Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal
2015-01-01
Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.
Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; ...
2015-10-05
Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha -1 and 15.11 Mg palmarosa ha -1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha -1 respectively compared to reported 1749–3691 L ethanol ha -1 for switchgrass. Pretreated lemongrassmore » yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha -1 with an estimated value of USD $857 and $1005 ha -1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less
Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; Stewart, C. Neal
2015-01-01
Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert
Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha -1 and 15.11 Mg palmarosa ha -1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha -1 respectively compared to reported 1749–3691 L ethanol ha -1 for switchgrass. Pretreated lemongrassmore » yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha -1 with an estimated value of USD $857 and $1005 ha -1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less
Pérez-Carrillo, Esther; Luisa Cortés-Callejas, M; Sabillón-Galeas, Luis E; Montalvo-Villarreal, Jorge L; Canizo, Jesica R; Georgina Moreno-Zepeda, M; Serna-Saldivar, Sergio O
2011-02-01
The efficiency of ethanol fermentation, as affected by grain source (maize and decorticated red sorghum), total sugar concentration (13 or 20° Plato) and type of microorganism (Saccharomyces cerevisiae or Zymomonas mobilis) was studied. Maize mashes yielded 0.32 l ethanol kg(-1) ground grain whereas mashes prepared with decorticated red sorghum produced 0.28 l ethanol kg(-1). Both microorganisms yielded similar amounts of ethanol. However, high-gravity mashes (20° Plato) yielded lower amounts of ethanol compared to counterparts adjusted to 13° Plato (0.28 vs. 0.22 l ethanol kg(-1) ground grains). In decorticated sorghum mashes adjusted to 20° P, Z. mobilis produced 40 ml kg(-1) more ethanol compared to S. cerevisiae. In addition, Z. mobilis had a lower dependency on nitrogenous compounds.
Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang
2013-10-01
Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.
2014-01-01
Background The development of ‘energycane’ varieties of sugarcane is underway, targeting the use of both sugar juice and bagasse for ethanol production. The current study evaluated a selection of such ‘energycane’ cultivars for the combined ethanol yields from juice and bagasse, by optimization of dilute acid pretreatment optimization of bagasse for sugar yields. Method A central composite design under response surface methodology was used to investigate the effects of dilute acid pretreatment parameters followed by enzymatic hydrolysis on the combined sugar yield of bagasse samples. The pressed slurry generated from optimum pretreatment conditions (maximum combined sugar yield) was used as the substrate during batch and fed-batch simultaneous saccharification and fermentation (SSF) processes at different solid loadings and enzyme dosages, aiming to reach an ethanol concentration of at least 40 g/L. Results Significant variations were observed in sugar yields (xylose, glucose and combined sugar yield) from pretreatment-hydrolysis of bagasse from different cultivars of sugarcane. Up to 33% difference in combined sugar yield between best performing varieties and industrial bagasse was observed at optimal pretreatment-hydrolysis conditions. Significant improvement in overall ethanol yield after SSF of the pretreated bagasse was also observed from the best performing varieties (84.5 to 85.6%) compared to industrial bagasse (74.5%). The ethanol concentration showed inverse correlation with lignin content and the ratio of xylose to arabinose, but it showed positive correlation with glucose yield from pretreatment-hydrolysis. The overall assessment of the cultivars showed greater improvement in the final ethanol concentration (26.9 to 33.9%) and combined ethanol yields per hectare (83 to 94%) for the best performing varieties with respect to industrial sugarcane. Conclusions These results suggest that the selection of sugarcane variety to optimize ethanol production from bagasse can be achieved without adversely affecting juice ethanol and cane yield, thus maintaining first generation ethanol production levels while maximizing second generation ethanol production. PMID:24725458
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupoi, Jason; Smith, Emily
2011-12-01
Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35 C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification productsmore » and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35 C. There was no significant accumulation (<250 {mu}g) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35 C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.« less
2011-01-01
Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF) of lignocellulosic residues from commercial furfural production (furfural residue, FR) and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch hydrolysates to cellulosic ethanol production is a more suitable method to improve the final ethanol concentration. PMID:21801455
2012-01-01
Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20%) enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. The new process shows improved overall ethanol yields compared to traditional dilute acid pretreatment. The experimental results from this work support the techno-economic analysis and calculation of Minimum Ethanol Selling Price (MESP) detailed in our companion paper. PMID:22888758
Ethanol fermentation of raw cassava starch with Rhizopus koji in a gas circulation type fermentor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujio, Y.; Ogato, M.; Ueda, S.
Studies have been conducted in a gas circulation type fermentor in order to characterize the ethanol fermentation of uncooked cassava starch with Rhizopus koji. Results showed that ethanol concentration reached 13-14% (v/v) in 4-day broth, and the maximum productivity of ethanol was 2.3 g ethanol/l broth h. This productivity was about 50% compared to the productivity of a glucose-yeast system. Ethanol yield reached 83.5-72.3% of the theoretical yield for the cassava starch used. The fermentor used in the present work has been proven by experiment to be suitable for ethanol fermentation of the broth with solid substrate. 10 references.
Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol.
Bura, Renata; Vajzovic, Azra; Doty, Sharon L
2012-07-01
An endophytic yeast, Rhodotorula mucilaginosa strain PTD3, that was isolated from stems of hybrid poplar was found to be capable of production of xylitol from xylose, of ethanol from glucose, galactose, and mannose, and of arabitol from arabinose. The utilization of 30 g/L of each of the five sugars during fermentation by PTD3 was studied in liquid batch cultures. Glucose-acclimated PTD3 produced enhanced yields of xylitol (67% of theoretical yield) from xylose and of ethanol (84, 86, and 94% of theoretical yield, respectively) from glucose, galactose, and mannose. Additionally, this yeast was capable of metabolizing high concentrations of mixed sugars (150 g/L), with high yields of xylitol (61% of theoretical yield) and ethanol (83% of theoretical yield). A 1:1 glucose:xylose ratio with 30 g/L of each during double sugar fermentation did not affect PTD3's ability to produce high yields of xylitol (65% of theoretical yield) and ethanol (92% of theoretical yield). Surprisingly, the highest yields of xylitol (76% of theoretical yield) and ethanol (100% of theoretical yield) were observed during fermentation of sugars present in the lignocellulosic hydrolysate obtained after steam pretreatment of a mixture of hybrid poplar and Douglas fir. PTD3 demonstrated an exceptional ability to ferment the hydrolysate, overcome hexose repression of xylose utilization with a short lag period of 10 h, and tolerate sugar degradation products. In direct comparison, PTD3 had higher xylitol yields from the mixed sugar hydrolysate compared with the widely studied and used xylitol producer Candida guilliermondii.
Horisawa, Sakae; Ando, Hiromasa; Ariga, Osamu; Sakuma, Yoh
2015-12-01
In the present study, ethanol production from polysaccharides or wood chips was conducted in a single reactor under anaerobic conditions using the white rot fungus Schizophyllum commune NBRC 4928, which produces enzymes that degrade lignin, cellulose and hemicellulose. The ethanol yields produced from glucose and xylose were 80.5%, and 52.5%, respectively. The absolute yields of ethanol per microcrystalline cellulose (MCC), xylan and arabinogalactan were 0.26g/g-MCC, 0.0419g/g-xylan and 0.0508g/g-arabinogalactan, respectively. By comparing the actual ethanol yields from polysaccharides with monosaccharide fermentation, it was shown that the rate of saccharification was slower than that in fermentation. S. commune NBRC 4928 is concluded to be suitable for CBP because it can produce ethanol from various types of sugar. From the autoclaved cedar chip, only little ethanol was produced by S. commune NBRC 4928 alone but ethanol production was enhanced by combined use of ethanol fermenting and lignin degrading fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vajzovic, Azra; Bura, Renata; Kohlmeier, Kevin; Doty, Sharon L
2012-10-01
A systematic study was conducted characterizing the effect of furfural, 5-hydroxymethylfurfural (5-HMF), and acetic acid concentration on the production of xylitol and ethanol by a novel endophytic yeast, Rhodotorula mucilaginosa strain PTD3. The influence of different inhibitor concentrations on the growth and fermentation abilities of PTD3 cultivated in synthetic nutrient media containing 30 g/l xylose or glucose were measured during liquid batch cultures. Concentrations of up to 5 g/l of furfural stimulated production of xylitol to 77 % of theoretical yield (10 % higher compared to the control) by PTD3. Xylitol yields produced by this yeast were not affected in the presence of 5-HMF at concentrations of up to 3 g/l. At higher concentrations of furfural and 5-HMF, xylitol and ethanol yields were negatively affected. The higher the concentration of acetic acid present in a media, the higher the ethanol yield approaching 99 % of theoretical yield (15 % higher compared to the control) was produced by the yeast. At all concentrations of acetic acid tested, xylitol yield was lowered. PTD3 was capable of metabolizing concentrations of 5, 15, and 5 g/l of furfural, 5-HMF, and acetic acid, respectively. This yeast would be a potent candidate for the bioconversion of lignocellulosic sugars to biochemicals given that in the presence of low concentrations of inhibitors, its xylitol and ethanol yields are stimulated, and it is capable of metabolizing pretreatment degradation products.
Matsushika, Akinori; Hoshino, Tamotsu
2015-12-01
The Saccharomyces cerevisiae HAP4 gene encodes a transcription activator that plays a key role in controlling the expression of genes involved in mitochondrial respiration and reductive pathways. This work examines the effect of knockout of the HAP4 gene on aerobic ethanol production in a xylose-utilizing S. cerevisiae strain. A hap4-deleted recombinant yeast strain (B42-DHAP4) showed increased maximum concentration, production rate, and yield of ethanol compared with the reference strain MA-B42, irrespective of cultivation medium (glucose, xylose, or glucose/xylose mixtures). Notably, B42-DHAP4 was capable of producing ethanol from xylose as the sole carbon source under aerobic conditions, whereas no ethanol was produced by MA-B42. Moreover, the rate of ethanol production and ethanol yield (0.44 g/g) from the detoxified hydrolysate of wood chips was markedly improved in B42-DHAP4 compared to MA-B42. Thus, the results of this study support the view that deleting HAP4 in xylose-utilizing S. cerevisiae strains represents a useful strategy in ethanol production processes.
Yu, Hailong; You, Yanzhi; Lei, Fuhou; Liu, Zuguang; Zhang, Weiming; Jiang, Jianxin
2015-01-01
Green liquor (GL) combined with H2O2 (GL-H2O2) and green liquor (GL) combined with ethanol (GL-ethanol) were chosen for treating sugarcane bagasse. Results showed that the glucose yield (calculated from the glucose content as a percentage of the theoretical glucose available in the substrates)of sugarcane bagasse from GL-ethanol pretreatment (97.7%) was higher than that from GL-H2O2 pretreatment (41.7%) after 72h hydrolysis with 18 filter paper unit (FPU)/g-cellulose for cellulase, 27,175 cellobiase units (CBU)/g-cellulose for β-glucosidase. Furthermore, about 94.1% of xylan was converted to xylose after GL-ethanol pretreatment without additional xylanase, while the xylose yield was only 29.2% after GL-H2O2 pretreatment. Scanning electron microscopy showed that GL-ethanol pretreatment could break up the fiber severely. Moreover, GL-ethanol pretreated substrate was more accessible to cellulase and more hydrophilic than that of GL-H2O2 pretreated. Therefore, GL-ethanol pretreatment is a promising method for improving the overall sugar (glucose and xylan) yield of sugarcane bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.
Xu, Lei; Tschirner, Ulrike
2014-08-01
Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.
Ethanol production by engineered thermophiles.
Olson, Daniel G; Sparling, Richard; Lynd, Lee R
2015-06-01
We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Jingyu; Liu, Wen; Ding, Wentao; Zhang, Guochang; Liu, Jingjing
2013-11-01
We have investigated whether simultaneous modification of cofactor metabolism and glycerol in a strain of Saccharomyces cerevisiae can eliminate glycerol synthesis during ethanol production. Two strains, S812 (gpd1Δ gpd2Δ PGK1p-GLT1) and LE17 (gpd1Δ gpd2Δ PGK1p-GLT1 PGKp-STL1) were generated that showed a 8 and 8.2 % increase in the ethanol yield, respectively, compared to the wild type KAM-2 strain. The ethanol titer was improved from 90.4 g/l for KAM-2 to 97.6 g/l for S812 and 97.8 g/l for LE17, respectively. These results provide a new insight into rationalization of metabolic engineering strategies for improvement of ethanol yield through elimination of glycerol production.
Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan
2017-03-01
A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang
2014-01-01
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g−1, which compares with 0.240 g g−1 (W5) and 0.353 g g−1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively. PMID:25268957
Ge, Jingping; Zhao, Jingwen; Zhang, Luyan; Zhang, Mengyun; Ping, Wenxiang
2014-01-01
Double labeling of resistance markers and report genes can be used to breed engineered Saccharomyces cerevisiae strains that can assimilate xylose and glucose as a mixed carbon source for ethanol fermentation and increased ethanol production. In this study Saccharomyces cerevisiae W5 and Candida shehatae 20335 were used as parent strains to conduct protoplast fusion and the resulting fusants were screened by double labeling. High performance liquid chromatography (HPLC) was used to assess the ethanol yield following the fermentation of xylose and glucose, as both single and mixed carbon sources, by the fusants. Interestingly, one fusant (ZLYRHZ7) was demonstrated to have an excellent fermentation performance, with an ethanol yield using the mixed carbon source of 0.424 g g-1, which compares with 0.240 g g-1 (W5) and 0.353 g g-1 (20335) for the parent strains. This indicates an improvement in the ethanol yield of 43.4% and 16.7%, respectively.
Nitrogen Sources Screening for Ethanol Production Using Carob Industrial Wastes.
Raposo, S; Constantino, A; Rodrigues, F; Rodrigues, B; Lima-Costa, M E
2017-02-01
Nowadays, bioethanol production is one of the most important technologies by the necessity to identify alternative energy resources, principally when based on inexpensive renewable resources. However, the costs of 2nd-generation bioethanol production using current biotechnologies are still high compared to fossil fuels. The feasibility of bioethanol production, by obtaining high yields and concentrations of ethanol, using low-cost medium, is the primary goal, leading the research done today. Batch Saccharomyces cerevisiae fermentation of high-density sugar from carob residues with different organic (yeast extract, peptone, urea) and inorganic nitrogen sources (ammonium sulfate, ammonium nitrate) was performed for evaluating a cost-effective ethanol production, with high ethanol yield and productivity. In STR batch fermentation, urea has proved to be a very promising nitrogen source in large-scale production of bioethanol, reaching an ethanol yield of 44 % (w/w), close to theoretical maximum yield value and an ethanol production of 115 g/l. Urea at 3 g/l as nitrogen source could be an economical alternative with a great advantage in the sustainability of ethanol production from carbohydrates extracted from carob. Simulation studies, with experimental data using SuperPro Design software, have shown that the bioethanol production biorefinery from carob wastes could be a very promising way to the valorization of an endogenous resource, with a competitive cost.
Papanek, Beth A.; Biswas, Ranjita; Rydzak, Thomas; ...
2015-09-12
Clostridium thermocellum has the natural ability to convert cellulose to ethanol, making it a promising candidate for consolidated bioprocessing (CBP) of cellulosic biomass to biofuels. To further improve its CBP capabilities, we study a mutant strain of C. thermocellum that was constructed (strain AG553; C. thermocellum Δhpt ΔhydG Δldh Δpfl Δpta-ack) to increase flux to ethanol by removing side product formation. Strain AG553 showed a two- to threefold increase in ethanol yield relative to the wild type on all substrates tested. On defined medium, strain AG553 exceeded 70% of theoretical ethanol yield on lower loadings of the model crystalline cellulosemore » Avicel, effectively eliminating formate, acetate, and lactate production and reducing H 2 production by fivefold. On 5 g/L Avicel, strain AG553 reached an ethanol yield of 63.5% of the theoretical maximum compared with 19.9% by the wild type, and it showed similar yields on pretreated switchgrass and poplar. The elimination of organic acid production suggested that the strain might be capable of growth under higher substrate loadings in the absence of pH control. Final ethanol titer peaked at 73.4 mM in mutant AG553 on 20 g/L Avicel, at which point the pH decreased to a level that does not allow growth of C. thermocellum, likely due to CO 2 accumulation. In comparison, the maximum titer of wild type C. thermocellum was 14.1 mM ethanol on 10 g/L Avicel. In conclusion, with the elimination of the metabolic pathways to all traditional fermentation products other than ethanol, AG553 is the best ethanol-yielding CBP strain to date and will serve as a platform strain for further metabolic engineering for the bioconversion of lignocellulosic biomass.« less
ERIC Educational Resources Information Center
Vullo, Diana L.; Wachsman, Monica B.
2005-01-01
This laboratory experiment was designed for Chemistry, Food Technology, Biology, and Chemical Engineering undergraduate students. This laboratory experience shows the advantages of immobilized bakery yeasts in ethanol production by alcoholic fermentation. The students were able to compare the ethanol production yields by free or calcium alginate…
Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.
Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A
2018-04-24
While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.
Kumar, Deepak; Singh, Vijay
2016-01-01
Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry can reduce the total external enzyme usage by more than 80 %, and combining their use with in situ removal of ethanol during fermentation allows efficient high-solid fermentation.
Expression of adhA from different organisms in Clostridium thermocellum.
Zheng, Tianyong; Cui, Jingxuan; Bae, Hye Ri; Lynd, Lee R; Olson, Daniel G
2017-01-01
Clostridium thermocellum is a cellulolytic anaerobic thermophile that is a promising candidate for consolidated bioprocessing of lignocellulosic biomass into biofuels such as ethanol. It was previously shown that expressing Thermoanaerobacterium saccharolyticum adhA in C. thermocellum increases ethanol yield.In this study, we investigated expression of adhA genes from different organisms in Clostridium thermocellum . Based on sequence identity to T. saccharolyticum adhA , we chose adhA genes from 10 other organisms: Clostridium botulinum , Methanocaldococcus bathoardescens , Thermoanaerobacterium ethanolicus , Thermoanaerobacter mathranii , Thermococcus strain AN1, Thermoanaerobacterium thermosaccharolyticum , Caldicellulosiruptor saccharolyticus , Fervidobacterium nodosum , Marinitoga piezophila , and Thermotoga petrophila . All 11 adhA genes (including T. saccharolyticum adhA ) were expressed in C. thermocellum and fermentation end products were analyzed. All 11 adhA genes increased C. thermocellum ethanol yield compared to the empty-vector control. C. botulinum and T. ethanolicus adhA genes generated significantly higher ethanol yield than T. saccharolyticum adhA . Our results indicated that expressing adhA is an effective method of increasing ethanol yield in wild-type C. thermocellum , and that this appears to be a general property of adhA genes.
Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.; ...
2016-01-01
Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenglong; Lepore, Andrew W.; Davison, Brian H.
Here, we describe a light gas recirculation (LGR) method to increase the liquid hydrocarbon yield with reduced aromatic content from catalytic conversion of ethanol to hydrocarbons. The previous liquid hydrocarbon yield is ~40% from one-pass ethanol conversion over V-ZSM-5 at 350 C and atmospheric pressure where the remaining ~60% yield is light gas hydrocarbons. In comparison, the liquid hydrocarbon yield increases to 80% when a simulated light gas hydrocarbon stream is co-fed at a rate of 0.053 mol g-1 h-1 with ethanol due to the conversion of most of the light olefins. The LGR also significantly improves the quality ofmore » the liquid hydrocarbon blend-stock by reducing aromatic content and overall benzene concentration. For 0.027 mol g-1 h-1 light gas mixture co-feeding, the average aromatic content in liquid hydrocarbons is 51.5% compared with 62.5% aromatic content in ethanol only experiment. Average benzene concentration decreases from 3.75% to 1.5% which is highly desirable since EPA limits benzene concentration in gasoline to 0.62%. As a result of low benzene concentration, the blend-wall for ethanol derived liquid hydrocarbons changes from ~18% to 43%. The remaining light paraffins and olefins can be further converted to valuable BTX products (94% BTX in the liquid) over Ga-ZSM-5 at 500 C. Thus, the LGR is an effective approach to convert ethanol to liquid hydrocarbons with higher liquid yield and low aromatic content, especially low benzene concentration, which could be blended with gasoline in a much higher ratio than ethanol or ethanol derived hydrocarbon blend-stock.« less
Zhao, Ning; Bai, Yun; Liu, Chen-Guang; Zhao, Xin-Qing; Xu, Jian-Feng; Bai, Feng-Wu
2014-03-01
Whereas Saccharomyces cerevisiae uses the Embden-Meyerhof-Parnas pathway to metabolize glucose, Zymomonas mobilis uses the Entner-Doudoroff (ED) pathway. Employing the ED pathway, 50% less ATP is produced, which could lead to less biomass being accumulated during fermentation and an improved yield of ethanol. Moreover, Z. mobilis cells, which have a high specific surface area, consume glucose faster than S. cerevisiae, which could improve ethanol productivity. We performed ethanol fermentations using these two species under comparable conditions to validate these speculations. Increases of 3.5 and 3.3% in ethanol yield, and 58.1 and 77.8% in ethanol productivity, were observed in ethanol fermentations using Z. mobilis ZM4 in media containing ∼100 and 200 g/L glucose, respectively. Furthermore, ethanol fermentation bythe flocculating Z. mobilis ZM401 was explored. Although no significant difference was observed in ethanol yield and productivity, the flocculation of the bacterial species enabled biomass recovery by cost-effective sedimentation, instead of centrifugation with intensive capital investment and energy consumption. In addition, tolerance to inhibitory byproducts released during biomass pretreatment, particularly acetic acid and vanillin, was improved. These experimental results indicate that Z. mobilis, particularly its flocculating strain, is superior to S. cerevisiae as a host to be engineered for fuel ethanol production from lignocellulosic biomass. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
López-Alvarez, Arnoldo; Díaz-Pérez, Alma Laura; Sosa-Aguirre, Carlos; Macías-Rodríguez, Lourdes; Campos-García, Jesús
2012-05-01
In tequila production, fermentation is an important step. Fermentation determines the ethanol productivity and organoleptic properties of the beverage. In this study, a yeast isolated from native residual agave must was identified as Kluyveromyces marxianus UMPe-1 by 26S rRNA sequencing. This yeast was compared with the baker's yeast Saccharomyces cerevisiae Pan1. Our findings demonstrate that the UMPe-1 yeast was able to support the sugar content of agave must and glucose up to 22% (w/v) and tolerated 10% (v/v) ethanol concentration in the medium with 50% cells survival. Pilot and industrial fermentation of agave must tests showed that the K. marxianus UMPe-1 yeast produced ethanol with yields of 94% and 96% with respect to fermentable sugar content (glucose and fructose, constituting 98%). The S. cerevisiae Pan1 baker's yeast, however, which is commonly used in some tequila factories, showed 76% and 70% yield. At the industrial level, UMPe-1 yeast shows a maximum velocity of fermentable sugar consumption of 2.27g·L(-1)·h(-1) and ethanol production of 1.38g·L(-1)·h(-1), providing 58.78g ethanol·L(-1) at 72h fermentation, which corresponds to 96% yield. In addition, the major and minor volatile compounds in the tequila beverage obtained from UMPe-1 yeast were increased. Importantly, 29 volatile compounds were identified, while the beverage obtained from Pan1-yeast contained fewer compounds and in lower concentrations. The results suggest that the K. marxianus UMPe-1 is a suitable yeast for agave must fermentation, showing high ethanol productivity and increased volatile compound content comparing with a S. cerevisiae baker's yeast used in tequila production. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Martinez-Guerra, Edith; Gude, Veera Gnaneswar
2014-12-01
This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min
2016-07-01
A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meneghin, Maria Cristina; Bassi, Ana Paula Guarnieri; Codato, Carolina Brito; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina
2013-08-01
Dekkera bruxellensis is a multifaceted yeast present in the fermentative processes used for alcoholic beverage and fuel alcohol production - in the latter, normally regarded as a contaminant. We evaluated the fermentation and growth performance of a strain isolated from water in an alcohol-producing unit, in batch systems with/without cell recycling in pure and co-cultures with Saccharomyces cerevisiae. The ethanol resistance and aeration dependence for ethanol/acid production were verified. Ethanol had an effect on the growth of D. bruxellensis in that it lowered or inhibited growth depending on the concentration. Acid production was verified in agitated cultures either with glucose or sucrose, but more ethanol was produced with glucose in agitated cultures. Regardless of the batch system, low sugar consumption and alcohol production and expressive growth were found with D. bruxellensis. Despite a similar ethanol yield compared to S. cerevisiae in the batch system without cell recycling, ethanol productivity was approximately four times lower. However, with cell recycling, ethanol yield was almost half that of S. cerevisiae. At initial low cell counts of D. bruxellensis (10 and 1000 cells/ml) in co-cultures with S. cerevisiae, a decrease in fermentative efficiency and a substantial growth throughout the fermentative cycles were displayed by D. bruxellensis. Due to the peculiarity of cell repitching in Brazilian fermentation processes, D. bruxellensis is able to establish itself in the process, even when present in low numbers initially, substantially impairing bioethanol production due to the low ethanol productivity, in spite of comparable ethanol yields. Copyright © 2013 John Wiley & Sons, Ltd.
Galafassi, Silvia; Merico, Annamaria; Pizza, Francesca; Hellborg, Linda; Molinari, Francesco; Piškur, Jure; Compagno, Concetta
2011-08-01
Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step fermentation strategy: the first step under aerobic conditions for fast production of biomass from mixtures of hexoses and pentoses, followed by a second step under oxygen limitation to promote ethanol production. Under these conditions we obtained biomass and ethanol production on synthetic lignocellulosic hydrolysates, with ethanol yields ranging from 0.2 to 0.3 g g(-1) sugar. Hexoses, xylose and arabinose were consumed at the end of the process, resulting in 13 g l(-1) of ethanol, even in the presence of furfural. Our studies showed that Brettanomyces/Dekkera yeasts have clear potential for further development for industrial processes aimed at production of ethanol from renewable sources.
2010-01-01
Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol at 93% metabolic yield) and WCP (resulting in 30 g/L ethanol at 89% metabolic yield) is reported in this work. Conclusions The current results indicate the feasibility of co-utilization of whole plants (that is, starchy grains plus cellulosic residues) using an ammonia-based (AFEX) pretreatment to increase bioethanol yield and reduce overall production cost. PMID:20534126
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu
Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, andmore » ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.« less
You, Yanzhi; Li, Pengfei; Lei, Fuhou; Xing, Yang; Jiang, Jianxin
2017-01-01
Efficient cofermentation of glucose and xylose is necessary for economically feasible bioethanol production from lignocellulosic biomass. Here, we demonstrate pretreatment of sugarcane bagasse (SCB) with green liquor (GL) combined with ethanol (GL-Ethanol) by adding different GL amounts. The common Saccharomyces cerevisiae (CSC) and thermophilic S. cerevisiae (TSC) strains were used and different yeast cell mass ratios (CSC to TSC) were compared. The simultaneous saccharification and cofermentation (SSF/SSCF) process was performed by 5-20% (w/v) dry substrate (DS) solid loadings to determine optimal conditions for the co-consumption of glucose and xylose. Compared to previous studies that tested fermentation of glucose using only the CSC, we obtained higher ethanol yield and concentration (92.80% and 23.22 g/L) with 1.5 mL GL/g-DS GL-Ethanol-pretreated SCB at 5% (w/v) solid loading and a CSC-to-TSC yeast cell mass ratio of 1:2 (w/w). Using 10% (w/v) solid loading under the same conditions, the ethanol concentration increased to 42.53 g/L but the ethanol yield decreased to 84.99%. In addition, an increase in the solid loading up to a certain point led to an increase in the ethanol concentration from 1.5 mL GL/g-DS-pretreated SCB. The highest ethanol concentration (68.24 g/L) was obtained with 15% (w/v) solid loading, using a CSC-to-TSC yeast cell mass ratio of 1:3 (w/w). GL-Ethanol pretreatment is a promising pretreatment method for improving both glucan and xylan conversion efficiencies of SCB. There was a competitive relationship between the two yeast strains, and the glucose and xylose utilization ability of the TSC was better than that of the CSC. Ethanol concentration was obviously increased at high solid loading, but the yield decreased as a result of an increase in the viscosity and inhibitor levels in the fermentation system. Finally, the SSCF of GL-Ethanol-pretreated SCB with mixed S. cerevisiae strains increased ethanol concentration and was an effective conversion process for ethanol production at high solid loading.
Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops
NASA Astrophysics Data System (ADS)
Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.
2010-12-01
Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at moderate levels (67 kg N ha-1). Increasing fertilizer application beyond the point of diminishing returns for grain (67 kg N ha-1) to double the regionally-recommended amount (202 kg N ha-1) resulted in only marginal increases (25%) in crop residue carbohydrate yield, while increasing lignin yields 41%. In the case of at least this ecosystem, high fertilization rates did not result in large carbohydrate yield increases in the crop residue, and instead produced a lower quality feedstock for cellulosic ethanol production.
Qin, Lei; Zhao, Xiong; Li, Wen-Chao; Zhu, Jia-Qing; Liu, Li; Li, Bing-Zhi; Yuan, Ying-Jin
2018-01-01
Improving ethanol concentration and reducing enzyme dosage are main challenges in bioethanol refinery from lignocellulosic biomass. Ethylenediamine (EDA) pretreatment is a novel method to improve enzymatic digestibility of lignocellulose. In this study, simultaneous saccharification and co-fermentation (SSCF) process using EDA-pretreated corn stover was analyzed and optimized to verify the constraint factors on ethanol production. Highest ethanol concentration was achieved with the following optimized SSCF conditions at 6% glucan loading: 12-h pre-hydrolysis, 34 °C, pH 5.4, and inoculum size of 5 g dry cell/L. As glucan loading increased from 6 to 9%, ethanol concentration increased from 33.8 to 48.0 g/L, while ethanol yield reduced by 7%. Mass balance of SSCF showed that the reduction of ethanol yield with the increasing solid loading was mainly due to the decrease of glucan enzymatic conversion and xylose metabolism of the strain. Tween 20 and BSA increased ethanol concentration through enhancing enzymatic efficiency. The solid-recycled SSCF process reduced enzyme dosage by 40% (from 20 to 12 mg protein/g glucan) to achieve the similar ethanol concentration (~ 40 g/L) comparing to conventional SSCF. Here, we established an efficient SSCF procedure using EDA-pretreated biomass. Glucose enzymatic yield and yeast viability were regarded as the key factors affecting ethanol production at high solid loading. The extensive analysis of SSCF would be constructive to overcome the bottlenecks and improve ethanol production in cellulosic ethanol refinery.
Moreno, Antonio D; Ibarra, David; Ballesteros, Ignacio; González, Alberto; Ballesteros, Mercedes
2013-05-01
In this study, the thermotolerant yeast Kluyveromyces marxianus CECT 10875 was compared to the industrial strain Saccharomyces cerevisiae Ethanol Red for lignocellulosic ethanol production. For it, whole slurry from steam-exploded wheat straw was used as raw material, and two process configurations, simultaneous saccharification and fermentation (SSF) and presaccharification and simultaneous saccharification and fermentation (PSSF), were evaluated. Compared to S. cerevisiae, which was able to produce ethanol in both process configurations, K. marxianus was inhibited, and neither growth nor ethanol production occurred during the processes. However, laccase treatment of the whole slurry removed specifically lignin phenols from the overall inhibitory compounds present in the slurry and triggered the fermentation by K. marxianus, attaining final ethanol concentrations and yields comparable to those obtained by S. cerevisiae. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Rodda, E.D.; Steinberg, M.P.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas-chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.8%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 gram of carbonmore » dioxide per gram of dry substrate starch within 72 hours. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41 degrees C had no apparent detrimental effects on theoretical ethanol yield.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Rodda, E.D.; Steinberg, M.P.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas-chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.8%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 gram of carbonmore » dioxide per gram of dry substrate starch within 72 hours. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41/sup 0/C had no apparent detrimental effects on theoretical ethanol yield.« less
Jennings, Edward W; Schell, Daniel J
2011-01-01
Dilute-acid pretreatment of lignocellulosic biomass enhances the ability of enzymes to hydrolyze cellulose to glucose, but produces many toxic compounds that inhibit fermentation of sugars to ethanol. The objective of this study was to compare the effectiveness of treating hydrolysate liquor with Ca(OH)2 and NH4OH for improving ethanol yields. Corn stover was pretreated in a pilot-scale reactor and then the liquor fraction (hydrolysate) was extracted and treated with various amounts of Ca(OH)2 or NH4OH at several temperatures. Glucose and xylose in the treated liquor were fermented to ethanol using a glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. Sugar losses up to 10% occurred during treatment with Ca(OH)2, but these losses were two to fourfold lower with NH4OH treatment. Ethanol yields for NH4OH-treated hydrolysate were 33% greater than those achieved in Ca(OH)2-treated hydrolysate and pH adjustment to either 6.0 or 8.5 with NH4OH prior to fermentation produced equivalent ethanol yields. Copyright © 2010 Elsevier Ltd. All rights reserved.
Neves, P V; Pitarelo, A P; Ramos, L P
2016-05-01
The production of cellulosic ethanol was carried out using samples of native (NCB) and ethanol-extracted (EECB) sugarcane bagasse. Autohydrolysis (AH) exhibited the best glucose recovery from both samples, compared to the use of both H3PO4 and H2SO4 catalysis at the same pretreatment time and temperature. All water-insoluble steam-exploded materials (SEB-WI) resulted in high glucose yields by enzymatic hydrolysis. SHF (separate hydrolysis and fermentation) gave ethanol yields higher than those obtained by SSF (simultaneous hydrolysis and fermentation) and pSSF (pre-hydrolysis followed by SSF). For instance, AH gave 25, 18 and 16 g L(-1) of ethanol by SHF, SSF and pSSF, respectively. However, when the total processing time was taken into account, pSSF provided the best overall ethanol volumetric productivity of 0.58 g L(-1) h(-1). Also, the removal of ethanol-extractable materials from cane bagasse had no influence on the cellulosic ethanol production of SEB-WI, regardless of the fermentation strategy used for conversion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hon, Shuen; Olson, Daniel G.; Holwerda, Evert K.; ...
2017-06-27
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields andmore » titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. Here, this suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hon, Shuen; Olson, Daniel G.; Holwerda, Evert K.
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields andmore » titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. Here, this suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.« less
Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R
2017-12-01
The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mokomele, Thapelo; da Costa Sousa, Leonardo; Balan, Venkatesh; van Rensburg, Eugéne; Dale, Bruce E; Görgens, Johann F
2018-01-01
Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. Ethanol yields between 249 and 256 kg Mg -1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg -1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g -1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic ® CTec3, Cellic ® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha -1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A (LNH-ST). The identification of auxiliary enzyme activities, adequate process integration and the use of robust xylose-fermenting ethanologens were identified as opportunities to further improve ethanol yields from AFEX™- and StEx-treated sugarcane residues.
Kim, Soo Rin; Lee, Ki-Sung; Choi, Jin-Ho; Ha, Suk-Jin; Kweon, Dae-Hyuk; Seo, Jin-Ho; Jin, Yong-Su
2010-11-01
Xylose-fermenting Saccharomyces strains are needed for commercialization of ethanol production from lignocellulosic biomass. Engineered Saccharomyces cerevisiae strains expressing XYL1, XYL2 and XYL3 from Pichia stipitis, however, utilize xylose in an oxidative manner, which results in significantly lower ethanol yields from xylose as compared to glucose. As such, we hypothesized that reconfiguration of xylose metabolism from oxidative into fermentative manner might lead to efficient ethanol production from xylose. To this end, we generated a respiration-deficient (RD) mutant in order to enforce engineered S. cerevisiae to utilize xylose only through fermentative metabolic routes. Three different repeated-batch fermentations were performed to characterize characteristics of the respiration-deficient mutant. When fermenting glucose as a sole carbon source, the RD mutant exhibited near theoretical ethanol yields (0.46 g g(-1)) during repeated-batch fermentations by recycling the cells. As the repeated-batch fermentation progressed, the volumetric ethanol productivity increased (from 7.5 to 8.3 g L(-1)h(-1)) because of the increased biomass from previous cultures. On the contrary, the mutant showed decreasing volumetric ethanol productivities during the repeated-batch fermentations using xylose as sole carbon source (from 0.4 to 0.3 g L(-1)h(-1)). The mutant did not grow on xylose and lost fermenting ability gradually, indicating that the RD mutant cannot maintain a good fermenting ability on xylose as a sole carbon source. However, the RD mutant was capable of fermenting a mixture of glucose and xylose with stable yields (0.35 g g(-1)) and productivities (0.52 g L(-1)h(-1)) during the repeated-batch fermentation. In addition, ethanol yields from xylose during the mixed sugar fermentation (0.30 g g(-1)) were higher than ethanol yields from xylose as a sole carbon source (0.21 g g(-1)). These results suggest that a strategy for increasing ethanol yield through respiration-deficiency can be applied for the fermentation of lignocellulosic hydrolyzates containing glucose and xylose. Copyright © 2010 Elsevier B.V. All rights reserved.
2013-01-01
Background Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Results Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. Conclusions This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved ethanol yield. PMID:23537043
Pagliardini, Julien; Hubmann, Georg; Alfenore, Sandrine; Nevoigt, Elke; Bideaux, Carine; Guillouet, Stephane E
2013-03-28
Finely regulating the carbon flux through the glycerol pathway by regulating the expression of the rate controlling enzyme, glycerol-3-phosphate dehydrogenase (GPDH), has been a promising approach to redirect carbon from glycerol to ethanol and thereby increasing the ethanol yield in ethanol production. Here, strains engineered in the promoter of GPD1 and deleted in GPD2 were used to investigate the possibility of reducing glycerol production of Saccharomyces cerevisiae without jeopardising its ability to cope with process stress during ethanol production. For this purpose, the mutant strains TEFmut7 and TEFmut2 with different GPD1 residual expression were studied in Very High Ethanol Performance (VHEP) fed-batch process under anaerobic conditions. Both strains showed a drastic reduction of the glycerol yield by 44 and 61% while the ethanol yield improved by 2 and 7% respectively. TEFmut2 strain showing the highest ethanol yield was accompanied by a 28% reduction of the biomass yield. The modulation of the glycerol formation led to profound redox and energetic changes resulting in a reduction of the ATP yield (YATP) and a modulation of the production of organic acids (acetate, pyruvate and succinate). Those metabolic rearrangements resulted in a loss of ethanol and stress tolerance of the mutants, contrarily to what was previously observed under aerobiosis. This work demonstrates the potential of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Previous study showed that, contrarily to anaerobiosis, the resulting gain in ethanol yield was accompanied with no loss of ethanol tolerance under aerobiosis. Moreover those mutants were still able to produce up to 90 gl-1 ethanol in an anaerobic SSF process. Fine tuning metabolic strategy may then open encouraging possibilities for further developing robust strains with improved ethanol yield.
Fuel ethanol from raw corn by Aspergilli hydrolysis with concurrent yeast fermentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, C.L.; Steinberg, M.P.; Rodda, E.D.
Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.9%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 g ofmore » carbon dioxide per gram of dry substrate starch within 72 h. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41/sup 0/C had no apparent detrimental effects on theoretical ethanol yield. 41 references, 1 figure, 2 tables.« less
Kim, Youngmi; Mosier, Nathan; Ladisch, Michael R
2008-08-01
Distillers' grains (DG), a co-product of a dry grind ethanol process, is an excellent source of supplemental proteins in livestock feed. Studies have shown that, due to its high polymeric sugar contents and ease of hydrolysis, the distillers' grains have potential as an additional source of fermentable sugars for ethanol fermentation. The benefit of processing the distillers' grains to extract fermentable sugars lies in an increased ethanol yield without significant modification in the current dry grind technology. Three different potential configurations of process alternatives in which pretreated and hydrolyzed distillers' grains are recycled for an enhanced overall ethanol yield are proposed and discussed in this paper based on the liquid hot water (LHW) pretreatment of distillers' grains. Possible limitations of each proposed process are also discussed. This paper presents a compositional analysis of distillers' grains, as well as a simulation of the modified dry grind processes with recycle of distillers' grains. Simulated material balances for the modified dry grind processes are established based on the base case assumptions. These balances are compared to the conventional dry grind process in terms of ethanol yield, compositions of its co-products, and accumulation of fermentation inhibitors. Results show that 14% higher ethanol yield is achievable by processing and hydrolyzing the distillers' grains for additional fermentable sugars, as compared to the conventional dry grind process. Accumulation of fermentation by-products and inhibitory components in the proposed process is predicted to be 2-5 times higher than in the conventional dry grind process. The impact of fermentation inhibitors is reviewed and discussed. The final eDDGS (enhanced dried distillers' grains) from the modified processes has 30-40% greater protein content per mass than DDGS, and its potential as a value-added process is also analyzed. While the case studies used to illustrate the process simulation are based on LHW pretreated DG, the process simulation itself provides a framework for evaluation of the impact of other pretreatments.
Zhou, Jilai; Shao, Xiongjun; Olson, Daniel G; Murphy, Sean Jean-Loup; Tian, Liang; Lynd, Lee R
2017-05-01
Thermoanaerobacter ethanolicus is a promising candidate for biofuel production due to the broad range of substrates it can utilize and its high ethanol yield compared to other thermophilic bacteria, such as Clostridium thermocellum. Three alcohol dehydrogenases, AdhA, AdhB and AdhE, play key roles in ethanol formation. To study their physiological roles during ethanol formation, we deleted them separately and in combination. Previously, it has been thought that both AdhB and AdhE were bifunctional alcohol dehydrogenases. Here we show that AdhE has primarily acetyl-CoA reduction activity (ALDH) and almost no acetaldehyde reduction (ADH) activity, whereas AdhB has no ALDH activity and but high ADH activity. We found that AdhA and AdhB have similar patterns of activity. Interestingly, although deletion of both adhA and adhB reduced ethanol production, a single deletion of either one actually increased ethanol yields by 60-70%.
Ji, Li; Zheng, Tianran; Zhao, Pengxiang; Zhang, Weiming; Jiang, Jianxin
2016-06-01
As the most abundant renewable resources, lignocellulosic materials are ideal candidates as alternative feedstock for bioethanol production. Cassava residues (CR) are byproducts of the cassava starch industry which can be mixed with lignocellulosic materials for ethanol production. The presence of lignin in lignocellulosic substrates can inhibit saccharification by reducing the cellulase activity. Simultaneous saccharification and fermentation (SSF) of furfural residues (FR) pretreated with green liquor and hydrogen peroxide (GL-H2O2) with CR saccharification liquid was investigated. The final ethanol concentration, yield, initial rate, number of live yeast cells, and the dead yeast ratio were compared to evaluate the effectiveness of combining delignificated lignocellulosic substrates and starchy substrates for ethanol production. Our results indicate that 42.0 % of FR lignin removal was achieved on FR using of 0.06 g H2O2/g-substrate and 9 mL GL/g-substrate at 80 °C. The highest overall ethanol yield was 93.6 % of the theoretical. When the ratio of 0.06 g/g-H2O2-GL-pretreated FR to CR was 5:1, the ethanol concentration was the same with that ratio of untreated FR to CR of 1:1. Using 0.06 g/g-H2O2-GL-pretreated FR with CR at a ratio of 2:1 resulted in 51.9 g/L ethanol concentration. Moreover, FR pretreated with GL-H2O2 decreased the concentration of byproducts in SSF compared with that obtained in the previous study. The lignin in FR would inhibit enzyme activity and GL-H2O2 is an advantageous pretreatment method to treat FR and high intensity of FR pretreatment increased the final ethanol concentration. The efficiency of ethanol fermentation of was improved when delignification increased. GL-H2O2 is an advantageous pretreatment method to treat FR. As the pretreatment dosage of GL-H2O2 on FR increased, the proportion of lignocellulosic substrates was enhanced in the SSF of the substrate mixture of CR and FR as compared with untreated FR. Moreover, the final ethanol concentration was increased with a high ethanol yield and lower byproduct concentrations.
Toquero, Cristina; Bolado, Silvia
2014-04-01
Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R
2017-07-01
Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Bioethanol Potential of Energy Sorghum Grown on Marginal and Arable Lands
Tang, Chaochen; Li, Songbo; Li, Meng; Xie, Guang H.
2018-01-01
Field experiments were conducted in marginal lands, i.e., sub-humid climate and saline-land (SHS) and semi-arid climate and wasteland (SAW), to evaluate ethanol potential based on the biomass yield and chemical composition of biomass type (var. GN-2, GN-4, and GN-10) and sweet type (var. GT-3 and GT-7) hybrids of energy sorghum [Sorghum bicolor (L.) Moench] in comparison with sub-humid climate and cropland (SHC) in northern China. Results showed that environment significantly (p < 0.05) influenced plant growth, biomass yield and components, and subsequently the ethanol potential of energy sorghum. Biomass and theoretical ethanol yield of the crop grown at SHS (12.2 t ha−1 and 3,425 L ha−1, respectively) and SAW (8.6 t ha−1 and 2,091 L ha−1, respectively) were both statistically (p < 0.001) lower than values at the SHC site (32.6 t ha−1 and 11,853 L ha−1, respectively). Higher desirable contents of soluble sugar, cellulose, and hemicellulose were observed at SHS and SHC sites, while sorghum grown at SAW possessed higher lignin and ash contents. Biomass type sorghum was superior to sweet type as non-food ethanol feedstock. In particular, biomass type hybrid GN-10 achieved the highest biomass (17.4 t ha−1) and theoretical ethanol yields (5,423 L ha−1) after averaging data for all environmental sites. The most productive hybrid, biomass type GN-4, exhibited biomass and theoretical ethanol yields >42.1 t ha−1 and 14,913 L ha−1, respectively, at the cropland SHC site. In conclusion, energy sorghum grown on marginal lands showed a very lower ethanol potential, indicating a considerable lower possibility for being used as commercial feedstock supply when compared with that grown on regular croplands. Moreover, screening suitable varieties may improve energy sorghum growth and chemical properties for ethanol production on marginal lands. PMID:29686688
Wu, Yao; Du, Jie; Xu, Guoqiang; Jiang, Linghuo
2016-05-01
Saccharomyces cerevisiae is the most widely used fermentation organism for ethanol production. However, the gene expression regulatory networks behind the ethanol fermentation are still not fully understood. Using a static fermentation model, we examined the ethanol yields on biomass of deletion mutants for 77 yeast genes encoding nonessential transcription factors, and found that deletion mutants for ACE2 and SWI5 showed dramatically increased ethanol yields. Overexpression of ACE2 or SWI5 in wild type cells reduced their ethanol yields. Furthermore, among the 34 target genes regulated by Ace2 and Swi5, deletion of CTS1,RPS4a,SIC1,EGT2,DSE2, or SCP160 led to increased ethanol yields, with the former two showing higher effects. Overexpression of CTS1 or RPS4a in both ace2/ace2 and swi5/swi5 mutants reduced their ethanol yields. In contrast, deletion of MCR1 or HO significantly decreased ethanol yields, with the former one showing the highest effect. Therefore, Ace2 and Swi5 are two negative regulators of ethanol yield during static fermentation of yeast cells, and both CTS1 and RPS4a are major effectors mediating these two transcription factors in regulating ethanol production. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.
Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan
2012-01-01
In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.
Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári
2018-01-01
Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.
The simultaneous saccharification and fermentation of pretreated woody crops to ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spindler, D.D.; Wyman, C.E.; Grohmann, K.
1991-12-31
Four promising woody crops (Populus maximowiczii x nigra (NE388), P. trichocarpa x deltoides (N11), P. tremuloides, and Sweetgum Liquidambar styraciflua) were pretreated by dilute sulfuric acid and evaluated in the simultaneous saccharification and fermentation (SSF) process for ethanol production. The yeast Saccharomyces cerevisiae was used in the fermentations alone, and in mixed cultures with {beta}-glucosidase producing Brettanomyces clausenii. Commercial Genencor 150L cellulose enyme was either employed alone or supplemented with {beta}-glucosidase. All SSFs were run at 37{degrees}C for 8 d and compared to saccharifications at 45{degrees}C under the same enzyme loadings. S. cerevisiae alone achieved the highest ethanol yields andmore » rates of hydrolysis at the higher enzyme loadings, whereas the mixed culture performed better at the lower enzyme loadings without {beta}-glucosidase supplementation. The best overall rates of fermentation (3 d) and final theoretical ethanol yields (86-90%) were achieved with P. maximowiczii x nigra (NE388) and Sweetgum Liquidambar styraciflua, followed by P. tremuloides and P. trichocarpa x deltoides (N11) with slightly slower rates and lower yields. Although there were some differences in SSF performance, all these pretreated woody crops show promise as substrates for ethanol production.« less
Santhanam, Satyan Ramachandran; Egigu, Meseret C
2014-09-01
To evaluate a formulation from the milky mangrove tree Excoecaria agallocha L. (E. agallocha) against Helicoverpa armigera Hubner (H. armigera). About 3% aqueous ethanolic spray formulation derived from the lipophilic extract of E. agallocha (dry leaf) was evaluated against H. armigera in Abelmoschus esculentus (lady's finger) and Cajanus cajan (C. cajan) (pigeon pea), under field conditions. On the 9th day of the 4th spray the larval count in the plot treated with 3% E. agallocha formulation drastically came down to 0.23 larva/plant, compared to 1.63 in the ethanol control plot and 1.60 in the unsprayed plot. Blocks sprayed with 3% E. agallocha formulation yielded 35.8 quintals/hectare (q/ha) of healthy pods compared to Ekalux® (pod yield: 60.7 q/ha), 3% Vijay Neem® (60.22 q/ha), yield plot (6 q/ha) and ethanol control (7 q/ha). In C. cajan, 1% E. agallocha, 3% Nimbecidine® and 0.07% indoxacarb were equally potent in reducing the larval population of H. armigera and the non-target pest Spilosoma obliqua to 0%, from the 9th day (3rd spray). Indoxacarb plot recorded the maximum yield of 16.1 q/ha with 2.4% pod damage. Plots sprayed with 1% E. agallocha yielded 14.7 q/ha with 2.32% pod damage. The effect of 3% Nimbecidine® spray (14.35 q/ha) was comparable to E. agallocha formulation. Unsprayed and ethanol control plots yielded 12.41 and 11.2 q/ha of pods with an average pod damage of 4.7%. E. agallocha formulation was found to be promising for the control of H. armigera, under field conditions. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Integration options for high energy efficiency and improved economics in a wood-to-ethanol process.
Sassner, Per; Zacchi, Guido
2008-04-15
There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41-0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production cost reductions almost independently of each other.
The influence of different cultivation conditions on the metabolome of Fusarium oxysporum.
Panagiotou, Gianni; Christakopoulos, Paul; Olsson, Lisbeth
2005-08-22
The two most widespread pentose sugars found in the biosphere are d-xylose and l-arabinose. They are both potential substrates for ethanol production. The purpose of this study was to better understand the redox constraints imposed to Fusarium oxysporum during utilization of pentoses. In order to increase ethanol yield and decrease by-product formation, nitrate was used as nitrogen source. The use of NADH, the cofactor in denitrification process when using nitrate as a nitrogen source, improved the ethanol yield on xylose to 0.89 mol mol(-1) compared to the ethanol yield achieved using ammonium as nitrogen source 0.44 mol mol(-1). The improved ethanol yield was followed by a 28% decrease in yield of the by-product xylitol. In order to investigate the metabolic pathway of arabinose and the metabolic limitations for the efficient ethanol production from this sugar, the extracellular and intracellular metabolite profiles were determined under aerobic and anaerobic cultivation conditions. The results of this study clearly show difficulties in channelling of glucose-1-P (G1P) to pentose phosphate pathway (PPP) and reduced NADPH regeneration, suggesting that NADPH becomes a limiting factor for arabinose conversion, resulting in excessive acetate production. Variations of the fungus intracellular amino and non-amino acid pool, under different culture conditions, were evaluated using principal component analysis (PCA). PCA projection of the metabolome data collected from F. oxysporum subjected to environmental perturbations succeeded to visualize different physiological states and the conclusions of this study were that the metabolite profile is unique according to: (1) the carbon source and (2) the oxygen supply, and to a lesser extent to the cultivation phase.
Maize proximate composition and physical properties correlations to dry-grind ethanol concentrations
USDA-ARS?s Scientific Manuscript database
Dry grind ethanol plants incur economic losses due to seasonal variations in ethanol yields. One possible cause associated with ethanol yield variability is incoming grain quality. There is little published information on factors causing variation in dry grind ethanol concentrations. The objective o...
Continuous production of ethanol with Zymomonas mobilis growing on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allais, J.J.; Torres, E.F.; Baratti, J.
1987-04-01
Recent work from the authors laboratory has shown that, compared to yeasts, much higher ethanol productivity and yield can be obtained in batch or continuous cultures using the bacterium Zymomonas mobilis grown on fructose media. In batch culture, hydrolyzed Jerusalem artichoke juice with sugar concentrations ranging from 100 to 250 g/L can be converted efficiently to ethanol. The present work describes the conversion of the hydrolyzed juice to ethanol in continuous culture. The extraction and enzymatic hydrolysis of inulin from the tubers of Jerusalem artichoke is also reported.
Chen, Yanli
2011-05-01
This article reviews current co-culture systems for fermenting mixtures of glucose and xylose to ethanol. Thirty-five co-culture systems that ferment either synthetic glucose and xylose mixture or various biomass hydrolysates are examined. Strain combinations, fermentation modes and conditions, and fermentation performance for these co-culture systems are compared and discussed. It is noted that the combination of Pichia stipitis with Saccharomyces cerevisiae or its respiratory-deficient mutant is most commonly used. One of the best results for fermentation of glucose and xylose mixture is achieved by using co-culture of immobilized Zymomonas mobilis and free cells of P. stipitis, giving volumetric ethanol production of 1.277 g/l/h and ethanol yield of 0.49-0.50 g/g. The review discloses that, as a strategy for efficient conversion of glucose and xylose, co-culture fermentation for ethanol production from lignocellulosic biomass can increase ethanol yield and production rate, shorten fermentation time, and reduce process costs, and it is a promising technology although immature.
Solid-phase fermentation and juice expression systems for sweet sorghum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, W.L.; Monroe, G.E.; Caussariel, P.M.
1985-01-01
Two systems to recover fermented juice from variety M 81E sweet sorghum stalks that contained about 11% fermentable sugar were compared. (a) Stalks with leaves and tops removed were chopped and inoculated with 0.2% yeast in a forage harvester, stored under anaerobic conditions for 75 hours in insulated fermentors and pressed in a screw press to recover fermented juice (5-6% ethanol). (b) Mechanically harvested sweet sorghum billets (30 cm length) without leaves or seed heads were shredded and milled in a 3-roll mill; and bagasse was inoculated with 0.2% yeast, fermented for 100 h and pressed to recover fermented juicemore » (4 to 5% ethanol). Potential ethanol yields were 75% of theoretical for the forage harvest system and 78% for the shredder mill system, based on 95% of theoretical ethanol yield from juice expressed during milling and no loss of ethanol during fermentation, handling and pressing in the screw press. 20 references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.V.; Baghy, M.O.
