plate) stimuli. The effects of paracetamol (130 mg/kg), indomethacin (10 mg/kg), and morphine (5 mg/kg) pretreatment were investigated. To isolate the bioactive compounds with anti-inflammatory effect, two doses (86.6 and 173.2 mg/kg) of four fractions (methanol fraction MTF, ethyl acetate fraction EAF, chloroform fraction CHF, and n-hexane fraction n-HF) obtained from fractionating ESE were utilized. Carrageenan, egg albumin, and capsaicin-induced edema of the hind paw of the rats were the models adopted. Paw volume was measured by a digital vernier caliper from 0 to 6 h after injection. This was compared to standard drugs. The results were subjected to statistical analysis. Results: The ESE decreased significantly (P < 0.001) the writhing of acetic acid-induced abdominal contractions and licking of formalin-induced pains but does not have any effects on the hot plate test. Of the four fractions obtained, the EAFs demonstrated a significant (P < 0.001) inflammatory inhibition of 98.97% and 41.91% at 86.6 and 173.2 mg/kg, respectively, compared to 65.75% inhibition demonstrated by the reference drug, acetylsalicylic acid (100 mg/kg) on the carrageenan model while 36.36% and 29.87% inhibition of inflammation at 86.6 and 173.2 mg/kg, respectively, on the egg albumin models; there was no significant effect on the capsaicin model. Conclusion: The isolation of quercetin and kaemferol from CL gave credence to its anti-inflammatory and antinociceptive effects. PMID:28104971
de Morais, Sandra Ribeiro; Oliveira, Thiago Levi Silva; de Oliveira, Lanussy Porfiro; Tresvenzol, Leonice Manrique Faustino; da Conceição, Edemilson Cardoso; Rezende, Maria Helena; Fiuza, Tatiana de Sousa; Costa, Elson Alves; Ferri, Pedro Henrique; de Paula, José Realino
2016-01-01
Lippia sidoides (Verbenaceae) is used in Brazilian folk medicine as an antiseptic, and it is usually applied topically on skin, mucous membranes, mouth, and throat, or used for vaginal washings. To analyze the chemical composition of the essential oil from L. sidoides collected in São Gonçalo do Abaeté, Minas Gerais and grown in Hidrolândia, Goiás; to evaluate the antimicrobial activity of the essential oil, crude ethanol extract, and hexane, dichloromethane, ethyl-acetate, and aqueous fractions (AFs); to study the antinociceptive, anti-inflammatory, and central nervous system activities of the crude ethanol extract. The essential oils were obtained by hydro-distillation using a Clevenger-type apparatus and analyzed by GC/MS. The antimicrobial activity in vitro was performed by broth microdilution method. The pharmacological tests were performed using female Swiss albino mice. The major components of the essential oil were isoborneol (14.66%), bornyl acetate (11.86%), α -humulene (11.23%), α -fenchene (9.32%), and 1.8-cineole (7.05%), supporting the existence of two chemotypes of this species. The hexane fraction (HF) had good antifungal activity against Cryptococcus sp. ATCC D (MIC = 31.25 μg/mL) and Cryptococcus gatti L48 (MIC = 62.5 μg/mL). In the pharmacological tests, the crude ethanol extract presented antinociceptive and anti-inflammatory activities. Given that the ethanol extract of L. sidoides is included in the Formulary of Phytotherapeutic Agents of the Brazilian Pharmacopeia as an anti-inflammatory for oral cavities, the present work provides scientific evidence to back this use and highlight the importance of selecting the appropriate chemotype on the basis of the expected biological response. The major components of the essential oil of L. sidoides were isoborneol bornyl acetate, α -humulene, α -fenchene, and 1.8-cineole. The HF had good antifungal activity against Cryptococcus sp. ATCC D and C. gatti L4.The crude ethanol extract of L. sidoides presented antinociceptive and anti-inflammatory activities.The present work provides scientific evidence of the importance of selecting the appropriate chemotype on the basis of the expected biological response. Abbreviations used: UFG: Universidade Federal de Goiás; HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; AF: aqueous fraction; MeOH: methanol; MIC: minimum inhibitory concentration; ATCC: American Type Culture Collection; MH: Müller Hinton; DMSO: dimethyl sulfoxide; RPMI: Roswell Park Memorial Institute; NaCl: sodium chloride; μL: microliters; mL: milliliters; μg: microgram; kg: kilogram; h: hour; min: minute; cm: centimeter; COBEA: Brazilian College of Animal Experiments; p.o.:, oral; i.p.: intraperitoneal; s.c.: subcutaneous; SEM: standard error of the mean; RI: retention indices.
Gramsch, E; Papapostolou, V; Reyes, F; Vásquez, Y; Castillo, M; Oyola, P; López, G; Cádiz, A; Ferguson, S; Wolfson, M; Lawrence, J; Koutrakis, P
2018-04-01
Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NO x ), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO 2 ), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NO x emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NO x from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO 2 ) and ozone (O 3 ) was lower for higher ethanol content in the fuel. In the U.S. car, NO 2 and O 3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality. The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of its use, it is important to understand its effect on urban pollution. There is a controversy on whether there is a reduction or increase in PM emission when using ethanol blends. Primary emissions of THC, CO, CO 2 , NO x , and NMHC for both cars decreased as the fraction of ethanol in gasoline increased. Using a photochemical chamber, the authors have found a decrease in the formation of secondary particles and the time required to form secondary PM is longer when using higher ethanol blends.
Lovrić, Vanja; Putnik, Predrag; Kovačević, Danijela Bursać; Jukić, Marijana; Dragović-Uzelac, Verica
2017-06-01
This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays). The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70% aqueous solutions of ethanol and methanol), extraction time (5, 15 and 25 min) and extraction temperature (40, 50 and 60 °C) controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA) was used to evaluate the differences at a 95% confidence level (p≤0.05). The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols) than aqueous solution of methanol. The amount of phenolic compounds was higher in 70% aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50% aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval) has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.
Inglett, G E; Chen, D; Rose, D J; Berhow, M
2010-08-01
Distillers dried grains (DDG) have potential to be a nutritionally important source of protein, oil and phenolic antioxidants. DDG was subjected to high-shear and jet-cooking, with or without alkaline pH adjustment and autoclaving. Soluble and insoluble fractions were analyzed for protein, oil and ash. Extracts were analyzed for phenolic acids and antioxidant activity. Protein contents were significantly elevated in the insoluble fractions after treatment and the oil content was drastically increased in the insoluble fraction after high-shear and jet-cooking without pH adjustment. Alkaline pH adjustment resulted in a soluble fraction that was highest in phenolic acids, but not antioxidant activity. The highest antioxidant activity was found in the 50% ethanol extract from DDG that had been subjected to high-shear and jet-cooking. These results suggest that high-shear and jet-cooking may be useful processing treatments to increase the value of DDG by producing fractions high in protein, oil and extractable phenolic acids with high antioxidant activity. The DDG fractions and extracts described herein may be useful as food and nutraceutical ingredients, and, if used for these applications, will increase the value of DDG and ease economic burdens on ethanol producers, allowing them to compete in the bio-fuel marketplace.
Effects of Caesalpinia sappan on pathogenic bacteria causing dental caries and gingivitis.
Puttipan, Rinrampai; Wanachantararak, Penpicha; Khongkhunthian, Sakornrat; Okonogi, Siriporn
2017-01-01
The present study explores antimicrobial activities of Caesalpinia sappan extracts against three strains of oral pathogenic bacteria; Streptococcus mutans DMST9567 (Smu9), Streptococcus mutans DMST41283 (Smu4), and Streptococcus intermedius DMST42700 (Si). Ethanol crude extract of C. sappan (Cs-EtOH) was firstly compared to that of other medicinal plants using disc diffusion method. Cs-EtOH showed significantly higher effective inhibition against all tested strains than other extracts and 0.12% chlorhexidine with the inhibition zone of 17.5 ± 0.5, 18.5 ± 0.0, and 17.0 ± 0.0 mm against Smu9, Smu4, and Si, respectively. Three fractionated extracts of C. sappan using hexane, ethyl acetate, and ethanol, respectively, were further investigated. The fractionated extract from ethanol (F-EtOH) presented the strongest activities with the minimum bactericidal concentration (MBC) of 125-250 µg/mL. Killing kinetics of F-EtOH was depended on the bacterial species and the concentration of F-EtOH. Two-fold MBC of F-EtOH could kill all tested strains within 12 h whereas its 4-fold MBC showed killing effect against Si within 6 h. Separation of F-EtOH by column chromatography using chloroform/methanol mixture as an eluent yielded 11 fractions (F1-F11). The fingerprints of these fractions by high-performance liquid chromatography at 280 nm revealed that F-EtOH consisted of at least 5 compounds. F6 possessed the significantly highest antimicrobial activity among 11 fractions, however less than F-EtOH. It is considered that F-EtOH is the promising extract of C. sappan for inhibiting oral pathogenic bacteria and appropriate as natural antiseptic for further develop of oral hygiene products.
EFFECT OF THAI SARAPHI FLOWER EXTRACTS ON WT1 AND BCR/ABL PROTEIN EXPRESSION IN LEUKEMIC CELL LINES.
Sangkaruk, Rungkarn; Rungrojsakul, Methee; Tima, Singkome; Anuchapreeda, Songyot
2017-01-01
Saraphi (Mammea siamensis) is a Thai traditional herb. In this study, the cytotoxic effects of crude ethanolic and fractional extracts including hexane, ethyl acetate, and methanol fractions from M. siamensis flowers were investigated in order to determine their effect on WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The flowers of M. siamensis were extracted using ethanol. The ethanol flower extract was further fractionated with hexane, ethyl acetate, and methanol. Cytotoxic effects were measured by the MTT assay. Bcr/Abl and WT1 protein levels after treatments were determined by Western blotting. The total cell number was determined via the typan blue exclusion method. The hexane fraction showed the strongest cytotoxic activity on Molt4 and K562 cells, with IC 50 values of 2.6 and 77.6 μg/ml, respectively. The hexane extract decreased Bcr/Abl protein expression in K562 cells by 74.6% and WT1 protein expressions in Molt4 and K562 cells by 68.4 and 72.1%, respectively. Total cell numbers were decreased by 66.2 and 48.7% in Molt4 and K562 cells, respectively. Mammea E/BB (main active compound) significantly decreased both Bcr/Abl and WTlprotein expressions by 75 and 49.5%, respectively when compared to vehicle control. The hexane fraction from M. siamensis flowers inhibited cell proliferation via the suppression of WT1 expression in Molt4 and K562 cells and Bcr/Abl expression in K562 cells. The active compound may be mammea E/BB. Extracts from M. siamensis flowers show promise as naturally occurring anti-cancer drugs.
Huang, Nan; Rizshsky, Ludmila; Hauck, Cathy; Nikolau, Basil J.; Murphy, Patricia A.; Birt, Diane F.
2011-01-01
Hypericum perforatum (St. John’s wort) is an herb widely used as supplement for mild to moderate depression. Our prior studies revealed synergistic anti-inflammatory activity associated with 4 bioactive compounds in a fraction of H. perforatum ethanol extract. Whether these 4 compounds also contributed to the ethanol extract activity was addressed in the research reported here. Despite the popularity of H. perforatum, other Hypericum species with different phytochemical profiles could have their anti-inflammatory potentials attributed to these or other compounds. In the current study, ethanol extracts of different Hypericum species were compared for their inhibitory effect on LPS-induced prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW 264.7 mouse macrophages. Among these extracts, those made from H. perforatum and H. gentianoides demonstrated stronger overall efficacy. LC-MS analysis indicated the 4 compounds in H. perforatum extract and pseudohypericin in all active fractions. The 4 compounds accounted for a significant part of the extract’s inhibitory activity on PGE2, NO, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW 264.7 as well as peritoneal macrophages. Pseudohypericin was the most important contributor of the anti-inflammatory potential among the 4 compounds. The lipophilic fractions of H. gentianoides extract, which did not contain the previously identified active constituents, decreased PGE2 and NO potently. These fractions were rich in acylphloroglucinols, including uliginosin A that accounted for a proportion of the anti-inflammatory activity observed with the active fractions. Overall, the current study revealed a different group of major anti-inflammatory constituents in H. gentianoides, while showing that a previously identified 4 compounds combination was important for H. perforatum’s anti-inflammatory potential. PMID:21855951
Effect of Harvesting Stage on Sweet Sorghum (Sorghum bicolor L.) Genotypes in Western Kenya
Owuoche, James O.; Oyoo, Maurice E.; Cheruiyot, Erick; Mulianga, Betty
2017-01-01
Harvesting stage of sweet sorghum (Sorghum bicolor L. Moench) cane is an important aspect in the content of sugar for production of industrial alcohol. Four sweet sorghum genotypes were evaluated for harvesting stage in a randomized complete block design. In order to determine sorghum harvest growth stage for bioethanol production, sorghum canes were harvested at intervals of seven days after anthesis. The genotypes were evaluated at different stages of development for maximum production of bioethanol from flowering to physiological maturity. The canes were crushed and juice fermented to produce ethanol. Measurements of chlorophyll were taken at various stages as well as panicles from the harvested canes. Dried kernels at 14% moisture content were also weighed at various stages. Chlorophyll, grain weight, absolute ethanol volume, juice volume, cane yield, and brix showed significant (p = 0.05) differences for genotypes as well as the stages of harvesting. Results from this study showed that harvesting sweet sorghum at stages IV and V (104 to 117 days after planting) would be appropriate for production of kernels and ethanol. EUSS10 has the highest ethanol potential (1062.78 l ha−1) due to excellent juice volume (22976.9 l ha−1) and EUSS11 (985.26 l ha−1) due to its high brix (16.21). PMID:28255577
The acute effect of ethanol on adrenal cortex in female rats--possible role of nitric oxide.
Dikić, Dragoslava; Budeč, Mirela; Vranješ-Durić, Sanja; Koko, Vesna; Vignjević, Sanja; Mitrović, Olivera
2011-01-01
The present study was designed to investigate a possible role of endogenous nitric oxide (NO) in the adrenal response to an acute alcohol administration in female rats. To this end, N(ω)-nitro-L-arginine-methyl ester (L-NAME), a competitive inhibitor of all isoforms of NO synthase, was used. Adult female Wistar rats showing diestrus Day 1 were treated with: (a) ethanol (2 or 4 g/kg, intraperitoneally); (b) L-NAME (30 or 50 mg/kg, subcutaneously) followed by either ethanol or saline 3 h later. Untreated and saline-injected rats were used as controls. The animals were killed 30 min after last injection. Adrenal cortex was analyzed morphometrically, and plasma levels of adrenocorticotropic hormone (ACTH) and serum concentrations of corticosterone were determined. Acute ethanol treatment enhanced the levels of ACTH and corticosterone in a dose-dependent manner. Stereological analysis revealed that acute alcohol administration induced a significant increase in absolute volume of the cortex and the zona fasciculata (ZF). In addition, ethanol at a dose of 4 g/kg increased volume density and length of the capillaries in the ZF. However, other stereological parameters were unaffected by alcohol exposure. Pretreatment with both doses of L-NAME had no effect on ethanol-induced changes. Obtained findings indicate that acute ethanol treatment stimulates the activity of the adrenal cortex and that this effect is not mediated by endogenous NO in female rats under these experimental conditions.
Accuracy of cancellous bone volume fraction measured by micro-CT scanning.
Ding, M; Odgaard, A; Hvid, I
1999-03-01
Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner supplied algorithm (method I). A significant deviation of volume fraction from method I was found: both the y-intercept and the slope of the regression line were significantly different from those of the Archimedes-based volume fraction (p < 0.001). New individual thresholds were determined based on a calibration of volume fraction to the Archimedes-based volume fractions (method II). The mean thresholds of the two methods were applied to segment 20 randomly selected specimens. The results showed that volume fraction using the mean threshold of method I was underestimated by 4% (p = 0.001), whereas the mean threshold of method II yielded accurate values. The precision of the measurement was excellent. Our data show that care must be taken when applying thresholds in generating 3-D data, and that a fixed threshold may be used to obtain reliable volume fraction data. This fixed threshold may be determined from the Archimedes-based volume fraction of a subgroup of specimens. The threshold may vary between different materials, and so it should be determined whenever a study series is performed.
Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.
Zhang, Ke; Pei, Zhijian; Wang, Donghai
2016-01-01
Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Pretreatment is an essential component of biomass conversion process, affecting a majority of downstream processes, including enzymatic hydrolysis, fermentation, and final product separation. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Objectives of this review were to update and extend previous works on pretreatment of lignocellulosic biomass for biofuels and biochemicals using organic solvents, especially on ethanol, methanol, ethylene glycol, glycerol, acetic acid, and formic acid. Perspectives and recommendations were given to fully describe implementation of proper organic solvent pretreatment for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
An integrated process has been developed for a wheat straw biorefinery. In this process wheat straw was pretreated by soaking in aqueous ammonia (SAA), which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment condi...
Analysis of an ethanol precipitate from ileal digesta: evaluation of a method to determine mucin.
Miner-Williams, Warren M; Moughan, Paul J; Fuller, Malcolm F
2013-11-06
The precipitation of mucin using high concentrations of ethanol has been used by many researchers while others have questioned the validity of the technique. In this study, analysis of an ethanol precipitate, from the soluble fraction of ileal digesta from pigs was undertaken using molecular weight profiling and polyacrylamide gel electrophoresis. The precipitate contained 201 mg·g⁻¹ protein, 87% of which had a molecular weight >20 KDa. Polyacrylamide gel electrophoresis stained with Coomassie blue and periodic acid/Schiff, revealed that most glycoprotein had a molecular weight between 37-100 KDa. The molecular weight of glycoprotein in the precipitate was therefore lower than that of intact mucin. These observations indicated that the glycoprotein in the ethanol precipitate was significantly degraded. The large amount of protein and carbohydrate in the supernatant from ethanol precipitation indicated that the precipitation of glycoprotein was incomplete. As a method for determining the concentration of mucin in digesta, ethanol precipitation is unreliable.
Aedes aegypti larvicide from the ethanolic extract of Piper nigrum black peppercorns.
Santiago, Viviene S; Alvero, Rita Grace; Villaseñor, Irene M
2015-01-01
Due to unavailability of a vaccine and a specific cure to dengue, the focus nowadays is to develop an effective vector control method against the female Aedes aegypti mosquito. This study aims to determine the larvicidal fractions from Piper nigrum ethanolic extracts (PnPcmE) and to elucidate the identity of the bioactive compounds that comprise these larvicidal fractions. Larvicidal assay was performed by subjecting 3rd to 4th A. aegypti instar larvae to PnPcmE of P. nigrum. The PnPcmE exhibited potential larvicidal activity having an LC50 of 7.1246 ± 0.1304 ppm (mean ± Std error). Normal phase vacuum liquid chromatography of the PnPcmE was employed which resulted in five fractions, two of which showed larvicidal activity. The most active of the PnPcmE fractions is PnPcmE-1A, with an LC50 and LC90 of 1.7101 ± 0.0491 ppm and 3.7078 ppm, respectively. Subsequent purification of PnPcmE-1A allowed the identification of the larvicidal compound as oleic acid.
Gyalai-Korpos, Miklós; Mangel, Réka; Alvira, Pablo; Dienes, Dóra; Ballesteros, Mercedes; Réczey, Kati
2011-07-01
Pretreatment is a necessary step in the biomass-to-ethanol conversion process. The side stream of the pretreatment step is the liquid fraction, also referred to as the hydrolyzate, which arises after the separation of the pretreated solid and is composed of valuable carbohydrates along with compounds that are potentially toxic to microbes (mainly furfural, acetic acid, and formic acid). The aim of our study was to utilize the liquid fraction from steam-exploded wheat straw as a carbon source for cellulase production by Trichoderma reesei RUT C30. Results showed that without detoxification, the fungus failed to utilize any dilution of the hydrolyzate; however, after a two-step detoxification process, it was able to grow on a fourfold dilution of the treated liquid fraction. Supplementation of the fourfold-diluted, treated liquid fraction with washed pretreated wheat straw or ground wheat grain led to enhanced cellulase (filter paper) activity. Produced enzymes were tested in hydrolysis of washed pretreated wheat straw. Supplementation with ground wheat grain provided a more efficient enzyme mixture for the hydrolysis by means of the near-doubled β-glucosidase activity obtained.
Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions
NASA Astrophysics Data System (ADS)
Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng
The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.
Ayoka, Abiodun O; Owolabi, Rotimi A; Bamitale, Samuel K; Akomolafe, Rufus O; Aladesanmi, Joseph A; Ukponmwan, Eghe O
2013-01-01
This study attempted to elucidate the neurotransmitter systems involved in the neurophysiological properties of ethanolic extract, fractions and pure isolates of Spondias mombin leaves in mice (n = 6) after intraperitoneal (i.p.) route of administration.The crude ethanolic extract of Spondian mombin leaves was fractionated using the partitioning method to obtain the ethylacetate, butanolic and aqueous fractions. Open column chromatographic fractionation of the ethylacetate fraction yielded seven sub-fractions, out of which the pure coumaroyl, quercetin and gallic acid derivatives were obtained after purification on Sephadex LH 20. The ethanolic extract, butanolic fraction, ethylacetate subfractions and pure isolates of the Spondian mombin leaves were tested on novelty-induced rearing and grooming behaviours in mice with standard pharmacological tools using the open field method. The extract and its fractions decreased novelty-induced rearing in a dose-dependent manner. While the Coumaroyl derivative had no effect on novelty-induced rearing, it significantly reversed the inhibitory effect of yohimbine, propranolol and haloperidol on novelty-induced rearing. Quercetin significantly potentiated the inhibitory effect of yohimbine on novelty-induced rearing. Naloxone significantly potentiated the quercetin-induced suppression of novelty-induced rearing. Gallic acid derivative significantly potentiated the inhibitory effect of yohimbine on novelty-induced rearing. Naloxone, atropine and haloperidol pretreatments significantly potentiated gallic acid derivative-induced suppression of novelty-induced rearing.The extract and its fractions had biphasic effect on novelty-induced grooming in mice. Coumaroyl derivative significantly increased novelty-induced grooming, while quercetin and gallic acid derivative decreased novelty-induced grooming significantly. The three pure isolates significantly reversed the effects of yohimbine and atropine on the novelty-induced grooming in mice. Propranolol-induced increase in novelty-induced grooming was significantly reversed by coumaroyl and gallic acid derivatives. Pre-treatment with naloxone significantly increased the gallic acid derivative-induced suppression of novelty-induced grooming. Pre-treatment with haloperidol reversed the effect of coumaroyl derivative and potentiated the inhibitory effect of quercetin derivative and gallic acid derivative significantly. This study suggested that adrenergic and dopaminergic neuro-transmissions are strongly involved in the neural mechanisms of the effect of the three pure isolates derivative, while opioid neuro-transmission is strongly linked with the neural mechanism of behavioural effect of coumaroyl derivative.
Microlayered flow structure around an acoustically levitated droplet under a phase-change process.
Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi
2016-01-01
The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction.
Martinez-Guerra, Edith; Gude, Veera Gnaneswar
2014-12-01
This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels
NASA Astrophysics Data System (ADS)
He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua
The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.
Carver, F M; Shibley, I A; Miles, D S; Pennington, J S; Pennington, S N
1999-10-01
Fetal exposure to ethanol is associated with growth retardation of the developing central nervous system. We have previously described a chick model to study the molecular mechanism of ethanol effects on glucose metabolism in ovo. Total membrane fractions were prepared from day 4, day 5, and day 7 chick embryos exposed in ovo to ethanol or to vehicle. By Western blotting analysis, ethanol exposure caused a mean 7- to 10-fold increase in total GLUT-1 and a 2-fold increase in total GLUT-3. However, glucose uptake by ethanol-treated cells increased by only 10%. Analysis of isolated plasma (PM) and intracellular (IM) membranes from day 5 cranial tissue revealed a mean 25% decrease in GLUT-1 in the PM and a 66% increase in the IM in the ethanol group vs. control. The amount of PM GLUT-3 was unchanged but that of IM GLUT-3 was significantly decreased. The data suggest that GLUT-3 cell surface expression may be resistant to the suppressive effects of ethanol in the developing brain of ethanol-treated embryos. The overall increase in GLUT-1 may reflect a deregulation of the transporter induced by ethanol exposure. The increased IM localization and decreased amount of PM GLUT-1 may be a mechanism used by the ethanol-treated cell to maintain normal glucose uptake despite the overall increased level of the transporter.
Acute and chronic hypoglycemic activity of Sida tiagii fruits in N5-streptozotocin diabetic rats.
Datusalia, Ashok Kumar; Dora, Chander Parkash; Sharma, Sunil
2012-01-01
Herbal prescriptions have been recognized as potentially valid by the scientific medical establishment, and their use has been increasing. Sida tiagii Bhandari (Sida pakistanica; family-Malvaceae), a native species of the Indian and Pakistan desert area, popularly known as "Kharenti" in India; is used as a folk medicine. In the present study, various fruit extracts of Sida tiagii were investigated for it's hypoglycemic and antioxidant potential in neonatal streptozotocin-induced (type 2) diabetic rats. Grinded fruits were extracted with 90% ethanol and partitioned with n-hexane (n-hexane extract; HS) and ethyl acetate (Ethyl Acetate Extract; EAS) successively. The residual ethanol fraction (residual ethanol extract; RES) was dried on water bath separately. All three extracts were administered orally at a dose of 200 mg/kg and 500 mg/kg. Blood glucose level, cholesterol, GSH (glutathione), elevated thiobarbituric acid-reactive substances (TBARS), glycated hemoglobin and liver glycogen contents were measured after 19 days treatment. The residual ethanol extract of Sida tiagii fruits significantly improve glycemic parameter and showed antioxidant activity in diabetic rats. The results of the present study indicated that the active fraction of Sida tiagii (i.e., RES) is suitable for development of a promising phytomedicine for the treatment of diabetes mellitus.
