Evaluation and Optimization of MTBE Biodegradation in Aquifers, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legler, T; Balser, L; Koester, C
This study was focused on meeting the following objectives concerning the process of methyl tertiary butyl ether (MTBE) biodegradation, with the goal of optimizing this process in situ: 1. Assess whether intrinsic bioattenuation of MTBE is feasible under aerobic conditions across several contaminated sites. 2. Determine the effect of co-contaminants, specifically water-soluble gasoline components (most notably benzene, toluene, ethylbenzene and xylenes [BTEX]) on MTBE biodegradation. 3. Determine whether microbial and/or chemical factors contribute to different MTBE degradative activities. 4. Isolate and characterize MTBE-degrading microorganisms from sediments in which MTBE biodegradation was observed.
Li, Shanshan; Qian, Keke; Wang, Shan; Liang, Kaiqiang; Yan, Wei
2017-01-01
Methyl tert-butyl ether (MTBE) has been used as a common gasoline additive worldwide since the late twentieth century, and it has become the most frequently detected groundwater pollutant in many countries. This study aimed to synthesize a novel microbial carrier to improve its adsorptive capacity for MTBE and biofilm formation, compared to the traditional granular activated carbon (GAC). A polypyrrole (PPy)-modified GAC composite (PPy/GAC) was synthesized, and characterized by Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) surface area analysis. The adsorption behaviors of MTBE were well described by the pseudo-second-order and Langmuir isotherm models. Furthermore, three biofilm reactors were established with PPy/GAC, PPy, and GAC as the carriers, respectively, and the degradation of MTBE under continuous flow was investigated. Compared to the biofilm reactors with PPy or GAC (which both broke after a period of operation), the PPy/GAC biofilm column produced stable effluents under variable treatment conditions with a long-term effluent MTBE concentration <20 μg/L. Pseudomonas aeruginosa and Acinetobacter pittii may be the predominant bacteria responsible for MTBE degradation in these biofilm reactors. PMID:28125030
LOCALIZED RECHARGE INFLUENCES ON MTBE TRANSPORT AND WELL PLACEMENT CONSIDERATIONS
Vertical characterization of a gasoline release site at East Patchogue, New York showed that methyl tert-butyl ether (MTBE) and aromatic plumes "dived" as they passed beneath a sand pit. That this behavior was caused by aquifer recharge was shown by two pieces of evidence. Fir...
Application of Stable Carbon Isotope Ratios to Recognize Natural Biodegradation of MTBE
The organisms that degrade MTBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...
INFLUENCE OF METHYL TERT-BUTYL ETHER (MTBE) ON LAKE WATER ALGAE
Methyl tert-butyl ether (MTBE) has been used as an octane booster in gasoline in the United States since the 1970s. MTBE use increased greatly in the 1990s with the implementation of the Clean Air Act Amendments of 1990. The MTBE enhanced a more complete combustion of fuel hydroc...
Aquatic Life Criteria - Methyl Tertiary-Butyl Ether (MTBE)
Information pertaining to the 1999 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Methyl Tertiary-Butyl Ether (MTBE) for freshwater and salt water. Information includes the safe levels of MTBE that should protect the majority of species.
Human cytochrome P450 isozymes in metabolism and health effects of gasoline ethers.
Hong, J Y; Wang, Y Y; Mohr, S N; Bondoc, F Y; Deng, C
2001-05-01
To reduce the production of carbon monoxide and other pollutants in motor vehicle exhaust, methyl tert-butyl ether (MTBE*), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) are added to gasoline as oxygenates for more complete combustion. Among them, MTBE is the most widely used. The possible adverse effect of MTBE in humans is a public concern, but the human enzymes responsible for metabolism of these gasoline ethers and the causes or factors for increased sensitivity to MTBE in certain individuals are totally unknown. This information is important to understanding the health effects of MTBE in humans and to assessing the human relevance of pharmacokinetics and toxicity data obtained from animals. In the present study, we demonstrated that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA), a major circulating metabolite and an exposure marker of MTBE. The activity is localized in the microsomal fraction but not in the cytosol. Formation of TBA in human liver microsomes is NADPH-dependent and is significantly inhibited by carbon monoxide, which inhibits cytochrome P450 (CYP) enzymes. These results provide strong evidence that CYP enzymes play a critical role in the metabolism of MTBE in human livers. Human liver is also active in the oxidative metabolism of 2 other gasoline ethers, ETBE and TAME. We observed a large interindividual variation in metabolizing these gasoline ethers in 15 microsomal samples prepared from normal human livers. The activity level (pmol metabolite/min/mg) ranged from 204 to 2,890 for MTBE; 179 to 3,134 for ETBE; and 271 to 8,532 for TAME. The microsomal activities in metabolizing MTBE, ETBE, and TAME correlated highly with each other (r = 0.91 to 0.96), suggesting that these ethers are metabolized by the same enzyme(s). Correlation analysis of the ether-metabolizing activities with individual CYP enzyme activities in the human liver microsomes showed that the highest degree of correlation was with CYP isoform 2A6 (CYP2A6)+ (r = 0.94 for MTBE, 0.95 for ETBE, and 0.90 for TAME), which is constitutively expressed in human livers and known to be polymorphic. CYP2A6 displayed the highest turnover number in metabolizing gasoline ethers among a battery of human CYP enzymes expressed in human B-lymphoblastoid cells. CYP2A6 coexpressed with human CYP reductase by a baculovirus expression system was also more active than CYP isoform 2E1 (CYP2E1) in the metabolism of MTBE, ETBE, and TAME. Kinetic studies on MTBE metabolism with human liver microsomes (n = 3) exhibited an apparent Michaelis constant (Km) of 28 to 89 microM and a maximum rate of metabolism (Vmax) of 215 to 783 pmol/min/mg. Metabolism of MTBE, ETBE, and TAME by human liver microsomes was inhibited by coumarin, a known substrate of human CYP2A6, in a concentration-dependent manner. Monoclonal antibody against human CYP2A6 caused a significant inhibition (75% to 95%) of the metabolism of MTBE, ETBE, and TAME in human liver microsomes. Taken together, these results clearly indicate that, in human liver, CYP2A6 is a major enzyme responsible for metabolism of MTBE, ETBE, and TAME. Although CYP2E1 metabolizes diethyl ether and was previously suggested to be involved
Hristova, Krassimira R; Schmidt, Radomir; Chakicherla, Anu Y; Legler, Tina C; Wu, Janice; Chain, Patrick S; Scow, Kate M; Kane, Staci R
2007-11-01
High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.
NASA Astrophysics Data System (ADS)
Li, S. S.; Wang, S.; Yan, W.
2016-08-01
When methyl tert-butyl ether (MTBE) is added as oxygenates it increases the octane number and decreases the release of nitric oxide from the incomplete combustion of reformulated gasoline. The extensive use of MTBE allowed it to be detectable as a pollutant in both ground-level and underground water worldwide. The present study focuses on the isolation and characterization of MTB-degrading microorganisms by cometabolism based on the results of growth on different carbon sources. It also focuses on the kinetic analysis and the continuous degradation of MTBE. A bacterial strain WL1 that can grow on both n-alkanes (C5-C8) and aromatics was isolated and named Pseudomonas sp. WL1 according to the 16S rDNA sequencing analysis. Strain WL1 could cometabolically degrade MTBE in the presence of n-alkanes with a desirable degradation rate. Diverse n-alkanes with different lengths of carbon chains showed significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA). When strain WL1 cometabolically degraded MTBE in the presence of n-pentane, higher MTBE-degrading rate and lower TBA-accumulation were observed (Vmax = 38.1 nmol/min/mgprotei, Ks = 6.8 mmol/L). In the continuous degrading experiment, the removal efficiency of MTBE by Pseudomonas sp. WL1 did not show any obvious decrease after five subsequent additions.
BIODEGRADATION OF METHYL TERT-BUTYL ETHER AND BTEX AT VARYING HYDRAULIC RETENTION TIMES
The feasibility of biologically degrading methyl tert-butyl ether (MTBE) contaminated groundwater is dependent on the ability to degrade MTBE and its byproducts in the presence of other gasoline contaminants. This study investigates a mixed culture degrading both MTBE and benzene...
The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water was evaluated at bench- and pilot-scales. Process parameters studied included flow rate, temperature, MTBE concentration, membrane module type, and permeate pressure. Pervaporation performance was ass...
2004-04-01
indicates that the total residual gasoline constituents (Benzene, Toluene, Ethylbenzene, and Xylene [BTEX] and methyl tertiary butyl ether [MTBE]) are...mean sea level MTBE methyl tertiary butyl ether MW monitoring well N/A Not Applicable NAAQS National Ambient Air Quality Standards NAF Non...Toluene, Ethylbenzene, and Xylene [BTEX] and methyl tertiary butyl ether [MTBE]) are below concentrations which pose a threat to human health and
The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to help meet national ambient air quality standards in those parts of the U.S. that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced haza...
The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to help meet national ambient air quality standards in those parts of the U.S. that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced hazardous a...
OCCURRENCE OF METYL TERT-BUTYL ETHER (MTBE) AT FIVE MARINAS IN LAKE TEXOMA
Occurrence of methyl tert-butyl ether (MTBE) in five marinas was monitored between June 1999 and November 2000 in Lake Texoma located on the border of Oklahoma and Texas. MTBE is a commonly used gasoline additive and a suspected carcinogen. Lake water was collected at loc...
WATER QUALITY AT FIVE MARINAS IN LAKE TEXOMA AS RELATED TO METHYL TERT-BUTYL ETHER (MTBE)
Occurrence of methyl tert-butyl ether (MTBE) in five marinas was monitored between June 1999 and November 2000 in Lake Texoma located on the border of Oklahoma and Texas. MTBE is a commonly used gasoline additive and a suspected carcinogen. Lake water was collected at locations i...
The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...
Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi
2017-06-15
Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m 3 ). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2017 Elsevier B.V. All rights reserved.
The organisms that degrade MTBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...
Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water.
Levchuk, Irina; Bhatnagar, Amit; Sillanpää, Mika
2014-04-01
Wide use of methyl tert-butyl ether (MTBE) as fuel oxygenates leads to worldwide environment contamination with this compound basically due to fuel leaks from storage or pipelines. Presence of MTBE in drinking water is of high environmental and social concern. Existing methods for MTBE removal from water have a number of limitations which can be possibly overcome in the future with use of emerging technologies. This work aims to provide an updated overview of recent developments in technologies for MTBE removal from water. Copyright © 2014. Published by Elsevier B.V.
The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...
The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...
Environmental behavior and fate of methyl tert-butyl ether (MTBE)
Squillace, Paul J.; Pankow, James F.; Korte, Nic E.; Zogorski, John S.
1996-01-01
When gasoline that has been oxygenated with methyl tert-butyl ether (MTBE) comes in contact with water, large amounts of MTBE can dissolve; at 25 degrees Celsius the water solubility of MTBE is about 5,000 milligrams per liter for a gasoline that is 10 percent MTBE by weight. In contrast, for a nonoxygenated gasoline, the total hydrocarbon solubility in water is typically about 120 milligrams per liter. MTBE sorbs only weakly to soil and aquifer materials; therefore, sorption will not significantly retard MTBE's transport by ground water. In addition, MTBE generally resists degradation in ground water. The half-life of MTBE in the atmosphere can be as short as 3 days in a regional airshed. MTBE in the air tends to partition into atmospheric water, including precipitation. However, washout of gas-phase MTBE by precipitation would not, by itself, greatly alter the gas-phase concentration of the compound in the air. The partitioning of MTBE to precipitation is nevertheless strong enough to allow for up to 3 micrograms per liter or more inputs of MTBE to surface and ground water.
Risk characterization of methyl tertiary butyl ether (MTBE) in tap water.
Stern, B R; Tardiff, R G
1997-12-01
Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.
Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H
2011-02-01
Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.
Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.
2011-01-01
Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686
Occurrence of MTBE and other gasoline oxygenates in CWS source waters
Carter, Janet M.; Grady, Stephen J.; Delzer, Gregory C.; Koch, Bart; Zogorski, John S.
2006-01-01
Results from two national surveys indicate that the gasoline oxygenate methyl tertiary butyl ether (MTBE) is one of the most frequently detected volatile organic compounds in source waters used by community water systems in the United States. Three other ether oxygenates were detected infrequently but almost always co-occurred with MTBE. A random sampling of source waters across the United States found MTBE in almost 9% of samples. In geographic areas with high MTBE use, the compound was detected in 23% of source water samples. Although MTBE concentrations were low (<1 µg/L) in most samples, some concentrations equaled or exceeded the drinking water advisory of 20 µg/L set by the US Environmental Protection Agency. The frequent detection of even low concentrations of MTBE demonstrates the vulnerability of US source waters to anthropogenic compounds, indicating a need to include MTBE in monitoring programs to track the trend of contamination.
Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.
2001-01-01
Mineralization of [U-14C] methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.
Method for determination of methyl tert-butyl ether and its degradation products in water
Church, C.D.; Isabelle, L.M.; Pankow, J.F.; Rose, D.L.; Tratnyek, P.G.
1997-01-01
An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.An analytical method is described that can detect the major alkyl ether compounds that are used as gasoline oxygenates (methyl tert-butyl ether, MTBE; ethyl tert-butyl ether, ETBE; and tert-amyl methyl ether, TAME) and their most characteristic degradation products (tert-butyl alcohol, TBA; tert-butyl formate, TBF; and tert-amyl alcohol, TAA) in water at sub-ppb concentrations. The new method involves gas chromatography (GC) with direct aqueous injection (DAI) onto a polar column via a splitless injector, coupled with detection by mass spectrometry (MS). DAI-GC/MS gives excellent agreement with conventional purge-and-trap methods for MTBE over a wide range of environmentally relevant concentrations. The new method can also give simultaneous identification of polar compounds that might occur as degradation products of gasoline oxygenates, such as TBA, TBF, TAA, methyl acetate, and acetone. When the method was applied to effluent from a column microcosm prepared with core material from an urban site in New Jersey, conversion of MTBE to TBA was observed after a lag period of 35 days. However, to date, analyses of water samples from six field sites using the DAI-GC/MS method have not produced evidence for the expected products of in situ degradation of MTBE.
Toxicology and human health effects following exposure to oxygenated or reformulated gasoline.