Sweet potato can yield 1000 gallons of ethanol/acre compared with 250-300 gal/acre for corn. Sweet potatoes of normal, relatively high, and very high dry-matter contents were fermented to ethanol. Pectinase was necessary to decrease viscosity before fermentation for economic processing, especially for varieties of normal and relatively high dry-matter contents. Attained yield of ethanol was 90% of theoretical value. After ethanol was distilled, residual stillage was separated by screening and centrifugation into filter cake, centrifuged solids, and stillage solubles. Filter cake and centrifuged solids had crude protein contents (nitrogen x 6.25, dry basis) of 22-32% and 42-57%, respectively, and accountedmore » for 44-85% and 0-17% of total sweet potato nitrogen. Sweet potatoes and their fermented products had 4.3-7.6 g of lysine/16 g of N and are expected to have good nutritional value. This practical method to ferment sweet potato for ethanol and to recover valuable protein-rich byproducts may have commercial potential. (Refs. 19).« less
Xu, Youjie; Zhang, Meng; Roozeboom, Kraig; Wang, Donghai
2018-02-01
Four integrated designs were proposed to boost cellulosic ethanol titer and yield. Results indicated co-fermentation of corn flour with hydrolysate liquor from saccharified corn stover was the best integration scheme and able to boost ethanol titers from 19.9 to 123.2 g/L with biomass loading of 8% and from 36.8 to 130.2 g/L with biomass loadings of 16%, respectively, while meeting the minimal ethanol distillation requirement of 40 g/L and achieving high ethanol yields of above 90%. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass is able to significantly enhance ethanol concentration to reduce energy cost for distillation without sacrificing ethanol yields. This novel method could be extended to any pretreatment of biomass from low to high pH pretreatment as demonstrated in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Djelal, Hayet; Chniti, Sofien; Jemni, Monia; Weill, Amélie; Sayed, Walaa; Amrane, Abdeltif
2017-04-01
Ethanol production from by-products of dates in very high gravity was conducted in batch fermentation using two yeasts, Saccharomyces cerevisiae and Zygosaccharomyces rouxii, as well as a native strain: an osmophilic strain of bacteria which was isolated for the first time from the juice of dates (Phoenix dactylifera L.). The phylogenetic analysis based on the 16S ribosomal RNA and gyrB sequence and physiological analysis indicated that the strain identified belongs to the genus of Bacillus, B. amyloliquefaciens. The ethanol yields produced from the syrup of dates (175 g L -1 and 360 g L -1 of total sugar) were 40.6% and 29.5%, respectively. By comparing the ethanol production by the isolated bacteria to that obtained using Z. rouxii and S. cerevisiae, it can be concluded that B. amyloliquefaciens was suitable for ethanol production from the syrup of dates and can consume the three types of sugar (glucose, fructose, and sucrose). Using Z. rouxii, fructose was preferentially consumed, while glucose was consumed only after fructose depletion. From this, B. amyloliquefaciens was promising for the bioethanol industry. In addition, this latter showed a good tolerance for high sugar concentration (36%), allowing ethanol production in batch fermentation at pH 5.0 and 28 °C in date syrup medium. Promising ethanol yield produced to sugar consumed were observed for the two osmotolerant microorganisms, Z. rouxii and B. amyloliquefaciens, nearly 32-33%, which were further improved when they were cocultivated, leading to an ethanol to glucose yield of 42-43%.
Chen, Yang; Bai, Ye; Li, Dongsheng; Wang, Chao; Xu, Ning; Hu, Yong
2016-01-01
Acetic acid bacteria (AAB) are important microorganisms in the vinegar industry. However, AAB have to tolerate the presence of ethanol and high temperatures, especially in submerged fermentation (SF), which inhibits AAB growth and acid yield. In this study, seven AAB that are tolerant to temperatures above 40 °C and ethanol concentrations above 10% (v/v) were isolated from Chinese vinegar Pei. All the isolated AAB belong to Acetobacter pasteurianus according to 16S rDNA analysis. Among all AAB, AAB4 produced the highest acid yield under high temperature and ethanol test conditions. At 4% ethanol and 30-40 °C temperatures, AAB4 maintained an alcohol-acid transform ratio of more than 90.5 %. High alcohol-acid transform ratio was still maintained even at higher temperatures, namely, 87.2, 77.1, 14.5 and 2.9% at 41, 42, 43 and 44 °C, respectively. At 30 °C and different initial ethanol concentrations (4-10%), the acid yield by AAB4 increased gradually, although the alcohol-acid transform ratio decreased to some extent. However, 46.5, 8.7 and 0.9% ratios were retained at ethanol concentrations of 11, 12 and 13%, respectively. When compared with AS1.41 (an AAB widely used in China) using a 10 L fermentor, AAB4 produced 42.0 g/L acetic acid at 37 °C with 10% ethanol, whereas AS1.41 almost stopped producing acetic acid. In conclusion, these traits suggest that AAB4 is a valuable strain for vinegar production in SF.
Papapetridis, Ioannis; van Dijk, Marlous; Dobbe, Arthur P A; Metz, Benjamin; Pronk, Jack T; van Maris, Antonius J A
2016-04-26
Acetic acid, an inhibitor of sugar fermentation by yeast, is invariably present in lignocellulosic hydrolysates which are used or considered as feedstocks for yeast-based bioethanol production. Saccharomyces cerevisiae strains have been constructed, in which anaerobic reduction of acetic acid to ethanol replaces glycerol formation as a mechanism for reoxidizing NADH formed in biosynthesis. An increase in the amount of acetate that can be reduced to ethanol should further decrease acetic acid concentrations and enable higher ethanol yields in industrial processes based on lignocellulosic feedstocks. The stoichiometric requirement of acetate reduction for NADH implies that increased generation of NADH in cytosolic biosynthetic reactions should enhance acetate consumption. Replacement of the native NADP(+)-dependent 6-phosphogluconate dehydrogenase in S. cerevisiae by a prokaryotic NAD(+)-dependent enzyme resulted in increased cytosolic NADH formation, as demonstrated by a ca. 15% increase in the glycerol yield on glucose in anaerobic cultures. Additional deletion of ALD6, which encodes an NADP(+)-dependent acetaldehyde dehydrogenase, led to a 39% increase in the glycerol yield compared to a non-engineered strain. Subsequent replacement of glycerol formation by an acetate reduction pathway resulted in a 44% increase of acetate consumption per amount of biomass formed, as compared to an engineered, acetate-reducing strain that expressed the native 6-phosphogluconate dehydrogenase and ALD6. Compared to a non-acetate reducing reference strain under the same conditions, this resulted in a ca. 13% increase in the ethanol yield on glucose. The combination of NAD(+)-dependent 6-phosphogluconate dehydrogenase expression and deletion of ALD6 resulted in a marked increase in the amount of acetate that was consumed in these proof-of-principle experiments, and this concept is ready for further testing in industrial strains as well as in hydrolysates. Altering the cofactor specificity of the oxidative branch of the pentose-phosphate pathway in S. cerevisiae can also be used to increase glycerol production in wine fermentation and to improve NADH generation and/or generation of precursors derived from the pentose-phosphate pathway in other industrial applications of this yeast.
Kawa-Rygielska, Joanna; Pietrzak, Witold; Regiec, Piotr; Stencel, Piotr
2013-04-01
The subject of this study was to investigate the feasibility of the concentrate obtained after membrane ultrafiltration of sugar beet thin juice for ethanol production and selection of fermentation conditions (yeast strain and media supplementation). Resulting concentrate was subjected to batch ethanol fermentation using two strains of Saccharomyces cerevisiae (Ethanol Red and Safdistill C-70). The effect of different forms of media supplementation (mineral salts: (NH4)2SO4, K2HPO4, MgCl2; urea+Mg3(PO4)2 and yeast extract) on the fermentation course was also studied. It was stated that sugar beet juice concentrate is suitable for ethanol production yielding, depending on the yeast strain, ca. 85-87 g L(-1) ethanol with ca. 82% practical yield and more than 95% of sugars consumption after 72 h of fermentation. Nutrients enrichment further increased ethanol yield. The best results were obtained for media supplemented with urea+Mg3(PO4)2 yielding 91.16-92.06 g L(-1) ethanol with practical yield ranging 84.78-85.62% and full sugars consumption. Copyright © 2013. Published by Elsevier Ltd.
Engineering Escherichia coli for improved ethanol production from gluconate.
Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang
2013-10-10
We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose. Copyright © 2013 Elsevier B.V. All rights reserved.
Kozak, Barbara U.; van Rossum, Harmen M.; Niemeijer, Matthijs S.; van Dijk, Marlous; Benjamin, Kirsten; Wu, Liang; Daran, Jean-Marc G.; Pronk, Jack T.
2016-01-01
In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald− strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald− A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity—Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields. PMID:26818854
Lignocellulosic ethanol: Technology design and its impact on process efficiency.
Paulova, Leona; Patakova, Petra; Branska, Barbora; Rychtera, Mojmir; Melzoch, Karel
2015-11-01
This review provides current information on the production of ethanol from lignocellulosic biomass, with the main focus on relationships between process design and efficiency, expressed as ethanol concentration, yield and productivity. In spite of unquestionable advantages of lignocellulosic biomass as a feedstock for ethanol production (availability, price, non-competitiveness with food, waste material), many technological bottlenecks hinder its wide industrial application and competitiveness with 1st generation ethanol production. Among the main technological challenges are the recalcitrant structure of the material, and thus the need for extensive pretreatment (usually physico-chemical followed by enzymatic hydrolysis) to yield fermentable sugars, and a relatively low concentration of monosaccharides in the medium that hinder the achievement of ethanol concentrations comparable with those obtained using 1st generation feedstocks (e.g. corn or molasses). The presence of both pentose and hexose sugars in the fermentation broth, the price of cellulolytic enzymes, and the presence of toxic compounds that can inhibit cellulolytic enzymes and microbial producers of ethanol are major issues. In this review, different process configurations of the main technological steps (enzymatic hydrolysis, fermentation of hexose/and or pentose sugars) are discussed and their efficiencies are compared. The main features, benefits and drawbacks of simultaneous saccharification and fermentation (SSF), simultaneous saccharification and fermentation with delayed inoculation (dSSF), consolidated bioprocesses (CBP) combining production of cellulolytic enzymes, hydrolysis of biomass and fermentation into one step, together with an approach combining utilization of both pentose and hexose sugars are discussed and compared with separate hydrolysis and fermentation (SHF) processes. The impact of individual technological steps on final process efficiency is emphasized and the potential for use of immobilized biocatalysts is considered. Copyright © 2014 Elsevier Inc. All rights reserved.
Ensilage and bioconversion of grape pomace into fuel ethanol.
Zheng, Yi; Lee, Christopher; Yu, Chaowei; Cheng, Yu-Shen; Simmons, Christopher W; Zhang, Ruihong; Jenkins, Bryan M; VanderGheynst, Jean S
2012-11-07
Two types of grape pomace were ensiled with eight strains of lactic acid bacteria (LAB). Both fresh grape pomace (FrGP) and fermented grape pomace (FeGP) were preserved through alcoholic fermentation but not malolactic conversion. Water leaching prior to storage was used to reduce water-soluble carbohydrates and ethanol from FrGP and FeGP, respectively, to increase malolactic conversion. Leached FeGP had spoilage after 28 days of ensilage, whereas FrGP was preserved. Dilute acid pretreatment was examined for increasing the conversion of pomace to ethanol via Escherichia coli KO11 fermentation. Dilute acid pretreatment doubled the ethanol yield from FeGP, but it did not improve the ethanol yield from FrGP. The ethanol yields from raw pomace were nearly double the yields from the ensiled pomace. For this reason, the recovery of ethanol produced during winemaking from FeGP and ethanol produced during storage of FrGP is critical for the economical conversion of grape pomace to biofuel.
Nitrogen and tillage management affect corn cellulosic yield, composition, and ethanol potential
USDA-ARS?s Scientific Manuscript database
Corn (Zea mays L.) stover and cobs remaining after grain harvest can serve as a feedstock for cellulosic ethanol production. Field trials were conducted at two locations in Minnesota over three years to determine how corn cellulosic yield composition and ethanol yield are influenced by tillage syste...
USDA-ARS?s Scientific Manuscript database
Water-soluble carbohydrates (WSC) and ethanol-soluble carbohydrates (ESC) of herbage are often quantified by spectrophotometric assays. To determine if quantifying individual sugars from chromatograms could yield results comparable to those obtained by the assays, WSC and ESC were extracted from fr...
Hoyer, Kerstin; Galbe, Mats; Zacchi, Guido
2013-10-08
Saccharification and fermentation of pretreated lignocellulosic materials, such as spruce, should be performed at high solids contents in order to reduce the cost of the produced bioethanol. However, this has been shown to result in reduced ethanol yields or a complete lack of ethanol production. Previous studies have shown inconsistent results when prehydrolysis is performed at a higher temperature prior to the simultaneous saccharification and fermentation (SSF) of steam-pretreated lignocellulosic materials. In some cases, a significant increase in overall ethanol yield was reported, while in others, a slight decrease in ethanol yield was observed. In order to investigate the influence of prehydrolysis on high-solids SSF of steam-pretreated spruce slurry, in the present study, the presence of fibers and inhibitors, degree of fiber degradation and initial fermentable sugar concentration has been studied. SSF of whole steam-pretreated spruce slurry at a solids content of 13.7% water-insoluble solids (WIS) resulted in a very low overall ethanol yield, mostly due to poor fermentation. The yeast was, however, able to ferment the washed slurry and the liquid fraction of the pretreated slurry. Performing prehydrolysis at 48°C for 22 hours prior to SSF of the whole pretreated slurry increased the overall ethanol yield from 3.9 to 62.1%. The initial concentration of fermentable sugars in SSF could not explain the increase in ethanol yield in SSF with prehydrolysis. Although the viscosity of the material did not appear to decrease significantly during prehydrolysis, the degradation of the fibers prior to the addition of the yeast had a positive effect on ethanol yield when using whole steam-pretreated spruce slurry. The results of the present study suggest that the increase in ethanol yield from SSF when performing prehydrolysis is a result of fiber degradation rather than a decrease in viscosity. The increased concentration of fermentable sugars at the beginning of the fermentation phase in SSF following prehydrolysis did not affect the overall ethanol yield in the present study.
The impacts of deacetylation prior to dilute acid pretreatment on the bioethanol process
2012-01-01
Background Dilute acid pretreatment is a promising pretreatment technology for the biochemical production of ethanol from lignocellulosic biomass. During dilute acid pretreatment, xylan depolymerizes to form soluble xylose monomers and oligomers. Because the xylan found in nature is highly acetylated, the formation of xylose monomers requires two steps: 1) cleavage of the xylosidic bonds, and 2) cleavage of covalently bonded acetyl ester groups. Results In this study, we show that the latter may be the rate limiting step for xylose monomer formation. Furthermore, acetyl groups are also found to be a cause of biomass recalcitrance and hydrolyzate toxicity. While the removal of acetyl groups from native corn stover by alkaline de-esterification prior to pretreatment improves overall process yields, the exact impact is highly dependent on the corn stover variety in use. Xylose monomer yields in pretreatment generally increases by greater than 10%. Compared to pretreated corn stover controls, the deacetylated corn stover feedstock is approximately 20% more digestible after pretreatment. Finally, by lowering hydrolyzate toxicity, xylose utilization and ethanol yields are further improved during fermentation by roughly 10% and 7%, respectively. In this study, several varieties of corn stover lots were investigated to test the robustness of the deacetylation-pretreatment-saccharification-fermentation process. Conclusions Deacetylation shows significant improvement on glucose and xylose yields during pretreatment and enzymatic hydrolysis, but it also reduces hydrolyzate toxicity during fermentation, thereby improving ethanol yields and titer. The magnitude of effect is dependent on the selected corn stover variety, with several varieties achieving improvements of greater than 10% xylose yield in pretreatment, 20% glucose yield in low solids enzymatic hydrolysis and 7% overall ethanol yield. PMID:22369467
Ramachandriya, Karthikeyan D; Wilkins, Mark; Pardo-Planas, Oscar; Atiyeh, Hasan K; Dunford, Nurhan T; Hiziroglu, Salim
2014-06-01
This study investigated the effect of two wood zones (sapwood versus heartwood) and size reduction techniques [Crumbles® (Crumbles® is a registered trademark of Forest Concepts, LLC, Auburn, WA, USA) particles versus ground particles] on wood glucan-to-ethanol yield after acid bisulfite pretreatment and simultaneous saccharification and fermentation (SSF) of Eastern redcedar. SSFs were conducted at 8% solids loading (w/w dry basis) using Accellerase® 1500 at a loading of 46FPU/g glucan and Saccharomyces cerevisiae D5A for ethanol fermentation. The size reduction technique had no effect on ethanol yield. However, sapwood glucan-to-ethanol yields were significantly greater than heartwood yields. The highest wood glucan-to-ethanol yield of 187L/dryMg (95% of theoretical) was achieved with sapwood crumbled particles in 240h. Ground sapwood, crumbled heartwood and ground heartwood achieved ethanol yields of 89%, 81% and 80% of theoretical in 240h, respectively. Preliminary mass balances showed 100% glucan recovery with crumbled sapwood and extensive (72%) delignification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Integration options for high energy efficiency and improved economics in a wood-to-ethanol process
Sassner, Per; Zacchi, Guido
2008-01-01
Background There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. Results For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41–0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Conclusion Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production cost reductions almost independently of each other. PMID:18471311
Extractive Fermentation of Sugarcane Juice to Produce High Yield and Productivity of Bioethanol
NASA Astrophysics Data System (ADS)
Rofiqah, U.; Widjaja, T.; Altway, A.; Bramantyo, A.
2017-04-01
Ethanol production by batch fermentation requires a simple process and it is widely used. Batch fermentation produces ethanol with low yield and productivity due to the accumulation of ethanol in which poisons microorganisms in the fermenter. Extractive fermentation technique is applied to solve the microorganism inhibition problem by ethanol. Extractive fermentation technique can produce ethanol with high yield and productivity. In this process raffinate still, contains much sugar because conversion in the fermentation process is not perfect. Thus, to enhance ethanol yield and productivity, recycle system is applied by returning the raffinate from the extraction process to the fermentation process. This raffinate also contains ethanol which would inhibit the performance of microorganisms in producing ethanol during the fermentation process. Therefore, this study aims to find the optimum condition for the amount of solvent to broth ratio (S: B) and recycle to fresh feed ratio (R: F) which enter the fermenter to produce high yield and productivity. This research was carried out by experiment. In the experiment, sugarcane juice was fermented using Zymomonasmobilis mutant. The fermentation broth was extracted using amyl alcohol. The process was integrated with the recycle system by varying the recycle ratio. The highest yield and productivity is 22.3901% and 103.115 g / L.h respectively, obtained in a process that uses recycle to fresh feed ratio (R: F) of 50:50 and solvents to both ratio of 1.
Development of low cost medium for ethanol production from syngas by Clostridium ragsdalei.
Gao, Jie; Atiyeh, Hasan K; Phillips, John R; Wilkins, Mark R; Huhnke, Raymond L
2013-11-01
The development of a low cost medium for ethanol production is critical for process feasibility. Ten media were formulated for Clostridium ragsdalei by reduction, elimination and replacement of expensive nutrients. Cost analysis and effects of medium components on growth and product formation were investigated. Fermentations were performed in 250 mL bottles using syngas (20% CO, 15% CO2, 5% H2 and 60% N2). The standard medium M1 cost is $9.83/L, of which 93% is attributed to morpholinoethane sulfonic acid (MES) buffer. Statistical analysis of the results showed that MES removal did not affect cell growth and ethanol production (P>0.05). Based on cells' elemental composition, a minimal mineral concentration medium M7 was formulated, which provided 29% higher ethanol yield from CO at 3% of the cost compared to medium M1. Ethanol yield from CO in the completely defined medium M9 was 36% higher than while at 5% the cost of medium M1. Copyright © 2013 Elsevier Ltd. All rights reserved.
de Souza, Rafael Barros; dos Santos, Billy Manoel; de Fátima Rodrigues de Souza, Raquel; da Silva, Paula Katharina Nogueira; Lucena, Brígida Thais Luckwu; de Morais, Marcos Antonio
2012-11-01
This work describes the effects of the presence of the yeast Dekkera bruxellensis and the bacterium Lactobacillus vini on the industrial production of ethanol from sugarcane fermentation. Both contaminants were quantified in industrial samples, and their presence was correlated to a decrease in ethanol concentration and accumulation of sugar. Then, laboratory mixed-cell fermentations were carried out to evaluate the effects of these presumed contaminants on the viability of Saccharomyces cerevisiae and the overall ethanol yield. The results showed that high residual sugar seemed the most significant factor arising from the presence of D. bruxellensis in the industrial process when compared to pure S. cerevisiae cultures. Moreover, when L. vini was added to S. cerevisiae cultures it did not appear to affect the yeast cells by any kind of antagonistic effect under stable fermentations. In addition, when L. vini was added to D. bruxellensis cultures, it showed signs of being able to stimulate the fermentative activity of the yeast cells in a way that led to an increase in the ethanol yield.
2014-01-01
Background Dry dilute acid pretreatment at extremely high solids loading of lignocellulose materials demonstrated promising advantages of no waste water generation, less sugar loss, and low steam consumption while maintaining high hydrolysis yield. However, the routine pretreatment reactor without mixing apparatus was found not suitable for dry pretreatment operation because of poor mixing and mass transfer. In this study, helically agitated mixing was introduced into the dry dilute acid pretreatment of corn stover and its effect on pretreatment efficiency, inhibitor generation, sugar production, and bioconversion efficiency through simultaneous saccharification and ethanol fermentation (SSF) were evaluated. Results The overall cellulose conversion taking account of cellulose loss in pretreatment was used to evaluate the efficiency of pretreatment. The two-phase computational fluid dynamics (CFD) model on dry pretreatment was established and applied to analyze the mixing mechanism. The results showed that the pretreatment efficiency was significantly improved and the inhibitor generation was reduced by the helically agitated mixing, compared to the dry pretreatment without mixing: the ethanol titer and yield from cellulose in the SSF reached 56.20 g/L and 69.43% at the 30% solids loading and 15 FPU/DM cellulase dosage, respectively, corresponding to a 26.5% increase in ethanol titer and 17.2% increase in ethanol yield at the same fermentation conditions. Conclusions The advantage of helically agitated mixing may provide a prototype of dry dilute acid pretreatment processing for future commercial-scale production of cellulosic ethanol. PMID:24387051
Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production.
Groves, Stephanie; Liu, Jifei; Shonnard, David; Bagley, Susan
2013-07-01
Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.
Granular starch hydrolysis for fuel ethanol production
NASA Astrophysics Data System (ADS)
Wang, Ping
Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.
Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru
2016-02-01
Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dharma Putra, Meilana; Abasaeed, Ahmed E.; Zeinelabdeen, Mohamed A.; Gaily, Mohamed H.; Sulieman, Ashraf K.
2014-04-01
About half of worldwide production of dates is unconsumed. Dates contain over 75 % reduced sugars (mostly glucose and fructose with nearly equal amount). Compared to the commercial Saccharomyces cerevisiae wild strain, the strains ATCC 36858 and 36859 could produce high concentration fructose syrups. The fructose fractions obtained were 95.9 and 97.4% for ATCC 36858 and 86.5 and 91.4% for ATCC 36859 at 30 and 33°C, respectively. Fructose yields higher than 90% were obtained using ATCC 36858 compared to those obtained using ATCC 36859 which were 87.3 and 66.1% at 30 and 33°C, respectively. The ethanol yield using ATCC 36858 was higher than that using ATCC 36859 by 16 and 9% at 30 and 33°C, respectively. Through this finding, the production of fructose and ethanol from date extract is a promising process. Moreover, the fructose fractions obtained here (about 90%) are much higher than those obtained with the commercial process, i.e. 55 % fructose syrups.
Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi
2011-03-07
The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49, 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol production with a yield of 0.44 g/g. T. hirsuta was capable of directly fermenting starch, wheat bran and rice straw to ethanol without acid or enzymatic hydrolysis. Maximum ethanol concentrations of 9.1, 4.3 and 3.0 g/l, corresponding to 89.2%, 78.8% and 57.4% of the theoretical yield, were obtained when the fungus was grown in a medium containing 20 g/l starch, wheat bran or rice straw, respectively. The fermentation of rice straw pretreated with ball milling led to a small improvement in the ethanol yield: 3.4 g ethanol/20 g ball-milled rice straw. As T. hirsuta is an efficient microorganism capable of hydrolyzing biomass to fermentable sugars and directly converting them to ethanol, it may represent a suitable microorganism in consolidated bioprocessing applications. Copyright © 2010 Elsevier Inc. All rights reserved.
Jessen, Jan Eric; Orlygsson, Johann
2012-01-01
Thermophilic bacteria have gained increased attention as candidates for bioethanol production from lignocellulosic biomass. This study investigated ethanol production by Thermoanaerobacter strain J1 from hydrolysates made from lignocellulosic biomass in batch cultures. The effect of increased initial glucose concentration and the partial pressure of hydrogen on end product formation were examined. The strain showed a broad substrate spectrum, and high ethanol yields were observed on glucose (1.70 mol/mol) and xylose (1.25 mol/mol). Ethanol yields were, however, dramatically lowered by adding thiosulfate or by cocultivating strain J1 with a hydrogenotrophic methanogen with acetate becoming the major end product. Ethanol production from 4.5 g/L of lignocellulosic biomass hydrolysates (grass, hemp stem, wheat straw, newspaper, and cellulose) pretreated with acid or alkali and the enzymes Celluclast and Novozymes 188 was investigated. The highest ethanol yields were obtained on cellulose (7.5 mM·g(-1)) but the lowest on straw (0.8 mM·g(-1)). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The largest increase was on straw hydrolysates where ethanol production increased from 0.8 mM·g(-1) to 3.3 mM·g(-1) using alkali-pretreated biomass. The highest ethanol yields on lignocellulosic hydrolysates were observed with hemp hydrolysates pretreated with acid, 4.2 mM·g(-1).
Kamsuwan, Tanutporn; Praserthdam, Piyasan; Jongsomjit, Bunjerd
2017-01-01
In the present study, the catalytic dehydration of ethanol over H-beta zeolite (HBZ) catalyst with ruthenium (Ru-HBZ) and platinum (Pt-HBZ) modification was investigated. Upon the reaction temperature between 200 and 400°C, it revealed that ethanol conversion and ethylene selectivity increased with increasing temperature for both Ru and Pt modification. At lower temperature (200 to 250°C), diethyl ether (DEE) was the major product. It was found that Ru and Pt modification on HBZ catalyst can result in increased DEE yield at low reaction temperature due to increased ethanol conversion without a significant change in DEE selectivity. By comparing the DEE yield of all catalysts in this study, the Ru-HBZ catalyst apparently exhibited the highest DEE yield (ca. 47%) at 250°C. However, at temperature from 350 to 400°C, the effect of Ru and Pt was less pronounced on ethylene yield. With various characterization techniques, the effects of Ru and Pt modification on HBZ catalyst were elucidated. It revealed that Ru and Pt were present in the highly dispersed forms and well distributed in the catalyst granules. It appeared that the weak acid sites measured by NH 3 temperature-programmed desorption technique also decreased with Ru and Pt promotion. Thus, the increased DEE yields with the Ru and Pt modification can be attributed to the presence of optimal weak acid sites leading to increased intrinsic activity of the catalysts. It can be concluded that the modification of Ru and Pt on HBZ catalyst can improve the DEE yields by ca. 10%.
Farobie, Obie; Matsumura, Yukihiko
2015-09-01
In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fermentation of xylose into ethanol by a new fungus strain Pestalotiopsis sp. XE-1.
Pang, Zong-wen; Liang, Jing-juan; Huang, Ri-bo
2011-08-01
A new fungus, Pestalotiopsis sp. XE-1, which produced ethanol from xylose with yield of 0.47 g ethanol/g of consumed xylose was isolated. It also produced ethanol from arabinose, glucose, fructose, mannose, galactose, cellobiose, maltose, and sucrose with yields of 0.38, 0.47, 0.45, 0.46, 0.31, 0.25, 0.31, and 0.34 g ethanol/g of sugar consumed, respectively. It produced maximum ethanol from xylose at pH 6.5, 30°C under a semi-aerobic condition. Acetic acid produced in xylose fermenting process inhibited ethanol production of XE-1. The ethanol yield in the pH-uncontrolled batch fermentation was about 27% lower than that in the pH-controlled one. The ethanol tolerance of XE-1 was higher than most xylose-fermenting, ethanol-producing microbes, but lower than Saccharomyces cerevisiae and Hansenula polymorpha. XE-1 showed tolerance to high concentration of xylose, and was able to grow and produce ethanol even when it was cultivated in 97.71 g/l xylose.
Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol
Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray; ...
2017-08-08
Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less
Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akalin, Mehmet K.; Das, Parthapratim; Alper, Koray
Lignocellulosic biomass was decomposed to produce crude bio-oil in water and ethanol using hydrated cerium (III) chloride as a catalyst. Use of the catalyst affected not only the yield of crude bio-oil but also the composition of bio-crude for both water and ethanol. The catalyst had a detrimental effect on the crude bio-oil yields obtained from water processing for all runs. However, in ethanol, use of the catalyst improved the crude bio-oil yields in all tested runs. The solid residue yields decreased with the catalyst use in the runs with water but increased in all studies with ethanol, except thosemore » with the shortest tested residence time of 10 min. The highest crude bio-oil yield of 48.2 wt% was obtained at 300 °C using 5 mmol of hydrated cerium (III) chloride at a residence time of 90 min in ethanol. The heating values of the crude bio-oils increased with the catalyst use for both water and ethanol processing. In conclusion, the highest heating value of 33.3 MJ kg –1 was obtained with hydrated cerium (III) chloride at 300 °C and a residence time of 120 min.« less
Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.
Zhaoxin, L; Fujimura, T
2000-12-01
The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.
Hector, Ronald E; Dien, Bruce S; Cotta, Michael A; Qureshi, Nasib
2011-09-01
Saccharomyces' physiology and fermentation-related properties vary broadly among industrial strains used to ferment glucose. How genetic background affects xylose metabolism in recombinant Saccharomyces strains has not been adequately explored. In this study, six industrial strains of varied genetic background were engineered to ferment xylose by stable integration of the xylose reductase, xylitol dehydrogenase, and xylulokinase genes. Aerobic growth rates on xylose were 0.04-0.17 h(-1). Fermentation of xylose and glucose/xylose mixtures also showed a wide range of performance between strains. During xylose fermentation, xylose consumption rates were 0.17-0.31 g/l/h, with ethanol yields 0.18-0.27 g/g. Yields of ethanol and the metabolite xylitol were positively correlated, indicating that all of the strains had downstream limitations to xylose metabolism. The better-performing engineered and parental strains were compared for conversion of alkaline pretreated switchgrass to ethanol. The engineered strains produced 13-17% more ethanol than the parental control strains because of their ability to ferment xylose.
Separation and characterization of lignin from bio-ethanol production residue.
Guo, Guowan; Li, Shujun; Wang, Lu; Ren, Shixue; Fang, Guizhen
2013-05-01
In order to develop an adequate method to separate lignin from bio-ethanol production residue, solvent extraction was conducted by using benzyl alcohol, dioxane and ethanol. Compared to the conventional alkali-solution and acid-isolation method, benzyl alcohol and dioxane extraction could reach higher lignin yield of 71.55% and 74.14% respectively. FTIR and XRD analysis results indicate that sodium hydroxide solution dissolved most of the lignin in the raw material. However, the low lignin yield by this method may be attributed to the products loss during the complex separation process. GPC and (1)H NMR results revealed that the dioxane-lignin had closer molecular weight with alkali-lignin, lower S/G ratio (0.22) and higher OHPh/OHAl ratio (0.45) with respect to benzyl alcohol-lignin. The results divulge that the lignin products separated from bio-ethanol production residue by dioxane extraction had fairly potential application with better chemical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Huitrón, Carlos; Pérez, Rosalba; Gutiérrez, Luís; Lappe, Patricia; Petrosyan, Pavel; Villegas, Jesús; Aguilar, Cecilia; Rocha-Zavaleta, Leticia; Blancas, Abel
2013-01-01
Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme(®) (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.
Johnston, David J; Moreau, Robert A
2017-02-01
The aim of this study was to determine if the compositional difference between grain sorghum and corn impact ethanol yields and coproduct value when grain sorghum is incorporated into existing corn ethanol facilities. Fermentation properties of corn and grain sorghum were compared utilizing two fermentation systems (conventional thermal starch liquefaction and native starch hydrolysis). Fermentation results indicated that protease addition influenced the fermentation rate and yield for grain sorghum, improving yields by 1-2% over non-protease treated fermentations. Distillers Dried Grains with Solubles produced from sorghum had a statistically significant higher yields and significantly higher protein content relative to corn. Lipid analysis of the Distillers Dried Grains with Solubles showed statistically significant differences between corn and sorghum in triacylglycerol, diacylglycerol and free fatty acid levels. Published by Elsevier Ltd.
Li, Tingting; Yang, Yan; Liu, Yanfang; Zhou, Shuai; Yan, Meng Qiu; Wu, Di; Zhang, Jingsong; Tang, Chuanhong
2015-11-01
Nine polysaccharide fractions were obtained from the fruiting bodies, submerged mycelia, and solid state fermented products of Phellinus baumii using different concentrations of ethanol precipitation. The chemical characteristics and in vitro immunological activities of the nine polysaccharide fractions were compared and studied. Results indicated that the fractions precipitated with 50% ethanol had higher yields of polysaccharides and submerged mycelia contributed to high extraction yields of polysaccharides and possessed higher polysaccharide contents. HPSEC-MALLS-RI analysis showed that the molecular weight (Mw) of polysaccharide fractions from these three materials decreased with the increasing of precipitated ethanol concentration. The Mw of fruiting body polysaccharide fractions ranged from 1.98×10(4)Da to 1.89×10(6)Da. Large-molecular-weight polysaccharides (from 2.11×10(6)Da to 2.01×10(7)Da) were found in submerged mycelia. Some lower-molecular-weight polysaccharide components were found in solid fermented products. Different culture methods contributed to significant differences in monosaccharide components and molar ratios. The 50% ethanol precipitated fractions exhibited more complexity on monosaccharide compositions comparing with fractions precipitated with 30% and 70% ethanol. Polysaccharide fractions derived from submerged mycelia exhibited higher macrophages stimulation activities. Submerged culture was found to be a suitable method to prepare active polysaccharides because of its short culture span and reasonable cost. Copyright © 2015 Elsevier B.V. All rights reserved.
Cheruiyot, Erick Kimutai; Othira, Jacktone Odongo; Njuguna, Virginia Wanjiku; Macharia, Joseph Kinyoro; Owuoche, James; Oyier, Moses; Kange, Alex Machio
2016-01-01
The genotype and environment interaction influences the selection criteria of sorghum (Sorghum bicolor) genotypes. Eight sweet sorghum genotypes were evaluated at five different locations in two growing seasons of 2014. The aim was to determine the interaction between genotype and environment on cane, juice, and ethanol yield and to identify best genotypes for bioethanol production in Kenya. The experiments were conducted in a randomized complete block design replicated three times. Sorghum canes were harvested at hard dough stage of grain development and passed through rollers to obtain juice that was then fermented to obtain ethanol. Cane, juice, and ethanol yield was analyzed using the additive main effect and multiplication interaction model (AMMI) and genotype plus genotype by environment (GGE) biplot. The combined analysis of variance of cane and juice yield of sorghum genotypes showed that sweet sorghum genotypes were significantly (P < 0.05) affected by environments (E), genotypes (G) and genotype by environment interaction (GEI). GGE biplot showed high yielding genotypes EUSS10, ACFC003/12, SS14, and EUSS11 for cane yield; EUSS10, EUSS11, and SS14 for juice yield; and EUSS10, SS04, SS14, and ACFC003/12 for ethanol yield. Genotype SS14 showed high general adaptability for cane, juice, and ethanol yield. PMID:27777968
Rono, Justice Kipkorir; Cheruiyot, Erick Kimutai; Othira, Jacktone Odongo; Njuguna, Virginia Wanjiku; Macharia, Joseph Kinyoro; Owuoche, James; Oyier, Moses; Kange, Alex Machio
2016-01-01
The genotype and environment interaction influences the selection criteria of sorghum ( Sorghum bicolor ) genotypes. Eight sweet sorghum genotypes were evaluated at five different locations in two growing seasons of 2014. The aim was to determine the interaction between genotype and environment on cane, juice, and ethanol yield and to identify best genotypes for bioethanol production in Kenya. The experiments were conducted in a randomized complete block design replicated three times. Sorghum canes were harvested at hard dough stage of grain development and passed through rollers to obtain juice that was then fermented to obtain ethanol. Cane, juice, and ethanol yield was analyzed using the additive main effect and multiplication interaction model (AMMI) and genotype plus genotype by environment (GGE) biplot. The combined analysis of variance of cane and juice yield of sorghum genotypes showed that sweet sorghum genotypes were significantly ( P < 0.05) affected by environments (E), genotypes (G) and genotype by environment interaction (GEI). GGE biplot showed high yielding genotypes EUSS10, ACFC003/12, SS14, and EUSS11 for cane yield; EUSS10, EUSS11, and SS14 for juice yield; and EUSS10, SS04, SS14, and ACFC003/12 for ethanol yield. Genotype SS14 showed high general adaptability for cane, juice, and ethanol yield.
Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily
2010-07-01
Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.
Liu, Tianzhe; Wang, Pinmei; Zhao, Wenpeng; Zhu, Muyuan; Jiang, Xinhang; Zhao, Yuhua; Wu, Xuechang
2012-01-01
Very high gravity (VHG) fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition) and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2) with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes. PMID:22363590
NASA Astrophysics Data System (ADS)
Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien
2018-04-01
Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Ranjita; Prabhu, Sandeep; Lynd, Lee R
2014-01-01
Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previouslymore » developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA) ldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA) ldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.« less
Edwards, Meredith C; Henriksen, Emily Decrescenzo; Yomano, Lorraine P; Gardner, Brian C; Sharma, Lekh N; Ingram, Lonnie O; Doran Peterson, Joy
2011-08-01
Ethanologenic Escherichia coli strain KO11 was sequentially engineered to contain the Klebsiella oxytoca cellobiose phosphotransferase genes (casAB) as well as a pectate lyase (pelE) from Erwinia chrysanthemi, yielding strains LY40A (casAB) and JP07 (casAB pelE), respectively. To obtain an effective secretion of PelE, the Sec-dependent pathway out genes from E. chrysanthemi were provided on a cosmid to strain JP07 to construct strain JP07C. Finally, oligogalacturonide lyase (ogl) from E. chrysanthemi was added to produce strain JP08C. E. coli strains LY40A, JP07, JP07C, and JP08C possessed significant cellobiase activity in cell lysates, while only strains JP07C and JP08C demonstrated extracellular pectate lyase activity. Fermentations conducted by using a mixture of pure sugars representative of the composition of sugar beet pulp (SBP) showed that strains LY40A, JP07, JP07C, and JP08C were able to ferment cellobiose, resulting in increased ethanol production from 15 to 45% in comparison to that of KO11. Fermentations with SBP at very low fungal enzyme loads during saccharification revealed significantly higher levels of ethanol production for LY40A, JP07C, and JP08C than for KO11. JP07C ethanol yields were not considerably higher than those of LY40A; however, oligogalacturonide polymerization studies showed an increased breakdown of biomass to small-chain (degree of polymerization, ≤6) oligogalacturonides. JP08C achieved a further breakdown of polygalacturonate to monomeric sugars, resulting in a 164% increase in ethanol yields compared to those of KO11. The addition of commercial pectin methylesterase (PME) further increased JP08C ethanol production compared to that of LY40A by demethylating the pectin for enzymatic attack by pectin-degrading enzymes.
Edwards, Meredith C.; Henriksen, Emily DeCrescenzo; Yomano, Lorraine P.; Gardner, Brian C.; Sharma, Lekh N.; Ingram, Lonnie O.; Doran Peterson, Joy
2011-01-01
Ethanologenic Escherichia coli strain KO11 was sequentially engineered to contain the Klebsiella oxytoca cellobiose phosphotransferase genes (casAB) as well as a pectate lyase (pelE) from Erwinia chrysanthemi, yielding strains LY40A (casAB) and JP07 (casAB pelE), respectively. To obtain an effective secretion of PelE, the Sec-dependent pathway out genes from E. chrysanthemi were provided on a cosmid to strain JP07 to construct strain JP07C. Finally, oligogalacturonide lyase (ogl) from E. chrysanthemi was added to produce strain JP08C. E. coli strains LY40A, JP07, JP07C, and JP08C possessed significant cellobiase activity in cell lysates, while only strains JP07C and JP08C demonstrated extracellular pectate lyase activity. Fermentations conducted by using a mixture of pure sugars representative of the composition of sugar beet pulp (SBP) showed that strains LY40A, JP07, JP07C, and JP08C were able to ferment cellobiose, resulting in increased ethanol production from 15 to 45% in comparison to that of KO11. Fermentations with SBP at very low fungal enzyme loads during saccharification revealed significantly higher levels of ethanol production for LY40A, JP07C, and JP08C than for KO11. JP07C ethanol yields were not considerably higher than those of LY40A; however, oligogalacturonide polymerization studies showed an increased breakdown of biomass to small-chain (degree of polymerization, ≤6) oligogalacturonides. JP08C achieved a further breakdown of polygalacturonate to monomeric sugars, resulting in a 164% increase in ethanol yields compared to those of KO11. The addition of commercial pectin methylesterase (PME) further increased JP08C ethanol production compared to that of LY40A by demethylating the pectin for enzymatic attack by pectin-degrading enzymes. PMID:21666025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaritis, A.; Bajpai, P.
1982-04-01
This article examines the potential of Jerusalem artichoke as a source for ethanol and single-cell protein SCP. In addition, experimental results are presented on batch fermentation kinetics employing two strains of Kluyveromyces marxianus and one strain of Saccharomyces rosei grown on the extract derived from the tubers of Jerusalem artichoke. Of the three cultures examined, Kluyveromyces marxianus UCD (FST) 55-82 was found to be the best producer of ethanol grown in a simple medium at 35 degrees C. The ethanol production was found to be growth-associated having a mu max = 0.41/h and the ethanol and biomass yields were determinedmore » to be Y p/s = 0.45 (88% of the theoretical) and Y x/s = 0.04 with 92% of the original sugars utilized. On the basis of carbohydrate yields of Jerusalem artichoke reported in the literature and these batch kinetic studies with Kluyveromyces marxianus, the calculated ethanol yields were found to range from 1400 kg ethanol/acre/yr to a maximum of 2700 kg ethanol/acre/yr. The SCP yields for Kluyveromyces marxianus were calculated to range between 130 to 250 kg dry wt cell/acre/yr. The potential for developing an integrated process to produce ethanol and SCP is also discussed. (Refs. 27).« less
Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds.
Rocha, Maria Valderez Ponte; de Matos, Leonardo José Brandão Lima; Lima, Larissa Pinto de; Figueiredo, Pablo Marciano da Silva; Lucena, Izabelly Larissa; Fernandes, Fabiano André Narciso; Gonçalves, Luciana Rocha Barros
2014-09-01
This study evaluates the production of biodiesel and ethanol from spent coffee grounds (SCG). The extraction of oil from SCG, biodiesel production and ethanol production processes were studied. The liquid-to-solid ratio and temperature were evaluated in the ultrasound-assisted extraction of the oil from SCG. The highest yield (12%) was obtained using 4 mL g(-1) liquid-to-solid ratio at 60°C for 45 min. The process to produce biodiesel showed a yield of 97% into fatty acid methyl esters (FAME). The highest glucose yield (192 mg g SCG(-1)) was obtained by hydrolysis with 0.4 mol L(-1) sulfuric acid at 121°C for 15 min. The hydrolysate was used as fermentation medium for ethanol production by Saccharomyces cerevisiae obtaining 19.0 g L(-1) at 10h of process of ethanol with a yield of ethanol and productivity of 0.50 g g(-1) and 1.90 g L(-1)h(-1), respectively. Spent coffee grounds were considered a potential feedstock for biodiesel and ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Beato, Felipe B; Bergdahl, Basti; Rosa, Carlos A; Forster, Jochen; Gombert, Andreas K
2016-11-01
Fourteen indigenous Saccharomyces cerevisiae strains isolated from the barks of three tree species located in the Atlantic Rain Forest and Cerrado biomes in Brazil were genetically and physiologically compared to laboratory strains and to strains from the Brazilian fuel ethanol industry. Although no clear correlation could be found either between phenotype and isolation spot or between phenotype and genomic lineage, a set of indigenous strains with superior industrially relevant traits over commonly known industrial and laboratory strains was identified: strain UFMG-CM-Y257 has a very high specific growth rate on sucrose (0.57 ± 0.02 h -1 ), high ethanol yield (1.65 ± 0.02 mol ethanol mol hexose equivalent -1 ), high ethanol productivity (0.19 ± 0.00 mol L -1 h -1 ), high tolerance to acetic acid (10 g L -1 ) and to high temperature (40°C). Strain UFMG-CM-Y260 displayed high ethanol yield (1.67 ± 0.13 mol ethanol mol hexose equivalent -1 ), high tolerance to ethanol and to low pH, a trait which is important for non-aseptic industrial processes. Strain UFMG-CM-Y267 showed high tolerance to acetic acid and to high temperature (40°C), which is of particular interest to second generation industrial processes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ye, Guangying; Zeng, Defu; Zhang, Shuaishuai; Fan, Meishan; Zhang, Hongdan; Xie, Jun
2018-06-01
Various mixing ratios of alkali pretreated sugarcane bagasse and starch-rich waste Dioscorea composita hemls extracted residue (DER) were evaluated via simultaneous saccharification and fermentation (SSF) with 12% (w/w) solid loading, and the mixture ratio of 1:1 achieved the highest ethanol concentration and yield. When the solid loading was increased from 12% to 32%, the ethanol concentration was increased to 72.04 g/L, whereas the ethanol yield was reduced from 84.40% to 73.71%. With batch feeding and the addition of 0.1% (w/v) Tween 80, the final ethanol concentration and yield of SSF at 34% loading were 82.83 g/L and 77.22%, respectively. Due to the integration with existing starch-based ethanol industry, the co-fermentation is expected to be a competitive alternative form for cellulosic ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025.
Rocha, Maria Valderez Ponte; Rodrigues, Tigressa Helena Soares; Melo, Vania M M; Gonçalves, Luciana R B; de Macedo, Gorete Ribeiro
2011-08-01
The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated in this work. This strain was preliminarily cultivated in a synthetic medium containing glucose and xylose and was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pretreatment and used as fermentation media. This hydrolysate is rich in glucose, xylose, and arabinose and contains traces of formic acid and acetic acid. In batch fermentations of CABH at pH 4.5, the strain produced only ethanol. The effects of temperature on the kinetic parameters of ethanol fermentation by K. marxianus CE025 using CABH were also evaluated. Maximum specific growth rate (μ(max)), overall yields of ethanol based on glucose consumption [Formula: see text] and based on glucose + xylose consumption (Y ( P/S )), overall yield of ethanol based on biomass (Y ( P/X )), and ethanol productivity (P (E)) were determined as a function of temperature. Best results of ethanol production were achieved at 30°C, which is also quite close to the optimum temperature for the formation of biomass. The process yielded 12.36 ± 0.06 g l(-1) of ethanol with a volumetric production rate of 0.257 ± 0.002 g l(-1) h(-1) and an ethanol yield of 0.417 ± 0.003 g g(-1) glucose.
Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin
2016-05-01
Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
Jojima, Toru; Noburyu, Ryoji; Sasaki, Miho; Tajima, Takahisa; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki
2015-02-01
Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.
NASA Astrophysics Data System (ADS)
Lee, K. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.
2017-10-01
In this study, the work was carried out to investigate the effects of ethanol proportions on the stabilities and physicochemical characteristics of tri-fuel (Diesel-Biodiesel-Ethanol). For the first time, tri-fuel emulsions and blended were compared side by side. The experiment was done with composition having 5%, 10%, 15%, 20% and 25 % of ethanol with fixed 10% of biodiesel from palm oil origin on a volume basis into diesel. The results indicated that the phase stabilities of the emulsified fuels were higher compared to the blended fuels. In addition, tri-fuel composition with higher proportion of ethanol were found unstable with high tendency to form layer separation. It was found that tri-fuel emulsion with 5% ethanol content (D85B10E5) was of the best in stability with little separation. Furthermore, tri-fuel with lowest ethanol proportion indicated convincing physicochemical characteristics compared to others. Physicochemical characteristics of tri-fuel blending yield almost similar results to tri-fuel emulsion but degrading as more proportion ethanol content added. Emulsion category had cloudy look but on temporarily basis. Under the microscope, tri-fuel emulsion and blending droplet were similar for its active moving about micro-bubble but distinct in term of detection of collision, average disperse micro-bubble size, the spread and organization of the microstructure.
Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.
The redox-sensing protein Rex modulates ethanol production in Thermoanaerobacterium saccharolyticum
Lanahan, Anthony A.; Lynd, Lee R.
2018-01-01
Thermoanaerobacterium saccharolyticum is a thermophilic anaerobe that has been engineered to produce high amounts of ethanol, reaching ~90% theoretical yield at a titer of 70 g/L. Here we report the physiological changes that occur upon deleting the redox-sensing transcriptional regulator Rex in wild type T. saccharolyticum: a single deletion of rex resulted in a two-fold increase in ethanol yield (from 40% to 91% theoretical yield), but the resulting strains grew only about a third as fast as the wild type strain. Deletion of the rex gene also had the effect of increasing expression of alcohol dehydrogenase genes, adhE and adhA. After several serial transfers, the ethanol yield decreased from an average of 91% to 55%, and the growth rates had increased. We performed whole-genome resequencing to identify secondary mutations in the Δrex strains adapted for faster growth. In several cases, secondary mutations had appeared in the adhE gene. Furthermore, in these strains the NADH-linked alcohol dehydrogenase activity was greatly reduced. Complementation studies were done to reintroduce rex into the Δrex strains: reintroducing rex decreased ethanol yield to below wild type levels in the Δrex strain without adhE mutations, but did not change the ethanol yield in the Δrex strain where an adhE mutation occurred. PMID:29621294
Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast.
Wang, F Z; Xie, T; Hui, M
2011-01-01
Using the recombinant flocculating Angel yeast F6, long-term repeated batch fermentation for ethanol production was performed and a high volumetric productivity resulted from half cells not washed and the optimum opportunity of residual glucose 20 g l(-1) of last medium. The obtained highest productivity was 2.07 g l-(1) h(-1), which was improved by 75.4% compared with that of 1.18 g l(-1) h(-1) in the first batch fermentation. The ethanol concentration reached 8.4% corresponding to the yield of 0.46 g g(-1). These results will contribute greatly to the industrial production of fuel ethanol using the commercial method with the flocculating yeast.
Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna; Angelidaki, Irini
2018-05-29
The aim of this study was to develop an integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production process from rapeseed straw after dilute-acid pretreatment. Rapeseed straw pretreatment at 20% (w/v) solid loading and subsequent hydrolysis with Cellic® CTec2 resulted in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10% compared to the process with Cellic® CTec2. Significantly higher amounts of succinic acid were produced after fermentation of pretreatment liquor (48 kg/Mg of rapeseed straw, succinic acid yield: 60%) compared to fermentation of xylose-rich residue after ethanol production (35-37 kg/Mg of rapeseed straw, succinic yield: 68-71%). Results obtained in this study clearly proved the biorefinery potential of rapeseed straw. Copyright © 2018 Elsevier Ltd. All rights reserved.
Almarsdottir, Arnheidur Ran; Sigurbjornsdottir, Margret Audur; Orlygsson, Johann
2012-03-01
The ethanol production capacity from sugars and lignocellulosic biomass hydrolysates (HL) by Thermoanaerobacterium strain AK(17) was studied in batch cultures. The strain converts various carbohydrates to, acetate, ethanol, hydrogen, and carbon dioxide. Ethanol yields on glucose and xylose were 1.5 and 1.1 mol/mol sugars, respectively. Increased initial glucose concentration inhibited glucose degradation and end product formation leveled off at 30 mM concentrations. Ethanol production from 5 g L(-1) of complex biomass HL (grass, hemp, wheat straw, newspaper, and cellulose) (Whatman paper) pretreated with acid (0.50% H(2) SO(4)), base (0.50% NaOH), and without acid/base (control) and the enzymes Celluclast and Novozyme 188 (0.1 mL g(-1) dw; 70 and 25 U g(-1) of Celluclast and Novozyme 188, respectively) was investigated. Highest ethanol yields (43.0 mM) were obtained on cellulose but lowest on hemp leafs (3.6 mM). Chemical pretreatment increased ethanol yields substantially from lignocellulosic biomass but not from cellulose. The influence of various factors (HL, enzyme, and acid/alkaline concentrations) on end-product formation from 5 g L(-1) of grass and cellulose was further studied to optimize ethanol production. Highest ethanol yields (5.5 and 8.6 mM ethanol g(-1) grass and cellulose, respectively) were obtained at very low HL concentrations (2.5 g L(-1)); with 0.25% acid/alkali (v/v) and 0.1 mL g(-1) enzyme concentrations. Inhibitory effects of furfural and hydroxymethylfurfural during glucose fermentation, revealed a total inhibition in end product formation from glucose at 4 and 6 g L(-1), respectively. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akinosho, Hannah; Dumitrache, Alexandru; Natzke, Jace
The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons’ stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared in this paper to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons’ staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low densitymore » P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (~25%), while GW-9914 had a low lignin content (~20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Finally, therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.« less
Akinosho, Hannah; Dumitrache, Alexandru; Natzke, Jace; ...
2017-04-26
The bacterium Clostridium thermocellum offers a distinct and integrated approach to ethanol production through consolidated bioprocessing (CBP). The Simons’ stain technique, which assays the accessibility of lignocellulosic biomass, has been traditionally applied to fungal cellulase systems; however, its application to CBP has not been fully explored. For this reason, the structural properties of eight Populus trichocarpa with either high or low biomass densities were compared in this paper to determine bioconversion differences during separate hydrolysis and fermentation (SHF) and CBP with C. thermocellum. Simons’ staining generally identifies low density poplar as more accessible than high density poplar. Additionally, low densitymore » P. trichocarpa generally contained less Klason lignin than high density poplar. SHF and CBP treatments consistently identified BESC-7 (high density, low accessibility, low surface roughness) as a low ethanol yielding biomass and GW-9914 (low density, high accessibility, high surface roughness) as a high ethanol yielding biomass. Upon further investigation, BESC-7 also contained a high Klason lignin content (~25%), while GW-9914 had a low lignin content (~20%). Cellulose degree of polymerization (DP) measurements exhibited a weak linear correlation with accessibility (r 2 = 0.17). Finally, therefore, the ethanol yields were correlated with accessibility and lignin content extremes but not cellulose DP.« less
Quevedo-Hidalgo, Balkys; Monsalve-Marín, Felipe; Narváez-Rincón, Paulo César; Pedroza-Rodríguez, Aura Marina; Velásquez-Lozano, Mario Enrique
2013-03-01
Ethanol production derived from Saccharomyces cerevisiae fermentation of a hydrolysate from floriculture waste degradation was studied. The hydrolysate was produced from Chrysanthemum (Dendranthema grandiflora) waste degradation by Pleurotus ostreatus and characterized to determine the presence of compounds that may inhibit fermentation. The products of hydrolysis confirmed by HPLC were cellobiose, glucose, xylose and mannose. The hydrolysate was fermented by S. cerevisiae, and concentrations of biomass, ethanol, and glucose were determined as a function of time. Results were compared to YGC modified medium (yeast extract, glucose and chloramphenicol) fermentation. Ethanol yield was 0.45 g g(-1), 88 % of the maximal theoretical value. Crysanthemum waste hydrolysate was suitable for ethanol production, containing glucose and mannose with adequate nutrients for S. cerevisiae fermentation and low fermentation inhibitor levels.