NASA Astrophysics Data System (ADS)
Sundowo, Andini; Artanti, Nina; Hanafi, M.; Minarti, Primahana, Gian
2017-11-01
C ledgeriana is a medicinal plant that contains alkaloids, especially on the barks for commercial production of quinine as antimalarial. The main alkaloids in this plant are cinchonine, cinchonidine, quinine and quinidine. Besides for antiamalarial this plant is also commonly used to treat whooping cough, influenza and dysentery. Compare to other medicinal plants, nowadays only very few studies were conducted in Cinchona species. Our current study aims to determine the content of phytochemical, total phenol and total flavonoids from C. ledgeriana leaves 70% ethanol extract. The extraction was performed by maceration method using 70% ethanol solvent and then fractionated into hexane, ethylacetate and butanol. Phytochemical screening was performed to determine the content of alkaloids, flavonoids, terpenoids, tannins and saponins. Total phenol and flavonoid contents of the extract were determined by Folin-Ciocalteu and alumunium chloride colorimetric methods using gallic acid and quercetin as standards. The antioxidant activity was determined by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The results of phytochemical screening showed that the 70% ethanol extract of C. ledgeriana leaves contained alkaloids, flavonoids, terpenoids, tannins and saponins. The total phenol and total flavonoids analysis showed that ethyl acetate fraction had the highest total phenol (40.23%) and total flavonoids (65.34%).
Nguyen, Hoang Phong; Du Le, Hoang
2015-01-01
Summary The yeast cells of Saccharomyces cerevisiae immobilized on Nypa fruticans leaf sheath pieces were tested for ethanol tolerance (0, 23.7, 47.4, 71.0 and 94.7 g/L). Increase in the initial ethanol concentration from 23.7 to 94.7 g/L decreased the average growth rate and concentration of ethanol produced by the immobilized yeast by 5.2 and 4.1 times, respectively. However, in the medium with initial ethanol concentration of 94.7 g/L, the average growth rate, glucose uptake rate and ethanol formation rate of the immobilized yeast were 3.7, 2.5 and 3.5 times, respectively, higher than those of the free yeast. The ethanol stress inhibited ethanol formation by Saccharomyces cerevisiae cells and the yeast responded to the stress by changing the fatty acid composition of cellular membrane. The adsorption of yeast cells on Nypa fruticans leaf sheath pieces of the growth medium increased the saturated fatty acid (C16:0 and C18:0) mass fraction in the cellular membrane and that improved alcoholic fermentation performance of the immobilized yeast. PMID:27904338
Neto, A F G; Lopes, F S; Carvalho, E V; Huda, M N; Neto, A M J C; Machado, N T
2015-10-01
This paper presents a theoretical study using density functional theory to calculate thermodynamics properties of major molecules compounds at gas phase of fuels like gasoline, ethanol, and gasoline-ethanol mixture in thermal equilibrium on temperature range up to 1500 K. We simulated a composition of gasoline mixture with ethanol for a thorough study of thermal energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature in order to study the influence caused by ethanol as an additive to gasoline. We used semi-empirical computational methods as well in order to know the efficiency of other methods to simulate fuels through this methodology. In addition, the ethanol influence through the changes in percentage fractions of chemical energy released in combustion reaction and the variations on thermal properties for autoignition temperatures of fuels was analyzed. We verified how ethanol reduces the chemical energy released by gasoline combustion and how at low temperatures the gas phase fuels in thermal equilibrium have similar thermodynamic behavior. Theoretical results were compared with experimental data, when available, and showed agreement. Graphical Abstract Thermodynamic analysis of fuels in gas phase.
Pinheiro, Álvaro Daniel Teles; da Silva Pereira, Andréa; Barros, Emanuel Meneses; Antonini, Sandra Regina Ceccato; Cartaxo, Samuel Jorge Marques; Rocha, Maria Valderez Ponte; Gonçalves, Luciana Rocha B
2017-08-01
In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L -1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L -1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol /V solution ), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L -1 h -1 , respectively.
Hetta, Mona H; Owis, Asmaa I; Haddad, Pierre S; Eid, Hoda M
2017-12-01
Eruca sativa Mill. (Brassicaceae), commonly known as rocket salad, is a popular leafy-green vegetable with many health benefits. To evaluate the antidiabetic activities of this plant in major insulin-responsive tissues. Five E. sativa leaf extracts of varying polarity were prepared (aqueous extract, 70% and 95% ethanol extracts, the n-hexane-soluble fraction of the 95% ethanol extract (ES3) and the defatted 95% ethanol extract). Eruca sativa extracts were investigated through a variety of cell-based in vitro bioassays for antidiabetic activities in C2C12 skeletal muscle cells, H4IIE hepatocytes and 3T3-L1 adipocytes. Guided by the results of these bioassays, ES3 was fractionated into the saponifiable (SM) and the unspaonifiable (USM) fractions. Glucose uptake was measured using [ 3 H]-deoxy-glucose, while the effects on hepatic glucose-6-phosphatase (G6Pase) and adipogenesis were assessed using Wako AutoKit Glucose and AdipoRed assays, respectively. ES3 and its SM fraction significantly stimulated glucose uptake with EC 50 values of 8.0 and 5.8 μg/mL, respectively. Both extracts significantly inhibited G6Pase activity (IC 50 values of 4.8 and 9.3 μg/mL, respectively). Moreover, ES3 and SM showed significant adipogenic activities with EC 50 of 4.3 and 6.1 μg/mL, respectively. Fatty acid content of SM was identified by GC-MS. trans-Vaccenic and palmitoleic acids were the major unsaturated fatty acids, while palmitic and azelaic acids were the main saturated fatty acids. These findings indicate that ES3 and its fatty acid-rich fraction exhibit antidiabetic activities in insulin-responsive cell lines and may hence prove useful for the treatment of type 2 diabetes.
Effect of cold drawing ratio on γ′ precipitation in Inconel X-750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Jeong Won; Research and Development Center, KOS Limited, Yangsan 626-230; Seong, Baek Seok
2014-10-15
Inconel X-750 is a Ni-based precipitation-hardened superalloy having large tensile and fracture strengths. In the study, X-750 wires were cold drawn to different extents. Small angle neutron scattering was employed to quantitatively measure the size and volume fraction of the γ′ phase as a function of the cold drawing ratio (DR) and aging temperature. The presence and size of γ′ precipitates were confirmed by transmission electron microscopy. The drawing ratio had an important effect on the volume fraction of the γ′ precipitates. However, the size of the precipitates was independent on the drawing ratio. The specimen with the minimum drawingmore » ratio (DR0) produced the largest volume fraction of γ′ as compared with large drawing ratio (DR) specimens such as DR17 and DR42. The small volume fraction of the γ′ phase for a sizeable drawing ratio was associated with the large amount of nucleation sites for secondary carbides, M{sub 23}C{sub 6}, and the fast diffusion path, i.e., dislocation, needed to form M{sub 23}C{sub 6}. A Cr depletion zone around the secondary carbides raised the solubility of γ′. Therefore, the significant drawing ratio contributing to the large volume fraction of the secondary carbides decreased the volume fraction of the γ′ precipitates in Inconel X-750. - Highlights: • The volume fraction of secondary carbides increased with the drawing ratio. • The volume fraction of γ′ decreased as the drawing ratio increased. • The drawing ratio affected the γ′ volume fraction with no variation of the γ' size. • The volume fraction of γ′ was affected by the secondary carbide volume fraction.« less
Evaluation of Cameroonian plants towards experimental bone regeneration.
Ngueguim, Florence Tsofack; Khan, Mohd Parvez; Donfack, Jean Hubert; Siddiqui, Jawed Akhtar; Tewari, Deepshikha; Nagar, Geet K; Tiwari, Satish C; Theophile, Dimo; Maurya, Rakesh; Chattopadhyay, Naibedya
2012-05-07
Elephantopus mollis, Spilanthes africana, Urena lobata, Momordica multiflora, Asystasia gangetica and Brillantaisia ovariensis are used in Cameroonian traditional medicine for the treatment of bone diseases and fracture repair. The aim of this study was to evaluate the effect of ethanolic extracts of six Cameroonian medicinal plants on bone regeneration following bone and marrow injury. Ethanol extract of Cameroonian medicinal plants were administered (each extract at 250, 500 and 750mg/kg doses) orally to adult female Sprague-Dawley rats having a drill hole injury (0.8mm) in the femur diaphysis. Vehicle (gum-acacia in distilled water) was given to the control group. After 12 days of treatment, animals were euthanized and femur bones collected. Confocal microscopy of fractured bone was performed to evaluate bone regeneration (calcein labeling). Only active plant extracts were used for further experiments. Thus, callus was analyzed by microcomputed tomography. Osteogenic effects of the extracts were evaluated by assessing mineralized nodules formation of bone marrow stromal cells and osteoblast recruitment at drill hole site by immunohistochemistry. Ethanolic extract of the leaves and twigs of Elephantopus mollis (EM) and whole plant of Spilanthes africana (SA) dose-dependently stimulated bone regeneration at the drill hole site. EM at 250 and 750mg/kg doses and SA at 750mg/kg dose significantly increased mineral deposition compared to controls. Both extracts at 500 and 750mg/kg doses improved microarchitecture of the regenerating bone evident from increased bone volume fraction, trabecular thickness, trabecular number, and decreased trabecular separation and structure model index. EM and SA extracts increased the formation of mineralized nodules from the bone marrow stromal cells. In addition, EM and SA extracts increased osteoblast recruitment at the drill hole site evident from increased Runx-2 positive cells following their treatments compared to control. Ethanolic extracts of EM and SA accelerate fracture repair in rats via stimulatory effects on osteoblast differentiation and mineralization, thereby justifying their traditional use. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Nezu, Takashi; Nagano-Takebe, Futami; Endo, Kazuhiko
2017-09-26
Antimicrobial cetylpyridinium chloride (CPC) has low miscibility with acrylic resin monomer but can be homogeneously mixed using ethanol as a cosolvent. This study investigated the effects of ethanol addition on the properties of a cold-cure acrylic resin. Ethanol was an excellent cosolvent for CPC and methyl methacrylate monomer (MMA), but the cured resin exhibited a strong change in coloration to yellow (ΔE* ab >8) and a drastically reduced bending strength (from 97 to 25 MPa) and elastic modulus (from 2.7 to 0.6 GPa) when equal volumes of ethanol and monomer were used together, possibly due to the solvation and deactivation of radicals by ethanol. However, these unfavorable effects diminished when the ethanol/MMA ratio was reduced to 0.25, and became smaller when each specimen was depressurized and excess ethanol was removed. Thus, it may be possible to develop a molecularly uniform antibacterial acrylic resin with acceptable color and strength using this simple technique.
Source apportionment of carbonaceous aerosol in Sao Paulo using 13C and 14C measurements
NASA Astrophysics Data System (ADS)
Oyama, Beatriz; Andrade, Maria de Fatima; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro A. J.; Dusek, Ulrike
2016-04-01
The Metropolitan Area of Sao Paulo is affected by high aerosol concentrations, which contain a large fraction of organic material. Up to date, not much is known about the composition and origin of the organic aerosol in this city. We present the first source apportionment of the carbonaceous aerosol fraction in Sao Paulo, using stable (13C) and radioactive carbon isotopes (14C). 14C provides a clear-cut distinction between fossil sources, which contain no 14C, and contemporary sources such as biofuels, biomass burning, or biogenic sources, which contain a typical contemporary 14C/12C ratio. 13C can be used to distinguish C3 plants, such as maize and sugarcane, from C4 plants. This can help to identify a possible impact of sugarcane field burning in the rural areas of Sao Paulo State on the aerosol carbon in the city. In the first part of the study, we compare two tunnel studies: Tunnel 1 is frequented only by light duty vehicles, which run mainly on mixtures of gasoline with ethanol (gasohol, 25% ethanol and 85% gasoline) or hydrated ethanol (5% water and 95% ethanol). Tunnel 2 contains a significant fraction of heavy-duty diesel vehicles, and therefore the fraction of biofuels in the average fleet is lower. Comparison of 14C in organic and elemental carbon (OC and EC) shows that in both tunnels there is no significant contribution of biofuels to EC. Combusting ethanol-gasoline fuels in a vehicle engine does apparently not result in significant EC formation from ethanol. Biofuels contribute around 45% to OC in Tunnel 1 an only 20% in Tunnel 2, reflecting a strong impact of diesel vehicles in Tunnel 2. In the second part of the study we conduct a source apportionment of ambient aerosol carbon collected in a field study during winter (July-August) 2012. Ambient EC has two main sources, vehicular emissions and biomass burning. We estimate a contribution of vehicular sources to EC of roughly 90% during weekdays and 80% during weekends, using the 14C values measured in the tunnel studies. The absolute concentration of biomass burning EC is roughly 0.5 μg/m3 both during weekend and weekdays, whereas vehicular EC concentrations almost double during weekdays, increasing from 1.8 to 3.7 μg/m3 on average. OC concentrations are dominated by secondary carbon from vehicular emissions, both on weekdays and during weekends, however primary OC from biomass burning and contemporary secondary OC (from both biogenic and biomass burning emissions) are important fractions as well. Overall, primary biomass burning contributes between 10 and 30% to the carbonaceous aerosol in Sao Paulo. 13C measurements indicate that sugarcane burning could account for up to 15% of OC in the Sao Paulo metropolitan area.
Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats
Chung, Jayong; Veeramachaneni, Sudipta; Liu, Chun; Mernitz, Heather; Russell, Robert M.; Wang, Xiang-Dong
2009-01-01
Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby preventing ethanol-induced hepatocyte hyperproliferation. For 1 month, four groups of Sprague-Dawley rats were fed a Lieber-DeCarli liquid ethanol (36% of the total calories) diet as follows: either ethanol alone (Alc group) or ethanol in combination with 0.1 mg/kg body wt of all-trans RA (Alc+RA group), 2 mg/kg body wt of VE (Alc+VE group), or both together (Alc+RA+VE group). Control rats were pair-fed a liquid diet with an isocaloric amount of maltodextrin instead of ethanol. The ethanol-fed groups had three-fold higher hepatic CYP2E1 levels, 50% lower hepatic RA levels, and significantly increased hepatocyte proliferation when compared with the controls. The ethanol-fed rats given VE had more than four-fold higher hepatic VE concentrations than did ethanol-fed rats without VE, but this did not prevent ethanol induction of CYP2E1, lower hepatic retinoid levels, or hepatocellular hyperproliferation. Further, VE supplementation could not prevent RA catabolism in liver microsomal fractions of the ethanol-fed rats in vitro. These results show that VE supplementation can neither inhibit ethanol-induced changes in RA catabolism nor prevent ethanol-induced hepatocyte hyperproliferation in the rat liver. PMID:19854382
Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures
NASA Astrophysics Data System (ADS)
Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki
2016-10-01
Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.
Osmoregulatory processes and skeletal muscle metabolism
NASA Astrophysics Data System (ADS)
Boschmann, Michael; Gottschalk, Simone; Adams, Frauke; Luft, Friedrich C.; Jordan, Jens
Prolonged microgravity during space flight is associated with a decrease in blood and extracellular volume. These changes in water and electrolyte balance might activate catabolic processes which contribute finally to the loss of muscle and bone mass and strength. Recently, we found a prompt increase that energy expenditure by about 30% in both normal and overweight men and women after drinking 500 ml water. This effect is mediated by an increased sympathetic nervous system activity, obviously secondary to stimulation of osmosensitive afferent neurons in the liver, and skeletal muscle is possibly one effector organ. Therefore, we tested the hypothesis that this thermogenic response to water is accompanied by a stimulation of aerobic glucose metabolism in skeletal muscle. To this end, 16 young healthy volunteers (8 men) were studied. After an overnight fast (12h), a microdialysis probe was implanted into the right M. quadriceps femoris vastus lateralis and subsequently perfused with Ringer's solution (+50 mM ethanol). After 1h, volunteers were asked to drink 500 ml water (22° C) followed by continuing microdialysis for another 90 min. Dialysates (15 min fractions) were analyzed for [ethanol], [glucose], [lactate], [pyruvate], and [glycerol] in order to assess changes in muscle tissue perfusion (ethanol dilution technique), glycolysis and lipolysis. Blood samples were taken and heart rate (HR) and blood pressure (BP) were monitored. Neither HR and systolic and diastolic BP, nor plasma [glucose], [lactate], [insulin], and [C peptide] changed significantly after water drinking. Also, tissue perfusion and dialysate [glucose] did not change significantly. However, dialysate [lactate] increased by about 10 and 20% and dialysate [pyruvate] by about 100 and 200% in men and women, respectively. In contrast, dialysate [glycerol] decreased by about 30 and 20% in men and women, respectively. Therefore, drinking of 500 ml water stimulates aerobic glucose metabolism and inhibits lipolysis in skeletal muscle and this to a greater extent in women than men. These insulin-like effects after water drinking originate possibly from regulatory cell volume swelling in osmosensitive organs such as muscle. Therefore, a well-balanced water homeostasis might be important for preventing catabolic processes during long-term space expeditions.
Thermal and ultrasonic evaluation of porosity in composite laminates
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.
1992-01-01
The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.
Giebel, Brian M; Swart, Peter K; Riemer, Daniel D
2011-08-01
Ethanol is currently receiving increased attention because of its use as a biofuel or fuel additive and because of its influence on air quality. We used stable isotopic ratio measurements of (13)C/(12)C in ethanol emitted from vehicles and a small group of tropical plants to establish ethanol's δ(13)C end-member signatures. Ethanol emitted in exhaust is distinctly different from that emitted by tropical plants and can serve as a unique stable isotopic tracer for transportation-related inputs to the atmosphere. Ethanol's unique isotopic signature in fuel is related to corn, a C4 plant and the primary source of ethanol in the U.S. We estimated a kinetic isotope effect (KIE) for ethanol's oxidative loss in the atmosphere and used previous assumptions with respect to the fractionation that may occur during wet and dry deposition. A small number of interpretive model calculations were used for source apportionment of ethanol and to understand the associated effects resulting from atmospheric removal. The models incorporated our end-member signatures and ambient measurements of ethanol, known or estimated source strengths and removal magnitudes, and estimated KIEs associated with atmospheric removal processes for ethanol. We compared transportation-related ethanol signatures to those from biogenic sources and used a set of ambient measurements to apportion each source contribution in Miami, Florida-a moderately polluted, but well ventilated urban location.
Midttun, Øivind; McCann, Adrian; Aarseth, Ove; Krokeide, Marit; Kvalheim, Gry; Meyer, Klaus; Ueland, Per M
2016-11-01
Targeted metabolic profiling characterized by complementary platforms, multiplexing and low volume consumption are increasingly used for studies using biobank material. Using liquid-liquid extraction, we developed a sample workup suitable for quantification of 6 fat- and 26 water-soluble biomarkers. 50 μL of serum/plasma was mixed with dithioerythritol, ethanol, and isooctane/chloroform. The organic layer was used for analysis of the fat-soluble vitamins all-trans retinol (A), 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, α-tocopherol (E), γ-tocopherol (E), and phylloquinone (K1) by LC-MS/MS. The remaining aqueous fraction was mixed with ethanol, water, pyridine, and methylchloroformate (in toluene) to derivatize the water-soluble biomarkers. The resulting toluene layer was used for GC-MS/MS analysis of alanine, α-ketoglutarate, asparagine, aspartic acid, cystathionine, total cysteine, glutamic acid, glutamine, glycine, histidine, total homocysteine, isoleucine, kynurenine, leucine, lysine, methionine, methylmalonic acid, ornithine, phenylalanine, proline, sarcosine, serine, threonine, tryptophan, tyrosine, and valine. Isotope-labeled internal standards were used for all analytes. Chromatographic run times for the LC-MS/MS and GC-MS/MS were 4.5 and 11 min, respectively. The limits of detection (LOD) for the low-concentration analytes (25-hydroxyvitamin D2, 25-hydroxyvitamin D3, and phylloquinone) were 25, 17, and 0.33 nM, respectively, while all other analytes demonstrated sensitivity significantly lower than endogenous concentrations. Recoveries ranged from 85.5-109.9% and within- and between-day coefficients of variance (CVs) were 0.7-9.4% and 1.1-17.5%, respectively. This low-volume, high-throughput multianalyte assay is currently in use in our laboratory for quantification of 32 serum/plasma biomarkers in epidemiological studies.
Monção, Nayana Bruna Nery; Araújo, Bruno Quirino; Silva, Jurandy do Nascimento; Lima, Daisy Jereissati Barbosa; Ferreira, Paulo Michel Pinheiro; Airoldi, Flavia Pereira da Silva; Pessoa, Cláudia; Citó, Antonia Maria das Graças Lopes
2015-03-05
Mimosa caesalpiniifolia is a native plant of the Brazilian northeast, and few studies have investigated its chemical composition and biological significance. This work describes the identification of the first chemical constituents in the ethanolic extract and fractions of M. caesalpiniifolia stem bark based on NMR, GC-qMS and HRMS analyses, as well as an assessment of their cytotoxic activity. GC-qMS analysis showed fatty acid derivatives, triterpenes and steroid substances and confirmed the identity of the chemical compounds isolated from the hexane fraction. Metabolite biodiversity in M. caesalpiniifolia stem bark revealed the differentiated accumulation of pentacyclic triterpenic acids, with a high content of betulinic acid and minor amounts of 3-oxo and 3β-acetoxy derivatives. Bioactive analysis based on total phenolic and flavonoid content showed a high amount of these compounds in the ethanolic extract, and ESI-(-)-LTQ-Orbitrap-MS identified caffeoyl hexose at high intensity, as well as the presence of phenolic acids and flavonoids. Furthermore, the evaluation of the ethanolic extract and fractions, including betulinic acid, against colon (HCT-116), ovarian (OVCAR-8) and glioblastoma (SF-295) tumour cell lines showed that the crude extract, hexane and dichloromethane fractions possessed moderate to high inhibitory activity, which may be related to the abundance of betulinic acid. The phytochemical and biological study of M. caesalpiniifolia stem bark thus revealed a new alternative source of antitumour compounds, possibly made effective by the presence of betulinic acid and by chemical co-synergism with other compounds.
NASA Astrophysics Data System (ADS)
Kanin, P. K.; Ryazantsev, V. A.; Lexin, M. A.; Zabirov, A. R.; Yagov, V. V.
2018-03-01
New experimental data on heat transfer in pool film boiling of subcooled ethanol-water mixtures at spherical surfaces are considered. The water solutions with ethanol mass fraction from 10 to 91% and temperature of liquid 50°C were examined. All the experiments were conducted under atmospheric pressure, using the stainless steel sphere of 39 mm in diameter as a cooled body. The sphere was heated up to 450-750°C, depending on ethanol concentration, and immersed into the experimental vessel with subcooled mixture. As it is expected, boiling heat transfer intensifies with ethanol concentration decrease, and duration of cooling decreases. It means that stable film boiling duration decreases, and earlier transition to intensive heat transfer regime occurs.
Sangdee, Kusavadee; Nakbanpote, Woranan; Sangdee, Aphidech
2015-01-01
The entomopathogenic fungus Cod-MK1201 was isolated from a dead cicada nymph. Three regions of ribosomal nuclear DNA, the internal transcribed spacers of nuclear ribosomal DNA repeats (ITS), the partial small subunit of rDNA (nrSSU) , and the partial large subunit of rDNA (nrLSU), and two protein-coding regions, the elongation factor 1α (EF-1α), and the largest subunit of the RNA polymerase II (rpb1) gene, were sequenced and used for fungal identification. The phylogenetic analysis of the ITS and the combined data set of the five genes indicated that the fungal isolate Cod-MK1201 is a new strain of Cordyceps sp. that is closely related to Cordyceps nipponica and C. kanzashiana. Crude extracts of mycelium-cultured Cod-MK1201 were obtained using distilled water and 50% (v/v) ethanol, and the antibacterial activity of each was determined. Both extracts had activity against Gram-positive and Gram-negative bacteria, but the ethanol extract was the more potent of the two. The antibacterial activity of the protein fractions of these extracts was also determined. The protein fraction from the ethanol extract was more antibacterial than the protein fraction from the aqueous extract. Three antibacterial constituents including adenosine, the total phenolic content (TPC), and the total flavonoid content (TFC) was also determined. The results showed that the adenosine content, the TPC, and the TFC of the ethanol extract were more active than those of the aqueous extract. Moreover, synergism was detected between these antibacterial constituents. In conclusion, the entomopathogenic fungal isolate Cod-MK1201 represents a natural source of antibacterial agents.
Mori, Tatsuya; Chang, Cecilia; Maurtua, Dora; Hammond, Gerald B
2006-02-01
A fraction from the ethanol extract of the Peruvian medicinal plant Mauria heterophylla (Anacardiaceae) showed antibacterial activity against Escherichia coli 35992, Staphylococcus aureus 20213 and Pseudomonas aeruginosa 15442. Further fractionation led to the isolation and characterization of ethyl gallate as the antibacterial active compound. Copyright 2006 John Wiley & Sons, Ltd.
Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid).
Yamamoto, Tetsuya; Moriwaki, Yuji; Takahashi, Sumio
2005-06-01
There are many factors that contribute to hyperuricemia, including obesity, insulin resistance, alcohol consumption, diuretic use, hypertension, renal insufficiency, genetic makeup, etc. Of these, alcohol (ethanol) is the most important. Ethanol enhances adenine nucleotide degradation and increases lactic acid level in blood, leading to hyperuricemia. In beer, purines also contribute to an increase in plasma uric acid. Although rare, dehydration and ketoacidosis (due to ethanol ingestion) are associated with the ethanol-induced increase in serum uric acid levels. Ethanol also increases the plasma concentrations and urinary excretion of hypoxanthine and xanthine via the acceleration of adenine nucleotide degradation and a possible weak inhibition of xanthine dehydrogenase activity. Since many factors such as the ALDH2*1 gene and ADH2*2 gene, daily drinking habits, exercise, and dehydration enhance the increase in plasma concentration of uric acid induced by ethanol, it is important to pay attention to these factors, as well as ingested ethanol volume, type of alcoholic beverage, and the administration of anti-hyperuricemic agents, to prevent and treat ethanol-induced hyperuricemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shanhui; Tong, Chaohui; Zhu, Yuejin, E-mail: zhuyuejin@nbu.edu.cn
The complex microstructures of drug particle/ABA star triblock copolymer in dilute solutions have been investigated by a theoretical approach which combines the self-consistent field theory and the hybrid particle-field theory. Simulation results reveal that, when the volume fraction of drug particles is smaller than the saturation concentration, the drug particle encapsulation efficiency is 100%, and micelle loading capacity increases with increasing particle volume fraction. When the volume fraction of drug particles is equal to the saturation concentration, the micelles attain the biggest size, and micelle loading capacity reaches a maximum value which is independent of the copolymer volume fraction. Whenmore » the volume fraction of drug particles is more than the saturation concentration, drug particle encapsulation efficiency decreases with increasing volume fraction of drug particles. Furthermore, it is found that the saturation concentration scales linearly with the copolymer volume fraction. The above simulation results are in good agreement with experimental results.« less
Diuretic Activity of Ethanolic Root Extract of Mimosa Pudica in Albino Rats
SL, Shruthi; PS, Vaibhavi; VH, Pushpa; AM, Satish; Sibgatullah, Mohammad
2015-01-01
Introducation Diuretics are the drugs which increase the urine output. This property is useful in various pathological conditions of fluid overload. The presently available diuretics have lot of adverse effects. Our study has evaluated the diuretic activity of ethanolic root extract of Mimosa pudica as an alternative/new drug which may induce diuresis. Aim To evaluate the diuretic activity of ethanolic root extract of Mimosa pudicaa in albino rats. Materials and Methods Ethanolic root extract of Mimosa pudica (EEMP) was prepared using soxhlet’s apparatus. Albino rats were divided into 5 groups of 6 rats each. Group-I (Control) received distilled water 25ml/kg orally. Group-II (Standard) received Furosemide 20mg/kg orally. Group-III received EEMP 100 mg/kg, Group-IV received EEMP 200 mg/kg and Group-V received EEMP 400 mg/kg. The urine samples were collected for all the groups upto 5 hours after dosing and urine volume was measured. Urine was analysed for electrolytes (Na+, K+ and Cl-). ANOVA, Dunnet’s test and p-values were measured and data was analysed. Results EEMP exhibited significant diuretic activity by increasing urine volume and also by enhancing elimination of Sodium (Na+), Potassium (K+) and Chloride (Cl-) at doses of 100 and 200mg/kg. Conclusion EEMP possesses significant diuretic activity and has a beneficial role in volume overload conditions. PMID:26870704
NASA Astrophysics Data System (ADS)
Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.