Ahmed, F E
2001-09-15
In order to replace antiknock leaded derivatives in gasoline, legislations were enacted in the United States and other countries to find safer additives and to reduce CO, O3, and volatile organic compounds (VOCs) in non-attainment areas. Oxygenates commonly used include various alcohols and aliphatic ethers. Methyl tert-butyl ether (MTBE) is the most widely used and studied ether oxygenate and is added to gasoline at concentrations up to 15% by volume. Inhalation of fumes while fueling automobiles is the main source of human exposure to MTBE. Humans are also exposed when drinking water contaminated with MTBE. Epidemiological, clinical, animal, metabolic and kinetic studies have been carried out to address human health risks resulting from exposure to MTBE. MTBE is an animal carcinogen, but its human carcinogenic potential remains unclear. Because MTBE functions as a non-traditional genotoxicant, several mechanisms were suggested to explain its mode of action, such as, functioning as a cytotoxic as opposed to a mitogenic agent; involvement of hormonal mechanisms; or operating as a promoter instead of being a complete carcinogen. Some studies suggested that carcinogenicity of MTBE might be due to its two main metabolites, formaldehyde or tributanol. A role for DNA repair in MTBE carcinogenesis was recently unveiled, which explains some, but not all effects. The totality of the evidence shows that, for the majority of the non-occupationally exposed human population, MTBE is unlikely to produce lasting adverse health effects, and may in some cases improve health by reducing the composition of emitted harmful VOCs and other substances. A small segment of the population (e.g. asthmatic children, the elderly, and those with immunodeficiency) may be at increased risk for toxicity. However, no studies have been conducted to investigate this hypothesis. Concern over ground and surface water contamination caused by persistent MTBE has lead the Environmental Protection Agency (EPA) to proposed reducing or eliminating its use as a gasoline additive. The major potential alternatives to MTBE are other forms of ethers such as ethyl tert-butyl ether (ETBE) or tert-amyl methyl ether (TAME), and alcohols such as ethanol. More definitive studies are needed to understand the mechanism(s) by which aliphatic ethers may pose health and environmental impacts. The switch from MTBE to ethanol is not without problems. Ethanol costs more to produce, poses challenges to the gasoline distribution system, extends the spread of hydrocarbons through ground water in gasoline plumes, and in the short-term is unlikely to be available in sufficient quantity. Moreover, its metabolite acetaldehyde is a possible carcinogen that undergoes a photochemical reaction in the atmosphere to produce the respiratory irritant peroxylacetate nitrate (PAN). Congress is addressing whether the Clean Air Act Amendments (CAA) provisions concerning reformulated gasoline (RFG) should be modified to allow refineries to discontinue or lessen the use of oxygenates.
Methyl tert-butyl ether (MTBE)
Integrated Risk Information System (IRIS)
Methyl tert - butyl ether ( MTBE ) ; CASRN 1634 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f
Effect of H2 and redox condition on biotic and abiotic MTBE transformation
Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.
2006-01-01
Laboratory studies conducted with surface water sediment from a methyl tert-butyl ether (MTBE)-contaminated site in South Carolina demonstrated that, under methanogenic conditions, [U-14C] MTBE was transformed to 14C tert-butyl alcohol (TBA) with no measurable production of 14CO2. Production of TBA was not attributed to the activity of methanogenic microorganisms, however, because comparable transformation of [U-14C] MTBE to 14C-TBA also was observed in heat-sterilized controls with dissolved H2 concentrations > 5 nM. The results suggest that the transformation of MTBE to TBA may be an abiotic process that is driven by biologically produced H2 under in situ conditions. In contrast, mineralization of [U-14C] MTBE to 14CO2 was completely inhibited by heat sterilization and only observed in treatments characterized by dissolved H2 concentrations < 2 nM. These results suggest that the pathway of MTBE transformation is influenced by in situ H2 concentrations and that in situ H2 concentrations may be an useful indicator of MTBE transformation pathways in ground water systems.
PHOTOCATALYTIC OXIDATION OF METHYL-TERT-BUTYL ETHER FOR DRINKING WATER TREATMENT
The photo-oxidation of methyl tert-butyl ether (MTBE) in water was investigated to determine the feasibility of using photocatalysis for the treatment of MTBE-contaminated drinking water. The feasibility assessment was conducted using slurries of titanium dioxide in both a photo-...
REFINED PBPK MODEL OF AGGREGATE EXPOSURE TO METHYL TERTIARY-BUTYL ETHER
Aggregate (multiple pathway) exposures to methyl tertiary-butyl ether (MTBE) in air and water occur via dermal, inhalation, and oral routes. Previously, physiologically-based pharmacokinetic (PBPK) models have been used to quantify the kinetic behavior of MTBE and its primary met...
Anecdotal reports suggest that high environmental or occupational exposures to the fuel oxygenate methyl tert-butyl ether (MTBE) may result in breath concentrations that are sufficiently elevated to cause a false positive on commercial breath-alcohol analyzers. We evaluated th...
Methyl tertiary butyl ether (MTBE), a gasoline additive, used to increase octane and reduce carbon monoxide emissions and ozone precursors has contaminated drinking water leading to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation ki...
Methyl tertiary butyl ether (MTBE) has been used as a gasoline additive to serve two major purposes. First, MTBE was used as an octane-enhancer to replace organic lead, beginning in about 1979. Beginning in about 1992, MTBE was also used as a fuel oxygenate additive to meet req...
Baehr, Arthur L.; Charles, Emmanuel G.; Baker, Ronald J.
2001-01-01
Atmospheric methyl tert‐butyl ether (MTBE) concentrations in southern New Jersey generally exceeded concentrations in samples taken from the unsaturated zone. A simple unsaturated zone transport model indicates that MTBE degradation can explain the attenuation with half‐lives from a few months to a couple of years. Tert‐butyl alcohol (TBA), a possible degradation product of MTBE, was detected in unsaturated‐zone samples at concentrations exceeding atmospheric levels at some sites, suggesting the possible conversion of MTBE to TBA. At sites where MTBE was detected in shallow groundwater, the concentration was typically higher than the overlying unsaturated‐zone concentration. This observation is consistent with outgassing from the aquifer and combined with the unsaturated‐zone attenuation suggests some of the MTBE detections in shallow groundwater are nonatmospheric in origin, coming from leaking tanks, road runoff, or other sources. The identification of sources of MTBE in groundwater and attenuation mechanisms through the hydrologic cycle is critical in developing an understanding of the long‐term effect of MTBE releases.
Toran, L.; Lipka, C.; Baehr, A.; Reilly, T.; Baker, R.
2003-01-01
Methyl-tertiary-butyl ether (MTBE), an additive used to oxygenate gasoline, has been detected in lakes in northwestern New Jersey. This occurrence has been attributed to the use of gasoline-powered watercraft. This paper documents and explains both seasonal and daily variations in MTBE concentrations at Cranberry Lake. During a recent boating season (late April to September 1999), concentrations of MTBE typically exceeded 20??g/L. MTBE concentrations varied daily from 12 to 24??g/L over a 2-week period that included the Labor Day holiday. Concentrations were highest on weekends when there is more boat traffic, which had an immediate effect on MTBE mass throughout the lake. MTBE concentrations decreased to about 2??g/L shortly after the end of the summer recreational season. The loss of MTBE can be accounted for by volatilization, with a half-life on the order of 10 days. The volatilization rate was modeled with the daily decrease in MTBE then the modeled rate was validated using the data from the seasonal decline. ?? 2003 Elsevier Science Ltd. All rights reserved.
Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhal...
BIODEGRADATION OF METHYL TERT-BUTYL ETHER USING AN INNOVATIVE BIOMASS CONCENTRATOR REACTOR
The aerobic biodegradation of methyl tert-butyl ether (MTBE) was investigated using a pilot-scale Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d of Cincinnati dechlorinated tap water and an influent MTBE concentration o...
TREATMENT OF METHYL TERT-BUTYL ETHER CONTAMINATED WATER USING PHOTOCATALYSIS
The feasibility of photo-oxidation treatment of methyl tert-butyl ether (MTBE) in water was investigated in three ways, 1) using a slurry falling film photo-reactor, 2) a batch solar reactor system, and 3) a combination of air-stripping and gas phase photooxidation system. MTBE-c...
STRUCTURES AND BINDING ENERGIES OF METHYL TERT-BUTYL ETHER-WATER COMPLEXES
Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...
Toxicokinetics of ethers used as fuel oxygenates.
Dekant, W; Bernauer, U; Rosner, E; Amberg, A
2001-10-15
The toxicokinetics and biotransformation of methyl-tert.butyl ether (MTBE), ethyl-tert.butyl ether (ETBE) and tert.amyl-methyl ether (TAME) in rats and humans are summarized. These ethers are used as gasoline additives in large amounts, and thus, a considerable potential for human exposure exists. After inhalation exposure MTBE, ETBE and TAME are rapidly taken up by both rats and humans; after termination of exposure, clearance by exhalation and biotransformation to urinary metabolites is rapid in rats. In humans, clearance by exhalation is slower in comparison to rats. Biotransformation of MTBE and ETBE is both qualitatively and quantitatively similar in humans and rats after inhalation exposure under identical conditions. The extent of biotransformation of TAME is also quantitatively similar in rats and humans; the metabolic pathways, however, are different. The results suggest that reactive and potentially toxic metabolites are not formed during biotransformation of these ethers and that toxic effects of these compounds initiated by covalent binding to cellular macromolecules are unlikely.
The rapid detection of methyl tert-butyl ether (MtBE) in water using a prototype gas sensor system.
de Lacy Costello, B P J; Sivanand, P S; Ratcliffe, N M; Reynolds, D M
2005-01-01
The gasoline additive Methyl-tertiary-Butyl Ether (MtBE) is the second most common contaminant of groundwater in the USA and represents an important soil contaminant. This compound has been detected in the groundwater in at least 27 states as a result of leaking underground storage facilities (gasoline storage tanks and pipelines). Since the health effects of MtBE are unclear the potential threat to drinking water supplies is serious. Therefore, the ability to detect MtBE at low levels (ppb) and on-line at high-risk groundwater sites would be highly desirable. This paper reports the use of 'commercial' and metal oxide sensor arrays for the detection of MtBE in drinking and surface waters at low ppb level (microg.L(-1) range). The output responses from some of the sensors were found to correlate well with MtBE concentrations under laboratory conditions.
Lu, Jia; Xu, Fang; Wang, Deju; Huang, Jue; Cai, Weimin
2009-06-15
Silicalite-1/fly ash cenosphere (S/FAC) zeolite composite has been applied for batch adsorption of methyl tert-butyl ether (MTBE) from water systems. Here the key experimental conditions, including the ratio of initial MTBE concentration to the amount weight of S/FAC, adsorption time and temperature, have been discussed in detail. The results show that approximately 93-95% MTBE could be adsorbed with initial concentration of MTBE solution 1000 microg l(-1). The column flow-through experiments also prove the high capacity of S/FAC composite for MTBE removal. The distinct advantages of S/FAC zeolite composite as adsorbent lie in (1) enhanced adsorption rate and capacity based on hierarchical micro and meso/macroporosity of S/FAC; (2) more easily operation and recycling process by assembly of nano-sized silicalite-1 zeolite on FAC support.
[Effect of methyl tertiary butyl ether on the expression of proto-oncogenes and function genes].
Zhou, W; Huang, G; Zhang, H
1999-05-30
Methyl tertiary butyl ether (MTBE) is a new gasoline additive, which is used to increase the combustion of gasoline and to reduce the emission of harmful exhaust from automobile. The mechanism for the carcinogenesis of MTBE in animals is not clear. Immunohistochemistry method was used to detect the effect of MTBE on the expression of c-myc and p21 proteins in NIH3T3 cells. Dot hybridization method was used to explore the expression of c-myc gene and GST-P(glutathione S-transferase-P) gene in the of MTBE treated rats. The results showed that MTBE could enhance the expression of c-myc protein, but had no effect on p21 protein. MTBE could induce high expression of c-myc gene, and had no effect on the expression of GST-P gene. These results suggest that the high expression of c-myc gene induced by MTBE might be one of the mechanisms of its carcinogenicity in animal.
Methyl tert-butyl ether (MTBE) in finished drinking water in Germany.
Kolb, Axel; Püttmann, Wilhelm
2006-03-01
In the present study 83 finished drinking water samples from 50 cities in Germany were analyzed for methyl tert-butyl ether (MTBE) content with a detection limit of 10 ng/L. The detection frequency was 46% and the concentrations ranged between 17 and 712 ng/L. Highest concentrations were found in the community water systems (CWSs) of Leuna and Spergau in Saxony-Anhalt. These CWSs are supplied with water possibly affected by MTBE contaminated groundwater. MTBE was detected at concentrations lower than 100 ng/L in drinking water supplied by CWSs using bank filtered water from Rhine and Main Rivers. The results from Leuna and Spergau show that large groundwater contaminations in the vicinity of CWSs pose the highest risk for MTBE contamination in drinking water. CWSs using bank filtered water from Rhine and Main Rivers are susceptible to low MTBE contaminations in finished drinking water. All measured MTBE concentrations were below proposed limit values for drinking water.
ATTENUATION OF METHYL TERT-BUTYL ETHER IN WATER USING SUNLIGHT AND A PHOTOCATALYST
The use of methyl tert-butyl ether (MTBE) as a gasoline additive has resulted in increasing pollution of ground water. Most of the conventional treatment technologies are inefficient or costly when the initial concentration of MTBE is low (<200 ug/L). In order to find an eco-frie...
Background: Methyl tertiary butyl ether (MTBE) is a volatile organic chemical that is added to gasoline as an octane booster and to reduce vehicular emissions of carbon monoxide. MTBE is introduced into the environment through fuel spills, leakage of storage tanks, and evaporat...
CO-OCCURRENCE OF METHYL- TERT-BUTYL ETHER (MTBE) AND BTEX COMPOUNDS AT MARINAS IN A LARGE RESEVOIR
Methyl tert-butyl ether (MTBE) is released into the environment as one of some gasoline components, not as a pure compound. BTEX compounds (benzene, tolune, ethylbenzene, and xylenes) are major volatile constituents found in gasoline and are water soluble and mobile. This study...
Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...
MTBE still in poor health, despite the Clean Air Act
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, A.