Adjustment of Trehalose Metabolism in Wine Saccharomyces cerevisiae Strains To Modify Ethanol Yields
Rossouw, D.; Heyns, E. H.; Setati, M. E.; Bosch, S.
2013-01-01
The ability of Saccharomyces cerevisiae to efficiently produce high levels of ethanol through glycolysis has been the focus of much scientific and industrial activity. Despite the accumulated knowledge regarding glycolysis, the modification of flux through this pathway to modify ethanol yields has proved difficult. Here, we report on the systematic screening of 66 strains with deletion mutations of genes encoding enzymes involved in central carbohydrate metabolism for altered ethanol yields. Five of these strains showing the most prominent changes in carbon flux were selected for further investigation. The genes were representative of trehalose biosynthesis (TPS1, encoding trehalose-6-phosphate synthase), central glycolysis (TDH3, encoding glyceraldehyde-3-phosphate dehydrogenase), the oxidative pentose phosphate pathway (ZWF1, encoding glucose-6-phosphate dehydrogenase), and the tricarboxylic acid (TCA) cycle (ACO1 and ACO2, encoding aconitase isoforms 1 and 2). Two strains exhibited lower ethanol yields than the wild type (tps1Δ and tdh3Δ), while the remaining three showed higher ethanol yields. To validate these findings in an industrial yeast strain, the TPS1 gene was selected as a good candidate for genetic modification to alter flux to ethanol during alcoholic fermentation in wine. Using low-strength promoters active at different stages of fermentation, the expression of the TPS1 gene was slightly upregulated, resulting in a decrease in ethanol production and an increase in trehalose biosynthesis during fermentation. Thus, the mutant screening approach was successful in terms of identifying target genes for genetic modification in commercial yeast strains with the aim of producing lower-ethanol wines. PMID:23793638
Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; ...
2015-02-12
The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe]more » hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margaritis, A.; Bajpai, P.
1982-04-01
This article examines the potential of Jerusalem artichoke as a source for ethanol and single-cell protein SCP. In addition, experimental results are presented on batch fermentation kinetics employing two strains of Kluyveromyces marxianus and one strain of Saccharomyces rosei grown in the extract derived from the tubers of Jeusalem artichoke. Of the three cultures examined, Kluyveromyces marxianus UCD (EST) 55-82 was found to be the best producer of ethanol grown in a simple medium at 35/sup 0/C. The ethanol production was found to be growth-associated haveing a ..mu../sub max/ = 0.41 h/sup -1/ and the ethanol and biomass yields weremore » determined to be Y/sub p///sub = 0.45 (88% of the theoretical) and Y/sub x///sub s/ = 0.04 with 92% of the original sugars utilized. On the basis of carbohydrate yields of Jerusalem artichoke reported in the literature and these batch kinetic studies with K. marxianus, the calculated ethanol yields were found to range from 1400 kg ethanol acre/sup -1/ yr /sup -1/ to a maximum of 2700 kg ethanol acre/sup -1/ yr/sup -1/. The SCP yields for K. marxianus were calculated to range between 130 to 250 kg dry wt cell acre/sup -1/ yr/sup -1/. The potential for developing an integrated process to produce ethanol and SCP is also discussed.« less
Hughes, Stephen R; Cox, Elby J; Bang, Sookie S; Pinkelman, Rebecca J; López-Núñez, Juan Carlos; Saha, Badal C; Qureshi, Nasib; Gibbons, William R; Fry, Michelle R; Moser, Bryan R; Bischoff, Kenneth M; Liu, Siqing; Sterner, David E; Butt, Tauseef R; Riedmuller, Steven B; Jones, Marjorie A; Riaño-Herrera, Néstor M
2015-12-01
A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains. © 2015 Society for Laboratory Automation and Screening.
González-Robles, Ivonne Wendolyne; Estarrón-Espinosa, Mirna; Díaz-Montaño, Dulce María
2015-09-01
The fermentative and aromatic capabilities of Kloeckera africana/Hanseniaspora vineae K1, K. apiculata/H. uvarum K2, and Saccharomyces cerevisiae S1 and S2 were studied in pure and mixed culture fermentations using Agave tequila juice as the culture medium. In pure and mixed cultures, Kloeckera/Hanseniaspora strains showed limited growth and sugar consumption, as well as low ethanol yield and productivity, compared to S. cerevisiae, which yielded more biomass, ethanol and viable cell concentrations. In pure and mixed cultures, S. cerevisiae presented a similar behaviour reaching high biomass production, completely consuming the sugar, leading to high ethanol production. Furthermore, the presence of S. cerevisiae strains in the mixed cultures promoted the production of higher alcohols, acetaldehyde and ethyl esters, whereas Kloeckera/Hanseniaspora strains stimulated the production of ethyl acetate and 2-phenyl ethyl acetate compounds.
Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.
Svetlitchnyi, Vitali A; Kensch, Oliver; Falkenhan, Doris A; Korseska, Svenja G; Lippert, Nadine; Prinz, Melanie; Sassi, Jamaleddine; Schickor, Anke; Curvers, Simon
2013-02-28
Consolidated bioprocessing (CBP) of lignocellulosic biomass to ethanol using thermophilic bacteria provides a promising solution for efficient lignocellulose conversion without the need for additional cellulolytic enzymes. Most studies on the thermophilic CBP concentrate on co-cultivation of the thermophilic cellulolytic bacterium Clostridium thermocellum with non-cellulolytic thermophilic anaerobes at temperatures of 55°C-60°C. We have specifically screened for cellulolytic bacteria growing at temperatures >70°C to enable direct conversion of lignocellulosic materials into ethanol. Seven new strains of extremely thermophilic anaerobic cellulolytic bacteria of the genus Caldicellulosiruptor and eight new strains of extremely thermophilic xylanolytic/saccharolytic bacteria of the genus Thermoanaerobacter isolated from environmental samples exhibited fast growth at 72°C, extensive lignocellulose degradation and high yield ethanol production on cellulose and pretreated lignocellulosic biomass. Monocultures of Caldicellulosiruptor strains degraded up to 89-97% of the cellulose and hemicellulose polymers in pretreated biomass and produced up to 72 mM ethanol on cellulose without addition of exogenous enzymes. In dual co-cultures of Caldicellulosiruptor strains with Thermoanaerobacter strains the ethanol concentrations rose 2- to 8.2-fold compared to cellulolytic monocultures. A co-culture of Caldicellulosiruptor DIB 087C and Thermoanaerobacter DIB 097X was particularly effective in the conversion of cellulose to ethanol, ethanol comprising 34.8 mol% of the total organic products. In contrast, a co-culture of Caldicellulosiruptor saccharolyticus DSM 8903 and Thermoanaerobacter mathranii subsp. mathranii DSM 11426 produced only low amounts of ethanol. The newly discovered Caldicellulosiruptor sp. strain DIB 004C was capable of producing unexpectedly large amounts of ethanol from lignocellulose in fermentors. The established co-cultures of new Caldicellulosiruptor strains with new Thermoanaerobacter strains underline the importance of using specific strain combinations for high ethanol yields. These co-cultures provide an efficient CBP pathway for ethanol production and represent an ideal starting point for development of a highly integrated commercial ethanol production process.
2014-01-01
Background Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. Results TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. Conclusions SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass. PMID:24713041
Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaIn Nanodroplets.
Finkenauer, Lauren R; Lu, Qingyun; Hakem, Ilhem F; Majidi, Carmel; Bockstaller, Michael R
2017-09-26
A methodology based on light scattering and spectrophotometry was developed to evaluate the effect of organic surfactants on the size and yield of eutectic gallium/indium (EGaIn) nanodroplets formed in organic solvents by ultrasonication. The process was subsequently applied to systematically evaluate the role of headgroup chemistry as well as polar/apolar interactions of aliphatic surfactant systems on the efficiency of nanodroplet formation. Ethanol was found to be the most effective solvent medium in promoting the formation and stabilization of EGaIn nanodroplets. For the case of thiol-based surfactants in ethanol, the yield of nanodroplet formation increased with the number of carbon atoms in the aliphatic part. In the case of the most effective surfactant system-octadecanethiol-the nanodroplet yield increased by about 370% as compared to pristine ethanol. The rather low overall efficiency of the reaction process along with the incompatibility of surfactant-stabilized EGaIn nanodroplets in nonpolar organic solvents suggests that the stabilization mechanism differs from the established self-assembled monolayer formation process that has been widely observed in nanoparticle formation.
Wei, Mi; Tong, Yao; Wang, Hongbo; Wang, Lihua; Yu, Longjiang
2016-04-01
Development of efficient pretreatment methods which can disrupt the peripheral lignocellulose and even the parenchyma cells is of great importance for production of diosgenin from turmeric rhizomes. It was found that low pressure steam expansion pretreatment (LSEP) could improve the diosgenin yield by more than 40% compared with the case without pretreatment, while simultaneously increasing the production of fermentable sugar by 27.37%. Furthermore, little inhibitory compounds were produced in LSEP process which was extremely favorable for the subsequent biotransformation of fermentable sugar to other valuable products such as ethanol. Preliminary study showed that the ethanol yield when using the fermentable sugar as carbon source was comparable to that using glucose. The liquid residue of LSEP treated turmeric tuber after diosgenin production can be utilized as a quality fermentable carbon source. Therefore, LSEP has great potential in industrial application in diosgenin clean production and comprehensive utilization of turmeric tuber. Copyright © 2016 Elsevier Ltd. All rights reserved.
2G ethanol from the whole sugarcane lignocellulosic biomass.
Pereira, Sandra Cerqueira; Maehara, Larissa; Machado, Cristina Maria Monteiro; Farinas, Cristiane Sanchez
2015-01-01
In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of the lignocellulosic residues from the whole sugarcane lignocellulosic biomass (bagasse, straw, and tops) from commercial sugarcane varieties for the production of 2G ethanol. In addition, the feasibility of using a mixture of these residues from a selected variety was also investigated. The materials were pretreated with dilute acid and hydrolyzed with a commercial enzymatic preparation, after which the hydrolysates were fermented using an industrial strain of Saccharomyces cerevisiae. The susceptibility to enzymatic saccharification was higher for the tops, followed by straw and bagasse. Interestingly, the fermentability of the hydrolysates showed a different profile, with straw achieving the highest ethanol yields, followed by tops and bagasse. Using a mixture of the different sugarcane parts (bagasse-straw-tops, 1:1:1, in a dry-weight basis), it was possible to achieve a 55% higher enzymatic conversion and a 25% higher ethanol yield, compared to use of the bagasse alone. For the four commercial sugarcane varieties evaluated using the same experimental set of conditions, it was found that the variety of sugarcane was not a significant factor in the 2G ethanol production process. Assessment of use of the whole lignocellulosic sugarcane biomass clearly showed that 2G ethanol production could be significantly improved by the combined use of bagasse, straw, and tops, when compared to the use of bagasse alone. The lower susceptibility to saccharification of sugarcane bagasse, as well as the lower fermentability of its hydrolysates, can be compensated by using it in combination with straw and tops (sugarcane trash). Furthermore, given that the variety was not a significant factor for the 2G ethanol production process within the four commercial sugarcane varieties evaluated here, agronomic features such as higher productivity and tolerance of soil and climate variations can be used as the criteria for variety selection.
Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok
2012-02-01
The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.
Verbeke, Tobin J.; Zhang, Xiangli; Henrissat, Bernard; Spicer, Vic; Rydzak, Thomas; Krokhin, Oleg V.; Fristensky, Brian; Levin, David B.; Sparling, Richard
2013-01-01
The microbial production of ethanol from lignocellulosic biomass is a multi-component process that involves biomass hydrolysis, carbohydrate transport and utilization, and finally, the production of ethanol. Strains of the genus Thermoanaerobacter have been studied for decades due to their innate abilities to produce comparatively high ethanol yields from hemicellulose constituent sugars. However, their inability to hydrolyze cellulose, limits their usefulness in lignocellulosic biofuel production. As such, co-culturing Thermoanaerobacter spp. with cellulolytic organisms is a plausible approach to improving lignocellulose conversion efficiencies and yields of biofuels. To evaluate native lignocellulosic ethanol production capacities relative to competing fermentative end-products, comparative genomic analysis of 11 sequenced Thermoanaerobacter strains, including a de novo genome, Thermoanaerobacter thermohydrosulfuricus WC1, was conducted. Analysis was specifically focused on the genomic potential for each strain to address all aspects of ethanol production mentioned through a consolidated bioprocessing approach. Whole genome functional annotation analysis identified three distinct clades within the genus. The genomes of Clade 1 strains encode the fewest extracellular carbohydrate active enzymes and also show the least diversity in terms of lignocellulose relevant carbohydrate utilization pathways. However, these same strains reportedly are capable of directing a higher proportion of their total carbon flux towards ethanol, rather than non-biofuel end-products, than other Thermoanaerobacter strains. Strains in Clade 2 show the greatest diversity in terms of lignocellulose hydrolysis and utilization, but proportionately produce more non-ethanol end-products than Clade 1 strains. Strains in Clade 3, in which T. thermohydrosulfuricus WC1 is included, show mid-range potential for lignocellulose hydrolysis and utilization, but also exhibit extensive divergence from both Clade 1 and Clade 2 strains in terms of cellular energetics. The potential implications regarding strain selection and suitability for industrial ethanol production through a consolidated bioprocessing co-culturing approach are examined throughout the manuscript. PMID:23555660
Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong
2015-05-01
In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.
USDA-ARS?s Scientific Manuscript database
Estimation methods and evaluation of ethanol yield from sweet sorghum (Sorghum bicolor (L.) Moench.) based on agronomic production traits and juice characteristics is important for developing parents and inbred lines of sweet sorghum that can be used by the bio-ethanol industry. The objectives of th...
Recombinant host cells and media for ethanol production
Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W
2014-02-18
Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.
Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol
NASA Astrophysics Data System (ADS)
Gonzalez, Ronalds W.
2011-12-01
Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic and supply chain models specifically for biomass to bioenergy production. The study suggest that this species can be profitably managed for biomass production with rotation length of 11 to 12 years and with a stand tree density of 1,200 trees per acre. Optimum rotation length is greatly affected by seedlings costs and biomass productivity. In the fourth study, a evaluation of seven different feedstocks (loblolly pine, natural mixed hardwood, Eucalyptus, switchgrass, miscanthus, corn stover and sweet sorghum) is made in terms of supply chain, biomass delivered costs, dollar per ton of carbohydrate and dollar per million BTU delivered to a biorefinery. Forest feedstocks present better advantages in terms of a well established supply chain, year round supply and no need for biomass storage. In the same context biomass delivered costs, as well as cost to delivered one ton of carbohydrate and one million BTU is lower in forest feedstocks. In the fifth study, conversion costs, profitability and sensitivity analysis for a novel pretreatment process, green liquor, are modeled for ethanol production with loblolly pine, natural mixed hardwood and Eucalyptus as feedstocks, evaluated in two investment scenarios: green field and repurposing of an old kraft pulp mill. Better financial returns are perceived in the natural hardwood - repurposing scenario, mainly due to lower CAPEX and lower enzyme charge and cost. In the sixth study, conversion cost, CAPEX, ethanol yield and profitability for the thermochemical process (indirect gasification and production of mixed alcohol) is simulated for loblolly pine, natural hardwood, eucalyptus, corn stover and switchgrass. Higher ethanol yield with forest feedstock (due to higher content of %C and %H) result in better economic performance, when compare to agriculture biomass. This research indicates that forest feedstock outperform agriculture biomass in terms of delivered costs, supply chain, ethanol yield and process profitability. Loblolly pine seems to be more suitable for thermochemical processes, while hardwood suit better for biochemical conversion (based on the technologies studied).
NASA Astrophysics Data System (ADS)
Bardant, Teuku Beuna; Dahnum, Deliana; Amaliyah, Nur
2017-11-01
Simultaneous Saccharification Fermentation (SSF) of palm oil (Elaeis guineensis) empty fruit bunch (EFB) pulp were investigated as a part of ethanol production process. SSF was investigated by observing the effect of substrate loading variation in range 10-20%w, cellulase loading 5-30 FPU/gr substrate and yeast addition 1-2%v to the ethanol yield. Mathematical model for describing the effects of these three variables to the ethanol yield were developed using Response Surface Methodology-Cheminformatics (RSM-CI). The model gave acceptable accuracy in predicting ethanol yield for Simultaneous Saccharification and Fermentation (SSF) with coefficient of determination (R2) 0.8899. Model validation based on data from previous study gave (R2) 0.7942 which was acceptable for using this model for trend prediction analysis. Trend prediction analysis based on model prediction yield showed that SSF gave trend for higher yield when the process was operated in high enzyme concentration and low substrate concentration. On the other hand, even SHF model showed better yield will be obtained if operated in lower substrate concentration, it still possible to operate in higher substrate concentration with slightly lower yield. Opportunity provided by SHF to operate in high loading substrate make it preferable option for application in commercial scale.
Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum.
Tian, Liang; Papanek, Beth; Olson, Daniel G; Rydzak, Thomas; Holwerda, Evert K; Zheng, Tianyong; Zhou, Jilai; Maloney, Marybeth; Jiang, Nannan; Giannone, Richard J; Hettich, Robert L; Guss, Adam M; Lynd, Lee R
2016-01-01
Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. Here, we started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yield and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. The resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. A two step selection method successfully improved the ethanol yield and the titer. This evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.
Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann
2014-12-01
The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation.
Semkiv, Marta V; Dmytruk, Kostyantyn V; Abbas, Charles A; Sibirny, Andriy A
2014-05-15
The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity. Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene (ADH1) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production. Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae.
Determination of the efficiency of ethanol oxidation in a proton exchange membrane electrolysis cell
NASA Astrophysics Data System (ADS)
Altarawneh, Rakan M.; Majidi, Pasha; Pickup, Peter G.
2017-05-01
Products and residual ethanol in the anode and cathode exhausts of an ethanol electrolysis cell (EEC) have been analyzed by proton NMR and infrared spectrometry under a variety of operating conditions. This provides a full accounting of the fate of ethanol entering the cell, including the stoichiometry of the ethanol oxidation reaction (i.e. the average number of electrons transferred per ethanol molecule), product distribution and the crossover of ethanol and products through the membrane. The reaction stoichiometry (nav) is the key parameter that determines the faradaic efficiency of both EECs and direct ethanol fuel cells. Values determined independently from the product distribution, amount of ethanol consumed, and a simple electrochemical method based on the dependence of the current on the flow rate of the ethanol solution are compared. It is shown that the electrochemical method yields results that are consistent with those based on the product distribution, and based on the consumption of ethanol when crossover is accounted for. Since quantitative analysis of the cathode exhaust is challenging, the electrochemical method provides a valuable alternative for routine determination of nav, and hence the faradaic efficiency of the cell.
Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.
Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas
2006-07-25
Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels.
Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels
Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas
2006-01-01
Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. PMID:16837571
NASA Astrophysics Data System (ADS)
Hill, Jason; Nelson, Erik; Tilman, David; Polasky, Stephen; Tiffany, Douglas
2006-07-01
Negative environmental consequences of fossil fuels and concerns about petroleum supplies have spurred the search for renewable transportation biofuels. To be a viable alternative, a biofuel should provide a net energy gain, have environmental benefits, be economically competitive, and be producible in large quantities without reducing food supplies. We use these criteria to evaluate, through life-cycle accounting, ethanol from corn grain and biodiesel from soybeans. Ethanol yields 25% more energy than the energy invested in its production, whereas biodiesel yields 93% more. Compared with ethanol, biodiesel releases just 1.0%, 8.3%, and 13% of the agricultural nitrogen, phosphorus, and pesticide pollutants, respectively, per net energy gain. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12% by the production and combustion of ethanol and 41% by biodiesel. Biodiesel also releases less air pollutants per net energy gain than ethanol. These advantages of biodiesel over ethanol come from lower agricultural inputs and more efficient conversion of feedstocks to fuel. Neither biofuel can replace much petroleum without impacting food supplies. Even dedicating all U.S. corn and soybean production to biofuels would meet only 12% of gasoline demand and 6% of diesel demand. Until recent increases in petroleum prices, high production costs made biofuels unprofitable without subsidies. Biodiesel provides sufficient environmental advantages to merit subsidy. Transportation biofuels such as synfuel hydrocarbons or cellulosic ethanol, if produced from low-input biomass grown on agriculturally marginal land or from waste biomass, could provide much greater supplies and environmental benefits than food-based biofuels. corn | soybean | life-cycle accounting | agriculture | fossil fuel
Jiménez, L; Pérez, I; López, F; Ariza, J; Rodríguez, A
2002-06-01
The influence of independent variables in the pulping of wheat straw by use of an ethanol-acetone-water mixture [processing temperature and time, ethanol/(ethanol + acetone) value and (ethanol + acetone)/(ethanol + acetone + water) value] and of the number of PFI beating revolutions to which the pulp was subjected, on the properties of the resulting pulp (yield and Shopper-Riegler index) and of the paper sheets obtained from it (breaking length, stretch, burst index and tear index) was examined. By using a central composite factor design and the BMDP software suite, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 30% at temperatures, times, ethanol/(ethanol + acetone) value, (ethanol + acetone)/(ethanol + acetone + water) value and numbers of PFI beating revolutions in the ranges 140-180 degrees C, 60-120 min, 25-75%, 35-75% and 0-1750, respectively. Using values of the independent variables over the variation ranges considered provided the following optimum values of the dependent variables: 78.17% (yield), 15.21 degrees SR (Shopper-Riegler index), 5265 m (breaking length), 1.94% (stretch), 2.53 kN/g (burst index) and 4.26 mN m2/g (tear index). Obtaining reasonably good paper sheets (with properties that differed by less than 15% from their optimum values except for the burst index, which was 28% lower) entailed using a temperature of 180 degrees C, an ethanol/(ethanol + acetone) value of 50%, an (ethanol + acetone)/(ethanol + acetone + water) value of 75%, a processing time of 60 min and a number of PFI beating revolutions of 1750. The yield was 32% lower under these conditions, however. A comparison of the results provided by ethanol, acetone and ethanol-acetone pulping revealed that the second and third process-which provided an increased yield were the best choices. On the other hand, if the pulp is to be refined, ethanol pulping is the process of choice.
Thompson, R. Adam; Layton, Donovan S.; Guss, Adam M.; ...
2015-10-21
Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model smore » capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. Furthermore, the model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites.« less
Zhang, Shouqin; Chen, Ruizhan; Wu, Hua; Wang, Changzheng
2006-04-11
A new method of ultrahigh pressure extraction (UPE) was used to extract the ginsenosides from Panax quinquefolium L. (American ginseng) root at room temperature. Several solvents, including water, ethanol, methanol, and n-butanol were used in the UPE. The ginsenosides were quantified by a HPLC equipped with UV-vis detector. The results showed that ethanol is the most efficient solvent among the used ones. Compared with other methods, i.e., Soxhlet extraction, heat reflux extraction, ultrasound-assisted extraction, microwave-assisted extraction, and supercritical CO2 extraction, the UPE has the highest extraction yield in the shortest time. The extraction yield of 0.861% ginsenoside-Rc in 2 min was achieved by the UPE, while the yields of 0.284% and 0.661% were obtained in several hours by supercritical CO2 extraction and the heat reflux extraction, respectively.
Gong, Xingchu; Zhang, Ying; Pan, Jianyang; Qu, Haibin
2014-01-01
A solvent recycling reflux extraction process for Panax notoginseng was optimized using a design space approach to improve the batch-to-batch consistency of the extract. Saponin yields, total saponin purity, and pigment yield were defined as the process critical quality attributes (CQAs). Ethanol content, extraction time, and the ratio of the recycling ethanol flow rate and initial solvent volume in the extraction tank (RES) were identified as the critical process parameters (CPPs) via quantitative risk assessment. Box-Behnken design experiments were performed. Quadratic models between CPPs and process CQAs were developed, with determination coefficients higher than 0.88. As the ethanol concentration decreases, saponin yields first increase and then decrease. A longer extraction time leads to higher yields of the ginsenosides Rb1 and Rd. The total saponin purity increases as the ethanol concentration increases. The pigment yield increases as the ethanol concentration decreases or extraction time increases. The design space was calculated using a Monte-Carlo simulation method with an acceptable probability of 0.90. Normal operation ranges to attain process CQA criteria with a probability of more than 0.914 are recommended as follows: ethanol content of 79–82%, extraction time of 6.1–7.1 h, and RES of 0.039–0.040 min−1. Most of the results of the verification experiments agreed well with the predictions. The verification experiment results showed that the selection of proper operating ethanol content, extraction time, and RES within the design space can ensure that the CQA criteria are met. PMID:25470598
Xu, Jun; Yue, Rui-Qi; Liu, Jing; Ho, Hing-Man; Yi, Tao; Chen, Hu-Biao; Han, Quan-Bin
2014-06-01
Ethanol precipitation is one of the most widely used methods for preparing natural polysaccharides, in which ethanol concentration significantly affects the precipitate yield, however, is usually set at 70-80%. Whether the standardization of ethanol concentration is appropriate has not been investigated. In the present study, the precipitation yields produced in varied ethanol concentrations (10-90%) were qualitatively and quantitatively evaluated by HPGPC (high-performance gel-permeation chromatography), using two series of standard glucans, namely dextrans and pullulans, as reference samples, and then eight natural samples. The results indicated that the response of a polysaccharide's chemical structure, with diversity in structural features and molecular sizes, to ethanol concentration is the decisive factor in precipitation of these glucans. Polysaccharides with different structural features, even though they have similar molecular weights, exhibit significantly different precipitation behaviors. For a specific glucan, the lower its molecular size, the higher the ethanol concentration needed for complete precipitation. The precipitate yield varied from 10% to 100% in 80% ethanol as the molecular size increased from 1kDa to 270kDa. This paper aims to draw scientists' attention to the fact that, in extracting natural polysaccharides by ethanol precipitation, the ethanol concentration must be individually optimized for each type of material. Copyright © 2014 Elsevier B.V. All rights reserved.
Shupe, Alan M; Liu, Shijie
2012-09-01
Concentrated dilute acid hydrolysate was obtained from hot water extracts of Acer saccharum (sugar maple) and was fermented to ethanol by Pichia stipitis in a 1.3-L-benchtop bioreactor. The conditions under which the highest ethanol yield was achieved were when the air flow rate was set to 100 cm(3) and the agitation rate was set to 150 rpm resulting in an overall mass transfer coefficient (K(L)a) of 0.108 min(-1). A maximum ethanol concentration of 29.7 g/L was achieved after 120 h of fermentation; however, after 90 h of fermentation, the ethanol concentration was only slightly lower at 29.1 g/L with a yield of 0.39 g ethanol per gram of sugar consumed. Using the same air flow rate and adjusting the agitation rate resulted in lower ethanol yields of 0.25 g/g at 50 rpm and 0.30 g/g at 300 rpm. The time it takes to reach the maximum ethanol concentration was also affected by the agitation rate. The ethanol concentration continued to increase even after 130 h of fermentation when the agitation rate was set at 50 rpm, whereas the maximum ethanol concentration was reached after only 68.5 h at 300 rpm.
Theuretzbacher, Franz; Blomqvist, Johanna; Lizasoain, Javier; Klietz, Lena; Potthast, Antje; Horn, Svein Jarle; Nilsen, Paal J; Gronauer, Andreas; Passoth, Volkmar; Bauer, Alexander
2015-10-01
Ethanol and biogas are energy carriers that could contribute to a future energy system independent of fossil fuels. Straw is a favorable bioenergy substrate as it does not compete with food or feed production. As straw is very resistant to microbial degradation, it requires a pretreatment to insure efficient conversion to ethanol and/or methane. This study investigates the effect of combining biological pretreatment and steam explosion on ethanol and methane yields in order to improve the coupled generation process. Results show that the temperature of the steam explosion pretreatment has a particularly strong effect on possible ethanol yields, whereas combination with the biological pretreatment showed no difference in overall energy yield. The highest overall energy output was found to be 10.86 MJ kg VS(-1) using a combined biological and steam explosion pretreatment at a temperature of 200°C. Copyright © 2015 Elsevier Ltd. All rights reserved.
2012-01-01
Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics. PMID:22410131
Eom, In-Yong; Yu, Ju-Hyun; Jung, Chan-Duck; Hong, Kyung-Sik
2015-01-01
Oil palm trunk (OPT) is a valuable bioresource for the biorefinery industry producing biofuels and biochemicals. It has the distinct feature of containing a large amount of starch, which, unlike cellulose, can be easily solubilized by water when heated and hydrolyzed to glucose by amylolytic enzymes without pretreatment for breaking down the biomass recalcitrance. Therefore, it is suggested as beneficial to extract most of the starch from OPT through autoclaving and subsequent amylolytic hydrolysis prior to pretreatment. However, this treatment requires high capital and operational costs, and there could be a high probability of microbial contamination during starch processing. In terms of biochemical conversion of OPT, this study aimed to develop a simple and efficient ethanol conversion process without any chemical use such as acids and bases or detoxification. For comparison with the proposed efficient ethanol conversion process, OPT was subjected to hydrothermal treatment at 180 °C for 30 min. After enzymatic hydrolysis of PWS, 43.5 g of glucose per 100 g dry biomass was obtained, which corresponds to 81.3 % of the theoretical glucose yield. Through subsequent alcohol fermentation, 81.4 % ethanol yield of the theoretical ethanol yield was achieved. To conduct the proposed new process, starch in OPT was converted to ethanol through enzymatic hydrolysis and subsequent fermentation prior to hydrothermal treatment, and the resulting slurry was subjected to identical processes that were applied to control. Consequently, a high-glucose yield of 96.3 % was achieved, and the resulting ethanol yield was 93.5 %. The proposed new process was a simple method for minimizing the loss of starch during biochemical conversion and maximizing ethanol production as well as fermentable sugars from OPT. In addition, this methodology offers the advantage of reducing operational and capital costs due to minimizing the process for ethanol production by excluding expensive processes related to detoxification prior to enzymatic hydrolysis and fermentation such as washing/conditioning and solid-liquid separation of pretreated slurry. The potential future use of xylose-digestible microorganisms could further increase the ethanol yield from the proposed process, thereby increasing its effectiveness for the conversion of OPT into biofuels and biochemicals.
Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.
2013-01-01
Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943
Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso
2012-08-10
This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.
Fernández, Macarena Soledad; Báez, Bárbara; Bordón, Ana; Espinosa, Laura; Martínez, Eliana; Pautassi, Ricardo Marcos
2017-10-03
Alcohol use disorders are modulated by genetic factors, but the identification of specific genes and their concomitant biological changes that are associated with a higher risk for these disorders has proven difficult. Alterations in the sensitivity to the motivational effects of ethanol may be one way by which genes modulate the initiation and escalation of ethanol intake. Rats and mice have been selectively bred for high and low ethanol consumption during adulthood. However, selective breeding programs for ethanol intake have not focused on adolescence. This phase of development is associated with the initiation and escalation of ethanol intake and characterized by an increase in the sensitivity to ethanol's appetitive effects and a decrease in the sensitivity to ethanol's aversive effects compared with adulthood. The present study performed short-term behavioral selection to select rat lines that diverge in the expression of ethanol drinking during adolescence. A progenitor nucleus of Wistar rats (F 0 ) and filial generation 1 (F 1 ), F 2 , and F 3 adolescent rats were derived from parents that were selected for high (STDRHI) and low (STDRLO) ethanol consumption during adolescence and were tested for ethanol intake and responsivity to ethanol's motivational effects. STDRHI rats exhibited significantly greater ethanol intake and preference than STDRLO rats. Compared with STDRLO rats, STDRHI F 2 and F 3 rats exhibited a blunted response to ethanol in the conditioned taste aversion test. F 2 and F 3 STDRHI rats but not STDRLO rats exhibited ethanol-induced motor stimulation. STDRHI rats exhibited avoidance of the white compartment of the light-dark box, a reduction of locomotion, and a reduction of saccharin consumption, suggesting an anxiety-prone phenotype. The results suggest that the genetic risk for enhanced ethanol intake during adolescence is associated with lower sensitivity to the aversive effects of ethanol, heightened reactivity to ethanol's stimulating effects, and enhanced innate anxiety. Copyright © 2017 Elsevier Inc. All rights reserved.
Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars
2016-01-01
One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy. Ethanol yields achieved based on initial cellulose fraction were 27.8% in switchgrass and 27.0% in corn cobs. This study demonstrates that ethanol production from switchgrass and corn cobs is possible following a combined thermochemical and fermentative biorefinery approach, with ethanol yields comparable to results in conventional pretreatments and fermentation processes. The feedstock-independent fermentation ability can easily be assessed with a simple assay.
Acid hydrolysis of Jerusalem artichoke for ethanol fermentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.; Hamdy, M.K.
1986-01-01
An excellent substrate for ethanol production is the Jerusalem artichoke (JA) tuber (Helianthus tuberosus). This crop contains a high level of inulin that can be hydrolyzed mainly to D-fructose and has several distinct advantages as an energy source compared to others. The potential ethanol yield of ca. 4678 L/ha on good agricultural land is equivalent to that obtained from sugar beets and twice that of corn. When JA is to be used for ethanol fermentation by conventional yeast, it is first converted to fermentable sugars by enzymes or acids although various strains of yeast were used for the direct fermentationmore » of JA extracts. Fleming and GrootWassink compared various acids (hydrochloric, sulfuric, citric, and phosphoric) and strong cation exchange resin for their effectiveness on inulin hydrolysis and reported that no differences were noted among the acids or resin in their influence on inulin hydrolysis. Undesirable side reactions were noted during acid hydrolysis leading to the formation of HMF and 2-(2-hydroxy acetyl) furan. The HMF at a level of 0.1% is known to inhibit growth and ethanol fermentation by yeast. In this study the authors established optimal conditions for complete acid-hydrolysis of JA with minimum side reactions and maximum sugar-ethanol production. A material balance for the ethanol production was also determined.« less
Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum
Tian, Liang; Papanek, Beth; Olson, Daniel G.; ...
2016-06-02
Background Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. Results We started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yieldmore » and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. Moreover, the resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. Conclusions A two step selection method successfully improved the ethanol yield and the titer. Finaly, this evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.« less
Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans.
Lee, Jae Sun; Chi, Won-Jae; Hong, Soon-Kwang; Yang, Ji-Won; Chang, Yong Keun
2013-07-01
Two genes from Zymomonas mobilis that are responsible for ethanol production, pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII), were heterologously expressed in the Gram-positive bacterium Streptomyces lividans TK24. An examination of carbon distribution revealed that a significant portion of carbon metabolism was switched from biomass and organic acid biosynthesis to ethanol production upon the expression of pdc and adhII. The recombinant S. lividans TK24 produced ethanol from glucose with a yield of 23.7% based on the carbohydrate consumed. The recombinant was able to produce ethanol from xylose, L-arabinose, mannose, L-rhamnose, galactose, ribose, and cellobiose with yields of 16.0, 25.6, 21.5, 33.6, 30.6, 14.6, and 33.3%, respectively. Polymeric substances such as starch and xylan were directly converted to ethanol by the recombinant with ethanol yields of 18.9 and 8.8%, respectively. The recombinant S. lividans TK24/Tpet developed in this study is potentially a useful microbial resource for ethanol production from various sources of biomasses, especially microalgae.
Progress in ethanol production from corn kernel by applying cooking pre-treatment.
Voca, Neven; Varga, Boris; Kricka, Tajana; Curic, Duska; Jurisic, Vanja; Matin, Ana
2009-05-01
In order to improve technological properties of corn kernel for ethanol production, samples were treated with a hydrothermal pre-treatment of cooking (steaming), prior to drying. Two types of cooking process parameters were applied; steam pressure of 0.5 bars during a 10 min period, and steam pressure of 1.5 bars during a 30 min period. Afterwards, samples were dried at four different temperatures, 70, 90, 110 and 130 degrees C. Control sample was also submitted to the aforementioned drying parameters. Since the results showed that starch utilization, due to the gelatinization process, was considerably higher in the samples pre-treated before the ethanol production process, it was found that the cooking treatment had a positive effect on ethanol yield from corn kernel. Therefore, the highest ethanol yield was found in the corn kernel samples cooked for 30 min at steam pressure 1.5 bars and dried at 130 degrees C. Due to the similarity of processes used for starch fermentation, introduction of cooking pre-treatment will not significantly increase the overall ethanol production costs, whereas it will result in significantly higher ethanol yield.
Viganó, Juliane; Aguiar, Ana C; Moraes, Damila R; Jara, José L P; Eberlin, Marcos N; Cazarin, Cinthia B B; Maróstica, Mário R; Martínez, Julian
2016-07-01
Passion fruit seeds are currently discarded on the pulp processing but are known for their high piceatannol and scirpusin B contents. Using pressurized liquid extraction (PLE), these highly valuable phenolic compounds were efficiently extracted from defatted passion fruit bagasse (DPFB). PLE was performed using mixtures of ethanol and water (50 to 100% ethanol, w/w) as solvent, temperatures from 50 to 70°C and pressure at 10MPa. The extraction methods were compared in terms of the global yield, total phenolic content (TPC), piceatannol content and the antioxidant capacity of the extracts. The DPFB extracts were also compared with those from non-defatted passion fruit bagasse (nDPFB). Identification and quantification of piceatannol were performed using UHPLC-MS/MS. The results showed that high TPC and piceatannol content were achieved for the extracts obtained from DPFB through PLE at 70°C and using 50 and 75% ethanol as the solvent. The best PLE conditions for TPC (70°C, 75% ethanol) resulted in 55.237mgGAE/g dried and defatted bagasse, whereas PLE at 70°C and 50% ethanol achieved 18.590mg of piceatannol/g dried and defatted bagasse, and such yields were significantly higher than those obtained using conventional extraction techniques. The antioxidant capacity assays showed high correlation with the TPC (r>0.886) and piceatannol (r>0.772). The passion fruit bagasse has therefore proved to be a rich source of piceatannol and PLE showed high efficiency to recover phenolic compounds from defatted passion fruit bagasse. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor.
Ogbonna, J C; Mashima, H; Tanaka, H
2001-01-01
Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.
Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.
Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L
2005-12-15
Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.
Efficient approach for bioethanol production from red seaweed Gelidium amansii.
Kim, Ho Myeong; Wi, Seung Gon; Jung, Sera; Song, Younho; Bae, Hyeun-Jong
2015-01-01
Gelidium amansii (GA), a red seaweed species, is a popular source of food and chemicals due to its high galactose and glucose content. In this study, we investigated the potential of bioethanol production from autoclave-treated GA (ATGA). The proposed method involved autoclaving GA for 60min for hydrolysis to glucose. Separate hydrolysis and fermentation processing (SHF) achieved a maximum ethanol concentration of 3.33mg/mL, with a conversion yield of 74.7% after 6h (2% substrate loading, w/v). In contrast, simultaneous saccharification and fermentation (SSF) produced an ethanol concentration of 3.78mg/mL, with an ethanol conversion yield of 84.9% after 12h. We also recorded an ethanol concentration of 25.7mg/mL from SSF processing of 15% (w/v) dry matter from ATGA after 24h. These results indicate that autoclaving can improve the glucose and ethanol conversion yield of GA, and that SSF is superior to SHF for ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gubicza, Krisztina; Nieves, Ismael U; Sagues, William J; Barta, Zsolt; Shanmugam, K T; Ingram, Lonnie O
2016-05-01
A techno-economic analysis was conducted for a simplified lignocellulosic ethanol production process developed and proven by the University of Florida at laboratory, pilot, and demonstration scales. Data obtained from all three scales of development were used with Aspen Plus to create models for an experimentally-proven base-case and 5 hypothetical scenarios. The model input parameters that differed among the hypothetical scenarios were fermentation time, enzyme loading, enzymatic conversion, solids loading, and overall process yield. The minimum ethanol selling price (MESP) varied between 50.38 and 62.72 US cents/L. The feedstock and the capital cost were the main contributors to the production cost, comprising between 23-28% and 40-49% of the MESP, respectively. A sensitivity analysis showed that overall ethanol yield had the greatest effect on the MESP. These findings suggest that future efforts to increase the economic feasibility of a cellulosic ethanol process should focus on optimization for highest ethanol yield. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.
2016-07-15
Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogenmore » production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.« less
Katsimpouras, Constantinos; Zacharopoulou, Maria; Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul; Topakas, Evangelos
2017-11-01
The present work investigates the suitability of pretreated corn stover (CS) to serve as feedstock for high gravity (HG) ethanol production at solids-content of 24wt%. Steam explosion, with and without the addition of H 2 SO 4 , and organosolv pretreated CS samples underwent a liquefaction/saccharification step followed by simultaneous saccharification and fermentation (SSF). Maximum ethanol concentration of ca. 76g/L (78.3% ethanol yield) was obtained from steam exploded CS (SECS) with 0.2% H 2 SO 4 . Organosolv pretreated CS (OCS) also resulted in high ethanol concentration of ca. 65g/L (62.3% ethanol yield). Moreover, methane production through anaerobic digestion (AD) was conducted from fermentation residues and resulted in maximum methane yields of ca. 120 and 69mL/g volatile solids (VS) for SECS and OCS samples, respectively. The results indicated that the implementation of a liquefaction/saccharification step before SSF employing a liquefaction reactor seemed to handle HG conditions adequately. Copyright © 2017 Elsevier Ltd. All rights reserved.
2017-01-01
The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu–Mg–Al oxide (CuMgAlOx) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO2, Ni2P/SiO2, and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlOx. A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlOx with Ni/SiO2 and especially Ni2P/SiO2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni2P/SiO2, the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products. PMID:28405528
Korányi, Tamás I; Huang, Xiaoming; Coumans, Alessandro E; Hensen, Emiel J M
2017-04-03
The depolymerization of lignin to bioaromatics usually requires a hydrodeoxygenation (HDO) step to lower the oxygen content. A mixed Cu-Mg-Al oxide (CuMgAlO x ) is an effective catalyst for the depolymerization of lignin in supercritical ethanol. We explored the use of Ni-based cocatalysts, i.e. Ni/SiO 2 , Ni 2 P/SiO 2 , and Ni/ASA (ASA = amorphous silica alumina), with the aim of combining lignin depolymerization and HDO in a single reaction step. While the silica-supported catalysts were themselves hardly active in lignin upgrading, Ni/ASA displayed comparable lignin monomer yield as CuMgAlO x . A drawback of using an acidic support is extensive dehydration of the ethanol solvent. Instead, combining CuMgAlO x with Ni/SiO 2 and especially Ni 2 P/SiO 2 proved to be effective in increasing the lignin monomer yield, while at the same time reducing the oxygen content of the products. With Ni 2 P/SiO 2 , the lignin monomer yield was 53 wt %, leading to nearly complete deoxygenation of the aromatic products.
Cha, Hye-Geun; Kim, Yi-Ok; Choi, Woon Yong; Kang, Do-Hyung; Lee, Hyeon-Yong; Jung, Kyung-Hwan
2015-03-01
Herein, we established a repeated-batch process for ethanol production from glycerol by immobilized Pachysolen tannophilus. The aim of this study was to develop a more practical and applicable ethanol production process for biofuel. In particular, using industrial-grade medium ingredients, the microaeration rate was optimized for maximization of the ethanol production, and the relevant metabolic parameters were then analyzed. The microaeration rate of 0.11 vvm, which is far lower than those occurring in a shaking flask culture, was found to be the optimal value for ethanol production from glycerol. In addition, it was found that, among those tested, Celite was a more appropriate carrier for the immobilization of P. tannophilus to induce production of ethanol from glycerol. Finally, through a repeated-batch culture, the ethanol yield (Ye/g) of 0.126 ± 0.017 g-ethanol/g-glycerol (n = 4) was obtained, and this value was remarkably comparable with a previous report. In the future, it is expected that the results of this study will be applied for the development of a more practical and profitable long-term ethanol production process, thanks to the industrial-grade medium preparation, simple immobilization method, and easy repeated-batch operation.
Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms.
Holtzapple, Mark T; Granda, Cesar B
2009-05-01
To convert biomass to liquid fuels, three platforms are compared: thermochemical, sugar, and carboxylate. To create a common basis, each platform is fed "ideal biomass," which contains polysaccharides (68.3%) and lignin (31.7%). This ratio is typical of hardwood biomass and was selected so that when gasified and converted to hydrogen, the lignin has sufficient energy to produce ethanol from the carboxylic acids produced by the carboxylate platform. Using balanced chemical reactions, the theoretical yield and energy efficiency were determined for each platform. For all platforms, the ethanol yield can be increased by 71% to 107% by supplying external hydrogen produced from other sources (e.g., solar, wind, nuclear, fossil fuels). The alcohols can be converted to alkanes with a modest loss of energy efficiency (3 to 5 percentage points). Of the three platforms considered, the carboxylate platform has demonstrated the highest product yields.
An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass
NASA Astrophysics Data System (ADS)
Trivedi, Nitin; Baghel, Ravi S.; Bothwell, John; Gupta, Vishal; Reddy, C. R. K.; Lali, Arvind M.; Jha, Bhavanath
2016-07-01
We describe an integrated process that can be applied to biomass of the green seaweed, Ulva fasciata, to allow the sequential recovery of four economically important fractions; mineral rich liquid extract (MRLE), lipid, ulvan, and cellulose. The main benefits of our process are: a) its simplicity and b) the consistent yields obtained from the residual biomass after each successive extraction step. For example, dry Ulva biomass yields ~26% of its starting mass as MRLE, ~3% as lipid, ~25% as ulvan, and ~11% as cellulose, with the enzymatic hydrolysis and fermentation of the final cellulose fraction under optimized conditions producing ethanol at a competitive 0.45 g/g reducing sugar. These yields are comparable to those obtained by direct processing of the individual components from primary biomass. We propose that this integration of ethanol production and chemical feedstock recovery from macroalgal biomass could substantially enhance the sustainability of marine biomass use.
NASA Astrophysics Data System (ADS)
Chen, Huixia; Xiu, Zhilong; Bai, Fengwu
2014-06-01
Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.
Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui
2016-11-01
An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie
2014-09-01
Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent
NASA Astrophysics Data System (ADS)
Manurung, R.; Winarta, A.; Taslim; Indra, L.
2017-06-01
Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.
Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul
2016-03-01
An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.
Ethanol production from sorghum by a microwave-assisted dilute ammonia pretreatment.
Chen, Cong; Boldor, Dorin; Aita, Giovanna; Walker, Michelle
2012-04-01
The efficiency of a batch microwave-assisted ammonia heating system was investigated as pretreatment for sweet sorghum bagasse and its effect on porosity, chemical composition, particle size, enzymatic hydrolysis and fermentation into ethanol evaluated. Sorghum bagasse, fractionated into three particle size groups (9.5-18, 4-6 and 1-2mm), was pretreated with ammonium hydroxide (28% v/v solution) and water at a ratio of 1:0.5:8 at 100, 115, 130, 145 and 160°C for 1h. Simon's stain method revealed an increase in the porosity of the biomass compared to untreated biomass. The most lignin removal (46%) was observed at 160°C. About 90% of the cellulose and 73% of the hemicellulose remained within the bagasse. The best glucose yields and ethanol yields (from glucose only) among all different pretreatment conditions averaged 42/100g dry biomass and 21/100g dry biomass, respectively with 1-2mm sorghum bagasse pretreated at 130°C for 1h. Published by Elsevier Ltd.
Dejmek, Annika; Zendehrokh, Nooreldin; Tomaszewska, Malgorzata; Edsjö, Anders
2013-07-01
Personalized oncology requires molecular analysis of tumor cells. Several studies have demonstrated that cytological material is suitable for DNA analysis, but to the authors' knowledge there are no systematic studies comparing how the yield and quality of extracted DNA is affected by the various techniques used for the preparation of cytological material. DNA yield and quality were compared using cultured human lung cancer cells subjected to different preparation techniques used in routine cytology, including fixation, mounting medium, and staining. The results were compared with the outcome of epidermal growth factor receptor (EGFR) genotyping of 66 clinical cytological samples using the same DNA preparation protocol. All tested protocol combinations resulted in fragment lengths of at least 388 base pairs. The mounting agent EcoMount resulted in higher yields than traditional xylene-based medium. Spray and ethanol fixation resulted in both a higher yield and better DNA quality than air drying. In liquid-based cytology (LBC) methods, CytoLyt solution resulted in a 5-fold higher yield than CytoRich Red. Papanicolaou staining provided twice the yield of hematoxylin and eosin staining in both liquid-based preparations. Genotyping outcome and quality control values from the clinical EGFR genotyping demonstrated a sufficient amount and amplifiability of DNA in both spray-fixed and air-dried cytological samples. Reliable clinical genotyping can be performed using all tested methods. However, in the cell line experiments, spray- or ethanol-fixed, Papanicolaou-stained slides provided the best results in terms of yield and fragment length. In LBC, the DNA recovery efficiency of the preserving medium may differ considerably, which should be taken into consideration when introducing LBC. Cancer (Cancer Cytopathol) 2013;121:344-353. © 2013 American Cancer Society. © 2013 American Cancer Society.
Junyong Zhu; Wenyuan Zhu; Patricia OBryan; Bruce S. Dien; Shen Tian; Roland Gleisner; X.J. Pan
2010-01-01
Lodgepole pine from forest thinnings is a potential feedstock for ethanol production. In this study, lodgepole pine was converted to ethanol with a yield of 276 L per metric ton of wood or 72% of theoretical yield. The lodgepole pine chips were directly subjected to sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) pretreatment and then disk-...
Biofuel production from Jerusalem artichoke tuber inulins: a review
Bhagia, Samarthya; Akinosho, Hannah; Ferreira, Jorge F. S.; ...
2017-06-01
Jerusalem artichoke (JA) has a high productivity of tubers that are rich in inulins, a fructan polymer. These inulins can be easily broken down into fructose and glucose for conversion into ethanol by fermentation. This paper discusses tuber and inulin yields, effect of cultivar and environment on tuber productivity, and approaches to fermentation for ethanol production. Consolidated bioprocessing with Kluyveromyces marxianus has been the most popular approach for fermentation into ethanol. Apart from ethanol, fructose can be dehydrated into into 5-hydrolxymethylfurfural followed by catalytic conversion into hydrocarbons. Finally, findings from several studies indicate that this plant from tubers alone canmore » produce ethanol at yields that rival corn and sugarcane ethanol. JA has tremendous potential for use as a bioenergy feedstock.« less
Biofuel production from Jerusalem artichoke tuber inulins: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagia, Samarthya; Akinosho, Hannah; Ferreira, Jorge F. S.
Jerusalem artichoke (JA) has a high productivity of tubers that are rich in inulins, a fructan polymer. These inulins can be easily broken down into fructose and glucose for conversion into ethanol by fermentation. This paper discusses tuber and inulin yields, effect of cultivar and environment on tuber productivity, and approaches to fermentation for ethanol production. Consolidated bioprocessing with Kluyveromyces marxianus has been the most popular approach for fermentation into ethanol. Apart from ethanol, fructose can be dehydrated into into 5-hydrolxymethylfurfural followed by catalytic conversion into hydrocarbons. Finally, findings from several studies indicate that this plant from tubers alone canmore » produce ethanol at yields that rival corn and sugarcane ethanol. JA has tremendous potential for use as a bioenergy feedstock.« less
21 CFR 177.1632 - Poly(phenyl-enetereph-thala-mide) resins.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) of this section, when refluxed in a 50 percent ethanol/water mixture for 24 hours, yields total... the form of pulp, when refluxed in a 50 percent ethanol/water mixture for 24 hours, yields total...
21 CFR 177.1632 - Poly(phenyl-enetereph-thala-mide) resins.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) of this section, when refluxed in a 50 percent ethanol/water mixture for 24 hours, yields total... the form of pulp, when refluxed in a 50 percent ethanol/water mixture for 24 hours, yields total...
The Effect of Initial Cell Concentration on Xylose Fermentation by Pichia stipitis
NASA Astrophysics Data System (ADS)
Agbogbo, Frank K.; Coward-Kelly, Guillermo; Torry-Smith, Mads; Wenger, Kevin; Jeffries, Thomas W.
Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was produced when the initial cell concentrations were high, cell density had no effect on the final ethanol yield. A two-parameter mathematical model was used to predict the cell population dynamics at the different initial cell concentrations. The model parameters, a and b correlate with the initial cell concentrations used with an R 2 of 0.99.
NASA Astrophysics Data System (ADS)
Febriani, K.; Wahyuni, I.; Setiasih, S.; Hudiyono, S.
2017-07-01
The enzyme can be purified by fractional precipitation. This can be done by salt or organic solvent. In this research, purification of bromelain from pineapple core by fractional precipitation was done by 2 compounds, ammonium sulfate, and ethanol. Fractional precipitation by ammonium sulfate proved to be more effective as it yielded a higher specific activity. Specific activity by ethanol and ammonium sulfate is 4.6480 U/mg at 0-60 % saturation and 8.2243 U/mg at 50-80 % saturation.
Montalbo-Lomboy, Melissa; Khanal, Samir Kumar; van Leeuwen, Johannes Hans; Raman, David Raj; Grewell, David
2011-01-01
The potential of ultrasonics to replace hydrocooking in corn-to-ethanol plants was examined in this study. Batch and continuous experiments were conducted on corn slurry with sonication at a frequency of 20 kHz. Batch mode used a catenoidal horn operated at an amplitude of 144 μm peak-to-peak (p–p) for 90 s. Continuous experiments used a donut horn operating at inner radius amplitude of 12 μm p–p. Jet-cooked samples from the same ethanol plant were compared with ultrasonicated samples. The highest starch-to-ethanol conversion was obtained by the jet-cooked samples with a yield of 74% of the theoretical yield. Batch and continuous sonication achieved 71.2% and 68% conversion, respectively, however, statistical analysis showed no significant difference between the jet cooking and ultrasonication. On the basis of the similar performance, an economic analysis was conducted comparing jet cooking and ultrasonic pretreatment. The analysis showed that the capital cost for the ultrasonics system was ~10 times higher compared to the capital cost of a hydrocooker. However,due to the large energy requirements of hydrocookers, the analysis showed lower total overall costs for continuous ultrasonication than that for jet cooking, assuming the current energy prices. Because of the high utility cost calculated for jet cooking, it is concluded that ultrasonication poses as a more economical option than jet cooking. Overall, the study shows that ultrasonics is a technically and economically viable alternative to jet cooking in dry-grind corn ethanol plant. © 2011 American Institute of Chemical Engineers
Hasegawa, Koki; Kawachi, Emi; Uehara, Yoshinari; Yoshida, Tsuyoshi; Imaizumi, Satoshi; Ogawa, Masahiro; Miura, Shin-Ichiro; Saku, Keijiro
2017-01-01
We examined the 68 Ga labeling of the α-helical peptide, DOTA-FAMP, and evaluated conformational changes during radiolabeling. 68 Ga-DOTA-FAMP is a positron emission tomography probe candidate for atherosclerotic plaques. The labeling yield achieved by Zhernosekov's method (using acetone for 68 Ga purification) was compared with that achieved by the original and 2 modified Mueller's methods (using NaCl solution). Modified method I involves desalting the 68 Ga prior to labeling, and modified method II involves the inclusion of ethanol in the labeling solution. The labeling yield using Zhernosekov's method was 62% ± 5.4%. In comparison, Mueller's original method gave 8.9% ± 1.7%. Modified method I gave a slight improvement of 32% ± 2.1%. Modified method II further increased the yield to 66% ± 3.4%. Conformational changes were determined by circular dichroism spectroscopy, revealing that these differences could be attributed to conformational changes. Heat treatment affects peptide conformation, which leads to aggregation and decreases the labeling yield. Mueller's method is simpler, but harsh conditions preclude its application to biomolecules. To suppress aggregation, we included a desalting process and added ethanol in the labeling solution. These changes significantly improved the labeling yield. Before use for imaging, conformational changes of biomolecules during radiolabeling should be evaluated by circular dichroism spectroscopy to ensure the homogeneity of the labeled product. Copyright © 2016 John Wiley & Sons, Ltd.