2013-02-01
The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegallapati, Ambica K.; Frank, Edward D.
In one approach to algal biofuel production, lipids are extracted and converted to renewable diesel and non-lipid remnants are converted to biogas, which is used for renewable heat and power to support the process. Since biofuel economics benefit from increased fuel yield, the National Renewable Energy Laboratory analyzed an alternative pathway that extracts lipids and also makes ethanol from carbohydrates in the biomass. In this paper, we examine the environmental sustainability of this "fractionation pathway" through life-cycle analysis (LCA) of greenhouse gas emissions and energy use. When the feedstock productivity was 30 (18) g/m(2)/d, this pathway emitted 31 (36) gCO(2)e/MJmore » of total fuel, which is less than the emissions associated with conventional low sulfur petroleum diesel (96 gCO(2)e/MJ). The fractionation pathway performed well in this model despite the diversion of carbon to the ethanol fuel.« less
Characterization of the antiproliferative activity of Xylopia aethiopica
2012-01-01
Background Xylopia aethiopica, a plant found throughout West Africa, has both nutritional and medicinal uses. The present study aims to characterize the effects of extracts of this plant on cancer cells. Results We report that X. aethiopica extract prepared with 70% ethanol has antiproliferative activity against a panel of cancer cell lines. The IC50 was estimated at 12 μg/ml against HCT116 colon cancer cells, 7.5 μg/ml and > 25 μg/ml against U937 and KG1a leukemia cells, respectively. Upon fractionation of the extract by HPLC, the active fraction induced DNA damage, cell cycle arrest in G1 phase and apoptotic cell death. By using NMR and mass spectrometry, we determined the structure of the active natural product in the HPLC fraction as ent-15-oxokaur-16-en-19-oic acid. Conclusion The main cytotoxic and DNA-damaging compound in ethanolic extracts of Xylopia aethiopica is ent-15-oxokaur-16-en-19-oic acid. PMID:22409878
Fractionation for further conversion: from raw corn stover to lactic acid
NASA Astrophysics Data System (ADS)
He, Ting; Jiang, Zhicheng; Wu, Ping; Yi, Jian; Li, Jianmei; Hu, Changwei
2016-12-01
Fractionation is considered to be one promising strategy to utilize raw biomass to its fullest and produce chemicals with high selectivity. Herein, ethanol/H2O (1/1, v/v) co-solvent with 0.050 M oxalic acid is used to simultaneously fractionate 88.0 wt% of hemicellulose and 89.2 wt% of lignin in corn stover, while cellulose is not obviously degraded. H2O dissolves hemicellulose, G unit and those with β-O-4 linkage of lignin; whereas ethanol extracts G and S units as well as the skeleton with β-5 and β-β linkages of lignin. Oxalic acid effectively catalyzes the hydrolysis of hemicellulose and breaks the intermolecular linkages between hemicellulose and lignin, therefore further promotes the release of lignin. The dissolved hemicelluloses derivatives are reprocessed to produce lactic acid obtaining a high yield of 79.6 wt% with 90% selectivity by the catalysis of MgO. The remained cellulose and recovered lignin can be used further as feedstock to produce chemicals.
Khan, Alam; Islam, Md Hedayetul; Islam, Md Ekramul; Al-Bari, Md Abdul Alim; Parvin, Mst Shahnaj; Sayeed, Mohammed Abu; Islam, Md Nurul; Haque, Md Ekramul
2014-10-01
Tribolium castaneum (Herbst) is a harmful pest of stored grain and flour-based products in tropical and subtropical region. In the present study, rhizome of Drynaria quercifolia (J. Smith) was evaluated for pesticidal and pest repellency activities against T. castaneum, using surface film method and filter paper disc method, respectively. In addition, activity of the isolated compound 3,4-dihydroxybenzoic acid was evaluated against the pest. Chloroform soluble fraction of ethanol extract of rhizome of D. quercifolia showed significant pesticidal activity at doses 0.88 to 1.77 mg/cm(2) and significant pest repellency activity at doses 0.94 to 0.23 mg/cm(2). No pesticidal and pest repellency activity was found for petroleum ether, ethyl acetate and methanol soluble fractions of ethanol extract as well as for 3,4-dihydroxybenzoic acid. Considering our findings it can be concluded that chloroform soluble fraction of rhizome of D. quercifolia is useful in controlling T. castaneum of stored grain and flour-based products.
Fractionation for further conversion: from raw corn stover to lactic acid
He, Ting; Jiang, Zhicheng; Wu, Ping; Yi, Jian; Li, Jianmei; Hu, Changwei
2016-01-01
Fractionation is considered to be one promising strategy to utilize raw biomass to its fullest and produce chemicals with high selectivity. Herein, ethanol/H2O (1/1, v/v) co-solvent with 0.050 M oxalic acid is used to simultaneously fractionate 88.0 wt% of hemicellulose and 89.2 wt% of lignin in corn stover, while cellulose is not obviously degraded. H2O dissolves hemicellulose, G unit and those with β-O-4 linkage of lignin; whereas ethanol extracts G and S units as well as the skeleton with β-5 and β-β linkages of lignin. Oxalic acid effectively catalyzes the hydrolysis of hemicellulose and breaks the intermolecular linkages between hemicellulose and lignin, therefore further promotes the release of lignin. The dissolved hemicelluloses derivatives are reprocessed to produce lactic acid obtaining a high yield of 79.6 wt% with 90% selectivity by the catalysis of MgO. The remained cellulose and recovered lignin can be used further as feedstock to produce chemicals. PMID:27917955
Characterization of the antiproliferative activity of Xylopia aethiopica.
Choumessi, Aphrodite T; Danel, Mathieu; Chassaing, Stefan; Truchet, Isabelle; Penlap, Véronique B; Pieme, Anatole Constant; Asonganyi, Tazoacha; Ducommun, Bernard; Valette, Annie
2012-03-12
Xylopia aethiopica, a plant found throughout West Africa, has both nutritional and medicinal uses. The present study aims to characterize the effects of extracts of this plant on cancer cells. We report that X. aethiopica extract prepared with 70% ethanol has antiproliferative activity against a panel of cancer cell lines. The IC50 was estimated at 12 μg/ml against HCT116 colon cancer cells, 7.5 μg/ml and > 25 μg/ml against U937 and KG1a leukemia cells, respectively. Upon fractionation of the extract by HPLC, the active fraction induced DNA damage, cell cycle arrest in G1 phase and apoptotic cell death. By using NMR and mass spectrometry, we determined the structure of the active natural product in the HPLC fraction as ent-15-oxokaur-16-en-19-oic acid. The main cytotoxic and DNA-damaging compound in ethanolic extracts of Xylopia aethiopica is ent-15-oxokaur-16-en-19-oic acid.
Higaki-Sato, Noriko; Sato, Kenji; Inoue, Naomi; Nawa, Yuko; Kido, Yasuhiro; Nakabou, Yukihiro; Hashimoto, Kaori; Nakamura, Yasushi; Ohtsuki, Kozo
2006-09-20
In order to determine pyroglutamic acid levels in plasma, we developed a method based on precolumn derivatization of the carboxyl group of pyroglutamic acid with 2-nitrophenylhydrazine. Eight-week-old male SD strain rats were administered 200 mg of an acidic peptide fraction obtained from a commercial wheat gluten hydrolysate containing 0.63 mmol/g pyroglutamyl peptide. After administration, significant amounts of free pyroglutamic acid were observed in the ethanol-soluble fraction of the plasma from the portal vein. In addition, pyroglutamate aminopeptidase digestion of the ethanol-soluble fraction liberated significant amounts of pyroglutamic acid, which indicated the presence of the pyroglutamyl peptide. The presence of the pyroglutamyl peptide in the plasma was further confirmed by size exclusion chromatography. The levels of free and peptide forms of pyroglutamic acid increased significantly and reached a maximum (approximately 40 nmol/mL) at 15 and 30 min after administration, respectively.
Rattmann, Yanna D; Cipriani, Thales R; Sassaki, Guilherme L; Iacomini, Marcello; Rieck, Lia; Marques, Maria C A; da Silva-Santos, José E
2006-04-06
This study reveals that an ethanolic supernatant obtained from an aqueous extractive solution prepared from residues of methanolic extracts of ground leaves of Maytenus ilicifolia is able to cause a concentration- and endothelium-dependent relaxation in pre-contract rat aorta rings, with EC(50) of 199.7 (190-210) microg/ml. The non-selective nitric oxide synthase inhibitors l-NAME and l-NMMA abolished this effect, while superoxide dismutase and MnTBAP (a non-enzymatic superoxide dismutase mimetic) enhanced it. Further, relaxation induced by this ethanolic supernatant have been strongly inhibited by the guanylate cyclase inhibitors methylene blue and ODQ, as well as by the potassium channel blockers 4-aminopyridine and tetraethylammonium, but was unchanged by the cyclooxygenase inhibitor indomethacin and the membrane receptor antagonists atropine, HOE-140 and pirilamine. Partition of the ethanolic supernatant between H(2)O and EtOAc generated a fraction several times more potent, able to fully relax endothelium-intact aorta rings with an EC(50) of 4.3 (3.9-4.8) microg/ml. (13)C NMR spectrum of this fraction showed signals typical of catechin. This study reveals that the leaves of M. ilicifolia possess one or more potent substances able to relax endothelium-intact rat aorta rings, an event that appears to involve nitric oxide production, guanylate cyclase activation and potassium channel opening.
Shan, Lili; Liu, Junfeng; Yu, Yanling; Ambuchi, John J; Feng, Yujie
2016-05-01
The high chroma of cellulosic ethanol production wastewater poses a serious environmental concern; however, color-causing compounds are still not fully clear. The characteristics of the color compounds and decolorization of biologically treated effluent by electro-catalytic oxidation were investigated in this study. Excitation-emission matrix (EEM), fourier transform infrared spectrometer (FTIR), UV-Vis spectra, and ultrafiltration (UF) fractionation were used to analyze color compounds. High chroma of wastewater largely comes from humic materials, which exhibited great fluorescence proportion (67.1 %) in the biologically treated effluent. Additionally, the color compounds were mainly distributed in the molecular weight fractions with 3-10 and 10-30 kDa, which contributed 53.5 and 34.6 % of the wastewater color, respectively. Further decolorization of biologically treated effluent by electro-catalytic oxidation was investigated, and 98.3 % of color removal accompanied with 97.3 % reduction of humic acid-like matter was achieved after 180 min. The results presented herein will facilitate the development of a well decolorization for cellulosic ethanol production wastewater and better understanding of the biological fermentation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... volume of ethanol, in gallons. T = Actual temperature of the batch, in °F. (ii) For biodiesel (mono alkyl... = Standardized volume of biodiesel at 60 °F, in gallons. Va,b = Actual volume of biodiesel, in gallons. T...
Code of Federal Regulations, 2011 CFR
2011-07-01
... volume of ethanol, in gallons. T = Actual temperature of the batch, in °F. (ii) For biodiesel (mono alkyl... = Standardized volume of biodiesel at 60 °F, in gallons. Va,b = Actual volume of biodiesel, in gallons. T...
Code of Federal Regulations, 2012 CFR
2012-07-01
... volume of ethanol, in gallons. T = Actual temperature of the batch, in °F. (ii) For biodiesel (mono alkyl... = Standardized volume of biodiesel at 60 °F, in gallons. Va,b = Actual volume of biodiesel, in gallons. T...
Dimech, Gustavo Santiago; Soares, Luiz Alberto Lira; Ferreira, Magda Assunção; de Oliveira, Anne Gabrielle Vasconcelos; Carvalho, Maria da Conceição; Ximenes, Eulália Azevedo
2013-01-01
The aim of this study was to investigate the antimicrobial activity of different extracts and fractions obtained from Hymenaea stigonocarpa stem barks. The cyclohexanic, ethyl acetate, ethanol, aqueous, and hydroalcoholic extracts were obtained by maceration. The hydroalcoholic extract was partitioned, which resulted in the ethyl acetate and aqueous fractions. All extracts and fractions were subjected to phytochemical screening and evaluation of total phenol and tannin contents. An HPLC-DAD and ultrastructural alterations analysis were performed. Terpenes and coumarins were detected in the cyclohexanic extract. Flavonoids and condensed tannins were present in the other extracts and fractions. The extracts with the highest contents of tannins, ethanol (EE), hydroalcoholic (HE), and aqueous fraction (AF) showed also the highest antimicrobial activity. The MIC values ranged from 64 to 526 µg/mL. The chromatographic fingerprints suggest the presence of astilbin and other flavonoids in EE and HE. Presence of the thick cell wall, undulating outer layer, abnormal septa, and leakage of the cytoplasmic contents and absence of cell wall and cell lyses were the main alterations observed on Staphylococcus aureus ATCC 33591 after treatment with the Hymenaea stigonocarpa hydroalcoholic extract. The presence of phenolic compounds like flavonoids and tannins is possibly the reason for the antimicrobial activity. PMID:24396311
Luiz-Ferreira, Anderson; Cola, Maira; Barbastefano, Victor; de-Faria, Felipe Meira; de Almeida, Ana Beatriz A.; Farias-Silva, Elisângela; Calvo, Tamara Regina; Hiruma-Lima, Clélia A.; Vilegas, Wagner; Souza-Brito, Alba Regina M.
2012-01-01
The present study evaluated the antiulcerogenic activity and mechanisms of the aqueous (AqF 100 mg/kg) and ethyl acetate (AcF 50 mg/kg) fractions from Indigofera truxillensis leaves. This dose was selected to assess its activity on ulcer healing and its action on gastric acid and mucus secretion, prostaglandin production and antioxidant enzyme activity (superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd)). Gastric ulcer was induced by absolute ethanol. Antisecretory action, mucus and prostaglandin production, healing and antioxidant enzyme activities were evaluated for both fractions. AqF and AcF significantly inhibited the gastric mucosal damage caused by ethanol. This effect was statistically significant at 100 and 50 mg/kg compared with the vehicle. Neither fraction interfered with gastric secretion. AcF increased the PGE2 production, and both fractions increased mucus production. l-NAME did not alter the gastroprotection exerted by the fractions, but N-ethylmaleimide attenuated only AcF. In the ischemia/reperfusion model both fractions inhibited the mucosal damage. AcF increased SOD, GSH-Px and GSH-Rd activity, but AqF increased only SOD and GSH-Px. In the acetic acid-induced ulcer model AcF only accelerated ulcer healing. These results showed that Indigofera truxillensis acted as a gastroprotective agent, stimulating protective factors and antioxidants enzymes. PMID:23203107
NASA Astrophysics Data System (ADS)
Rahardjo, Andhika Priotomo; Fauzantoro, Ahmad; Gozan, Misri
2018-02-01
The decline in cigarette production as the solution of health problems can interfere with the welfare of tobacco farmers in Indonesia. So, it is required to utilize the alternative uses of tobacco with chemical compounds inside it as the raw material for producing alternative products. One of the methods that is efficient in separating chemical compounds from plant extracts is fractionation and characterization method. This method has never been used for Nicotiana tabaccum L. extract using semi polar and polar solvents. This study begins with preparing Nicotiana tabaccum L. extract ingredients obtained through reflux ethanol extraction process. Extracts are analyzed by HPLC which serves to determine the chemical compounds in tobacco extract qualitatively. Extract that has been analyzed, is then fractionated using column chromatography with semi polar (ethyl acetate) and polar (ethane) solvents sequentially. Chemical compounds from tobacco extracts will be dissolved in accordance with the polarity of each solvents. The chemical compound is then characterized using HPLC quantitatively and qualitatively. Then, the data that has been obtained is used to find the partition coefficient of the main components in Nicotiana tabaccum L., which is Nicotine (kN) in Virginia 1 (Ethyl Acetate) fraction at 0.075; Virginia 2 (Ethyl Acetate) fraction at 0.037; And Virginia 3 (Ethyl Acetate) fraction at 0.043.
Molina-Salinas, Gloria María; Peña-Rodríguez, Luis Manuel; Mata-Cárdenas, Benito David; Escalante-Erosa, Fabiola; González-Hernández, Silvia; Torres de la Cruz, Víctor Manuel; Martínez-Rodríguez, Herminia Guadalupe; Said-Fernández, Salvador
2011-01-01
The efficacy of decoction in extracting mycobactericidal compounds from Flourensia cernua (Hojasé) leaves and fractionation with solvents having ascending polarity was compared with that of (i) ethanol extraction by still maceration, extraction with a Soxhlet device, shake-assisted maceration, or ultrasound-assisted maceration, followed by fractionation with n-hexane, ethyl acetate, and n-butanol; (ii) sequential extraction with n-hexane, ethyl acetate, and n-butanol, by still maceration, using a Soxhlet device, shake-assisted maceration, or ultrasound-assisted maceration. The in vitro mycobactericidal activity of each preparation was measured against drug-sensitive (SMtb) and drug-resistant (RMtb) Mycobacterium tuberculosis strains. The results of which were expressed as absolute mycobactericidal activity (AMA). These data were normalized to the ΣAMA of the decoction fraction set. Although decoction was inactive, the anti-RMtb normalized ΣAMA (NAMA) of its fractions was comparable with the anti-RMtb NAMA of the still maceration extracts and significantly higher than the anti-SMtb and anti-RMtb NAMAs of every other ethanol extract and serial extract and fraction. Hexane extracted, from decoction, material having 55.17% and 92.62% of antituberculosis activity against SMtb and RMtb, respectively. Although the mycobactericidal activity of decoction is undetectable; its efficacy in extracting F. cernua active metabolites against M. tuberculosis is substantially greater than almost all pharmacognostic methods. PMID:21584254
[Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].
Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan
2003-07-01
The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.
Chemical Constituents Antioxidant and Anticholinesterasic Activity of Tabernaemontana catharinensis
Moura, Sidnei; Echeverrigaray, Sergio
2013-01-01
The present work aimed to analyze the alkaloid content of the ethanolic extract of Tabernaemontana catharinensis (Apocynaceae family) and its fractions as well as to evaluate their antioxidant and anticholinesterasic activities. The analyses of the ethanolic extract of T. catharinensis by mass spectrometry allowed identifying the presence of the alkaloids 16-epi-affinine, coronaridine-hydroxyindolenine, voachalotine, voacristine-hydroxyindolenine, and 12-methoxy-n-methyl-voachalotine, as well as an alkaloid with m/z 385.21 whose spectrum suggests a derivative of voacristine or voacangine. The extract and its alkaloid rich fractions showed antioxidant activity, especially those that contain the alkaloid m/z 385.21 or 16-epi-affinine with DPPH scavenging activity (IC50) between 37.18 and 74.69 μg/mL. Moreover, the extract and its fractions exhibited anticholinesterasic activity, particularly the fractions characterized by the presence of 12-methoxy-n-methyl-voachalotine, with IC50 = 2.1 to 2.5 μg/mL. Fractions with 16-epi-affinine combined good antioxidant (IC50 = 65.59 to 74.69 μg/mL) and anticholinesterasic (IC50 = 7.7 to 8.3 μg/mL) activities, representing an option for further studies aimed at treating neurodegenerative diseases. PMID:23983637
de Morais, Sandra Ribeiro; Oliveira, Thiago Levi Silva; de Oliveira, Lanussy Porfiro; Tresvenzol, Leonice Manrique Faustino; da Conceição, Edemilson Cardoso; Rezende, Maria Helena; Fiuza, Tatiana de Sousa; Costa, Elson Alves; Ferri, Pedro Henrique; de Paula, José Realino
2016-01-01
Background: Lippia sidoides (Verbenaceae) is used in Brazilian folk medicine as an antiseptic, and it is usually applied topically on skin, mucous membranes, mouth, and throat, or used for vaginal washings. Objectives: To analyze the chemical composition of the essential oil from L. sidoides collected in São Gonçalo do Abaeté, Minas Gerais and grown in Hidrolândia, Goiás; to evaluate the antimicrobial activity of the essential oil, crude ethanol extract, and hexane, dichloromethane, ethyl-acetate, and aqueous fractions (AFs); to study the antinociceptive, anti-inflammatory, and central nervous system activities of the crude ethanol extract. Materials and methods: The essential oils were obtained by hydro-distillation using a Clevenger-type apparatus and analyzed by GC/MS. The antimicrobial activity in vitro was performed by broth microdilution method. The pharmacological tests were performed using female Swiss albino mice. Results: The major components of the essential oil were isoborneol (14.66%), bornyl acetate (11.86%), α-humulene (11.23%), α-fenchene (9.32%), and 1.8-cineole (7.05%), supporting the existence of two chemotypes of this species. The hexane fraction (HF) had good antifungal activity against Cryptococcus sp. ATCC D (MIC = 31.25 μg/mL) and Cryptococcus gatti L48 (MIC = 62.5 μg/mL). In the pharmacological tests, the crude ethanol extract presented antinociceptive and anti-inflammatory activities. Conclusion: Given that the ethanol extract of L. sidoides is included in the Formulary of Phytotherapeutic Agents of the Brazilian Pharmacopeia as an anti-inflammatory for oral cavities, the present work provides scientific evidence to back this use and highlight the importance of selecting the appropriate chemotype on the basis of the expected biological response. SUMMARY The major components of the essential oil of L. sidoides were isoborneol bornyl acetate, α-humulene, α-fenchene, and 1.8-cineole. The HF had good antifungal activity against Cryptococcus sp. ATCC D and C. gatti L4.The crude ethanol extract of L. sidoides presented antinociceptive and anti-inflammatory activities.The present work provides scientific evidence of the importance of selecting the appropriate chemotype on the basis of the expected biological response. Abbreviations used: UFG: Universidade Federal de Goiás; HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; AF: aqueous fraction; MeOH: methanol; MIC: minimum inhibitory concentration; ATCC: American Type Culture Collection; MH: Müller Hinton; DMSO: dimethyl sulfoxide; RPMI: Roswell Park Memorial Institute; NaCl: sodium chloride; μL: microliters; mL: milliliters; μg: microgram; kg: kilogram; h: hour; min: minute; cm: centimeter; COBEA: Brazilian College of Animal Experiments; p.o.:, oral; i.p.: intraperitoneal; s.c.: subcutaneous; SEM: standard error of the mean; RI: retention indices. PMID:27867267
Roshani, G H; Karami, A; Salehizadeh, A; Nazemi, E
2017-11-01
The problem of how to precisely measure the volume fractions of oil-gas-water mixtures in a pipeline remains as one of the main challenges in the petroleum industry. This paper reports the capability of Radial Basis Function (RBF) in forecasting the volume fractions in a gas-oil-water multiphase system. Indeed, in the present research, the volume fractions in the annular three-phase flow are measured based on a dual energy metering system including the 152 Eu and 137 Cs and one NaI detector, and then modeled by a RBF model. Since the summation of volume fractions are constant (equal to 100%), therefore it is enough for the RBF model to forecast only two volume fractions. In this investigation, three RBF models are employed. The first model is used to forecast the oil and water volume fractions. The next one is utilized to forecast the water and gas volume fractions, and the last one to forecast the gas and oil volume fractions. In the next stage, the numerical data obtained from MCNP-X code must be introduced to the RBF models. Then, the average errors of these three models are calculated and compared. The model which has the least error is picked up as the best predictive model. Based on the results, the best RBF model, forecasts the oil and water volume fractions with the mean relative error of less than 0.5%, which indicates that the RBF model introduced in this study ensures an effective enough mechanism to forecast the results. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Studies on chemical constituents of Illicium simonsii].
Shang, Xiao-Ya; Guo, Miao-Ru; Zhao, Cong-Wei; Li, Shuai
2008-11-01
To study the chemical constituents from the active fractions against HIV in vitro, a crude ethanolic extract of Illicium simonsii. The compounds were isolated with column chromatography methods. MS and NMR spectroscopic methods were used to determine the structures of the compounds. Seven compounds were isolated from the active fractions against HIV in vitro of the 90% ethanol extract and their structures were elucidated as (+)-catechin (1), (-)-epicatechin (2), (+)-catechin 3-O-alpha-L-rhamnopyranoside (3), kaempferol 3-O-alpha-L-rhamnopyranoside (4), quercetin 3-O-alpha-L-rhamnopyranoside (5), erigeside C (6) and daucosterol (7). Seven compounds were isolated from this plant for the first time, but none of them exhibited active against HIV in vitro. Compounds 3 and 6 were isolated from this genus for the first time.
EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE.
Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique
2013-04-18
To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C 2 H 5 OH+OH→Products+H 2 O is also discussed.