1994-05-25
After the second winter oxygenated fuels program of the 1990 Clean Air Act, producers of methyl tert-butyl ether (MTBE) are still feeling the chill of poor profitability. Despite the strong demand growth for MTBE to meet oxygen requirements in reformulated gasoline (RFG), oversupply still dogs the market. That, combined with a run-up in feedstock prices, has seen margins for MTBE markers all but evaporate. And it seems matters are likely to get worse before they get better. This week, Belvieu Environmental Fuels (BEF; Houston) expects to startup its 15,000-bbl/day MTBE plant at Mont Belvieu, TX. In late July, Texaco willmore » start up its 15,000-bbl/day MTBE/propylene oxide (PO) plant at Port Neches, TX. In addition, a rash of refinery-based MTBE and tert-amyl methyl ether projects are nearing completion. {open_quotes}Profitability in MTBE has been extremely poor,{close_quotes} says Marvin O. Schlanger, president of Arco Chemical Americas, the largest MTBE producer. There has, however, been some recent recovery on the spot market, with MTBE moving from less than 60 cts/gal to near cash-cost levels of 70 cts/gal. But contract prices remain depressed, and strength in butane and methanol pricing have all buy wiped out any gains in MTBE.« less
FENTON-DRIVEN CHEMICAL REGENERATION OF MTBE-SPENT GAC
Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was chemically regenerated utilizing the Fenton mechanism. Two successive GAC regeneration cycles were performed involving iterative adsorption and oxidation processes: MTBE was adsorbed to the GAC, oxidized, r...
A widely used gasoline additive, methyl tertiary butyl ether (MTBE), has been controversial, in part because of concerns about potential inhalation health effects and more recently because of added concerns about water contamination. Although many of the issues related to MTBE ha...
Campo, Laura; Rossella, Federica; Mercadante, Rosa; Fustinoni, Silvia
2016-04-01
To assess exposure to benzene (BEN) and other aromatic compounds (toluene, ethylbenzene, m+p-xylene, o-xylene) (BTEX), methyl tert-butyl ether (MTBE), and ethyl tert-butyl ether (ETBE) in petrol station workers using air sampling and biological monitoring and to propose biological equivalents to occupational limit values. Eighty-nine petrol station workers and 90 control subjects were investigated. Personal exposure to airborne BTEX and ethers was assessed during a mid-week shift; urine samples were collected at the beginning of the work week, prior to and at the end of air sampling. Petrol station workers had median airborne exposures to benzene and MTBE of 59 and 408 µg m(-3), respectively, with urinary benzene (BEN-U) and MTBE (MTBE-U) of 339 and 780 ng l(-1), respectively. Concentrations in petrol station workers were higher than in control subjects. There were significant positive correlations between airborne exposure and the corresponding biological marker, with Pearson's correlation coefficient (r) values of 0.437 and 0.865 for benzene and MTBE, respectively. There was also a strong correlation between airborne benzene and urinary MTBE (r = 0.835). Multiple linear regression analysis showed that the urinary levels of benzene were influenced by personal airborne exposure, urinary creatinine, and tobacco smoking [determination coefficient (R(2)) 0.572], while MTBE-U was influenced only by personal exposure (R(2) = 0.741). BEN-U and MTBE-U are sensitive and specific biomarkers of low occupational exposures. We propose using BEN-U as biomarker of exposure to benzene in nonsmokers and suggest 1457 ng l(-1) in end shift urine samples as biological exposure equivalent to the EU occupational limit value of 1 p.p.m.; for both smokers and nonsmokers, MTBE-U may be proposed as a surrogate biomarker of benzene exposure, with a biological exposure equivalent of 22 µg l(-1) in end shift samples. For MTBE exposure, we suggest the use of MTBE-U with a biological exposure equivalent of 22 µg l(-1) corresponding to the occupational limit value of 50 p.p.m. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Morales, Marcia; Velázquez, Elia; Jan, Janet; Revah, Sergio; González, Uriel; Razo-Flores, Elías
2004-02-01
Microbial consortia obtained from soil samples of gasoline-polluted sites were individually enriched with pentane, hexane, isooctane and toluene. Cometabolism with methyl tert-butyl ether, (MTBE), gave maximum degradation rates of 49, 12, 32 and 0 mg g(-1)protein h(-1), respectively. MTBE was fully degraded even when pentane was completely depleted with a cometabolic coefficient of 1 mgMTBE mg(-1)pentane. The analysis of 16S rDNA from isolated microorganisms in the pentane-adapted consortia showed that microorganisms could be assigned to Pseudomonas. This is the first work reporting the cometabolic mineralization of MTBE by consortium of this genus.
Najdegerami, Ismaeil Hossein; Maghami, Parvaneh; Sheikh-Hasani, Vahid; Hosseinzadeh, Ghader; Sheibani, Nader; Moosavi-Movahedi, Ali A
2017-05-01
Because of the extensive use of methyl tert-butyl ether (MTBE) as an additive to increase the octane quality of gasoline, the environmental pollution by this compound has increased in recent decades. Environmental release of MTBE may lead to its entry to the blood stream through inhalation or drinking of contaminated water, and its interactions with biological molecules such as proteins. The present study was proposed to comparatively investigate the interactions of MTBE with hemoglobin (Hb) from diabetic and nondiabetic individuals using various spectroscopic methods including UV-visible, fluorescence, chemiluminescence, and circular dichroism. These results demonstrated the effects of MTBE on heme degradation of Hb and the reaction of these degradation products with water generating reactive oxygen species. Interaction of Hb with MTBE enhanced its aggregation rate and decreased lag time, indicating the antichaperone activity of MTBE upon interaction with Hb. Furthermore, the diabetic Hb showed more severe effects of MTBE, including heme degradation, reactive oxygen species production, unfolding, and antichaperone behavior than the nondiabetic Hb. The results from molecular docking suggested that the special interaction site of MTBE in the vicinity of Hb heme group is responsible for heme degradation. Copyright © 2016 John Wiley & Sons, Ltd.
Discovery of the fuel additive methyl tert-butyl ether (MTBE) in
drinking water supplies is of concern to public health officials, water
suppliers, and the public. Despite recent policy decisions, few published
studies exist on the concentrations, sources, a...
Methyl tert-butyl ether (MTBE) is a widespread contaminant in surface and ground water in the United States. Frequently irrigation is used to water fields to germinate planted seeds and sustain plant growth. A likely possibility exists that water used may have some MTBE. Our s...
Status and Impacts of State MTBE Bans
2003-01-01
This paper describes legislation passed in 16 states banning or restricting the use of methyl tertiary butyl ether (MTBE) in gasoline. Analysis of the status and impact of these state MTBE bans is provided concerning the supply and potential price changes of gasoline.
MINERALIZATION OF MTBE WITH VARIOUS PRIMARY SUBSTRATES
Five specialized bioreactors have been operated for over a year to evaluate the biodegradability of the fuel oxygenate methyl-t-butyl -t-butyl ether (MTBE) under difference substrate/co-substrate conditions. One bioreactor has been fed MTBE at an influent concentration of 150 ...
Widespread contamination of methyl tert-butyl ether (MTBE) in ground water has raised concerns about the increased cost of remediation of MTBE releases compared to BTEX-only sites. To evaluate these cost, cost information for 311 sites was furnished by U.S. EPA Office of Undergr...
COSTS TO REMEDIATE MTBE-CONTAMINATED SITES
The extensive contamination of methyl tert-butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 sites wa...
Two-year drinking water carcinogenicity study of methyl tertiary-butyl ether (MTBE) in Wistar rats.
Dodd, Darol; Willson, Gabrielle; Parkinson, Horace; Bermudez, Edilberto
2013-07-01
Methyl tertiary-butyl ether (MTBE) has been used as a gasoline additive to reduce tailpipe emissions and its use has been discontinued. There remains a concern that drinking water sources have been contaminated with MTBE. A two-year drinking water carcinogenicity study of MTBE was conducted in Wistar rats (males, 0, 0.5, 3, 7.5 mg ml(-1); and females, 0, 0.5, 3, and 15 mg ml(-1)). Body weights were unaffected and water consumption was reduced in MTBE-exposed males and females. Wet weights of male kidneys were increased at the end of two years of exposure to 7.5 mg ml(-1) MTBE. Chronic progressive nephropathy was observed in males and females, was more severe in males, and was exacerbated in the high MTBE exposure groups. Brain was the only tissue with a statistically significant finding of neoplasms. One astrocytoma (1/50) was found in a female rat (15 mg ml(-1)). The incidence of brain astrocytomas in male rats was 1/50, 1/50, 1/50 and 4/50 for the 0, 0.5, 3 and 7.5 mg ml(-1) exposure groups, respectively. This was a marginally significant statistical trend, but not statistically significant when pairwise comparisons were made or when multiple comparisons were taken into account. The incidence of astrocytoma fell within historical control ranges for Wistar rats, and the brain has not been identified as a target organ following chronic administration of MTBE, ethyl tert-butyl ether, or tertiary butyl alcohol (in drinking water) to mice and rats. We conclude that the astrocytomas observed in this study are not associated with exposure to MTBE. Copyright © 2011 John Wiley & Sons, Ltd.
[Effects of methyl tertiary butyl ether on cell cycle and cell apoptosis].
Zhou, W; Huang, G; Zhang, H; Ye, S
2000-07-01
To explore the effects of the new gasoline additive, methyl tertiary butyl ether (MTBE) on cell cycle and cell apoptosis. Flow cytometry was used to evaluate the effect of MTBE (1, 2, 4 microl/ml, 24 h) on NIH/3T3 cell cycles; and the effect of MTBE on Hela cell apoptosis was evaluated by detecting cell survival using crystal violet staining. Flow cytometry showed that MTBE could change NIH/3T3 cell cycles, decrease the number of cells in S stage, and arrest cells at G(2) + M stage. The results suggested that MTBE could affect NIH/3T3 cell cycles and induce cell proliferation. This situation existed 48 hours after the treatment, and cell cycles came back normal 96 hours after the treatment. By detecting cell survival using crystal violet staining, we found that MTBE could inhibit the apoptosis of Hela cells which was induced by tumor necrosis factor (TNF)alpha and cycloheximide. MTBE's carcinogenicity to animals may relate to induction of cell proliferation and inhibition of cell apoptosis.
EVALUATING NATURAL BIODEGRADATION OF MTBE AT MULTIPLE UST SITES
Until very recently, methyl t-butyl ether (MTBE) was considered non-biodegradable in the subsurface. This has been an impediment in applying remediation by natural attenuation (RNA) as a remedial strategy at MTBE-impacted sites. Although a number of recent studies have demonst...
REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER
The extensive contamination of methyl tertiary butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 site...
REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER
The extensive contamination of methyl tertiary butyl ether (MTBE) in ground water has introduced concerns about the increased cost of remediation of MTBE releases compared to sites with BTEX only contamination. In an attempt to evaluate these costs, cost information for 311 sit...
[Occupational exposure to methyl tert-butyl ether (MTBE) at an oil refinery].
Perbellini, L; Pasini, F; Prigioni, P; Rosina, A
2003-01-01
Methyl tert-butyl ether (MTBE) is widely used as an additive to gasoline, to increase oxygen content and reduce tailpipe emission of carbon monoxide. Our research dealt with 37 refinery workers in order to measure their occupational exposure to MTBE during two different seasonal periods. They provided blood and urine samples before and after a work shift during which they wore an active charcoal sampler for solvents. All samples were analysed by a gas-chromatograph equipped with a mass spectrometer detector. The concentration in air of MTBE was very low (median: 25 micrograms/m3 in spring and 5 micrograms/m3 in autumn). The blood and urine concentrations of MTBE at the end of the work shift were higher than those found before the shift. The increment in biological samples confirmed a small intake of MTBE by refinery workers: the biological monitoring of occupational exposure to this solvent yielded reliable results. Blood and urinary concentrations of MTBE obtained from workers split in relation to their smoking habit did not give a statistic significance to say that cigarette smoke is not a confusion factor in monitoring exposure to MTBE.
Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions.
van der Waals, Marcelle J; Pijls, Charles; Sinke, Anja J C; Langenhoff, Alette A M; Smidt, Hauke; Gerritse, Jan
2018-04-01
The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.
Joshi, Geetika; Schmidt, Radomir; Scow, Kate M; Denison, Michael S; Hristova, Krassimira R
2016-09-01
Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.
Joshi, Geetika; Schmidt, Radomir; Scow, Kate M.; Denison, Michael S.; Hristova, Krassimira R.
2016-01-01
Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds’ impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1. PMID:27450417
Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition.
Zhang, L L; Chen, J M; Fang, F
2008-03-01
Aerobic granules efficient at degrading methyl tert-butyl ether (MTBE) with ethanol as a cosubstrate were successfully developed in a well-mixed sequencing batch reactor (SBR). Aerobic granules were first observed about 100 days after reactor startup. Treatment efficiency of MTBE in the reactor during stable operation exceeded 99.9%, and effluent MTBE was in the range of 15-50 microg/L. The specific MTBE degradation rate was observed to increase with increasing MTBE initial concentration from 25 to 500 mg/L, which peaked at 22.7 mg MTBE/g (volatile suspended solids).h and declined with further increases in MTBE concentration as substrate inhibition effects became significant. Microbial-community deoxyribonucleic acid profiling was carried out using denaturing gradient gel electrophoresis of polymerase chain reaction-amplified 16S ribosomal ribonucleic acid. The reactor was found to be inhabited by several diverse bacterial species, most notably microorganisms related to the genera Sphingomonas, Methylobacterium, and Hyphomicrobium vulgare. These organisms were previously reported to be associated with MTBE biodegradation. A majority of the bands in the reactor represented a group of organisms belonging to the Flavobacteria-Proteobacteria-Actinobacteridae class of bacteria. This study demonstrates that MTBE can be effectively degraded by aerobic granules under a cosubstrate condition and gives insight into the microorganisms potentially involved in the process.
Field Treatment of MTBE-Contaiminated Groundwater Using Ozone/UV Oxidation
Methyl-tertiary butyl ether (MTBE) is often found in groundwater as a result of gasoline spills and leaking underground storage tanks. An extrapolation of occurrence data in 2008 estimated at least one detection of MTBE in approximately 165 small and large public water systems se...
USE OF MEMBRANE BIOREACTOR FOR BIODEGRADATION OF MTBE IN CONTAMINATED WATER1
An ultrafiltration membrane bioreactor was evaluated for biodegradation of methyl tert-butyl ether (MTBE) in contaminated water. The system was fed 5 mg/L MTBE in granular activated carbon (GAC) treated Cincinnati tap water containing ample buffer and nutrients. Within 120...
REMEDIAL COSTS FOR MTBE IN SOIL AND GROUND WATER
Widespread contamination of methyl tert-butyl ether (MTBE) in ground water has raised concerns about the increased cost of remediation of MTBE releases compared to BTEX-only sites. To evaluate these costs, cost information for 311 sites was furnished by U.S. EPA Office of Underg...