Mesquita, Jéssica Faria; Ferraz, André; Aguiar, André
2016-03-01
Sugarcane bagasse is a by-product from the sugar and ethanol industry which contains approximately 70 % of its dry mass composed by polysaccharides. To convert these polysaccharides into fuel ethanol it is necessary a pretreatment step to increase the enzymatic digestibility of the recalcitrant raw material. In this work, sugarcane bagasse was pretreated by an alkaline-sulfite chemithermomechanical process for increasing its enzymatic digestibility. Na2SO3 and NaOH ratios were fixed at 2:1, and three increasing chemical loads, varying from 4 to 8 % m/m Na2SO3, were used to prepare the pretreated materials. The increase in the alkaline-sulfite load decreased the lignin content in the pretreated material up to 35.5 % at the highest chemical load. The pretreated samples presented enhanced glucose yields during enzymatic hydrolysis as a function of the pretreatment severity. The maximum glucose yield (64 %) was observed for the samples pretreated with the highest chemical load. The use of 2.5 g l(-1) Tween 20 in the hydrolysis step further increased the glucose yield to 75 %. Semi-simultaneous hydrolysis and fermentation of the pretreated materials indicated that the ethanol yield was also enhanced as a function of the pretreatment severity. The maximum ethanol yield was 56 ± 2 % for the sample pretreated with the highest chemical load. For the sample pretreated with the lowest chemical load (2 % m/m NaOH and 4 % m/m Na2SO3), adding Tween 20 during the hydrolysis process increased the ethanol yield from 25 ± 3 to 39.5 ± 1 %.
The effect of initial cell concentration on xylose fermentation by Pichia stipitis
Frank K. Agbogbo; Guillermo Coward-Kelly; Mads Torry-Smith; Kevin Wenger; Thomas W. Jeffries
2007-01-01
Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was...
Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen
2010-05-01
Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.
Fermentation of soybean hulls to ethanol while retaining protein value
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mielenz, Jonathan R; Wyman, Professor Charles E; John, Bardsley
2009-01-01
Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with S. cerevisiae D5A. The impact of cellulase, -glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25-30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3-4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybeanmore » hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.« less
Ethanol production from sorghum by a dilute ammonia pretreatment.
Salvi, D A; Aita, G M; Robert, D; Bazan, V
2010-01-01
Sorghum fibers were pretreated with ammonium hydroxide and the effectiveness of the pretreatment evaluated by enzyme hydrolysis and ethanol production. The treatment was carried out by mixing sorghum fibers, ammonia, and water at a ratio of 1:0.14:8 at 160 degrees C for 1 h under 140-160 psi pressure. Approximately 44% lignin and 35% hemicellulose were removed during the process. Untreated and dilute-ammonia-treated fibers at 10% dry solids were hydrolyzed using combinations of commercially available enzymes, Spezyme CP and Novozyme 188. Enzyme combinations were tested at full strength (60 FPU Spezyme CP and 64 CBU Novozyme 188/g glucan) and at half strength (30 FPU Spezyme CP and 32 CBU Novozyme 188/g glucan). Biomass enzyme hydrolysis was conducted for 24 h. Saccharomyces cerevisiae D(5)A was added post hydrolysis for conversion of glucose to ethanol. Theoretical cellulose yields for treated biomass were 84% and 73%, and hemicellulose yields were 73% and 55% for full strength and half strength, respectively. Average cellulose yield was 38% and hemicellulose yield was 14.5% for untreated biomass. Ethanol yields were 25 g/100 g dry biomass and 21 g/100 g dry biomass for full strength and half strength enzyme concentrations, respectively. Controls averaged 10 g ethanol/100 g dry biomass.
Effect of crude glycerol-derived inhibitors on ethanol production by Enterobacter aerogenes.
Lee, Sang Jun; Kim, Sung Bong; Kang, Seong Woo; Han, Sung Ok; Park, Chulhwan; Kim, Seung Wook
2012-01-01
In this study, ethanol production from pure and crude glycerol using Enterobacter aerogenes ATCC 29007 was evaluated under anaerobic culture conditions. Inhibitory effects of substrate concentrations, pH, and salt concentrations were investigated based on crude glycerol components. Ethanol production was performed with pure glycerol concentrations ranging from 5 to 30 g/L to evaluate the effects of substrate concentration and osmotic pressure. The consumed glycerol was 5-14.33 g/L, and the yield of ethanol was higher than 0.75 mol ethanol/mol glycerol after 24 h of cultivation. To evaluate the inhibitory effects of salts (NaCl and KCl), experiments were performed with 0-20 g/L of each salt. Inhibitory effects of salts were strongest at high salt concentrations. The inhibitory effect of pH was performed in the pH range 4-10, and cell growth and ethanol production were highest at pH 5-6. Also, ethanol production was slightly inhibited at low concentration of crude glycerol comparison with pure glycerol. However, significant inhibitory effects were not observed at 1.5 and 2% crude glycerol which showed higher ethanol production compared to pure glycerol.
Techaparin, Atiya; Thanonkeo, Pornthap; Klanrit, Preekamol
The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS) countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR) and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45°C and 13% (v/v), respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40°C and 43°C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37°C with an ethanol concentration of 72.69g/L, a productivity of 1.59g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ) at 40°C were achieved using the Box-Behnken experimental design (BBD). The maximal ethanol concentration obtained during fermentation was 89.32g/L, with a productivity of 2.48g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Chin, K L; H'ng, P S; Wong, L J; Tey, B T; Paridah, M T
2010-05-01
Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3. Copyright 2009 Elsevier Ltd. All rights reserved.
Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi
2016-06-01
The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vaheed, Hossein; Shojaosadati, Seyed Abbas; Galip, Hasan
2011-01-01
In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett-Burman (P-B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g(-1) initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g(-1) initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.
Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos
2015-11-01
The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake. Copyright © 2015 Elsevier Inc. All rights reserved.
Composition and ethanol production potential of cotton gin residues.
Agblevor, Foster A; Batz, Sandra; Trumbo, Jessica
2003-01-01
Cotton gin residue (CGR) collected from five cotton gins was fractionated and characterized for summative composition. The major fractions of the CGR varied widely between cotton gins and consisted of clean lint (5-12%),hulls (16-48%), seeds (6-24%), motes (16-24%), and leaves (14-30%). The summative composition varied within and between cotton gins and consisted of ash (7.9-14.6%), acid-insoluble material (18-26%), xylan (4-15%),and cellulose (20-38%). Overlimed steam-exploded cotton gin waste was readily fermented to ethanol by Escherichia coli KO11. Ethanol yields were feedstock and severity dependent and ranged from 58 to 92.5% of the theoretical yields. The highest ethanol yield was 191 L (50 gal)/t, and the lowest was 120 L (32 gal)/t.
Contamination issues in a continuous ethanol production corn wet milling facility
USDA-ARS?s Scientific Manuscript database
Low ethanol yields and poor yeast viability were investigated at a continuous ethanol production corn wet milling facility. Using starch slurries and recycle streams from a commercial ethanol facility, laboratory hydrolysates were prepared by reproducing starch liquefaction and saccharification ste...
Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A
2008-11-01
Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.
Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan
2016-02-01
Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.
Reduction of ethanol yield from switchgrass infected with rust caused by Puccinia emaculata
Sykes, Virginia R.; Allen, Fred L.; Mielenz, Jonathan R.; ...
2015-10-16
Switchgrass ( Panicum virgatum) is an important biofuel crop candidate thought to have low disease susceptibility. As switchgrass production becomes more prevalent, monoculture and production fields in close proximity to one another may increase the spread and severity of diseases such as switchgrass rust caused by the pathogen Puccinia emaculata. The objective of this research was to examine the impact of rust on ethanol yield in switchgrass. In 2010 and 2012, naturally infected leaves from field-grown Alamo and Kanlow in Knoxville, TN (2010, 2012) and Crossville, TN (2012) were visually categorized as exhibiting low, medium, or high disease based onmore » the degree of chlorosis and sporulation. P. emaculata was isolated from each disease range to confirm infection. Samples from 2010 were acid/heat pretreated and subjected to two runs of simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae D 5A to measure ethanol yield. Near-infrared spectroscopy (NIRS) was used to estimate ethanol yield for 2012 samples. SSF and NIRS data were analyzed separately using ANOVA. Disease level effects were significant within both models (P < 0.05) and both models explained a large amount of variation in ETOH (SSF: R 2 = 0.99, NIRS: R 2 = 0.99). In the SSF dataset, ethanol was reduced by 35 % in samples exhibiting medium disease symptoms and by 55 % in samples exhibiting high disease symptoms. In the NIRS dataset, estimated ethanol was reduced by 10 % in samples exhibiting medium disease symptoms and by 21 % in samples exhibiting high disease symptoms. Lastly, results indicate that switchgrass rust will likely have a negative impact on ethanol yield in switchgrass grown as a biofuel crop.« less
Reduction of ethanol yield from switchgrass infected with rust caused by Puccinia emaculata
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sykes, Virginia R.; Allen, Fred L.; Mielenz, Jonathan R.
Switchgrass ( Panicum virgatum) is an important biofuel crop candidate thought to have low disease susceptibility. As switchgrass production becomes more prevalent, monoculture and production fields in close proximity to one another may increase the spread and severity of diseases such as switchgrass rust caused by the pathogen Puccinia emaculata. The objective of this research was to examine the impact of rust on ethanol yield in switchgrass. In 2010 and 2012, naturally infected leaves from field-grown Alamo and Kanlow in Knoxville, TN (2010, 2012) and Crossville, TN (2012) were visually categorized as exhibiting low, medium, or high disease based onmore » the degree of chlorosis and sporulation. P. emaculata was isolated from each disease range to confirm infection. Samples from 2010 were acid/heat pretreated and subjected to two runs of simultaneous saccharification and fermentation (SSF) with Saccharomyces cerevisiae D 5A to measure ethanol yield. Near-infrared spectroscopy (NIRS) was used to estimate ethanol yield for 2012 samples. SSF and NIRS data were analyzed separately using ANOVA. Disease level effects were significant within both models (P < 0.05) and both models explained a large amount of variation in ETOH (SSF: R 2 = 0.99, NIRS: R 2 = 0.99). In the SSF dataset, ethanol was reduced by 35 % in samples exhibiting medium disease symptoms and by 55 % in samples exhibiting high disease symptoms. In the NIRS dataset, estimated ethanol was reduced by 10 % in samples exhibiting medium disease symptoms and by 21 % in samples exhibiting high disease symptoms. Lastly, results indicate that switchgrass rust will likely have a negative impact on ethanol yield in switchgrass grown as a biofuel crop.« less
Investigation of Pleurotus ostreatus pretreatment on switchgrass for ethanol production
NASA Astrophysics Data System (ADS)
Slavens, Shelyn Gehle
Fungal pretreatment using the white-rot fungus Pleurotus ostreatus on switchgrass for ethanol production was studied. In a small-scale storage study, small switchgrass bales were inoculated with fungal spawn and automatically watered to maintain moisture. Sampled at 25, 53, and 81 d, the switchgrass composition was determined and liquid hot water (LHW) pretreatment was conducted. Fungal pretreatment significantly decreased the xylan and lignin content; glucan was not significantly affected by fungal loading. The glucan, xylan, and lignin contents significantly decreased with increased fungal pretreatment time. The effects of the fungal pretreatment were not highly evident after the LHW pretreatment, showing only changes based on sampling time. Although other biological activity within the bales increased cellulose degradation, the fungal pretreatment successfully reduced the switchgrass lignin and hemicellulose contents. In a laboratory-scale nutrient supplementation study, copper, manganese, glucose, or water was added to switchgrass to induce production of ligninolytic enzymes by P. ostreatus. After 40 d, ligninolytic enzyme activities and biomass composition were determined and simultaneous saccharification and fermentation (SSF) was conducted to determine ethanol yield. Laccase activity was similar for all supplements and manganese peroxidase (MnP) activity was significantly less in copper-treated samples than in the other fungal-inoculated samples. The fungal pretreatment reduced glucan, xylan, and lignin content, while increasing extractable sugars content. The lowest lignin contents occurred in the water-fungal treated samples and produced the greatest ethanol yields. The greatest lignin contents occurred in the copper-fungal treated samples and produced the lowest ethanol yields. Manganese-fungal and glucose-fungal treated samples had similar, intermediate lignin contents and produced similar, intermediate ethanol yields. Ethanol yields from switchgrass were increased significantly by fungal pretreatment.
Thompson, R Adam; Layton, Donovan S; Guss, Adam M; Olson, Daniel G; Lynd, Lee R; Trinh, Cong T
2015-11-01
Clostridium thermocellum is an anaerobic, Gram-positive, thermophilic bacterium that has generated great interest due to its ability to ferment lignocellulosic biomass to ethanol. However, ethanol production is low due to the complex and poorly understood branched metabolism of C. thermocellum, and in some cases overflow metabolism as well. In this work, we developed a predictive stoichiometric metabolic model for C. thermocellum which incorporates the current state of understanding, with particular attention to cofactor specificity in the atypical glycolytic enzymes and the complex energy, redox, and fermentative pathways with the goal of aiding metabolic engineering efforts. We validated the model's capability to encompass experimentally observed phenotypes for the parent strain and derived mutants designed for significant perturbation of redox and energy pathways. Metabolic flux distributions revealed significant alterations in key metabolic branch points (e.g., phosphoenol pyruvate, pyruvate, acetyl-CoA, and cofactor nodes) in engineered strains for channeling electron and carbon fluxes for enhanced ethanol synthesis, with the best performing strain doubling ethanol yield and titer compared to the parent strain. In silico predictions of a redox-imbalanced genotype incapable of growth were confirmed in vivo, and a mutant strain was used as a platform to probe redox bottlenecks in the central metabolism that hinder efficient ethanol production. The results highlight the robustness of the redox metabolism of C. thermocellum and the necessity of streamlined electron flux from reduced ferredoxin to NAD(P)H for high ethanol production. The model was further used to design a metabolic engineering strategy to phenotypically constrain C. thermocellum to achieve high ethanol yields while requiring minimal genetic manipulations. The model can be applied to design C. thermocellum as a platform microbe for consolidated bioprocessing to produce ethanol and other reduced metabolites. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Blomqvist, J; South, E; Tiukova, I; Tiukova, L; Momeni, M H; Hansson, H; Ståhlberg, J; Horn, S J; Schnürer, J; Passoth, V
2011-07-01
Testing the ability of the alternative ethanol production yeast Dekkera bruxellensis to produce ethanol from lignocellulose hydrolysate and comparing it to Saccharomyces cerevisiae. Industrial isolates of D. bruxellensis and S. cerevisiae were cultivated in small-scale batch fermentations of enzymatically hydrolysed steam exploded aspen sawdust. Different dilutions of hydrolysate were tested. None of the yeasts grew in undiluted or 1:2 diluted hydrolysate [final glucose concentration always adjusted to 40 g l⁻¹ (0.22 mol l⁻¹)]. This was most likely due to the presence of inhibitors such as acetate or furfural. In 1:5 hydrolysate, S. cerevisiae grew, but not D. bruxellensis, and in 1:10 hydrolysate, both yeasts grew. An external vitamin source (e.g. yeast extract) was essential for growth of D. bruxellensis in this lignocellulosic hydrolysate and strongly stimulated S. cerevisiae growth and ethanol production. Ethanol yields of 0.42 ± 0.01 g ethanol (g glucose)⁻¹ were observed for both yeasts in 1:10 hydrolysate. In small-scale continuous cultures with cell recirculation, with a gradual increase in the hydrolysate concentration, D. bruxellensis was able to grow in 1:5 hydrolysate. In bioreactor experiments with cell recirculation, hydrolysate contents were increased up to 1:2 hydrolysate, without significant losses in ethanol yields for both yeasts and only slight differences in viable cell counts, indicating an ability of both yeasts to adapt to toxic compounds in the hydrolysate. Dekkera bruxellensis and S. cerevisiae have a similar potential to ferment lignocellulose hydrolysate to ethanol and to adapt to fermentation inhibitors in the hydrolysate. This is the first study investigating the potential of D. bruxellensis to ferment lignocellulosic hydrolysate. Its high competitiveness in industrial fermentations makes D. bruxellensis an interesting alternative for ethanol production from those substrates. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Bioconversion of glycerol to ethanol by a mutant Enterobacter aerogenes
2012-01-01
The main objective of this research is to develop, by adaptive evolution, mutant strains of Enterobacter aerogenes ATCC 13048 that are capable of withstanding high glycerol concentration as well as resisting ethanol-inhibition. The mutant will be used for high ethanol fermentation from glycerol feedstock. Ethanol production from pure (P-) and recovered (R-) glycerol using the stock was evaluated. A six-tube-subculture-generations method was used for developing the mutant. This involved subculturing the organism six consecutive times in tubes containing the same glycerol and ethanol concentrations at the same culture conditions. Then, the glycerol and/or ethanol concentration was increased and the six subculture generations were repeated. A strain capable of growing in 200 g/L glycerol and 30 g/L ethanol was obtained. The ability of this mutant, vis-à-vis the original strain, in utilizing glycerol in a high glycerol containing medium, with the concomitant ethanol yield, was assessed. Tryptic soy broth without dextrose (TSB) was used as the fermentation medium. Fermentation products were analyzed using HPLC. In a 20 g/L glycerol TSB, E. aerogenes ATCC 13048 converted 18.5 g/L P-glycerol and 17.8 g/L R-glycerol into 12 and 12.8 g/L ethanol, respectively. In a 50 g/L P-glycerol TSB, it utilized only 15.6 g/L glycerol; but the new strain used up 39 g/L, yielding 20 g/L ethanol after 120 h, an equivalence of 1.02 mol ethanol/mol-glycerol. This is the highest ethanol yield reported from glycerol bioconversion. The result of this P-glycerol fermentation can be duplicated using the R-glycerol from biodiesel production. PMID:22455837
Production of ethanol from kitchen waste by using flocculating Saccharomyces cerevisiae KF-7.
Wang, Yan-Fang; Tan, Li; Wang, Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji
2017-02-01
Kitchen waste is rich in carbohydrates and can potentially serve as feedstock for ethanol production. Starch was the primary carbohydrate in kitchen waste obtained from the canteen in the Sichuan University, which was used to evaluate long-term ethanol fermentation performance in this study. The optimal conditions for liquefaction and saccharification of the kitchen waste were as follows: adding α-amylase at 0.3 μL/g glucan for liquefaction at 90°C for 30 min, and adding glucoamylase at 4 μL/g glucan for saccharification at 50°C. Glucose yield obtained under the optimal conditions was over 80%. Addition of cellulase did not enhance glucose yield, but decreased the viscosity of the saccharified slurry. Repeated-batch presaccharification followed by simultaneous saccharification and fermentation of 20 batches was successfully carried out at an aeration of 0.1 vvm. Ethanol concentration of 43.9-45.0 g/L was achieved, corresponding to ethanol yield and productivity of 88.9-91.2% and 3.3-3.5 g/L/h, respectively, and the CO 2 /ethanol molar ratio was approximately 1. Continuous PSSF was stably carried out at a dilution rate of ≤0.3 h -1 . Productivity was 11.5 g/L/h at a dilution rate of 0.3 h -1 . Ethanol concentration and yield were 42.0 g/L and 82.8% at a dilution rate of 0.2 h -1 , respectively.
Zhao, X.; Moates, G.K.; Elliston, A.; Wilson, D.R.; Coleman, M.J.; Waldron, K.W.
2015-01-01
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210 °C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g−1 substrate) cellulase plus β-glucosidase (2 U g−1 substrate) and a yeast inoculum of 10% (v/v or 8.0 × 107 cells mL−1). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. PMID:26210138
Zhao, X; Moates, G K; Elliston, A; Wilson, D R; Coleman, M J; Waldron, K W
2015-10-01
This study investigated the conversion of Lemna minor biomass to bioethanol. The biomass was pre-treated by steam explosion (SE, 210°C, 10 min) and then subjected to simultaneous saccharification and fermentation (SSF) using Cellic® CTec 2 (20 U or 0.87 FPU g(-1) substrate) cellulase plus β-glucosidase (2 U g(-1) substrate) and a yeast inoculum of 10% (v/v or 8.0×10(7) cells mL(-1)). At a substrate concentration of 1% (w/v) an ethanol yield of 80% (w/w, theoretical) was achieved. However at a substrate concentration of 20% (w/v), the ethanol yield was lowered to 18.8% (w/w, theoretical). Yields were considerably improved by increasing the yeast titre in the inoculum or preconditioning the yeast on steam exploded liquor. These approaches enhanced the ethanol yield up to 70% (w/w, theoretical) at a substrate concentration of 20% (w/v) by metabolising fermentation inhibitors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.
Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C
2017-01-01
The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the cellulosic ethanol industry.
NASA Astrophysics Data System (ADS)
Majidi, Pasha; Pickup, Peter G.
2014-12-01
A direct ethanol fuel cell has been operated under sinusoidal (AC) potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At 80 °C, faradaic yields of CO2 as high as 25% have been achieved with a PtRu anode catalyst, while the maximum CO2 production at constant potential was 13%. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO. These results will be important in the optimization of operating conditions for direct ethanol fuel cells, where the benefits of potential cycling are projected to increase as catalysts that produce CO2 more efficiently are implemented.
Yao, Linxing; Lee, Show-Ling; Wang, Tong; de Moura, Juliana M L N; Johnson, Lawrence A
2012-09-01
Soy skim, a protein-rich liquid co-product from the aqueous extraction of soybeans, was co-fermented with corn to produce ethanol. Effects of soy skim addition level, type of skim, corn particle size, water-to-solids ratio, and urea on co-fermentation were determined. The addition of 20-100% skim increased the fermentation rate by 18-27% and shortened the fermentation time by 5-7h without affecting ethanol yield. Finely ground corn or high water-to-solids ratio (≥ 3.0) in the mash gave higher fermentation rates, but did not increase the ethanol yield. When the water was completely replaced with soy skim, the addition of urea became unnecessary. Soy skim retentate that was concentrated by nanofiltration increased fermentation rate by 25%. The highest level of skim addition resulted in a finished beer with 16% solids, 47% protein (dwb) containing 3.6% lysine, and an ethanol yield of 39 g/100g dry corn. Copyright © 2012 Elsevier Ltd. All rights reserved.
Thermodynamic analysis of fermentation and anaerobic growth of baker's yeast for ethanol production.
Teh, Kwee-Yan; Lutz, Andrew E
2010-05-17
Thermodynamic concepts have been used in the past to predict microbial growth yield. This may be the key consideration in many industrial biotechnology applications. It is not the case, however, in the context of ethanol fuel production. In this paper, we examine the thermodynamics of fermentation and concomitant growth of baker's yeast in continuous culture experiments under anaerobic, glucose-limited conditions, with emphasis on the yield and efficiency of bio-ethanol production. We find that anaerobic metabolism of yeast is very efficient; the process retains more than 90% of the maximum work that could be extracted from the growth medium supplied to the chemostat reactor. Yeast cells and other metabolic by-products are also formed, which reduces the glucose-to-ethanol conversion efficiency to less than 75%. Varying the specific ATP consumption rate, which is the fundamental parameter in this paper for modeling the energy demands of cell growth, shows the usual trade-off between ethanol production and biomass yield. The minimum ATP consumption rate required for synthesizing cell materials leads to biomass yield and Gibbs energy dissipation limits that are much more severe than those imposed by mass balance and thermodynamic equilibrium constraints. 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, L.; Wang, W.; Pallapolu, V. R.
2011-11-01
A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and co-fermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and SSCF. Low ash content in sludges also increased the ethanol yield to the extent that the enzyme dosage required to achieve 70% yield in the fermentation process was reduced by 30%. High solid loading in SSF and SSCF decreased the ethanol yield. High agitation andmore » de-ashing of the sludges were able to restore the part of the yield loss caused by high solid loading. Substitution of the laboratory fermentation medium (peptone and yeast extract) with corn steep liquor did not bring about any adverse effects in the fermentation. Fed-batch operation of the SSCF and SSF using low-ash content sludges was effective in raising the ethanol concentration, achieving 47.8 g/L and 60.0 g/L, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1995-07-01
The effect of lactose concentration on growth of Candida pseudotropicalis and ethanol production from cheese whey under batch conditions was investigated. Four initial lactose concentrations ranging from 50 to 200 g/L (5 to 20% wt/vol) were used. High concentration of lactose had an inhibitory effect on the specific growth rate, lactose utilization rate, and ethanol production rate. The maximum cell concentration was influenced by the initial substrate concentration as well as ethanol concentration. Inhibition of ethanol production was more pronounced at higher initial lactose concentrations. The maximum ethanol yield (96.6% of the theoretical yield) was achieved with the 100 g/Lmore » initial substrate concentration. The results indicated that pH control during alcohol fermentation of cheese whey is not necessary. 41 refs., 12 figs., 1 tab.« less
2014-01-01
Background Economically feasible cellulosic ethanol production requires that the process can be operated at high solid loadings, which currently imparts technical challenges including inefficient mixing leading to heat and mass transfer limitations and high concentrations of inhibitory compounds hindering microbial activity during simultaneous saccharification and fermentation (SSF) process. Consequently, there is a need to develop cost effective processes overcoming the challenges when working at high solid loadings. Results In this study we have modified the yeast cultivation procedure and designed a SSF process to address some of the challenges at high water insoluble solids (WIS) content. The slurry of non-detoxified pretreated spruce when used in a batch SSF at 19% (w/w) WIS was found to be inhibitory to Saccharomyces cerevisiae Thermosacc that produced 2 g l-1 of ethanol. In order to reduce the inhibitory effect, the non-washed solid fraction containing reduced amount of inhibitors compared to the slurry was used in the SSF. Further, the cells were cultivated in the liquid fraction of pretreated spruce in a continuous culture wherein the outflow of cell suspension was used as cell feed to the SSF reactor in order to maintain the metabolic state of the cell. Enhanced cell viability was observed with cell, enzyme and substrate feed in a SSF producing 40 g l-1 ethanol after 96 h corresponding to 53% of theoretical yield based on available hexose sugars compared to 28 g l-1 ethanol in SSF with enzyme and substrate feed but no cell feed resulting in 37% of theoretical yield at a high solids loading of 20% (w/w) WIS content. The fed-batch SSF also significantly eased the mixing, which is usually challenging in batch SSF at high solids loading. Conclusions A simple modification of the cell cultivation procedure together with a combination of yeast, enzyme and substrate feed in a fed-batch SSF process, made it possible to operate at high solids loadings in a conventional bioreactor. The proposed process strategy significantly increased the yeast cell viability and overall ethanol yield. It was also possible to obtain 4% (w/v) ethanol concentration, which is a minimum requirement for an economical distillation process. PMID:24713027
Koppram, Rakesh; Olsson, Lisbeth
2014-04-08
Economically feasible cellulosic ethanol production requires that the process can be operated at high solid loadings, which currently imparts technical challenges including inefficient mixing leading to heat and mass transfer limitations and high concentrations of inhibitory compounds hindering microbial activity during simultaneous saccharification and fermentation (SSF) process. Consequently, there is a need to develop cost effective processes overcoming the challenges when working at high solid loadings. In this study we have modified the yeast cultivation procedure and designed a SSF process to address some of the challenges at high water insoluble solids (WIS) content. The slurry of non-detoxified pretreated spruce when used in a batch SSF at 19% (w/w) WIS was found to be inhibitory to Saccharomyces cerevisiae Thermosacc that produced 2 g l-1 of ethanol. In order to reduce the inhibitory effect, the non-washed solid fraction containing reduced amount of inhibitors compared to the slurry was used in the SSF. Further, the cells were cultivated in the liquid fraction of pretreated spruce in a continuous culture wherein the outflow of cell suspension was used as cell feed to the SSF reactor in order to maintain the metabolic state of the cell. Enhanced cell viability was observed with cell, enzyme and substrate feed in a SSF producing 40 g l-1 ethanol after 96 h corresponding to 53% of theoretical yield based on available hexose sugars compared to 28 g l-1 ethanol in SSF with enzyme and substrate feed but no cell feed resulting in 37% of theoretical yield at a high solids loading of 20% (w/w) WIS content. The fed-batch SSF also significantly eased the mixing, which is usually challenging in batch SSF at high solids loading. A simple modification of the cell cultivation procedure together with a combination of yeast, enzyme and substrate feed in a fed-batch SSF process, made it possible to operate at high solids loadings in a conventional bioreactor. The proposed process strategy significantly increased the yeast cell viability and overall ethanol yield. It was also possible to obtain 4% (w/v) ethanol concentration, which is a minimum requirement for an economical distillation process.
Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D
2016-09-01
Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.
2017-01-01
The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC. PMID:28658270
Acevedo, Alejandro; Conejeros, Raúl; Aroca, Germán
2017-01-01
The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC.
Tao, Ling; Aden, Andy; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E
2011-12-01
Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin
2014-11-01
Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.
NASA Astrophysics Data System (ADS)
Montalbo-Lomboy, Melissa T.
The 21st Century human lifestyle has become heavily dependent on hydrocarbon inputs. Energy demand and the global warming effects due to the burning of fossil fuels have continued to increase. Rising awareness of the negative environmental and economic impacts of hydrocarbon dependence has led to a resurgence of interest in renewable energy sources such as ethanol. Fuel ethanol is known to be a cleaner and renewable source of energy relative to gasoline. Many studies have agreed that fuel ethanol has reduced greenhouse gas (GHG) emissions and has larger overall energy benefits compared to gasoline. Currently, the majority of the fuel ethanol in the United States is produced from corn using dry-grind milling process. The typical dry-grind ethanol plant incorporates jet cooking using steam to cook the corn slurry as pretreatment for saccharification; an energy intensive step. In aiming to reduce energy usage, this study evaluated the use of ultrasonics as an alternative to jet cooking. Ultrasonic batch experiments were conducted using a Branson 2000 Series bench-scale ultrasonic unit operating at a frequency of 20 kHz and a maximum output of 2.2 kW. Corn slurry was sonicated at varying amplitudes from 192 to 320 mumpeak-to-peak(p-p) for 0-40 seconds. Enzyme stability was investigated by adding enzyme (STARGEN(TM)001) before and after sonication. Scanning electron micrograph (SEM) images and particle size distribution analysis showed a nearly 20-fold size reduction by disintegration of corn particles due to ultrasonication. The results also showed a 30% improvement in sugar release of sonicated samples relative to the control group (untreated). The efficiency exceeded 100% in terms of relative energy gain from the additional sugar released due to ultrasonication compared to the ultrasonic energy applied. Interestingly, enzymatic activity was enhanced when sonicated at low and medium power. This result suggested that ultrasonic energy did not denature the enzymes during pretreatment. Ultrasonication of sugary-2 corn was also investigated in the study. Results similar to those for commodity corn (dent corn) were found, in terms of glucose yield and starch conversion. SEM and polarized-light microscope pictures showed the partial gelatinization of corn slurry due to ultrasound. In the 96-h saccharification time, a model was formulated to fit the sugar release curve. The results have shown 17-21% increase in the extent of sugar production from sonicated samples relative to the control group. Additionally, the reaction rates of the sonicated samples were 2- to 10-fold higher than the reaction rates for the control group. In comparing sugary-2 corn with commodity corn, it was found that sonicated sugary-2 corn saccharified faster than sonicated commodity corn. It is important to note, without ultrasonic treatment, sugary-2 corn released more reducing sugar than commodity corn during saccharification. To further investigate the potential of ultrasonics for scale-up, a continuous flow system was studied. An ultrasonic continuous flow system was tested using Branson's flow-through "donut" horn. The donut horn, which vibrates radially, was placed inside a 5.5 L stainless steel reactor. The amplitude was maintained at 12 mumpp and the feed flow rate was varied from 8-27 L/min (2-7 gal/min) with reactor retention times varying from 12-40 seconds. Samples sonicated in continuous flow system showed lower reducing sugar yield than batch ultrasonication. However, considering the ultrasonic energy density of batch and continuous systems, the continuous systems proved to be more energy efficient in terms of glucose production compared with the batch system. It was also seen that particle size disintegration was proportional to energy density regardless of the type of ultrasonic system used. To compare ultrasonics with jet cooking, fermentation experiments were conducted. There were only marginal differences between jet cooked samples and the sonicated samples in terms of ethanol conversion based on theoretical yield. Furthermore, statistical analysis confirmed that there was no significant difference (p<0.05) in the ethanol yields of the two pretreatment methods. Economic analysis indicated that the capital cost of installing ultrasonics was higher compared to jet cooker equipment. However, due to the energy needs of jet cooking, a typical 189 million liters (50 million gallon) per year ethanol plant ethanol plant would save about 16% in pretreatment cost by using ultrasonics. Based on these results, ultrasonication is a promising pretreatment method in corn ethanol production, as an alternative to jet cooking.
Gabardo, Sabrina; Pereira, Gabriela Feix; Rech, Rosane; Ayub, Marco Antônio Záchia
2015-09-01
We investigated the kinetics of whey bioconversion into ethanol by Kluyveromyces marxianus in continuous bioreactors using the "accelerostat technique" (A-stat). Cultivations using free and Ca-alginate immobilized cells were evaluated using two different acceleration rates (a). The kinetic profiles of these systems were modeled using four different unstructured models, differing in the expressions for the specific growth (μ) and substrate consumption rates (r s), taking into account substrate limitation and product inhibition. Experimental data showed that the dilution rate (D) directly affected cell physiology and metabolism. The specific growth rate followed the dilution rate (μ≈D) for the lowest acceleration rate (a = 0.0015 h(-2)), condition in which the highest ethanol yield (0.52 g g(-1)) was obtained. The highest acceleration rate (a = 0.00667 h(-2)) led to a lower ethanol yield (0.40 g g(-1)) in the system where free cells were used, whereas with immobilized cells ethanol yields increased by 23 % (0.49 g g(-1)). Among the evaluated models, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the kinetics of whey bioconversion into ethanol. These results may be useful in scaling up the process for ethanol production from whey.
Harris, Adrian L; Ullah, Roshan; Fountain, Michelle T
2017-08-01
Tetranychus urticae is a widespread polyphagous mite, found on a variety of fruit crops. Tetranychus urticae feeds on the underside of the leaves perforating plant cells and sucking the cell contents. Foliar damage and excess webbing produced by T. urticae can reduce fruit yield. Assessments of T. urticae populations while small provide reliable and accurate ways of targeting control strategies and recording their efficacy against T. urticae. The aim of this study was to evaluate four methods for extracting low levels of T. urticae from leaf samples, representative of developing infestations. These methods were compared to directly counting of mites on leaves under a dissecting microscope. These methods were ethanol washing, a modified paraffin/ethanol meniscus technique, Tullgren funnel extraction and the Henderson and McBurnie mite brushing machine with consideration to: accuracy, precision and simplicity. In addition, two physically different leaf morphologies were compared; Prunus leaves which are glabrous with Malus leaves which are setaceous. Ethanol extraction consistently yielded the highest numbers of mites and was the most rapid method for recovering T. urticae from leaf samples, irrespective of leaf structure. In addition the samples could be processed and stored before final counting. The advantages and disadvantages of each method are discussed in detail.
Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.
Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram
2015-07-22
The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.
Two in-vivo protocols for testing virucidal efficacy of handwashing and hand disinfection.
Steinmann, J; Nehrkorn, R; Meyer, A; Becker, K
1995-01-01
Whole-hands and fingerpads of seven volunteers were contaminated with poliovirus type 1 Sabin strain in order to evaluate virucidal efficacy of different forms of handwashing and handrub with alcohols and alcohol-based disinfectants. In the whole-hand protocol, handwashing with unmedicated soap for 5 min and handrubbing with 80% ethanol yielded a log reduction factor (RF) of > 2, whereas the log RF by 96.8% ethanol exceeded 3.2. With the fingerpad model ethanol produced a greater log RF than iso- or n-propanol. Comparing five commercial hand disinfectants and a chlorine solution (1.0% chloramine T-solution) for handrub, Desderman and Promanum, both composed of ethanol, yielded log RFs of 2.47 and 2.26 respectively after an application time of 60 s, similar to 1.0% chloramine T-solution (log RF of 2.28). Autosept, Mucasept, and Sterillium, based on n-propanol and/or isopropanol, were found to be significantly less effective (log RFs of 1.16, 1.06 and 1.52 respectively). A comparison of a modified whole-hand and the fingerpad protocol with Promanum showed similar results with the two systems suggesting both models are suitable for testing the in-vivo efficacy of handwashing agents and hand disinfectants which are used without any water.
A comparative study of Averrhoabilimbi extraction method
NASA Astrophysics Data System (ADS)
Zulhaimi, H. I.; Rosli, I. R.; Kasim, K. F.; Akmal, H. Muhammad; Nuradibah, M. A.; Sam, S. T.
2017-09-01
In recent year, bioactive compound in plant has become a limelight in the food and pharmaceutical market, leading to research interest to implement effective technologies for extracting bioactive substance. Therefore, this study is focusing on extraction of Averrhoabilimbi by different extraction technique namely, maceration and ultrasound-assisted extraction. Fewplant partsof Averrhoabilimbiweretaken as extraction samples which are fruits, leaves and twig. Different solvents such as methanol, ethanol and distilled water were utilized in the process. Fruit extractsresult in highest extraction yield compared to other plant parts. Ethanol and distilled water have significant role compared to methanol in all parts and both extraction technique. The result also shows that ultrasound-assisted extraction gave comparable result with maceration. Besides, the shorter period on extraction process gives useful in term of implementation to industries.
Quirós, Manuel; Rojas, Virginia; Gonzalez, Ramon; Morales, Pilar
2014-07-02
Respiration of sugars by non-Saccharomyces yeasts has been recently proposed for lowering alcohol levels in wine. Development of industrial fermentation processes based on such an approach requires, amongst other steps, the identification of yeast strains which are able to grow and respire under the relatively harsh conditions found in grape must. This work describes the characterization of a collection of non-Saccharomyces yeast strains in order to identify candidate yeast strains for this specific application. It involved the estimation of respiratory quotient (RQ) values under aerated conditions, at low pH and high sugar concentrations, calculation of yields of ethanol and other relevant metabolites, and characterization of growth responses to the main stress factors found during the first stages of alcoholic fermentation. Physiological features of some strains of Metschnikowia pulcherrima or two species of Kluyveromyces, suggest they are suitable for lowering ethanol yields by respiration. The unsuitability of Saccharomyces cerevisiae strains for this purpose was not due to ethanol yields (under aerated conditions they are low enough for a significant reduction in final ethanol content), but to the high acetic acid yields under these growth conditions. According to results from controlled aeration fermentations with one strain of M. pulcherrima, design of an aeration regime allowing for lowering ethanol yields though preserving grape must components from excessive oxidation, would be conceivable. Copyright © 2014. Published by Elsevier B.V.
Wu, Wei; Rondon, Vanessa; Weeks, Kalvin; Pullammanappallil, Pratap; Ingram, Lonnie O; Shanmugam, K T
2018-03-01
Switchgrass (Alamo) was pretreated with phosphoric acid (0.75 and 1%, w/w) at three temperatures (160, 175 and 190 °C) and time (5, 7.5 and 10 min) using a steam gun. The slurry after pretreatment was liquefied by enzymes and the released sugars were fermented in a simultaneous saccharification and co-fermentation process to ethanol using ethanologenic Escherichia coli strain SL100. Among the three variables in pretreatment, temperature and time were critical in supporting ethanol titer and yield. Enzyme hydrolysis significantly increased the concentration of furans in slurries, apparently due to release of furans bound to the solids. The highest ethanol titer of 21.2 ± 0.3 g/L ethanol obtained at the pretreatment condition of 190-1-7.5 (temperature-acid concentration-time) and 10% solids loading accounted for 190 ± 2.9 g ethanol/kg of raw switch grass. This converts to 61.7 gallons of ethanol per ton of dry switchgrass, a value that is comparable to other published pretreatment conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of culture conditions on the fermentation of xylose to ethanol by Candida shehatae
T. W. Jeffries
1985-01-01
This research examined four factors on the fermentation of xylose by Candida shehatae, and the following conclusions were reached: (1) A minimal medium is effective for producing ethanol. (2) Peptone and casamino acids stimulate ethanol production. (3) Aeration is important in obtaining good ethanol production rates and yields. (4) The maximal rate of ethanol...
Karami, Zohreh; Emam-Djomeh, Zahra; Mirzaee, Habib Allah; Khomeiri, Morteza; Mahoonak, Alireza Sadeghi; Aydani, Emad
2015-06-01
In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.
Oludemi, Taofiq; Barros, Lillian; Prieto, M A; Heleno, Sandrina A; Barreiro, Maria F; Ferreira, Isabel C F R
2018-01-24
The extraction of triterpenoids and phenolic compounds from Ganoderma lucidum was optimized by using the response surface methodology (RSM), using heat and ultrasound assisted extraction techniques (HAE and UAE). The obtained results were compared with that of the standard Soxhlet procedure. RSM was applied using a circumscribed central composite design with three variables (time, ethanol content, and temperature or ultrasonic power) and five levels. The conditions that maximize the responses (extraction yield, triterpenoids and total phenolics) were: 78.9 min, 90.0 °C and 62.5% ethanol and 40 min, 100.0 W and 89.5% ethanol for HAE and UAE, respectively. The latter was the most effective, resulting in an extraction yield of 4.9 ± 0.6% comprising a content of 435.6 ± 21.1 mg g -1 of triterpenes and 106.6 ± 16.2 mg g -1 of total phenolics. The optimized extracts were fully characterized in terms of individual phenolic compounds and triterpenoids by HPLC-DAD-ESI/MS. The recovery of the above-mentioned bioactive compounds was markedly enhanced using the UAE technique.
Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie
2014-02-01
The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki
2009-04-01
In this study, five recombinant Saccharomyces cerevisiae strains were compared for their xylose-fermenting ability. The most efficient xylose-to-ethanol fermentation was found by using the industrial strain MA-R4, in which the genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis along with an endogenous xylulokinase gene were expressed by chromosomal integration of the flocculent yeast strain IR-2. The MA-R4 strain rapidly converted xylose to ethanol with a low xylitol yield. Furthermore, the MA-R4 strain had the highest ethanol production when fermenting not only a mixture of glucose and xylose, but also mixed sugars in the detoxified hydrolysate of wood chips. These results collectively suggest that MA-R4 may be a suitable recombinant strain for further study into large-scale ethanol production from mixed sugars present in lignocellulosic hydrolysates.
Comparison of several ethanol productions using xylanase, inorganic salts, surfactant
NASA Astrophysics Data System (ADS)
Wu, Yan; Lu, Jie; Yang, Rui-feng; Song, Wen-jing; Li, Hai-ming; Wang, Hai-song; Zhou, Jing-hui
2017-03-01
Liquid hot water (LHW) pretreatment is an effective and environmentally friendly method to produce bioethanol with lignocellulosic materials. Corn stover was pretreated with liquid hot water (LHW) and then subjected to semi-simultaneous saccharification and fermentation (S-SSF) to obtain high ethanol concentration and yield. The present study aimed to confirm the effect of several additives on the fermentation digestibility of unwashed WIS of corn stover pretreated with LHW. So we also investigated the process, such as enzyme addition, inorganic salts, surfactant and different loading Triton. Results show that high ethanol concentration is necessary to add xylanase in the stage of saccharification. The ethanol concentration increased mainly with magnesium ion on fermentation. Comparing with Tween 80, Span 80 and Polyethylene glycol, Triton is the best surfactant. In contrast to using xylanase and Triton respectively, optimization can make up the lack of stamina and improve effect of single inorganic salts.
Mallet, Charlotte; Bolduc, Andréanne; Bishop, Sophie; Gautier, Yohan; Skene, W G
2014-11-28
The absolute fluorescence quantum yield (Φfl) of a polyfluorenyl azomethine homopolymer was measured as a function of solvent polarity. The solvent induced and temperature dependent fluorescence of the homopolymer were also investigated and they were compared to the corresponding monomer and copolymer. The Φfl of the homopolymer was consistent (45-70%), regardless of solvent polarity with Stokes shifts up to 7460 cm(-1) in ethanol. In contrast, the Φfl of its corresponding monomer decreased from 60% in ethanol to 1% in toluene, whereas a Φfl < 5% for its analogous copolymer was measured. Moderate fluorescence yields (Φfl ≈ 25%) were also possible in thin film when co-depositing the homopolymer with PMMA. Cryofluorescence was used to probe the excited state deactivation modes. Deactivation by internal conversion was found to compete with fluorescence. The fluorescence deactivation pathways of the homopolymer and its corresponding monomer could be suppressed at 77 K, resulting in fluorescence turn-on. Both fluorophores were found to detect nitroaromatics.
Performance of dairy cows fed high levels of acetic acid or ethanol.
Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G
2013-01-01
Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be considered when calculating energy content of fermented feedstuffs. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F
2008-01-01
Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively. Conclusion The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme. PMID:18947407
Pretreatment and enzymatic hydrolysis of lignocellulosic biomass
NASA Astrophysics Data System (ADS)
Corredor, Deisy Y.
The performance of soybean hulls and forage sorghum as feedstocks for ethanol production was studied. The main goal of this research was to increase fermentable sugars' yield through high-efficiency pretreatment technology. Soybean hulls are a potential feedstock for production of bio-ethanol due to their high carbohydrate content (≈50%) of nearly 37% cellulose. Soybean hulls could be the ideal feedstock for fuel ethanol production, because they are abundant and require no special harvesting and additional transportation costs as they are already in the plant. Dilute acid and modified steam-explosion were used as pretreatment technologies to increase fermentable sugars yields. Effects of reaction time, temperature, acid concentration and type of acid on hydrolysis of hemicellulose in soybean hulls and total sugar yields were studied. Optimum pretreatment parameters and enzymatic hydrolysis conditions for converting soybean hulls into fermentable sugars were identified. The combination of acid (H2SO4, 2% w/v) and steam (140°C, 30 min) efficiently solubilized the hemicellulose, giving a pentose yield of 96%. Sorghum is a tropical grass grown primarily in semiarid and dry parts of the world, especially in areas too dry for corn. The production of sorghum results in about 30 million tons of byproducts mainly composed of cellulose, hemicellulose, and lignin. Forage sorghum such as brown midrib (BMR) sorghum for ethanol production has generated much interest since this trait is characterized genetically by lower lignin concentrations in the plant compared with conventional types. Three varieties of forage sorghum and one variety of regular sorghum were characterized and evaluated as feedstock for fermentable sugar production. Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and X-Ray diffraction were used to determine changes in structure and chemical composition of forage sorghum before and after pretreatment and enzymatic hydrolysis process. Up to 72% of hexose yield and 94% of pentose yield were obtained using "modified" steam explosion with 2% sulfuric acid at 140°C for 30 min and enzymatic hydrolysis with cellulase (15 FPU/g cellulose) and beta-glucosidase (50 CBU/g cellulose).
Jilani, Syed Bilal; Venigalla, Siva Sai Krishna; Mattam, Anu Jose; Dev, Chandra; Yazdani, Syed Shams
2017-09-01
E. coli has the ability to ferment both C5 and C6 sugars and produce mixture of acids along with small amount of ethanol. In our previous study, we reported the construction of an ethanologenic E. coli strain by modulating flux through the endogenous pathways. In the current study, we made further changes in the strain to make the overall process industry friendly; the changes being (1) removal of plasmid, (2) use of low-cost defined medium, and (3) improvement in consumption rate of both C5 and C6 sugars. We first constructed a plasmid-free strain SSY13 and passaged it on AM1-xylose minimal medium plate for 150 days. Further passaging was done for 56 days in liquid AM1 medium containing either glucose or xylose on alternate days. We observed an increase in specific growth rate and carbon utilization rate with increase in passage numbers until 42 days for both glucose and xylose. The 42nd day passaged strain SSK42 fermented 113 g/L xylose in AM1 minimal medium and produced 51.1 g/L ethanol in 72 h at 89% of maximum theoretical yield with ethanol productivity of 1.4 g/L/h during 24-48 h of fermentation. The ethanol titer, yield and productivity were 49, 40 and 36% higher, respectively, for SSK42 as compared to unevolved SSY13 strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre
This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less
Schell, Daniel J.; Dowe, Nancy; Chapeaux, Alexandre; ...
2016-01-19
This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose–xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan tomore » ethanol and ethanol titers of 63 g/L and 69 g/L, respectively. In the future, these techniques, including the TEA results, will be applied to fully integrated pilot-scale runs.« less
Pooja, N S; Sajeev, M S; Jeeva, M L; Padmaja, G
2018-01-01
The effect of microwave (MW)-assisted acid or alkali pretreatment (300 W, 7 min) followed by saccharification with a triple enzyme cocktail (Cellic, Optimash BG and Stargen) with or without detoxification mix on ethanol production from three cassava residues (stems, leaves and peels) by Saccharomyces cerevisiae was investigated. Significantly higher fermentable sugar yields (54.58, 47.39 and 64.06 g/L from stems, leaves and peels, respectively) were obtained after 120 h saccharification from MW-assisted alkali-pretreated systems supplemented (D+) with detoxification chemicals (Tween 20 + polyethylene glycol 4000 + sodium borohydride) compared to the non-supplemented (D0) or MW-assisted acid-pretreated systems. The percentage utilization of reducing sugars during fermentation (48 h) was also the highest (91.02, 87.16 and 89.71%, respectively, for stems, leaves and peels) for the MW-assisted alkali-pretreated (D+) systems. HPLC sugar profile indicated that glucose was the predominant monosaccharide in the hydrolysates from this system. Highest ethanol yields ( Y E , g/g), fermentation efficiency (%) and volumetric ethanol productivity (g/L/h) of 0.401, 78.49 and 0.449 (stems), 0.397, 77.71 and 0.341 (leaves) and 0.433, 84.65 and 0.518 (peels) were also obtained for this system. The highest ethanol yields (ml/kg dry biomass) of ca. 263, 200 and 303, respectively, for stems, leaves and peels from the MW-assisted alkali pretreatment (D+) indicated that this was the most effective pretreatment for cassava residues.
Junqueira, Tassia L; Chagas, Mateus F; Gouveia, Vera L R; Rezende, Mylene C A F; Watanabe, Marcos D B; Jesus, Charles D F; Cavalett, Otavio; Milanez, Artur Y; Bonomi, Antonio
2017-01-01
Ethanol production from lignocellulosic feedstocks (also known as 2nd generation or 2G ethanol process) presents a great potential for reducing both ethanol production costs and climate change impacts since agricultural residues and dedicated energy crops are used as feedstock. This study aimed at the quantification of the economic and environmental impacts considering the current and future scenarios of sugarcane biorefineries taking into account not only the improvements of the industrial process but also of biomass production systems. Technology assumptions and scenarios setup were supported by main companies and stakeholders, involved in the lignocellulosic ethanol production chain from Brazil and abroad. For instance, scenarios considered higher efficiencies and lower residence times for pretreatment, enzymatic hydrolysis, and fermentation (including pentoses fermentation); higher sugarcane yields; and introduction of energy cane (a high fiber variety of cane). Ethanol production costs were estimated for different time horizons. In the short term, 2G ethanol presents higher costs compared to 1st generation (1G) ethanol. However, in the long term, 2G ethanol is more competitive, presenting remarkable lower production cost than 1G ethanol, even considering some uncertainties regarding technology and market aspects. In addition, environmental assessment showed that both 1G (in the medium and long term) and 2G ethanol can reduce climate change impacts by more than 80% when compared to gasoline. This work showed the great potential of 2G ethanol production in terms of economic and environmental aspects. These results can support new research programs and public policies designed to stimulate both production and consumption of 2G ethanol in Brazil, accelerating the path along the learning curve. Some examples of mechanisms include: incentives to the establishment of local equipment and enzyme suppliers; and specific funding programs for the development and use of energy cane.
Boboescu, Iulian-Zoltan; Gélinas, Malorie; Beigbeder, Jean-Baptiste; Lavoie, Jean-Michel
2017-11-01
Ethanol production using waste biomass represents a very attractive approach. However, there are considerable challenges preventing a wide distribution of these novel technologies. Thus, a fractional-factorial screening of process variables and Saccharomyces cerevisiae yeast inoculum conditions was performed using a synthetic fermentation media. Subsequently, a response-surface methodology was developed for maximizing ethanol yields using a hemicellulosic solution generated through the chemical hydrolysis of steam treatment broth obtained from residual softwood biomass. In addition, nutrient supplementation using starch-based ethanol production by-products was investigated. An ethanol yield of 74.27% of the theoretical maximum was observed for an initial concentration of 65.17g/L total monomeric sugars. The two-step experimental strategy used in this work represents the first successful attempt to developed and use a model to make predictions regarding the optimal ethanol production using both softwood feedstock residues as well as 1st generation ethanol production by-products. Copyright © 2017 Elsevier Ltd. All rights reserved.