Rodríguez, Luis F; Li, Changying; Khanna, Madhu; Spaulding, Aslihan D; Lin, Tao; Eckhoff, Steven R
2010-07-01
An engineering economic model, which is mass balanced and compositionally driven, was developed to compare the conventional corn dry-grind process and the pre-fractionation process called quick germ-quick fiber (QQ). In this model, documented in a companion article, the distillers dried grains with solubles (DDGS) price was linked with its protein and fiber content as well as with the long-term average relationship with the corn price. The detailed economic analysis showed that the QQ plant retrofitted from conventional dry-grind ethanol plant reduces the manufacturing cost of ethanol by 13.5 cent/gallon and has net present value of nearly $4 million greater than the conventional dry-grind plant at an interest rate of 4% in 15years. Ethanol and feedstock price sensitivity analysis showed that the QQ plant gains more profits when ethanol price increases than conventional dry-grind ethanol plant. An optimistic analysis of the QQ process suggests that the greater value of the modified DDGS would provide greater resistance to fluctuations in corn price for QQ facilities. This model can be used to provide decision support for ethanol producers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Microlayered flow structure around an acoustically levitated droplet under a phase-change process
Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi
2016-01-01
The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction. PMID:28725723
Li, Cun-Yu; Liu, Li-Cheng; Jin, Li-Yang; Li, Hong-Yang; Peng, Guo-Ping
2017-07-01
To separate chlorogenic acid from low concentration ethanol and explore the influence of Donnan effect and solution-diffusion effect on the nanofiltration separation rule. The experiment showed that solution pH and ethanol volume percent had influences on the separation of chlorogenic acid. Within the pH values from 3 to 7 for chlorogenic acid in 30% ethanol, the rejection rate of chlorogenic acid was changed by 70.27%. Through the response surface method for quadratic regression model, an interaction had been found in molecule weight cut-off, pH and ethanol volume percent. In fixed nanofiltration apparatus, the existence states of chlorogenic acid determinedits separation rules. With the increase of ethanol concentration, the free form chlorogenic acid was easily adsorbed, dissolved on membrane surface and then caused high transmittance due to the solution-diffusion effect. However, at the same time, due to the double effects of Donnan effect and solution-diffusion effect, the ionic state of chlorogenic acid was hard to be adsorbed in membrane surface and thus caused high rejection rate. The combination of Box-Behnken design and response surface analysis can well optimize the concentrate process by nanofiltration, and the results showed that nanofiltration had several big advantages over the traditional vacuum concentrate technology, meanwhile, and solved the problems of low efficiency and serious component lossesin the Chinese medicines separation process for low concentration organic solvent-water solution. Copyright© by the Chinese Pharmaceutical Association.
Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip
2018-01-01
Academic reports have confirmed Moringa oleifera leaves to possess significant antioxidant capacities; however, such studies are unavailable for its ripe seeds even though they are more desirous for consumption due to their sweet taste. In this study, we investigated antioxidant capacities of four polar extracts (crude water, ethanol, butanol, and aqueous residue) from the plant's ripe seeds. Phytochemicals were extracted from the ripe seeds of M. oleifera using ethanol and water solvents at initial stage. Butanol and aqueous residue were then subsequently fractioned out from the ethanol extract. Phenolic and flavonoid contents of the polar extracts were determined. Then, their antioxidant capacities were quantified by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Finally, gas chromatography-mass spectrometry (GC-MS) analyses of the extracts were performed. DPPH and ABTS tests showed that the polar extracts possess significant antioxidant capacities that ranged from 29 to 35.408 μM Trolox equivalence antioxidant capacity (TEAC)/mg sample and 7 to 29 μM TEAC/mg sample, respectively. The antioxidant capacities of the extracts corresponded to their phenolic and flavonoid contents that varied from 13.61 to 20.42 mg gallic acid equivalence/g sample and 0.58 to 9.81 mg quercetin equivalence/g sample, respectively. Finally, GC-MS analyses revealed antimicrobial phenolic compounds, 4-hydroxybenzaldehyde in crude water extract and 4-hydroxybenzene acetonitrile in the ethanol and butanol extracts, and aqueous residue. Our results established that M. oleifera ripe seeds have significant antioxidant activity which may be due to its phenolic and nonphenolic compounds content. In this study, polar phytochemicals from ripe seeds of Moringa oleifera were extracted by water and ethanol solvents, and butanol extract and aqueous residue were subsequently fractioned out of the ethanol extract. The four polar extracts were shown to have significant antioxidant capacities which correspond to their phenolic contents. Further, antimicrobial compounds 4-hydroxybenzaldehyde and 4-hydroxybenzene acetonitrile were identified in the extracts by gas chromatography-mass spectrometry analyses. Abbreviations used: ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DPPH: 2,2-diphenyl-1-picrylhydrazyl; TEAC: Trolox equivalence antioxidant capacity; QE: Quercetin equivalence; GAE: Gallic acid equivalence; GC-MS: Gas chromatography-mass spectrometry.
Balasubramanian, Thirumalaiswamy; Senthilkumar, G P; Karthikeyan, M; Chatterjee, Tapan Kumar
2013-07-01
Stereospermum suaveolens is a folk remedy for the treatment of diabetes and liver disorders in southern parts of India. In the present study, the protective effect of the ethyl acetate fraction of ethanol extract from S. suaveolens against hepatic oxidative stress was evaluated in streptozotocin (STZ)-induced diabetic rats for 14 days. The ethyl acetate fraction was administered orally to the STZ diabetic rats at the doses of 200 and 400 mg/kg. Blood glucose level was measured according to glucose oxidase method. In order to determine hepatoprotective activity, changes in the levels of serum biomarker enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), and serum alkaline phosphatase (SALP) were assessed in the ethyl acetate fraction treated diabetic rats and were compared with the levels in diabetic control rats. In addition, the antioxidant activity of ethyl acetate fraction was evaluated using various hepatic parameters such as thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). It was found that administration of ethyl acetate fraction (200 and 400 mg/kg) produced a significant (P < 0.001) fall in fasting blood glucose level, TBARS, bilirubin, AST, ALT, and SALP, while elevating the GSH levels, and SOD and CAT activities in diabetic rats. Histopathologic studies also revealed the protective effect of ethyl acetate fraction on the liver tissues of diabetic rats. It was concluded from this study that the ethyl acetate fraction from ethanol extract of S. suaveolens modulates the activity of enzymatic and nonenzymatic antioxidants and enhances the defense against hepatic oxidative stress in STZ-induced diabetic rats.
Mystic Acetaldehyde: The Never-Ending Story on Alcoholism.
Peana, Alessandra T; Sánchez-Catalán, María J; Hipólito, Lucia; Rosas, Michela; Porru, Simona; Bennardini, Federico; Romualdi, Patrizia; Caputi, Francesca F; Candeletti, Sanzio; Polache, Ana; Granero, Luis; Acquas, Elio
2017-01-01
After decades of uncertainties and drawbacks, the study on the role and significance of acetaldehyde in the effects of ethanol seemed to have found its main paths. Accordingly, the effects of acetaldehyde, after its systemic or central administration and as obtained following ethanol metabolism, looked as they were extensively characterized. However, almost 5 years after this research appeared at its highest momentum, the investigations on this topic have been revitalized on at least three main directions: (1) the role and the behavioral significance of acetaldehyde in different phases of ethanol self-administration and in voluntary ethanol consumption; (2) the distinction, in the central effects of ethanol, between those arising from its non-metabolized fraction and those attributable to ethanol-derived acetaldehyde; and (3) the role of the acetaldehyde-dopamine condensation product, salsolinol. The present review article aims at presenting and discussing prospectively the most recent data accumulated following these three research pathways on this never-ending story in order to offer the most up-to-date synoptic critical view on such still unresolved and exciting topic.
Krishnappa, Kaliyamoorthy; Dhanasekaran, Shanmugam; Elumalai, Kuppusamy
2012-08-01
To investigate the potentiality of mosquitocidal activity of Gliricidia sepium (G. sepium) (Jacq.) (Leguminosae). Twenty five early third instar larvae of Anopheles stephensi (An. stephensi) were exposed to various concentrations (50-250 ppm) and the 24 h LC(50) values of the G. sepium extract was determined by probit analysis. The ovicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm under laboratory conditions. The eggs hatchability was assessed 48 h post treatment. The pupicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm. Mortality of each pupa was recorded after 24 h of exposure to the extract. Results pertaining to the experiment clearly revealed that ethanol extract showed significant larvicidal, ovicidal and pupicidal activity against the An. stephensi. Larvicidal activity of ethanol extracts of G. sepium showed maximum mortality in 250 ppm concentration (96.0±2.4)%. Furthermore, the LC(50) was found to be 121.79 and the LC(90) value was recorded to be 231.98 ppm. Ovicidal activity of ethanol extract was assessed by assessing the egg hatchability. Highest concentration of both solvent extracts exhibited 100% ovicidal activity. Similarly, pupae exposed to different concentrations of ethanol extract were found dead with 58.10% adult emergence when it was treated with 25 ppm concentration. Similarly, 18.36 (n=30; 61.20%); 21.28(70.93) and 27.33(91.10) pupal mortality was recorded from the experimental pupae treated with 50, 75 and 100 ppm concentration of extracts. Three fractions have been tested for their larvicidal activity of which the Fraction 3 showed the LC(50) and LC(90) values of 23.23 and 40.39 ppm. With regard to the ovicidal effect fraction 3 showed highest ovicidal activities than the other two fractions. Furthermore, there were no hatchability was recorded above 50 ppm (100% egg mortality) in the experimental group. Statistically significant pupicidal activity was recorded from 75 ppm concentration. From the results it can be concluded the crude extract of G. sepium is an excellent potential for controlling An. stephensi mosquito. It is apparent that, fraction 3 possess a novel and active principle which could be responsible for those biological activities. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid
NASA Technical Reports Server (NTRS)
Michelsen, Rebecca R.; Staton, Sarah J. R.; Iraci, Laura T.
2006-01-01
The solubility of gas-phase ethanol (ethyl alcohol, CH3CH2OH, EtOH) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (209-237 K) and acid composition (39-76 wt % H2SO4). Ethanol is very soluble under these conditions: effective Henry's law coefficients, H*, range from 4 x 10(exp 4) M/atm in the 227 K, 39 wt % acid to greater than 10(exp 7) M/atm in the 76 wt % acid. In 76 wt % sulfuric acid, ethanol solubility exceeds that which can be precisely determined using the Knudsen cell technique but falls in the range of 10(exp 7)-10(exp 10) M/atm. The equilibrium concentration of ethanol in upper tropospheric/lower stratospheric (UT/LS) sulfate particles is calculated from these measurements and compared to other small oxygenated organic compounds. Even if ethanol is a minor component in the gas phase, it may be a major constituent of the organic fraction in the particle phase. No evidence for the formation of ethyl hydrogen sulfate was found under our experimental conditions. While the protonation of ethanol does augment solubility at higher acidity, the primary reason H* increases with acidity is an increase in the solubility of molecular (i.e., neutral) ethanol.
Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice.
Yan, Sheng-Lei; Wang, Zhi-Hong; Yen, Hsiu-Fang; Lee, Yi-Ju; Yin, Mei-Chin
2016-12-01
Ethanol was used to induce acute hepatotoxicity in mice. Effects of cinnamic acid (CA) and syringic acid (SA) post-intake for hepatic recovery from alcoholic injury was investigated. Ethanol treated mice were supplied by CA or SA at 40 or 80 mg/kg BW/day for 5 days. Results showed that ethanol stimulated protein expression of CYP2E1, p47 phox , gp91 phox , cyclooxygenase-2 and nuclear factor kappa B in liver. CA or SA post-intake restricted hepatic expression of these molecules. Ethanol suppressed nuclear factor erythroid 2-related factor (Nrf2) expression, and CA or SA enhanced Nrf2 expression in cytosolic and nuclear fractions. Ethanol increased the release of reactive oxygen species, oxidized glutathione, interleukin-6, tumor necrosis factor-alpha, nitric acid and prostaglandin E 2 . CA or SA lowered hepatic production of these oxidative and inflammatory factors. Histological data revealed that ethanol administration caused obvious foci of inflammatory cell infiltration, and CA or SA post-intake improved hepatic inflammatory infiltration. These findings support that cinnamic acid and syringic acid are potent nutraceutical agents for acute alcoholic liver disease therapy. However, potential additive or synergistic benefits of cinnamic and syringic acids against ethanol-induced hepatotoxicity need to be investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor.
Salim, Ahmed; Lim, Sungjoon
2016-10-28
In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol's concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes.
A Layer Model of Ethanol Partitioning into Lipid Membranes
Nizza, David T.; Gawrisch, Klaus
2013-01-01
The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid-water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane’s hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane-water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30 – 15 mmol/l, corresponding to one ethanol molecule per 100–200 lipids. PMID:19592710
A layer model of ethanol partitioning into lipid membranes.
Nizza, David T; Gawrisch, Klaus
2009-06-01
The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.
Quantitative tomographic measurements of opaque multiphase flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN
2000-03-01
An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDTmore » and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.« less
Solana, Miriam; Qureshi, Nasib; Bertucco, Alberto; Eller, Fred
2016-01-01
A counter-current CO2 fractionation method was applied as a mean to recover n-butanol and other compounds that are typically obtained from biobutanol fermentation broth from aqueous solutions. The influence of operating variables, such as solvent-to-feed ratio, temperature, pressure and feed solution composition was experimentally studied in terms of separation efficiency, butanol removal rate, total removal and butanol concentration in the extract at the end of the continuous cycle. With respect to the temperature and pressure conditions investigated, results show that the highest separation efficiency was obtained at 35 °C and 10.34 MPa. At these operating conditions, 92.3% of the butanol present in the feed solution was extracted, and a concentration of 787.5 g·L−1 of butanol in the extract was obtained, starting from a feed solution of 20 g·L−1. Selectivity was calculated from experimental data, concluding that our column performs much better than a single equilibrium stage. When adding ethanol and acetone to the feed solution, ethanol was detected in the water-rich fraction (raffinate), whereas the highest concentration of acetone was found in the butanol rich fraction (extract). PMID:28773654
NASA Astrophysics Data System (ADS)
Tukumova, N. V.; Dieu Thuan, Tran Thi; Usacheva, T. R.; Koryshev, N. E.; Sharnin, V. A.
2017-04-01
Stability constants of the coordination compounds of nickel(II) and cobalt(II) ions with succinic acid anion in water-ethanol solvents are determined via potentiometric titration at ionic strength of 0.1 and at T = 298.15 K. It is found that logβ values of monoligand complexes of these ions and succinic acid anions rise along with the content of ethanol in solution ( X EtOH = 0-0.7 mole fractions). Based on an analysis of the thermodynamic characteristics of the solvation of the reagents involved in complex formation, it is found that the increased stability of succinate complexes of nickel(II) and cobalt(II) ions in water-ethanol solvents is mainly determined by the weakening of the solvation of succinic acid anion (Y2-).
NASA Technical Reports Server (NTRS)
Andrews, C. W.
1976-01-01
Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.
NASA Technical Reports Server (NTRS)
Conklin, Lindsey
2017-01-01
Fiber-reinforced composite structures have become more common in aerospace components due to their light weight and structural efficiency. In general, the strength and stiffness of a composite structure are directly related to the fiber volume fraction, which is defined as the fraction of fiber volume to total volume of the composite. The most common method to measure the fiber volume fraction is acid digestion, which is a useful method when the total weight of the composite, the fiber weight, and the total weight can easily be obtained. However, acid digestion is a destructive test, so the material will no longer be available for additional characterization. Acid digestion can also be difficult to machine out specific components of a composite structure with complex geometries. These disadvantages of acid digestion led the author to develop a method to calculate the fiber volume fraction. The developed method uses optical microscopy to calculate the fiber area fraction based on images of the cross section of the composite. The fiber area fraction and fiber volume fraction are understood to be the same, based on the assumption that the shape and size of the fibers are consistent in the depth of the composite. This tutorial explains the developed method for optically determining fiber area fraction performed at NASA Langley Research Center.
Brine shrimp lethality assay of Bacopa monnieri.
D'Souza, Prashanth; Deepak, Mundkinajeddu; Rani, Padmaja; Kadamboor, Sandhya; Mathew, Anjana; Chandrashekar, Arun P; Agarwal, Amit
2002-03-01
Successive petroleum ether, chloroform, ethanol and water extracts, a saponin rich fraction (SRF) and bacoside A isolated from Bacopa monnieri were tested for brine shrimp lethality. Successive ethanol extracts and SRF showed potent activity. Bacoside A showed the maximum activity with a LC(50) of 38.3 microg/mL. The results confirmed the previous reports of an anticancer effect of Bacopa monnieri and suggest bacoside A as the active constituent. Copyright 2002 John Wiley & Sons, Ltd.
Aggregation of Cobalt (II) Tetrasulfonated Phthalocyanine in Methanol- Water Solutions
1983-06-01
the presence of ethanol was measured over the same temperature range with methanol rcent mole fraction from 0.4 to 9.8. The temperature dependence...similar temperature dependence for the free energy of denaturation of proteins in ethanol -water solution. 6 5, 6 6 Since -C is proportional to AC 0 , a...8217-" -- : oi - -• solutions at various temperatures ; The-d&mýiarzation constant was determined by a nonlinear least-squares fit o absorbance versus
Antitubercular constituents from the hexane fraction of Morinda citrifolia Linn. (Rubiaceae).
Saludes, Jonel P; Garson, Mary J; Franzblau, Scott G; Aguinaldo, Alicia M
2002-11-01
A crude ethanol extract and hexane fraction from Morinda citrifolia Linn. (Rubiaceae) show antitubercular activity. The major constituents of the hexane fraction are E-phytol, cycloartenol, stigmasterol, beta-sitosterol, campesta-5,7,22-trien-3beta-ol and the ketosteroids stigmasta-4-en-3-one and stigmasta-4-22-dien-3-one. E-Phytol, a mixture of the two ketosteroids, and the epidioxysterol derived from campesta-5,7,22-trien-3beta-ol all show pronounced antitubercular activity. Copyright 2002 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Demand for alternatives to fossil fuels has resulted in a dramatic increase in ethanol production from corn. The dry grind method has been the major process, resulting in a large volume of dried distiller grains with solubles (DDGS) as a co-product. This presentation reports our study to monitor ...
Changes in Composition and Phosphorus Profile during Dry Grind Process of Corn into Ethanol and DDGS
USDA-ARS?s Scientific Manuscript database
Demand for alternatives to fossil fuels has resulted in a dramatic increase in ethanol production from corn. Dry grind method has been a major process, resulting in a large volume of dried distiller grains with solubles (DDGS) as a co-product. The process consists of grinding, cooking, liquefactio...
Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajpai, P.; Margaritis, A.
1982-12-01
The kinetics of ethanol inhibition on cell growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 were studied during batch growth. The liquid medium contained 10% (weight/volume) inulin-type sugars derived from an extract of Jerusalem artichoke (Helianthus tuberosus) tubers, supplemented with small amounts of Tween 80, oleic acid, and corn steep liquor. Initial ethanol concentrations ranging from 0 to 80 g/liter in the liquid medium were used to study the inhibitory effect of ethanol on the following parameters: maximum specific growth rate (mu max), cell and ethanol yields, and sugar utilization. It was found that as the initial ethanolmore » concentration increased from 0 to 80 g/liter, and maximum specific growth rate of K. marxianus cells decreased from 0.42 to 0.09/hour, whereas the ethanol and cell yields and sugar utilization remained almost constant. A simple kinetic model was used to correlate the mu max results and the rates of cell and ethanol production, and the appropriate constants were evaluated. (Refs. 22).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhichao; Dunn, Jennifer B.; Wang, Michael Q.
Corn ethanol, a first-generation biofuel, is the predominant biofuel in the United States. In 2013, the total U.S. ethanol fuel production was 13.3 billion gallons, over 95% of which was produced from corn (RFA, 2014). The 2013 total renewable fuel mandate was 16.6 billion gallons according to the Energy Independence and Security Act (EISA) (U.S. Congress, 2007). Furthermore, until 2020, corn ethanol will make up a large portion of the renewable fuel volume mandated by Renewable Fuels Standard (RFS2). For the GREET1_2014 release, the corn ethanol pathway was subject to updates reflecting changes in corn agriculture and at corn ethanolmore » plants. In the latter case, we especially focused on the incorporation of corn oil as a corn ethanol plant co-product. Section 2 covers these updates. In addition, GREET now includes options to integrate corn grain and corn stover ethanol production on the field and at the biorefinery. These changes are the focus of Section 3.« less
Kawashima, Keiko; Fujimura, Yu; Makino, Toshiaki; Kano, Yoshihiro
2006-09-01
The protective effect of Hangeshashinto (HST) and its major constituents, baicalin (BA), berberine (BE), saponin fraction of ginseng (GS) and glycyrrhizin (GL) on rat gastric lesion induced by ethanol was examined to clarify its active ingredients and action mechanism. Oral treatment with HST at the doses of 125 and 250 mg/kg suppressed ethanol-induced gastric lesions. The mixture of BA, BE, GL and GS (4M), each of BE, GL and GS at the dosage corresponded to HST (125 mg/kg) also suppressed the ethanol-induced gastric lesion in rats, but BA did not. Treatment of ethanol augmented the activity of myeloperoxidase (MPO) in the stomach, which was significantly suppressed by the administration of HST, BE, GL and GS. These results suggest that the protective effect of HST on ethanol-induced gastric lesion was depended on BE, GL and GS, by, in part, the reduction of MPO activity in stomach.
Croisfelt, Fernanda; Martins, Bianca C; Rescolino, Robson; Coelho, Diego F; Zanchetta, Beatriz; Mazzola, Priscila G; Goulart, Luis Ricardo; Pessoa, Adalberto; Tambourgi, Elias B; Silveira, Edgar
2015-12-01
This works reports the purification of bromelain extracted from Ananas comosus industrial residues by ethanol purification, its partial characterization from the crude extract as well as the ethanol purified enzyme, and its application onto poly(N-isopropylacrylamide)-co-acrylamide hydrogels. Bromelain was recovered within the 30-70 % ethanol fraction, which achieved a purification factor of 3.12-fold, and yielded more than 90 % of its initial activity. The resulting purified bromelain contained more than 360 U · mg(-1), with a maximum working temperature of 60 °C and pH of 8.0. Poly(N-isopropylacrylamide)-co-acrylamide hydrogels presented a swelling rate of 125 %, which was capable of loading 56 % of bromelain from the solution, and was able to release up to 91 % of the retained bromelain. Ethanol precipitation is suitable for bromelain recovery and application onto poly(N-isopropylacrylamide)-co-acrylamide hydrogels based on its processing time and the applied ethanol prices. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Simon Chun Ho, E-mail: simonyu@cuhk.edu.hk; Lau, Tiffany Wing Wa; Tang, Peggy
PurposeTo evaluate the microvascular distribution of lipiodol–ethanol, the histological change of the tumor lesion, and the status of tumor involution over time in hepatocellular carcinoma (HCC) following transarterial ethanol ablation (TEA), in lesions that showed CT evidence of complete tumor response.Materials and methodsPatients with unresectable HCC were treated (183 patients, 242 lesions) with TEA using lipiodol–ethanol mixture (LEM) mixed in 2:1 ratio by volume and followed with CT at 3-month intervals for a median of 14.1 months. Liver tumors (n = 131) that showed CT evidence of complete tumor response, defined as the absence of any enhancing tumor throughout the follow-up period, weremore » included. The surgical specimens of five patients who subsequently received partial hepatectomy were available for histological assessment. The microvascular distribution of LEM and the degree of tumor necrosis were analyzed. Tumor involution over time was assessed with CT in lesions that showed complete response.ResultsLipid stain revealed lipiodol infiltration throughout arterioles, intratumoral sinusoidal spaces, tumor capsule, and peritumoral portal venules. Complete tumor necrosis (100 %) occurred in all 5 surgical specimens. The median (IQR) percentage tumor volume compared to baseline volumes at 12, 36, and 60 months was 32 % (23.5–52.5 %), 22 % (8–31 %), and 13.5 % (6–21.5 %), respectively.ConclusionIntrahepatic HCC lesion that showed CT evidence of complete tumor response following TEA is associated with histological evidence of LEM infiltration throughout the intratumoral and peritumoral vasculature and complete tumor necrosis, as well as sustained reduction in tumor volume over time.« less
Methanol production method and system
Chen, Michael J.; Rathke, Jerome W.
1984-01-01
Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.
NASA Astrophysics Data System (ADS)
Fu, Qi; Socki, Richard A.; Niles, Paul B.
2015-04-01
Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic compounds is critical for understanding deep subsurface ecosystems and the origin of organic compounds on Mars and other planets.
Preparation and emission characteristics of ethanol-diesel fuel blends.
Zhang, Run-Duo; He, Hong; Shi, Xiao-Yan; Zhang, Chang-Bin; He, Bang-Quan; Wang, Jian-Xin
2004-01-01
The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection (DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon (HC), and carbon monoxide (CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.
Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao
2016-01-07
With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.
Evaluation of diuretic activity of different extracts of Mimosa pudica Linn.
Baghel, A; Rathore, D S; Gupta, V
2013-10-15
In that study, Mimosa pudica linn was tested for diuretic activity using the lipschitz test. The ethanolic and aqoues extract of Mimosa pudica Linn. was studied at two dose level 100 and 200 mg kg(-1) b.wt. Furosemide (20 mg kg(-1) b.wt.) was used as standard drug in a 0.9% saline solution. Urine volumes were measured for all the groups up to 5 h. The ethanolic extract of Mimosa pudica linn was exhibited significant diuretic activity at doses of 100 and 200 mg kg(-1) b.wt. by increasing total urine volume and ion concentration of Na+ k+ and Cl-.
NASA Astrophysics Data System (ADS)
Memon, Sanober F.; Lewis, Elfed; Pembroke, J. Tony; Chowdhry, Bhawani S.
2017-04-01
A novel, low cost and highly sensitive optical fibre probe sensor for concentration measurement of ethanol solvent (C2H5OH) corresponding to bio-ethanol production rate by an algae is reported. The principle of operation of the sensor is based on inter-fibre light coupling through an evanescent field interaction to couple the light between two multimode fibres mounted parallel to each other at a minimum possible separation i.e. < 1mm. The sensor was fabricated using a low cost 1000um plastic optical fibre (POF) and was characterized for real time measurement in the broadband spectrum including visible and near infra-red. The wavelength dependency of this sensor design was also investigated by post processing analysis of real time data and hence the optimum wavelength range determined. The proposed sensor has shown significant response in the range of 0.005 - 0.1 %v/v (%volume/volume or volume concentration) which depicts the high sensitivity for monitoring very minute changes in concentration corresponding refractive index changes of the solution. Numerically, sensor has shown the sensitivity of 21945 intensity counts/%v/v or 109.7 counts per every 0.0050 %v/v.