Biotic and abiotic transformations of methyl tertiary butyl ether (MTBE).
Fischer, Axel; Oehm, Claudia; Selle, Michael; Werner, Peter
2005-11-01
Methyl tertiary butyl ether (MTBE) is a fuel additive which is used all over the world. In recent years it has often been found in groundwater, mainly in the USA, but also in Europe. Although MTBE seems to be a minor toxic, it affects the taste and odour of water at concentrations of < 30 microg/L. Although MTBE is often a recalcitrant compound, it is known that many ethers can be degraded by abiotic means. The aim of this study was to examine biotic and abiotic transformations of MTBE with respect to the particular conditions of a contaminated site (former refinery) in Leuna, Germany. Groundwater samples from wells of a contaminated site were used for aerobic and anaerobic degradation experiments. The abiotic degradation experiment (hydrolysis) was conducted employing an ion-exchange resin and MTBE solutions in distilled water. MTBE, tertiary butyl formate (TBF) and tertiary butyl alcohol (TBA) were measured by a gas chromatograph with flame ionisation detector (FID). Aldehydes and organic acids were respectively analysed by a gas chromatograph with electron capture detector (ECD) and high-performance ion chromatography (HPIC). Under aerobic conditions, MTBE was degraded in laboratory experiments. Only 4 of a total of 30 anaerobic experiments exhibited degradation, and the process was very slow. In no cases were metabolites detected, but a few degradation products (TBF, TBA and formic acid) were found on the site, possibly due to the lower temperatures in groundwater. The abiotic degradation of MTBE with an ion-exchange resin as a catalyst at pH 3.5 was much faster than hydrolysis in diluted hydrochloric acid (pH 1.0). Although the aerobic degradation of MTBE in the environment seems to be possible, the specific conditions responsible are widely unknown. Successful aerobic degradation only seems to take place if there is a lack of other utilisable compounds. However, MTBE is often accompanied by other fuel compounds on contaminated sites and anaerobic conditions prevail. MTBE is often recalcitrant under anaerobic conditions, at least in the presence of other carbon sources. The abiotic hydrolysis of MTBE seems to be of secondary importance (on site), but it might be possible to enhance it with catalysts. MTBE only seems to be recalcitrant under particular conditions. In some cases, the degradation of MTBE on contaminated sites could be supported by oxygen. Enhanced hydrolysis could also be an alternative.
Seddigi, Zaki S; Bumajdad, Ali; Ansari, Shahid P; Ahmed, Saleh A; Danish, Ekram Y; Yarkandi, Naeema H; Ahmed, Shakeel
2014-01-15
A series of binary oxide catalysts (ceria-ZnO) were prepared and doped with different amounts of palladium in the range of 0.5%-1.5%. The prepared catalysts were characterized by SEM, TEM, XRD and XPS, as well as by N2 sorptiometry study. The XPS results confirmed the structure of the Pd CeO2-x-ZnO. The photocatalytic activity of these catalysts was evaluated for degradation of MTBE in water. These photocatalyst efficiently degrade a 100ppm aqueous solution of MTBE upon UV irradiation for 5h in the presence of 100mg of each of these photocatalysts. The removal of 99.6% of the MTBE was achieved with the ceria-ZnO catalyst doped with 1% Pd. In addition to the Pd loading, the N2 sorptiometry study introduced other factors that might affect the catalytic efficiency is the catalyst average pore sizes. The photoreaction was determined to be a first order reaction. Copyright © 2013 Elsevier B.V. All rights reserved.
MTBE OXIDATION BYPRODUCTS FROM THE TREATMENT OF SURFACE WATERS BY OZONATION AND UV-OZONATION
In recent years, there has been considerable concern over the release of methyl tert-butyl ether (MTBE), as gasoline additive, into the aquifers used as potable water sources. MTBE readily dissolves in water and has entered the environment via gasoline spills and leaking...
EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM
Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...
Persulfate Oxidation of MTBE- and Chloroform-Spent Granular Activated Carbon
Activated persulfate (Na2S2O8) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H2O2–persulfate binary mixtur...
Iron Amendment and Fenton Oxidation of MTBE-Spent Granular Activated Carbon
Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves Fe amendment to the GAC to catalyze H2O2 reactions and to enhance the rate of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, fer...
CHEMICAL DESTRUCTION OF MTBE USING FENTON'S REAGENT: EFFECT OF FERROUS IRON/HYDROGEN PEROXIDE RATIO
In previous laboratory experiments Fenton's Reagent (FR) was successfully used as the source of hydroxyl radicals (OH*) for chemical treatment of low concentrations of methyl tert-butyl ether (MTBE) in water. Although under certain conditions MTBE degradation levels as high as 99...
CONTROLLED, SHORT-TERM DERMAL AND INHALATION EXPOSURE TO MTBE AND DIBROMOCHLOROMETHANE
The oxygenate methyl tert-butyl ether (MTBE) has been added to gasoline to meet national ambient air quality standards in those parts of the US that are non-compliant for carbon monoxide. Although MTBE has provided important health benefits in terms of reduced hazardous air po...
Methyl tertiary-butyl ether (MTBE) is a common fuel additive used to increase the availability of oxygen in gasoline to reduce winter-time carbon monoxide emissions from automobiles. Also, MTBE boosts gasoline "octane" rating and, as such, allows reduction of benzene...
Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana
2016-01-01
This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater. PMID:27907122
Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo
2016-01-01
This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.
Adsorption of Methyl Tertiary Butyl Ether on Granular Zeolites: Batch and Column Studies
Abu-Lail, Laila; Bergendahl, John A.; Thompson, Robert W.
2010-01-01
Methyl tertiary butyl ether (MTBE) has been shown to be readily removed from water with powdered zeolites, but the passage of water through fixed beds of very small powdered zeolites produces high friction losses not encountered in flow through larger sized granular materials. In this study, equilibrium and kinetic adsorption of MTBE onto granular zeolites, a coconut shell granular activated carbon (CS-1240), and a commercial carbon adsorbent (CCA) sample was evaluated. In addition, the effect of natural organic matter (NOM) on MTBE adsorption was evaluated. Batch adsorption experiments determined that ZSM-5 was the most effective granular zeolite for MTBE adsorption. Further equilibrium and kinetic experiments verified that granular ZSM-5 is superior to CS-1240 and CCA in removing MTBE from water. No competitive-adsorption effects between NOM and MTBE were observed for adsorption to granular ZSM-5 or CS-1240, however there was competition between NOM and MTBE for adsorption onto the CCA granules. Fixed-bed adsorption experiments for longer run times were performed using granular ZSM-5. The bed depth service time model (BDST) was used to analyze the breakthrough data. PMID:20153106
MTBE is a volatile organic compound used as an oxygenate additive to gasoline, added to comply with the 1990 Clean Air Act. Previous PBPK models for MTBE were reviewed and incorporated into the Exposure Related Dose Estimating Model (ERDEM) software. This model also included an e...
The U.S. Environmental Protection Agency (EPA) is currently evaluating package plant advanced oxidation process (AOP) systems to treat methyl tertiary butyl ether (MTBE) in drinking water supplies (e.g., surface water, groundwater). MTBE has been identified as a potential carcin...
REMEDIATION OF MTBE FROM DRINKING WATER: AIR STRIPPING FOLLOWED BY OFF-GAS ADSORPTION
The widespread use of methyl tertiary butyl ether (MTBE) as an oxygenate in gasoline has resulted in the contamination of a large number of ground and surface water sources. Even though air stripping has been proven to be an effective treatment technology for MTBE removal, off-ga...
AIR STRIPPING AND OFF-GAS ADSORPTION FOR THE REMOVAL OF MTBE FROM DRINKING WATER
Methyl-tertiary butyl ether (MTBE) is a synthetic organic chemical, primarily used for oxgenating fuel. The 1990 Federal Clean Air Act Amendments mandated the use of fuel oxgenates in areas where air quality did not meet national standards, which led to widespread use of MTBE in...
Ayotte, J.D.; Argue, D.M.; McGarry, F.J.; Degnan, J.R.; Hayes, L.; Flanagan, S.M.; Helsel, D.R.
2008-01-01
Methyl tert-butyl ether (MTBE) concentrations ???0.2 ??g/L were found in samples of untreated water in 18% of public-supply wells (n = 284) and 9.1% of private domestic wells (n = 264) sampled in 2005 and 2006 in New Hampshire. In counties that used reformulated gasoline (RFG), MTBE occurred at or above 0.2 ??g/L in 30% of public- and 17% of private-supply wells. Additionally, 52% of public-supply wells collocated with fuel storage and 71% of mobile home park wells had MTBE. MTBE occurrence in public-supply wells was predicted by factors such as proximity to sources of fuel, land use, and population density, as well as low pH and distance from mapped lineaments. RFG use, land-use variables, and pH were important predictors of private-well MTBE occurrence. Variables representing sources of MTBE, such as the distance to known fuel sources, were not significant predictors of MTBE occurrence in private-supply wells. It is hypothesized that private wells may become contaminated from the collective effects of sources in high population areas and from undocumented incidental releases from onsite or proximal gasoline use. From 2003 to 2005, MTBE occurrence decreased in 63 public-supply wells and increased in 60 private-supply wells, but neither trend was statistically significant. ?? 2008 American Chemical Society.
Landmeyer, J.E.; Chapelle, F.H.; Herlong, H.H.; Bradley, P.M.
2001-01-01
Microbial communities indigenous to a shallow groundwater system near Beaufort, SC, degraded milligram per liter concentrations of methyl tert-butyl ether (MTBE) under natural and artificial oxic conditions. Significant MTBE biodegradation was observed where anoxic, MTBE-contaminated groundwater discharged to a concrete-lined ditch. In the anoxic groundwater adjacent to the ditch, concentrations of MTBE were > 1 mg/L. Where groundwater discharge occurs, dissolved oxygen (DO) concentrations beneath the ditch exceeded 1.0 mg/L to a depth of 1.5 m, and MTBE concentrations decreased to <1 ??g/L prior to discharge. MTBE mass flux calculations indicate that 96% of MTBE mass loss occurs in the relatively small oxic zone prior to discharge. Samples of a natural microbial biofilm present in the oxic zone beneath the ditch completely degraded [U-14C]MTBE to [14C]CO2 in laboratory liquid culture studies, with no accumulation of intermediate compounds. Upgradient of the ditch in the anoxic, MTBE and BTEX-contaminated aquifer, addition of a soluble oxygen release compound resulted in oxic conditions and rapid MTBE biodegradation by indigenous microorganisms. In an observation well located closest to the oxygen addition area, DO concentrations increased from 0.4 to 12 mg/L in <60 days and MTBE concentrations decreased from 20 to 3 mg/L. In the same time period at a downgradient observation well, DO increased from <0.2 to 2 mg/L and MTBE concentrations decreased from 30 to <5 mg/L. These results indicate that microorganisms indigenous to the groundwater system at this site can degrade milligram per liter concentrations of MTBE under natural and artificial oxic conditions.
Fenton-like Degradation of MTBE: Effects of Iron Counter Anion and Radical Scavengers
Fenton-driven oxidation of Methyl tert-butyl ether (MTBE) (0.11-0.16 mM) in batch reactors containing ferric iron (5 mM), hydrogen peroxide (H2O2) (6 mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the form of iron (Fe) (Fe2(...
Ether oxygenate additives in gasoline reduce toxicity of exhausts.
Westphal, G A; Krahl, J; Brüning, T; Hallier, E; Bünger, J
2010-02-09
Fuel additives can improve combustion and knock resistance of gasoline engines. Common additives in commercial fuels are "short-chain, oxygen containing hydrocarbons" such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). Since these additives change the combustion characteristics, this may as well influence toxic effects of the resulting emissions. Therefore we compared toxicity and BTEX emissions of gasoline engine exhaust regarding addition of MTBE or ETBE. Non-reformulated gasoline served as basic fuel. This fuel was supplemented with 10%, 20%, 25% and 30% ETBE or 15% MTBE. The fuels were combusted in a gasoline engine at idling, part load and rated power. Condensates and particulate matter (PM) were collected and PM samples extracted with dichloromethane. Cytotoxic effects were investigated in murine fibroblasts (L929) using the neutral red uptake assay and mutagenicity using the bacterial reverse mutation assay. BTEX emissions were analyzed by gas chromatography. PM-extracts showed mutagenicity with and without metabolic activation. Mutagenicity was reduced by the addition of MTBE and ETBE, 10% ETBE being most effective. The condensates produced no significant mutagenic response. The cytotoxicity of the condensates from ETBE- and MTBE-reformulated fuels was reduced as well. The BTEX content in the exhaust was lowered by the addition of MTBE and ETBE. This effect was significantly related to the ETBE content at rated power and part load. Addition of MTBE and ETBE to fuels can improve combustion and leads to decreased toxicity and BTEX content of the exhaust. Reduction of mutagenicity in the PM-extracts is most probably caused by a lower content of polycyclic aromatic hydrocarbons. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms
Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.
1999-01-01
Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.
Used motor oil as a source of MTBE, TAME, and BTEX to ground water
Baker, R.J.; Best, E.W.; Baehr, A.L.
2002-01-01
Methyl tert-butyl ether (MTBE), the widely used gasoline oxygenate, has been identified as a common ground water contaminant, and BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) have long been associated with gasoline spills. Because not all instances of ground water contamination by MTBE and BTEX can be attributed to spills or leaking storage tanks, other potential sources need to be considered. In this study, used motor oil was investigated as a potential source of these contaminants. MTBE in oil was measured directly by methanol extraction and gas chromatography using a flame ionization detector (GC/FID). Water was equilibrated with oil samples and analyzed for MTBE, BTEX, and the oxygenate tert-amyl methyl ether (TAME) by purge-and-trap concentration followed by GC/FID analysis. Raoult's law was used to calculate oil-phase concentrations of MTBE, BTEX, and TAME from aqueous-phase concentrations. MTBE, TAME, and BTEX were not detected in any of five new motor oil samples, whereas these compounds were found at significant concentrations in all six samples of the used motor oil tested for MTBE and all four samples tested for TAME and BTEX. MTBE concentrations in used motor oil were on the order of 100 mg/L. TAME concentrations ranged from 2.2 to 87 mg/L. Concentrations of benzene were 29 to 66 mg/L, but those of other BTEX compounds were higher, typically 500 to 2000 mg/L.
Farobie, Obie; Matsumura, Yukihiko
2015-09-01
In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE. Copyright © 2015 Elsevier Ltd. All rights reserved.
Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).