He, Jianlong; Zhang, Wenbo; Liu, Xiaoyan; Xu, Ning; Xiong, Peng
2016-11-01
Ethanol is a very important industrial chemical. In order to improve ethanol productivity using Saccharomyces cerevisiae in fermentation from furfural process residue, we developed a process of simultaneous saccharification and fermentation (SSF) of furfural process residue, optimizing prehydrolysis cellulase loading concentration, prehydrolysis time, and substrate feeding strategy. The ethanol concentration obtained from the optimized process was 19.3 g/L, corresponding 76.5% ethanol yield, achieved by running SSF for 48 h from 10% furfural process residue with prehydrolysis at 50°C for 4 h and cellulase loading of 15 FPU/g furfural process residue. For higher ethanol concentrations, fed-batch fermentation was performed. The optimized fed-batch process increased the ethanol concentration to 37.6 g/L, 74.5% yield, obtained from 10% furfural process residue with two additions of 5% substrate at 12 and 24 h. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Ling; Markham, Jennifer N.; Haq, Zia
Here, this study summarizes the detailed techno-economic analysis of the ethanol-to-jet (ETJ) process based on two different feedstocks (corn grain and corn stover) at the plant scale of 2000 dry metric tons per day. Ethanol biologically derived from biomass is upgraded catalytically to jet blendstocks via alcohol dehydration, olefin oligomerization, and hydrotreating. In both pathways, corn-grain-derived ethanol to jet (corn mill ETJ) and corn-stover-derived ethanol to jet (corn stover ETJ), there are portions of gasoline and diesel produced as coproducts. Two cost bases are used in this study: the minimum jet fuel selling prices (MJSP) for jet-range blendstocks and themore » minimum fuel selling prices (MFSP) for all the hydrocarbons (gasoline, jet, and diesel) produced using a gallon gasoline equivalent (GGE) basis. The n th-plant MJSPs for the two pathways are estimated to be 4.20 per gal for corn mill and 6.14 per gal for corn stover, while MFSPs are 3.91 per GGE for corn mill and 5.37 per GGE for corn stover. If all of the hydrocarbon products (gasoline, jet, and diesel ranges) can be considered as fuel blendstocks using a GGE basis, the total hydrocarbon yield for fuel blendstock is 49.6 GGE per dry ton biomass for corn stover and 71.0 GGE per dry ton biomass for corn grain. The outcome of this study shows that the renewable jet fuel could be cost competitive with fossil derived jet fuel if further improvements could be made to increase process yields (particularly yields of sugars, sugar to ethanol, and ethanol to hydrocarbons), research and development of sustainable feedstocks, and more effective catalytic reaction kinetics. Pioneer plant analysis, which considers the increased capital investment and the decreased plant performance over the nth-plant analysis, is also performed, showing a potential 31%–178% increase in cost compared to the n th-plant assumptions for the dry mill pathway, but with a much wider range of 69%–471% cost increase over the n th-plant assumptions for the corn stover pathway. While there are large differences between the estimated first of a kind plant cost and the targeted nth-plant case, reduction of costs is possible through improvement of the overall process efficiency, yields, reduction in overall capital, co-product revenues and strategically improve performance by process learnings.« less
Techno-economic analysis for upgrading the biomass-derived ethanol-to-jet blendstocks
Tao, Ling; Markham, Jennifer N.; Haq, Zia; ...
2016-12-30
Here, this study summarizes the detailed techno-economic analysis of the ethanol-to-jet (ETJ) process based on two different feedstocks (corn grain and corn stover) at the plant scale of 2000 dry metric tons per day. Ethanol biologically derived from biomass is upgraded catalytically to jet blendstocks via alcohol dehydration, olefin oligomerization, and hydrotreating. In both pathways, corn-grain-derived ethanol to jet (corn mill ETJ) and corn-stover-derived ethanol to jet (corn stover ETJ), there are portions of gasoline and diesel produced as coproducts. Two cost bases are used in this study: the minimum jet fuel selling prices (MJSP) for jet-range blendstocks and themore » minimum fuel selling prices (MFSP) for all the hydrocarbons (gasoline, jet, and diesel) produced using a gallon gasoline equivalent (GGE) basis. The n th-plant MJSPs for the two pathways are estimated to be 4.20 per gal for corn mill and 6.14 per gal for corn stover, while MFSPs are 3.91 per GGE for corn mill and 5.37 per GGE for corn stover. If all of the hydrocarbon products (gasoline, jet, and diesel ranges) can be considered as fuel blendstocks using a GGE basis, the total hydrocarbon yield for fuel blendstock is 49.6 GGE per dry ton biomass for corn stover and 71.0 GGE per dry ton biomass for corn grain. The outcome of this study shows that the renewable jet fuel could be cost competitive with fossil derived jet fuel if further improvements could be made to increase process yields (particularly yields of sugars, sugar to ethanol, and ethanol to hydrocarbons), research and development of sustainable feedstocks, and more effective catalytic reaction kinetics. Pioneer plant analysis, which considers the increased capital investment and the decreased plant performance over the nth-plant analysis, is also performed, showing a potential 31%–178% increase in cost compared to the n th-plant assumptions for the dry mill pathway, but with a much wider range of 69%–471% cost increase over the n th-plant assumptions for the corn stover pathway. While there are large differences between the estimated first of a kind plant cost and the targeted nth-plant case, reduction of costs is possible through improvement of the overall process efficiency, yields, reduction in overall capital, co-product revenues and strategically improve performance by process learnings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.
2010-09-09
The thermal decomposition of ethanol and its reactions with OH and D have been studied with both shock tube experiments and ab initio transition state theory-based master equation calculations. Dissociation rate constants for ethanol have been measured at high T in reflected shock waves using OH optical absorption and high-sensitivity H-atom ARAS detection. The three dissociation processes that are dominant at high T are: C{sub 2}H{sub 5}OH {yields} C{sub 2}H{sub 4} + H{sub 2}O; C{sub 2}H{sub 5}OH {yields} CH{sub 3} + CH{sub 2}OH; C{sub 2}H{sub 5}OH {yields} C{sub 2}H{sub 5} + OH. The rate coefficient for reaction C was measuredmore » directly with high sensitivity at 308 nm using a multipass optical White cell. Meanwhile, H-atom ARAS measurements yield the overall rate coefficient and that for the sum of reactions B and C, since H-atoms are instantaneously formed from the decompositions of CH{sub 2}OH and C{sub 2}H{sub 5} into CH{sub 2}O + H and C{sub 2}H{sub 4} + H, respectively. By difference, rate constants for reaction 1 could be obtained. One potential complication is the scavenging of OH by unreacted ethanol in the OH experiments, and therefore, rate constants for OH + C{sub 2}H{sub 5}OH {yields} products were measured using tert-butyl hydroperoxide (tBH) as the thermal source for OH. The present experiments can be represented by the Arrhenius expression k = (2.5 {+-} 0.43) x 10{sup -11} exp(- 911 {+-} 191 K/T) cm{sup 3} molecule{sup -1} s{sup -1} over the T range 857-1297 K. For completeness, we have also measured the rate coefficient for the reaction of D atoms with ethanol D + C{sub 2}H{sub 5}OH {yields} products whose H analogue is another key reaction in the combustion of ethanol. Over the T range 1054-1359 K, the rate constants from the present experiments can be represented by the Arrhenius expression, k = (3.98 {+-} 0.76) x 10{sup -10} exp(- 4494 {+-} 235 K/T) cm{sup 3} molecule{sup -1} s{sup -1}. The high-pressure rate coefficients for reactions B and C were studied with variable reaction coordinate transition state theory employing directly determined CASPT2/cc-pvdz interaction energies. Reactions A, D, and E were studied with conventional transition state theory employing QCISD(T)/CBS energies. For the saddle point in reaction A, additional high-level corrections are evaluated. The predicted reaction exo- and endothermicities are in good agreement with the current Active Thermochemical Tables values. The transition state theory predictions for the microcanonical rate coefficients in ethanol decomposition are incorporated in master equation calculations to yield predictions for the temperature and pressure dependences of reactions A-C. With modest adjustments (<1 kcal/mol) to a few key barrier heights, the present experimental and adjusted theoretical results yield a consistent description of both the decomposition (1-3) and abstraction kinetics (4 and 5). The present results are compared with earlier experimental and theoretical work.« less
Bioethanol production by a xylan fermenting thermophilic isolate Clostridium strain DBT-IOC-DC21.
Singh, Nisha; Puri, Munish; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Mathur, Anshu S
2018-06-01
To overcome the challenges associated with combined bioprocessing of lignocellulosic biomass to biofuel, finding good organisms is essential. An ethanol producing bacteria DBT-IOC-DC21 was isolated from a compost site via preliminary enrichment culture on a pure hemicellulosic substrate and identified as a Clostridium strain by 16S rRNA analysis. This strain presented broad substrate spectrum with ethanol, acetate, lactate, and hydrogen as the primary metabolic end products. The optimum conditions for ethanol production were found to be an initial pH of 7.0, a temperature of 70 °C and an L-G ratio of 0.67. Strain presented preferential hemicellulose fermentation when compared to various substrates and maximum ethanol concentration of 26.61 mM and 43.63 mM was produced from xylan and xylose, respectively. During the fermentation of varying concentration of xylan, a substantial amount of ethanol ranging from 25.27 mM to 67.29 mM was produced. An increased ethanol concentration of 40.22 mM was produced from a mixture of cellulose and xylan, with a significant effect observed on metabolic flux distribution. The optimum conditions were used to produce ethanol from 28 g L -1 rice straw biomass (RSB) (equivalent to 5.7 g L -1 of the xylose equivalents) in which 19.48 mM ethanol production was achieved. Thus, Clostridium strain DBT-IOC-DC21 has the potential to perform direct microbial conversion of untreated RSB to ethanol at a yield comparative to xylan fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.
A Review of the Potential of Bio-Ethanol in New Zealand
ERIC Educational Resources Information Center
Acharya, Vishesh; Young, Brent R.
2008-01-01
This article presents a study of the techno-economical feasibility of manufacturing biofuel ethanol at small scale from agricultural sources in New Zealand. It investigates possible agricultural products and wastes as potential feedstock and looks at laboratory-scale fermentation trials to determine their ethanol yields. The ethanol requirement to…
N 2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis
Kremer, Timothy A.; LaSarre, Breah; Posto, Amanda L.; ...
2015-02-02
A nascent cellulosic ethanol industry is struggling to become cost-competitive against corn ethanol and gasoline. Millions of dollars are spent on nitrogen supplements to make up for the low nitrogen content of the cellulosic feedstock. In this paper, we show for the first time to our knowledge that the ethanol-producing bacterium, Zymomonas mobilis, can use N 2 gas in lieu of traditional nitrogen supplements. Despite being an electron-intensive process, N 2 fixation by Z. mobilis did not divert electrons away from ethanol production, as the ethanol yield was greater than 97% of the theoretical maximum. In a defined medium, Z.more » mobilis produced ethanol 50% faster per cell and generated half the unwanted biomass when supplied N 2 instead of ammonium. In a cellulosic feedstock-derived medium, Z. mobilis achieved a similar cell density and a slightly higher ethanol yield when supplied N 2 instead of the industrial nitrogen supplement, corn steep liquor. Finally, we estimate that N 2-utilizing Z. mobilis could save a cellulosic ethanol production facility more than $1 million/y.« less
Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajpai, P.; Margaritis, A.
1982-12-01
The kinetics of ethanol inhibition on cell growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 were studied during batch growth. The liquid medium contained 10% (weight/volume) inulin-type sugars derived from an extract of Jerusalem artichoke (Helianthus tuberosus) tubers, supplemented with small amounts of Tween 80, oleic acid, and corn steep liquor. Initial ethanol concentrations ranging from 0 to 80 g/liter in the liquid medium were used to study the inhibitory effect of ethanol on the following parameters: maximum specific growth rate (mu max), cell and ethanol yields, and sugar utilization. It was found that as the initial ethanolmore » concentration increased from 0 to 80 g/liter, and maximum specific growth rate of K. marxianus cells decreased from 0.42 to 0.09/hour, whereas the ethanol and cell yields and sugar utilization remained almost constant. A simple kinetic model was used to correlate the mu max results and the rates of cell and ethanol production, and the appropriate constants were evaluated. (Refs. 22).« less
N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis
Kremer, Timothy A.; LaSarre, Breah; Posto, Amanda L.; McKinlay, James B.
2015-01-01
A nascent cellulosic ethanol industry is struggling to become cost-competitive against corn ethanol and gasoline. Millions of dollars are spent on nitrogen supplements to make up for the low nitrogen content of the cellulosic feedstock. Here we show for the first time to our knowledge that the ethanol-producing bacterium, Zymomonas mobilis, can use N2 gas in lieu of traditional nitrogen supplements. Despite being an electron-intensive process, N2 fixation by Z. mobilis did not divert electrons away from ethanol production, as the ethanol yield was greater than 97% of the theoretical maximum. In a defined medium, Z. mobilis produced ethanol 50% faster per cell and generated half the unwanted biomass when supplied N2 instead of ammonium. In a cellulosic feedstock-derived medium, Z. mobilis achieved a similar cell density and a slightly higher ethanol yield when supplied N2 instead of the industrial nitrogen supplement, corn steep liquor. We estimate that N2-utilizing Z. mobilis could save a cellulosic ethanol production facility more than $1 million/y. PMID:25646422
Eminoglu, Aysenur; Murphy, Sean Jean-Loup; Maloney, Marybeth; ...
2017-11-30
With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20–31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. The increase in ethanol production appears to be associated withmore » an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE. We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs-type hydrogenases. Since its discovery by Shaw et al. (JAMA 191:6457–64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. In addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. In two of these organisms (T. xylanolyticum and T. thermosaccharolyticum), the ethanol yields are the highest reported to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eminoglu, Aysenur; Murphy, Sean Jean-Loup; Maloney, Marybeth
With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20–31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. The increase in ethanol production appears to be associated withmore » an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE. We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs-type hydrogenases. Since its discovery by Shaw et al. (JAMA 191:6457–64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. In addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. In two of these organisms (T. xylanolyticum and T. thermosaccharolyticum), the ethanol yields are the highest reported to date.« less
Eminoğlu, Ayşenur; Murphy, Sean Jean-Loup; Maloney, Marybeth; Lanahan, Anthony; Giannone, Richard J; Hettich, Robert L; Tripathi, Shital A; Beldüz, Ali Osman; Lynd, Lee R; Olson, Daniel G
2017-01-01
With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20-31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. The increase in ethanol production appears to be associated with an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE . We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum ; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs -type hydrogenases. Since its discovery by Shaw et al. (JAMA 191:6457-64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. In addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. In two of these organisms ( T. xylanolyticum and T. thermosaccharolyticum ), the ethanol yields are the highest reported to date.
Production of ethanol and xylitol from corn cobs by yeasts.
Latif, F; Rajoka, M I
2001-03-01
Saccharomyces cerevisiae and Candida tropicalis were used separately and as co-culture for simultaneous saccharification and fermentation (SSF) of 5-20% (w/v) dry corn cobs. A maximal ethanol concentration of 27, 23, 21 g/l (w/v) from 200 g/l (w/v) dry corn cobs was obtained by S. cerevisiae, C. tropicalis and the co-culture, respectively, after 96 h of fermentation. However, theoretical yields of 82%, 71% and 63% were observed from 50 g/l dry corn cobs for the above cultures, respectively. Maximal xylitol concentration of 21, 20 and 15 g/l from 200 g/l (w/v) dry corn cobs was obtained by C. tropicalis, co-culture, and S. cerevisiae, respectively. Maximum theoretical yields of 79.0%, 77.0% and 58% were observed from 50 g/l of corn cobs, respectively. The volumetric productivities for ethanol and xylitol increased with the increase in substrate concentration, whereas, yield decreased. Glycerol and acetic acid were formed as minor by-products. S. cerevisiae and C. tropicalis resulted in better product yields (0.42 and 0.36 g/g) for ethanol and (0.52 and 0.71 g/g) for xylitol, respectively, whereas, the co-culture showed moderate level of ethanol (0.32 g/g) and almost maximal levels of xylitol (0.69 g/g).
NASA Astrophysics Data System (ADS)
Ferchak, J. D.; Pye, E. K.
The paper assesses the biomass resource represented by starch derived from feed corn, surplus and distressed grain, and high-yield sugar crops planted on set-aside land in the U.S. It is determined that the quantity of ethanol produced may be sufficient to replace between 5 to 27% of present gasoline requirements. Utilization of novel cellulose conversion technology may in addition provide fermentable sugars from municipal, agricultural and forest wastes, and ultimately from highly productive silvicultural operations. The potential additional yield of ethanol from lignocellulosic biomass appears to be well in excess of liquid fuel requirements of an enhanced-efficiency transport sector at present mileage demands. No conflict with food production would be entailed. A net-energy assessment is made for lignocellulosic biomass feedstocks' conversion to ethanol and an almost 10:1 energy yield/energy cost ratio determined. It is also found that novel cellulose pretreatment and enzymatic conversion methods still under development may significantly improve even that figure, and that both chemical-feedstocks and energy-yielding byproducts such as carbon dioxide, biogas and lignin make ethanol production potentially energy self-sufficient. A final high-efficiency production approach incorporates site-optimized, nonpolluting energy sources such as solar and geothermal.
Continuous ethanol production from cheese whey fermentation by Candida pseudotropicalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaly, A.E.; El-Taweel, A.A.
1997-12-01
Three pilot-scale continuous mix reactors of 5-L volume each were used to study the effects of retention time (18--42 hours) and initial substrate concentration (50--150 g/L) on the cell yield, lactose consumption, and maximum ethanol concentration during continuous fermentation of cheese whey using the yeast Candida pseudotropicalis. A microaeration rate of 480 mL/min and a nutrient supplement (yeast extract) concentration of 0.1% vol/vol were used. The results indicated that the dissolved oxygen concentration, temperature, cell concentration, lactose utilization rate, and ethanol concentration were affected by hydraulic retention time and initial substrate concentration. The highest cell concentration of 5.46 g/L andmore » the highest ethanol concentration of 57.96 g/L (with a maximum ethanol yield of 99.6% from the theoretical yield) were achieved at the 42-hour hydraulic retention time and the 150 g/L initial substrate concentration, whereas the highest cell yield was observed at the 50 g/L initial substrate concentration and the 36-hour hydraulic retention time. Lactose utilizations of 98, 91, and 83% were obtained with 50, 100, and 150 g/L initial substrate concentrations at the 42-hour hydraulic retention time. A pH control system was found unnecessary.« less
Pan, Xuejun; Gilkes, Neil; Kadla, John; Pye, Kendall; Saka, Shiro; Gregg, David; Ehara, Katsunobu; Xie, Dan; Lam, Dexter; Saddler, Jack
2006-08-05
An organosolv process involving extraction with hot aqueous ethanol has been evaluated for bioconversion of hybrid poplar to ethanol. The process resulted in fractionation of poplar chips into a cellulose-rich solids fraction, an ethanol organosolv lignin (EOL) fraction, and a water-soluble fraction containing hemicellulosic sugars, sugar breakdown products, degraded lignin, and other components. The influence of four independent process variables (temperature, time, catalyst dose, and ethanol concentration) on product yields was analyzed over a broad range using a small composite design and response surface methodology. Center point conditions for the composite design (180 degrees C, 60 min, 1.25% H(2)SO(4), and 60% ethanol), yielded a solids fraction containing approximately 88% of the cellulose present in the untreated poplar. Approximately 82% of the total cellulose in the untreated poplar was recovered as monomeric glucose after hydrolysis of the solids fraction for 24 h using a low enzyme loading (20 filter paper units of cellulase/g cellulose); approximately 85% was recovered after 48 h hydrolysis. Total recovery of xylose (soluble and insoluble) was equivalent to approximately 72% of the xylose present in untreated wood. Approximately 74% of the lignin in untreated wood was recovered as EOL. Other cooking conditions resulted in either similar or inferior product yields although the distribution of components between the various fractions differed markedly. Data analysis generated regression models that describe process responses for any combination of the four variables. (c) 2006 Wiley Periodicals, Inc.
Jung, Young Hoon; Park, Hyun Min; Kim, Kyoung Heon
2015-09-01
We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.
Braga, Mara E M; Leal, Patrícia F; Carvalho, João E; Meireles, M Angela A
2003-10-22
Turmeric extracts were obtained from two lots of raw material (M and S) using various techniques: hydrodistillation, low pressure solvent extraction, Soxhlet, and supercritical extraction using carbon dioxide and cosolvents. The solvents and cosolvents tested were ethanol, isopropyl alcohol, and their mixture in equal proportions. The composition of the extracts was determined by gas chromatography-flame ionization detection (GC-FID) and UV. The largest yield (27%, weight) was obtained in the Soxhlet extraction (turmeric (S), ethanol = 1:100); the lowest yield was detected in the hydrodistillation process (2.1%). For the supercritical extraction, the best cosolvent was a mixture of ethanol and isopropyl alcohol. Sixty percent of the light fraction of the extracts consisted of ar-turmerone, (Z)-gamma-atlantone, and (E)-gamma-atlantone, except for the Soxhlet extracts (1:100, ethanol), for which only ar-turmeronol and (Z)-alpha-atlantone were detected. The maximum amount of curcuminoids (8.43%) was obtained using Soxhlet extraction (ethanol/isopropyl alcohol). The Soxhlet and low pressure extract exhibited the strongest antioxidant activities.
Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass
2016-02-01
Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Schmid, Matthias; Guihéneuf, Freddy; Stengel, Dagmar B
2016-10-01
This study evaluated the impact of different food- and non-food grade extraction solvents on yield and fatty acid composition of the lipid extracts of two seaweed species (Palmaria palmata and Laminaria digitata). The application of chloroform/methanol and three different food grade solvents (ethanol, hexane, ethanol/hexane) revealed significant differences in both, extraction yield and fatty acid composition. The extraction efficiency, in terms of yields of total fatty acids (TFA), was in the order: chloroform/methanol>ethanol>hexane>ethanol/hexane for both species. Highest levels of polyunsaturated fatty acids (PUFA) were achieved by the extraction with ethanol. Additionally the effect of storage temperature on the stability of PUFA in ground and freeze-dried seaweed biomass was investigated. Seaweed samples were stored for a total duration of 22months at three different temperatures (-20°C, 4°C and 20°C). Levels of TFA and PUFA were only stable after storage at -20°C for the two seaweed species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Zhi-Hua; Chen, Hong-Zhang
2017-01-01
The simultaneous saccharification and fermentation (SSF) of corn stover biomass for ethanol production was performed by integrating steam explosion (SE) pretreatment, hydrolysis and fermentation. Higher SE pretreatment severity and two-step size reduction increased the specific surface area, swollen volume and water holding capacity of steam exploded corn stover (SECS) and hence facilitated the efficiency of hydrolysis and fermentation. The ethanol production and yield in SSF increased with the decrease of particle size and post-washing of SECS prior to fermentation to remove the inhibitors. Under the SE conditions of 1.5MPa and 9min using 2.0cm particle size, glucan recovery and conversion to glucose by enzymes were 86.2% and 87.2%, respectively. The ethanol concentration and yield were 45.0g/L and 85.6%, respectively. With this two-step size reduction and post-washing strategy, the water utilization efficiency, sugar recovery and conversion, and ethanol concentration and yield by the SSF process were improved. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li
2016-01-01
Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Defluviitalea phaphyphila Alg1 can simultaneously utilize mannitol, glucose, and alginate to produce ethanol, and high ethanol yields of 0.47 g/g-mannitol, 0.44 g/g-glucose, and 0.3 g/g-alginate were obtained. A rational redox balance system under obligate anaerobic condition in fermenting brown algae was revealed in D. phaphyphila Alg1 through genome and redox analysis. The excess reducing equivalents produced from mannitol metabolism were equilibrated by oxidizing forces from alginate assimilation. Furthermore, D. phaphyphila Alg1 can directly utilize unpretreated kelp powder, and 10 g/L of ethanol was accumulated within 72 h with an ethanol yield of 0.25 g/g-kelp. Microscopic observation further demonstrated the deconstruction process of brown algae cell by D. phaphyphila Alg1. The integrated biomass deconstruction system of D. phaphyphila Alg1, as well as its high ethanol yield, provided us an excellent alternative for brown algae bioconversion at elevated temperature.
NASA Astrophysics Data System (ADS)
Taslim, Indra, Leonardo; Manurung, Renita; Winarta, Agus; Ramadhani, Debbie Aditia
2017-03-01
Biodiesel is usually produced from transesterification using methanol or ethanol as alcohol. However, biodiesel produced using methanol has several disadvantages because methanol is toxic and not entirely bio-based as it is generally produced from petroleum, natural gas and coal. On the other hand, ethanol also has several disadvantages such as lower reactivity in transesterification process and formation of stable emulsion between ester and glycerol. To improve ethanolysis process, deep eutectic solvent (DES) was prepared from choline chloride and ethylene glycol to be used as co-solvent in ethanolysis. Deep eutectic solvent was prepared by mixing choline chloride and ethylene glycol at molar ratio of 1:2, temperature of 80 °C, and stirring speed of 300 rpm for 1 hour. The DES was characterized by its density and viscosity. The ethanolysis of DPO / Degummed Palm Oil was performed at 70 °C, ethanol to oil molar ratio of 9:1, catalyst (potassium hydroxide) concentration of 0.75 wt.% concentration, co-solvent (DES) concentration of 1, 2, 3, 4, 5 and 6 wt.%, stirring speed of 600 rpm, and reaction time of 1 hour. The obtained biodiesel was then characterized by its density, viscosity and ester content. The oil - ethanol phase condition was observed in reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to that without DES. Which implied that oil and ethanol become more slightly miscible, which favours the reaction. Using DES as co-solvent in ethanolysis resulted in an increase in yield and easier purification. The esters properties met the international standards ASTM D6751, with highest yield achieved at 81.72 % with 99.35 % ethyl ester contents at 4% DES concentration.
2013-01-01
Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min) and temperature (190–210°C) on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF) to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD). Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in which the slurry from the pretreatment was divided into a solid fraction and a liquid fraction. The solid fraction was subjected to SSF, while the liquid fraction, together with the filtered residual from SSF, was used in AD. Using sulphuric acid in AD did not inhibit the reaction, which may be due to the low concentration of sulphuric acid used. In contrast, a pretreatment step without sulphuric acid resulted not only in higher concentrations of inhibitors, which affected the ethanol yield, but also in lower methane production. PMID:23356481
The Potential of Cellulosic Ethanol Production from Grasses in Thailand
Wongwatanapaiboon, Jinaporn; Kangvansaichol, Kunn; Burapatana, Vorakan; Inochanon, Ratanavalee; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Chulalaksananukul, Warawut
2012-01-01
The grasses in Thailand were analyzed for the potentiality as the alternative energy crops for cellulosic ethanol production by biological process. The average percentage composition of cellulose, hemicellulose, and lignin in the samples of 18 types of grasses from various provinces was determined as 31.85–38.51, 31.13–42.61, and 3.10–5.64, respectively. The samples were initially pretreated with alkaline peroxide followed by enzymatic hydrolysis to investigate the enzymatic saccharification. The total reducing sugars in most grasses ranging from 500–600 mg/g grasses (70–80% yield) were obtained. Subsequently, 11 types of grasses were selected as feedstocks for the ethanol production by simultaneous saccharification and cofermentation (SSCF). The enzymes, cellulase and xylanase, were utilized for hydrolysis and the yeasts, Saccharomyces cerevisiae and Pichia stipitis, were applied for cofermentation at 35°C for 7 days. From the results, the highest yield of ethanol, 1.14 g/L or 0.14 g/g substrate equivalent to 32.72% of the theoretical values was obtained from Sri Lanka ecotype vetiver grass. When the yields of dry matter were included in the calculations, Sri Lanka ecotype vetiver grass gave the yield of ethanol at 1,091.84 L/ha/year, whereas the leaves of dwarf napier grass showed the maximum yield of 2,720.55 L/ha/year (0.98 g/L or 0.12 g/g substrate equivalent to 30.60% of the theoretical values). PMID:23097596
Contamination issues in continuous fermentation for ethanol production
USDA-ARS?s Scientific Manuscript database
Continuous fermentation processes are employed by corn wet milling plants all over world to convert starch to ethanol. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields. Contaminants compete with inoculate...
Singh, Rashmi; Sharma, Shatruhan; Sharma, Veena
2015-07-01
To compare and elucidate the antioxidant efficacy of ethanolic and hydroethanolic extracts of Indigofera tinctoria Linn. (Fabaceae family). Various in-vitro antioxidant assays and free radical-scavenging assays were done. Quantitative measurements of various phytoconstituents, reductive abilities and chelating potential were carried out along with standard compounds. Half inhibitory concentration (IC50) values for ethanol and hydroethanol extracts were analyzed and compared with respective standards. Hydroethanolic extracts showed considerably more potent antioxidant activity in comparison to ethanol extracts. Hydroethanolic extracts had lower IC50 values than ethanol extracts in the case of DPPH, metal chelation and hydroxyl radical-scavenging capacity (829, 659 and 26.7 μg/mL) but had slightly higher values than ethanol in case of SO2- and NO2-scavenging activity (P<0.001 vs standard). Quantitative measurements also showed that the abundance of phenolic and flavonoid bioactive phytoconstituents were significantly (P<0.001) greater in hydroethanol extracts (212.920 and 149.770 mg GAE and rutin/g of plant extract respectively) than in ethanol extracts (211.691 and 132.603 mg GAE and rutin/g of plant extract respectively). Karl Pearson's correlation analysis (r2) between various antioxidant parameters and bioactive components also associated the antioxidant potential of I. tinctoria with various phytoconstituents, especially phenolics, flavonoids, saponins and tannins. This study may be helpful to draw the attention of researchers towards the hydroethanol extracts of I. tinctoria, which has a high yield, and great prospects in herbal industries to produce inexpensive and powerful herbal products.
PERSPECTIVE: Learning from the Brazilian biofuel experience
NASA Astrophysics Data System (ADS)
Wang, Michael
2006-11-01
In the article `The ethanol program in Brazil' [1] José Goldemberg summarizes the key features of Brazil's sugarcane ethanol program—the most successful biofuel program in the world so far. In fact, as of 2005, Brazil was the world's largest producer of fuel ethanol. In addition to providing 40% of its gasoline market with ethanol, Brazil exports a significant amount of ethanol to Europe, Japan, and the United States. The success of the program is attributed to a variety of factors, including supportive governmental policies and favorable natural conditions (such as a tropical climate with abundant rainfall and high temperatures). As the article points out, in the early stages of the Brazilian ethanol program, the Brazilian government provided loans to sugarcane growers and ethanol producers (in most cases, they are the same people) to encourage sugarcane and ethanol production. Thereafter, ethanol prices were regulated to ensure that producers can economically sustain production and consumers can benefit from using ethanol. Over time, Brazil was able to achieve a price for ethanol that is lower than that for gasoline, on the basis of energy content. This lower cost is largely driving the widespread use of ethanol instead of gasoline by consumers in Brazil. In the United States, if owners of E85 flexible-fuel vehicles (FFVs) are expected to use E85 instead of gasoline in their FFVs, E85 will have to be priced competitively against gasoline on an energy-content basis. Compared with corn-based or sugar beet-based ethanol, Brazil's sugarcane-based ethanol yields considerably more favorable results in terms of energy balance and reductions in greenhouse gas emissions. These results are primarily due to (i) the dramatic increase of sugarcane yield in Brazil in the past 25 years and (ii) the use of bagasse instead of fossil fuels in ethanol plants to provide the heat needed for ethanol plant operations and to generate electricity for export to electric grids. Advancements in technology associated with both sugarcane farming and ethanol production have definitely played an important role in yielding the significant benefits associated with sugarcane ethanol. The United States produced about 4 billion gallons of ethanol from corn in 2005. Production was expected to increase to about 5 billion gallons by 2006. Corn-based ethanol achieves moderate reductions in greenhouse gas emissions. In the long run, the great potential of fuel ethanol lies in its production from cellulosic biomass, which is abundant in many regions of the world and can yield much greater reductions in greenhouse gas emissions and energy benefits. Figure 1 presents reductions in greenhouse emissions of several ethanol production pathways that were evaluated at the Argonne National Laboratory. Bagasse, a cellulosic biomass type already available in sugarcane ethanol plants, will certainly offer an opportunity for economically co-producing cellulosic ethanol and sugarcane ethanol in existing sugarcane ethanol plants. Greenhouse gas emissions per million Btu of gasoline and ethanol produced and used Figure 1. Greenhouse gas emissions per million Btu of gasoline and ethanol produced and used. Despite the encouraging progress of Brazil's ethanol program some issues will still need to be addressed. Figure 4 of [1] shows a significant drop in ethanol production in the 2000/2001 season. A steady supply of ethanol will be a key factor for the success of a fuel ethanol program. Consumers are not going to tolerate fluctuations in ethanol production. Instead, they will turn to conventional fuels for fueling their FFVs as a result of supply fluctuations, which can be detrimental to the success of the ethanol program. In addition to this, other environmental effects of biofuels in general, and sugarcane ethanol in particular, need to be assessed. Some have debated and speculated that Brazil's sugarcane ethanol program has caused (i) soil erosion and biodiversity problems by converting rainforests into sugarcane plantations and (ii) local air pollution problems as a result of burning in plantations before harvest. Also, as interest in biofuels heightens worldwide, environment-conscious practices are needed to avoid adverse environmental effects of biofuel production and use. For instance, if feedstock production (sugarcane in Brazil, corn in the United States, and palm oil in Malaysia [for biodiesel production]) moves into virgin or marginal land, carbon in both soil and vegetation could be decreased and diminish the benefits associated with biofuels, and cause other environmental problems, such as soil erosion. Societies need to pay close attention to these potential detrimental environmental effects to ensure that biofuel production will, indeed, be on a sustainable path. © US Government References [1] Goldemberg J 2006 The ethanol program in Brazil Environ. Res Lett. 1 014008 (doi:10.1088/1748-9326/1/1/014008) Photo of Michael Wang Michael Wang has been working in the Center for Transportation Research of Argonne National Laboratory since 1991. He is the manager of the Systems Assessment Section in the center which evaluates energy and emission effects of advanced vehicle technologies and new transportation fuels. He developed the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, with which he has conducted several major studies for government agencies and industries. Since 1996, he has examined energy and emission benefits of bio-ethanol. His results for bio-ethanol have been cited by many. Michael Wang received his PhD in environmental science from University of California at Davis.
Simultaneous production of bio-ethanol and bleached pulp from red algae.
Yoon, Min Ho; Lee, Yoon Woo; Lee, Chun Han; Seo, Yung Bum
2012-12-01
The red algae, Gelidium corneum, was used to produce bleached pulp for papermaking and ethanol. Aqueous extracts obtained at 100-140 °C were subjected to saccharification, purification, fermentation, and distillation to produce ethanol. The solid remnants were bleached with chlorine dioxide and peroxide to make pulp. In the extraction process, sulfuric acid and sodium thiosulfate were added to increase the extract yield and to improve de-polymerization of the extracts, as well as to generate high-quality pulp. An extraction process incorporating 5% sodium thiosulfate by dry weight of the algae provided optimal production conditions for the production of both strong pulp and a high ethanol yield. These results suggest that it might be possible to utilize algae instead of trees and starch for pulp and ethanol production, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Warner, E. S.; Zhang, Y.; Newmark, R. L.
2012-12-01
Biofuels represent an opportunity for domestic fuel production from renewable energy sources with potential environmental and social benefits such as reducing greenhouse gas (GHG) and promoting rural development. However, as demand for biofuel continues to increase worldwide, concerns about land competition between food and fuel, excessive water usage and other unintended environmental consequences have grown. Through a comparative study between US corn ethanol and Brazilian sugarcane ethanol, we examine the energy, land, water and GHG performance of the two largest industrial fuel ethanol production systems in the world. Our comparisons include current and potential future systems with improved agronomic practices, crop yields, ethanol conversion processes, and utilization of agricultural residues. Our results suggest that the average water footprints of US corn ethanol and Brazilian sugarcane ethanol are fairly close (108 and 110 m3/GJ of ethanol, respectively) while the variations can range from 50 to 250 m3/GJ for sugarcane ethanol and 50 to380 m3/GJ for corn ethanol. Results emphasize the need to examine the water footprint within the context of local and regional climatic variability, water availability, competing uses (e.g. agricultural, industrial, and municipal water needs) and other ecosystem constraints. Research is under way (at the National Renewable Energy Laboratory and other institutions) to develop models to analyze water supply and demand at the watershed-scale for current and future biomass production, and to understand the tradeoffs among water supply, demand and quality due to more intensive agricultural practices and expansion of biofuels. Land use efficiency metrics, with regards to life cycle GHG emissions (without land use change) savings through gasoline displacement with ethanol, illustrate the progression of the biofuel industry and the importance of maximizing bioenergy production by utilizing both the crops and the residues. A recent average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.
Kumari, Rajni; Pramanik, K
2012-06-01
The present research deals with the development of a hybrid yeast strain with the aim of converting pentose and hexose sugar components of lignocellulosic substrate to bioethanol by fermentation. Different fusant strains were obtained by fusing protoplasts of Saccharomyces cerevisiae and xylose-fermenting yeasts such as Pachysolen tannophilus, Candida shehatae and Pichia stipitis. The fusants were sorted by fluorescent-activated cell sorter and further confirmed by molecular characterization. The fusants were evaluated by fermentation of glucose-xylose mixture and the highest ethanol producing fusant was used for further study to ferment hydrolysates produced by acid pretreatment and enzymatic hydrolysis of cotton gin waste. Among the various fusant and parental strains used under present study, RPR39 was found to be stable and most efficient strain giving maximum ethanol concentration (76.8 ± 0.31 g L(-1)), ethanol productivity (1.06 g L(-1) h(-1)) and ethanol yield (0.458 g g(-1)) by fermentation of glucose-xylose mixture under test conditions. The fusant has also shown encouraging result in fermenting hydrolysates of cotton gin waste with ethanol concentration of 7.08 ± 0.142 g L(-1), ethanol yield of 0.44 g g(-1), productivity of 0.45 g L(-1) h(-1) and biomass yield of 0.40 g g(-1).
Troubleshooting fermentation in corn wet milling ethanol production
USDA-ARS?s Scientific Manuscript database
To convert starch to ethanol, continuous fermentation processes are employed by corn wet milling plants all over world. Contaminations by bacterial microorganisms like Lactobacillus and wild yeasts like Brettanomyces are common and result in lower ethanol yields (Abbott and Ingledew 2005, Skinner an...
Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation.
Dietrich, Maren; Heselhaus, Johanna; Wozniak, Justyna; Weinandy, Stefan; Mela, Petra; Tschoeke, Beate; Schmitz-Rode, Thomas; Jockenhoevel, Stefan
2013-03-01
This study is focussed on the optimal method of autologous fibrinogen isolation with regard to the yield and the use as a scaffold material. This is particularly relevant for pediatric patients with strictly limited volumes of blood. The following isolation methods were evaluated: cryoprecipitation, ethanol (EtOH) precipitation, ammonium sulfate [(NH(4))(2)SO(4))] precipitation, ammonium sulfate precipitation combined with cryoprecipitation, and polyethylene glycol precipitation combined with cryoprecipitation. Fibrinogen yields were quantified spectrophotometrically and by electrophoretic analyses. To test the influence of the different isolation methods on the microstructure of the fibrin gels, scanning electron microscopy (SEM) was used and the mechanical strength of the cell-free and cell-seeded fibrin gels was tested by burst strength measurements. Cytotoxicity assays were performed to analyze the effect of various fibrinogen isolation methods on proliferation, apoptosis, and necrosis. Tissue development and cell migration were analyzed in all samples using immunohistochemical techniques. The synthesis of collagen as an extracellular matrix component by human umbilical cord artery smooth muscle cells in fibrin gels was measured using hydroxyproline assay. Compared to cryoprecipitation, all other considered methods were superior in quantitative analyses, with maximum fibrinogen yields of ∼80% of total plasma fibrinogen concentration using ethanol precipitation. SEM imaging demonstrated minor differences in the gel microstructure. Ethanol-precipitated fibrin gels exhibited the best mechanical properties. None of the isolation methods had a cytotoxic effect on the cells. Collagen production was similar in all gels except those from ammonium sulfate precipitation. Histological analysis showed good cell compatibility for ethanol-precipitated gels. The results of the present study demonstrated that ethanol precipitation is a simple and effective method for isolation of fibrinogen and a suitable alternative to cryoprecipitation. This technique allows minimization of the necessary blood volume for fibrinogen isolation, particularly important for pediatric applications, and also has no negative influence on microstructure, mechanical properties, cell proliferation, or tissue development.
Yuan, W J; Zhao, X Q; Ge, X M; Bai, F W
2008-12-01
To study fuel ethanol fermentation with Kluyveromyces marxianus ATCC8554 from Jerusalem artichoke (Helianthus tuberosus) grown in salina and irrigated with a mixture of seawater and freshwater. The growth and ethanol fermentation of K. marxianus ATCC8554 were studied using inulin as substrate. The activity of inulinase, which attributes to the hydrolysis of inulin, the main carbohydrate in Jerusalem artichoke, was monitored. The optimum temperatures were 38 degrees C for growth and inulinase production, and 35 degrees C for ethanol fermentation. Aeration was not necessary for ethanol fermentation with the K. marxianus from inulin. Then, the fresh Jerusalem artichoke tubers grown in salina and irrigated with 25% and 50% seawater were further examined for ethanol fermentation with the K. marxianus, and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25% seawater. Furthermore, the dry meal of the Jerusalem artichoke tubers irrigated with 25% seawater was examined for ethanol fermentation at three solid concentrations of 200, 225 and 250 g l(-1), and the highest ethanol yield of 0.467, or 91.5% of the theoretical value of 0.511, was achieved for the slurry with a solid concentration of 200 g l(-1). Halophilic Jerusalem artichoke can be used for fuel ethanol production. Halophilic Jerusalem artichoke, not competing with grain crops for arable land, is a sustainable feedstock for fuel ethanol production.
2014-01-01
Background Biological fermentation routes can provide an environmentally friendly way of producing H2 since they use renewable biomass as feedstock and proceed under ambient temperature and pressure. In particular, photo-fermentation has superior properties in terms of achieving high H2 yield through complete degradation of substrates. However, long-term H2 production data with stable performance is limited, and this data is essential for practical applications. In the present work, continuous photo-fermentative H2 production from lactate was attempted using the purple non-sulfur bacterium, Rhodobacter sphaeroides KD131. As a gradual drop in H2 production was observed, we attempted to add ethanol (0.2% v/v) to the medium. Results As continuous operation went on, H2 production was not sustained and showed a negligible H2 yield (< 0.5 mol H2/mol lactateadded) within two weeks. Electron balance analysis showed that the reason for the gradual drop in H2 production was ascribed to the increase in production of soluble microbial products (SMPs). To see the possible effect of ethanol addition, a batch test was first conducted. The presence of ethanol significantly increased the H2 yield from 1.15 to 2.20 mol H2/mol lactateadded, by suppressing the production of SMPs. The analysis of SMPs by size exclusion chromatography showed that, in the later period of fermentation, more than half of the low molecular weight SMPs (< 1 kDa) were consumed and used for H2 production when ethanol had been added, while the concentration of SMPs continuously increased in the absence of ethanol. It was found that the addition of ethanol facilitated the utilization of reducing power, resulting in an increase in the cellular levels of NAD+ and NADP+. In continuous operation, ethanol addition was effective, such that stable H2 production was attained with an H2 yield of 2.5 mol H2/mol lactateadded. Less than 15% of substrate electrons were used for SMP production, whereas 35% were used in the control. Conclusions We have found that SMPs are the key factor in photo-fermentative H2 production, and their production can be suppressed by ethanol addition. However, since external addition of ethanol to the medium represents an extra economic burden, ethanol should be prepared in a cost-effective way. PMID:24883103
Li, Xingjiang; Deng, Yongdong; Yang, Ying; Wei, Zhaojun; Cheng, Jieshun; Cao, Lili; Mu, Dongdong; Luo, Shuizhong; Zheng, Zhi; Jiang, Shaotong; Wu, Xuefeng
2017-01-01
With the growth of the world population, energy problems are becoming increasingly severe; therefore, sustainable energy sources have gained enormous importance. With respect to ethanol fuel production, biomass is gradually replacing grain as the main raw material. In this study, we explored the fermentation of five- and six-carbon sugars, the main biomass degradation products, into alcohol. We conducted mutagenic screening specifically for Candida tropicalis CICC1779 to obtain a strain that effectively used xylose (Candida tropicalis CICC1779-Dyd). By subsequently studying fermentation conditions under different initial liquid volume oxygen transfer coefficients (kLα), and coupling control of the aeration rate and agitation speed under optimal conditions, the optimal dissolved oxygen change curve was obtained. In addition, we constructed metabolic flow charts and equations to obtain a better understanding of the fermentation mechanism and to improve the ethanol yield. In our experiment, the ethanol production of the wild type stain was 17.58 g·L−1 at a kLα of 120. The highest ethanol yield of the mutagenic strains was 24.85 g·L−1. The ethanol yield increased to 26.56 g·L−1 when the dissolved oxygen content was optimized, and the conversion of sugar into alcohol reached 0.447 g·g−1 glucose (the theoretical titer of yeast-metabolized xylose was 0.46 g ethanol/g xylose and the glucose ethanol fermentation titer was 0.51 g ethanol/g glucose). Finally, the detected activity of xylose reductase and xylose dehydrogenase was higher in the mutant strain than in the original, which indicated that the mutant strain (CICC1779-Dyd) could effectively utilize xylose for metabolism. PMID:28878755
Seol, Eunhee; Sekar, Balaji Sundara; Raj, Subramanian Mohan; Park, Sunghoon
2016-02-01
Hydrogen (H2) production from glucose by dark fermentation suffers from the low yield. As a solution to this problem, co-production of H2 and ethanol, both of which are good biofuels, has been suggested. To this end, using Escherichia coli, activation of pentose phosphate (PP) pathway, which can generate more NADPH than the Embden-Meyhof-Parnas (EMP) pathway, was attempted. Overexpression of two key enzymes in the branch nodes of the glycolytic pathway, Zwf and Gnd, significantly improved the co-production of H2 and ethanol with concomitant reduction of pyruvate secretion. Gene expression analysis and metabolic flux analysis (MFA) showed that, upon overexpression of Zwf and Gnd, glucose assimilation through the PP pathway, compared with that of the EMP or Entner-Doudoroff (ED) pathway, was greatly enhanced. The maximum co-production yields were 1.32 mol H2 mol(-1) glucose and 1.38 mol ethanol mol(-1) glucose, respectively. It is noteworthy that the glycolysis and the amount of NAD(P)H formed under anaerobic conditions could be altered by modifying (the activity of) several key enzymes. Our strategy could be applied for the development of industrial strains for biological production of reduced chemicals and biofuels which suffers from lack of reduced co-factors. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loaces, Inés; Schein, Sima; Noya, Francisco
2017-01-01
Diluted acid or liquid hot water (LHW) pretreated Arundo donax biomass was converted into ethanol under separated hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF) using Escherichia coli as the fermentative organism. Up to 0.26gL -1 h -1 and 25.0gL -1 of ethanol were obtained with diluted acid pretreated biomass under SSF compared to 0.17gL -1 h -1 and 24gL -1 under SHF. LHW pretreated biomass elicited 25% lower yields on average. Saccharification was carried out with Cellic CTec2 cocktail. Alternatively, under a consolidated bioprocess (CBP) where the ethanologenic bacteria was complemented with a novel multifunctional glucanase and xylanase, ethanol concentration was 7.6gL -1 and 7.2gL -1 after 96h for dilute acid or LHW pretreated biomass, respectively, without any prior saccharification step. According to these results, a bacterial fermentative host combined with in situ enzyme expression can improve ethanol production from A. donax biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hughes, Stephen R; Bang, Sookie S; Cox, Elby J; Schoepke, Andrew; Ochwat, Kate; Pinkelman, Rebecca; Nelson, Danielle; Qureshi, Nasib; Gibbons, William R; Kurtzman, Cletus P; Bischoff, Kenneth M; Liu, Siqing; Cote, Gregory L; Rich, Joseph O; Jones, Marjorie A; Cedeño, David; Doran-Peterson, Joy; Riaño-Herrera, Nestor M; Rodríguez-Valencia, Nelson; López-Núñez, Juan C
2013-08-01
The yeast Kluyveromyces marxianus is a potential microbial catalyst for fuel ethanol production from a wide range of biomass substrates. To improve its growth and ethanol yield at elevated temperature under microaerophilic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C using automated protocols on a robotic platform for picking and spreading irradiated cultures and for processing the resulting plates. The plates were incubated under anaerobic conditions on xylose or glucose for 5 mo at 46 °C. Two K. marxianus mutant strains (designated 7-1 and 8-1) survived and were isolated from the glucose plates. Both mutant strains, but not wild type, grew aerobically on glucose at 47 °C. All strains grew anaerobically at 46 °C on glucose, galactose, galacturonic acid, and pectin; however, only 7-1 grew anaerobically on xylose at 46 °C. Saccharomyces cerevisiae NRRL Y-2403 did not grow at 46 °C on any of these substrates. With glucose as a carbon source, ethanol yield after 3 d at 46 °C was higher for 8-1 than for wild type (0.51 and 0.43 g ethanol/g glucose, respectively). With galacturonic acid as a carbon source, the ethanol yield after 7 d at 46 °C was higher for 7-1 than for wild type (0.48 and 0.34 g ethanol/g galacturonic acid, respectively). These mutant strains have potential application in fuel ethanol production at elevated temperature from sugar constituents of starch, sucrose, pectin, and cellulosic biomass.
da Cunha-Pereira, Fernanda; Hickert, Lilian Raquel; Sehnem, Nicole Teixeira; de Souza-Cruz, Priscila Brasil; Rosa, Carlos Augusto; Ayub, Marco Antônio Záchia
2011-03-01
The production of ethanol by the new yeast Spathaspora arborariae using rice hull hydrolysate (RHH) as substrate, either alone or in co-cultures with Saccharomyces cerevisiae is presented. Cultivations were also carried out in synthetic medium to gather physiological information on these systems, especially concerning their ability to grow and produce ethanol in the presence of acetic acid, furfural, and hydroxymethylfurfural, which are toxic compounds usually present in lignocellulosic hydrolysates. S. arborariae was able to metabolize xilose and glucose present in the hydrolysate, with ethanol yields (Y(P/S)(et)) of 0.45. In co-cultures, ethanol yields peaked to 0.77 and 0.62 in the synthetic medium and in RHH, respectively. When the toxic compounds were added to the synthetic medium, their presence produced negative effects on biomass formation and ethanol productivity. This work shows good prospects for the use of the new yeast S. arborariae alone and in co-cultures with S. cerevisiae for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.
Antimicrobial peptides against contaminating bacteria in fuel ethanol production
USDA-ARS?s Scientific Manuscript database
Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields: (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination; (2...
Antimicrobial peptides against contaminating bacteria in fuel ethanol production
USDA-ARS?s Scientific Manuscript database
Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination (2)...
Sathesh-Prabu, C; Murugesan, A G
2011-02-01
In this study, we demonstrate that the sorghum field waste, sorghum stover could be used to produce fuel grade ethanol. The alkaline treatment of 2% NaOH for 8h removed 64% of lignin from sorghum stover. Maximum of 68 and 56 g/L of ethanol yield were obtained by Saccharomyces cerevisiae (MTCC 173) and Pachysolen tannophilus (MTCC 1077) from sorghum stover under optimized condition, respectively. pH and temperature were optimized for the better growth of S. cerevisiae and P. tannophilus. A total of 51% and 48% more ethanol yield was obtained at initial sugar concentration of 200 g/L than 150 g/L by P. tannophilus and S. cerevisiae, respectively. Respiratory deficiency and ethanol tolerance of the organisms were studied. This investigation showed that sorghum field waste could be effectively used for the production of fuel ethanol to avoid conflicts between human food use and industrial use of crops. Copyright © 2010 Elsevier Ltd. All rights reserved.
Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W
2016-04-01
Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turanlı-Yıldız, Burcu; Benbadis, Laurent; Alkım, Ceren; Sezgin, Tuğba; Akşit, Arman; Gökçe, Abdülmecit; Öztürk, Yavuz; Baykal, Ahmet Tarık; Çakar, Zeynep Petek; François, Jean M
2017-09-01
Microbial ethanol production is an important alternative energy resource to replace fossil fuels, but at high level, this product is highly toxic, which hampers its efficient production. Towards increasing ethanol-tolerance of Saccharomyces cerevisiae, the so far best industrial ethanol-producer, we evaluated an in vivo evolutionary engineering strategy based on batch selection under both constant (5%, v v -1 ) and gradually increasing (5-11.4%, v v -1 ) ethanol concentrations. Selection under increasing ethanol levels yielded evolved clones that could tolerate up to 12% (v v -1 ) ethanol and had cross-resistance to other stresses. Quite surprisingly, diploidization of the yeast population took place already at 7% (v v -1 ) ethanol level during evolutionary engineering, and this event was abolished by the loss of MKT1, a gene previously identified as being implicated in ethanol tolerance (Swinnen et al., Genome Res., 22, 975-984, 2012). Transcriptomic analysis confirmed diploidization of the evolved clones with strong down-regulation in mating process, and in several haploid-specific genes. We selected two clones exhibiting the highest viability on 12% ethanol, and found productivity and titer of ethanol significantly higher than those of the reference strain under aerated fed-batch cultivation conditions. This higher fermentation performance could be related with a higher abundance of glycolytic and ribosomal proteins and with a relatively lower respiratory capacity of the evolved strain, as revealed by a comparative transcriptomic and proteomic analysis between the evolved and the reference strains. Altogether, these results emphasize the efficiency of the in vivo evolutionary engineering strategy for improving ethanol tolerance, and the link between ethanol tolerance and diploidization. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Saxena, Jyotisna; Tanner, Ralph S
2012-04-01
Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO(2)) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg(2+), NH(4) (+) and PO(4) (3-) decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na(+), Ca(2+), and K(+) or increasing Ca(2+), Mg(2+), K(+), NH(4) (+) and PO(4) (3-) concentrations had no effect on ethanol production. However, increased Na(+) concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l(-1)) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH(4) (+) and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH(4) (+) and CyS to CSL (20 g l(-1), wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l(-1), the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l(-1)) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH(4) (+)). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.
Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed.
Calicioglu, O; Brennan, R A
2018-06-01
The potential for improving bioenergy yields from duckweed, a fast-growing, simple, floating aquatic plant, was evaluated by subjecting the dried biomass directly to anaerobic digestion, or sequentially to ethanol fermentation and then anaerobic digestion, after evaporating ethanol from the fermentation broth. Bioethanol yields of 0.41 ± 0.03 g/g and 0.50 ± 0.01 g/g (glucose) were achieved for duckweed harvested from the Penn State Living-Filter (Lemna obscura) and Eco-Machine™ (Lemna minor/japonica and Wolffia columbiana), respectively. The highest biomethane yield, 390 ± 0.1 ml CH 4 /g volatile solids added, was achieved in a reactor containing fermented duckweed from the Living-Filter at a substrate-to-inoculum (S/I) ratio (i.e., duckweed to microorganism ratio) of 1.0. This value was 51.2% higher than the biomethane yield of a replicate reactor with raw (non-fermented) duckweed. The combined bioethanol-biomethane process yielded 70.4% more bioenergy from duckweed, than if anaerobic digestion had been run alone. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nalakath Abubackar, Haris; Veiga, María C.; Kennes, Christian
2015-01-01
The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54. PMID:25608591
Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian
2015-01-20
The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05) on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54.
Kim, Yong Seon; Jang, Ji Yeon; Park, Seong Jik; Um, Byung Hwan
2018-04-01
Fermentation of food waste biomass can be used to produce biochemicals such as lactic acid and ethanol in a cost-effective manner. Korean food waste (KFW) dewatered by a screw press contains 23.1% glucan on a dry basis and is a potential raw material for the production of ethanol and lactic acid through fermentation. This study was conducted to optimize the dilute acid fractionation conditions for KFW fermentation with respect to the H 2 SO 4 concentration (0-0.8% w/v), temperature (130-190 °C), and residence time (1-128 min) using response surface methodology. Dilute sulfuric acid fractionation was carried out using a 30-mL stainless steel reactor under conditions, and then the dilute acid fractionation was scaled-up in 1-L and 7-L stainless steel reactors under the optimal conditions. The hydrolysate was concentrated, liquid-liquid extracted and neutralized for lactic acid and ethanol production. The highest concentration of glucose obtained from the KFW was 26.4 g/L using fractionation with 0.37% w/v H 2 SO 4 at 156 °C for 123.6 min. Using recombinant Saccharomyces cerevisiae containing a codon-optimized lactate dehydrogenase, the yield of lactic acid and ethanol was 77% of the theoretical yield for 17.4 g/L of fermentable sugar at pH 5.5. Additionally, the yield of ethanol produced by Issatchenkia orientalis was 89% of the theoretical yield for 25 g/L of fermentable sugar at pH 3. Copyright © 2018 Elsevier Ltd. All rights reserved.