NASA Astrophysics Data System (ADS)
Febriana, Ike Dayi; Gala, Selfina; Mahfud, Mahfud
2017-05-01
Azo dye are synthetic organic dyes which has an azo group (- N = N -) as chromophore. Azo dye is resistand to decomposition process and harmfull for the environment and human being. Natural dye can be used as substitution of azo dye at textile industry. Natural dye are eco - friendly and can be applied for dyeing of fibrous material. Natural dye can be obtained from natural origin such as leaves, wood, or roots. The wood of jackfruit (Artocarpus heterophyllus) can used as natural source of natural dye. Ultrasound assisted extraction (UAE) is a new method that can be used to extract natural dye from jackfruit's wood. The aim of this research are to study about influence of ethanol concentration as solvent and extraction kinetic. Jackfruit's wood dust from sawmill used for the experimentation were sifted by sieve 35 mesh. Ethanol 96% used as solvent of this experiment and varied the concentration in volume to volume ratio (v/v). Experiment were carried out from 20 to 50 minutes. The result of this experiment shows that ethanol concentration influenced yield of extraction from jackfruit's wood. Concentration of ethanol will be affected polarity of solvent. The Peleg model was used to describe about kinetic model of natural dye extraction. Value of k1 and k2 constant are 0.003835 and 0.04186 respectively.
Chen, Junwu; Xu, Bin; Yang, Kaixia; Cao, Yong; Sung, Herman H Y; Williams, Ian D; Tang, Ben Zhong
2005-09-15
1,1-Bis(2'-thienyl)-2,3,4,5-tetraphenylsilole (1) was prepared and characterized crystallographically. Silole 1 exhibited aggregation-induced emission (AIE) behavior like other 2,3,4,5-tetraphenylsiloles. Unexpectedly, aggregates formed in water/acetone (6:4 by volume) mixture emitted a blue light that peaked at 474 nm, while aggregates formed in the mixtures with higher water fractions emitted green light that peaked at 500 nm. Transmission electron microscopy demonstrated that the aggregates formed in the mixture with water fraction of 60% were single crystals, while aggregates that formed in the mixture with water fraction of 90% were irregular and poorly ordered particles. The unusual PL spectral reliance on aggregation order was further confirmed by PL emissions of macroscopic crystal powders and amorphous powders of the silole in the dry state. PL spectral blue shifting was observed upon aging of the poorly ordered aggregates formed in mixtures with water fractions of 70-90%, and they finally exhibited the same blue emission as the crystalline aggregates. The as-deposited thin solid film was amorphous and it could be transformed to a transparent crystalline film upon treatment in the vapor of an ethanol/water (1:1 by volume) mixture, along with PL spectral blue shifting due to changing of aggregation order. It was also found that the crystalline film showed a blue-shifted absorption spectrum relative to the amorphous film and the shift of the absorption edge of the spectra could match that of corresponding PL spectra. The FT-IR spectrum of crystal powders of 1 displayed more vibration modes compared with that of amorphous powders, suggesting the existence of different pi-overlaps or different molecular conformations. The crystals of 1-methyl-1,2,3,4,5-pentaphenylsilole and hexaphenylsilole also showed blue-shifted PL emissions of their amorphous solids, with a comparable PL spectral shift of 1. Developing of a silole solution on a TLC plate readily brought about an amorphous thin layer. Our results suggest that crystalline films of AIE-active siloles are potential emissive layers for efficient blue OLEDs with stable color and long lifetime.
Florek, Ewa; Kulza, Maksymilian; Piekoszewski, Wojciech; Gomółka, Ewa; Jawień, Wojciech; Teżyk, Artur; Napierała, Marta
2015-10-01
A vast majority of people who abuse alcohol are also defined as "heavy smokers". Tobacco smokes induces CYP1A1, CYP1A2, CYP2A6 isoenzymes, but on the other hand, ethanol activates CYP2E1, which can be important during combined, chronic use of both of them. The aim of the study was to evaluate the influence of tobacco smoke xenobiotics on ethanol pharmacokinetics and the level of its metabolites in alcohol preferring and non-preferring rats. Ethanol, acetaldehyde, methanol, n-propanol and n-butanol were determined in whole blood by means of gas chromatography. Cotinine in serum was determined by LC-MS/MS. A non-compartmental analysis (cotinine, acetaldehyde) and Widmark equation (ethanol) were used for pharmacokinetic parameters calculation. Ethanol levels were lower in animals exposed to tobacco smoke compared to rats receiving this xenobiotic, without a prior exposure to tobacco smoke. Lower values of the studied pharmacokinetic parameters were observed in the alcohol preferring males compared to the non-alcohol preferring rats. Both n-propanol and n-butanol had higher values of the pharmacokinetic parameters analyzed in the animals exposed to tobacco smoke and ethanol compared to those, which ethanol was administered only once. An increase in maximum concentration and the area under concentration-time curve for ethanol after its administration to rats preferring alcohol and exposed to tobacco smoke are accompanied by a decrease in the volume of distribution. The changes in the volume of distribution may be caused by an increase in the first-pass effect, in the intestinal tract and/or in the liver. The acetaldehyde elimination rate constant was significantly higher in alcohol-preferring animals. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Suzuki, T; George, F R; Meisch, R A
1988-04-01
Oral ethanol self-administration was investigated systematically in two inbred strains of rats, Fischer 344 CDF (F-344)/CRLBR (F344) and Lewis LEW/CRLBR (LEW). For both strains ethanol maintained higher response rates and was consumed in larger volumes than the water vehicle. In addition, blood ethanol levels increased with increases in ethanol concentration. However, LEW rats drank substantially more ethanol than F344 rats. The typical inverted U-shaped function between ethanol concentration and number of deliveries was observed for the LEW rats, whereas for the F344 rats much smaller differences were seen between ethanol and water maintained responding. For the LEW strain, as the fixed-ratio size was increased, the number of responses increased almost in direct proportion to the fixed-ratio size increase, so that at least at the lower fixed-ratio values the rats were obtaining similar numbers of deliveries at different fixed-ratio sizes. However, a decrease in ethanol deliveries and blood ethanol levels was observed at higher fixed-ratio sizes. Similar results were obtained in F344 rats, but the amount of responding was lower and less consistent. LEW rats showed significantly higher response rates, numbers of ethanol deliveries and blood ethanol levels. Ethanol-induced behavioral activation also was observed in LEW rats, but not in F344 rats. These results support the conclusion that ethanol serves as a strong positive reinforcer for LEW rats and as a weak positive reinforcer for F344 rats, and that genotype is a determinant of the degree to which ethanol functions as a reinforcer.
NASA Astrophysics Data System (ADS)
Gamov, G. A.; Grazhdan, K. V.; Gavrilova, M. A.; Dushina, S. V.; Sharnin, V. A.; Baranski, A.
2013-06-01
Solutions of iron(III) perchlorate in water, water-ethanol, and water-dimethyl sulfoxide solvents (x_{H_2 O} = 0.7 and 0.25 mole fractions) at ionic strength values I = 0.1, 0.25, and 0.5 are studied by IR spectroscopy. Analysis of the absorption bands of perchlorate ion shows that it does not participate in association processes. It is demonstrated that in the range of ionic strength values between 0 and 0.5 (NaClO4), it affects neither the results from potentiometric titration to determine the stability constants of the iron(III)-nicotinamide complex nor the thermal effects of complexation determined via direct calorimetry in a binary solvent containing 0.3 mole fractions (m.f.) of a non-aqueous component.
Fuchs, Simone; Bischoff, Iris; Willer, Elisabeth A; Bräutigam, Jacqueline; Bubik, Martin F; Erdelmeier, Clemens A J; Koch, Egon; Faleschini, Maria T; De Mieri, Maria; Bauhart, Milena; Zahler, Stefan; Hensel, Andreas; Hamburger, Matthias; Potterat, Olivier; Fürst, Robert
2017-05-01
The hawthorn ( Crataegus spp.) extract WS 1442 is used against mild forms of chronic heart failure. This disease is associated with endothelial barrier dysfunction and edema formation. We have recently shown that WS 1442 protects against this dysfunction by a dual mechanism: it both promotes endothelial barrier integrity by activation of a barrier-enhancing pathway (cortactin activation) and inhibits endothelial hyperpermeability by blocking a barrier disruptive pathway (calcium signaling). In this study, we aimed to identify the bioactive compounds responsible for these actions by using a bioactivity-guided fractionation approach. From the four fractions generated from WS 1442 by successive elution with water, 95 % ethanol, methanol, and 70 % acetone, only the water fraction was inactive, whereas the other three triggered a reduction of endothelial hyperpermeability. Analyses of intracellular calcium levels and cortactin phosphorylation were used as readouts to estimate the bioactivity of subfractions and isolated compounds. Interestingly, only the ethanolic fraction interfered with the calcium signaling, whereas only the methanolic fraction led to an activation of cortactin. Thus, the dual mode of action of WS 1442 could be clearly assigned to two distinct fractions. Although the identification of the calcium-active substance(s) was not successful, we could exclude an involvement of phenolic compounds. Cortactin activation, however, could be clearly attributed to oligomeric procyanidins with a distinct degree of polymerization. Taken together, our study provides the first approach to identify the active constituents of WS 1442 that address different cellular pathways leading to the inhibition of endothelial barrier dysfunction. Georg Thieme Verlag KG Stuttgart · New York.
Hernando, Alberto; Valdes, Israel; Méndez, Enrique
2003-08-01
A procedure for determining small quantities of gliadins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) in gluten-free foods containing relatively large amounts of prolamin proteins from maize or rice is described. We report for the first time that gliadins, the ethanol-soluble wheat prolamin fraction, can be quantitatively solubilized in 1.0 M acetic acid, while the corresponding ethanol-soluble maize or rice prolamin fraction remains insoluble in acetic acid. We describe a methodology for the detection of gliadins in maize and rice foods based on a two-step procedure of extraction (60% aqueous ethanol followed by 1 M acetic acid). Subsequent MALDI-TOFMS analysis of the resulting acidic extract from these gluten-free foods clearly confirms the presence of a typical mass pattern corresponding to gliadin components, ranging from 30 to 45 kDa. Depending on the percentages of maize or rice flours employed in the elaboration of these foods, the combined procedure enables levels of gliadins from 100 to 400 ppm to be detected. The efficiency of this combined procedure corroborates enzyme-linked immunosorbent assay data for a large number of maize/rice gluten-free foods by means of direct visualization of the characteristic gliadin mass pattern in maize or rice foods. Copyright 2003 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Pan, Ning
1992-01-01
Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Studies on the discriminative stimulus properties of ethanol in squirrel monkeys.
York, J L; Bush, R
1982-01-01
Eight male squirrel monkeys were trained to use the pharmacological effects of ethanol [orally via gastric intubation 1600 mg/kg (IG), in normal saline] versus those produced by equivolume saline as discriminative stimuli in an operant conditioning (bar pressing) procedure in which the availability of banana-flavored food pellets was made contingent upon the drug condition of the animal (ethanol SD, saline S delta for four monkeys; saline SD, ethanol S delta for the other four monkeys). Test doses of 7.5 mg/kg pentobarbital IG and 80 mg/kg barbital IG closely mimicked the cue properties of ethanol, while doses of morphine sulfate (5.0-20 mg/kg IG) failed to elicit ethanol-appropriate responding. Other ethanolic beverages containing 1600 mg/kg ethanol in the same volume as the training dose, and found to mimic the cue properties of pure ethanol were bourbon, gin, beer, vodka, and red wine. The single test dose of cognac, scotch, and tequila elicited responding different from that of the training dose of ethanol. Thus, the pharmacological effects of ethanolic beverages containing the same dose of ethanol (1600 mg/kg) may be noticeably different to some subjects. Blood levels of ethanol produced by the different beverages may be an important variable. There was no differential effect of the beverages upon free-feeding behavior of the monkeys at the time of testing. Ethanol preference tests conducted at the end of the study (i.e., after nearly 2 years of drug discrimination training) indicated that the assignment of ethanol as the condition under which food pellets were available (SD condition) moderately increased the ethanol preference of those subjects as compared to monkeys for whom ethanol had served as the S delta condition.
Khalil, E; Najjar, S; Sallam, A
2000-04-01
Aqueous solubility of diclofenac diethylamine (DDEA), a nonsteroidal anti-inflammatory drug currently formulated as a topical emulgel, was studied in the presence of pharmaceutical additives and compared with diclofenac sodium (DS). Electrolytes at low concentrations exhibited a salting-in effect on DDEA with peak solubility that was attributed to the association of DDEA into micelles, followed by a salting-out effect at higher concentrations, by which structure formation by DDEA molecules increased and precipitation occurred. For DS, which is not capable of forming micelles, the salting-out effect was dominant due to the common ion effect. Cosolvents displayed significant enhancement in solubility of both salts except glycerol, which showed a slight increase in solubility of DDEA and a decrease in solubility of DS due to transformation into the less soluble hydrate form. Ethanol and polyethylene glycol (PEG) 400 cosolvent systems at all concentrations showed positive deviations from the log-linear solubility equation. In the case of propylene glycol (PG) cosolvent systems, negative deviations were observed at low volume fractions of cosolvent, while positive deviations were observed at high volume fractions of cosolvent for DS and DDEA. The parent drug, being less ionizable and highly nonpolar, showed negative deviations up to 90% PG content. Thus, the positive deviations for DS and DDEA could be attributed to the more ionizable carboxylic group and its higher ability for hydrogen bonding at higher fractions of cosolvent. Polyvinylpyrrolidone (PVP) and PEG4000 or PEG6000 enhanced the solubility of DS and DDEA, with PVP exerting higher solubilizing efficiency and DS showing better solubility than DDEA. Solubilities of DS in Tween 80 (T80) and Pluronic F-127 (PF127) aqueous solutions were almost similar, while the solubility of DDEA in the presence of T80 was higher than the solubility in the presence of PF127. DS appeared to be located more in the polyoxyethylene mantle of the micelles, while DDEA was located more in the core of the micelles.
NASA Astrophysics Data System (ADS)
Nurdin, Irwan; Satriananda
2017-03-01
Thermal conductivity of maghemite nanofluids were experimentally investigated at different maghemite nanoparticles volume fraction and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. The thermal conductivity ratio of maghemite nanofluids was linearly increase with increasing particle volume fraction and temperature. The highest enhancement of thermal conductivity is 42.5% which is obtained at particle volume fraction 2.5% and temperature 60 °C.
Ramasahayam, Sindhura; Baraka, Hany N; Abdel Bar, Fatma M; Abuasal, Bilal S; Widrlechner, Mark P; Sayed, Khalid A El; Meyer, Sharon A
2011-11-01
Echinacea species are used for beneficial effects on immune function, and various prevalent phytochemicals have immunomodulatory effects. Using a commercial E. purpurea (L.) Moench product, we have evaluated the myelopoietic effect on bone marrow of rats treated with various extracts and correlated this with their chemical class composition. Granulocyte/macrophage-colony forming cells (GM-CFCs) from femurs of female Sprague-Dawley rats were assessed at 24 h after 7 daily oral treatments. A 75% ethanolic extract at 50 mg dried weight (derived from 227 mg aerial parts) per kg body weight increased GM-CFCs by 70% but at 100 mg/kg was without effect. Ethanolic extracts from aerial parts of E. angustifolia DC. var. angustifolia and E. purpurea from the USDA North Central Regional Plant Introduction Station increased GM-CFCs by 3- and 2-fold, respectively, at 200 mg/kg (~1400 mg/kg plant material). Extract from another USDA E. angustifolia was inactive. Proton and APT NMR, MS, and TLC indicated alkylamides and caffeic-acid derivatives (CADs) present in ethanolic extracts of both the commercial and USDA-derived material. Cichoric and caftaric acids were prominent in both E. purpurea ethanolic extracts but absent in E. angustifolia. Aqueous extract of the commercial material exhibited polysaccharide and CAD signatures and was without effect on GM-CFCs. A methanol-CHCl3 fraction of commercial source, also inactive, was almost exclusively 1:4 nonanoic: decanoic acids, which were also abundant in commercial ethanolic extract but absent from USDA material. In conclusion, we have demonstrated an ethanolextractable myelostimulatory activity in Echinacea aerial parts that, when obtained from commercial herbal supplements, may be antagonized by medium-chain fatty acids presumably derived from a non-plant additive. © Georg Thieme Verlag KG Stuttgart · New York.
Vale, Valdicley V; Vilhena, Thyago C; Trindade, Rafaela C Santos; Ferreira, Márlia Regina C; Percário, Sandro; Soares, Luciana F; Pereira, Washington Luiz A; Brandão, Geraldo C; Oliveira, Alaíde B; Dolabela, Maria F; De Vasconcelos, Flávio
2015-03-27
Plasmodium falciparum has become resistant to some of the available drugs. Several plant species are used for the treatment of malaria, such as Himatanthus articulatus in parts of Brazil. The present paper reports the phyto-chemistry, the anti-plasmodial and anti-malarial activity, as well as the toxicity of H. articulatus. Ethanol and dichloromethane extracts were obtained from the powder of stem barks of H. articulatus and later fractionated and analysed. The anti-plasmodial activity was assessed against a chloroquine resistant strain P. falciparum (W2) in vitro, whilst in vivo anti-malarial activity against Plasmodium berghei (ANKA strain) was tested in mice, evaluating the role of oxidative stress (total antioxidant capacity--TEAC; lipid peroxidation--TBARS, and nitrites and nitrates--NN). In addition, cytotoxicity was evaluated using the HepG2 A16 cell-line. The acute oral and sub-chronic toxicity of the ethanol extract were evaluated in both male and female mice. Plumieride was isolated from the ethyl acetate fraction of ethanol extract, Only the dichloromethane extract was active against clone W2. Nevertheless, both extracts reduced parasitaemia in P. berghei-infected mice. Besides, a significant reduction in pulmonary and cerebral levels of NN (nitrites and nitrates) was found, as well as in pulmonary TBARS, indicating a reduced oxidative damage to these organs. The ethanol extract showed low cytotoxicity to HepG2 A16 cells in the concentrations used. No significant changes were observed in the in vivo toxicity studies. The ethanol extract of H. articulatus proved to be promising as anti-malarial medicine and showed low toxicity.
Phase-field simulations of coherent precipitate morphologies and coarsening kinetics
NASA Astrophysics Data System (ADS)
Vaithyanathan, Venugopalan
2002-09-01
The primary aim of this research is to enhance the fundamental understanding of coherent precipitation reactions in advanced metallic alloys. The emphasis is on a particular class of precipitation reactions which result in ordered intermetallic precipitates embedded in a disordered matrix. These precipitation reactions underlie the development of high-temperature Ni-base superalloys and ultra-light aluminum alloys. Phase-field approach, which has emerged as the method of choice for modeling microstructure evolution, is employed for this research with the focus on factors that control the precipitate morphologies and coarsening kinetics, such as precipitate volume fractions and lattice mismatch between precipitates and matrix. Two types of alloy systems are considered. The first involves L1 2 ordered precipitates in a disordered cubic matrix, in an attempt to model the gamma' precipitates in Ni-base superalloys and delta' precipitates in Al-Li alloys. The effect of volume fraction on coarsening kinetics of gamma' precipitates was investigated using two-dimensional (2D) computer simulations. With increase in volume fraction, larger fractions of precipitates were found to have smaller aspect ratios in the late stages of coarsening, and the precipitate size distributions became wider and more positively skewed. The most interesting result was associated with the effect of volume fraction on the coarsening rate constant. Coarsening rate constant as a function of volume fraction extracted from the cubic growth law of average half-edge length was found to exhibit three distinct regimes: anomalous behavior or decreasing rate constant with volume fraction at small volume fractions ( ≲ 20%), volume fraction independent or constant behavior for intermediate volume fractions (˜20--50%), and the normal behavior or increasing rate constant with volume fraction for large volume fractions ( ≳ 50%). The second alloy system considered was Al-Cu with the focus on understanding precipitation of metastable tetragonal theta'-Al 2Cu in a cubic Al solid solution matrix. In collaboration with Chris Wolverton at Ford Motor Company, a multiscale model, which involves a novel combination of first-principles atomistic calculations with a mesoscale phase-field microstructure model, was developed. Reliable energetics in the form of bulk free energy, interfacial energy and parameters for calculating the elastic energy were obtained using accurate first-principles calculations. (Abstract shortened by UMI.)
Hagiwara, A; Hori, M; Yokoyama, K; Nakazawa, M; Ueda, R; Horita, M; Andica, C; Abe, O; Aoki, S
2017-10-01
Myelin and axon volume fractions can now be estimated via MR imaging in vivo, as can the g-ratio, which equals the ratio of the inner to the outer diameter of a nerve fiber. The purpose of this study was to evaluate WM damage in patients with MS via this novel MR imaging technique. Twenty patients with relapsing-remitting MS with a combined total of 149 chronic plaques were analyzed. Myelin volume fraction was calculated based on simultaneous tissue relaxometry. Intracellular and CSF compartment volume fractions were quantified via neurite orientation dispersion and density imaging. Axon volume fraction and g-ratio were calculated by combining these measurements. Myelin and axon volume fractions and g-ratio were measured in plaques, periplaque WM, and normal-appearing WM. All metrics differed significantly across the 3 groups ( P < .001, except P = .027 for g-ratio between periplaque WM and normal-appearing WM). Those in plaques differed most from those in normal-appearing WM. The percentage changes in plaque and periplaque WM metrics relative to normal-appearing WM were significantly larger in absolute value for myelin volume fraction than for axon volume fraction and g-ratio ( P < .001, except P = .033 in periplaque WM relative to normal-appearing WM for comparison between myelin and axon volume fraction). In this in vivo MR imaging study, the myelin of WM was more damaged than axons in plaques and periplaque WM of patients with MS. Myelin and axon volume fractions and g-ratio may potentially be useful for evaluating WM damage in patients with MS. © 2017 by American Journal of Neuroradiology.
Balasubramanian, Thirumalaiswamy; Senthilkumar, G. P; Karthikeyan, M.; Chatterjee, Tapan Kumar
2013-01-01
Stereospermum suaveolens is a folk remedy for the treatment of diabetes and liver disorders in southern parts of India. In the present study, the protective effect of the ethyl acetate fraction of ethanol extract from S. suaveolens against hepatic oxidative stress was evaluated in streptozotocin (STZ)-induced diabetic rats for 14 days. The ethyl acetate fraction was administered orally to the STZ diabetic rats at the doses of 200 and 400 mg/kg. Blood glucose level was measured according to glucose oxidase method. In order to determine hepatoprotective activity, changes in the levels of serum biomarker enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), and serum alkaline phosphatase (SALP) were assessed in the ethyl acetate fraction treated diabetic rats and were compared with the levels in diabetic control rats. In addition, the antioxidant activity of ethyl acetate fraction was evaluated using various hepatic parameters such as thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). It was found that administration of ethyl acetate fraction (200 and 400 mg/kg) produced a significant (P < 0.001) fall in fasting blood glucose level, TBARS, bilirubin, AST, ALT, and SALP, while elevating the GSH levels, and SOD and CAT activities in diabetic rats. Histopathologic studies also revealed the protective effect of ethyl acetate fraction on the liver tissues of diabetic rats. It was concluded from this study that the ethyl acetate fraction from ethanol extract of S. suaveolens modulates the activity of enzymatic and nonenzymatic antioxidants and enhances the defense against hepatic oxidative stress in STZ-induced diabetic rats. PMID:24716175
EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE
Tran, Luc-Sy; Glaude, Pierre-Alexandre; Fournet, René; Battin-Leclerc, Frédérique
2013-01-01
To better understand the chemistry of the combustion of ethanol, the structure of five low pressure laminar premixed flames has been investigated: a pure methane flame (φ=1), three pure ethanol flames (φ=0.7, 1.0, and 1.3), and an ethanol/methane mixture flames (φ=1). The flames have been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 64.3 cm/s at 333 K. The results consist of mole fraction profiles of 20 species measured as a function of the height above the burner by probe sampling followed by online gas chromatography analyses. A mechanism for the oxidation of ethanol was proposed. The reactions of ethanol and acetaldehyde were updated and include recent theoretical calculations while that of ethenol, dimethyl ether, acetone, and propanal were added in the mechanism. This mechanism was also tested against experimental results available in the literature for laminar burning velocities and laminar premixed flame where ethenol was detected. The main reaction pathways of consumption of ethanol are analyzed. The effect of the branching ratios of reaction C2H5OH+OH→Products+H2O is also discussed. PMID:23712124
Improvements In Ethanologenic Escherichia Coli and Klebsiella Oxytoca
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. David Nunn
2010-09-30
The current Verenium cellulosic ethanol process is based on the dilute-acid pretreatment of a biomass feedstock, followed by a two-stage fermentation of the pentose sugar-containing hydrolysate by a genetically modified ethanologenic Escherichia coli strain and a separate simultaneous saccharification-fermentation (SSF) of the cellulosic fraction by a genetically modified ethanologenic Klebsiella oxytoca strain and a fungal enzyme cocktail. In order to reduce unit operations and produce a fermentation beer with higher ethanol concentrations to reduce distillation costs, we have proposed to develop a simultaneous saccharification co-fermentation (SScF) process, where the fermentation of the pentose-containing hydrolysate and cellulosic fraction occurs within themore » same fermentation vessel. In order to accomplish this goal, improvements in the ethanologens must be made to address a number of issues that arise, including improved hydrolysate tolerance, co-fermentation of the pentose and hexose sugars and increased ethanol tolerance. Using a variety of approaches, including transcriptomics, strain adaptation, metagenomics and directed evolution, this work describes the efforts of a team of scientists from Verenium, University of Florida, Massachusetts Institute of Technology and Genomatica to improve the E. coli and K. oxytoca ethanologens to meet these requirements.« less
Larvicidal activity against Aedes aegypti of pacharin from Bauhinia acuruana.
da Silva Góis, Roberto Wagner; de Sousa, Leôncio Mesquita; Santiago, Gilvandete Maria Pinheiro; Romero, Nirla Rodrigues; Lemos, Telma Leda Gomes; Arriaga, Angela Martha Campos; Braz-Filho, Raimundo
2013-07-01
The aim of the present study was to evaluate the activity of pacharin isolated from the ethanol extract from roots of Bauhinia acuruana on third-instar larvae of Aedes aegypti Linn. (Diptera: Culicidae). The crude ethanol extract showed larvicidal activity at the concentration of 500 μg/mL. Given this larvicidal activity, this extract was submitted to chromatographic fractionation on a silica gel column eluted with n-hexane, dichloromethane, ethyl ether, ethyl acetate, and methanol in order to isolate the active compound(s). Pacharin, obtained in pure form from fraction eluted with ethyl ether, was evaluated for their larvicidal effects against A. aegypti. In these bioassays, the larvae were exposed at concentrations of 500, 250, 100, 50, and 25 μg/mL of the crude ethanol extract or pacharin. After 24 h, the number of dead larvae was counted and the LC₅₀ values for larval mortality were calculated. Pacharin showed LC50 value of 78.9 ± 1.8 μg/mL. The structure of isolated compound was identified on the basis of their spectral data (IR, 1D- and 2D-NMR) and by comparison with literature spectral data. The results indicate pacharin as a potential natural larvicide.