Finneran, K T; Lovley, D R
2001-05-01
The potential for anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) was investigated in laboratory incubations of sediments from a petroleum-contaminated aquifer and in aquatic sediments. The addition of humic substances (HS) stimulated the anaerobic degradation of MTBE in aquifer sediments in which Fe(III) was available as an electron acceptor. This is attributed to the fact that HS and other extracellular quinones can stimulate the activity of Fe(III)-reducing microorganisms by acting as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides. MTBE was not degraded in aquifer sediments without Fe(III) and HS. [14C]-MTBE added to aquatic sediments adapted for anaerobic MTBE degradation was converted to 14CO2 in the presence or absence of HS or the HS analog, anthraquione-2,6-disulfonate. Unamended aquatic sediments produced 14CH4 as well as 14CO2 from [14C]-MTBE. The aquatic sediments also rapidly consumed TBA under anaerobic conditions and converted [14C]-TBA to 14CH4 and 14CO2. An adaptation period of ca. 250-300 days was required prior to the most rapid anaerobic MTBE degradation in both sediment types, whereas TBA was metabolized in the aquatic sediments without a lag. These results demonstrate that, under the appropriate conditions, MTBE and TBA can be degraded in the absence of oxygen. This suggests that it may be possible to design strategies for the anaerobic remediation of MTBE in petroleum-contaminated subsurface environments.
Fiedler, N; Kelly-McNeil, K; Mohr, S; Lehrer, P; Opiekun, R E; Lee, C; Wainman, T; Hamer, R; Weisel, C; Edelberg, R; Lioy, P J
2000-01-01
The 1990 Clean Air Act mandated oxygenation of gasoline in regions where carbon monoxide standards were not met. To achieve this standard, methyl tertiary butyl ether (MTBE) was increased to 15% by volume during winter months in many locations. Subsequent to the increase of MTBE in gasoline, commuters reported increases in symptoms such as headache, nausea, and eye, nose, and throat irritation. The present study compared 12 individuals selected based on self-report of symptoms (self-reported sensitives; SRSs) associated with MTBE to 19 controls without self-reported sensitivities. In a double-blind, repeated measures, controlled exposure, subjects were exposed for 15 min to clean air, gasoline, gasoline with 11% MTBE, and gasoline with 15% MTBE. Symptoms, odor ratings, neurobehavioral performance on a task of driving simulation, and psychophysiologic responses (heart and respiration rate, end-tidal CO(2), finger pulse volume, electromyograph, finger temperature) were measured before, during, and immediately after exposure. Relative to controls, SRSs reported significantly more total symptoms when exposed to gasoline with 15% MTBE than when exposed to gasoline with 11% MTBE or to clean air. However, these differences in symptoms were not accompanied by significant differences in neurobehavioral performance or psychophysiologic responses. No significant differences in symptoms or neurobehavioral or psychophysiologic responses were observed when exposure to gasoline with 11% MTBE was compared to clean air or to gasoline. Thus, the present study, although showing increased total symptoms among SRSs when exposed to gasoline with 15% MTBE, did not support a dose-response relationship for MTBE exposure nor the symptom specificity associated with MTBE in epidemiologic studies. Images Figure 1 Figure 2 PMID:10964796
Application of first order kinetics to characterize MTBE natural attenuation in groundwater
NASA Astrophysics Data System (ADS)
Metcalf, Meredith J.; Stevens, Graham J.; Robbins, Gary A.
2016-04-01
Methyl tertiary butyl ether (MTBE) was a gasoline oxygenate that became widely used in reformulated gasoline as a means to reduce air pollution in the 1990s. Unfortunately, many of the underground storage tanks containing reformulated gasoline experienced subsurface releases which soon became a health concern given the increase in public and private water supplies containing MTBE. Many states responded to this by banning the use of MTBE as an additive, including Connecticut. Although MTBE dissipates by natural attenuation, it continues to be prevalent in groundwater long after the Connecticut ban in 2004. This study estimated the rate of the natural attenuation in groundwater following the Connecticut ban by evaluating the MTBE concentration two years prior to and two years after the MTBE ban at eighty-three monitoring wells from twenty-two retail gasoline stations where MTBE contamination was observed. Sites chosen for this study had not undergone active remediation ensuring no artificial influence to the natural attenuation processes that controls the migration and dissipation of MTBE. Results indicate that MTBE has dissipated in the natural environment, at more than 80% of the sites and at approximately 82% of the individual monitoring wells. In general, dissipation approximated first order kinetics. Dissipation half-lives, calculated using concentration data from the two year period after the ban, ranged from approximately three weeks to just over seven years with an average half-life of 7.3 months with little variability in estimates for different site characteristics. The accuracy of first order estimates to predict further MTBE dissipation were tested by comparing predicted concentrations with those observed after the two year post-ban period; the predicted concentrations closely match the observed concentrations which supports the use of first order kinetics for predictions of this nature.
PREDICTING DIVING PLUME BEHAVIOR
The United States Environmental Protection Agency has responded to a number of multi media environmental issues surrounding the use of methyl tertiary butyl ether (MTBE) and other fuel oxygenates. In Region 5, MTBE from various sources - but mainly from leaking underground stora...
Hutcheon, D E; Arnold, J D; ten Hove, W; Boyle, J
1996-04-05
Studies of the toxicology of methyl tertiary butyl ether (MTBE) were reviewed as a possible information base for evaluating the health effects of evaporative emissions from reformulated gasoline (RFG). The major metabolites of the oxidative demethylation of MTBE in vivo were methanol and tertiary butyl alcohol (TBA), whereas formaldehyde and TBA were the principal products of hepatic microsomal oxidation by cytochrome P-450. Pharmacokinetic studies in rats treated with intragastric MTBE in corn oil gave an initial disposition T1/2 for MTBE of 0.32 h. The decline in the serum drug versus time curve for MTBE in rats was accompanied by a progressive increase in serum methanol concentrations to levels more than 50-200 times those of the parent compound. Repeated exposure of MTBE vapor by inhalation in rats resulted in dose-dependent increases in MTBE in the blood, brain, and adipose tissue compartments. Blood concentrations of TBA were also dose dependent and provided an estimate of the total amount of MTBE distributed to peripheral drug metabolizing compartments. Perirenal fat/blood MTBE concentration ratios ranged from 9.7 to 11.6 after 15 wk of intermittent exposure. During an oxyfuels program in Fairbanks, AK, blood levels of occupationally exposed workers were 0.2-31.5 microgram/L MTBE and 1.6 to 72.2 microgram/L TBA with a mean TBA:MTBE blood concentration ratio of 4.2. In patients who received MTBE by percutaneous, transhepatic puncture for the dissolution of cholesterol gallstones, concentrations of MTBE in fat tissue reached 60 and 300 microgram/g at a treatment time when mean blood MTBE was less than 20 microgram/ml. The results of laboratory and clinical studies indicate that metabolites of MTBE may contribute to the nephropathy, neoplasms, and other pathological changes associated with repeated exposure to MTBE in experimental animals. It is concluded that such studies can provide a well-defined database for quantitative safety comparisons and health risk-benefit analyses of MTBE and other oxygenates in RFG.
Karinen, Ritva; Vindenes, Vigdis; Morild, Inge; Johnsen, Lene; Le Nygaard, Ilah; Christophersen, Asbjørg S
2013-09-01
Two deep frozen persons, a female and a male, were found dead in a car. There had been an explosive fire inside the car which had extinguished itself. On the floor inside the car were large pools of liquid which smelled of gasoline. The autopsy findings and routine toxicological analyses could not explain the cause of death. Carboxyhemoglobin levels in the blood samples were <10%. Analysis with a headspace gas chromatography revealed methyl tert-butyl ether (MTBE) concentrations of 185 mg/L (female victim) and 115 mg/L (male victim) in peripheral blood. The urine MTBE concentrations were 150 mg/L and 256 mg/L, respectively. MTBE is a synthetic chemical which is added to gasoline as a fuel oxygenate. Gasoline poisoning is likely to be the cause of the death in these two cases, and MTBE can be a suitable marker of gasoline exposure, when other volatile components have vaporized. © 2013 American Academy of Forensic Sciences.
Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.
2003-01-01
Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389
Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766
2002-01-01
This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).
Preparations for Meeting New York and Connecticut MTBE Bans
2003-01-01
In response to a Congressional request, the Energy Information Administration examined the progress being made to meet the bans on the use of methyl tertiary butyl ether (MTBE) being implemented in New York and Connecticut at the end of 2003.
MTBE REMOVAL FROM DRINKING WATER - PHASE I
The 1990 Federal Clean Air Act mandated the incorporation of oxygenates into gasoline in ozone and carbon monoxide nonattainment areas. Methyl tertiary butyl ether (MTBE) is the oxygenate of choice due to economic and supply considerations. Despite federal and state prog...
TREATMENT OF MTBE-CONTAMINATED WATERS WITH FENTON'S REAGENT
Methyl tertiary-butyl ether (MTBE) has been commonly used as a fuel additive because of its many favorable properties that allow it to improve fuel combustion and reduce resulting concentrations of carbon monoxide and unburnt hydrocarbons. Unfortuantely, increased production a...
Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon
Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...
MTBE, Oxygenates, and Motor Gasoline (Short-Term Energy Outlook Supplement October 1999)
1999-01-01
The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.
Moran, M.J.; Clawges, R.M.; Zogorski, J.S.
2000-01-01
Data on the volumes of oxygenates and other compounds in gasoline are available from several sources collectively referred as gasoline surveys. The gasoline surveys provide the most definitive knowledge of which oxygenate, if any, and what volumes of that oxygenate are being used in various areas of the country. This information is important in water-quality assessments for relating the detection of MTBE in water to patterns of usage of MTBE in gasoline. General information on three surveys that have been conducted by the National Institute for Petroleum and Energy Research, the Motor Vehicle Manufacturers Association, and the EPA was presented. The samples were tested for physical properties and constituents including octane number, specific gravity, and volumes of olefins, aromatics, benzene, alcohols, and various ether oxygenates. The data in each survey had its own utility based on the type of assessment that is undertaken. Quality Assessment (NAWQA) Program. Using NAWQA data, the percent occurrence of MTBE in ground water in metropolitan areas that use substantial amounts of MTBE (> 5% by vol) was ??? 21%, compared to ??? 2% in areas that do not use substantial amounts of MTBE (< 5% by vol). When several other factors are considered in a logistic regression model including MTBE usage in RFG or OXY gasoline areas (??? 3% by vol) as a factor, a 4-6 fold increase in the detection frequency of MTBE in ground water was found when compared to areas that do not use MTBE or use it only for octane enhancement (< 3% by vol).
Zhang, Li'e; Qin, Jian; Zhang, Zhiyong; Li, Qin; Huang, Jiongli; Peng, Xiaowu; Qing, Li; Liang, Guiqiang; Liang, Linhan; Huang, Yuman; Yang, Xiaobo; Zou, Yunfeng
2016-01-15
Levels of methyl tertiary-butyl ether (MTBE) in occupational air, ambient air, and drinking water in Nanning, South China, were investigated, and then their potential health risks to occupational workers and the general public were evaluated. Results show that the MTBE concentration in occupational air from 13 service stations was significantly higher than that in ambient air from residential areas (p<0.0001); both are far lower than the threshold limit value-time weighted average of MTBE regulated in the United States (US). The drinking water samples from household taps yielded detectable MTBE in the range of 0.04-0.33 μg/L, which is below the US drinking water standard of 20-40 μg/L. The non-carcinogenic risk of MTBE from air inhalation may be negligible because the calculated hazard quotient was less than 1. The mean MTBE lifetime cancer risk was within the acceptable limit of 1 × 10(-6) to 1 × 10(-4), but the lifetime cancer risk of refueling workers in the urban service station at the 95th percentile slightly exceeded the maximum acceptable carcinogen risk (1 × 10(-4)), indicating the potential carcinogenic health effects on the population highly exposed to MTBE in this region. The hazard index and carcinogenic risk of MTBE in drinking water were significantly lower than the safe limit of US Environmental Protection Agency, suggesting that drinking water unlikely poses significant health risks to the residents in Nanning. Copyright © 2015 Elsevier B.V. All rights reserved.
Ayotte, Joseph D; Argue, Denise M; McGarry, Frederick J
2005-01-01
The occurrence of methyl tert-butyl ether (MTBE) in water from public wells in New Hampshire has increased steadily over the past several years. Using a laboratory reporting level of 0.2 microg/L, 40% of samples from public wells and 21% from private wells in southeast New Hampshire have measurable concentrations of MTBE. The rate of occurrence of MTBE varied significantly for public wells by establishmenttype; for example, 63% of public wells serving residential properties have MTBE concentrations above 0.2 microg/L, whereas lower rates were found for schools (21%). MTBE concentrations correlate strongly with urban factors, such as population density. Surprisingly, MTBE was correlated positively with well depth for public supply wells. Well depth is inversely related to yield in New Hampshire bedrock wells, which may mean that there is less opportunity for dilution of MTBE captured by deep wells. Another possibility is that the source(s) of water to low-yield wells may be dominated by leakage from potentially contaminated shallow groundwater through near-surface fractures or along the well casing. These wells may also have relatively large contributing areas (due to low recharge at the bedrock surface) and therefore have a greater chance of intersecting MTBE sources. This finding is significant because deep bedrock wells are often considered to be less vulnerable to contamination than shallow wells, and in southeast New Hampshire, wells are being drilled deeper in search of increased supply.
Methyl tert butyl ether is anti-angiogenic in both in vitro and in vivo mammalian model systems.
Kozlosky, John; Bonventre, Josephine; Cooper, Keith
2013-08-01
Methyl-tertiary butyl ether (MTBE), a well known gasoline oxygenate, and US Food and Drug Administration approved gallstone treatment, has been previously shown to specifically target teleost embryonic angiogenesis. The studies reported here were to determine whether similar vascular disrupting effects occur in higher vertebrate models. Rat brain endothelial cells were isolated and allowed to form microcapillary-like tubes on Matrigel. MTBE (0.34-34.0 mm) exposure resulted in a dose-dependent reduction of tube formation, with the LOAEL at 0.34 mm, while MTBE's primary metabolite, tertiary butyl alcohol had no effect on tube formation. HUVECs, a primary cell line representing macrovascular cells, were able to form tubes on Matrigel in the presence of MTBE (1.25-80 mm), but the tubes were narrower than those formed in the absence of MTBE. In a mouse Matrigel plug implantation assay, 34.0 mm MTBE completely inhibited vessel invasion into plugs containing endothelial cell growth supplement (ECGS) compared with control plugs with ECGS alone. When timed-pregnant Fisher 344 rats were gavaged with MTBE (500-1500 mg kg(-1) ) from day 6 of organogenesis through 10 days post-parturition, no organ toxicity or histological changes in pup vasculature were observed. Results of the in vitro cell culture studies show that MTBE is anti-angiogenic at mm concentrations and has potential use as an anti-angiogenic treatment for solid tumors with minimal toxicity. Copyright © 2012 John Wiley & Sons, Ltd.