Basso, Thiago Olitta; Gomes, Fernanda Sgarbosa; Lopes, Mario Lucio; de Amorim, Henrique Vianna; Eggleston, Gillian; Basso, Luiz Carlos
2014-01-01
Bacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains. We have studied the effects of these two different types of bacteria upon yeast fermentative performance, particularly in connection with sugarcane-based fuel ethanol fermentation process. Homofermentative Lactobacillus plantarum was found to be more detrimental to an industrial yeast strain (Saccharomyces cerevisiae CAT-1), when compared with heterofermentative Lactobacillus fermentum, in terms of reduced yeast viability and ethanol formation, presumably due to the higher titres of lactic acid in the growth medium. These effects were only noticed when bacteria and yeast were inoculated in equal cell numbers. However, when simulating industrial fuel ethanol conditions, as conducted in Brazil where high yeast cell densities and short fermentation time prevail, the heterofermentative strain was more deleterious than the homofermentative type, causing lower ethanol yield and out competing yeast cells during cell recycle. Yeast overproduction of glycerol was noticed only in the presence of the heterofermentative bacterium. Since the heterofermentative bacterium was shown to be more deleterious to yeast cells than the homofermentative strain, we believe our findings could stimulate the search for more strain-specific antimicrobial agents to treat bacterial contaminations during industrial ethanol fermentation.
Land-use and alternative bioenergy pathways for waste biomass.
Campbell, J E; Block, E
2010-11-15
Rapid escalation in biofuels consumption may lead to a trade regime that favors exports of food-based biofuels from tropical developing countries to developed countries. There is growing interest in mitigating the land-use impacts of these potential biofuels exports by converting biorefinery waste streams into cellulosic ethanol, potentially reducing the amount of land needed to meet production goals. This increased land-use efficiency for ethanol production may lower the land-use greenhouse gas emissions of ethanol but would come at the expense of converting the wastes into bioelectricity which may offset fossil fuel-based electricity and could provide a vital source of domestic electricity in developing countries. Here we compare these alternative uses of wastes with respect to environmental and energy security outcomes considering a range of electricity production efficiencies, ethanol yields, land-use scenarios, and energy offset assumptions. For a given amount of waste biomass, we found that using bioelectricity production to offset natural gas achieves 58% greater greenhouse gas reductions than using cellulosic ethanol to offset gasoline but similar emissions when cellulosic ethanol is used to offset the need for more sugar cane ethanol. If bioelectricity offsets low-carbon energy sources such as nuclear power then the liquid fuels pathway is preferred. Exports of cellulosic ethanol may have a small impact on the energy security of importing nations while bioelectricity production may have relatively large impacts on the energy security in developing countries.
Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David
2013-02-01
We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Copyright © 2012 Elsevier Ltd. All rights reserved.
Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment.
Kim, Ho Myeong; Choi, Yong-Soo; Lee, Dae-Seok; Kim, Yong-Hwan; Bae, Hyeun-Jong
2017-07-01
Nowadays, coffee residue (CR) after roasting is recognized as one of the most useful resources in the world for producing the biofuel and bio-materials. In this study, we evaluated the potential of bio-sugar and bioethanol production from acid-chlorite treated CR. Notably, CR treated three times with acid-chlorite after organic solvent extraction (OSE-3), showed the high monosaccharide content, and the efficient sugar conversion yield compared to the other pretreatment conditions. The OSE-3 (6% substrate loading, w/v) can produce bio-sugar (0.568g/g OSE-3). Also, simultaneous saccharification and fermentation (SSF) produced ethanol (0.266g/g OSE-3), and showed an ethanol conversion yield of 73.8% after a 72-h reaction period. These results suggest that acid-chlorite pretreatment can improve the bio-sugar and bioethanol production of CR by removing the phenolic and brown compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Diallo, Oumou
The use of ethanol produced from lignocellulosic biomass for transportation fuel offers solutions in reducing environmental emission and the use of non-renewable fuels. However, lignocellulosic ethanol production is still hampered by economic and technical obstacles. For instance, the inhibitory effect of toxic compounds produced during biomass pretreatment was reported to inhibit the fermenting microorganisms, hence there was a decrease in ethanol yield and productivity. Thus, there is a need to improve the bioconversion of lignocellulosic biomass to ethanol in order to promote its commercialization. The research reported here investigated the use of poultry litter biochar to improve the ethanol production from steam-exploded poplar and corn stover. The effect of poultry litter biochar was first studied on Saccharomyces cerevisiae ATCC 204508/S288C growth, and second on the enzyme hydrolysis and fermentation of two steam-exploded biomasses: (poplar and corn stover). The third part of the study investigated optimal process parameters (biochar loading, biomass loading, and enzyme loading) on the reducing sugars production, and ethanol yield from steam-exploded corn stover. In this study, it has been shown that poultry litter biochar improved the S. cerevisiae growth and ethanol productivity; therefore poultry litter biochar could potentially be used to improve the ethanol production from steam-exploded lignocellulosic biomass.
Mohagheghi, Ali; Schell, Daniel J
2010-04-01
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. (c) 2009 Wiley Periodicals, Inc.
Xylose fermentation to ethanol. A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, J D
1993-01-01
The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-hmore » have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.« less
Xylose fermentation to ethanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, J.D.
1993-01-01
The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-hmore » have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.« less
Production of rare sugars from common sugars in subcritical aqueous ethanol.
Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji
2015-05-15
A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghazali, K. A.; Salleh, S. F.; Riayatsyah, T. M. I.; Aditiya, H. B.; Mahlia, T. M. I.
2016-03-01
Lignocellulosic biomass is one of the promising feedstocks for bioethanol production. The process starts from pre-treatment, hydrolysis, fermentation, distillation and finally obtaining the final product, ethanol. The efficiency of enzymatic hydrolysis of cellulosic biomass depends heavily on the effectiveness of the pre-treatment step which main function is to break the lignin structure of the biomass. This work aims to investigate the effects of dilute acid pre-treatment on the enzymatic hydrolysis of durian seeds waste to glucose and the subsequent bioethanol fermentation process. The yield of glucose from dilute acid pre-treated sample using 0.6% H2SO4 and 5% substrate concentration shows significant value of 23.4951 g/L. Combination of dilute acid pre-treatment and enzymatic hydrolysis using 150U of enzyme able to yield 50.0944 g/L of glucose content higher compared to normal pre-treated sample of 8.1093 g/L. Dilute acid pre-treatment sample also shows stable and efficient yeast activity during fermentation process with lowest glucose content at 2.9636 g/L compared to 14.7583g/L for normal pre-treated sample. Based on the result, it can be concluded that dilute acid pre-treatment increase the yield of ethanol from bioethanol production process.
Harvest management of 'Tifton 85' bermudagrass for cellulosic ethanol production
USDA-ARS?s Scientific Manuscript database
Bermudagrass (Cynodon spp.) is a common perennial summer forage crop in the Southeastern USA that could also be used for cellulosic ethanol. This study was conducted at Midville, GA to assess biomass yields, nutrient utilization, and cellulosic ethanol production from bermudagrass. The crop was gr...
USDA-ARS?s Scientific Manuscript database
Background: Reduced yields of ethanol due to bacterial contamination in fermentation cultures weakens the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predomin...
USDA-ARS?s Scientific Manuscript database
Background: Contamination of corn mash by lactic acid bacteria (LAB) reduces ethanol yields and the overall efficiency of the ethanol fermentation process, and the industry relies heavily on antibiotics for contamination control. There is a need to develop alternative methods for the control of cont...
A novel inhibitor of Lactobacillus biofilms prevents stuck fermentations in a shake flask model
USDA-ARS?s Scientific Manuscript database
Yeast ethanol fermentations contain contaminating bacteria and yeast, with Lactobacilli being a frequent contaminant. These bacteria tolerate the low pH and high ethanol concentrations present in the fermentation, and can decrease the ethanol yield. Fermentations are routinely treated with antibioti...
Hubmann, Georg; Guillouet, Stephane; Nevoigt, Elke
2011-01-01
Gpd1 and Gpd2 are the two isoforms of glycerol 3-phosphate dehydrogenase (GPDH), which is the rate-controlling enzyme of glycerol formation in Saccharomyces cerevisiae. The two isoenzymes play crucial roles in osmoregulation and redox balancing. Past approaches to increase ethanol yield at the cost of reduced glycerol yield have most often been based on deletion of either one or two isogenes (GPD1 and GPD2). While single deletions of GPD1 or GPD2 reduced glycerol formation only slightly, the gpd1Δ gpd2Δ double deletion strain produced zero glycerol but showed an osmosensitive phenotype and abolished anaerobic growth. Our current approach has sought to generate “intermediate” phenotypes by reducing both isoenzyme activities without abolishing them. To this end, the GPD1 promoter was replaced in a gpd2Δ background by two lower-strength TEF1 promoter mutants. In the same manner, the activity of the GPD2 promoter was reduced in a gpd1Δ background. The resulting strains were crossed to obtain different combinations of residual GPD1 and GPD2 expression levels. Among our engineered strains we identified four candidates showing improved ethanol yields compared to the wild type. In contrast to a gpd1Δ gpd2Δ double-deletion strain, these strains were able to completely ferment the sugars under quasi-anaerobic conditions in both minimal medium and during simultaneous saccharification and fermentation (SSF) of liquefied wheat mash (wheat liquefact). This result implies that our strains can tolerate the ethanol concentration at the end of the wheat liquefact SSF (up to 90 g liter−1). Moreover, a few of these strains showed no significant reduction in osmotic stress tolerance compared to the wild type. PMID:21724879
Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters
2013-01-01
Debaryomyces nepalensis, osmotolerant yeast isolated from rotten apple, is known to utilize both hexoses and pentoses and produce industrially important metabolites like ethanol, xylitol and arabitol. In the present study, the effect of different growth substrates, trace elements, nitrogen concentration and initial pH on growth and formation of ethanol and arabitol were examined. Optimum conditions for maximizing the product yields were established: glucose as carbon source, an initial pH of 6.0, 6 g/L of ammonium sulphate and addition of micronutrients. Under these best suited conditions, a concentration of 11g/L of arabitol and 19 g/L of ethanol was obtained in shake flask fermentations. The fermentation was scaled up to 2.5 L bioreactor and the influence of aeration, agitation and initial substrate concentration was also determined. Under optimal conditions (150 g/L glucose, 400 rpm and 0.5 vvm) ethanol concentration reached 52 g/L, which corresponds to a yield of 0.34 g/g and volumetric productivity of 0.28 g/L/h, whereas arabitol production reached a maximum of 14 g/L with a yield and volumetric productivity of 0.1 g/g and 0.07 g/L/h respectively. PMID:23659479
da Costa, Jessyca Aline; Marques, José Edvan; Gonçalves, Luciana Rocha Barros; Rocha, Maria Valderez Ponte
2015-03-01
The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB). Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, L; Guo, Z P; Ding, Z Y; Wang, Z X; Shi, G Y
2012-01-01
The gene mel1, encoding alpha-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and beta-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanol-producing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular alpha-galactosidase and beta-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC 1 co-expressing 2 genes could achieve 0.29 OD600 h(-1) and a biomass yield up to 7.8 g l(-1) dry cell weight on medium containing 10.0 g l(-1) cellobiose and 10.0 g l(-1) melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG 1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l(-1) ethanol was produced from 100 g of cellulose supplied with 5 g l(-1) melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.
Wang, Pin-Mei; Zheng, Dao-Qiong; Liu, Tian-Zhe; Tao, Xiang-Lin; Feng, Ming-Guang; Min, Hang; Jiang, Xin-Hang; Wu, Xue-Chang
2012-03-01
A challenge associated with the ethanol productivity under very-high-gravity (VHG) conditions, optimizing multi-traits (i.e. byproduct formation and stress tolerance) of industrial yeast strains, is overcome by a combination of metabolic engineering and genome shuffling. First, industrial strain Y12 was deleted with a glycerol exporter Fps1p and hetero-expressed with glyceraldehydes-3-phosphate dehydrogenase, resulting in the modified strain YFG12 with lower glycerol yield. Second, YFG12 was subjected to three rounds of drug resistance marker-aided genome shuffling to increase its ethanol tolerance, and the best shuffled strain TS5 was obtained. Compared with wild strain Y12, shuffled strain TS5 not only decreased glycerol formation by 14.8%, but also increased fermentation rate and ethanol yield by 3.7% and 7.6%, respectively. Moreover, the system of genetic modification and Cre/loxP in aid of three different drug-resistance markers presented in the study significantly improved breeding efficiency and will facilitate the application of breeding technologies in prototrophic industrial microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wajs-Bonikowska, Anna; Stobiecka, Agnieszka; Bonikowski, Radosław; Krajewska, Agnieszka; Sikora, Magdalena; Kula, Józef
2017-08-01
Large quantities of blackberry seeds are produced as a pomace during the processing of juice and jam production; this by-product is a very interesting raw material both for oil manufacturing and as a source of bioactive compounds. In this work the composition, yield and antioxidant activity of three types of Rubus fructicosus pomace extracts isolated by liquid extraction using solvents of different polarity, as well with supercritical CO 2 fluid extraction have been compared. The highest extract yield was reported for Soxhlet extraction using ethanol as a solvent (14.2%). Supercritical carbon dioxide and hexane extracts were characterised by the highest content of phytosterols (1445 and 1583 mg 100 g -1 of extract, respectively) among which β-sitosterol was the main one, while the concentration of tocopherols, with predominant γ-isomer, was the highest for both hexane and ethanol extracts, being 2364 and 2334 mg 100 g -1 , respectively. Using a GC-MS method 95 volatiles, in which non-saturated aldehydes were predominant, were identified in the essential oil of seed pomace and in the volatile oil isolated from supercritical extract. The ethanolic extract which is characterised by the highest phenolic content (9443 mg GAE 100 g -1 ) exhibited the highest antioxidant activity (according to the ABTS •+ and DPPH • assays). All pomace extracts examined were of high quality, rich in essential omega fatty acids and with a very high content of bioactive compounds, such as phytosterols and tocopherols. The high nutritional value of extracts from berry seed pomace could justify the commercialisation of specific extracts not only as food additives but also as cosmetic components. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
2013-01-01
Background Robust yeasts with high inhibitor, temperature, and osmotic tolerance remain a crucial requirement for the sustainable production of lignocellulosic bioethanol. These stress factors are known to severely hinder culture growth and fermentation performance. Results Grape marc was selected as an extreme environment to search for innately robust yeasts because of its limited nutrients, exposure to solar radiation, temperature fluctuations, weak acid and ethanol content. Forty newly isolated Saccharomyces cerevisiae strains gave high ethanol yields at 40°C when inoculated in minimal media at high sugar concentrations of up to 200 g/l glucose. In addition, the isolates displayed distinct inhibitor tolerance in defined broth supplemented with increasing levels of single inhibitors or with a cocktail containing several inhibitory compounds. Both the fermentation ability and inhibitor resistance of these strains were greater than those of established industrial and commercial S. cerevisiae yeasts used as control strains in this study. Liquor from steam-pretreated sugarcane bagasse was used as a key selective condition during the isolation of robust yeasts for industrial ethanol production, thus simulating the industrial environment. The isolate Fm17 produced the highest ethanol concentration (43.4 g/l) from the hydrolysate, despite relatively high concentrations of weak acids, furans, and phenolics. This strain also exhibited a significantly greater conversion rate of inhibitory furaldehydes compared with the reference strain S. cerevisiae 27P. To our knowledge, this is the first report describing a strain of S. cerevisiae able to produce an ethanol yield equal to 89% of theoretical maximum yield in the presence of high concentrations of inhibitors from sugarcane bagasse. Conclusions This study showed that yeasts with high tolerance to multiple stress factors can be obtained from unconventional ecological niches. Grape marc appeared to be an unexplored and promising substrate for the isolation of S. cerevisiae strains showing enhanced inhibitor, temperature, and osmotic tolerance compared with established industrial strains. This integrated approach of selecting multiple resistant yeasts from a single source demonstrates the potential of obtaining yeasts that are able to withstand a number of fermentation-related stresses. The yeast strains isolated and selected in this study represent strong candidates for bioethanol production from lignocellulosic hydrolysates. PMID:24286305
Fermentation method producing ethanol
Wang, Daniel I. C.; Dalal, Rajen
1986-01-01
Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.
Fermentation of xylose to ethanol by genetically modified enteric bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolan, J.S.
1987-01-01
This thesis describes the fermentation of D-xylose by wild type and recombinant Klebsiella planticola ATCC 33531 and Erwinia chrysanthemi B374. The recombinant strains bear multi-copy plasmids containing the pdc gene inserted from Zymomonas mobilis. Expression of the gene in K. planticola markedly increased the yield of ethanol, up to 1.3 mole/mole xylose, or 25.1 g/L. Concurrently, there were significant decreases in the yields of formation acetate, lactate, and butanediol. Transconjugant Klebsiella grew almost as fast as the wild type and tolerated up to 4% ethanol. The plasmid was retained by the cells during at least one batch culture, even inmore » the absence of selective pressure by antibiotics to maintain the plasmid. The cells produced 31.6 g/L ethanol from 79.6 g/L of a D-glucose-D-xylose-L-arabinose mixture designed to simulate hydrolyzed hemicellulose. The physiology of the wild type K. planticola is described in more detail than in the original report of its isolation. E. chrysanthemi PDC transconjugants also produced ethanol in high yield (up to 1.45 mole/mole xylose). However, transconjugant E. chrysanthemi grew only 1/4 as rapidly as the wild type and tolerated only 2% ethanol. The plasmid PZM15 apparently exhibits pleiotropic effects when inserted into K. planticola and into E. chrysanthemi.« less
Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang
2010-12-01
The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.
Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation
NASA Astrophysics Data System (ADS)
Kundiyana, Dimple Kumar Aiyanna
Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results indicated that it is possible to modulate the product formation by limiting key nutrients of acetyl-CoA pathway and using a continuous fermentation in two-stage fermentor design to improve ethanol yields. The last experimental study was conducted to commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a bench-scale to a pilot scale 100-L fermentor. Results indicated a six-fold improvement in ethanol concentration (25.3 g L-1 at the end of 59 d) compared to previous Clostridium strain P11 and Clostridium carboxidivorans fermentations plus the formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance.
Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A; Assad, Aline E; Stoklosa, Ryan J; Bansal, Namita; Semaan, Rachel; Saffron, Christopher M; Hodge, David B; Hegg, Eric L
2018-01-01
When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2 O 2 ) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significant loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2 O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2 O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2 O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2 O pre-extraction has the lowest installed ($246 million) and raw material ($175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2 O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2 O pre-extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.
When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2O 2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significantmore » loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2O pre-extraction has the lowest installed ($246 million) and raw material (175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2O pre-extraction.« less
Bhalla, Aditya; Fasahati, Peyman; Particka, Chrislyn A.; ...
2018-05-17
When applied to recalcitrant lignocellulosic feedstocks, multi-stage pretreatments can provide more processing flexibility to optimize or balance process outcomes such as increasing delignification, preserving hemicellulose, and maximizing enzymatic hydrolysis yields. We previously reported that adding an alkaline pre-extraction step to a copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment process resulted in improved sugar yields, but the process still utilized relatively high chemical inputs (catalyst and H 2O 2) and enzyme loadings. We hypothesized that by increasing the temperature of the alkaline pre-extraction step in water or ethanol, we could reduce the inputs required during Cu-AHP pretreatment and enzymatic hydrolysis without significantmore » loss in sugar yield. We also performed technoeconomic analysis to determine if ethanol or water was the more cost-effective solvent during alkaline pre-extraction and if the expense associated with increasing the temperature was economically justified. After Cu-AHP pretreatment of 120 °C NaOH-H 2O pre-extracted and 120 °C NaOH-EtOH pre-extracted biomass, approximately 1.4-fold more total lignin was solubilized (78% and 74%, respectively) compared to the 30 °C NaOH-H 2O pre-extraction (55%) carried out in a previous study. Consequently, increasing the temperature of the alkaline pre-extraction step to 120 °C in both ethanol and water allowed us to decrease bipyridine and H 2O 2 during Cu-AHP and enzymes during hydrolysis with only a small reduction in sugar yields compared to 30 °C alkaline pre-extraction. Technoeconomic analysis indicated that 120 °C NaOH-H 2O pre-extraction has the lowest installed ($246 million) and raw material (175 million) costs compared to the other process configurations. We found that by increasing the temperature of the alkaline pre-extraction step, we could successfully lower the inputs for pretreatment and enzymatic hydrolysis. Based on sugar yields as well as capital, feedstock, and operating costs, 120 °C NaOH-H 2O pre-extraction was superior to both 120 °C NaOH-EtOH and 30 °C NaOH-H 2O pre-extraction.« less
Separation of ethanol/water azeotrope using compound starch-based adsorbents.
Wang, Yanhong; Gong, Chunmei; Sun, Jinsheng; Gao, Hong; Zheng, Shuai; Xu, Shimin
2010-08-01
Comparing breakthrough cures of five starch-based materials experimentally prepared for ethanol dehydration, a compound adsorptive agent ZSG-1 was formulated with high adsorption capacity, low energy and material cost. The selective water adsorption was conducted in a fixed-bed absorber packed with ZSG-1 to find the optimum conditions yielding 99.7 wt% anhydrous ethanol with high efficiency. The adsorption kinetics is well described by Bohart-Adams equation. The adsorption heat, Delta H(abs), was calculated to be -3.16 x 10(4)J mol(-1) from retention data by inverse gas chromatography. Results suggested that water entrapment in ZSG-1 is a exothermic and physisorption process. Also, ZSG-1 is recyclable for on-site multiple-use and then adapt for upstream fermentation process after saturation, avoiding pollution through disposal. (c) 2010 Elsevier Ltd. All rights reserved.
Radiolysis of ethanol and ethanol-water solutions: A tool for studying bioradical reactions
NASA Astrophysics Data System (ADS)
Jore, D.; Champion, B.; Kaouadji, N.; Jay-Gerin, J.-P.; Ferradini, C.
Radiolysis of pure ethanol and ethanol-water solutions is examined in view of its relevance to the study of biological radical mechanisms. On the basis of earlier studies, a consistent reaction scheme is adopted. New data on radical yields are obtained from the radiolysis of dilute solutions of vitamins E and C in these solvents. It is shown that the radiolysis of ethanolic solutions provide an efficient tool to study radical reactions of water-insoluble biomolecules.
Zahed, Omid; Jouzani, Gholamreza Salehi; Abbasalizadeh, Saeed; Khodaiyan, Faramarz; Tabatabaei, Meisam
2016-05-01
The present study was set to develop a robust and economic biorefinery process for continuous co-production of ethanol and xylitol from rice straw in a membrane bioreactor. Acid pretreatment, enzymatic hydrolysis, detoxification, yeast strains selection, single and co-culture batch fermentation, and finally continuous co-fermentation were optimized. The combination of diluted acid pretreatment (3.5 %) and enzymatic conversion (1:10 enzyme (63 floating-point unit (FPU)/mL)/biomass ratio) resulted in the maximum sugar yield (81 % conversion). By concentrating the hydrolysates, sugars level increased by threefold while that of furfural reduced by 50 % (0.56 to 0.28 g/L). Combined application of active carbon and resin led to complete removal of furfural, hydroxyl methyl furfural, and acetic acid. The strains Saccharomyces cerevisiae NCIM 3090 with 66.4 g/L ethanol production and Candida tropicalis NCIM 3119 with 9.9 g/L xylitol production were selected. The maximum concentrations of ethanol and xylitol in the single cultures were recorded at 31.5 g/L (0.42 g/g yield) and 26.5 g/L (0.58 g/g yield), respectively. In the batch co-culture system, the ethanol and xylitol productions were 33.4 g/L (0.44 g/g yield) and 25.1 g/L (0.55 g/g yield), respectively. The maximum ethanol and xylitol volumetric productivity values in the batch co-culture system were 65 and 58 % after 25 and 60 h, but were improved in the continuous co-culture mode and reached 80 % (55 g/L) and 68 % (31 g/L) at the dilution rate of 0.03 L per hour, respectively. Hence, the continuous co-production strategy developed in this study could be recommended for producing value-added products from this hugely generated lignocellulosic waste.
Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism
Lo, Jonathan; Zheng, Tianyong; Olson, Daniel G.; ...
2015-06-29
NfnAB catalyzes the reversible transfer of electrons from reduced ferredoxin and NADH to 2 NADP +. The NfnAB complex has been hypothesized to be the main enzyme for ferredoxin oxidization in strains of Thermoanaerobacterium saccharolyticum engineered for increased ethanol production. NfnAB complex activity was detectable in crude cell extracts of T. saccharolyticum. In this paper, activity was also detected using activity staining of native PAGE gels. The nfnAB gene was deleted in different strains of T. saccharolyticum to determine its effect on end product formation. In wild-type T. saccharolyticum, deletion of nfnAB resulted in a 46% increase in H 2more » formation but otherwise little change in other fermentation products. In two engineered strains with 80% theoretical ethanol yield, loss of nfnAB caused two different responses: in one strain, ethanol yield decreased to about 30% of the theoretical value, while another strain had no change in ethanol yield. Biochemical analysis of cell extracts showed that the ΔnfnAB strain with decreased ethanol yield had NADPH-linked alcohol dehydrogenase (ADH) activity, while the ΔnfnAB strain with unchanged ethanol yield had NADH-linked ADH activity. Deletion of nfnAB caused loss of NADPH-linked ferredoxin oxidoreductase activity in all cell extracts. Significant NADH-linked ferredoxin oxidoreductase activity was seen in all cell extracts, including those that had lost nfnAB. This suggests that there is an unidentified NADH:ferredoxin oxidoreductase (distinct from nfnAB) playing a role in ethanol formation. The NfnAB complex plays a key role in generating NADPH in a strain that had become reliant on NADPH-ADH activity. Importance: Thermophilic anaerobes that can convert biomass-derived sugars into ethanol have been investigated as candidates for biofuel formation. Many anaerobes have been genetically engineered to increase biofuel formation; however, key aspects of metabolism remain unknown and poorly understood. One example is the mechanism for ferredoxin oxidation and transfer of electrons to NAD(P) +. The electron-bifurcating enzyme complex NfnAB is known to catalyze the reversible transfer of electrons from reduced ferredoxin and NADH to 2 NADP + and is thought to play key roles linking NAD(P)(H) metabolism with ferredoxin metabolism. Finally, we report the first deletion of nfnAB and demonstrate a role for NfnAB in metabolism and ethanol formation in Thermoanaerobacterium saccharolyticum and show that this may be an important feature among other thermophilic ethanologenic anaerobes.« less
Grain sorghum stillage recycling: Effect on ethanol yield and stillage quality.
Egg, R P; Sweeten, J M; Coble, C G
1985-12-01
Stillage obtained from ethanol production of grain sorghum was separated into two fractions: thin stillage and wet solids. A portion of the thin stillage was recycled as cooking water in subsequent fermentation runs using both bench- and full-scale ethanol production plants. When thin stillage replaced 50-75% of the cooking water, large increases occurred in solids content, COD, and EC of the resulting thin stillage. It was found that while the volume of thin stillage requiring treatment or disposal was reduced, there was little reduction in the total pollutant load. Stillage rcycling had little effect on the quality of the stillage wet solids fraction. At the high levels of stillage recycle used, ethanol yield was reduced after three to five runs of consecutive recycling.
Gombert, Andreas K; van Maris, Antonius J A
2015-06-01
Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuel ethanol production from sweet sorghum using repeated-batch fermentation.
Chohnan, Shigeru; Nakane, Megumi; Rahman, M Habibur; Nitta, Youji; Yoshiura, Takanori; Ohta, Hiroyuki; Kurusu, Yasurou
2011-04-01
Ethanol was efficiently produced from three varieties of sweet sorghum using repeated-batch fermentation without pasteurization or acidification. Saccharomyces cerevisiae cells could be recycled in 16 cycles of the fermentation process with good ethanol yields. This technique would make it possible to use a broader range of sweet sorghum varieties for ethanol production. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAloon, A.; Taylor, F.; Yee, W.
2000-10-25
The mature corn-to-ethanol industry has many similarities to the emerging lignocellulose-to-ethanol industry. It is certainly possible that some of the early practitioners of this new technology will be the current corn ethanol producers. In order to begin to explore synergies between the two industries, a joint project between two agencies responsible for aiding these technologies in the Federal government was established. This joint project of the USDA-ARS and DOE/NREL looked at the two processes on a similar process design and engineering basis, and will eventually explore ways to combine them. This report describes the comparison of the processes, each producingmore » 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood. Ass umptions about yield and design improvements possible from continued research were made for the emerging lignocellulose process. In order to compare the lignocellulose-to-ethanol process costs with the commercial corn-to-ethanol costs, it was assumed that the lignocellulose plant was an Nth generation plant, built after the industry had been sufficiently established to eliminate first-of-a-kind costs. This places the lignocellulose plant costs on a similar level with the current, established corn ethanol industry, whose costs are well known. The resulting costs of producing 25 million annual gallons of fuel ethanol from each process were determined. The figure below shows the production cost breakdown for each process. The largest cost contributor in the corn starch process is the feedstock; for the lignocellulosic process it is the capital cost, which is represented by depreciation cost on an annual basis.« less
Divate, Nileema R; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin
2016-11-01
A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress.
Production of Ethanol From Newly Developed and Improved Winter Barley Cultivars.
Nghiem, Nhuan P; Brooks, Wynse S; Griffey, Carl A; Toht, Matthew J
2017-05-01
Winter barley has attracted strong interest as a potential feedstock for fuel ethanol production in regions with mild winter climate such as the mid-Atlantic and northeastern USA. Ten recently developed and improved winter barley cultivars and breeding lines including five hulled and five hull-less lines were experimentally evaluated for potential ethanol production. The five hulled barley lines included three released cultivars (Thoroughbred, Atlantic, and Secretariat) and two breeding lines (VA09B-34 and VA11B-4). The five hull-less lines also included three released cultivars (Eve, Dan, and Amaze 10) and two breeding lines (VA08H-65 and VA13H-34). On the average, the hull-less barley cultivars produced more ethanol per unit mass because of their higher starch and β-glucan contents. However, since the hulled barley cultivars had higher agronomic yield, the potential ethanol production per acre of land for the two types were approximately equal. Among the ten cultivars tested, the hull-less cultivar Amaze 10 was the best one for ethanol production. The ethanol yield values obtained for this cultivar were 2.61 gal per bushel and 292 gal per acre.
Development of a more efficient process for production of fuel ethanol from bamboo.
Sun, Zhao-Yong; Wang, Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji
2015-06-01
A process for production of fuel ethanol from bamboo treated with concentrated sulfuric acid has been previously proposed. To improve efficiency of the process, we tested saccharification with 70 weight% (wt%) sulfuric acid, acid-sugar separation by ion exclusion, addition of nutrients to the ethanol fermentation, and bioconversion of xylose to xylitol. A high efficiency of both sugar recovery (82.5 %) and acid recovery (97.5 %) was achieved in the saccharification process and in the continuous acid-sugar separation using a modified anion exchange resin, respectively. Reduction of the amount of mineral salts added to the saccharified liquid after acid-sugar separation did not negatively affect performance of the continuous ethanol fermentation. The ethanol yield and productivity were 93.7 % and 6 g/l h, respectively, at 35 °C and pH 4.0. And the ethanol yield and productivity were almost the same even at pH 3.5. Moreover, the xylose remaining in the fermented mash was efficiently converted to xylitol in batch fermentation by Candida tropicalis strain 2.1776. These results demonstrate a more efficient process for the production of fuel ethanol from bamboo.
2012-01-01
Background Our companion paper discussed the yield benefits achieved by integrating deacetylation, mechanical refining, and washing with low acid and low temperature pretreatment. To evaluate the impact of the modified process on the economic feasibility, a techno-economic analysis (TEA) was performed based on the experimental data presented in the companion paper. Results The cost benefits of dilute acid pretreatment technology combined with the process alternatives of deacetylation, mechanical refining, and pretreated solids washing were evaluated using cost benefit analysis within a conceptual modeling framework. Control cases were pretreated at much lower acid loadings and temperatures than used those in the NREL 2011 design case, resulting in much lower annual ethanol production. Therefore, the minimum ethanol selling prices (MESP) of the control cases were $0.41-$0.77 higher than the $2.15/gallon MESP of the design case. This increment is highly dependent on the carbohydrate content in the corn stover. However, if pretreatment was employed with either deacetylation or mechanical refining, the MESPs were reduced by $0.23-$0.30/gallon. Combing both steps could lower the MESP further by $0.44 ~ $0.54. Washing of the pretreated solids could also greatly improve the final ethanol yields. However, the large capital cost of the solid–liquid separation unit negatively influences the process economics. Finally, sensitivity analysis was performed to study the effect of the cost of the pretreatment reactor and the energy input for mechanical refining. A 50% cost reduction in the pretreatment reactor cost reduced the MESP of the entire conversion process by $0.11-$0.14/gallon, while a 10-fold increase in energy input for mechanical refining will increase the MESP by $0.07/gallon. Conclusion Deacetylation and mechanical refining process options combined with low acid, low severity pretreatments show improvements in ethanol yields and calculated MESP for cellulosic ethanol production. PMID:22967479
Experimental study of bioethanol production using mixed cassava and durian seed
NASA Astrophysics Data System (ADS)
Seer, Q. H.; Nandong, J.; Shanon, T.
2017-06-01
The production of biofuels using conventional fermentation feedstocks, such as sugar-and starch-based agricultural crops will in the long-term lead to a serious competition with human-animal food consumption. To avoid this competition, it is important to explore various alternative feedstocks especially those from inedible waste materials. Potentially, fruit wastes such as damaged fruits, peels and seeds represent alternative cheap feedstocks for biofuel production. In this work, an experimental study was conducted on ethanol production using mixed cassava and durian seeds through fermentation by Saccharomyces cerevisiae yeast. The effects of pH, temperature and ratio of hydrolyzed cassava to durian seeds on the ethanol yield, substrate consumption and product formation rates were analyzed in the study. In flask-scale fermentation using the mixed cassava-durian seeds, it was found that the highest ethanol yield of 45.9 and a final ethanol concentration of 24.92 g/L were achieved at pH 5.0, temperature 35°C and 50:50 volume ratio of hydrolyzed cassava to durian seeds for a batch period of 48 hours. Additionally, the ethanol, glucose and biomass concentration profiles in a lab-scale bioreactor were examined for the fermentation using the proposed materials under the flask-scale optimum conditions. The ethanol yield of 35.7 and a final ethanol concentration of 14.61 g/L were obtained over a period of 46 hours where the glucose was almost fully consumed. It is worth noting that both pH and temperature have significant impacts on the fermentation process using the mixed cassava-durian seeds.
Process engineering economics of bioethanol production.
Galbe, Mats; Sassner, Per; Wingren, Anders; Zacchi, Guido
2007-01-01
This work presents a review of studies on the process economics of ethanol production from lignocellulosic materials published since 1996. Our objective was to identify the most costly process steps and the impact of various parameters on the final production cost, e.g. plant capacity, raw material cost, and overall product yield, as well as process configuration. The variation in estimated ethanol production cost is considerable, ranging from about 0.13 to 0.81 US$ per liter ethanol. This can be explained to a large extent by actual process differences and variations in the assumptions underlying the techno-economic evaluations. The most important parameters for the economic outcome are the feedstock cost, which varied between 30 and 90 US$ per metric ton in the papers studied, and the plant capacity, which influences the capital cost. To reduce the ethanol production cost it is necessary to reach high ethanol yields, as well as a high ethanol concentration during fermentation, to be able to decrease the energy required for distillation and other downstream process steps. Improved pretreatment methods, enhanced enzymatic hydrolysis with cheaper and more effective enzymes, as well as improved fermentation systems present major research challenges if we are to make lignocellulose-based ethanol production competitive with sugar- and starch-based ethanol. Process integration, either internally or externally with other types of plants, e.g. heat and power plants, also offers a way of reducing the final ethanol production cost.
Huang, Chen; Ragauskas, Arthur J; Wu, Xinxing; Huang, Yang; Zhou, Xuelian; He, Juan; Huang, Caoxing; Lai, Chenhuan; Li, Xin; Yong, Qiang
2018-02-01
A novel bio-refinery sequence yielding varieties of co-products was developed using straw pulping solid residue. This process utilizes neutral sulfite pretreatment which under optimal conditions (160 °C and 3% (w/v) sulfite charge) provides 64.3% delignification while retaining 90% of cellulose and 67.3% of xylan. The pretreated solids exhibited excellent enzymatic digestibility, with saccharification yields of 86.9% and 81.1% for cellulose and xylan, respectively. After pretreatment, the process of semi-simultaneous saccharification and fermentation (S-SSF) and bio-catalysis was investigated. The results revealed that decreased ethanol yields were achieved when solid loading increased from 5% to 30%. An acceptable ethanol yield of 76.8% was obtained at 20% solid loading. After fermentation, bio-catalysis of xylose remaining in fermentation broth resulted in near 100% xylonic acid (XA) yield at varied solid loadings. To complete the co-product portfolio, oxidation ammoniation of the dissolved lignin successfully transformed it into biodegradable slow-release nitrogen fertilizer with excellent agricultural properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In these studies Saccharomyces cerevisiae NRRL Y-566 was used to produce ethanol from a concentrated glucose (250-300 gL-1) solution. When fermentation media were supplemented with CaCO3 and CaCl2, ethanol concentrations, yield, and productivities were improved significantly. In control batch fermen...
Genotype and environment effects on ethanol yield from pearl millet
USDA-ARS?s Scientific Manuscript database
In spite of rising feedstock costs and the grain-deficit status of the southeast, investors have committed to the construction of new ethanol plants in the region. The use of alternative feedstocks will help to alleviate market demand for corn both as a feedgrain and as an ethanol feedstock. As a dr...
Ethanol fermentation of cassava starch pretreated with alkali
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Y.C.; Lee, S.Y.; Choe, Y.K.
1986-04-01
In view of the current industrial process for the conventional ethanol fermentation, in which raw starch materials are heated at 120 degrees C for 2 h, conditions for an alternative process were set: an overall time from saccharification to ethanol fermentation of within 3-4 days, an operation temperature of below 60 degrees C, an ethanol yield of over 93%, and a ratio of raw material to fermentation volume of within 1:4. To meet these conditions, previously a steeping method of starch materials in 0.5N HCl solution at 60 degrees C for 12 h were used, followed by combined actions ofmore » ..cap alpha..-amylase and glucoamylase. The ethanol yield from uncooked cassava starch treated under the conditions described was 95% after fermentation for 3 days with Saccharomyces cerevisiae. However, the use of a relatively higher concentration of acid for steeping is still a problem and gelatinization of starch materials is insufficient. This communication, therefore, describes effects of alkali steeping and structural change of starch granules on the ethanol fermentation. 8 references.« less
Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; ...
2015-10-29
A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibilitymore » of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128–468 kWh/ODMT), cellulase (Novozyme’s CTec3) loading (11.6–28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme’s HTec3) loading (0–5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL’s 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas
A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibilitymore » of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128–468 kWh/ODMT), cellulase (Novozyme’s CTec3) loading (11.6–28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme’s HTec3) loading (0–5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL’s 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.« less
Chen, Xiaowen; Shekiro, Joseph; Pschorn, Thomas; Sabourin, Marc; Tucker, Melvin P; Tao, Ling
2015-01-01
A novel, highly efficient deacetylation and disk refining (DDR) process to liberate fermentable sugars from biomass was recently developed at the National Renewable Energy Laboratory (NREL). The DDR process consists of a mild, dilute alkaline deacetylation step followed by low-energy-consumption disk refining. The DDR corn stover substrates achieved high process sugar conversion yields, at low to modest enzyme loadings, and also produced high sugar concentration syrups at high initial insoluble solid loadings. The sugar syrups derived from corn stover are highly fermentable due to low concentrations of fermentation inhibitors. The objective of this work is to evaluate the economic feasibility of the DDR process through a techno-economic analysis (TEA). A large array of experiments designed using a response surface methodology was carried out to investigate the two major cost-driven operational parameters of the novel DDR process: refining energy and enzyme loadings. The boundary conditions for refining energy (128-468 kWh/ODMT), cellulase (Novozyme's CTec3) loading (11.6-28.4 mg total protein/g of cellulose), and hemicellulase (Novozyme's HTec3) loading (0-5 mg total protein/g of cellulose) were chosen to cover the most commercially practical operating conditions. The sugar and ethanol yields were modeled with good adequacy, showing a positive linear correlation between those yields and refining energy and enzyme loadings. The ethanol yields ranged from 77 to 89 gallons/ODMT of corn stover. The minimum sugar selling price (MSSP) ranged from $0.191 to $0.212 per lb of 50 % concentrated monomeric sugars, while the minimum ethanol selling price (MESP) ranged from $2.24 to $2.54 per gallon of ethanol. The DDR process concept is evaluated for economic feasibility through TEA. The MSSP and MESP of the DDR process falls within a range similar to that found with the deacetylation/dilute acid pretreatment process modeled in NREL's 2011 design report. The DDR process is a much simpler process that requires less capital and maintenance costs when compared to conventional chemical pretreatments with pressure vessels. As a result, we feel the DDR process should be considered as an option for future biorefineries with great potential to be more cost-effective.
Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA
Jungers, Jacob M.; Fargione, Joseph E.; Sheaffer, Craig C.; Wyse, Donald L.; Lehman, Clarence
2013-01-01
Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha−1. May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg−1 and the concentration of plant N was 7.1 g kg−1, both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy. PMID:23577208
Davaatseren, Munkhtugs
2016-01-01
This study investigated the effect of soy protein hydrolysates (SPH) prepared by varying subcritical media on the physicochemical properties of pork patties. For resource of SPH, two different soybean species (Glycine max Merr.) of Daewonkong (DWK) and Saedanbaek (SDB) were selected. SPH was prepared by subcritical processing at 190℃ and 25 MPa under three different of media (water, 20% ethanol and 50% ethanol). Solubility and free amino group content revealed that water was better to yield larger amount of SPH than ethanol/water mixtures, regardless of species. Molecular weight (Mw) distribution of SPH was also similar between two species, while slightly different Mw distribution was obtained by subcritical media. For pork patty application, 50% ethanol treatment showed clear red color comparing to control after 14 d of storage. In addition, ethanol treatment had better oxidative stability than control and water treatment based on thiobarbituric acid-reactive substances (TBARS) analysis. For eating quality, although 20% ethanol treatment in SDB showed slightly higher cooking loss than control, generally addition of SPH did not affect the water-binding properties and hardness of pork patties. Consequently, the present study indicated that 50% ethanol was the best subcritical media to produce SPH possessing antioxidant activity, and the SPH produced from DWK exhibited better antioxidant activity than that produced SDB. PMID:27499657
Production of ethanol from thin stillage by metabolically engineered Escherichia coli.
Gonzalez, Ramon; Campbell, Paul; Wong, Matthew
2010-03-01
Thin stillage is a by-product generated in large amounts during the production of ethanol that is rich in carbon sources like glycerol, glucose and maltose. Unfortunately, the fermentation of thin stillage results in a mixture of organic acids and ethanol and minimum utilization of glycerol, the latter a compound that can represent up to 80% of the available substrates in this stream. We report here the efficient production of ethanol from thin stillage by a metabolically engineered strain of Escherichia coli. Simultaneous utilization of glycerol and sugars was achieved by overexpressing either the fermentative or the respiratory glycerol-utilization pathway. However, amplification of the fermentative pathway (encoded by gldA and dhaKLM) led to more efficient consumption of glycerol and promoted the synthesis of reduced products, including ethanol. A previously constructed strain, EH05, containing mutations that prevented the accumulation of competing by-products (i.e. lactate, acetate, and succinate) and overexpressing the fermentative pathway for glycerol utilization [i.e. strain EH05 (pZSKLMgldA)], efficiently converted thin stillage supplemented with only mineral salts to ethanol at yields close to 85% of the theoretical maximum. Ethanol accounted for about 90% (w/w) of the product mixture. These results, along with the comparable performance of strain EH05 (pZSKLMgldA) in 0.5 and 5 l fermenters, indicate a great potential for the adoption of this process by the biofuels industry.
Metabolic Engineering of Fusarium oxysporum to Improve Its Ethanol-Producing Capability.
Anasontzis, George E; Kourtoglou, Elisavet; Villas-Boâs, Silas G; Hatzinikolaou, Dimitris G; Christakopoulos, Paul
2016-01-01
Fusarium oxysporum is one of the few filamentous fungi capable of fermenting ethanol directly from plant cell wall biomass. It has the enzymatic toolbox necessary to break down biomass to its monosaccharides and, under anaerobic and microaerobic conditions, ferments them to ethanol. Although these traits could enable its use in consolidated processes and thus bypass some of the bottlenecks encountered in ethanol production from lignocellulosic material when Saccharomyces cerevisiae is used-namely its inability to degrade lignocellulose and to consume pentoses-two major disadvantages of F. oxysporum compared to the yeast-its low growth rate and low ethanol productivity-hinder the further development of this process. We had previously identified phosphoglucomutase and transaldolase, two major enzymes of glucose catabolism and the pentose phosphate pathway, as possible bottlenecks in the metabolism of the fungus and we had reported the effect of their constitutive production on the growth characteristics of the fungus. In this study, we investigated the effect of their constitutive production on ethanol productivity under anaerobic conditions. We report an increase in ethanol yield and a concomitant decrease in acetic acid production. Metabolomics analysis revealed that the genetic modifications applied did not simply accelerate the metabolic rate of the microorganism; they also affected the relative concentrations of the various metabolites suggesting an increased channeling toward the chorismate pathway, an activation of the γ-aminobutyric acid shunt, and an excess in NADPH regeneration.
Lee, Yun-Kyung; Ko, Bo-Bae; Davaatseren, Munkhtugs; Hong, Geun-Pyo
2016-01-01
This study investigated the effect of soy protein hydrolysates (SPH) prepared by varying subcritical media on the physicochemical properties of pork patties. For resource of SPH, two different soybean species (Glycine max Merr.) of Daewonkong (DWK) and Saedanbaek (SDB) were selected. SPH was prepared by subcritical processing at 190℃ and 25 MPa under three different of media (water, 20% ethanol and 50% ethanol). Solubility and free amino group content revealed that water was better to yield larger amount of SPH than ethanol/water mixtures, regardless of species. Molecular weight (Mw) distribution of SPH was also similar between two species, while slightly different Mw distribution was obtained by subcritical media. For pork patty application, 50% ethanol treatment showed clear red color comparing to control after 14 d of storage. In addition, ethanol treatment had better oxidative stability than control and water treatment based on thiobarbituric acid-reactive substances (TBARS) analysis. For eating quality, although 20% ethanol treatment in SDB showed slightly higher cooking loss than control, generally addition of SPH did not affect the water-binding properties and hardness of pork patties. Consequently, the present study indicated that 50% ethanol was the best subcritical media to produce SPH possessing antioxidant activity, and the SPH produced from DWK exhibited better antioxidant activity than that produced SDB.
NASA Astrophysics Data System (ADS)
Gaffney, Jeffrey S.; Marley, Nancy A.; Blake, Donald R.
2012-09-01
While it is well known that combustion of ethanol as a biofuel will lead to enhanced emissions of methane, ethene (ethylene), acetaldehyde, formaldehyde, and oxides of nitrogen (primarily NO) when compared to gasoline alone, especially during cold starts or if catalytic converters are not operating properly, the impacts of increases in atmospheric ethene levels from combustion of fuels with higher ethanol content has not received much attention. Ethene is a well known and potent plant growth hormone and exposure to agricultural crops and natural vegetation results in yield reductions especially when combined with higher levels of PAN and ozone also expected from the increased use of ethanol/gasoline blends. We report here some baseline measurements of ethene obtained in 2002 in the southwestern and south central United States. These data indicate that current ethene background levels are less than 1 ppb. Anticipated increases in fuel ethanol content of E30 or greater is expected to lead to higher atmospheric levels of ethene on regional scales due to its atmospheric lifetime of 1.5-3 days. These background measurements are discussed in light of the potential enhancement of ethene levels expected from the anticipated increases in ethanol use as a renewable biofuel.
Qiu, Zilong; Jiang, Rongrong
2017-01-01
Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae , which finally led to improvement in yeast ethanol tolerance and production.
Improvement in fermentation characteristics of degermed ground corn by lipid supplementation.
Murthy, Ganti S; Singh, Vijay; Johnston, David B; Rausch, Kent D; Tumbleson, M E
2006-08-01
With rapid growth of fuel ethanol industry, and concomitant increase in distillers dried grains with solubles (DDGS), new corn fractionation technologies that reduce DDGS volume and produce higher value coproducts in dry grind ethanol process have been developed. One of the technologies, a dry degerm, defiber (3D) process (similar to conventional corn dry milling) was used to separate germ and pericarp fiber prior to the endosperm fraction fermentation. Recovery of germ and pericarp fiber in the 3D process results in removal of lipids from the fermentation medium. Biosynthesis of lipids, which is important for cell growth and viability, cannot proceed in strictly anaerobic fermentations. The effects of ten different lipid supplements on improving fermentation rates and ethanol yields were studied and compared to the conventional dry grind process. Endosperm fraction (from the 3D process) was mixed with water and liquefied by enzymatic hydrolysis and was fermented using simultaneous saccharification and fermentation. The highest ethanol concentration (13.7% v/v) was achieved with conventional dry grind process. Control treatment (endosperm fraction from 3D process without lipid supplementation) produced the lowest ethanol concentration (11.2% v/v). Three lipid treatments (fatty acid ester, alkylphenol, and ethoxylated sorbitan ester 1836) were most effective in improving final ethanol concentrations. Fatty acid ester treatment produced the highest final ethanol concentration (12.3% v/v) among all lipid supplementation treatments. Mean final ethanol concentrations of alkylphenol and ethoxylated sorbitan ester 1836 supplemented samples were 12.3 and 12.0% v/v, respectively.
Cost-effective approach to ethanol production and optimization by response surface methodology.
Uncu, Oya Nihan; Cekmecelioglu, Deniz
2011-04-01
Food wastes disposed from residential and industrial kitchens have gained attention as a substrate in microbial fermentations to reduce product costs. In this study, the potential of simultaneously hydrolyzing and subsequently fermenting the mixed carbohydrate components of kitchen wastes were assessed and the effects of solid load, inoculum volume of baker's yeast, and fermentation time on ethanol production were evaluated by response surface methodology (RSM). The enzymatic hydrolysis process was complete within 6h. Fermentation experiments were conducted at pH 4.5, a temperature of 30°C, and agitated at 150 rpm without adding the traditional fermentation nutrients. The statistical analysis of the model developed by RSM suggested that linear effects of solid load, inoculum volume, and fermentation time and the quadratic effects of inoculum volume and fermentation time were significant (P<0.05). The verification experiments indicated that the developed model could be successfully used to predict ethanol concentration at >90% accuracy. An optimum ethanol concentration of 32.2g/l giving a yield of 0.40g/g, comparable to yields reported to date, was suggested by the model with 20% solid load, 8.9% inoculum volume, and 58.8h of fermentation. The results indicated that the production costs can be lowered to a large extent by using kitchen wastes having multiple carbohydrate components and eliminating the use of traditional fermentation nutrients from the recipe. Copyright © 2010 Elsevier Ltd. All rights reserved.
Chang, Dongdong; Yu, Zhisheng; Islam, Zia Ul; Zhang, Hongxun
2015-05-01
Pyrolysate from waste cotton was acid hydrolyzed and detoxified to yield pyrolytic sugars, which were fermented to ethanol by the strain Escherichia coli ACCC 11177. Mathematical models based on the fermentation data were also constructed. Pyrolysate containing an initial levoglucosan concentration of 146.34 g/L gave a glucose yield of 150 % after hydrolysis, suggesting that other compounds were hydrolyzed to glucose as well. Ethyl acetate-based extraction of bacterial growth inhibitors with an ethyl acetate/hydrolysate ratio of 1:0.5 enabled hydrolysate fermentation by E. coli ACCC 11177, without a standard absorption treatment. Batch processing in a fermenter exhibited a maximum ethanol yield and productivity of 0.41 g/g and 0.93 g/L·h(-1), respectively. The cell growth rate (r x ) was consistent with a logistic equation [Formula: see text], which was determined as a function of cell growth (X). Glucose consumption rate (r s ) and ethanol formation rate (r p ) were accurately validated by the equations [Formula: see text] and [Formula: see text], respectively. Together, our results suggest that combining mathematical models with fermenter fermentation processes can enable optimized ethanol production from cellulosic pyrolysate with E. coli. Similar approaches may facilitate the production of other commercially important organic substances.
Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J
2018-04-01
The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sorokina, Ksenia N; Taran, Oxana P; Medvedeva, Tatiana B; Samoylova, Yuliya V; Piligaev, Alexandr V; Parmon, Valentin N
2017-02-08
In this study, a combination of catalytic and biotechnological processes was proposed for the first time for application in a cellulose biorefinery for the production of 5-hydroxymethylfurfural (5-HMF) and bioethanol. Hydrolytic dehydration of the mechanically activated microcrystalline cellulose over a carbon-based mesoporous Sibunt-4 catalyst resulted in moderate yields of glucose and 5-HMF (21.1-25.1 and 6.6-9.4 %). 5-HMF was extracted from the resulting mixture with isobutanol and subjected to ethanol fermentation. A number of yeast strains were isolated that also revealed high thermotolerance (up to 50 °C) and resistance to inhibitors found in the hydrolysates. The strains Kluyveromyces marxianus C1 and Ogataea polymorpha CBS4732 were capable of producing ethanol from processed catalytic hydrolysates of cellulose at 42 °C, with yields of 72.0±5.7 and 75.2±4.3 % from the maximum theoretical yield of ethanol, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ethanol production from lignocellulosic byproducts of olive oil extraction.
Ballesteros, I; Oliva, J M; Saez, F; Ballesteros, M
2001-01-01
The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragmented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. The olive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.