Wang, Xiao-Yin; Yin, Jun-Yi; Nie, Shao-Ping; Xie, Ming-Yong
2018-02-01
Hericium erinaceus was extracted with boiling water to obtain the crude polysaccharide (HECP) and refined polysaccharide (HERP). HERP was further purified using gradual ethanol precipitation to obtain five sub-fractions. Their physicochemical properties were evaluated, including chemical components, monosaccharide composition and molecular weight. Meanwhile, the effect of HERP on colonic health of mice was investigated by oral administration at dosages of 100, 200 and 400mg/kg of body weight (mg/kgbw), comparing with that of HECP. Results showed that the gradual ethanol precipitation could remarkably increase polysaccharide purity. HERP, HECP and the five purified fractions had different monosaccharide compositions, while the main monosaccharides were Glc and Gal. They all showed similar structure with amorphous appearance. Short-chain fatty acids productions in colonic and cecum contents, and feces of mice were increased in polysaccharide treated groups. Mice administrated with HERP at 400mg/kgbw showed significant reductions in pH values while obvious increases in moisture amounts. This study suggests that gradual ethanol precipitation is available for purification of polysaccharide from Hericium erinaceus and the extracted polysaccharide could improve colonic health. Copyright © 2017. Published by Elsevier B.V.
Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J
2016-05-01
Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons. © 2015 Society for the Study of Addiction.
Antiproliferative Activity of Cyanophora paradoxa Pigments in Melanoma, Breast and Lung Cancer Cells
Baudelet, Paul-Hubert; Gagez, Anne-Laure; Bérard, Jean-Baptiste; Juin, Camille; Bridiau, Nicolas; Kaas, Raymond; Thiéry, Valérie; Cadoret, Jean-Paul; Picot, Laurent
2013-01-01
The glaucophyte Cyanophora paradoxa (Cp) was chemically investigated to identify pigments efficiently inhibiting malignant melanoma, mammary carcinoma and lung adenocarcinoma cells growth. Cp water and ethanol extracts significantly inhibited the growth of the three cancer cell lines in vitro, at 100 µg·mL−1. Flash chromatography of the Cp ethanol extract, devoid of c-phycocyanin and allophycocyanin, enabled the collection of eight fractions, four of which strongly inhibited cancer cells growth at 100 µg·mL−1. Particularly, two fractions inhibited more than 90% of the melanoma cells growth, one inducing apoptosis in the three cancer cells lines. The detailed analysis of Cp pigment composition resulted in the discrimination of 17 molecules, ten of which were unequivocally identified by high resolution mass spectrometry. Pheophorbide a, β-cryptoxanthin and zeaxanthin were the three main pigments or derivatives responsible for the strong cytotoxicity of Cp fractions in cancer cells. These data point to Cyanophora paradoxa as a new microalgal source to purify potent anticancer pigments, and demonstrate for the first time the strong antiproliferative activity of zeaxanthin and β-cryptoxanthin in melanoma cells. PMID:24189278
Bano, Shaista; Siddiqui, Bina Shaheen; Farooq, Ahsana Dar; Begum, Sabira; Siddiqui, Faheema; Kashif, Muhammad; Azhar, Mudassar
2017-12-01
Several Euphorbia species have been used in folklore as cancer remedies, however, scientific studies on the cytotoxicity (in vitro studies) of Euphorbia caducifolia are lacking. In present study, anticancer potential of E. caducifolia aerial parts ethanol extract and its fractions were evaluated against human lung (NCI-H460), breast (MCF-7), prostate (PC-3) and cervical (HeLa) cancer cell lines, using sulphorhodamine-B in vitro cytotoxicity (in vitro studies) assay. The ethanol extract demonstrated growth inhibitory effect against all aforementioned cancer cell lines with IC 50 , 19-135 μg/mL and LC 50 , ~220 μg/mL, and its petroleum ether fraction obtained on bioactivity guided fraction showed highest activity with IC 50 , 28-70 μg/mL and LC 50 , 71 μg/mL against NCI-H460 and MCF-7 cell lines. Its phytochemicals were analysed by gas chromatography-mass spectrometry (GC-MS). The present study provides scientific justification for its traditional use against cancer.
ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS.
Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip
2017-01-01
Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC 50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC 50 > 400μg/ml). Moringa oleifera seed has antiproliferative effect on MCF7.
Determination of Ethanol in Kombucha Products: Single-Laboratory Validation, First Action 2016.12.
Ebersole, Blake; Liu, Ying; Schmidt, Rich; Eckert, Matt; Brown, Paula N
2017-05-01
Kombucha is a fermented nonalcoholic beverage that has drawn government attention due to the possible presence of excess ethanol (≥0.5% alcohol by volume; ABV). A validated method that provides better precision and accuracy for measuring ethanol levels in kombucha is urgently needed by the kombucha industry. The current study validated a method for determining ethanol content in commercial kombucha products. The ethanol content in kombucha was measured using headspace GC with flame ionization detection. An ethanol standard curve ranging from 0.05 to 5.09% ABV was used, with correlation coefficients greater than 99.9%. The method detection limit was 0.003% ABV and the LOQ was 0.01% ABV. The RSDr ranged from 1.62 to 2.21% and the Horwitz ratio ranged from 0.4 to 0.6. The average accuracy of the method was 98.2%. This method was validated following the guidelines for single-laboratory validation by AOAC INTERNATIONAL and meets the requirements set by AOAC SMPR 2016.001, "Standard Method Performance Requirements for Determination of Ethanol in Kombucha."
Lee, Sang Yun; Park, Hyun Joo; Best-Popescu, Catherine; Jang, Seongsoo; Park, Yong Keun
2015-01-01
Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization.
Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor
Salim, Ahmed; Lim, Sungjoon
2016-01-01
In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol’s concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes. PMID:27801842
Kim, Sang-Min; Shang, Ya Fang; Um, Byung-Hun
2010-01-01
Blueberries (genus Vaccinium) have gained worldwide focus because of the high anthocyanin content of their fruits. In contrast, the leaves of blueberry have not attracted any attention, even though they contain large quantities of chlorogenic acid, a strong antioxidant compound. The aim of this investigation was the quantification and preparative isolation of chlorogenic acid (5-caffeoylquinic acid, 5-CQA) from blueberry leaves using a new separation scheme, centrifugal partition chromatography (CPC). A water fraction containing a high concentration of 5-CQA (14.5% of dry weight extract) was obtained by defatting a crude methanol extract from blueberry leaves. CPC was applied to isolate 5-CQA from this water fraction using a two-phase solvent system of ethyl acetate-ethanol-water at a volume ratio 4:1:5 (v/v/v). The flow-rate of mobile phase was 2 mL/min with the ascending mode while rotating at 1200 rpm. The eluate was monitored at 330 nm. The structure of chlorogenic acid in the CPC fraction was confirmed with HPLC, UV, ESI/MS and NMR spectra. The HPLC chromatogram showed that the fractions collected by CPC contained chlorogenic acid with 96% purity based on peak area percentage. The total amount of chlorogenic acid isolated from 0.5 g of a water fraction was 52.9 mg, corresponding to 10.6% of the water fraction. The isolated compound was identified successively as 5-CQA with MS (parent ion at m/z 355.1 [M + H](+)) and (1)H NMR spectra [caffeoyl moiety in the down field (δ 6.0-8.0 ppm) and quinic acid moiety in the up field (δ 2.0-5.5 ppm)]. 5-CQA was successfully isolated from blueberry leaves by the CPC method in a one-step procedure, indicating a further potential use for blueberry leaves. Copyright © 2010 John Wiley & Sons, Ltd.
Jennings, Edward W; Schell, Daniel J
2011-01-01
Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ji, Hairui; Yu, Jianliang; Zhang, Xu; Tan, Tianwei
2012-09-01
The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280 g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65 h with an average ethanol concentration and ethanol yield of 130.12 g/L and 0.477 g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28 days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75 L. The bioreactor was operated for 26 days at a dilution rate of 0.015 h(-1). The ethanol concentration of the effluent reached 130.77 g/L ethanol while an average 8.18 g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.
Trypanocidal activity of extracts from Brazilian Atlantic Rain Forest plant species.
Pizzolatti, M G; Koga, A H; Grisard, E C; Steindel, M
2003-01-01
The trypanocidal activity of crude hydro alcoholic extracts and several fractions of 13 plants from Brazilian Atlantic Rain Forest were tested in vitro against epimastigote and trypomastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. Crude ethanol extracts with promising in vitro activity (DL50 between 5-10 microg/ml) against epimastigotes were fractionated by solvent partition and further tested against bloodstream form of the parasite. Activity against bloodstream parasites was observed in both dichloromethane and hexane fractions of Polygala sabulosa and P. paniculata.
Thin stillage fractionation using ultrafiltration: resistance in series model.
Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D
2009-02-01
The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5-10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R(2) > 0.98).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osna, Natalia A., E-mail: nosna@UNMC.edu; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105; White, Ronda L.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell andmore » hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.« less
Effect of alcohol exposure on fetal brain development
NASA Astrophysics Data System (ADS)
Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.
2013-02-01
Alcohol consumption during pregnancy can be severely damage to the brain development in fetuses. This study investigates the effects of maternal ethanol consumption on brain development in mice embryos. Pregnant mice at gestational day 12.5 were intragastrically gavaged with ethanol (3g/Kg bwt) twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde and imaged using a swept-source optical coherence tomography (SSOCT) system. 3D images of the mice embryo brain were obtained and the volumes of the left and right ventricles of the brain were measured. The average volumes of the left and the right volumes of 5 embryos each alcohol-exposed and control embryos were measured to be 0.35 and 0.15 mm3, respectively. The results suggest that the left and right ventricle volumes of brain are much larger in the alcohol-exposed embryos as compared to control embryos indicating alcohol-induced developmental delay.
Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna
2015-01-01
Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579
Shi, Xiaolei; Yao, Dan; Chen, Chi
2012-01-01
The influence of ethanol on the small molecule metabolome and the role of CYP2E1 in ethanol-induced hepatotoxicity were investigated using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics platform and Cyp2e1-null mouse model. Histological and biochemical examinations of ethanol-exposed mice indicated that the Cyp2e1-null mice were more resistant to ethanol-induced hepatic steatosis and transaminase leakage than the wild-type mice, suggesting CYP2E1 contributes to ethanol-induced toxicity. Metabolomic analysis of urinary metabolites revealed time- and dose-dependent changes in the chemical composition of urine. Along with ethyl glucuronide and ethyl sulfate, N-acetyltaurine (NAT) was identified as a urinary metabolite that is highly responsive to ethanol exposure and is correlated with the presence of CYP2E1. Subsequent stable isotope labeling analysis using deuterated ethanol determined that NAT is a novel metabolite of ethanol. Among three possible substrates of NAT biosynthesis (taurine, acetyl-CoA, and acetate), the level of taurine was significantly reduced, whereas the levels of acetyl-CoA and acetate were dramatically increased after ethanol exposure. In vitro incubation assays suggested that acetate is the main precursor of NAT, which was further confirmed by the stable isotope labeling analysis using deuterated acetate. The incubations of tissues and cellular fractions with taurine and acetate indicated that the kidney has the highest NAT synthase activity among the tested organs, whereas the cytosol is the main site of NAT biosynthesis inside the cell. Overall, the combination of biochemical and metabolomic analysis revealed NAT is a novel metabolite of ethanol and a potential biomarker of hyperacetatemia. PMID:22228769
Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoll, K.; West, B.; Huff, S.
2010-06-01
Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehiclemore » fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.« less
Howlader, Md Amran; Alam, Mahmudul; Ahmed, Kh Tanvir; Khatun, Farjana; Apu, Apurba Sarker
2011-10-01
The ethanol leaf extract of Cymbidium aloifolium (L.) was evaluated for its analgesic and antiinflammatory activities. The extract, at the dose of 200 and 400 mg kg(-1) body weight, exerted the analgesic activity by observing the number of abdominal contractions and anti-inflammatory activity against Carrageenin induced paw edema in mice by measuring the paw volume. The ethanolic extract of Cymbidium aloifolium (L.) showed statistically significant (p < 0.05) reduction of percentage of writhing of 33.57 and 61.31% at 200 and 400 mg kg(-1) oral dose, respectively, when compared to negative control. The Ethanolic plant extract also showed significant (p < 0.05) dose dependent reduction of mean increase of formation of paw edema. The results of the experiment and its statistical analysis showed that the ethanolic plant extract had shown significant (p < 0.05) dose dependent analgesic and anti-inflammatory activities when compared to the control.
Ultrasound-guided interventional therapy for recurrent ovarian chocolate cysts.
Wang, Lu-Lu; Dong, Xiao-Qiu; Shao, Xiao-Hui; Wang, Si-Ming
2011-10-01
The aim of this study was to determine the effectiveness of ultrasound-guided interventional therapy in the treatment of postoperative recurrent chocolate cysts. The 198 patients enrolled in this study were divided into three groups. In group 1, the saline washing group, the cavity of the cyst was washed thoroughly with warm saline. In group 2, the ethanol short-time retention group, after washing with saline, the cyst was injected with 95% ethanol with a volume of half of the fluid aspirated from the cyst. Ten minutes later, the rest of the ethanol was aspirated. In group 3, the ethanol retention group, the procedures were the same as with the ethanol short-time retention group, except that 95% of the ethanol was retained in the cyst. An ultrasound examination was performed in the third, sixth and 12th months after therapy. The chocolate cyst cure rate was significantly higher in the ethanol retention group (96%, 66/69) than in the ethanol short-time retention group (82%, 56/68) and no case was cured in the first group (saline washing). We conclude that ultrasound-guided injection and 95% ethanol retention are an effective therapy for the treatment of postoperative recurrent chocolate cysts. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Enteromorpha compressa Exhibits Potent Antioxidant Activity
Shanab, Sanaa M. M.; Shalaby, Emad A.; El-Fayoumy, Eman A.
2011-01-01
The green macroalgae, Enteromorpha compressa (Linnaeus) Nees, Ulva lactuca, and E. linza, were seasonally collected from Abu Qir bay at Alexandria (Mediterranean Sea) This work aimed to investigate the seasonal environmental conditions, controlling the green algal growth, predominance, or disappearance and determining antioxidant activity. The freshly collected selected alga (E. compressa) was subjected to pigment analysis (chlorophyll and carotenoids) essential oil and antioxidant enzyme determination (ascorbate oxidase and catalase). The air-dried ground alga was extracted with ethanol (crude extract) then sequentially fractionated by organic solvents of increasing polarity (petroleum ether, chloroform, ethyl acetate, and water). Antioxidant activity of all extracts was assayed using different methods (total antioxidant, DPPH [2, 2 diphenyl-1-picrylhydrazyl], ABTS [2, 2 azino-bis ethylbenzthiazoline-6-sulfonic acid], and reducing power, and β-carotene linoleic acid bleaching methods). The results indicated that the antioxidant activity was concentration and time dependent. Ethyl acetate fraction demonstrated higher antioxidant activity against DPPH method (82.80%) compared to the synthetic standard butylated hydroxyl toluene (BHT, 88.5%). However, the crude ethanolic extract, pet ether, chloroform fractions recorded lower to moderate antioxidant activities (49.0, 66.0, and 78.0%, resp.). Using chromatographic and spectroscopic analyses, an active compound was separated and identified from the promising ethyl acetate fraction. PMID:21869863
Measuring the fraction of pool volume filled with fine sediment
Sue Hilton; Thomas E. Lisle
1993-01-01
The fraction of pool volume filled with fine sediment (usually fine sand to medium gravel) can be a useful index of the sediment supply and substrate habitat of gravel-bed channels. It can be used to evaluate and monitor channel condition and to detect and evaluate sediment sources. This fraction (V*) is the ratio of fine-sediment volume to pool water volume plus fine-...
Characterization and Demonstrations of Laser-Induced Incandescence in both Normal and Low-Gravity
NASA Technical Reports Server (NTRS)
VanderWal, Randall L.
1997-01-01
Knowledge of soot volume fraction is important to a wide range of combustion studies in microgravity. Laser-induced incandescence (LII) offers high sensitivity, high temporal and spatial resolution in addition to geometric versatility for real-time determination of soot volume fraction. Implementation of LII into the 2.2 see drop tower at The NASA-Lewis Research Center along with system characterization is described. Absolute soot volume fraction measurements are presented for laminar and turbulent gas-jet flames in microgravity to illustrate the capabilities of LII in microgravity. Comparison between LII radial intensity profiles with soot volume fraction profiles determined through a full-field light extinction technique are also reported validating the accuracy of LII for soot volume fraction measurements in a microgravity environment.
Lennernäs, Hans
2009-01-01
Generally, gastric emptying of a drug to the small intestine is controlled by gastric motor activity and is the main factor affecting the onset of absorption. Accordingly, the emptying rate from the stomach is mainly affected by the digestive state, the properties of the pharmaceutical formulation and the effect of drugs, posture and circadian rhythm. Variability in the gastric emptying of drugs is reflected in variability in the absorption rate and the shape of the plasma pharmacokinetic profile. When ethanol interacts with an oral controlled release product, such that the mechanism controlling drug release is impaired, the delivery of the dissolved dose into the small intestine and the consequent absorption may result in dangerously high plasma concentrations. For example, the maximal plasma concentration of hydromorphone has individually been shown to be increased as much as 16 times through in vivo testing as a result of this specific pharmacokinetic ethanol-drug formulation interaction. Thus, a pharmacokinetic ethanol-drug interaction is a very serious safety concern when substantially the entire dose from a controlled release product is rapidly emptied into the small intestine (dose dumping), having been largely dissolved in a strong alcoholic beverage in the stomach during a sufficient lag-time in gastric emptying. Based on the literature, a two hour time frame for screening the in vitro dissolution profile of a controlled release product in ethanol concentrations of up to 40% is strongly supported and may be considered as the absolute minimum standard. It is also evident that the dilution, absorption and metabolism of ethanol in the stomach are processes with a minor effect on the local ethanol concentration and that ethanol exposure will be highly dependent on the volume and ethanol concentration of the fluid ingested, together with the rate of intake and gastric emptying. When and in which patients a clinically significant dose dumping will happen is almost impossible to predict and will depend on drinking behavior and the highly variable gastrointestinal factors of importance for dissolution, transit and absorption. Therefore, controlled release products which show a vulnerability to ethanol during two hours in vitro should be required to demonstrate clinical safety by going through in vivo testing with an alcoholic beverage of up to 40% ethanol and of a sufficient volume (probably 120 mL or more), consumed in a relatively short period of time. Alternatively, such preparations should be reformulated in accordance with quality-by-design principles.
Yang, Tianhua; Wang, Jian; Li, Bingshuo; Kai, Xingping; Xing, Wanli; Li, Rundong
2018-06-01
This study extended previous work investigating two-step liquefaction by supercritical ethanol of rice straw under CO 2 atmosphere at temperatures of 270-345 °C. Subcritical CO 2 -subcritical ethanol (SubCO 2 -SubEtOH) pretreatment decreased the content of lignin in the rice stalk from 22.94 to 21.43 wt%. The results showed that although oxygen-transfer reaction, transesterification, carbonylation, and other reactions may occur with the supercritical CO 2 -supercritical ethanol (ScCO 2 -ScEtOH) liquefaction reactions, transesterification was the main reaction. The "de-oxygen-transfer" reaction mainly comprised de-oxygenation and decarboxylation. For temperatures exceeding 320 °C, the bio-oil yield decreased because the effects of esters decreased. The residence time affected the H/C and O/C ratios to a minor extent. It was shown that the nucleophilic and hydrolytic functions of ethanol might be strengthened, generating higher amounts of ester, phenolic, acidic, and hydrocarbon derivatives in the bio-oil fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Braga, Mara E M; Leal, Patrícia F; Carvalho, João E; Meireles, M Angela A
2003-10-22
Turmeric extracts were obtained from two lots of raw material (M and S) using various techniques: hydrodistillation, low pressure solvent extraction, Soxhlet, and supercritical extraction using carbon dioxide and cosolvents. The solvents and cosolvents tested were ethanol, isopropyl alcohol, and their mixture in equal proportions. The composition of the extracts was determined by gas chromatography-flame ionization detection (GC-FID) and UV. The largest yield (27%, weight) was obtained in the Soxhlet extraction (turmeric (S), ethanol = 1:100); the lowest yield was detected in the hydrodistillation process (2.1%). For the supercritical extraction, the best cosolvent was a mixture of ethanol and isopropyl alcohol. Sixty percent of the light fraction of the extracts consisted of ar-turmerone, (Z)-gamma-atlantone, and (E)-gamma-atlantone, except for the Soxhlet extracts (1:100, ethanol), for which only ar-turmeronol and (Z)-alpha-atlantone were detected. The maximum amount of curcuminoids (8.43%) was obtained using Soxhlet extraction (ethanol/isopropyl alcohol). The Soxhlet and low pressure extract exhibited the strongest antioxidant activities.
Ntaikou, Ioanna; Menis, Nikolaos; Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos
2018-04-30
The biotransformation of the pre-dried and shredded organic fraction of kitchen waste to ethanol was investigated, via co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis (Scheffersomyces stipitis). Preliminary experiments with synthetic media were performed, in order to investigate the effect of different operational parameters on the ethanol production efficiency of the co-culture. The control of the pH and the supplementation with organic nitrogen were shown to be key factors for the optimization of the process. Subsequently, the ethanol production efficiency from the waste was assessed via simultaneous saccharification and fermentation experiments. Different loadings of cellulolytic enzymes and mixtures of cellulolytic with amylolytic enzymatic blends were tested in order to enhance the substrate conversion efficiency. It was further shown that for solids loading up to 40% waste on dry mass basis, corresponding to 170 g.L -1 initial concentration of carbohydrates, no substrate inhibition occurred, and ethanol concentration up to 45 g.L -1 was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pham Tkhi, L.; Usacheva, T. R.; Tukumova, N. V.; Koryshev, N. E.; Khrenova, T. M.; Sharnin, V. A.
2016-02-01
The acid-base equilibrium constants for glycyl-glycyl-glycine (triglycine) in water-ethanol solvents containing 0.0, 0.1, 0.3, and 0.5 mole fractions of ethanol are determined by potentiometric titration at 298.15 K and an ionic strength of 0.1, maintained with sodium perchlorate. It is established that an increase in the ethanol content in the solvent reduces the dissociation constant of the carboxyl group of triglycine (increases p K 1) and increases the dissociation constant of the amino group of triglycine (decreases p K 2). It is noted that the weakening of the acidic properties of a triglycinium ion upon an increase of the ethanol content in the solvent is due to the attenuation of the solvation shell of the zwitterionic form of triglycine, and to the increased solvation of triglycinium ions. It is concluded that the acid strength of triglycine increases along with a rise in the EtOH content in the solvent, due to the desolvation of the tripeptide zwitterion and the enhanced solvation of protons.
Barta, Zsolt; Kovacs, Krisztina; Reczey, Kati; Zacchi, Guido
2010-01-01
On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5–16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60–78% of the enzyme production cost, which was in the range of 0.42–0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative. PMID:21048869
Barta, Zsolt; Kovacs, Krisztina; Reczey, Kati; Zacchi, Guido
2010-06-28
On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO(2)-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5-16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60-78% of the enzyme production cost, which was in the range of 0.42-0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative.
Ethanol concentration in breastmilk after the consumption of non-alcoholic beer.
Schneider, Claudia; Thierauf, Annette; Kempf, Jürgen; Auwärter, Volker
2013-06-01
During lactation, the consumption of ethanol is discussed controversially. After women drink alcoholic beverages, ethanol can be found in breastmilk with a time lag. To abstain from ethanol, but not from the taste of alcoholic beverages, in particular, non-alcoholic beer has become popular in recent years. According to regulations in the United States and most European countries, these "alcohol-free" beverages may still contain ethanol up to 1.2% by volume. To determine how much of this ethanol may reach the breastfed child, a drinking experiment with non-alcoholic beer was performed. Fifteen healthy breastfeeding women participated in the study. After at least 5 days of abstinence from ethanol and the donation of a void breastmilk sample, they were asked to drink 1.5 L of non-alcoholic beer within 1 hour. Breastmilk samples were collected using electronic breast pumps immediately after the end of drinking as well as 1 and 3 hours later. The milk was analyzed for ethanol by headspace-gas chromatography-flame ionization detection using a fully validated method. In two women, trace amounts of ethanol (up to 0.0021 g/L) were found in the samples gained immediately after the drinking period. In the other samples ethanol could not be detected (limit of detection=0.0006 g/L). The mother's consumption of non-alcoholic beer is likely innocuous for the breastfed infant.
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Ghatbandhe, A. S.
2014-01-01
Molecular interactions and structural fittings in binary ethylene glycol + ethanol (EGE, x EG = 0.4111-0.0418) and ethylene glycol + water (EGW, x EG = 0.1771-0.0133) mixtures were studied through the measurement of densities (ρ), viscosities (η), and refractive indices ( n D ) at 303.15 K. Excess viscosities (η E ), molar volumes ( V m ), excess molar volumes ( V {/m E }), and molar retractions ( R M ) of the both binary systems were computed from measured properties. The measured and computed properties have been used to understand the molecular interactions in unlike solvents and structural fittings in these binary mixtures.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... manure management processes; CO 2 from fermentation during ethanol production or other industrial fermentation processes; CO 2 from combustion of the biological fraction of municipal solid waste or biosolids...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina
2014-06-15
Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina
2014-06-01
In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.