Bermudez, Edilberto; Willson, Gabrielle; Parkinson, Horace; Dodd, Darol
2012-09-01
Thirteen-week and one-year toxicity studies of methyl tertiary-butyl ether (MTBE) administered in drinking water to Wistar rats were conducted. Male and female rats were exposed to MTBE in drinking water at 0.5, 3, 7.5 and 15 mg ml(-1) for 13 weeks and at 0.5, 3 and 7.5 (males) or 0.5, 3 and 15 mg ml(-1) (females) for 1 year. Body weights were reduced only in males following 13 weeks of exposure. Reduced water consumption and urine output were observed in males and females exposed to MTBE. Kidney cell replication and α(2u)-globulin levels in males were increased at 1 and 4 weeks of MTBE exposure and tubular cell regeneration was increased in male kidneys exposed to MTBE concentrations of 7.5 mg ml(-1) or greater for 13 weeks. Wet weights of male kidneys were increased following 13 weeks, 6 months and 1 year of exposure to MTBE concentrations of 7.5 mg ml(-1) or greater. Kidney wet weights were increased in females at MTBE concentrations of 15 mg ml(-1) for 13 weeks. Tertiary-butyl alcohol blood levels increased linearly with dose in males and females following 1 year of exposure. Chronic progressive nephropathy (CPN), of minimal to mild severity, increased in males, but not females, with 1 year of MTBE exposure. In summary, exposure of Wistar rats to MTBE in the drinking water resulted in minimal exposure-related effects including limited renal changes in male rats suggestive of α(2u)-globulin nephropathy following 13 weeks of exposure and an exacerbation of CPN in males at the end of 1 year of exposure. Copyright © 2011 John Wiley & Sons, Ltd.
ANAEROBIC BIODEGRADATION OF MTBE AT A GASOLINE SPILL SITE
To manage risk or to implement natural attenuation as a remedy, regulatory agencies must understand the processes that attenuate methyl-tert-butyl ether (MTBE) in ground water. Most case studies and laboratory studies in the literature indicate that natural biodegradation is not ...
Pruden, Amy; Suidan, Makram
2004-08-01
The effect of a BTEX mixture on the biodegradation of methyl tert-butyl ether (MTBE) and its degradation intermediate, tert-butyl alcohol (TBA) was investigated in the pure bacterial culture UC1, which has been identified to be a strain of the known MTBE-degrader PM1 based on greater than 99% 16S rDNA similarity. Several degradation studies were carried out on UC1 at three initial concentration levels of MTBE or TBA: 6-7; 15-17; and 40-45 mg/l, both with and without BTEX present cumulatively at about half of the MTBE or TBA molar mass in the system. The BTEX mixture was observed not to affect either the rate or the degradation lag period of MTBE or TBA degradation, except that the TBA degradation rate actually increased when BTEX was present initially in the highest concentration studies. When serving as the sole substrate, the MTBE degradation rate ranged from 48 +/- 1.2 to 200 +/- 7.0 mg(MTBE)/g(dw) h, and the TBA degradation rate from 140 +/- 18 to 530 +/- 70 mg(TBA)/g(dw) h. When present with BTEX, MTBE and TBA rates ranged from 46 +/- 2.2 to 210 +/- 14 and 170 +/- 28 to 780 +/- 43 mg(TBA)/g(dw) h, respectively. In studies where varying concentrations of TBA were present with 5 mg/l MTBE, both compounds were degraded simultaneously with no obvious preference for either substrate. In the highest concentration study of TBA with 5 mg/l MTBE, BTEX was also observed to increase the ultimate rate of TBA degradation. In addition to exploring the affect of BTEX, this study also provides general insight into the metabolism of MTBE and TBA by pure culture UC1.
IS YOUR TBA COMING FROM BIODEGRADATION OF MTBE
MTBE (methyl tertiary butyl ether) is present at high concentrations in ground water at many sites where gasoline has been spilled from underground storage tanks. In addition, TBA (tertiary butyl alcohol) is also present at high concentrations in many of the same ground waters. ...
REMOVAL OF METHYL TERTIARY BUTYL ETHER (MTBE) FROM GROUNDWATER USING PHOTOCATALYSIS
The potential of photocatalysis was determined for treating MTBE-contaminated drinking water supplies. Two liquid-phase systems, a falling film reactor, and a solar degradation system, are being evaluated. We are also conducting a gas-phase treatment method to simulate an integra...
SUMMARY OF WORKSHOP ON BIODEGRADATION OF MTBE FEBRUARY 1-3, 2000
A workshop on biodegradation of methyl tert butyl ether (MTBE) contaminated soils and groundwater was held in Cincinnati, Ohio, February 1-2, 2000, and was sponsored by the USEPA's NRMRL and the American Petroleum Institute. Researchers in academia, industry, and government were ...
HEALTH RISK ISSUES RELATED TO MTBE IN DRINKING WATER
Despite the attention given to methyl tertiary butyl ether (MTBE) as a contaminant in ground water and surface water, the implications of such contamination for human health have not been clearly established to date. Limitations in the databases for both exposure and health effe...
METHYL TERT-BUTYLETHER-WATER INTERACTION
Methyl tert-butyl ether (MTBE) is a well-known environmental contaminant owing to its high solubility in water. Since the early 1990s, MTBE has been added to gasoline to improve air quality in some metropolitan areas of the United States. Improved air quality was, however, achiev...
PERFORMANCE MONITORING OF ENHANCED IN-SITU BIOREMEDIATION OF MTBE IN GROUND WATER
The primary objective of the Biostimulation Technology Evaluation was to determine if enhanced biodegradation was occurring in a ground-water test plot to a sufficient degree to reduce intrinsic methyl tertiary butyl ether (MTBE) to the State of California's treatability criteria...
Dron, Julien; Garcia, Rosa; Millán, Esmeralda
2002-07-19
A procedure for determination of methyl tert.-butyl ether (MTBE) in water by headspace solid-phase microextraction (HS-SPME) has been developed. The analysis was carried out by gas chromatography with flame ionization detection. The extraction procedure, using a 65-microm poly(dimethylsiloxane)-divinylbenzene SPME fiber, was optimized following experimental design. A fractional factorial design for screening and a central composite design for optimizing the significant variables were applied. Extraction temperature and sodium chloride concentration were significant variables, and 20 degrees C and 300 g/l were, respectively chosen for the best extraction response. With these conditions, an extraction time of 5 min was sufficient to extract MTBE. The calibration linear range for MTBE was 5-500 microg/l and the detection limit 0.45 microg/l. The relative standard deviation, for seven replicates of 250 microg/l MTBE in water, was 6.3%.
MTBE, TBA, and TAME attenuation in diverse hyporheic zones.
Landmeyer, James E; Bradley, Paul M; Trego, Donald A; Hale, Kevin G; Haas, Joseph E
2010-01-01
Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- (14)C-MTBE and U-(14)C-TBA to (14)CO(2) and the novel biodegradation of U- (14)C-TAME to (14)CO(2) under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation.
Elucidating MTBE degradation in a mixed consortium using a multidisciplinary approach.
Bastida, Felipe; Rosell, Mònica; Franchini, Alessandro G; Seifert, Jana; Finsterbusch, Stefanie; Jehmlich, Nico; Jechalke, Sven; von Bergen, Martin; Richnow, Hans H
2010-08-01
The structure and function of a microbial community capable of biodegrading methyl-tert-butyl ether (MTBE) was characterized using compound-specific stable isotope analysis (CSIA), clone libraries and stable isotope probing of proteins (Protein-SIP). The enrichment culture (US3-M), which originated from a gasoline-impacted site in the United States, has been enriched on MTBE as the sole carbon source. The slope of isotopic enrichment factors (epsilon(C) of -2.29+/-0.03 per thousand; epsilon(H) of -58+/-6 per thousand) for carbon and hydrogen discrimination (Deltadelta(2)H/Deltadelta(13)C) was on average equal to Lambda=24+/-2, a value closely related to the reaction mechanism of MTBE degradation in Methylibium petroleiphilum PM1. 16S rRNA gene libraries revealed sequences belonging to M. petroleiphilum PM1, Hydrogenophaga sp., Thiothrix unzii, Rhodobacter sp., Nocardiodes sp. and different Sphingomonadaceae bacteria. Protein-SIP analysis of the culture grown on (13)C-MTBE as the only carbon source revealed that proteins related to members of the Comamonadaceae family, such as Delftia acidovorans, Acidovorax sp. or Comamonas sp., were not (13)C-enriched, whereas proteins related to M. petroleiphilum PM1 showed an average incorporation of 94.5 atom%(13)C. These results indicate a key role for this species in the degradation of MTBE within the US3-M consortia. The combination of CSIA, molecular biology and Protein-SIP facilitated the analysis of an MTBE-degrading mixed culture from a functional and phylogenetic point of view.
Flanagan, Sarah M; Levitt, Joseph P; Ayotte, Joseph D
2017-02-07
In southeast New Hampshire, where reformulated gasoline was used from the 1990s to 2007, methyl tert-butyl ether (MtBE) concentrations ≥0.2 μg/L were found in water from 26.7% of 195 domestic wells sampled in 2005. Ten years later in 2015, and eight years after MtBE was banned, 10.3% continue to have MtBE. Most wells (140 of 195) had no MtBE detections (concentrations <0.2 μg/L) in 2005 and 2015. Of the remaining wells, MtBE concentrations increased in 4 wells, decreased in 47 wells, and did not change in 4 wells. On average, MtBE concentrations decreased 65% among 47 wells whereas MtBE concentrations increased 17% among 4 wells between 2005 and 2015. The percent change in detection frequency from 2005 to 2015 (the decontamination rate) was lowest (45.5%) in high-population-density areas and in wells completed in the Berwick Formation geologic units. The decontamination rate was the highest (78.6%) where population densities were low and wells were completed in bedrock composed of granite, metamorphic, and mafic rocks. Wells in the Berwick Formation are characteristically deeper and have lower yields than wells in other rock types and have shallower overburden cover, which may allow for more rapid transport of MtBE from land-surface releases. Low-yielding, deep bedrock wells may require large contributing areas to achieve adequate well yield, and thus have a greater chance of intercepting MtBE, in addition to diluting contaminants at a slower rate and thus requiring more time to decontaminate.
Flanagan, Sarah; Levitt, Joseph; Ayotte, Joseph
2017-01-01
In southeast New Hampshire, where reformulated gasoline was used from the 1990s to 2007, methyl tert-butyl ether (MtBE) concentrations ≥0.2 μg/L were found in water from 26.7% of 195 domestic wells sampled in 2005. Ten years later in 2015, and eight years after MtBE was banned, 10.3% continue to have MtBE. Most wells (140 of 195) had no MtBE detections (concentrations <0.2 μg/L) in 2005 and 2015. Of the remaining wells, MtBE concentrations increased in 4 wells, decreased in 47 wells, and did not change in 4 wells. On average, MtBE concentrations decreased 65% among 47 wells whereas MtBE concentrations increased 17% among 4 wells between 2005 and 2015. The percent change in detection frequency from 2005 to 2015 (the decontamination rate) was lowest (45.5%) in high-population-density areas and in wells completed in the Berwick Formation geologic units. The decontamination rate was the highest (78.6%) where population densities were low and wells were completed in bedrock composed of granite, metamorphic, and mafic rocks. Wells in the Berwick Formation are characteristically deeper and have lower yields than wells in other rock types and have shallower overburden cover, which may allow for more rapid transport of MtBE from land-surface releases. Low-yielding, deep bedrock wells may require large contributing areas to achieve adequate well yield, and thus have a greater chance of intercepting MtBE, in addition to diluting contaminants at a slower rate and thus requiring more time to decontaminate.
MTBE; to what extent will past releases contaminate community water supply wells?(Brief Article)
Johnson, Richard; Pankow, James; Bender, David A.; Price, Curtis; Zogorski, John S.
2000-01-01
The increasing frequency of detection of the widely used gasoline additive methyl tertbutyl ether (MTBE) in both ground- and surface waters is receiving much attention from the media, environmental scientists, state environmental agencies, and federal agencies. At the national level, the September 15,1999, Report of the Blue Ribbon Panel on Oxygenates in Gasoline (i) )tates that between 5 and 10% of community drinking water supplies in high MTBE use areas show at least detectable concentrations of MTBE, and about 1% of those systems are characterized by levels of this compound that are above 20 pg/L. In Maine, a desire to determine the extent of MTBE contamination led to a 1998 study (2) that revealed that this compound is found at levels above 0.1 pg/L in 16% of 951 randomly selected household wells and in 16% of the 793 community water systems tested in that state (37 wells were not tested). The study also suggested that between 1400 and 5200 household wells may have levels above 35 pg/L, although no community water supplies were found to be above that concentration. For comparison, Maryland, New Hampshire, New York, and California have set MTBE remediation "action levels" at or below 20 pg/L, and EPA has set its advisory level for taste and odor at 20-40 pg/L (3).
Oxygenates (e.g., methyl tertiary butyl ether [MTBE], ethanol) are required in certain areas of the United States by the 1990 Clean Air Act Amendments. MTBE and ethanol have also been used to increase octane ratings in U.S. gasoline since the 1970s. In 1996 alone, 10 billion Kg...
Eliminating MTBE in Gasoline in 2006
2006-01-01
A review of the market implications resulting from the rapid change from methyl tertiary butyl ether (MTBE) to ethanol-blended reformulated gasoline (RFG) on the East Coast and in Texas. Strains in ethanol supply and distribution will increase the potential for price volatility in these regions this summer.
IRIS Toxicological Review and Summary Documents for Methyl Tert-Butyl Ether (MTBE)
MTBE is a volatile organic chemical used to oxygenate gasoline. Oxygenated gasoline improves the exhaust emissions from gasoline engines. Since 1992 it has been used to comply with the Federal Reformulated Gasoline (begun in 1995) and Wintertime Oxygenated Fuel (begun in 1992) p...
Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia
2015-04-01
Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.
Customer exposure to MTBE, TAME, C6 alkyl methyl ethers, and benzene during gasoline refueling.