Yang, Yijin; Xia, Yongjun; Lin, Xiangna; Wang, Guangqiang; Zhang, Hui; Xiong, Zhiqiang; Yu, Haiyan; Yu, Jianshen; Ai, Lianzhong
2018-06-01
Producing alcoholic beverages with novel flavor are desirable for winemakers. We created fermenting yeast with superior ethanol tolerance and fermentation activity to improve the flavor profiles of Chinese rice wine. Strategies of ethanol domestication, ultraviolet mutagenesis (UV) and protoplast fusion were conducted to create yeast hybrids with excellent oenological characteristic. The obtained diploid hybrid F23 showed a cell viability of 6.2% under 25% ethanol, whereas its diploid parental strains could not survive under 20% ethanol. During Chinese rice wine-making, compared to diploid parents, F23 produced 7.07%-12.44% higher yield of ethanol. Flavor analysis indicated that the total content of flavor compounds in F23 wine was 19.99-26.55% higher than that of parent wines. Specifically, F23 exhibited higher capacity in producing 2-phenylethanol, short-chain and long-chain fatty-acid ethyl-ester than diploid parents. Compared to diploid parents, F23 introduced more flavor contributors with odor activity values (OAVs) above one to Chinese rice wine, and those contributors were found with higher OAVs. Based on principal component analysis (PCA), the flavor characteristic of F23 wine was similar to each of parent wine. Additionally, sensory evaluation showed that F23 wine was highly assessed for its intensive levels in fruit-aroma, alcohol-aroma and mouthfeel. Hybrid F23 not only displayed superior flavor production and oenological performance in making Chinese rice wine, but also could act as potential "mixed-like" starter to enrich wine style and differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.; Su, D.; Frenkel, A. I.
Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO 2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO 2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO 2 catalysts with a partially oxidized Pt and Rh core and a SnO 2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincidedmore » with a 2.5-fold increase in the CO 2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO 2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less
Yang, G.; Su, D.; Frenkel, A. I.; ...
2016-09-04
Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO 2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO 2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO 2 catalysts with a partially oxidized Pt and Rh core and a SnO 2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincidedmore » with a 2.5-fold increase in the CO 2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO 2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less
Xiaoli Sun; Wengang Li; Jian Li; Yuangang Zu; Chung-Yun Hse; Jiulong Xie; Xiuhua Zhao
2016-01-01
Ethanol and hexane mixture agent microwave-assisted extraction (MAE) method was conducted to extract peony (Paeonia suffruticosa Andr.) seed oil (PSO). The aim of the study was to optimise the extraction for both yield and energy consumption in mixture agent MAE. The highest oil yield (34.49%) and lowest unit energy consumption (14 125.4 J g -1)...
Bell, Guinevere H; Novak, Andrew J; Griffin, William C; Patrick, Kennerly S
2011-07-01
We tested the hypothesis that C57BL/6J mice will model human metabolic interactions between dl-methylphenidate (MPH) and ethanol, placing an emphasis on the MPH transdermal system (MTS). Specifically, we asked: (1) will ethanol increase d-MPH biological concentrations, (2) will MTS facilitate the systemic bioavailability of l-MPH, and (3) will l-MPH enantioselectively interact with ethanol to yield l-ethylphenidate (l-EPH)? Mice were dosed with MTS (¼ of a 12.5 cm(2) patch on shaved skin) or a comparable oral dl-MPH dose (7.5 mg/kg), with or without ethanol (3.0 g/kg), and then placed in metabolic cages for 3 h. MPH and EPH isomer concentrations in blood, brain, and urine were analyzed by gas chromatographic-mass spectrometry monitoring of N-(S)-prolylpiperidyl fragments. As in humans, MTS greatly facilitated the absorption of l-MPH in this mouse strain. Similarly, ethanol led to the enantioselective formation of l-EPH and to an elevation in d-MPH concentrations with both MTS and oral MPH. Although only guarded comparisons between MTS and oral MPH can be made due to route-dependent drug absorption rate differences, MTS was associated with significant MPH-ethanol interactions. Ethanol-mediated increases in circulating concentrations of d-MPH carry toxicological and abuse liability implications should this animal model hold for ethanol-consuming attention-deficit hyperactivity disorder patients or coabusers. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Biological Conversion of Glycerol to Ethanol by Enterobacter aerogenes
NASA Astrophysics Data System (ADS)
Nwachukwu, Raymond E. S.
In a search to turn the economically and environmentally non-valuable "waste" streams of biodiesel production into a profitable byproduct, a mutant strain of Enterobacter aerogenes ATCC 13048 was developed by six-tube subculturing technique. This technique is based on the principle of adaptive evolution, and involved subculturing the bacterium in a tryptic soy broth without dextrose (TSB) containing specific glycerol and ethanol concentration for six consecutive times. Then, the six consecutive subculturing was repeated in a fresh TSB of higher glycerol and ethanol concentrations. A new mutant strain, E. aerogenes S012, which could withstand a combination of 200 g/l glycerol and 30 g/l ethanol concentrations, was developed. The wild and mutant strains were used for the fermentation of pure (P-) and recovered (R-) glycerol. Taguchi and full factorial methods of design of experiments were used to screen and optimize the important process factors that influence the microbial production of ethanol. A statistically sound regression model was used to establish the mathematical relationship between the process variables and ethanol production. Temperature of 38°C, agitation speed of 200 rpm, pH of 6.3-6.6, and microaerobic condition were the optimum process conditions. Different pretreatment methods to recover glycerol from the crude glycerol and the subsequent fermentation method showed that direct acidification using 85% H3PO4 was the best. The R-glycerol contained 51% pure glycerol and 21% methanol. The wild strain, E. aerogenes ATCC 13048, produced only 12 g/l and 12.8 g/l ethanol from 20 g/l P- and R-glycerol respectively, and could not utilize higher glycerol concentrations. The mutant, E. aerogenes S012, produced ethanol amount and yield of 43 g/l and 1.12 mol/mol-glycerol from P-glycerol, respectively within 96 h. It also produced ethanol amount and yield of 26.8 g/l and 1.07 mol/mol-glycerol, respectively, from R-glycerol within the same duration. In a fermentation to estimate hydrogen production using a respirometer, the hydrogen yield and volumetric rate of 1.06 mol/mol-glycerol and 217 ml/l/h, respectively were obtained from 6% P-glycerol in 72 h by E. aerogenes S012. The result was higher from R-glycerol, which produced hydrogen yield and productivity of 1.83 mol/mol-glycerol and 326 ml/l/h, respectively.
Second-generation ethanol production from elephant grass at high total solids.
Menegol, Daiane; Fontana, Roselei Claudete; Dillon, Aldo José Pinheiro; Camassola, Marli
2016-07-01
The enzymatic hydrolysis of Pennisetum purpureum (elephant grass) was evaluated at high total solid levels (from 4% to 20% (w/v)) in a concomitant ball milling treatment in a rotating hydrolysis reactor (RHR). The greatest glucose yield was 20.17% when 4% (w/v) untreated biomass was employed. When sugars obtained from enzymatic hydrolysis were submitted to fermentation with Saccharomyces cerevisiae, the greatest ethanol yield was 22.61% when 4% (w/v) untreated biomass was employed; however, the highest glucose concentration (12.47g/L) was obtaining using 20% (w/v) solids and highest ethanol concentration (6.1g/L) was obtained using 16% (w/v) solids. When elephant grass was hydrolyzed in the rotating hydrolysis reactor, ethanol production was about double that was produced when the biomass was hydrolyzed in a static reactor (SR). These data indicate that it is possible to produce ethanol from elephant grass when milling treatment and enzymatic hydrolysis are performed at the same time. Copyright © 2016. Published by Elsevier Ltd.
Garmakhany, Amir Daraei; Kashaninejad, Mahdi; Aalami, Mehran; Maghsoudlou, Yahya; Khomieri, Mortza; Tabil, Lope G
2014-06-01
In recent decades, bioconversion of lignocellulosic biomass to biofuel (ethanol and biodiesel) has been extensively investigated. The three main chemical constituents of biomass are cellulose, hemicellulose and lignin. Cellulose and hemicellulose are polysaccharides of primarily fermentable sugars, glucose and xylose respectively. Hemicellulose also includes small fermentable fractions of arabinose, galactose and mannose. The main issue in converting lignocellulosic biomass to fuel ethanol is the accessibility of the polysaccharides for enzymatic breakdown into monosaccharides. This study focused on the use of steam explosion as the pretreatment method for canola straw as lignocellulosic biomass. Result showed that steam explosion treatment of biomass increased cellulose accessibility and it hydrolysis by enzyme hydrolysis. Following 72 h of enzyme hydrolysis, a maximum cellulose conversion to glucose yield of 29.40% was obtained for the steam-exploded sample while the control showed 11.60% glucose yields. Steam explosion pretreatment increased glucose production and glucose yield by 200% and 153.22%, respectively, compared to the control sample. The crystalline index increased from 57.48% in untreated canola straw to 64.72% in steam-exploded samples. Steam explosion pretreatment of biomass increased cellulose accessibility, and enzymatic hydrolysis increased glucose production and glucose yield of canola straw. © 2013 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Goyal, Garima
Fossil fuels have been the major source for liquid transportation fuels for ages. However, decline in oil reserves and environmental concerns have raised a lot of interest in alternative and renewable energy sources. One promising alternative is the conversion of plant biomass into ethanol. The primary biomass feed stocks currently being used for the ethanol industry have been food based biomass (corn and sugar cane). However, interest has recently shifted to replace these traditional feed-stocks with more abundant, non-food based cellulosic biomass such as agriculture wastes (corn stover) or crops (switch grass). The use of cellulosic biomass as feed stock for the production of ethanol via bio-chemical routes presents many technical challenges not faced with the use of corn or sugar-cane as feed-stock. Recently, a new process called consolidated Bio-processing (CBP) has been proposed. This process combines simultaneous saccharification of lignocellulose with fermentation of the resulting sugars into a single process step mediated by a single microorganism or microbial consortium. Although there is no natural microorganism that possesses all properties of lignocellulose utilization and ethanol production desired for CBP, some bacteria and fungi exhibit some of the essential traits. The yeast Saccharomyces cerevisiae is the most attractive host organism for the usage of this strategy due to its high ethanol productivity at close to theoretical yields (0.51g ethanol/g glucose consumed), high osmo- and ethanol- tolerance, natural robustness in industrial processes, and ease of genetic manipulation. Introduction of the cellulosome, found naturally in microorganisms, has shown new directions to deal with recalcitrant biomass. In this case enzymes work in synergy in order to hydrolyze biomass more effectively than in case of free enzymes. A microbial consortium has been successfully developed, which ensures the functional assembly of minicellulosome on the yeast surface composed of four yeast populations. These yeast populations include: one displaying scaffoldin on its surface and three populations secreting three different cellulases in the medium to hydrolyze the cellulose. The modular nature of the consortium system allows for the fine-tuning of each population by changing their initial inoculum ratio, thereby optimizing the cellulose hydrolysis and hence ethanol production. When comparing the optimized consortium with equal ratio consortium, the optimized one produced almost double the amount of ethanol (1.87 g/l) with a yield of 0.475 g ethanol/g cellulose. To further evaluate the feasibility of using consortium for CBP, it was grown at very low optical density (OD) under anaerobic conditions. Under stressful conditions like low OD and no oxygen, the consortium system was proficient in assembling the cellulosome on its surface and growing on the PAS-avicel as sole carbon source and concomitantly producing ethanol with a yield of 87% of the theoretical value. For the dynamic study of yeast consortium system, quantitative real time PCR was used to enumerate the individual yeast population in the mixed culture. At the end of the cultivation, ratios of each population in this consortium maintained similar number as the initial inoculums ratios, which further confirms the consortium system is suitable for the application of CBP.
Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis.
Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças de Almeida; Silva, João Batista de Almeida e; Giulietti, Marco
2010-05-01
The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).
Mixed waste paper to ethanol fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.
High ethanol producing derivatives of Thermoanaerobacter ethanolicus
Ljungdahl, L.G.; Carriera, L.H.
1983-05-24
Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).
High ethanol producing derivatives of Thermoanaerobacter ethanolicus
Ljungdahl, Lars G.; Carriera, Laura H.
1983-01-01
Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).
NASA Astrophysics Data System (ADS)
Hashim, Z.; Fukusaki, E.
2016-06-01
The increased demand for clean, sustainable and renewable energy resources has driven the development of various microbial systems to produce biofuels. One of such systems is the ethanol-producing yeast. Although yeast produces ethanol naturally using its native pathways, production yield is low and requires improvement for commercial biofuel production. Moreover, ethanol is toxic to yeast and thus ethanol tolerance should be improved to further enhance ethanol production. In this study, we employed metabolomics-based strategy using 30 single-gene deleted yeast strains to construct multivariate models for ethanol tolerance and screen metabolites that relate to ethanol sensitivity/tolerance. The information obtained from this study can be used as an input for strain improvement via metabolic engineering.
Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herring, Christopher D.; Kenealy, William R.; Shaw, A. Joe
Here, the thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported.
Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood
Herring, Christopher D.; Kenealy, William R.; Shaw, A. Joe; ...
2016-06-16
Here, the thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported.
Ko, Ja Kyong; Jung, Je Hyeong; Altpeter, Fredy; Kannan, Baskaran; Kim, Ha Eun; Kim, Kyoung Heon; Alper, Hal S; Um, Youngsoon; Lee, Sun-Mi
2018-05-01
The recalcitrant structure of lignocellulosic biomass is a major barrier in efficient biomass-to-ethanol bioconversion processes. The combination of feedstock engineering via modification in the lignin synthesis pathway of sugarcane and co-fermentation of xylose and glucose with a recombinant xylose utilizing yeast strain produced 148% more ethanol compared to that of the wild type biomass and control strain. The lignin reduced biomass led to a substantially increased release of fermentable sugars (glucose and xylose). The engineered yeast strain efficiently co-utilized glucose and xylose for fermentation, elevating ethanol yields. In this study, it was experimentally demonstrated that the combined efforts of engineering both feedstock and microorganisms largely enhances the bioconversion of lignocellulosic feedstock to bioethanol. This strategy will significantly improve the economic feasibility of lignocellulosic biofuels production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lau, C O; Tan, C H; Khoo, H E; Li, Q T; Yuen, R
1995-01-01
A purification procedure for Lophozozymus pictor toxin (LPTX) following ethanolic extraction of whole crab homogenate is described. The ethanol-extracted toxin (LPTX-E) had higher yield and specific activity than the hot aqueous-extracted one (LPTX-H). It was found that LPTX-E was fluorescent and cochromatographed with LPTX-H on two-dimensional thin-layer chromatography. Although LPTX-E, LPTX-H, and palytoxin (P. caribaeorum, PTX) had similar migration and retention times when analysed on high performance capillary electrophoresis and gel permeation-high performance liquid chromatography respectively, LPTX-E and LPTX-H were both fluorescent in contrast to PTX. In addition, LPTX-E had a different retention time compared with PTX when chromatographed on reversed phase high performance liquid chromatography in the solvent system 80% acetonitrile and 0.02 M Tris-HCl, pH 7.2, at a 4:1 ratio, respectively, indicating some differences in their chemical structures.
Orr, T Edward; Whitford-Stoddard, Jennifer L; Elkins, Ralph L
2004-05-01
Taste-aversion (TA)-prone (TAP) rats and TA-resistant (TAR) rats have been developed by means of bidirectional selective breeding on the basis of their behavioral responses to a TA conditioning paradigm. The TA conditioning involved the pairing of an emetic-class agent (cyclophosphamide) with a novel saccharin solution as the conditioned stimulus. Despite the absence of ethanol in the selective breeding process, these rat lines differ widely in ethanol self-administration. In the current study, blood alcohol concentrations (BACs) were determined after 9 days of limited (2 h per day) access to a simultaneous, two-bottle choice of a 10% ethanol in water solution [volume/volume (vol./vol.)] or plain water. The BACs correlated highly with ethanol intake among TAR rats, but an insufficient number of TAP rats yielded measurable BACs to make the same comparison within this rat line. The same rats were subsequently exposed to 24-h access of a two-bottle choice (10% ethanol or plain water) for 8 days. Ethanol consumption during the 24-h access period correlated highly with that seen during limited access. Subsequent TA conditioning with these rats yielded line-typical differences in saccharin preferences. In a separate group of rats, ethanol clearance was determined by measuring BACs at 1, 4, and 7 h after injection of a 2.5-g/kg dose of ethanol. Ethanol clearance was not different between the two lines. Furthermore, the lines did not differ with respect to food and water consumption. Therefore, the TAP rat-TAR rat differences in ethanol consumption cannot be attributed to line differences in ethanol metabolism or in general consummatory behavior. The findings support our contention that the line differences in ethanol consumption are mediated by differences in TA-related mechanisms. The findings are discussed with respect to genetically based differences in the subjective experience of ethanol.
Inoue, Hiroyuki; Yano, Shinichi; Endo, Takashi; Sakaki, Tsuyoshi; Sawayama, Shigeki
2008-01-01
Background Lignocellulosic biomass such as wood is an attractive material for fuel ethanol production. Pretreatment technologies that increase the digestibility of cellulose and hemicellulose in the lignocellulosic biomass have a major influence on the cost of the subsequent enzymatic hydrolysis and ethanol fermentation processes. Pretreatments without chemicals such as acids, bases or organic solvents are less effective for an enzymatic hydrolysis process than those with chemicals, but they have a less negative effect on the environment. Results The enzymatic digestibility of eucalyptus was examined following a combined pretreatment without chemicals comprising a ball milling (BM) and hot-compressed water (HCW) treatment. The BM treatment simultaneously improved the digestibility of both glucan and xylan, and was effective in lowering the enzyme loading compared with the HCW treatment. The combination of HCW and BM treatment reduced the BM time. The eucalyptus treated with HCW (160°C, 30 minutes) followed by BM (20 minutes) had an approximately 70% yield of total sugar with a cellulase loading of 4 FPU/g substrate. This yield was comparable to the yields from samples treated with HCW (200°C, 30 minutes) or BM (40 minutes) hydrolyzed with 40 FPU/g substrate. Conclusion The HCW treatment is useful in improving the milling efficiency. The combined HCW-BM treatment can save energy and enzyme loading. PMID:18471309
Henderson, Angela N; Czachowski, Cristine L
2012-03-01
The central nucleus of the amygdala (CeA) has been implicated as having a significant role in mediating alcohol-drinking behavior. Neuropeptide Y (NPY) has been investigated as a potential pharmacotherapeutic due to its ability to attenuate ethanol intake, particularly when administered into the CeA. Previous research suggests, though the evidence is somewhat conflicting, that the efficacy of NPY is contingent upon genetic background and/or prior history of ethanol dependence in rats. However, studies looking at the effects of NPY in nonselected animals lacking a history of ethanol dependence have two factors that could impact the interpretation of the results: ethanol history/selection AND relatively low baseline ethanol intakes as compared to ethanol-dependent and/or genetically selected controls. The purpose of the present study was to generate higher baseline ethanol intakes upon which to examine the effects of NPY on ethanol and sucrose drinking in nonselected rats using a binge drinking model. Long Evans rats were trained to complete a single response requirement resulting in access to either 2% sucrose (Sucrose Group) or 2% sucrose/10% ethanol (Ethanol Group) for a 20-min drinking session. On treatment days, rats were bilaterally microinjected into the CeA with aCSF or one of three doses of NPY (0.25μg, 0.50μg, or 1.00μg/.5μL). Subjects in the Ethanol Group were consuming an average of 1.2g/kg of ethanol (yielding BELs of ~90mg%) during the 20min access period following aCSF treatments. The results revealed that NPY had no effect on either sucrose or ethanol consumption or on appetitive responding (latency to respond). Overall, the findings indicate that even a history of binge-like ethanol consumption is not sufficient to recruit CeA NPY activity, and are consistent with previous studies showing that the role of NPY in regulating ethanol reinforcement in the CeA may be contingent upon a prior history of ethanol dependence. Copyright © 2011 Elsevier Inc. All rights reserved.
Saliu, Bolanle Kudirat; Sani, Alhassan
2012-01-01
Corn cob is a major component of agricultural and domestic waste in many parts of the world. It is composed mainly of cellulose which can be converted to energy in form of bioethanol as an efficient and effective means of waste management. Production of cellulolytic enzymes were induced in the fungi Aspergillus niger and Penicillium decumbens by growing them in mineral salt medium containing alkali pre-treated and untreated corn cobs. The cellulases were characterized and partially purified. Alkali pre-treated corn cobs were hydrolysed with the partially purified cellulases and the product of hydrolysis was fermented using the yeast saccharomyces cerevisae to ethanol. Cellulases of A. niger produced higher endoglucanase and exoglucanase activity (0.1698 IU ml(-1) and 0.0461 FPU ml(-1)) compared to that produced by P. decumbens (0.1111 IU ml(-1) and 0.153 FPU ml(-1)). Alkali pre-treated corn cob hydrolysed by cellulases of A. niger yielded 7.63 mg ml(-1) sugar which produced 2.67 % (v/v) ethanol on fermentation. Ethanol yield of the hydrolysates of corn cob by cellulases of P. decumbens was much lower at 0.56 % (v/v). Alkali pre-treated corn cob, hydrolysed with cellulases of A. niger is established as suitable feedstock for bioethanol production.
Mikulski, D; Kłosowski, G; Rolbiecka, A
2014-10-01
Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.
Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform.
Enquist-Newman, Maria; Faust, Ann Marie E; Bravo, Daniel D; Santos, Christine Nicole S; Raisner, Ryan M; Hanel, Arthur; Sarvabhowman, Preethi; Le, Chi; Regitsky, Drew D; Cooper, Susan R; Peereboom, Lars; Clark, Alana; Martinez, Yessica; Goldsmith, Joshua; Cho, Min Y; Donohoue, Paul D; Luo, Lily; Lamberson, Brigit; Tamrakar, Pramila; Kim, Edward J; Villari, Jeffrey L; Gill, Avinash; Tripathi, Shital A; Karamchedu, Padma; Paredes, Carlos J; Rajgarhia, Vineet; Kotlar, Hans Kristian; Bailey, Richard B; Miller, Dennis J; Ohler, Nicholas L; Swimmer, Candace; Yoshikuni, Yasuo
2014-01-09
The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hang, Y.D.; Lee, C.Y.; Woodams, E.E.
A solid state fermentation system for the production of ethanol from apple pomace with a Montrachet strain of Saccharomyces cerevisiae is described. The yields of ethanol varied from about 29 g to more than 40 g/kg of apple pomace, depending on the samples fermented. Separation of up to 99% of the ethanol from spent qpple pomace was achieved with a rotary vacuum evaporator. Alcohol fermentation of apple pomace might be an efficient method of alleviating waste disposal problems with the concomitant production of ethanol.
Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M
2018-02-01
The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.
High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol.
Varga, Enikõ; Klinke, Helene B; Réczey, Kati; Thomsen, Anne Belinda
2004-12-05
In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.
Zhao, Renyong; Bean, Scott R; Crozier-Dodson, Beth Ann; Fung, Daniel Y C; Wang, Donghai
2009-01-01
A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0-5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R (2) = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41-47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (mu(max)) were 0.42 and 0.32 h(-1) for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production.
Jo, Sung-Eun; Seong, Yeong-Je; Lee, Hyun-Soo; Lee, Soo Min; Kim, Soo-Jung; Park, Kyungmoon; Park, Yong-Cheol
2016-06-10
Xylose is a major monosugar in cellulosic biomass and should be utilized for cost-effective ethanol production. In this study, xylose-converting ability of recombinant Saccharomyces cerevisiae SX6(MUT) expressing NADH-preferring xylose reductase mutant (R276H) and other xylose-metabolic enzymes, and deficient in aldehyde dehydrogenase 6 (Ald6p) were characterized at microaerobic conditions using various sugar mixtures. The reduction of air supply from 0.5vvm to 0.1vvm increased specific ethanol production rate by 75% and did not affect specific xylose consumption rate. In batch fermentations using various concentrations of xylose (50-104g/L), higher xylose concentration enhanced xylose consumption rate and ethanol productivity but reduced ethanol yield, owing to the accumulation of xylitol and glycerol from xylose. SX6(MUT) consumed monosugars in pitch pine hydrolysates and produced 23.1g/L ethanol from 58.7g/L sugars with 0.39g/g ethanol yield, which was 14% higher than the host strain of S. cerevisiae D452-2 without the xylose assimilating enzymes. In conclusion, S. cerevisiae SX6(MUT) was characterized to possess high xylose-consuming ability in microaerobic conditions and a potential for ethanol production from cellulosic biomass. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses.
Arshad, Muhammad; Ahmed, Sibtain; Zia, Muhammad Anjum; Rajoka, Muhammad Ibrahim
2014-03-01
In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48 ± 0.02 g g(-1)), theoretical yield (93 ± 3%), and extracellular invertase productivity (1,430 ± 50 IU l(-1) h(-1)), respectively, when fermenting 180 g sugars l(-1) in molasses medium at 43 °C in 300 m(3) working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M(-1)) and entropy (ΔS*) (-202.88 J M(-1) K(-1)) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l(-1) h(-1)) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.
Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed.
Kim, Ilgook; Lee, Ilgyu; Jeon, Seok Hwan; Hwang, Taewoon; Han, Jong-In
2015-09-01
In this study, hydrodynamic cavitation (HC) was employed as a physical means to improve alkaline pretreatment of reed. The HC-assisted alkaline pretreatment was undertaken to evaluate the influence of NaOH concentration (1-5%), solid-to-liquid ratio (5-15%), and reaction time (20-60 min) on glucose yield. The optimal condition was found to be 3.0% NaOH at solid-to-liquid (S/L) ratio of 11.8% for 41.1 min, which resulted in the maximum glucose yield of 326.5 g/kg biomass. Furthermore, simultaneous saccharification and fermentation (SSF) was conducted to assess the ethanol production. An ethanol concentration of 25.9 g/L and ethanol yield of 90% were achieved using batch SSF. These results clearly demonstrated HC system can be indeed a promising pretreatment tool for lignocellulosic bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kuttippurathu, Lakshmi; Patra, Biswanath; Hoek, Jan B; Vadigepalli, Rajanikanth
2016-03-01
Liver regeneration after partial hepatectomy is a clinically important process that is impaired by adaptation to chronic alcohol intake. We focused on the initial time points following partial hepatectomy (PHx) to analyze the genome-wide binding activity of NF-κB, a key immediate early regulator. We investigated the effect of chronic alcohol intake on immediate early NF-κB genome-wide localization, in the adapted state as well as in response to partial hepatectomy, using chromatin immunoprecipitation followed by promoter microarray analysis. We found many ethanol-specific NF-κB binding target promoters in the ethanol-adapted state, corresponding to the regulation of biosynthetic processes, oxidation-reduction and apoptosis. Partial hepatectomy induced a diet-independent shift in NF-κB binding loci relative to the transcription start sites. We employed a novel pattern count analysis to exhaustively enumerate and compare the number of promoters corresponding to the temporal binding patterns in ethanol and pair-fed control groups. The highest pattern count corresponded to promoters with NF-κB binding exclusively in the ethanol group at 1 h post PHx. This set was associated with the regulation of cell death, response to oxidative stress, histone modification, mitochondrial function, and metabolic processes. Integration with the global gene expression profiles to identify putative transcriptional consequences of NF-κB binding patterns revealed that several of ethanol-specific 1 h binding targets showed ethanol-specific differential expression through 6 h post PHx. Motif analysis yielded co-incident binding loci for STAT3, AP-1, CREB, C/EBP-β, PPAR-γ and C/EBP-α, likely participating in co-regulatory modules with NF-κB in shaping the immediate early response to PHx. We conclude that adaptation to chronic ethanol intake disrupts the NF-κB promoter binding landscape with consequences for the immediate early gene regulatory response to the acute challenge of PHx.
Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C
2016-03-01
This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Díaz-Nava, L E; Montes-Garcia, N; Domínguez, J M; Aguilar-Uscanga, M G
2017-07-01
The importance of non-Saccharomyces yeast species in fermentation processes is widely acknowledged. Within this group, Pichia kudriavzevii ITV-S42 yeast strain shows particularly desirable characteristics for ethanol production. Despite this fact, a thorough study of the metabolic and kinetic characteristics of this strain is currently unavailable. The aim of this work is to study the nutritional requirements of Pichia kudriavzevii ITV-S42 strain and the effect of different carbon sources on the growth and ethanol production. Results showed that glucose and fructose were both assimilated and fermented, achieving biomass and ethanol yields of 0.37 and 0.32 gg -1 , respectively. Glycerol was assimilated but not fermented; achieving a biomass yield of 0.88 gg -1 . Xylose and sucrose were not metabolized by the yeast strain. Finally, the use of a culture medium enriched with salts and yeast extract favored glucose consumption both for growth and ethanol production, improving ethanol tolerance reported for this genre (35 g L -1 ) to 90 g L -1 maximum ethanol concentration (over 100%). Furthermore Pichia kudriavzevii ITV-S42 maintained its fermentative capacity up to 200 g L -1 initial glucose, demonstrating that this yeast is osmotolerant.
Antunes, F A F; Santos, J C; Chandel, A K; Milessi, T S S; Peres, G F D; da Silva, S S
2016-02-01
The use of sugarcane bagasse hemicellulosic hydrolysates presents an interesting alternative to second generation (2G) ethanol production. Techniques to enhance the fermentation process, e.g., the use of immobilized cells, is one of the key factors for efficient production. Here, the effect of two important parameters (cell concentration in immobilized system and stirring rate) on the 2G ethanol production using the wild Brazilian yeast S. shehatae UFMG-HM 52.2 immobilized in calcium alginate matrix are presented. A 2(2) full factorial design of experiments was carried out to evaluate the effect of cell concentrations in sodium alginate solution for immobilized bead production (3.0, 6.0, and 9.0 g/L) and stirring rate (150, 200, and 250 rpm) for 2G ethanol production. Statistical analysis showed that the use of both variables at low levels enhanced ethanol yield (YP/S). Under these process conditions, YP/S of 0.31 g/g and ethanol productivity (Qp) of 0.12 g/L h were achieved. Results showed the potential of this immobilized yeast in 2G ethanol production from C5 sugars and demonstrate the importance of adequate cell concentration in immobilized systems, a finding that stands to increase bioprocesses yields and productivity.
Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures
2018-01-01
The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650
Divate, Nileema R.; Chen, Gen-Hung; Wang, Pei-Ming; Ou, Bor-Rung; Chung, Yun-Chin
2016-01-01
ABSTRACT A genetic recombinant Saccharomyces cerevisiae starter with high ethanol tolerance capacities was constructed. In this study, the gene of trehalose-6-phosphate synthase (encoded by tps1), which catalyzes the first step in trehalose synthesis, was cloned and overexpressed in S. cerevisiae. Moreover, the gene of neutral trehalase (encoded by nth1, trehalose degrading enzyme) was deleted by using a disruption cassette, which contained long flanking homology regions of nth1 gene (the upstream 0.26 kb and downstream 0.4 kb). The engineered strain increased its tolerance against ethanol and glucose stress. The growth of the wild strain was inhibited when the medium contained 6 % or more ethanol, whereas growth of the engineered strain was affected when the medium contained 10 % or more ethanol. There was no significant difference in the ethanol yield between the wild strain and the engineered strain when the fermentation broth contained 10 % glucose (p > 0.05). The engineered strain showed greater ethanol yield than the wild type strain when the medium contained more than 15 % glucose (p < 0.05). Higher intracellular trehalose accumulation by overexpression of tps1 and deletion of nth1 might provide the ability for yeast to protect against environmental stress. PMID:27484300
2013-01-01
The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539
Cayot, Nathalie; Lafarge, Céline; Bou-Maroun, Elias; Cayot, Philippe
2016-07-22
Dichloromethane is known as a very efficient solvent, but, as other halogenated solvents, is recognized as a hazardous product (CMR substance). The objective of the present work is to propose substitution solvent for the extraction of volatile compounds. The most important physico-chemical parameters in the choice of an appropriate extraction solvent of volatile compounds are reviewed. Various solvents are selected on this basis and on their hazard characteristics. The selected solvents, safer than dichloromethane, are compared using the extraction efficiency of volatile compounds from a model food product able to interact with volatile compounds. Volatile compounds with different hydrophobicity are used. High extraction yields were positively correlated with high boiling points and high Log Kow values of volatile compounds. Mixtures of solvents such as azeotrope propan-2-one/cyclopentane, azeotrope ethyl acetate/ethanol, and mixture ethyl acetate/ethanol (3:1, v/v) gave higher extraction yields than those obtained with dichloromethane. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Ning; Wang, Hengwei; Li, Lijuan; Cheng, Huiling; Liu, Dawen; Cheng, Hairong; Deng, Zixin
2016-08-10
An alternative strategy that integrated enzyme production, trehalose biotransformation, and bioremoval in one bioreactor was developed in this study, thus simplifying the traditional procedures used for trehalose production. The trehalose synthase gene from a thermophilic archaea, Picrophilus torridus, was first fused to the YlPir1 anchor gene and then inserted into the genome of Yarrowia lipolytica, thus yielding an engineered yeast strain. The trehalose yield reached 73% under optimal conditions. The thermal and pH stabilities of the displayed enzyme were improved compared to those of its free form purified from recombinant Escherichia coli. After biotransformation, the glucose byproduct and residual maltose were directly fermented to ethanol by a Saccharomyces cerevisiae strain. Ethanol can be separated by distillation, and high-purity trehalose can easily be obtained from the fermentation broth. The results show that this one-pot procedure is an efficient approach to the economical production of trehalose from maltose.
Farobie, Obie; Matsumura, Yukihiko
2017-10-01
In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.
Sainio, Tuomo; Turku, Irina; Heinonen, Jari
2011-05-01
Adsorptive purification of concentrated acid hydrolyzate of lignocellulose was investigated. Cation exchange resin (CS16GC), neutral polymer adsorbent (XAD-16), and granulated activated carbon (GAC) were studied to remove furfural, HMF, and acetic acid from a synthetic hydrolyzate containing 20 wt.% H(2)SO(4). Adsorption isotherms were determined experimentally. Loading and regeneration were investigated in a laboratory scale column. GAC has the highest adsorption capacity, but regeneration with water was not feasible. XAD-16 and CS16GC had lower adsorption capacities but also shorter cycle times due to easier regeneration. Productivity increased when regenerating with 50 wt.% EtOH(aq) solution. To compare adsorbents, process performance was quantified by productivity and fraction of inhibitors removed. GAC yields highest performance when high purity is required and ethanol can be used in regeneration. For lower purities, XAD-16 and GAC yield approximately equal performance. When using ethanol must be avoided, CS16GC offers highest productivity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Yuhao; Lü, Fan; Shao, Liming; He, Pinjing
2016-10-01
The objective of the study was to investigate whether the ratio of ethanol to acetate affects yield and product structure in chain elongation initiated by unacclimatized mixed cultures. The effect of varying the substrate concentration, while maintaining the same ratio of alcohol to acid, was also investigated. With a high substrate concentration, an alcohol to acid ratio >2:1 provided sufficient electron donor capacity for the chain elongation reaction. With an ethanol to acetate ratio of 3:1 (300mM total carbon), the highest n-caproate concentration (3033±98mg/L) was achieved during the stable phase of the reaction. A lower substrate concentration (150mM total carbon) gave a lower yield of products and led to reduced carbon transformation efficiency compared with other reaction conditions. The use of unacclimatized inoculum in chain elongation can produce significant amounts of odd-carbon-number carboxylates as a result of protein hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability.
Li, Xiaohua; Luque-Moreno, Luis C; Oudenhoven, Stijn R G; Rehmann, Lars; Kersten, Sascha R A; Schuur, Boelo
2016-09-01
Fermentative bioethanol production from pyrolytic sugars was improved via aromatics removal by liquid-liquid extraction. As solvents, the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide (P666,14[N(CN)2]) and ethyl acetate (EA) were compared. Two pyrolytic sugar solutions were created from acid-leached and untreated pinewood, with levoglucosan contents (most abundant sugar) of 29.0% and 8.3% (w/w), respectively. In a single stage extraction, 70% of the aromatics were effectively removed by P666,14[N(CN)2] and 50% by EA, while no levoglucosan was extracted. The IL was regenerated by vacuum evaporation (100mbar) at 220°C, followed by extraction of aromatics from fresh pyrolytic sugar solutions. Regenerated IL extracted aromatics with similar extraction efficiency as the fresh IL, and the purified sugar fraction from pretreated pinewood was hydrolyzed to glucose and fermented to ethanol, yielding 0.46g ethanol/(g glucose), close to the theoretical maximum yield. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhang, Ruifen; Su, Dongxiao; Hou, Fangli; Liu, Lei; Huang, Fei; Dong, Lihong; Deng, Yuanyuan; Zhang, Yan; Wei, Zhencheng; Zhang, Mingwei
2017-08-01
To establish optimal ultra-high-pressure (UHP)-assisted extraction conditions for procyanidins from lychee pericarp, a response surface analysis method with four factors and three levels was adopted. The optimum conditions were as follows: 295 MPa pressure, 13 min pressure holding time, 16.0 mL/g liquid-to-solid ratio, and 70% ethanol concentration. Compared with conventional ethanol extraction and ultrasonic-assisted extraction methods, the yields of the total procyanidins, flavonoids, and phenolics extracted using the UHP process were significantly increased; consequently, the oxygen radical absorbance capacity and cellular antioxidant activity of UHP-assisted lychee pericarp extracts were substantially enhanced. LC-MS/MS and high-performance liquid chromatography quantification results for individual phenolic compounds revealed that the yield of procyanidin compounds, including epicatechin, procyanidin A2, and procyanidin B2, from lychee pericarp could be significantly improved by the UHP-assisted extraction process. This UHP-assisted extraction process is thus a practical method for the extraction of procyanidins from lychee pericarp.
Singhania, Reeta Rani; Saini, Jitendra Kumar; Saini, Reetu; Adsul, Mukund; Mathur, Anshu; Gupta, Ravi; Tuli, Deepak Kumar
2014-10-01
This study concerns in-house development of cellulases from a mutant Penicillium janthinellum EMS-UV-8 and its application in separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes for bioethanol production from pre-treated wheat straw. In a 5L fermentor, the above strain could produce cellulases having activity of 3.1 FPU/mL and a specific activity of 0.83 FPU/mg of protein. In-house developed cellulase worked more efficiently in case of SSF as ethanol concentration of 21.6g/L and yield of 54.4% were obtained which were higher in comparison to SHF (ethanol concentration 12 g/L and 30.2% yield). This enzyme preparation when compared with commercial cellulase for hydrolysis of pre-treated wheat straw was found competitive. This study demonstrates that P. janthinellum EMS-UV-8 is a potential fungus for future large-scale production of cellulases. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.
2018-03-01
Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.
Performance of biofuel processes utilising separate lignin and carbohydrate processing.
Melin, Kristian; Kohl, Thomas; Koskinen, Jukka; Hurme, Markku
2015-09-01
Novel biofuel pathways with increased product yields are evaluated against conventional lignocellulosic biofuel production processes: methanol or methane production via gasification and ethanol production via steam-explosion pre-treatment. The novel processes studied are ethanol production combined with methanol production by gasification, hydrocarbon fuel production with additional hydrogen produced from lignin residue gasification, methanol or methane synthesis using synthesis gas from lignin residue gasification and additional hydrogen obtained by aqueous phase reforming in synthesis gas production. The material and energy balances of the processes were calculated by Aspen flow sheet models and add on excel calculations applicable at the conceptual design stage to evaluate the pre-feasibility of the alternatives. The processes were compared using the following criteria: energy efficiency from biomass to products, primary energy efficiency, GHG reduction potential and economy (expressed as net present value: NPV). Several novel biorefinery concepts gave higher energy yields, GHG reduction potential and NPV. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zahoor; Tu, Yuanyuan; Wang, Lingqiang; Xia, Tao; Sun, Dan; Zhou, Shiguang; Wang, Yanting; Li, Ying; Zhang, Heping; Zhang, Tong; Madadi, Meysam; Peng, Liangcai
2017-11-01
In this study, a combined pretreatment was performed in four wheat accessions using steam explosion followed with different concentrations of H 2 SO 4 or NaOH, leading to increased hexoses yields by 3-6 folds from enzymatic hydrolysis. Further co-supplied with 1% Tween-80, Talq90 and Talq16 accessions exhibited an almost complete enzymatic saccharification of steam-exploded (SE) residues after 0.5% H 2 SO 4 or 1% NaOH pretreatment, with the highest bioethanol yields at 18.5%-19.4%, compared with previous reports about wheat bioethanol yields at 11%-17% obtained under relatively strong pretreatment conditions. Furthermore, chemical analysis indicated that much enhanced saccharification in Talq90 and Talq16 may be partially due to their relatively low cellulose CrI and DP values and high hemicellulose Ara and H-monomer levels in raw materials and SE residues. Hence, this study has not only demonstrated a mild pretreatment technology for a complete saccharification, but it has also obtained the high ethanol production in desirable wheat accessions. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The yeast Kluyveromyces marxianus is a potential microbial catalyst for producing ethanol from lignocellulosic substrates at elevated temperatures. To improve its growth and ethanol yield under anaerobic conditions, K. marxianus NRRL Y-1109 was irradiated with UV-C, and surviving cells were grown a...
Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolan, J.S.; Finn, R.K.
1987-09-01
Erwinia spp. are gram-negative facultative anaerobes within the family Enterobacteriacae which possess several desirable traits for the conversion of pentose sugars to ethanol, such as the ability to ferment a broad range of carbohydrates and the ease with which they can be genetically modified. Twenty-eight strains of Erwinia carotovora and E. chrysanthemi were screened for the ability to ferment D-xylose to ethanol. E. chrysanthemi B374 was chosen for further study on the basis of its superior (4%) ethanol tolerance. They have characterized the fermentation of D-xylose and L-arabinose by the wild type and mutants which bear plasmids containing the pyruvatemore » decarboxylase gene from Zymomonas mobilis. Expression of the gene markedly increased the yields of ethanol (from 0.7 up to 1.45 mol/mol of xylose) and decreased the yields of formate, acetate, and lactate. However, the cells with pyruvate decarboxylase grew only one-fourth as fast as the wild type and tolerated only 2% ethanol. Alcohol tolerance was stimulated by the addition of yeast extract to the growth medium. Xylose catabolism was characterized by a high saturation constant K/sub s/ (4.5 mM).« less
Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis.
Ferrari, M D; Neirotti, E; Albornoz, C; Saucedo, E
1992-10-05
Ethanol production was evaluated from eucalyptus wood hemicellulose acid hydrolysate using Pichia stipitis NRRL Y-7124. An initial lag phase characterized by flocculation and viability loss of the yeast inoculated was observed. Subsequently, cell regrowth occurred with sequential consumption of sugars and production of ethanol. Polyol formation was detected. Acetic acid present in the hydrolysate was an important inhibitor of the fermentation, reducing the rate and the yield. Its toxic effect was due essentially to its undissociated form. The fermentation was more effective at an oxygen transfer rate between 1.2 and 2.4 mmol/L h and an initial pH of 6.5. The hydrolysate used in the experiences had the following composition (expressed in grams per liter): xylose 30, arabinose 2.8, glucose 1.5, galactose 3.7, mannose 1.0, cellobiose 0.5, acetic acid 10, glucuronic acid 1.5, and galacturonic acid 1.0. The best values obtained were maximum ethanol concentration 12.6 g/L, fermentation time 75 h, fermentable sugar consumption 99% ethanol yield 0.35 g/g sugars consumed, and volumetric ethanol productivity 4 g/L day. ( (c) 1992 John Wiley & Sons, Inc.
Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo
2014-01-01
Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism. PMID:24763192
Yang, Xinchao; Wang, Ke; Zhang, Jianhua; Tang, Lei; Mao, Zhonggui
2016-11-01
Recently, the integrated ethanol-methane fermentation process has been studied to prevent wastewater pollution. However, when the anaerobic digestion reaction runs poorly, acetic acid will accumulate in the recycling water. In this paper, we studied the effect of low concentration of acetic acid (≤25 mM) on ethanol fermentation at different initial pH values (4.2, 5.2 or 6.2). At an initial pH of 4.2, ethanol yields increased by 3.0% and glycerol yields decreased by 33.6% as the acetic acid concentration was increased from 0 to 25 mM. Raising the concentration of acetic acid to 25 mM increased the buffering capacity of the medium without obvious effects on biomass production in the cassava medium. Acetic acid was metabolized by Saccharomyces cerevisiae for the reason that the final concentration of acetic acid was 38.17% lower than initial concentration at pH 5.2 when 25 mM acetic acid was added. These results confirmed that a low concentration of acetic acid in the process stimulated ethanol fermentation. Thus, reducing the acetic acid concentration to a controlled low level is more advantageous than completely removing it.
Ma, Hongzhi; Yang, Jian; Jia, Yan; Wang, Qunhui; Ma, Xiaoyu; Sonomoto, Kenji
2016-10-01
Stillage reflux fermentation in food waste ethanol fermentation could reduce sewage discharge but exert a harmful effect because of side-product accumulation. In this study, regulation methods based on metabolic regulation and side-product alleviation were conducted. Result demonstrated that controlling the proper oxidation-reduction potential value (-150mV to -250mV) could reduce the harmful effect, improve ethanol yield by 21%, and reduce fermentation time by 20%. The methods of adding calcium carbonate to adjust the accumulated lactic acid showed that ethanol yield increased by 17.3%, and fermentation time decreased by 20%. The accumulated glyceal also shows that these two methods can reduce the harmful effect. Fermentation time lasted for seven times without effect, and metabolic regulation had a better effect than side-product regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simultaneous hydrolysis and co-fermentation of whey lactose with wheat for ethanol production.
Jin, Yiqiong; Parashar, Archana; Mason, Beth; Bressler, David C
2016-12-01
Whey permeate was used as a co-substrate to replace part of the wheat for ethanol production by Saccharomyces cerevisiae. The simultaneous saccharification and fermentation was achieved with β-galactosidase added at the onset of the fermentation to promote whey lactose hydrolysis. Aspergillus oryzae and Kluyveromyces lactis β-galactosidases were two enzymes selected and used in the co-fermentation of wheat and whey permeate for the comparison of their effectiveness on lactose hydrolysis. The possibility of co-fermentations in both STARGEN and jet cooking systems was investigated in 5L bioreactors. Ethanol yields from the co-fermentations of wheat and whey permeate were evaluated. It was found that A. oryzae β-galactosidase was more efficient for lactose hydrolysis during the co-fermentation and that whey permeate supplementation can contribute to ethanol yield in co-fermentations with wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Romaní, Aloia; Pereira, Filipa; Johansson, Björn; Domingues, Lucília
2015-03-01
In this work, Saccharomyces cerevisiae strains PE-2 and CAT-1, commonly used in the Brazilian fuel ethanol industry, were engineered for xylose fermentation, where the first fermented xylose faster than the latter, but also produced considerable amounts of xylitol. An engineered PE-2 strain (MEC1121) efficiently consumed xylose in presence of inhibitors both in synthetic and corn-cob hydrolysates. Interestingly, the S. cerevisiae MEC1121 consumed xylose and glucose simultaneously, while a CEN.PK based strain consumed glucose and xylose sequentially. Deletion of the aldose reductase GRE3 lowered xylitol production to undetectable levels and increased xylose consumption rate which led to higher final ethanol concentrations. Fermentation of corn-cob hydrolysate using this strain, MEC1133, resulted in an ethanol yield of 0.47 g/g of total sugars which is 92% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dey, Sabita
2002-10-01
The seed testing laboratories of Maharashtra discard 10 tonnes of grains and oil seeds treated with pesticides per annum. These agricultural wastes could be converted to reducing sugar and ethanol in a two stage semicontinuous fluidised bed bioreactor containing immobilised, Bacillus sp. and Zymomonas mobilis in the 1st stage and Saccharomyces diastaticus and S. cerevisae in the 2nd stage. The optimum temperature and pH for fermentation in both the stages were 30 degrees C and 7.2 respectively. In this process 600 g (approximately 400 g starch) waste seeds could yield 402 g of reducing sugar in the 1st stage after 20 h and 205 g ethanol in the 2nd stage after 40 h incubation with a yield factor 0.51. Using these system 10 tonnes of agricultural wastes could be converted to 3.4 x 107 g of ethanol.
Degradation of Acetaldehyde and Its Precursors by Pelobacter carbinolicus and P. acetylenicus
Schmidt, Alexander; Frensch, Marco; Schleheck, David; Schink, Bernhard; Müller, Nicolai
2014-01-01
Pelobacter carbinolicus and P. acetylenicus oxidize ethanol in syntrophic cooperation with methanogens. Cocultures with Methanospirillum hungatei served as model systems for the elucidation of syntrophic ethanol oxidation previously done with the lost “Methanobacillus omelianskii” coculture. During growth on ethanol, both Pelobacter species exhibited NAD+-dependent alcohol dehydrogenase activity. Two different acetaldehyde-oxidizing activities were found: a benzyl viologen-reducing enzyme forming acetate, and a NAD+-reducing enzyme forming acetyl-CoA. Both species synthesized ATP from acetyl-CoA via acetyl phosphate. Comparative 2D-PAGE of ethanol-grown P. carbinolicus revealed enhanced expression of tungsten-dependent acetaldehyde: ferredoxin oxidoreductases and formate dehydrogenase. Tungsten limitation resulted in slower growth and the expression of a molybdenum-dependent isoenzyme. Putative comproportionating hydrogenases and formate dehydrogenase were expressed constitutively and are probably involved in interspecies electron transfer. In ethanol-grown cocultures, the maximum hydrogen partial pressure was about 1,000 Pa (1 mM) while 2 mM formate was produced. The redox potentials of hydrogen and formate released during ethanol oxidation were calculated to be EH2 = -358±12 mV and EHCOOH = -366±19 mV, respectively. Hydrogen and formate formation and degradation further proved that both carriers contributed to interspecies electron transfer. The maximum Gibbs free energy that the Pelobacter species could exploit during growth on ethanol was −35 to −28 kJ per mol ethanol. Both species could be cultivated axenically on acetaldehyde, yielding energy from its disproportionation to ethanol and acetate. Syntrophic cocultures grown on acetoin revealed a two-phase degradation: first acetoin degradation to acetate and ethanol without involvement of the methanogenic partner, and subsequent syntrophic ethanol oxidation. Protein expression and activity patterns of both Pelobacter spp. grown with the named substrates were highly similar suggesting that both share the same steps in ethanol and acetalydehyde metabolism. The early assumption that acetaldehyde is a central intermediate in Pelobacter metabolism was now proven biochemically. PMID:25536080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Tianyong; Olson, Daniel G.; Tian, Liang
Clostridium thermocellum and Thermoanaerobacterium saccharolyticumare thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticumproduce ethanol with a yield of 90% of the theoretical maximum, engineered strains ofC. thermocellumproduce ethanol at lower yields (~50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in theiradhEgenes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, theadhEgenes from six strains ofC. thermocellumandT. saccharolyticumwere cloned and expressed inEscherichia coli, the enzymesmore » produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains ofT. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain ofC. thermocellumhas acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced intoC. thermocellumandT. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. This work describes the characterization of the AdhE enzyme from different strains ofC. thermocellumandT. saccharolyticum.C. thermocellumandT. saccharolyticumare thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production byC. thermocellumandT. saccharolyticum.« less
2012-01-01
Background While the ethanol production from biomass by consolidated bioprocess (CBP) is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF) is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. Results Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF) as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v) of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8–12 FPU/ml throughout the one-pot process. When 50–300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7–46.3 g/l and 0.15–0.18 (g ethanol/g SF), respectively. In 3-l fermentor with 50–300 g SF/l, the ethanol concentration and yield were 9.5–35.1 g/l with their yields of 0.12–0.19 (g/g) respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol. Conclusion A. cellulolyticus cells produce cellulase using SF. Subsequently, the produced cellulase saccharifies the SF, and then liberated reducing sugars are converted to ethanol by S. cerevisiae. These reactions were carried out in the one-pot process with two different microorganisms in a single reactor, which does require neither an addition of extraneous cellulase nor any pretreatment of cellulose. Collectively, the one-pot bioethanol production process with two different microorganisms could be an alternative strategy for a practical bioethanol production using biomass. PMID:22938388
Huang, Jun; Chen, Dong; Wei, Yutuo; Wang, Qingyan; Li, Zhenchong; Chen, Ying; Huang, Ribo
2014-01-01
Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing. PMID:24995362
Huang, Jun; Chen, Dong; Wei, Yutuo; Wang, Qingyan; Li, Zhenchong; Chen, Ying; Huang, Ribo
2014-01-01
Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing.
Parawira, W; Tekere, M
2011-03-01
One of the major challenges faced in commercial production of lignocellulosic bioethanol is the inhibitory compounds generated during the thermo-chemical pre-treatment step of biomass. These inhibitory compounds are toxic to fermenting micro-organisms. The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds formed or released during thermo-chemical pre-treatment step such as acid and steam explosion. This review describes the application and/or effect of biological detoxification (removal of inhibitors before fermentation) or use of bioreduction capability of fermenting yeasts on the fermentability of the hydrolysates. Inhibition of yeast fermentation by the inhibitor compounds in the lignocellulosic hydrolysates can be reduced by treatment with enzymes such as the lignolytic enzymes, for example, laccase and micro-organisms such as Trichoderma reesei, Coniochaeta ligniaria NRRL30616, Trametes versicolor, Pseudomonas putida Fu1, Candida guilliermondii, and Ureibacillus thermosphaericus. Microbial and enzymatic detoxifications of lignocellulosic hydrolysate are mild and more specific in their action. The efficiency of enzymatic process is quite comparable to other physical and chemical methods. Adaptation of the fermentation yeasts to the lignocellulosic hydrolysate prior to fermentation is suggested as an alternative approach to detoxification. Increases in fermentation rate and ethanol yield by adapted micro-organisms to acid pre-treated lignocellulosic hydrolysates have been reported in some studies. Another approach to alleviate the inhibition problem is to use genetic engineering to introduce increased tolerance by Saccharomyces cerevisiae, for example, by overexpressing genes encoding enzymes for resistance against specific inhibitors and altering co-factor balance. Cloning of the laccase gene followed by heterologous expression in yeasts was shown to provide higher enzyme yields and permit production of laccases with desired properties for detoxification of lignocellulose hydrolysates. A combination of more inhibitor-tolerant yeast strains with efficient feed strategies such as fed-batch will likely improve lignocellulose-to-ethanol process robustness.
Effect of corn stover compositional variability on minimum ethanol selling price (MESP).
Tao, Ling; Templeton, David W; Humbird, David; Aden, Andy
2013-07-01
A techno-economic sensitivity analysis was performed using a National Renewable Energy Laboratory (NREL) 2011 biochemical conversion design model varying feedstock compositions. A total of 496 feedstock near infrared (NIR) compositions from 47 locations in eight US Corn Belt states were used as the inputs to calculate minimum ethanol selling price (MESP), ethanol yield (gallons per dry ton biomass feedstock), ethanol annual production, as well as total installed project cost for each composition. From this study, the calculated MESP is $2.20 ± 0.21 (average ± 3 SD) per gallon ethanol. Copyright © 2013. Published by Elsevier Ltd.
Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.
An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol.