Antitumor agent, physalin F from Physalis angulata L.
Chiang, H C; Jaw, S M; Chen, C F; Kan, W S
1992-01-01
Physalin F and physalin D were isolated and characterized from the ethanolic extract of the whole plant of Physalis angulata L. (Solanaceae). Systematic fractionation of the ethanolic extract of the plant led to characterization of physalin F from the fraction PAIV-2 as an active ingredient which showed cytotoxicity in vitro by DEA and MTT assays on 8 cancer cell lines, five human cancer cell lines: HA22T(hepatoma), HeLa(cervix uteri), KB(nasopharynx), Colo-205(colon) and Calu-1(lung); and three animal cancer cell lines: H1477(melanoma), Hep-2(laryngeal) and 8401(glioma). It was found that the anti-hepatoma action is the strongest, and the anti-HeLa is the next. Physalin F also had an antitumor effect in vivo against P388 lymphocytic leukemia in mice whereas physalin D was inactive both in vitro and in vivo.
An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass
NASA Astrophysics Data System (ADS)
Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath
2016-07-01
We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Jeongwoo; Wang, Michael; Elgowainy, Amgad
Higher-octane gasoline can enable increases in an internal combustion engine’s energy efficiency and a vehicle’s fuel economy by allowing an increase in the engine compression ratio and/or by enabling downspeeding and downsizing. Producing high-octane fuel (HOF) with the current level of ethanol blending (E10) could increase the energy and greenhouse gas (GHG) emissions intensity of the fuel product from refinery operations. Alternatively, increasing the ethanol blending level in final gasoline products could be a promising solution to HOF production because of the high octane rating and potentially low blended Reid vapor pressure (RVP) of ethanol at 25% and higher ofmore » the ethanol blending level by volume. In our previous HOF well-to-wheels (WTW) report (the so-called phase I report of the HOF WTW analysis), we conducted WTW analysis of HOF with different ethanol blending levels (i.e., E10, E25, and E40) and a range of vehicle efficiency gains with detailed petroleum refinery linear programming (LP) modeling by Jacobs Consultancy and showed that the overall WTW GHG emission changes associated with HOFVs were dominated by the positive impact associated with vehicle efficiency gains and ethanol blending levels, while the refining operations to produce gasoline blendstock for oxygenate blending (BOB) for various HOF blend levels had a much smaller impact on WTW GHG emissions (Han et al. 2015). The scope of the previous phase I study, however, was limited to evaluating PADDs 2 and 3 operation changes with various HOF market share scenarios and ethanol blending levels. Also, the study used three typical configuration models of refineries (cracking, light coking, and heavy coking) in each PADD, which may not be representative of the aggregate response of all refineries in each PADD to various ethanol blending levels and HOF market scenarios. Lastly, the phase I study assumed no new refinery expansion in the existing refineries, which limited E10 HOF production to the volume achievable by the cracking refinery configuration. To be able to satisfy large market demands of E10 HOF, that study arbitrarily relaxed the RVP requirements by replacing reformulated gasoline (RFG) RVP requirement of 7 psi in summer with conventional gasoline (CG) RVP requirement of 9 psi in summer. To examine the response by all refineries in major refinery regions, this phase II of the HOF WTW analysis employed regionally aggregated refinery models for the following six regions: PADDs 1, 2, 3, 4, and 5 excluding California (CA) and CA separately. Using aggregate refinery models, this phase II study examined the impacts of ethanol blending and HOF market shares on the refinery operations in these six regions. Also, this study included refinery expansion to produce a pre-determined HOF volume with 10% ethanol blending. In particular, this study examined several refinery expansion options using refinery configuration models to investigate a practical refinery response to the increase in E10 HOF market demand.« less
Fadel, M; Keera, Abeer A; Mouafi, Foukia E; Kahil, Tarek
2013-01-01
A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m(3), and 12 m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved.
Study on the micro direct ethanol fuel cell (Micro-DEFC) performance
NASA Astrophysics Data System (ADS)
Saisirirat, Penyarat; Joommanee, Bordindech
2018-01-01
The direct ethanol fuel cell (DEFC) is selected for this research. DEFC uses ethanol in the fuel cell instead of the more toxic methanol. Ethanol is more attractive than methanol by many reasons. Ethanol is a hydrogen-rich liquid and it has a higher specific energy (8.0 kWh/kg) compared to that of methanol (6.1 kWh/kg). Ethanol can be obtained in great quantity from biomass through a fermentation process from renewable resources such as sugar cane, wheat, corn, and even straw. The use of ethanol would also overcome both the storage and infrastructure challenge of hydrogen for fuel cell applications. The experimental apparatus on the micro direct ethanol fuel cell for measuring the cell performance has been set for this research. The objective is to study the micro direct ethanol fuel cell performance for applying with the portable electronic devices. The cell performance is specified in the terms of cell voltage, cell current and power of the cell at room operating temperature and 1 atm for the pressure and also includes the ethanol fuel consumption. The effect of operating temperature change on the electrical production performance is also studied. The steady-state time for collecting each data value is about 5-10 minutes. The results show that with the increase of concentrations of ethanol by volume, the reactant concentration at the reaction sites increases so the electrochemical rate also increases but when it reaches the saturated point the performance gradually drops.
NASA Astrophysics Data System (ADS)
Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.
2017-05-01
The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.
NASA Astrophysics Data System (ADS)
Saeedi, Amir Hussein; Akbari, Mohammad; Toghraie, Davood
2018-05-01
In this paper, the nanofluid dynamic viscosity composed of CeO2- Ethylene Glycol is examined within 25-50 °C with 5 °C intervals and at six volume fractions (0.05, 0.1, 0.2, 0.4, 0.8 and 1.2%) experimentally. The nanofluid was exposed to ultrasound waves for various durations to study the effect of this parameter on dynamic viscosity of the fluid. We found that at a constant temperature, nanofluid viscosity increases with increases in the volume fraction of the nanoparticles. Also, at a given volume fraction, nanofluid viscosity decreases when temperature is increased. Maximum increase in nanofluid viscosity compared to the base fluid viscosity occurs at 25 °C and volume fraction of 1.2%. It can be inferred that the obtained mathematical relationship is a suitable predicting model for estimating dynamic viscosity of CeO2- Ethylene Glycol (EG) at different volume fractions and temperatures and its results are consistent to laboratory results in the set volume fraction and temperature ranges.
Tjahjani, Susy
2017-02-28
Malaria especially falciparum malaria still causes high morbidity and mortality in tropical countries. Several factors have been linked to this situation and the most important one is the rapid spread of parasite resistance to the currently available antimalarials, including artemisinin. Artemisinin is the main component of the currently recommended antimalarial, artemisinin based combination therapy (ACT), and it is a free radical generating antimalarial. Garcinia mangostana L (mangosteen) rind contain a lot of xanthone compounds acting as an antioxidant and exhibited antimalarial activity. The aim of this study was to evaluate the antimalarial activity of mangosteen rind extract and its fractions and their interaction with artemisinin against the 3D7 clone of Plasmodium falciparum in vitro. Dry ripe mangosteen rind was extracted with ethanol followed by fractionation with hexane, ethylacetate, buthanol, and water consecutively to get ethanol extract, hexane, athylacetate, buthanol, and water fractions. Each of these substances was diluted in DMSO and examined for antimalarial activity either singly or in combination with artemisinin in vitro against Plasmodium falciparum 3D7 clone. Synergism between these substances with artemisinin was evaluated according to certain formula to get the sum of fractional inhibitory concentration 50 (∑FIC 50 ). Analysis of the parasite growth in vitro indicated that IC 50 of these mangosteen rind extract, hexane, ethylacetate, buthanol, and water fraction ranged from 0.41 to > 100 μg/mL. All of the ∑FIC50 were <1. This study demonstrated a promising antimalarial activity of the extract and fractions of G.mangostana L rind and its synergistic effect with artemisinin. Further study using lead compound(s) isolated from extract and fractions should be performed to identify more accurately their mechanism of antimalarial activities.
NASA Astrophysics Data System (ADS)
Cho, Myoung Lae; Lee, Dong-Jin; Lee, Hyi-Seung; Lee, Yeon-Ju; You, Sang Guan
2013-12-01
The nitric oxide inhibitory (NOI) and antioxidant (ABTS and DPPH radical scavenging effects with reducing power) activities of the ethanol (EtOH) extracts and solvent partitioned fractions from Scytosiphon lomentaria, Chorda filum, Agarum cribrosum, and Desmarestia viridis were investigated, and the correlation between biological activity and total phenolic (TP) and phlorotannin (TPT) content was determined by PCA analysis. The yield of EtOH extracts from four brown seaweeds ranged from 2.6 to 6.6% with the highest yield from D. viridis, and the predominant compounds in their solvent partitioned fractions had medium and/or less polarity. The TP and TPT content of the EtOH extracts were in the ranges of 25.0-44.1 mg GAE/g sample and 0.2-4.6 mg PG/g sample, respectively, which were mostly included in the organic solvent partitioned fractions. Strong NOI activity was observed in the EtOH extracts and their solvent partitioned fractions from D. viridis and C. filum. In addition, the EtOH extract and its solvent partitioned fractions of D. viridis exhibited little cytotoxicity to Raw 264.7 cells. The most potent ABTS and DPPH radical scavenging capacity was shown in the EtOH extracts and their solvent partitioned fractions from S. lomentaria and C. filum, and both also exhibited strong reducing ability. In the PCA analysis the content of TPT had a good correlation with DPPH ( r = 0.62), ABTS ( r = 0.69) and reducing power ( r = 0.65), however, an unfair correlation was observed between the contents of TP and TPT and NOI, suggesting that the phlorotannins might be responsible for the DPPH and ABTS radical scavenging activities.
Dai, Xiaohui; Gao, Ge; Wu, Mengmeng; Wei, Weiying; Qu, Jianmei; Li, Guoqiang; Ma, Ting
2018-04-15
In the industrial production of xanthan gum using Xanthomonas campestris CGMCC15155, large amounts of ethanol are required to extract xanthan gum from the fermentation broth and remove xanthomonadin impurities. To reduce the amount of ethanol and the overall production cost of xanthan gum, a xanthomonadin-deficient strain of CGMCC15155 was constructed by inserting the Vitreoscilla globin (vgb) gene, under the control of the LacZ promoter, into the region of the pigA gene, which is involved in xanthomonadin synthesis. The insertion of vgb inactivated pigA, resulting in the production of white xanthan gum. The lack of xanthomonadins resulted in a decreased yield of xanthan gum. However, the expression product of vgb gene, VHb, could increase the metabolism of X. campestris, which allowed the production of xanthan gum to reach wild-type levels in the engineered strain. The yield, molecular weight, and rheological properties of the xanthan gum synthesized by the engineered and wild-type bacteria were essentially the same. When the same volume of ethanol was used, the whiteness values of the xanthan gum extracted from engineered and wild-type bacteria were 65.20 and 38.17, respectively. To extract xanthan gum with the same whiteness, three and seven times the fermentation volume of ethanol was required for the engineered and wild-type strains, respectively. Thus, the engineered train reduced the requirement for ethanol in xanthan gum production by 133.3%. The results demonstrated that the engineered bacteria used less ethanol, thus reducing the downstream processing cost in xanthan gum production. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Nanofiltration properties of PTMSP in binary organic solvents mixtures
NASA Astrophysics Data System (ADS)
Yushkin, A. A.; Kossov, A. A.; Volkov, V. V.
2016-09-01
In this study, the stability and nanofiltration performance of poly[1-(trimethylsilyl)- 1-propyne] (PTMSP) in ethanol solutions of butylaldehyde, 1-decanal, 1-hexene, 1-decene was evaluated. It was found that PTMSP was insoluble in all aldehyde solutions, but it was soluble at olefin concentration of 80% or higher. Nanofiltration experiments demonstrate that binary mixtures of 1-decanal and ethanol viscosity are not the parameter affecting on membrane permeability and rejection of solute as well as swelling degree. In the case of decanol/ethanol solutions both solution viscosity and molar volume demonstrate the best fit of experimental data. It was shown that with the decrease of ethanol content in the feed, the rejection of anionic solute Remazol Brilliant Blue R (MW 626) increases from 94 up to 97%.
Gombert, Andreas K; van Maris, Antonius J A
2015-06-01
Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huang, Wei-Jan; Lee, Hsin-Jung; Chen, Hon-Lie; Fan, Pi-Chuan; Ku, Yuan-Ling; Chiou, Lih-Chu
2015-05-26
Previously, we found a patient with an intractable motor tic disorder that could be ameliorated by the ground leaf juice of Clerodendrum inerme (CI). Furthermore, the ethanol extract of CI leaves effectively ameliorated methamphetamine-induced hyperlocomotion (MIH) in mice, an animal model mimicking the hyper-dopaminergic status of tic disorders/Tourette syndrome, schizophrenia, or obsessive-compulsive disorder. Here, we for the first time identified a constituent able to reduce MIH from the CI ethanol extract that might represent a novel lead for the treatment of such disorders. The ethanol extract of CI was sub-divided into n-hexane, dichloromethane, n-butanol and water fractions. Using MIH alleviation as a bioassay, active compounds were identified in these fractions using silica gel chromatography, recrystallization and proton NMR spectroscopy. The dichloromethane and n-hexane fractions were active in the bioassay. Further subfractionation and re-crystallization resulted in an active compound that was identified to be hispidulin by proton NMR spectroscopy. Hispidulin significantly alleviated MIH in mice at doses that did not affect their spontaneous locomotor activity or performance in the rotarod test, a measure for motor coordination. Hispidulin is a flavonoid that has been isolated from several plants and reported to have anti-oxidative, anti-inflammatory and anti-cancer activities. Here, we for the very first time found that hispidulin can also alleviate MIH at doses that did not impair motor activity, suggesting a therapeutic potential of hispidulin in hyper-dopaminergic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A discrete model of Ostwald ripening based on multiple pairwise interactions
NASA Astrophysics Data System (ADS)
Di Nunzio, Paolo Emilio
2018-06-01
A discrete multi-particle model of Ostwald ripening based on direct pairwise interactions is developed for particles with incoherent interfaces as an alternative to the classical LSW mean field theory. The rate of matter exchange depends on the average surface-to-surface interparticle distance, a characteristic feature of the system which naturally incorporates the effect of volume fraction of second phase. The multi-particle diffusion is described through the definition of an interaction volume containing all the particles involved in the exchange of solute. At small volume fractions this is proportional to the size of the central particle, at higher volume fractions it gradually reduces as a consequence of diffusion screening described on a geometrical basis. The topological noise present in real systems is also included. For volume fractions below about 0.1 the model predicts broad and right-skewed stationary size distributions resembling a lognormal function. Above this value, a transition to sharper, more symmetrical but still right-skewed shapes occurs. An excellent agreement with experiments is obtained for 3D particle size distributions of solid-solid and solid-liquid systems with volume fraction 0.07, 0.30, 0.52 and 0.74. The kinetic constant of the model depends on the cube root of volume fraction up to about 0.1, then increases rapidly with an upward concavity. It is in good agreement with the available literature data on solid-liquid mixtures in the volume fraction range from 0.20 to about 0.75.
NASA Astrophysics Data System (ADS)
Nurdin, I.; Johan, M. R.; Ang, B. C.
2018-03-01
Thermal conductivity and kinematic viscosity of maghemite nanofluids were experimentally investigated at a small volume fraction of maghemite nanoparticles and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. Results show that the thermal conductivity of maghemite nanofluids linearly increase with increasing particle volume fraction and temperature, while kinematic viscosity increase with increasing particle volume fraction and decrease with increasing temperature. The highest enhancement of thermal conductivity and kinematic viscosity are 18.84% and 13.66% respectively, at particle volume fraction 0.6% and temperature 35.
NASA Astrophysics Data System (ADS)
Cheema, Mohammad Arif; Barbosa, Silvia; Taboada, Pablo; Castro, Emilio; Siddiq, Mohammad; Mosquera, Víctor
2006-09-01
The thermodynamic properties of aqueous solutions of the tricyclic antidepressant amphiphilic phenothiazine drug thioridazine hydrochloride in the temperature range 20-50 °C and in the presence of ethanol have been measured. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups. Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of its physico-chemical properties with temperature and with the surrounding environment to understand the action mechanism of the drug. Densities, conductivities, and surface tension were measured to obtain surface and bulk solution properties. Critical concentrations, cc, at different temperatures and in the presence of ethanol, and partition coefficients, K, have been calculated, the latter using an indirect method based in the pseudophase model with the help of apparent molar volume data. This method has the advantage that allows calculating the distribution coefficients at solubilizate concentrations below the saturation. Conductivity data show two critical concentrations. The second critical concentration is not clear by density data. The effect of the alcohol is to decrease the first critical concentration due to a decrease in headgroup repulsion. The molar apparent volumes at infinite dilution and in the aggregate in water and in presence of ethanol have been also obtained.
NASA Astrophysics Data System (ADS)
Han, Yun; Oo, Maung Khaing; Zhu, Yinian; Sukhishvili, Svetlana; Xiao, Limin; Demokan, M. Süleyman; Jin, Wei; Du, Henry
2007-09-01
We have explored the use of index-guiding liquid-core photonic crystal fiber (LC-PCF) as a platform for sensing and measurements of analyte solutions of minute volume by normal and surface-enhanced Raman scattering (SERS). The index-guiding LC-PCF was fabricated by selectively sealing via fusion splicing the cladding air channels of a hollow-core PCF (HC-PCF) while leaving the center core open at both ends of the fiber. The center core of the resultant fiber was subsequently filled with water-ethanol solution mixtures at various ethanol concentrations for normal Raman scattering measurements and with water-thiocynate solutions containing Ag nanoparticle aggregates for SERS detection of thiocynate at trace concentrations. The light-guiding nature in the solution phase inside the LC-PCF allows direct and strong light-field overlap with the solution phase over the entire length of the PCF (~30 cm). This detection scheme also dramatically reduces the contribution of silica to Raman spectral background, compared with the solid-core counterpart, thus its potential interference in spectral analysis. These features attribute to ready normal Raman measurements of water, ethanol, and water (99 vol.%)-ethanol (1 vol.%) solutions as well as sensitive and reproducible SERS detection of ~10 ppb thiocynate in water, all at a volume of ~0.1 μL.
Marjonen, Heidi; Sierra, Alejandra; Nyman, Anna; Rogojin, Vladimir; Gröhn, Olli; Linden, Anni-Maija; Hautaniemi, Sampsa; Kaminen-Ahola, Nina
2015-01-01
The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue types later in life. PMID:25970770
Kasicka-Jonderko, A; Jonderko, K; Gajek, E; Piekielniak, A; Zawislan, R
2014-02-01
To study the movement along the gut and the effect upon the gallbladder volume of alcoholic beverages taken in the interdigestive state. The study comprised three research blocks attended by 12 healthy subjects each. Within a given research block volunteers underwent three examination sessions held on separate days, being offered an alcoholic beverage, or an aqueous ethanol solution of an identical proof, or a corresponding volume of isotonic glucose solution; the order of administration of the drinks was randomized. The beverages tested were: beer (4.7% vol, 400 ml), red wine (13.7% vol, 200 ml), whisky (43.5% vol, 100 ml) within the "Beer", "Wine", and "Whisky" research block, respectively. Gastric myoelectrical activity was examined electrogastrographically, gastric emptying with ¹³C-sodium acetate breath test, orocaecal transit with lactulose H₂ breath test, gallbladder emptying with ultrasonography, breath ethanol with alcotest. The study showed that alcoholic beverages were emptied from the stomach significantly slower than isotonic glucose. Alcoholic beverages produced by fermentation only (beer, red wine) were emptied from the stomach more slowly than ethanol solutions of identical proof, while gastric evacuation of whisky (distillation product) and matching alcohol solution was similar. The slower gastric evacuation of alcoholic beverages and ethanol solutions could not be ascribed to a disorganization of the gastric myoelectrical activity. The orocaecal transit of beer and red wine did not differ from that of isotonic glucose, whereas the orocaecal transit of whisky and high proof ethanol was markedly prolonged. Red wine and whisky, and to a similar extent control ethanol solutions caused an inhibition and delay of gallbladder emptying. We concluded that alcoholic beverages taken on an empty stomach exert a suppressive effect upon the transport function of the digestive tract and gallbladder emptying. The extent of this action depends on the type of a beverage (whether it is obtained from fermentation only, or fermentation followed by distillation) and ethanol concentration therein.
Effective virus inactivation and removal by steps of Biotest Pharmaceuticals IGIV production process
Dichtelmüller, Herbert O.; Flechsig, Eckhard; Sananes, Frank; Kretschmar, Michael; Dougherty, Christopher J.
2012-01-01
The virus validation of three steps of Biotest Pharmaceuticals IGIV production process is described here. The steps validated are precipitation and removal of fraction III of the cold ethanol fractionation process, solvent/detergent treatment and 35 nm virus filtration. Virus validation was performed considering combined worst case conditions. By these validated steps sufficient virus inactivation/removal is achieved, resulting in a virus safe product. PMID:24371563
Predicting Morphology of Polymers Using Mesotek+
2010-02-01
file is then produced for Mesotek+ to reproduce the phase behavior for an experimental system of poly (styrene-b- isoprene ) in the solvent tetradecane...theoretical code 3a and (b) experimental code 3b. .....6 Figure 3. Results from 40/60 volume styrene-b- isoprene + tetradecane using gnuplot: A...styrene volume fraction, B) isoprene volume fraction, and C) tetradecane volume fraction. The color bar to the right of each plot indicates how the
Wilkie, Mary Beth; Besheer, Joyce; Kelley, Stephen P.; Kumar, Sandeep; O’Buckley, Todd K.; Morrow, A. Leslie; Hodge, Clyde W.
2010-01-01
Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKCγ immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection. Conclusions These results suggest that ethanol rapidly promotes phosphorylation of cPKC in limbic brain regions, which may underlie effects of acute ethanol on the nervous system and behavior. PMID:17511744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vercher, E.; Pena, M.P.; Martinez-Andreu, A.
Isobaric experimental data of vapor-liquid equilibrium for the ethanol-water-strontium bromide system at different mole fractions of strontium bromide have been measured at 100.6 kPa. Data were correlated by Jaques and Furter's method. Thermodynamic consistency was checked by Herington's method with satisfactory results.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... treatment, or manure management processes; CO 2 from fermentation during ethanol production or other industrial fermentation processes; CO 2 from combustion of the biological fraction of municipal solid waste...
Ronchi, Silas Nascimento; Brasil, Girlandia Alexandre; do Nascimento, Andrews Marques; de Lima, Ewelyne Miranda; Scherer, Rodrigo; Costa, Helber B; Romão, Wanderson; Boëchat, Giovanna Assis Pereira; Lenz, Dominik; Fronza, Marcio; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Andrade, Tadeu Uggere
2015-10-01
The aim of this study was to investigate the antihypertensive effect of leaves Mangifera indica L. using in vitro and in vivo assays. The ethanol extract of leaves of M. indica was fractionated to dichloromethanic, n-butyl alcohol and aqueous fractions. The chemical composition of ethanolic extract and dichloromethanic fraction were evaluated by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Antioxidant activity was evaluated in the DPPH scavenging activity assay. Angiotensin-converting enzyme (ACE) inhibitory activity was investigated using in vitro and in vivo assays. The chronic antihypertensive assay was performed in spontaneously hypertensive rats (SHRs) and Wistar rats treated with enalapril (10 mg/kg), dichloromethanic fraction (100 mg/kg; twice a day) or vehicle control for 30 days. The baroreflex sensitivity was evaluated through the use of sodium nitroprusside and phenylephrine. Cardiac hypertrophy was evaluated by morphometric analysis. The dichloromethanic fraction exhibited the highest flavonoid, total phenolic content and high antioxidant activity. Dichloromethanic fraction elicited ACE inhibitory activity in vitro (99 ± 8%) similar to captopril. LC-MS/MS analysis revealed the presence of ferulic acid (48.3 ± 0.04 µg/g) caffeic acid (159.8 ± 0.02 µg/g), gallic acid (142.5 ± 0.03 µg/g), apigenin (11.0 ± 0.01 µg/g) and quercetin (203.3 ± 0.05 µg/g). The chronic antihypertensive effects elicited by dichloromethanic fraction were similar to those of enalapril, and the baroreflex sensitivity was normalized in SHR. Plasma ACE activity and cardiac hypertrophy were comparable with animals treated with enalapril. Dichloromethanic fraction of M. indica presented an antihypertensive effect, most likely by ACE inhibition, with benefits in baroreflex sensitivity and cardiac hypertrophy. Altogether, the results of the present study suggest that the dichloromethanic fraction of M. indica leaves may have potential as a promoting antihypertensive agent. © The Author(s), 2015.
Enthalpies of solvation for dopamine hydrochloride in water-ethanol solutions
NASA Astrophysics Data System (ADS)
Vandyshev, V. N.; Ledenkov, S. F.; Molchanov, A. S.
2012-10-01
The enthalpies of dissolution of dopamine hydrochloride (H2Dop · HCl) in water-ethanol solvents containing from 0 to 0.8 mole fraction of ethanol are measured by calorimetry at 298.15 K. Standard enthalpies of transfer (Δtr H ∘) for the molecular (H2Dop) and cationic (H3Dop+) forms of dopamine from water into binary solvents are calculated from the obtained data. The enthalpies of transfer of H3Dop+ cation are determined from the enthalpies of dissolution of H2Dop · HCl using the familiar method of separating the molar quantities into ionic contributions (Ph4P+ = BPh{4/-}), and by an original alternative procedure. The effect of the composition of the binary solvent on the solvation of dopamine is considered.