Vainiotalo, S; Peltonen, Y; Ruonakangas, A; Pfäffli, P
1999-02-01
We studied customer exposure during refueling by collecting air samples from customers' breathing zone. The measurements were carried out during 4 days in summer 1996 at two Finnish self-service gasoline stations with "stage I" vapor recovery systems. The 95-RON (research octane number) gasoline contained approximately 2.7% methyl tert-butyl ether (MTBE), approximately 8.5% tert-amyl methyl ether (TAME), approximately 3.2% C6 alkyl methyl ethers (C6 AMEs), and 0.75% benzene. The individual exposure concentrations showed a wide log-normal distribution, with low exposures being the most frequent. In over 90% of the samples, the concentration of MTBE was higher (range <0.02-51 mg/m3) than that of TAME. The MTBE values were well below the short-term (15 min) threshold limits set for occupational exposure (250-360 mg/m3). At station A, the geometric mean concentrations in individual samples were 3.9 mg/m3 MTBE and 2. 2 mg/m3 TAME. The corresponding values at station B were 2.4 and 1.7 mg/m3, respectively. The average refueling (sampling) time was 63 sec at station A and 74 sec at station B. No statistically significant difference was observed in customer exposures between the two service stations. The overall geometric means (n = 167) for an adjusted 1-min refueling time were 3.3 mg/m3 MTBE and 1.9 mg/m3 TAME. Each day an integrated breathing zone sample was also collected, corresponding to an arithmetic mean of 20-21 refuelings. The overall arithmetic mean concentrations in the integrated samples (n = 8) were 0.90 mg/m3 for benzene and 0.56 mg/m3 for C6 AMEs calculated as a group. Mean MTBE concentrations in ambient air (a stationary point in the middle of the pump island) were 0.16 mg/m3 for station A and 0.07 mg/m3 for station B. The mean ambient concentrations of TAME, C6 AMEs, and benzene were 0.031 mg/m3, approximately 0.005 mg/m3, and approximately 0.01 mg/m3, respectively, at both stations. The mean wind speed was 1.4 m/sec and mean air temperature was 21 degreesC. Of the gasoline refueled during the study, 75% was 95 grade and 25% was 98/99 grade, with an oxygenate (MTBE) content of 12.2%.
Customer exposure to MTBE, TAME, C6 alkyl methyl ethers, and benzene during gasoline refueling.
Vainiotalo, S; Peltonen, Y; Ruonakangas, A; Pfäffli, P
1999-01-01
We studied customer exposure during refueling by collecting air samples from customers' breathing zone. The measurements were carried out during 4 days in summer 1996 at two Finnish self-service gasoline stations with "stage I" vapor recovery systems. The 95-RON (research octane number) gasoline contained approximately 2.7% methyl tert-butyl ether (MTBE), approximately 8.5% tert-amyl methyl ether (TAME), approximately 3.2% C6 alkyl methyl ethers (C6 AMEs), and 0.75% benzene. The individual exposure concentrations showed a wide log-normal distribution, with low exposures being the most frequent. In over 90% of the samples, the concentration of MTBE was higher (range <0.02-51 mg/m3) than that of TAME. The MTBE values were well below the short-term (15 min) threshold limits set for occupational exposure (250-360 mg/m3). At station A, the geometric mean concentrations in individual samples were 3.9 mg/m3 MTBE and 2. 2 mg/m3 TAME. The corresponding values at station B were 2.4 and 1.7 mg/m3, respectively. The average refueling (sampling) time was 63 sec at station A and 74 sec at station B. No statistically significant difference was observed in customer exposures between the two service stations. The overall geometric means (n = 167) for an adjusted 1-min refueling time were 3.3 mg/m3 MTBE and 1.9 mg/m3 TAME. Each day an integrated breathing zone sample was also collected, corresponding to an arithmetic mean of 20-21 refuelings. The overall arithmetic mean concentrations in the integrated samples (n = 8) were 0.90 mg/m3 for benzene and 0.56 mg/m3 for C6 AMEs calculated as a group. Mean MTBE concentrations in ambient air (a stationary point in the middle of the pump island) were 0.16 mg/m3 for station A and 0.07 mg/m3 for station B. The mean ambient concentrations of TAME, C6 AMEs, and benzene were 0.031 mg/m3, approximately 0.005 mg/m3, and approximately 0.01 mg/m3, respectively, at both stations. The mean wind speed was 1.4 m/sec and mean air temperature was 21 degreesC. Of the gasoline refueled during the study, 75% was 95 grade and 25% was 98/99 grade, with an oxygenate (MTBE) content of 12.2%. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9924009
Roslev, Peter; Lentz, Trine; Hesselsoe, Martin
2015-02-01
The inhibitory effects of the fuel additive methyl tert-butyl ether (MTBE) and potential degradation products tert-butanol (TBA) and formaldehyde was examined using mixed microbial biomass, and six strains of bioluminescent bacteria and yeast. The purpose was to assess microbial toxicity with quantitative bioluminescent and fluorescent endpoints, and to identify sensitive proxies suitable for monitoring MTBE contamination. Bioluminescent Aliivibrio fischeri DSM 7151 (formerly Vibrio fischeri) appeared highly sensitive to MTBE exposure, and was a superior test organisms compared to lux-tagged Escherichia coli DH5α, Pseudomonas fluorescens DF57-40E7 and Saccharomyces cerevisiae BLYR. EC10 and EC50 for acute MTBE toxicity in A. fischeri were 1.1 and 10.9 mg L(-1), respectively. Long term (24h) MTBE exposure resulted in EC10 values of 0.01 mg L(-1). TBA was significantly less toxic with EC10 and EC50 for acute and chronic toxicity >1000 mg L(-1). Inhibition of bioluminescence was generally a more sensitive endpoint for MTBE toxicity than measuring intracellular ATP levels and heterotrophic CO2 assimilation. A weak estrogenic response was detected for MTBE at concentrations ⩾ 3.7 g L(-1) using an estrogen inducible bioluminescent yeast strain (S. cerevisiae BLYES). Microbial hydrolytic enzyme activity in groundwater was affected by MTBE with EC10 values of 0.5-787 mg L(-1), and EC50 values of 59-3073 for alkaline phosphatase, arylsulfatase, beta-1,4-glucanase, N-acetyl-beta-d-glucosaminidase, and leucine-aminopeptidase. Microbial alkaline phosphatase and beta-1,4-glucanase activity were most sensitive to MTBE exposure with EC50 ⩽ 64.8 mg L(-1). The study suggests that bioassays with luminescent A. fischeri, and fluorescent assays targeting hydrolytic enzyme activity are good candidates for monitoring microbial MTBE toxicity in contaminated water. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prah, James; Ashley, David; Blount, Benjamin; Case, Martin; Leavens, Teresa; Pleil, Joachim; Cardinali, Frederick
2004-02-01
Methyl tertiary butyl ether (MTBE), a gasoline additive used to increase octane and reduce carbon monoxide emissions and ozone precursors, has contaminated drinking water and can lead to exposure by oral, inhalation, and dermal routes. To determine its dermal, oral, and inhalation kinetics, 14 volunteers were exposed to 51.3 microg/ml MTBE dermally in tap water for 1 h, drank 2.8 mg MTBE in 250 ml Gatorade(R), and inhaled 3.1 ppm. MTBE for 1 h. Blood and exhaled breath samples were then obtained. Blood MTBE peaked between 15 and 30 min following oral exposure, at the end of inhalation exposure, and ~5 min after dermal exposure. Elimination by each route was described well by a three-compartment model (Rsq >0.9). The Akaike Information Criterion for the three-compartment model was smaller than the two-compartment model, supporting it over the two-compartment model. One metabolite, tertiary butyl alcohol (TBA), measured in blood slowly increased and plateaued, but it did not return to the pre-exposure baseline at the 24-h follow-up. TBA is very water-soluble and has a blood:air partition ratio of 462, reducing elimination by exhalation. Oral exposure resulted in a significantly greater MTBE metabolism into TBA than by other routes based on a greater blood TBA:MTBE AUC ratio, implying significant first-pass metabolism. The slower TBA elimination may make it a better biomarker of MTBE exposure, though one must consider the exposure route when estimating MTBE exposure from TBA because of first-pass metabolism. Most subjects had a baseline blood TBA of 1-3 ppb. Because TBA is found in consumer products and can be used as a fuel additive, it is not a definitive marker of MTBE exposure. These data provide the risk assessment process of pharmacokinetic information relevant to the media through which most exposures occur-air and drinking water.
Carcinogenicity of methyl-tertiary butyl ether in gasoline.
Mehlman, Myron A
2002-12-01
Methyl tertiary butyl ether (MTBE) was added to gasoline on a nationwide scale in 1992 without prior testing of adverse, toxic, or carcinogenic effects. Since that time, numerous reports have appeared describing adverse health effects of individuals exposed to MTBE, both from inhalation of fumes in the workplace and while pumping gasoline. Leakage of MTBE, a highly water-soluble compound, from underground storage tanks has led to contamination of the water supply in many areas of the United States. Legislation has been passed by many states to prohibit the addition of MTBE to gasoline. The addition of MTBE to gasoline has not accomplished its stated goal of decreasing air pollution, and it has posed serious health risks to a large portion of the population, particularly the elderly and those with respiratory problems, asthma, and skin sensitivity. Reports of animal studies of carcinogenicity of MTBE began to appear in the 1990s, prior to the widespread introduction of MTBE into gasoline. These reports were largely ignored. In ensuing years, further studies have shown that MTBE causes various types of malignant tumors in mice and rats. The National Toxicology Program (NTP) Board of Scientific Counselors' Report on Carcinogens Subcommittee met in December 1998 to consider listing MTBE as "reasonably anticipated to be a human carcinogen." In spite of recommendations from Dr. Bailer, the primary reviewer, and other scientists on the committee, the motion to list MTBE in the report was defeated by a six to five vote, with one abstention. On the basis of animal studies, it is widely accepted that if a chemical is carcinogenic in appropriate laboratory animal test systems, it must be treated as though it were carcinogenic in humans. In the face of compelling evidence, NTP Committee members who voted not to list MTBE as "reasonably anticipated to be a human carcinogen" did a disservice to the general public; this action may cause needless exposure of many to health risks and possibly cancers.
Moran, Michael J.; Zogorski, John S.; Squillace, Paul J.
2004-01-01
The occurrence and implications of methyl tert-butyl ether (MTBE) and gasoline hydrocarbons were examined in three surveys of water quality conducted by the U.S. Geological Survey?one national-scale survey of ground water, one national-scale survey of source water from ground water, and one regional-scale survey of drinking water from ground water. The overall detection frequency of MTBE in all three surveys was similar to the detection frequencies of some other volatile organic compounds (VOCs) that have much longer production and use histories in the United States. The detection frequency of MTBE was higher in drinking water and lower in source water and ground water. However, when the data for ground water and source water were limited to the same geographic extent as drinking-water data, the detection frequencies of MTBE were comparable to the detection frequency of MTBE in drinking water. In all three surveys, the detection frequency of any gasoline hydrocarbon was less than the detection frequency of MTBE. No concentration of MTBE in source water exceeded the lower limit of U.S. Environmental Protection Agency's Drinking-Water Advisory of 20 ?g/L (micrograms per liter). One concentration of MTBE in ground water exceeded 20 ?g/L, and 0.9 percent of drinking-water samples exceeded 20 ?g/L. The overall detection frequency of MTBE relative to other widely used VOCs indicates that MTBE is an important concern with respect to ground-water management. The probability of detecting MTBE was strongly associated with population density, use of MTBE in gasoline, and recharge, and weakly associated with density of leaking underground storage tanks, soil permeability, and aquifer consolidation. Only concentrations of MTBE above 0.5 ?g/L were associated with dissolved oxygen. Ground water underlying areas with high population density, ground water underlying areas where MTBE is used as a gasoline oxygenate, and ground water underlying areas with high recharge has a greater probability of MTBE contamination. Ground water from public-supply wells and shallow ground water underlying urban land-use areas has a greater probability of MTBE contamination compared to ground water from domestic wells and ground water underlying rural land-use areas.
Particle Size Effects on Fenton Regeneration of MTBE-spent Activated Carbon
Fenton-driven regeneration of spent granular activated carbon (GAC) is a developing technology that may reduce water treatment costs. In this study, the effect of GAC particle size on Fenton-driven oxidation of methyl tert-butyl ether (MTBE)-spent GAC was evaluated. The GAC was...
A novel reactor combining a flame-deposited nanostructured titanium dioxide film and a set of embedded ceramic electrodes was designed, developed and tested for degradation of methyl tert-butyl ether (MTBE) in water. On applying a voltage to the ceramic electrodes, a surface coro...
REMOVAL OF MTBE FROM WATER BY MEMBRANE-BASED PERVAPORATION TECHNOLOGY
The ability of pervaporation to remove methyl t-butyl ether (MTBE) from water has been evaluated at both bench- and pilot-scales. In pervaporation, a liquid stream containing two or more components is placed in contact with one side of a non-porous polymeric membrane while a vac...
BTEX MTBE BIOREMEDIATION: BIONETS CONTAINING ISOLITE, PM1, SOLID OXYGEN SOURCE
Methyl tert-Butyl Ether (MTBE), a gasoline additive, is a persistent and foul tasting contaminate that is more mobile in ground water than BTEX . It, along with BTEX, is turning up at many American crossroads. This study's objective was to determine if biologically active in sit...
MTBE BIOREMEDIATION WITH BIONETS CONTAINING ISOLITE, PMI, SOS ON AIR
Methyl tert-Butyl Ether (MTBE), a gasoline additive, is a persistent and foul tasting contaminant that is more mobile in ground water than BTEX. It is turning up at many American crossroads. This study's objective was to determine if biologically active in situ Bionets could bior...
MTBE BIODEGRADATION IN A GRAVITY FLOW, HIGH-BIOMASS RETAINING BIOREACTOR
The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Ci...