Yue, Hairong; Ma, Xinbin; Gong, Jinlong
2014-05-20
Ethanol is an attractive end product and a versatile feedstock because a widespread market exists for its commercial use as a fuel additive or a potential substitute for gasoline. Currently, ethanol is produced primarily by fermentation of biomass-derived sugars, particularly those containing six carbons, but coproducts 5-carbon sugars and lignin remain unusable. Another major process for commercial production of ethanol is hydration of ethylene over solid acidic catalysts, yet not sustainable considering the depletion of fossil fuels. Catalytic conversion of synthetic gas (CO + H2) could produce ethanol in large quantities. However, the direct catalytic conversion of synthetic gas to ethanol remains challenging, and no commercial process exists as of today although the research has been ongoing for the past 90 years, since such the process suffers from low yield and poor selectivity due to slow kinetics of the initial C-C bond formation and fast chain growth of the C2 intermediates. This Account describes recent developments in an alternative approach for the synthesis of ethanol via synthetic gas. This process is an integrated technology consisting of the coupling of CO with methanol to form dimethyl oxalate and the subsequent hydrogenation to yield ethanol. The byproduct of the second step (methanol) can be separated and used in circulation as the feedstock for the coupling step. The coupling reaction of carbon monoxide for producing dimethyl oxalate takes place under moderate reaction conditions with high selectivity (∼95%), which ideally leads to a self-closing, nonwaste, catalytic cycling process. This Account also summarizes the progress on the development of copper-based catalysts for the hydrogenation reaction with remarkable efficiencies and stability. The unique lamellar structure and the cooperative effect between surface Cu(0) and Cu(+) species are responsible for the activity of the catalyst with high yield of ethanol (∼91%). The understanding of nature of valence states of Cu could also guide the rational design of Cu-based catalysts for other similar reactions, particularly for hydrogenation catalytic systems. In addition, by regulating the reaction condition and the surface structure of the catalysts, the products in the hydrogenation steps, such as ethanol, methyl glycolate, and ethylene glycol, could be tuned efficiently. This synthetic approach enables a more sustainable ethanol, methyl glycolate, and ethylene glycol synthesis in industry and greatly reduces the dependence on petroleum resources and the emission of the greenhouse gas.
Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M
2015-12-01
Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Milessi, Thais S S; Antunes, Felipe A F; Chandel, Anuj K; Silva, Silvio S
2013-10-01
Selection of the raw material and its efficient utilization are the critical factors in economization of second generation (2G) ethanol production. Fermentation of the released sugars into ethanol by a suitable ethanol producing microorganism using cheap media ingredients is the cornerstone of the overall process. This study evaluated the potential of rice bran extract (RBE) as a cheap nitrogen source for the production of 2G ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 using sugarcane bagasse (SB) hemicellulosic hydrolysate. Dilute acid hydrolysis of SB showed 12.45 g/l of xylose and 0.67 g/l of glucose along with inhibitors. It was concentrated by vacuum evaporation and submitted to sequential detoxification (neutralization by calcium hydroxide and charcoal adsorption). The detoxified hydrolysate revealed the removal of furfural (81 %) and 5-hydroxymethylfurfural (61 %) leading to the final concentration of glucose (1.69 g/l) and xylose (33.03 g/l). S. stipitis was grown in three different fermentation media composed of detoxified hydrolysate as carbon source supplemented with varying nitrogen sources i.e. medium #1 (RBE + ammonium sulfate + calcium chloride), medium #2 (yeast extract + peptone) and medium #3 (yeast extract + peptone + malt extract). Medium #1 showed maximum ethanol production (8.6 g/l, yield 0.22 g/g) followed by medium #2 (8.1 g/l, yield 0.19 g/g) and medium #3 (7.4 g/l, yield 0.18 g/g).
Abbott, D A; Ingledew, W M
2005-11-01
Whole corn mash fermentations infected with industrially-isolated Brettanomyces yeasts were not affected even when viable Brettanomyces yeasts out-numbered Saccharomyces yeasts tenfold at the onset of fermentation. Therefore, aeration, a parameter that is pivotal to the physiology of Dekkera/Brettanomyces yeasts, was investigated in mixed culture fermentations. Results suggest that aeration strategy plays a significant role in Dekkera/Brettanomyces-mediated inhibition of fuel alcohol fermentations. Although growth of Saccharomyces cerevisiae was not impeded, mixed culture fermentations aerated at rates of > or =20 ml air l(-1) mash min(-1) showed decreased ethanol yields and an accumulation of acetic acid. The importance of aeration was examined further in combination with organic acid(s). Growth of Saccharomyces occurred more rapidly than growth of Brettanomyces yeasts in all conditions. The combination of 0.075% (w/v) acetic acid and contamination with Brettanomyces TK 1404W did not negatively impact the final ethanol yield under fermentative conditions. Aeration, however, did prove to be detrimental to final ethanol yields. With the inclusion of aeration in the control condition (no organic acid stress) and in each fermentation containing organic acid(s), the final ethanol yields were decreased. It was therefore concluded that aeration strategy is the key parameter in regards to the negative effects observed in fuel alcohol fermentations infected with Dekkera/Brettanomyces yeasts.
Miscanthus as cellulosic biomass for bioethanol production.
Lee, Wen-Chien; Kuan, Wei-Chih
2015-06-01
The members of the genus Miscanthus are potential feedstocks for biofuels because of the promising high yields of biomass per unit of planted area. This review addresses species, cultivation, and lignocellulose composition of Miscanthus, as well as pretreatment and enzyme saccharification of Miscanthus biomass for ethanol fermentation. The average cellulose contents in dried biomass of Miscanthus floridulus, Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus × giganteus (M × G) are 37.2, 37.6, 38.9, and 41.1% wt/wt, respectively. A number of pretreatment methods have been applied in order to enhance digestibility of Miscanthus biomass for enzymatic saccharification. Pretreatment of Miscanthus using liquid hot water or alkaline results in a significant release of glucose; while glucose yields can be 90% or higher if a pretreatment like AFEX that combines both chemical and physical processes is used. As ethanol is produced by yeast fermentation of the hydrolysate from enzymatic hydrolysis of residual solids (pulp) after pretreatment, theoretical ethanol yields are 0.211-0.233 g/g-raw biomass if only cellulose is taken into account. Simultaneous saccharification and fermentation of pretreated M × G and M. lutarioriparius results in experimental ethanol yields of 0.13 and 0.15 g/g-raw biomass, respectively. Co-production of value-added products can reduce the overall production cost of bioethanol. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Production and Purification of Bioethanol from Molasses and Cassava
NASA Astrophysics Data System (ADS)
Maryana, Roni; Wahono, Satriyo Krido
2009-09-01
This research aim to analysis bioethanol purification process. Bioethanol from cassava has been produced in previous research and the ethanol from molasses was taken from Bekonang region. The production of bioethanol from cassava was carried out through several processes such as homogenization, adding of α-amylase, β-amylase and yeast (Saccharomyces c). Two types of laboratory scale distillator have been used, the first type is 50 cm length and 4 cm diameter. The second type distillator is 30 cm length and 9 cm diameter. Both types have been used to distill bioethanol The initial concentration after the fermentation process is 15% for bioethanol from cassava and 20-30% ethanol from molasses. The results of first type distillator are 90% of bioethanol at 50° C and yield 2.5%; 70% of bioethanol at 60° C and yield 11.2%. 32% of bioethanol at 70° C and yield 42%. Meanwhile the second distillator results are 84% of bioethanol at 50° C with yield 12%; 51% of bioethanol at 60° C with yield 35.5%; 20% of bioethanol at 70° C with yield 78.8%; 16% of bioethanol at 80° C with yield 81.6%. The ethanol from molasses has been distillated once times in Bekonang after the fermentation process, the yield was about 20%. In this research first type distillator and the initial concentration is 20% has been used. The results are 95% of bioethanol at 75° C with yield 8%; 94% of bioethanol at 85° C with yield 13% when vacuum pump was used. And 94% of bioethanol at 90° C with yield 3.7% and 94% of bioethanol at 96° C with yield 10.27% without vacuum pump. The bioethanol purification use second type distillator more effective than first type distillator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinistore, Julie C.; Reinemann, D. J.; Izaurralde, Roberto C.
Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combinedmore » with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.« less
Dilute alkali pretreatment of softwood pine: A biorefinery approach.
Safari, Ali; Karimi, Keikhosro; Shafiei, Marzieh
2017-06-01
Dilute alkali pretreatment was performed on softwood pine to maximize ethanol and biogas production via a biorefinery approach. Alkali pretreatments were performed with 0-2% w/v NaOH at 100-180°C for 1-5h. The liquid fraction of the pretreated substrates was subjected to anaerobic digestion. The solid fraction of the pretreatment was used for separate enzymatic hydrolysis and fermentation. High ethanol yields of 76.9‒78.0% were achieved by pretreatment with 2% (w/v) NaOH at 180°C. The highest biogas yield of 244mL/g volatile solid (at 25°C, 1bar) was achieved by the pretreatment with 1% (w/v) NaOH at 180°C. The highest gasoline equivalent (sum of ethanol and methane) of 197L per ton of pinewood and the lowest ethanol manufacturing cost of 0.75€/L was obtained after pretreatment with 1% NaOH at 180°C for 5h. The manufacturing cost of ethanol from untreated wood was 4.12€/L. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barta, Zsolt; Kovacs, Krisztina; Reczey, Kati; Zacchi, Guido
2010-01-01
On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5–16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60–78% of the enzyme production cost, which was in the range of 0.42–0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative. PMID:21048869
Barta, Zsolt; Kovacs, Krisztina; Reczey, Kati; Zacchi, Guido
2010-06-28
On-site cellulase enzyme fermentation in a softwood-to-ethanol process, based on SO(2)-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, was investigated from a techno-economic aspect using Aspen Plus© and Aspen Icarus Process Evaluator© softwares. The effect of varying the carbon source of enzyme fermentation, at constant protein and mycelium yields, was monitored through the whole process. Enzyme production step decreased the overall ethanol yield (270 L/dry tonne of raw material in the case of purchased enzymes) by 5-16 L/tonne. Capital cost was found to be the main cost contributor to enzyme fermentation, constituting to 60-78% of the enzyme production cost, which was in the range of 0.42-0.53 SEK/L ethanol. The lowest minimum ethanol selling prices (4.71 and 4.82 SEK/L) were obtained in those scenarios, where pretreated liquid fraction supplemented with molasses was used as carbon source. In some scenarios, on-site enzyme fermentation was found to be a feasible alternative.
Melero, Juan A; Vicente, Gemma; Paniagua, Marta; Morales, Gabriel; Muñoz, Patricia
2012-01-01
The present study is focused on the etherification of biodiesel-derived glycerol with anhydrous ethanol over arenesulfonic acid-functionalized mesostructured silicas to produce ethyl ethers of glycerol that can be used as gasoline or diesel fuel biocomponents. Within the studied range, the best conditions to maximize glycerol conversion and yield towards ethyl-glycerols are: T=200 °C, ethanol/glycerol molar ratio=15/1, and catalyst loading=19 wt%. Under these reaction conditions, 74% glycerol conversion and 42% yield to ethyl ethers have been achieved after 4 h of reaction but with a significant presence of glycerol by-products. In contrast, lower reaction temperatures (T=160 °C) and moderate catalyst loading (14 wt%) in presence of a high ethanol concentration (ethanol/glycerol molar ratio=15/1) are necessary to avoid the formation of glycerol by-products and maximize ethyl-glycerols selectivity. Interestingly, a close catalytic performance to that achieved using high purity glycerol has been obtained with low-grade water-containing glycerol. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of a Solid-State Fermentation System for Producing Bioethanol from Food Waste
NASA Astrophysics Data System (ADS)
Honda, Hiroaki; Ohnishi, Akihiro; Fujimoto, Naoshi; Suzuki, Masaharu
Liquid fermentation is the a conventional method of producing bioethanol. However, this method results in the formation of high concentrations waste after distillation and futher treatment requires more energy and is costly(large amounts of costly energy).Saccharification of dried raw garbage was tested for 12 types of Koji starters under the following optimum culture conditions: temperature of 30°C and initial moisture content of 50%.Among all the types, Aspergillus oryzae KBN650 had the highest saccharifying power. The ethanol-producing ability of the raw garbage was investigated for 72 strains of yeast, of which Saccharomyces cerevisiae A30 had the highest ethanol production(yield)under the following optimum conditions: 1 :1 ratio of dried garbage and saccharified garbage by weight, and initial moisture content of 60%. Thus, the solid-state fermentation system consisted of the following 4 processes: moisture control, saccharification, ethanol production and distillation. This system produced 0.6kg of ethanol from 9.6kg of garbage. Moreover the ethanol yield from all sugars was calculated to be 0.37.
Jeong, Hanseob; Park, Yong-Cheol; Seong, Yeong-Je; Lee, Soo Min
2017-12-01
The aim of this study were to efficiently produce fermentable sugars by continuous type supercritical water hydrolysis (SCWH) of Quercus mongolica at the pilot scale with varying acid catalyst loading and to use the obtained sugars for ethanol production. The SCWH of biomass was achieved in under one second (380°C, 230bar) using 0.01-0.1% H 2 SO 4 . With 0.05% H 2 SO 4 , 49.8% of sugars, including glucose (16.5% based on biomass) and xylose monomers (10.8%), were liberated from biomass. The hydrolysates were fermented with S. cerevisiae DXSP and D452-2 to estimate ethanol production. To prepare the fermentation medium, the hydrolysates were detoxified using activated charcoal and then concentrated. The ethanol yield of fermentation with S. cerevisiae DXSP was 14.1% (based on biomass). The proposed system has potential for improvement in yield through process optimization. After further development, it is expected to be a competitive alternative to traditional systems for ethanol production from woody biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
Selective ethanol production from reducing sugars in a saccharide mixture.
Ohara, Satoshi; Kato, Taku; Fukushima, Yasuhiro; Sakoda, Akiyoshi
2013-05-01
Fermentation profiles of four different yeasts reportedly defective in sucrose utilization indicate that all strains tested removed particular sugar via selective conversion to ethanol in a saccharide mixture. At the temperature of pressed sugarcane juice, Saccharomyces dairenensis and Saccharomyces transvaalensis performed better in ethanol production rate and yield, respectively. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M
2016-10-01
To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.
Simonovska, Breda; Vovk, Irena; Glavnik, Vesna; Cernelič, Katarina
2013-02-08
A major factor in the direct determination of lutein in spinach extracts proved to be obtaining reproducible and stable chromatography of lutein. This was achieved on a C30 column with the mobile phase acetone-0.1M triethylammonium acetate (TEAA) buffer (pH 7) 9:1 (v/v). Extraction of 10mg of lyophilized spinach with 10 mL of extraction solvent (ethanol, acetone, ethanol-ethyl acetate 1:1 (v/v), methanol-THF 1:1 (v/v)) for 15 min with magnetic stirring under nitrogen resulted in equal yields of lutein. The yields were enhanced by addition of 15% of 1M TEAA buffer pH 7 to all four extraction solvents. As confirmed by recovery experiments, no loss of lutein occurred during the extraction. The relative standard deviation from triplicate extractions was less than 5%. The addition of 15% TEAA pH 7 to acetone enhanced the extraction yield of lutein also from unlyophilized spinach. The content of lutein in different spinach samples ranged from 5 to 15 mg/100g of fresh weight. The first separation is reported of all the carotenoids and chlorophylls on a C18 core-shell column and the addition of 15% of 1M TEAA buffer pH 7 to acetone also enhanced the extraction yield of β-carotene compared to the yield produced by pure acetone. Copyright © 2012 Elsevier B.V. All rights reserved.
Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch.
Choi, Won-Il; Park, Ji-Yeon; Lee, Joon-Pyo; Oh, You-Kwan; Park, Yong Chul; Kim, Jun Seok; Park, Jang Min; Kim, Chul Ho; Lee, Jin-Suk
2013-11-29
Empty fruit bunch (EFB) has many advantages, including its abundance, the fact that it does not require collection, and its year-round availability as a feedstock for bioethanol production. But before the significant costs incurred in ethanol production from lignocellulosic biomass can be reduced, an efficient sugar fractionation technology has to be developed. To that end, in the present study, an NaOH-catalyzed steam pretreatment process was applied in order to produce ethanol from EFB more efficiently. The EFB pretreatment conditions were optimized by application of certain pretreatment variables such as, the NaOH concentrations in the soaking step and, in the steam step, the temperature and time. The optimal conditions were determined by response surface methodology (RSM) to be 3% NaOH for soaking and 160°C, 11 min 20 sec for steam pretreatment. Under these conditions, the overall glucan recovery and enzymatic digestibility were both high: the glucan and xylan yields were 93% and 78%, respectively, and the enzymatic digestibility was 88.8% for 72 h using 40 FPU/g glucan. After simultaneous saccharification and fermentation (SSF), the maximum ethanol yield and concentration were 0.88 and 29.4 g/l respectively. Delignification (>85%) of EFB was an important factor in enzymatic hydrolysis using CTec2. NaOH-catalyzed steam pretreatment, which can remove lignin efficiently and requires only a short reaction time, was proven to be an effective pretreatment technology for EFB. The ethanol yield obtained by SSF, the key parameter determining the economics of ethanol, was 18% (w/w), equivalent to 88% of the theoretical maximum yield, which is a better result than have been reported in the relevant previous studies.
Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch
2013-01-01
Background Empty fruit bunch (EFB) has many advantages, including its abundance, the fact that it does not require collection, and its year-round availability as a feedstock for bioethanol production. But before the significant costs incurred in ethanol production from lignocellulosic biomass can be reduced, an efficient sugar fractionation technology has to be developed. To that end, in the present study, an NaOH-catalyzed steam pretreatment process was applied in order to produce ethanol from EFB more efficiently. Results The EFB pretreatment conditions were optimized by application of certain pretreatment variables such as, the NaOH concentrations in the soaking step and, in the steam step, the temperature and time. The optimal conditions were determined by response surface methodology (RSM) to be 3% NaOH for soaking and 160°C, 11 min 20 sec for steam pretreatment. Under these conditions, the overall glucan recovery and enzymatic digestibility were both high: the glucan and xylan yields were 93% and 78%, respectively, and the enzymatic digestibility was 88.8% for 72 h using 40 FPU/g glucan. After simultaneous saccharification and fermentation (SSF), the maximum ethanol yield and concentration were 0.88 and 29.4 g/l respectively. Conclusions Delignification (>85%) of EFB was an important factor in enzymatic hydrolysis using CTec2. NaOH-catalyzed steam pretreatment, which can remove lignin efficiently and requires only a short reaction time, was proven to be an effective pretreatment technology for EFB. The ethanol yield obtained by SSF, the key parameter determining the economics of ethanol, was 18% (w/w), equivalent to 88% of the theoretical maximum yield, which is a better result than have been reported in the relevant previous studies. PMID:24286374
Caballero, Antonio; Ramos, Juan Luis
2017-04-01
Lignocellulose contains two pentose sugars, l-arabinose and d-xylose, neither of which is naturally fermented by first generation (1G) ethanol-producing Saccharomyces cerevisiae yeast. Since these sugars are inaccessible to 1G yeast, a significant percentage of the total carbon in bioethanol production from plant residues, which are used in second generation (2G) ethanol production, remains unused. Recombinant Saccharomyces cerevisiae strains capable of fermenting d-xylose are available on the market; however, there are few examples of l-arabinose-fermenting yeasts, and commercially, there are no strains capable of fermenting both d-xylose and l-arabinose because of metabolic incompatibilities when both metabolic pathways are expressed in the same cell. To attempt to solve this problem we have tested d-xylose and l-arabinose co-fermentation. To find efficient alternative l-arabinose utilization pathways to the few existing ones, we have used stringent methodology to screen for new genes (metabolic and transporter functions) to facilitate l-arabinose fermentation in recombinant yeast. We demonstrate the feasibility of this approach in a successfully constructed yeast strain capable of using l-arabinose as the sole carbon source and capable of fully transforming it to ethanol, reaching the maximum theoretical fermentation yield (0.43 g g-1). We demonstrate that efficient co-fermentation of d-xylose and l-arabinose is feasible using two different co-cultured strains, and observed no fermentation delays, yield drops or accumulation of undesired byproducts. In this study we have identified a technically efficient strategy to enhance ethanol yields by 10 % in 2G plants in a process based on C5 sugar co-fermentation.
Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, Ok-Hwan; Jeon, You-Jin; Lee, Boo-Yong
2012-06-01
Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans.
Jeon, Hui-Jeon; Choi, Hyeon-Son; Lee, OK-Hwan; Jeon, You-Jin; Lee, Boo-Yong
2012-01-01
Gelidium (G.) elegans is a red alga inhabiting intertidal areas of North East Asia. We examined anti-oxidative and anti-inflammatory effects of G. elegans, depending on drying and extraction conditions, by determining reactive oxygen species (ROS) and nitric oxide (NO) in 3T3-L1 and RAW 264.7 cells. Extraction yields of samples using hot air drying (HD) and far-infrared ray drying (FID) were significantly higher than those using natural air drying (ND). The 70% ethanol extracts showed the highest total phenol and flavonoid contents compared to other extracts (0, 30, and 50% ethanol) under tested drying conditions. The scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitrite correlated with total phenol or flavonoid content in the extracts. The greatest DPPH scavenging effect was observed in 70% ethanol extract from FID and HD conditions. The production of ROS and NO in 3T3-L1 and macrophage cells greatly decreased with the 70% ethanol extraction derived from FID. This study suggests that 70% ethanol extraction of G. elegans dried by FID is the most optimal condition to obtain efficiently antioxidant compounds of G. elegans. PMID:24471073
Barzagli, Francesco; Mani, Fabrizio; Peruzzini, Maurizio
2016-07-05
The neat secondary amines 2-(methylamino)ethanol, 2-(ethylamino)ethanol, 2-(isopropylamino)ethanol, 2-(benzylamino)ethanol and 2-(butylamino)ethanol react with CO2 at 50-60 °C and room pressure yielding liquid carbonated species without their dilution with any additional solvent. These single-component absorbents have the theoretical CO2 capture capacity of 0.50 (mol CO2/mol amine) due to the formation of the corresponding amine carbamates and protonated amines that were identified by the (13)C NMR analysis. These single-component absorbents were used for CO2 capture (15% and 40% v/v in air) in two series of different procedures: (1) batch experiments aimed at investigating the efficiency and the rate of CO2 capture; (2) continuous cycles of absorption-desorption carried out in packed columns with absorption temperatures brought at 50-60 °C and desorption temperatures at 100-120 °C at room pressure. A number of different amines and experimental setups gave CO2 capture efficiency greater than 90%. For comparison purposes, 30 wt % aqueous MEA was used for CO2 capture under the same operational conditions described for the solvent-free amines. The potential advantages of solvent-free alkanolamines over aqueous MEA in the CO2 capture process were discussed.
Inhibitors of biofilm formation by fuel ethanol contaminants
USDA-ARS?s Scientific Manuscript database
Industrial fuel ethanol production suffers from chronic and acute infections that reduce yields and cause “stuck fermentations” that result in costly shutdowns. Lactic acid bacteria, particularly Lactobacillus sp., are recognized as major contaminants. In previous studies, we observed that certain...
Expression of bacteriophage endolysins in Saccharomyces cerevisiae
USDA-ARS?s Scientific Manuscript database
One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Species of Lactobacillus are the predominant contaminants that reduce ethanol yields and cause “stuck” fermentations, decreasing the profitability of biofuel production with expe...
Yamada, Ryosuke; Nakashima, Kazunori; Asai-Nakashima, Nanami; Tokuhara, Wataru; Ishida, Nobuhiro; Katahira, Satoshi; Kamiya, Noriho; Ogino, Chiaki; Kondo, Akihiko
2017-05-01
Among the many types of lignocellulosic biomass pretreatment methods, the use of ionic liquids (ILs) is regarded as one of the most promising strategies. In this study, the effects of four kinds of ILs for pretreatment of lignocellulosic biomass such as bagasse, eucalyptus, and cedar were evaluated. In direct ethanol fermentation from biomass incorporated with ILs by cellulase-displaying yeast, 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) was the most effective IL. The ethanol production and yield from [Bmim][OAc]-pretreated bagasse reached 0.81 g/L and 73.4% of the theoretical yield after fermentation for 96 h. The results prove the initial concept, in which the direct fermentation from lignocellulosic biomass effectively promoted by the pretreatment with IL.
Todhanakasem, Tatsaporn; Tiwari, Rashmi; Thanonkeo, Pornthap
2016-01-01
Z. mobilis cell immobilization has been proposed as an effective means of improving ethanol production. In this work, polystyrene and corn silk were used as biofilm developmental matrices for Z. mobilis ethanol production with rice straw hydrolysate as a substrate. Rice straw was hydrolyzed by dilute sulfuric acid (H2SO4) and enzymatic hydrolysis. The final hydrolysate contained furfural (271.95 ± 76.30 ppm), 5-hydroxymethyl furfural (0.07 ± 0.00 ppm), vanillin (1.81 ± 0.00 ppm), syringaldehyde (5.07 ± 0.83 ppm), 4-hydroxybenzaldehyde (4-HB) (2.39 ± 1.20 ppm) and acetic acid (0.26 ± 0.08%). Bacterial attachment or biofilm formation of Z. mobilis strain TISTR 551 on polystyrene and delignified corn silk carrier provided significant ethanol yields. Results showed up to 0.40 ± 0.15 g ethanol produced/g glucose consumed when Z. mobilis was immobilized on a polystyrene carrier and 0.51 ± 0.13 g ethanol produced/g glucose consumed when immobilized on delignified corn silk carrier under batch fermentation by Z. mobilis TISTR 551 biofilm. The higher ethanol yield from immobilized, rather than free living, Z. mobilis could possibly be explained by a higher cell density, better control of anaerobic conditions and higher toxic tolerance of Z. mobilis biofilms over free cells.
Rastogi, Gurdeep; Gurram, Raghu N.; Bhalla, Aditya; Gonzalez, Ramon; Bischoff, Kenneth M.; Hughes, Stephen R.; Kumar, Sudhir; Sani, Rajesh K.
2012-01-01
Eight fermentative bacterial strains were isolated from mixed enrichment cultures of a composite soil sample collected at 1.34 km depth from the former Homestake gold mine in Lead, SD, USA. Phylogenetic analysis of their 16S rRNA gene sequences revealed that these isolates were affiliated with the phylum Firmicutes belonging to genera Bacillus and Clostridium. Batch fermentation studies demonstrated that isolates had the ability to ferment glucose, xylose, or glycerol to industrially valuable products such as ethanol and 1,3-propanediol (PDO). Ethanol was detected as the major fermentation end product in glucose-fermenting cultures at pH 10 with yields of 0.205–0.304 g of ethanol/g of glucose. While a xylose-fermenting strain yielded 0.189 g of ethanol/g of xylose and 0.585 g of acetic acid/g of xylose at the end of fermentation. At pH 7, glycerol-fermenting isolates produced PDO (0.323–0.458 g of PDO/g of glycerol) and ethanol (0.284–0.350 g of ethanol/g of glycerol) as major end products while acetic acid and succinic acid were identified as minor by-products in fermentation broths. These results suggest that the deep biosphere of the former Homestake gold mine harbors bacterial strains which could be used in bio-based production of ethanol and PDO. PMID:23919089
2005-04-01
Approximately 20 percent of the corn kernel is not utilized in the production of ethanol and other starch based products, such as sweeteners and high - fructose ...under high yields. The amount of corn and soybeans available for ethanol, biodiesel or other bioproducts was calculated by first subtracting amounts...because of increasing demand for animal feed. This evaluation assumes that corn exports rise by another 10 percent in the high corn yield scenarios
NASA Astrophysics Data System (ADS)
Yudiati, E.; Santosa, G. W.; Tontowi, M. R.; Sedjati, S.; Supriyantini, E.; Khakimah, M.
2018-03-01
The quality of alginate may differ considerably depending on several aspects. The aims of this research were to identify, characterize the alginate, examine the quality and determine the antioxidant properties. Identification was done phenotypically. Characterization was done by FT-IR spectroscopy by comparing the samples to standard alginate (Sigma, USA). The extraction was done in two treatments: soaked with 5 % NaOCl, extraction of Na2CO3 (3.0; 5.0; 7.0 and 9.0 %)/EDTA, KCl and precipitated with ethanol (T1) and dried. T2 was pretreated with KOH, HCl, boiled by Na2CO3 (3.0; 5.0; 7.0 and 9.0 %), depigmented, HCl and NaOH addition precipitated with ethanol absolute and then sundried. Antioxidant properties test were done by DPPH and NBT radical scavenging assays. Phenotypic identification showed that the species was Sargassum polycystum. There were similarities in signal vibration between the samples and the standard. The highest yield was produced from 7.0 % Na2CO3, while the average yield of T1 (37.56 %) was significantly higher (P ≤ 0.05) than T2 (21.77 %). The level of dynamic viscosity was correlated with alkali concentration. Indication in T1 results showed that the higher alkali concentration, the better yield. The best yield was the lowest viscosity, produced the strongest antioxidant activity.
Xylitol production by a Pichia stipitis D-xylulokinase mutant
Yong-Su Jin; Jose Cruz; Thomas W. Jeffries
2005-01-01
Xylitol production by Pichia stipitis FPL-YS30, a xyl3-Ã1 mutant that metabolizes xylose using an alternative metabolic pathway, was investigated under aerobic and oxygen-limited culture conditions. Under both culture conditions, FPL-YS30 (xyl3-Ã1) produced a negligible amount of ethanol and converted xylose mainly into xylitol with comparable yields (0.30 and 0.27 g...
Utilization of household food waste for the production of ethanol at high dry material content.
Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul
2014-01-08
Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield.
Utilization of household food waste for the production of ethanol at high dry material content
2014-01-01
Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield. PMID:24401142
NASA Astrophysics Data System (ADS)
Erini, Nina; Krause, Paul; Gliech, Manuel; Yang, Ruizhi; Huang, Yunhui; Strasser, Peter
2015-10-01
The present work explores the effect of autoclave-based autogenous-pressure vs. ambient pressure conditions on the synthesis and properties of carbon-supported Pt-Rh-Sn nanoparticle electrocatalysts. The Pt-Rh-Sn nanoparticles were characterized by X-ray spectroscopy, electron microscopy and mass spectroscopy and deployed as catalysts for the electrocatalytic ethanol oxidation reaction. Pt-Rh-Sn catalysts precipitated with carbon already present showed narrow particle size distribution around 7 nm, while catalysts supported on carbon after particle formation showed broader size distribution ranging from 8 to 16 nm, similar metal loadings between 40 and 48 wt.% and similar atomic ratios of Pt:Rh:Sn of 30:10:60. The highest ethanol oxidation activity at low overpotentials associated with exceptionally early ethanol oxidation onset potential was observed for ambient-pressure catalysts with the active ternary alloy phase formed in presence of the carbon supports. In contrast, catalysts prepared under ambient pressure in a two-step approach, involving alloy particle formation followed by particle separation and subsequent deposition on the carbon support, yielded the highest overall mass activities. Based on the observed synthesis-activity correlations, a comparative assessment is provided of the synthetic techniques at high vs. low pressures, and in presence and absence of carbon support. Plausible hypotheses in terms of particle dispersion and interparticle distance accounting for these observed differences are discussed.
Zuroff, Trevor R; Xiques, Salvador Barri; Curtis, Wayne R
2013-04-29
Lignocellulosic ethanol is a viable alternative to petroleum-based fuels with the added benefit of potentially lower greenhouse gas emissions. Consolidated bioprocessing (simultaneous enzyme production, hydrolysis and fermentation; CBP) is thought to be a low-cost processing scheme for lignocellulosic ethanol production. However, no single organism has been developed which is capable of high productivity, yield and titer ethanol production directly from lignocellulose. Consortia of cellulolytic and ethanologenic organisms could be an attractive alternate to the typical single organism approaches but implementation of consortia has a number of challenges (e.g., control, stability, productivity). Ethanol is produced from α-cellulose using a consortium of C. phytofermentans and yeast that is maintained by controlled oxygen transport. Both Saccharomyces cerevisiae cdt-1 and Candida molischiana "protect" C. phytofermentans from introduced oxygen in return for soluble sugars released by C. phytofermentans hydrolysis. Only co-cultures were able to degrade filter paper when mono- and co-cultures were incubated at 30°C under semi-aerobic conditions. Using controlled oxygen delivery by diffusion through neoprene tubing at a calculated rate of approximately 8 μmol/L hour, we demonstrate establishment of the symbiotic relationship between C. phytofermentans and S. cerevisiae cdt-1 and maintenance of populations of 105 to 106 CFU/mL for 50 days. Comparable symbiotic population dynamics were observed in scaled up 500 mL bioreactors as those in 50 mL shake cultures. The conversion of α-cellulose to ethanol was shown to improve with additional cellulase indicating a limitation in hydrolysis rate. A co-culture of C. phytofermentans and S. cerevisiae cdt-1 with added endoglucanase produced approximately 22 g/L ethanol from 100 g/L α-cellulose compared to C. phytofermentans and S. cerevisiae cdt-1 mono-cultures which produced approximately 6 and 9 g/L, respectively. This work represents a significant step toward developing consortia-based bioprocessing systems for lignocellulosic biofuels production which utilize scalable, environmentally-mediated symbiosis mechanisms to provide consortium stability.
Claeys, Erik; Vossen, Els; De Smet, Stefaan
2016-01-30
The analysis of α-tocopherol in feed and animal-derived foods usually involves a saponification step. However, since saponification often leads to losses of α-tocopherol, a method for the determination of α-tocopherol in feed and in animal-derived foods was developed without a saponification step. In this method, α-tocopherol is extracted with hot ethanol and the co-extracted fat is removed by centrifugation. Removal of the fat fraction is made possible by the addition of water, to achieve an ethanol:water ratio of 40:7, followed by cooling on ice before centrifugation. This procedure allows removal of the fat fraction, while α-tocopherol is retained. Matrices differing in gross composition and α-tocopherol content were analyzed: fresh pork, cooked ham, subcutaneous fat, liver, egg yolk, milk and a compound pig feed. Higher α-tocopherol concentrations were found for this novel method compared to a conventional method with saponification, particularly for subcutaneous fat (P < 0.05). Recoveries were higher (P < 0.05) for the novel method (82-103%), compared to the saponification method (66-90%; for subcutaneous fat < 25%). Determining α-tocopherol in feed and animal-derived foods using pure ethanol without saponification results in higher extraction yields and recoveries compared to the saponification method. © 2015 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
One of the challenges facing the fuel ethanol industry is the management of bacterial contamination during fermentation. Lactobacillus species are the predominant contaminants that decrease the profitability of biofuel production by reducing ethanol yields and causing “stuck” fermentations, which i...
USDA-ARS?s Scientific Manuscript database
Lactic acid bacteria (LAB) frequently contaminate commercial fuel ethanol fermentations, reducing yields and decreasing profitability of biofuel production. Microorganisms from environmental sources in different geographic regions of Thailand were tested for antibacterial activity against LAB. Fou...
Inhibition of Lactobacillus biofilm growth by Bacillus extracts
USDA-ARS?s Scientific Manuscript database
Industrial ethanol fermentations are not pure cultures, and are expected to contain contaminant bacteria and fungi. These additional organisms deplete the feedstock and lower overall ethanol yield. Severe contamination can lead to “stuck” fermentations, requiring costly shutdowns for cleaning. As La...
Corn ethanol production, food exports, and indirect land use change.
Wallington, T J; Anderson, J E; Mueller, S A; Kolinski Morris, E; Winkler, S L; Ginder, J M; Nielsen, O J
2012-06-05
The approximately 100 million tonne per year increase in the use of corn to produce ethanol in the U.S. over the past 10 years, and projections of greater future use, have raised concerns that reduced exports of corn (and other agricultural products) and higher commodity prices would lead to land-use changes and, consequently, negative environmental impacts in other countries. The concerns have been driven by agricultural and trade models, which project that large-scale corn ethanol production leads to substantial decreases in food exports, increases in food prices, and greater deforestation globally. Over the past decade, the increased use of corn for ethanol has been largely matched by the increased corn harvest attributable mainly to increased yields. U.S. exports of corn, wheat, soybeans, pork, chicken, and beef either increased or remained unchanged. Exports of distillers' dry grains (DDG, a coproduct of ethanol production and a valuable animal feed) increased by more than an order of magnitude to 9 million tonnes in 2010. Increased biofuel production may lead to intensification (higher yields) and extensification (more land) of agricultural activities. Intensification and extensification have opposite impacts on land use change. We highlight the lack of information concerning the magnitude of intensification effects and the associated large uncertainties in assessments of the indirect land use change associated with corn ethanol.
Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria
2014-01-01
Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.; Hamdy, M.K.
Studies were conducted to establish optimal conditions for the acid hydrolysis of sweet potato for maximal ethanol yield. The starch contents of two sweet potato cultivars (Georgia Red and TG-4), based on fresh weight, were 21.1 +/- 0.6% and 27.5 +/- 1.6%, respectively. The results of acid hydrolysis experiments showed the following: (1) both hydrolysis rate and hydroxymethylfurfural (HMF) concentration were a function of HCL concentration, temperature, and time; (2) the reducing sugars were rapidly formed with elevated concentrations of HCl and temperature, but also destroyed quickly; and (3) HMF concentration increased significantly with the concentration of HCl, temperature, andmore » hydrolysis time. Maximum reducing sugar value of 84.2 DE and 0.056% HMF (based on wet weight) was achieved after heating 8% SPS for 15 min in 1N HCl at 110/sup 0/C. Degraded 8% SPS (1N HCl, 97/sup 0/C for 20 min or 110/sup 0/C for 10 min) was utilized as substrate for ethanol fermentation and 3.8% ethanol (v/v) was produced from 1400 mL fermented wort. This is equal to 41.6 g ethanol (200 proof) from 400 g of fresh sweet potato tuber (Georgia Red) or an ethanol yield potential of 431 gal of 200-proof ethanol/acre (from 500 bushel tubers/acre).« less
Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies.
Vanrolleghem, P A; de Jong-Gubbels, P; van Gulik, W M; Pronk, J T; van Dijken, J P; Heijnen, S
1996-01-01
Setting up a metabolic network model for respiratory growth of Saccharomyces cerevisiae requires the estimation of only two (energetic) stoichiometric parameters: (1) the operational PO ratio and (2) a growth-related maintenance factor k. It is shown, both theoretically and practically, how chemostat cultivations with different mixtures of two substrates allow unique values to be given to these unknowns of the proposed metabolic model. For the yeast and model considered, an effective PO ratio of 1.09 mol of ATP/mol of O (95% confidence interval 1.07-1.11) and a k factor of 0.415 mol of ATP/C-mol of biomass (0.385-0.445) were obtained from biomass substrate yield data on glucose/ethanol mixtures. Symbolic manipulation software proved very valuable in this study as it supported the proof of theoretical identifiability and significantly reduced the necessary computations for parameter estimation. In the transition from 100% glucose to 100% ethanol in the feed, four metabolic regimes occur. Switching between these regimes is determined by cessation of an irreversible reaction and initiation of an alternative reaction. Metabolic network predictions of these metabolic switches compared well with activity measurements of key enzymes. As a second validation of the network, the biomass yield of S. cerevisiae on acetate was also compared to the network prediction. An excellent agreement was found for a network in which acetate transport was modeled with a proton symport, while passive diffusion of acetate gave significantly higher yield predictions.
Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S
2012-08-01
The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.
NASA Astrophysics Data System (ADS)
Shrestha, Prachand
This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed no improvement in ethanol yields. We showed that saccharification of lignocellulosic material with a wood-rot fungal process is quite feasible. Corn fiber from wet milling was best degraded to sugars using aerobic solid state fermentation with the soft-rot fungus T. reesei. However, it was shown that both the white-rot fungus P. chrysosporium and brown-rot fungus G. trabeum had the ability to produce additional consortia of hemi/cellulose degrading enzymes. It is likely that a consortium of enzymes from these fungi would be the best approach in saccharification of lignocellulose. In all cases, a subsequent anaerobic yeast process under submerged conditions is required to ferment the released sugars to ethanol. To our knowledge, this is the first time report on production of cellulolytic enzymes from wet-milled corn fiber using white- and brown-rot fungi for sequential fermentation of corn fiber hydrolyzate to ethanol. Keywords: lignocellulose, ethanol, biofuel, bioeconomy, biomass, renewable resources, corn fiber, pretreatment, solid-substrate fermentation, simultaneous saccharification and fermentation (SSF), white-rot fungus, brown-rot fungus, soft-rot fungus, fermentable sugars, enzyme activities, cellulytic enzymes Phanerochaete chrysosporium, Gloleophyllum trabeum, Trichoderma reesei, Saccharomyces cerevisiae.
Agricultural policies and biomass fuels
NASA Astrophysics Data System (ADS)
Flaim, S.; Hertzmark, D.
The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.
Kwon, Joong-Ho; Bélanger, Jacqueline M R; Paré, J R Jocelyn
2003-03-26
Response surface methodology (RSM) was applied to predict optimum conditions for microwave-assisted extraction-a MAP technology-of saponin components from ginseng roots. A central composite design was used to monitor the effect of ethanol concentration (30-90%, X(1)) and extraction time (30-270 s, X(2)) on dependent variables, such as total extract yield (Y(1)), crude saponin content (Y(2)), and saponin ratio (Y(3)), under atmospheric pressure conditions when focused microwaves were applied at an emission frequency of 2450 MHz. In MAP under pre-established conditions, correlation coefficients (R (2)) of the models for total extract yield and crude saponin were 0.9841 (p < 0.001) and 0.9704 (p < 0.01). Optimum extraction conditions were predicted for each variable as 52.6% ethanol and 224.7 s in extract yield and as 77.3% ethanol and 295.1 s in crude saponins, respectively. Estimated maximum values at predicted optimum conditions were in good agreement with experimental values.
Asadi, Nooshin; Zilouei, Hamid
2017-03-01
Ethanol organosolv pretreated rice straw was used to produce biohydrogen using Enterobacter aerogenes. The effect of temperature (120-180°C), residence time (30-90min), and ethanol concentration (45-75%v/v) on the hydrogen yield, residual biomass, and lignin recovery was investigated using RSM. In contrast to the residual solid and lignin recovery, no considerable trend could be observed for the changes in the hydrogen yield at different treatment severities. The maximum hydrogen yield of 19.73mlg -1 straw was obtained at the ethanol concentration of 45%v/v and 180°C for 30min. Furthermore, the potential amount of biohydrogen was estimated in the top ten rice producing nations using the experimental results. Approximately 355.8kt of hydrogen and 11.3Mt of lignin could globally be produced. Based on a Monte Carlo analysis, the production of biohydrogen from rice straw has the lowest risk in China and the highest in Japan. Copyright © 2016 Elsevier Ltd. All rights reserved.
Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia
2016-08-01
A L9(3)(4) orthogonal array (OA) experimental design was applied to study the four parameters considered most important in the ozonolysis pretreatment (moisture content, ozone concentration, ozone/oxygen flow and particle size) on ethanol production from sugarcane bagasse (SCB). Statistical analysis highlighted ozone concentration as the highest influence parameter on reaction time and sugars release after enzymatic hydrolysis. The increase on reaction time when decreasing the ozone/oxygen flow resulted in small differences of ozone consumptions. Design optimization for sugars release provided a parameters combination close to the best experimental run, where 77.55% and 56.95% of glucose and xylose yields were obtained, respectively. When optimizing the grams of sugar released by gram of ozone, the highest influence parameter was moisture content, with a maximum yield of 2.98gSUGARS/gO3. In experiments on hydrolysates fermentation, Saccharomyces cerevisiae provided ethanol yields around 80%, while Pichia stipitis was completely inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fu, Chunxiang; Mielenz, Jonathan R.; Xiao, Xirong; Ge, Yaxin; Hamilton, Choo Y.; Rodriguez, Miguel; Chen, Fang; Foston, Marcus; Ragauskas, Arthur; Bouton, Joseph; Dixon, Richard A.; Wang, Zeng-Yu
2011-01-01
Switchgrass is a leading dedicated bioenergy feedstock in the United States because it is a native, high-yielding, perennial prairie grass with a broad cultivation range and low agronomic input requirements. Biomass conversion research has developed processes for production of ethanol and other biofuels, but they remain costly primarily because of the intrinsic recalcitrance of biomass. We show here that genetic modification of switchgrass can produce phenotypically normal plants that have reduced thermal-chemical (≤180 °C), enzymatic, and microbial recalcitrance. Down-regulation of the switchgrass caffeic acid O-methyltransferase gene decreases lignin content modestly, reduces the syringyl:guaiacyl lignin monomer ratio, improves forage quality, and, most importantly, increases the ethanol yield by up to 38% using conventional biomass fermentation processes. The down-regulated lines require less severe pretreatment and 300–400% lower cellulase dosages for equivalent product yields using simultaneous saccharification and fermentation with yeast. Furthermore, fermentation of diluted acid-pretreated transgenic switchgrass using Clostridium thermocellum with no added enzymes showed better product yields than obtained with unmodified switchgrass. Therefore, this apparent reduction in the recalcitrance of transgenic switchgrass has the potential to lower processing costs for biomass fermentation-derived fuels and chemicals significantly. Alternatively, such modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions. PMID:21321194
Carteau, David; Brunerie, Pascal; Guillemat, Bruno; Bassani, Dario M
2007-04-01
The photochemical behaviour of spontaneously formed microemulsions obtained upon dilution of ethanolic solutions of trans-anethole (E-1-(4-methoxyphenyl)propene, t-A) with water is compared to that of homogeneous ethanolic t-A solutions. Significant differences in reactivity reflect the confined nature of the aggregated t-A which leads to reduced yields of isomerization and dimerization products. In contrast to homogeneous solutions, where a photostationary state enriched in the Z-isomer (c-A) is rapidly reached, the proportion of c-A formed upon irradiation of t-A microemulsions remains below 15%. In the presence of oxygen the formation of trans-anethole oxide is observed which, when formed in non-homogeneous environments, undergoes polymerization.
Bağder Elmacı, Simel; Özçelik, Filiz; Tokatlı, Mehmet; Çakır, İbrahim
2014-05-01
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0-12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.
Liu, Yu-Fan; Hsieh, Chia-Wen; Chang, Yao-Sheng; Wung, Being-Sun
2017-08-01
Acetic acid is a predominant by-product of lignocellulosic biofuel process, which inhibits microbial biocatalysts. Development of bacterial strains that are tolerant to acetic acid is challenging due to poor understanding of the underlying molecular mechanisms. In this study, we generated and characterized two acetic acid-tolerant strains of Zymomonas mobilis using N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-acetate adaptive breeding. Two mutants, ZMA-142 and ZMA-167, were obtained, showing a significant growth rate at a concentration of 244 mM sodium acetate, while the growth of Z. mobilis ATCC 31823 were completely inhibited in presence of 195 mM sodium acetate. Our data showed that acetate-tolerance of ZMA-167 was attributed to a co-transcription of nhaA from ZMO0117, whereas the co-transcription was absent in ATCC 31823 and ZMA-142. Moreover, ZMA-142 and ZMA-167 exhibited a converstion rate (practical ethanol yield to theorical ethanol yield) of 90.16% and 86% at 195 mM acetate-pH 5 stress condition, respectively. We showed that acid adaptation of ZMA-142 and ZMA-167 to 146 mM acetate increased ZMA-142 and ZMA-167 resulted in an increase in ethanol yield by 32.21% and 21.16% under 195 mM acetate-pH 5 stress condition, respectively. The results indicate the acetate-adaptive seed culture of acetate-tolerant strains, ZMA-142 and ZMA-167, could enhance the ethanol production during fermentation.
Evaluation of Cashew Apple Juice for the Production of Fuel Ethanol
NASA Astrophysics Data System (ADS)
Pinheiro, Álvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R.; Gonçalves, Luciana R. B.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L-1 of initial sugar concentration was used. Cell yield (Yx/s) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L-1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Evaluation of cashew apple juice for the production of fuel ethanol.
Pinheiro, Alvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R; Gonçalves, Luciana R B
2008-03-01
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L(-1) of initial sugar concentration was used. Cell yield (Y (X/S)) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L(-1) of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A
2016-12-25
This work focuses on the performance of ten commercial Saccharomyces yeast strains in the batch alcoholic fermentation of sugars contained in selected industrial wastewaters from the soft drink industry. Fermentation has been applied successfully to treat these effluents prior to their disposal. Although many strains were investigated, similar behaviour was observed between all of the Saccharomyces strains tested. When media were inoculated with 2gL -1 of yeast, all strains were able to completely consume the available sugars in less than 14h. Thus, any of the strains studied in this work could be used in non-conventional wastewater treatment processes based on alcoholic fermentation. However, ethanol production varied between strains, and these differences could be significant from a production point of view. Saccharomyces bayanus produced the most ethanol, with a mean yield of 0.44g ethanol g sugarconsumed -1 and an ethanol specific production rate of 5.96g ethanol (Lh) -1 . As the assayed soft drinks wastewaters contain about 105g sugar /L of fermentable sugars, the concentration of ethanol achieved after the fermentations process was 46.2g ethanol /L. A rigorous kinetic modelling methodology was used to model the Saccharomyces bayanus fermentation process. The kinetic model included coupled mass balances and a minimal number of parameters. A simple unstructured model based on the Andrews equation (substrate inhibition) was developed. This model satisfactorily described biomass growth, sugar consumption and bioethanol production. In addition to providing insights into the fermentative performance of potentially relevant strains, this work can facilitate the design of large-scale ethanol production processes that use wastewaters from the sugar-sweetened beverage industry as feedstock. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced isoprenoid production from xylose by engineered Saccharomyces cerevisiae.
Kwak, Suryang; Kim, Soo Rin; Xu, Haiqing; Zhang, Guo-Chang; Lane, Stephan; Kim, Heejin; Jin, Yong-Su
2017-11-01
Saccharomyces cerevisiae has limited capabilities for producing fuels and chemicals derived from acetyl-CoA, such as isoprenoids, due to a rigid flux partition toward ethanol during glucose metabolism. Despite numerous efforts, xylose fermentation by engineered yeast harboring heterologous xylose metabolic pathways was not as efficient as glucose fermentation for producing ethanol. Therefore, we hypothesized that xylose metabolism by engineered yeast might be a better fit for producing non-ethanol metabolites. We indeed found that engineered S. cerevisiae on xylose showed higher expression levels of the enzymes involved in ethanol assimilation and cytosolic acetyl-CoA synthesis than on glucose. When genetic perturbations necessary for overproducing squalene and amorphadiene were introduced into engineered S. cerevisiae capable of fermenting xylose, we observed higher titers and yields of isoprenoids under xylose than glucose conditions. Specifically, co-overexpression of a truncated HMG1 (tHMG1) and ERG10 led to substantially higher squalene accumulation under xylose than glucose conditions. In contrast to glucose utilization producing massive amounts of ethanol regardless of aeration, xylose utilization allowed much less amounts of ethanol accumulation, indicating ethanol is simultaneously re-assimilated with xylose consumption and utilized for the biosynthesis of cytosolic acetyl-CoA. In addition, xylose utilization by engineered yeast with overexpression of tHMG1, ERG10, and ADS coding for amorphadiene synthase, and the down-regulation of ERG9 resulted in enhanced amorphadiene production as compared to glucose utilization. These results suggest that the problem of the rigid flux partition toward ethanol production in yeast during the production of isoprenoids and other acetyl-CoA derived chemicals can be bypassed by using xylose instead of glucose as a carbon source. Biotechnol. Bioeng. 2017;114: 2581-2591. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae
2011-01-01
Background The robustness of Saccharomyces cerevisiae in facilitating industrial-scale production of ethanol extends its utilization as a platform to synthesize other metabolites. Metabolic engineering strategies, typically via pathway overexpression and deletion, continue to play a key role for optimizing the conversion efficiency of substrates into the desired products. However, chemical production titer or yield remains difficult to predict based on reaction stoichiometry and mass balance. We sampled a large space of data of chemical production from S. cerevisiae, and developed a statistics-based model to calculate production yield using input variables that represent the number of enzymatic steps in the key biosynthetic pathway of interest, metabolic modifications, cultivation modes, nutrition and oxygen availability. Results Based on the production data of about 40 chemicals produced from S. cerevisiae, metabolic engineering methods, nutrient supplementation, and fermentation conditions described therein, we generated mathematical models with numerical and categorical variables to predict production yield. Statistically, the models showed that: 1. Chemical production from central metabolic precursors decreased exponentially with increasing number of enzymatic steps for biosynthesis (>30% loss of yield per enzymatic step, P-value = 0); 2. Categorical variables of gene overexpression and knockout improved product yield by 2~4 folds (P-value < 0.1); 3. Addition of notable amount of intermediate precursors or nutrients improved product yield by over five folds (P-value < 0.05); 4. Performing the cultivation in a well-controlled bioreactor enhanced the yield of product by three folds (P-value < 0.05); 5. Contribution of oxygen to product yield was not statistically significant. Yield calculations for various chemicals using the linear model were in fairly good agreement with the experimental values. The model generally underestimated the ethanol production as compared to other chemicals, which supported the notion that the metabolism of Saccharomyces cerevisiae has historically evolved for robust alcohol fermentation. Conclusions We generated simple mathematical models for first-order approximation of chemical production yield from S. cerevisiae. These linear models provide empirical insights to the effects of strain engineering and cultivation conditions toward biosynthetic efficiency. These models may not only provide guidelines for metabolic engineers to synthesize desired products, but also be useful to compare the biosynthesis performance among different research papers. PMID:21689458
Li, Hongxing; Wu, Meiling; Xu, Lili; Hou, Jin; Guo, Ting; Bao, Xiaoming; Shen, Yu
2015-01-01
To develop a suitable Saccharomyces cerevisiae industrial strain as a chassis cell for ethanol production using lignocellulosic materials, 32 wild-type strains were evaluated for their glucose fermenting ability, their tolerance to the stresses they might encounter in lignocellulosic hydrolysate fermentation and their genetic background for pentose metabolism. The strain BSIF, isolated from tropical fruit in Thailand, was selected out of the distinctly different strains studied for its promising characteristics. The maximal specific growth rate of BSIF was as high as 0.65 h−1 in yeast extract peptone dextrose medium, and the ethanol yield was 0.45 g g−1 consumed glucose. Furthermore, compared with other strains, this strain exhibited superior tolerance to high temperature, hyperosmotic stress and oxidative stress; better growth performance in lignocellulosic hydrolysate; and better xylose utilization capacity when an initial xylose metabolic pathway was introduced. All of these results indicate that this strain is an excellent chassis strain for lignocellulosic ethanol production. PMID:25616171
Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein.
Tan, Fu-Rong; Dai, Li-Chun; Wu, Bo; Qin, Han; Shui, Zong-Xia; Wang, Jing-Li; Zhu, Qi-Li; Hu, Qi-Chun; Ruan, Zhi-Yong; He, Ming-Xiong
2015-06-01
Furfural from lignocellulosic hydrolysates is the key inhibitor for bio-ethanol fermentation. In this study, we report a strategy of improving the furfural tolerance in Zymomonas mobilis on the transcriptional level by engineering its global transcription sigma factor (σ(70), RpoD) protein. Three furfural tolerance RpoD mutants (ZM4-MF1, ZM4-MF2, and ZM4-MF3) were identified from error-prone PCR libraries. The best furfural-tolerance strain ZM4-MF2 reached to the maximal cell density (OD600) about 2.0 after approximately 30 h, while control strain ZM4-rpoD reached its highest cell density of about 1.3 under the same conditions. ZM4-MF2 also consumed glucose faster and yield higher ethanol; expression levels and key Entner-Doudoroff (ED) pathway enzymatic activities were also compared to control strain under furfural stress condition. Our results suggest that global transcription machinery engineering could potentially be used to improve stress tolerance and ethanol production in Z. mobilis.
Soil and variety effects on the energy and carbon balances of switchgrass-derived ethanol
USDA-ARS?s Scientific Manuscript database
This study examined the effects of soil and switchgrass variety on sustainability and eco-friendliness of switchgrass-based ethanol production. Using the Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) model, switchgrass biomass yields were simulated for severa...