Wollan, David; Pham, Duc-Truc; Wilkinson, Kerry Leigh
2016-10-12
The relative proportion of water and ethanol present in alcoholic beverages can significantly influence the perception of wine sensory attributes. This study therefore investigated changes in wine ethanol concentration due to evaporation from wine glasses. The ethanol content of commercial wines exposed to ambient conditions while in wine glasses was monitored over time. No change in wine ethanol content was observed where glasses were covered with plastic lids, but where glasses were not covered, evaporation had a significant impact on wine ethanol content, with losses from 0.9 to 1.9% alcohol by volume observed for wines that received direct exposure to airflow for 2 h. Evaporation also resulted in decreases in the concentration of some fermentation volatiles (determined by gas chromatography-mass spectrometry) and a perceptible change in wine aroma. The rate of ethanol loss was strongly influenced by exposure to airflow (i.e., from the laboratory air-conditioning unit), together with certain glass shape and wine parameters; glass headspace in particular. This is the first study to demonstrate the significant potential for ethanol evaporation from wine in wine glasses. Research findings have important implications for the technical evaluation of wine sensory properties; in particular, informal sensory trials and wine show judging, where the use of covers on wine glasses is not standard practice.
Effect of ethanol on the retention of americium-241 in the baboon liver.
Cohen, N; Antonelli, R; Lo Sasso, T; Wrenn, M E
1978-01-01
The oral administration of ethyl alcohol enhanced the excretion of 241Am from the liver of a baboon by 2.5 times that of a control animal. After ethanol administration, increases in the total content of 241Am excreted in feces were accompanied by corresponding increases in fecal volumes, although administration of nonalcoholic cathartics would not be expected to produce a similar effect. The effectiveness of ethanol as a decorporating agent may result from its ability to mobilize intracellularly bound 241Am from the liver, thereby making the nuclide more available for metabolic secretory mechanisms occurring via liver-bile-fecal route.
Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P
1985-06-01
Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)
In vitro antioxidant and cytotoxic properties of ethanol extract of Alpinia oxyphylla fruits.
Wang, Cheng-zhong; Yuan, Hui-hui; Bao, Xiao-li; Lan, Min-bo
2013-11-01
Alpinia oxyphylla Miquel (Zingiberaceae) is a traditional Chinese herbal medicine widely used for the treatment of intestinal disorders, urosis and diuresis. However, information about antioxidant and cytotoxic properties of its fruits remains to be elucidated. The ethanol crude extract (CE) and its fractions [petroleum ether fraction (PF), ethyl acetate fraction (EF), n-butanol fraction (BF) and water fraction (WF) extracted by petroleum ether, ethyl acetate, n-butanol and water, respectively] of A. oxyphylla fruits were investigated for their antioxidant activity and cytotoxicity. The total phenolic content (TPC) and antioxidant activity of the extracts were determined by Folin-Ciocalteu reagent, 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), Trolox equivalent antioxidant capacity and reducing power assay. Cytotoxicity of the extracts (0-200 μg/mL) was tested on six human cancer cell lines (breast cancer cell line, cervix carcinoma cell line, lung adenocarcinoma cell line, liver carcinoma cell line, gastric cancer cell line and colon cancer cell line) using the sulforhodamine B assay. The TPC of extracts varied from 8.2 to 20.3 mg gallic acid equivalents/g dry weight. DPPH radical scavenging effect of extracts decreased in the order of EF > BF > CE > PF > WF, with IC50 values ranging from 74.7 to 680.8 μg/mL. 2,2-azo-bis(3-Ethylbenzothiazoline-6-sulfoic acid) diammonium salt scavenging activity ranged from 0.118 to 0.236 mmol Trolox equivalence/mg extract. The extracts exhibited concentration-dependent reducing power, and EF showed the highest reducing ability. A satisfactory correlation (R(2) > 0.826) between TPC and antioxidant activity was observed. In addition, EF, PF and CE exhibited potent anticancer effects on six cancer cell lines with IC50 values ranging from 40.1 to 166.3 μg/mL. The ethanol extract of A. oxyphylla fruit, especially the EF, was found to possess potent antioxidant and anticancer activities, and thus a great potential for the application in food and drug products.
Utilization of household food waste for the production of ethanol at high dry material content.
Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul
2014-01-08
Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield.
Utilization of household food waste for the production of ethanol at high dry material content
2014-01-01
Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield. PMID:24401142
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.
Suzuki, Takahito
2003-01-01
The dimorphic transition from yeast to pseudohyphae in the petroleum-assimilating yeast Candida tropicalis occurs following the addition of ethanol to glucose semi-defined medium. Subtractive gene cloning was performed on the cDNA from the yeast-growing control culture and on that from the ethanol-supplemented one (the ethanol culture). A homologue of Schizosaccharomyces pombe nmt1+ or Saccharomyces cerevisiae THI5 was isolated from the cDNA fraction as a preferentially expressed gene for the ethanol culture. This homologue was tentatively called Ctnmt1+, since exogenous thiamine repressed its expression in C. tropicalis growth media. The ethanol culture showed a biphasic pattern of growth phases and the expression of Ctnmt1+ occurred at the first growth phase. The supplementation of thiamine to the ethanol culture at the first phase was followed by repression of Ctnmt1+ expression and also delay of pseudohyphal growth: filamentous growth was inhibited and chains of yeast cells were formed. A Ctnmt1+ disruptant of this organism did not show thiamine auxotrophy and produced pseudohyphal filaments even in the control culture. The supplementation of oxythiamine, an analog of thiamine, to the control culture was followed by the appearance of pseudohyphal filaments, indicating the participation of thiamine during the process of pseudohyphal growth in this organism.
Ethanol increases affinity of protein kinase C for phosphatidylserine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, J.H.
1986-03-01
Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition ofmore » calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.« less
Ethanol fermentation of cassava starch pretreated with alkali
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Y.C.; Lee, S.Y.; Choe, Y.K.
1986-04-01
In view of the current industrial process for the conventional ethanol fermentation, in which raw starch materials are heated at 120 degrees C for 2 h, conditions for an alternative process were set: an overall time from saccharification to ethanol fermentation of within 3-4 days, an operation temperature of below 60 degrees C, an ethanol yield of over 93%, and a ratio of raw material to fermentation volume of within 1:4. To meet these conditions, previously a steeping method of starch materials in 0.5N HCl solution at 60 degrees C for 12 h were used, followed by combined actions ofmore » ..cap alpha..-amylase and glucoamylase. The ethanol yield from uncooked cassava starch treated under the conditions described was 95% after fermentation for 3 days with Saccharomyces cerevisiae. However, the use of a relatively higher concentration of acid for steeping is still a problem and gelatinization of starch materials is insufficient. This communication, therefore, describes effects of alkali steeping and structural change of starch granules on the ethanol fermentation. 8 references.« less
Influences of diesel pilot injection on ethanol autoignition - a numerical analysis
NASA Astrophysics Data System (ADS)
Burnete, N. V.; Burnete, N.; Jurchis, B.; Iclodean, C.
2017-10-01
The aim of this study is to highlight the influences of the diesel pilot quantity as well as the timing on the autoignition of ethanol and the pollutant emissions resulting from the combustion process. The combustion concept presented in this paper requires the injection of a small quantity of diesel fuel in order to create the required autoignition conditions for ethanol. The combustion of the diesel droplets injected in the combustion chamber lead to the creation of high temperature locations that favour the autoignition of ethanol. However, due to the high vaporization enthalpy and the better distribution inside the combustion chamber of ethanol, the peak temperature values are reduced. Due to the lower temperature values and the high burning velocity of ethanol (combined with the fact that there are multiple ignition sources) the conditions required for the formation of nitric oxides are not achieved anymore, thus leading to significantly lower NOx emissions. This way the benefits of the Diesel engine and of the constant volume combustion are combined to enable a more efficient and environmentally friendly combustion process.
Mateo, Soledad; Puentes, Juan G; Moya, Alberto J; Sánchez, Sebastián
2015-08-01
Olive tree pruning biomass has been pretreated with pressurized steam, hydrolysed with hydrochloric acid, conditioned and afterwards fermented using the non-traditional yeast Candida tropicalis NBRC 0618. The main aim of this study was to analyse the influence of acid concentration on the hydrolysis process and its effect on the subsequent fermentation to produce ethanol and xylitol. From the results, it could be deduced that both total sugars and d-glucose recovery were enhanced by increasing the acid concentration tested; almost the whole hemicellulose fraction was hydrolysed when 3.77% was used. It has been observed a sequential production first of ethanol, from d-glucose, and then xylitol from d-xylose. The overall ethanol and xylitol yields ranged from 0.27 to 0.38kgkg(-1), and 0.12 to 0.23kgkg(-1) respectively, reaching the highest values in the fermentation of the hydrolysates obtained with hydrochloric acid 2.61% and 1.11%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Han, Jeehoon; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A; Maravelias, Christos T
2015-04-01
The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bechara, Rami; Gomez, Adrien; Saint-Antonin, Valérie; Schweitzer, Jean-Marc; Maréchal, François
2016-08-01
The application of methodologies for the optimal design of integrated processes has seen increased interest in literature. This article builds on previous works and applies a systematic methodology to an integrated first and second generation ethanol production plant with power cogeneration. The methodology breaks into process simulation, heat integration, thermo-economic evaluation, exergy efficiency vs. capital costs, multi-variable, evolutionary optimization, and process selection via profitability maximization. Optimization generated Pareto solutions with exergy efficiency ranging between 39.2% and 44.4% and capital costs from 210M$ to 390M$. The Net Present Value was positive for only two scenarios and for low efficiency, low hydrolysis points. The minimum cellulosic ethanol selling price was sought to obtain a maximum NPV of zero for high efficiency, high hydrolysis alternatives. The obtained optimal configuration presented maximum exergy efficiency, hydrolyzed bagasse fraction, capital costs and ethanol production rate, and minimum cooling water consumption and power production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gurram, Raghu Nandan; Al-Shannag, Mohammad; Lecher, Nicholas Joshua; Duncan, Shona M; Singsaas, Eric Lawrence; Alkasrawi, Malek
2015-09-01
In this study we investigated the technical feasibility of convert paper mill sludge into fuel ethanol. This involved the removal of mineral fillers by using either chemical pretreatment or mechanical fractionation to determine their effects on cellulose hydrolysis and fermentation to ethanol. In addition, we studied the effect of cationic polyelectrolyte (as accelerant) addition and hydrogen peroxide pretreatment on enzymatic hydrolysis and fermentation. We present results showing that removing the fillers content (ash and calcium carbonate) from the paper mill sludge increases the enzymatic hydrolysis performance dramatically with higher cellulose conversion at faster rates. The addition of accelerant and hydrogen peroxide pretreatment further improved the hydrolysis yields by 16% and 25% (g glucose / g cellulose), respectively with the de-ashed sludge. The fermentation process of produced sugars achieved up to 95% of the maximum theoretical ethanol yield and higher ethanol productivities within 9h of fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata.
Nasrin, Mahmuda; Dash, Pritesh Ranjan; Ali, Mohammad Shawkat
2015-01-01
Grewia paniculata (Family: Malvaceae) has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina) lethality bioassay. In disc diffusion method, all the natural products (400 μg/disc) showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB) and ethanol fraction of bark (EFB) (400 μg/disc) exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and 23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB) was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.
Claeys, Erik; Vossen, Els; De Smet, Stefaan
2016-01-30
The analysis of α-tocopherol in feed and animal-derived foods usually involves a saponification step. However, since saponification often leads to losses of α-tocopherol, a method for the determination of α-tocopherol in feed and in animal-derived foods was developed without a saponification step. In this method, α-tocopherol is extracted with hot ethanol and the co-extracted fat is removed by centrifugation. Removal of the fat fraction is made possible by the addition of water, to achieve an ethanol:water ratio of 40:7, followed by cooling on ice before centrifugation. This procedure allows removal of the fat fraction, while α-tocopherol is retained. Matrices differing in gross composition and α-tocopherol content were analyzed: fresh pork, cooked ham, subcutaneous fat, liver, egg yolk, milk and a compound pig feed. Higher α-tocopherol concentrations were found for this novel method compared to a conventional method with saponification, particularly for subcutaneous fat (P < 0.05). Recoveries were higher (P < 0.05) for the novel method (82-103%), compared to the saponification method (66-90%; for subcutaneous fat < 25%). Determining α-tocopherol in feed and animal-derived foods using pure ethanol without saponification results in higher extraction yields and recoveries compared to the saponification method. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.
2013-08-01
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.
Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.
2013-01-01
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.
Paprika (Capsicum annuum) oleoresin extraction with supercritical carbon dioxide.
Jarén-Galán, M; Nienaber, U; Schwartz, S J
1999-09-01
Paprika oleoresin was fractionated by extraction with supercritical carbon dioxide (SCF-CO(2)). Higher extraction volumes, increasing extraction pressures, and similarly, the use of cosolvents such as 1% ethanol or acetone resulted in higher pigment yields. Within the 2000-7000 psi range, total oleoresin yield always approached 100%. Pigments isolated at lower pressures consisted almost exclusively of beta-carotene, while pigments obtained at higher pressures contained a greater proportion of red carotenoids (capsorubin, capsanthin, zeaxanthin, beta-cryptoxanthin) and small amounts of beta-carotene. The varying solubility of oil and pigments in SCF-CO(2) was optimized to obtain enriched and concentrated oleoresins through a two-stage extraction at 2000 and 6000 psi. This technique removes the paprika oil and beta-carotene during the first extraction step, allowing for second-stage oleoresin extracts with a high pigment concentration (200% relative to the reference) and a red:yellow pigment ratio of 1.8 (as compared to 1.3 in the reference).
Vavilin, V A; Rytov, S V
2015-09-01
A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.
Zou, Yuan; Guo, Jian; Yin, Shou-Wei; Wang, Jin-Mei; Yang, Xiao-Quan
2015-08-26
Food-grade colloidal particles and complexes, which are formed via modulation of the noncovalent interactions between macromolecules and natural small molecules, can be developed as novel functional ingredients in a safe and sustainable way. For this study was prepared a novel zein/tannic acid (TA) complex colloidal particle (ZTP) based on the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution by using a simple antisolvent approach. Pickering emulsion gels with high oil volume fraction (φ(oil) > 50%) were successfully fabricated via one-step homogenization. Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements, which were used to characterize the structure of zein/TA complexes in ethanol solution, clearly showed that TA binding generated a conformational change of zein without altering their supramolecular structure at pH 5.0 and intermediate TA concentrations. Consequently, the resultant ZTP had tuned near neutral wettability (θ(ow) ∼ 86°) and enhanced interfacial reactivity, but without significantly decreased surface charge. These allowed the ZTP to stabilize the oil droplets and further triggered cross-linking to form a continuous network among and around the oil droplets and protein particles, leading to the formation of stable Pickering emulsion gels. Layer-by-layer (LbL) interfacial architecture on the oil-water surface of the droplets was observed, which implied a possibility to fabricate hierarchical interface microstructure via modulation of the noncovalent interaction between hydrophobic protein and natural polyphenol.
Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System
NASA Astrophysics Data System (ADS)
Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon
2016-01-01
In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.
Production of gasohol from isobutanol
NASA Astrophysics Data System (ADS)
Aziz, Z.; Gozan, M.
2017-05-01
Butanol is a four carbon chain alcohol compound of a non-polar used as a solvent and as an intermediate in several consumer products. It can be produced from petrochemical process route as well as biochemical process. A common petrochemical route to produce butanol is hydroformylation of propylene as primary feedstock followed by hydrogenation. The increasing demand for butanol and the scarcity of petrochemical basestock has put the urgent need for a renewable resource of butanol production. Biobutanol is butanol produced from renewable, biological feedstock through fermentation of plant materials types of food, non-food and biomass. One isomer of butanol which is more similar with gasoline property is isobutanol. The use of isobutanol is commonly as solvent in coatings industry, as lacquers, melamine or phenolic resin. Isobutanol can be potentially used as a gasoline blending component, and it is better than ethanol due to its higher heating value, lower volatility and less corrosive. A brief review of process technology for butanol production is outlined in this paper. The benefit of isobutanol over ethanol was also overviewed. In order to prove the compatibility on fuel application, the production of gasohol was carried out by mixing isobutanol and base gasoline, then evaluated according to commercial fuel specification. From the research work, it has been shown that the addition of isobutanol in base gasoline by certain volum fraction has met the typical fuel specifications used for spark-ignition engine. The physical and chemical properties of the mixture was quite similar to gasoline 88 and gasoline 92 specifications.
40 CFR 180.629 - Flutriafol; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of flutriafol, [(±)-α-(2-fluorophenyl)-α-(4-fluorophenyl)-1H-1,2,4-triazole-1-ethanol], including its... Goat, liver 0.02 Grain, aspirated fractions 2.2 Hog, liver 0.02 Horse, liver 0.02 Sheep, liver 0.02...
Synthesis of sustainable lubricant enhancer from wet hydrolyzed solids
USDA-ARS?s Scientific Manuscript database
Lignocellulosic ethanol biorefineries offer a sustainable way to produce alternative transportation fuel and provide fiber and biomaterial. However, the lignin fraction remains underutilized in the absence of the development of high value products. Despite its resilience to decomposition, thermochem...
Biodiesel production by direct transesterification of microalgal biomass with co-solvent.
Zhang, Yan; Li, Ya; Zhang, Xu; Tan, Tianwei
2015-11-01
In this study, a direct transesterification process using 75% ethanol and co-solvent was studied to reduce the energy consumption of lipid extraction process and improve the conversion yield of the microalgae biodiesel. The addition of a certain amount of co-solvent (n-hexane is most preferable) was required for the direct transesterification of microalgae biomass. With the optimal reaction condition of n-hexane to 75% ethanol volume ratio 1:2, mixed solvent dosage 6.0mL, reaction temperature 90°C, reaction time 2.0h and catalyst volume 0.6mL, the direct transesterification process of microalgal biomass resulted in a high conversion yield up to 90.02±0.55wt.%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dielectric and piezoelectric properties of percolative three-phase piezoelectric polymer composites
NASA Astrophysics Data System (ADS)
Sundar, Udhay
Three-phase piezoelectric bulk composites were fabricated using a mix and cast method. The composites were comprised of lead zirconate titanate (PZT), aluminum (Al) and an epoxy matrix. The volume fraction of the PZT and Al were varied from 0.1 to 0.3 and 0.0 to 0.17, respectively. The influences of three entities on piezoelectric and dielectric properties: inclusion of an electrically conductive filler (Al), poling process (contact and Corona) and Al surface treatment, were observed. The piezoelectric strain coefficient, d33, effective dielectric constant, epsilon r, capacitance, C, and resistivity were measured and compared according to poling process, volume fraction of constituent phases and Al surface treatment. The maximum values of d33 were 3.475 and 1.0 pC/N for Corona and contact poled samples respectively, for samples with volume fractions of 0.40 and 0.13 of PZT and Al (surface treated) respectively. Also, the maximum dielectric constant for the surface treated Al samples was 411 for volume fractions of 0.40 and 0.13 for PZT and Al respectively. The percolation threshold was observed to occur at an Al volume fraction of 0.13. The composites achieved a percolated state for Al volume fractions >0.13 for both contact and corona poled samples. In addition, a comparative time study was conducted to examine the influence of surface treatment processing time of Al particles. The effectiveness of the surface treatment, sample morphology and composition was observed with the aid of SEM and EDS images. These images were correlated with piezoelectric and dielectric properties. PZT-epoxy-aluminum thick films (200 mum) were also fabricated using a two-step spin coat deposition and annealing method. The PZT volume fraction were varied from 0.2, 0.3 and 0.4, wherein the Aluminum volume fraction was varied from 0.1 to 0.17 for each PZT volume fraction, respectively. The two-step process included spin coating the first layer at 500 RPM for 30 seconds, and the second layer at 1000 RPM for 1 minute. The piezoelectric strain coefficients d33 and d31, capacitance and the dielectric constant were measured, and were studied as a function of Aluminum volume fraction.
ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS
Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip
2017-01-01
Background: Moringa oleifera belongs to plant family, Moringaceae and popularly called “wonderful tree”, for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Materials and Methods: Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Results: Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC50 > 400μg/ml). Conclusion: Moringa oleifera seed has antiproliferative effect on MCF7. PMID:28573245
Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun
2013-01-01
Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3, 5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognition ability. In our present studies this magnetic chiral selector was first purified by centrifuge field flow fractionation, and then used to separate benzoin racemate by a chromatographic method. Uniform-sized and masking-impurity-removed magnetic chiral selector was first obtained by field flow fractionation with ethanol through a spiral column mounted on the type-J planetary centrifuge, and using the purified magnetic chiral selector, the final chromatographic separation of benzoin racemate was successfully performed by eluting with ethanol through a coiled tube (wound around the cylindrical magnet to retain the magnetic chiral selector as a stationary phase) submerged in dry ice. In addition, an external magnetic field facilitates the recycling of the magnetic chiral selector. PMID:23891368
Parra Pessoa, Igor; Lopes Neto, José Joaquim; Silva de Almeida, Thiago; Felipe Farias, Davi; Vieira, Leonardo Rogério; Lima de Medeiros, Jackeline; Augusti Boligon, Aline; Peijnenburg, Ad; Castelar, Ivan; Fontenele Urano Carvalho, Ana
2016-12-21
Studies have shown the benefit of antioxidants in the prevention or treatment of human diseases and promoted a growing interest in new sources of plant antioxidants for pharmacological use. This study aimed to add value to two underexploited wild plant species ( Licania rigida) and L. tomentosa ) from Brazilian flora. Thus, the phenolic compounds profile of their seed ethanol extract and derived fractions were elucidated by HPLC, the antioxidant capacity was assessed by in vitro chemical tests and the cytotoxicity determined using the human carcinoma cell lines MCF-7 and Caco-2. Eleven phenolic compounds were identified in the extracts of each species. The extracts and fractions showed excellent antioxidant activity in the DPPH assay (SC 50 , ranging from 9.15 to 248.8 µg/mL). The aqueous fraction of L. rigida seeds was most effective in preventing lipid peroxidation under basal conditions (IC 50 60.80 µg/mL) whereas, in the presence of stress inducer, the methanolic fraction of L. tomentosa performed best (IC 50 8.55 µg/mL). None of the samples showed iron chelating capacity. Ethanolic seed extracts of both species did not reveal any cytotoxicity against MCF-7 and Caco-2 cells. Both plant species showed a promising phenolic profile with potent antioxidant capacity and deserve attention to be sustainably explored.
Kondeti, Vinay Kumar; Badri, Kameswara Rao; Maddirala, Dilip Rajasekhar; Thur, Sampath Kumar Mekala; Fatima, Shaik Sameena; Kasetti, Ramesh Babu; Rao, Chippada Appa
2010-05-01
The present study was designed to investigate the effect of bark of Pterocarpus santalinus, an ethnomedicinal plant, on blood glucose, plasma insulin, serum lipids and the activities of hepatic glucose metabolizing enzymes in streptozotocin-induced diabetic rats. Streptozotocin-induced diabetic rats were treated (acute/short-term and long-term) with ethyl acetate:methanol fractions of ethanolic extract of the bark of P. santalinus. Fasting blood glucose, HbA(1C), plasma insulin and protein were estimated before and after the treatment, along with hepatic glycogen, and activities of hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and glucose-6-phosphate dehydrogenase. Further anti-hyperlipidemic activity was studied by measuring the levels of serum lipids and lipoproteins. Phytochemical analysis of active fraction showed the presence of flavonoids, glycosides and phenols. Biological testing of the active fraction demonstrated a significant antidiabetic activity by reducing the elevated blood glucose levels and glycosylated hemoglobin, improving hyperlipidemia and restoring the insulin levels in treated experimental induced diabetic rats. Further elucidation of mechanism of action showed improvement in the hepatic carbohydrate metabolizing enzymes after the treatment. Our present investigation suggests that active fraction of ethanolic extract of bark of P. santalinus decreases streptozotocin induced hyperglycemia by increasing glycolysis and decreasing gluconeogenesis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Rumpagaporn, Pinthip; Reuhs, Brad L; Cantu-Jungles, Thaisa M; Kaur, Amandeep; Patterson, John A; Keshavarzian, Ali; Hamaker, Bruce R
2016-12-07
Previous work in our laboratory showed that alkali-solubilized corn arabinoxylan (CAX) has a slow initial, but later complete, in vitro human fecal fermentation. CAX and a moderately high molecular weight hydrolysate (CH) were propiogenic, and produced low levels of butyrate. Here, we show that oxalic acid-generated hydrolysates from CAX, which include a large xylooligosaccharide, and free arabinose fractions, increased short chain fatty acid (SCFA) production, which included relatively high levels of both propionate and butyrate, an unusual SCFA combination. Hydrolytic degradation of CAX by acid hydrolysis (0.05 M oxalic acid at 100 °C for 2 h) and subsequent graded ethanol precipitations were used to obtain mixtures with different molecular weight ranges. Ethanol-precipitated fractions (F 0-65%, F 65-75%, F 75-85%) were mostly lower than 100 kDa and F > 85% was composed of monosaccharides and oligosaccharides of DP 2-8. Oxalic acid treatment caused the removal of all single arabinose unit branch chains and some di/trisaccharide branch chains, producing lightly substituted xylan backbone fragments, most of which were in the oligosaccharide (DP < 10) size range. In vitro human fecal fermentation analyses showed all oxalic acid-hydrolysate fractions were slower fermenting than fructooligosaccharides (FOS), but produced similar or higher amounts of total SCFAs. Butyrate production in two hydrolyzate fractions was double that of CH, while propionate levels remained relatively high.
40 CFR 63.4730 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... to determine the mass fraction of organic HAP and density for each coating, thinner, and cleaning material and the volume fraction of coating solids for each coating. If you conducted testing to determine mass fraction of organic HAP, density, or volume fraction of coating solids, you must keep a copy of...
Production of laccase by Pynoporus sanguineus using 2,5 - Xylidine and ethanol
Valeriano, Viviane S.; Silva, Anna Maria F.; Santiago, Mariângela F.; Bara, Maria T. F.; Garcia, Telma A.
2009-01-01
Enzyme application in biotechnological and environmental processes has had increasing interest due to its efficiency, selectivity and mainly for being environmentally healthful, but these applications require a great volume of enzymes. In this work the effect of different concentrations of ethanol and 2,5-xylidine on growth and production of laccase by Pycnoporus sanguineus was investigated. In a medium containing 200 mg.L-1 of 2,5-xylidine or 50 g.L-1 of ethanol, the maximum activity of laccase was 2019 U.L-1 and 1035 U.L-1, respectively. No direct correlation between biomass and activity of laccase was observed for any of the inducers used during the tests. Ethanol concentrations, larger than or equal to 20 g.L-1, inhibited the radial growth of P. sanguineus. This study showed that ethanol, which has less toxicity and cost than the majority of the studied inducers, presents promising perspectives for laccase production by P. sanguineus. PMID:24031426