Delzer, Gregory C.; Ivahnenko, Tamara
2003-01-01
The large-scale use of the gasoline oxygenate methyl tert-butyl ether (MTBE), and its high solubility, low soil adsorption, and low biodegradability, has resulted in its detection in ground water and surface water in many places throughout the United States. Studies by numerous researchers, as well as many State and local environmental agencies, have discovered high levels of MTBE in soils and ground water at leaking underground gasoline-storage-tank sites and frequent occurrence of low to intermediate levels of MTBE in reservoirs used for both public water supply and recreational boating.In response to these findings, the American Water Works Association Research Foundation sponsored an investigation of MTBE and other volatile organic compounds (VOCs) in the Nation?s sources of drinking water. The goal of the investigation was to provide additional information on the frequency of occurrence, concentration, and temporal variability of MTBE and other VOCs in source water used by community water systems (CWSs). The investigation was completed in two stages: (1) reviews of available literature and (2) the collection of new data. Two surveys were associated with the collection of new data. The first, termed the Random Survey, employed a statistically stratified design for sampling source water from 954 randomly selected CWSs. The second, which is the focus of this report, is termed the Focused Survey, which included samples collected from 134 CWS source waters, including ground water, reservoirs, lakes, rivers, and streams, that were suspected or known to contain MTBE. The general intent of the Focused Survey was to compare results with the Random Survey and provide an improved understanding of the occurrence, concentration, temporal variability, and anthropogenic factors associated with frequently detected VOCs. Each sample collected was analyzed for 66 VOCs, including MTBE and three other ether gasoline oxygenates (hereafter termed gasoline oxygenates). As part of the Focused Survey, 451 source-water samples and 744 field quality-control (QC) samples were collected from 78 ground-water, 39 reservoir and (or) lake, and 17 river and (or) stream source waters at fixed intervals for a period of 1 year.Using a common assessment level of 0.2 ?g/L (micrograms per liter) (2.0 ?g/L for methyl ethyl ketone), 37 of the 66 VOCs analyzed were detected in both surveys. However, VOCs, especially MTBE and other gasoline oxygenates, were detected more frequently in the Focused Survey than in the Random Survey. MTBE was detected in 55.5 percent of the CWSs sampled in the Focused Survey and in 8.7 percent of those sampled in the Random Survey. Little difference in occurrence, however, was observed for trihalomethanes (THMs), which were detected in 16.4 and 14.8 percent of Focused Survey and The large-scale use of the gasoline oxygenate methyl tert-butyl ether (MTBE), and its high solubility, low soil adsorption, and low biodegradability, has resulted in its detection in ground water and surface water in many places throughout the United States. Studies by numerous researchers, as well as many State and local environmental agencies, have discovered high levels of MTBE in soils and ground water at leaking underground gasoline-storage-tank sites and frequent occurrence of low to intermediate levels of MTBE in reservoirs used for both public water supply and recreational boating.In response to these findings, the American Water Works Association Research Foundation sponsored an investigation of MTBE and other volatile organic compounds (VOCs) in the Nation?s sources of drinking water. The goal of the investigation was to provide additional information on the frequency of occurrence, concentration, and temporal variability of MTBE and other VOCs in source water used by community water systems (CWSs). The investigation was completed in two stages: (1) reviews of available literature and (2) the collection of new data. Two surveys wer
A re-evaluation of the taste and odour of methyl tertiary butyl ether (MTBE) in drinking water.
Suffet, I H
2007-01-01
Methyl tertiary butyl ether (MTBE) is a gasoline additive that has been found in groundwater when an underground gasoline storage tank leaks. Although dependent on the clean-up standards that are applied, clean-up costs have been estimated in the US alone to be in the billions of dollars. MTBE is considered primarily a taste and odour concern and not a toxicity issue at concentrations found in drinking water. Thus, the clean-up of MTBE problems is controlled by the MTBE odour threshold concentration (OTC). The level of clean-up and associated differential of millions of dollars is a matter of concern for water purveyors and well owners. A 1993 study of nine OTC studies showed the OTC of MTBE in water to be between 0.04 and 0.06 microg/L, a level over two orders of magnitude less than eight other studies. This 1993 study was repeated at the original laboratory in 2004 and is reported in this paper. The laboratory's quality control programme and ability to repeat one of the eight other studies indicated the laboratory was qualified to repeat its original OTC study. The flavour and odour detection threshold range in the 1993 study, however, could not be confirmed by trained assessors repeating the original study in 2004. The inconsistencies in the data and the high detection on water blanks indicate that the dilution series of the test solutions for the 1993 study were mainly at subthreshold levels. Therefore, the original study of 1993 is not a valid OTC study for MTBE and should not be used to develop drinking water and clean-up standards. The OTC of MTBE is over 15 microg/L for the eight valid studies.
Sorption of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) to synthetic resins.
Bi, Erping; Haderlein, Stefan B; Schmidt, Torsten C
2005-10-01
Methyl tert-butyl ether (MTBE) is a widely used gasoline oxygenate. Contamination of MTBE and its major degradation product tert-butyl alcohol (TBA) in groundwater and surface water has received great attention. However, sorption affinity and sorption mechanisms of MTBE and TBA to synthetic resins, which can be potentially used in removal of these contaminants from water, in passive sampling, or in enrichment of bacteria, have not been studied systemically. In this study, kinetic and equilibrium sorption experiments (single solute and binary mixtures) on four synthetic resins were conducted. The sorption affinity of the investigated sorbents for MTBE and TBA decreases in the order Ambersorb 563>Optipore L493>Amberlite XAD4>Amberlite XAD7, and all show higher sorption affinity for MTBE than for TBA. Binary experiments with o-xylene, a major compound of gasoline as co-contaminant, imply that all resins preferentially sorb o-xylene over MTBE or TBA, i.e., there is sorption competition. In the equilibrium aqueous concentration (Ceq) range (0.1-139.0 mg/L for MTBE, and 0.01-48.4 mg/L for TBA), experimental and modeling results as well as sorbent characteristics indicate that micropore filling and/or some other type of adsorption process (e.g., adsorption to specific sites of high sorption potential at low concentrations) rather than partitioning were the dominant sorption mechanisms. Optipore L493 has favourable sorption and desorption characteristics, and is a suitable sorbent, e.g., in bacteria enrichment or passive sampling for moderately polar compounds. However, for highly polar compounds such as TBA, Ambersorb 563 might be a better choice, especially in water treatment.
MTBE, TBA, and TAME attenuation in diverse hyporheic zones
Landmeyer, J.E.; Bradley, P.M.; Trego, D.A.; Hale, K.G.; Haas, J.E.
2010-01-01
Groundwater contamination by fuel-related compounds such as the fuel oxygenates methyl tert-butyl ether (MTBE), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME) presents a significant issue to managers and consumers of groundwater and surface water that receives groundwater discharge. Four sites were investigated on Long Island, New York, characterized by groundwater contaminated with gasoline and fuel oxygenates that ultimately discharge to fresh, brackish, or saline surface water. For each site, contaminated groundwater discharge zones were delineated using pore water geochemistry data from 15 feet (4.5 m) beneath the bottom of the surface water body in the hyporheic zone and seepage-meter tests were conducted to measure discharge rates. These data when combined indicate that MTBE, TBA, and TAME concentrations in groundwater discharge in a 5-foot (1.5-m) thick section of the hyporheic zone were attenuated between 34% and 95%, in contrast to immeasurable attenuation in the shallow aquifer during contaminant transport between 0.1 and 1.5 miles (0.1 to 2.4 km). The attenuation observed in the hyporheic zone occurred primarily by physical processes such as mixing of groundwater and surface water. Biodegradation also occurred as confirmed in laboratory microcosms by the mineralization of U- 14C-MTBE and U- 14C-TBA to 14CO2 and the novel biodegradation of U- 14C-TAME to 14CO2 under oxic and anoxic conditions. The implication of fuel oxygenate attenuation observed in diverse hyporheic zones suggests an assessment of the hyporheic zone attenuation potential (HZAP) merits inclusion as part of site assessment strategies associated with monitored or engineered attenuation. ?? 2009 National Ground Water Association.
U.S. EPA’s Office of Research and Development in Cincinnati, Ohio has been testing and evaluating MTBE removal in dechlorinated tap water using three oxidant combinations: hydrogen peroxide/ozone, ultraviolet irradiation (UV)/ozone, and UV/ozone/hydrogen peroxide. Pilot-scale st...
Temperature-dependent mechanisms in the Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was investigated. Prior to iron (Fe) amendment to the GAC, acid-treatment altered the surface chemistry of the GAC and lowered the pH ...
Temperature-dependent mechanisms in the Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was investigated. Prior to iron (Fe) amendment to the GAC, acid-treatment altered the surface chemistry of the GAC and lowered the p...
Motor Gasoline Outlook and State MTBE Bans
2003-01-01
The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.
The feasibility of photo-oxidation treatment of metyl tert-butyl either (MTBE) in water was investigated using two systems, 1) a slurry falling film photo-reactor, and 2) an integrated air-stripping with gas phase photooxidation system. MTBE-contaminated synthetic water and field...
Although tert-Butyl Alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared to the concentrations of the conventional fuel oxygenate Methyl tert-Butyl Ether (MTBE). In t...
STABLE ISOTOPE ANALYSIS OF MTBE TO EVALUATE THE SOURCE OF TBA IN GROUND WATER
Although tert-butyl alcohol (TBA) has not been used as a fuel oxygenate in Orange County, California, the concentrations of TBA in ground water at gasoline spill sites are high compared those of the conventional fuel oxygenate methyl tert-butyl ether (MTBE). In the year 2002, th...
This Innovative Technology Evaluation Report documents the results of a demonstration of the high-energy electron injection (E-Beam) technology in application to groundwater contaminated with methyl t-butyl ether (MtBE) and with benzene, toluene, ethylbenzene, and xylenes (BTEX)....
UNDERGROUND STORAGE TANK SITE CLOSURE USING ACTIVE INTERVENTION FOR SITE CLEANUP
The Clean Air Act Amendments of 1990 mandate seasonal or year-round use of oxygenated compounds in gasoline in certain areas of the country. Methyl t-butyl ether (MtBE) has been the most commonly used oxygenate. However, the use of MtBE has created a significant risk to groundwat...
Methanex considers methanol, MTBE in Qatar
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
CW has learned that Methanex Corp. is considering entering one of two methanol and methyl tert-butyl ether (MTBE) projects in Qatar. Executive v.p. Michael Wilson says that part of the company`s New Zealand plant could be moved to a site in Qatar, which would lower capital costs for the possible project by $75 million-$100 million. Both Qatar General Petroleum Corp. and Qatar Fuel Additives are developing methanol and MTBE projects at Umm Said, Qatar. Methanex says its goal is to ensure low-cost feedstocks.
Effect of redox conditions on MTBE biodegradation in surface water Sediments
Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.
2001-01-01
Microbial degradation of methyl tert-butyl ether (MTBE) was observed in surface water-sediment microcosms under anaerobic conditions. The efficiency and products of anaerobic MTBE biodegradation were dependent on the predominant terminal electron-accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to the toxic product, tert-butyl alcohol (TBA). In the absence of significant methanogenic activity, accumulation of [14C]TBA generally decreased, and mineralization of [U-14C]MTBE to 14CO2 generally increased as the oxidative potential of the predominant terminal electron acceptor increased in the order of SO4, Fe(III), Mn(IV) < NO3 < O2. Microbial mineralization of MTBE to CO2 under Mn(IV)or SO4-reducing conditions has not been reported previously. The results of this study indicate that microorganisms inhabiting the sediments of streams and lakes can degrade MTBE effectively under a range of anaerobic terminal electron-accepting conditions. Thus, anaerobic bed sediment microbial processes may provide a significant environmental sink for MTBE in surface water systems throughout the United States.
Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang
2016-01-01
Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk. PMID:26861375
Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang
2016-02-06
Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01) and both were lower than 50 ppm (an occupational threshold limit value). The calculated cancer risks (CRs) at the investigated petrol stations was 0.170 to 0.240 per 10⁶ for operating workers, and 0.026 to 0.049 per 10⁶ for support staff, which are below the typical target range for risk management of 1 × 10(-6) to 1 × 10(-4); The hazard quotients (HQs) for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.
Lindsey, Bruce; Ayotte, Joseph; Jurgens, Bryant; DeSimone, Leslie A.
2017-01-01
Temporal changes in methyl tert-butyl ether (MtBE) concentrations in groundwater were evaluated in the northeastern United States, an area of the nation with widespread low-level detections of MtBE based on a national survey of wells selected to represent ambient conditions. MtBE use in the U.S. peaked in 1999 and was largely discontinued by 2007. Six well networks, each representing specific areas and well types (monitoring or supply wells), were each sampled at 10 year intervals between 1996 and 2012. Concentrations were decreasing or unchanged in most wells as of 2012, with the exception of a small number of wells where concentrations continue to increase. Statistically significant increasing concentrations were found in one network sampled for the second time shortly after the peak of MtBE use, and decreasing concentrations were found in two networks sampled for the second time about 10 years after the peak of MtBE use. Simulated concentrations from convolutions of estimates for concentrations of MtBE in recharge water with age distributions from environmental tracer data correctly predicted the direction of MtBE concentration changes in about 65 percent of individual wells. The best matches between simulated and observed concentrations were found when simulating recharge concentrations that followed the pattern of national MtBE use. Some observations were matched better when recharge was modeled as a plume moving past the well from a spill at one point in time. Modeling and sample results showed that wells with young median ages and narrow age distributions responded more quickly to changes in the contaminant source than wells with older median ages and broad age distributions. Well depth and aquifer type affect these responses. Regardless of the timing of decontamination, all of these aquifers show high susceptibility for contamination by a highly soluble, persistent constituent.
Fenton-driven regeneration of spent granular activated carbon (GAC) is a technology being developed to regenerate organic contaminant-spent GAC. Here, the effect of GAC particle size (>2 mm to <0.35 mm) on Fenton-driven oxidation of methyl tert-butyl ether (MTBE)-spent GAC was ev...
Advanced oxidation processes (AOPs) provide a promising treatment option for the destruction of MTBE directly in surface and ground waters. An ongoing study is evaluating the ability of three AOPs; hydrogen peroxide/ozone (H2O2/ O3), ultraviolet irradiation/ozone (UV/O3) and ultr...
Methyl tertiary butyl ether (MTBE) has been used as an additive in gasoline to enhance
octane rating and to improve combustion efficiency. It is also a commonly detected contaminant in both surface water and ground water systems. This study presents concentration and stable ...
Benson, Janet M; Tibbetts, Brad M; Barr, Edward B
2003-06-13
The purpose of these studies was to evaluate the tissue uptake, distribution, metabolism, and excretion of methyl tertiary-butyl ether (MTBE) in rats and to determine the effects of coinhalation of the volatile fraction of unleaded gasoline on these parameters. Male F344 rats were exposed nose-only once for 4 h to 4, 40, or 400 ppm 14C-MTBE and to 20 and 200 ppm of the light fraction of unleaded gasoline (LFG) containing 4 and 40 ppm 14C-MTBE, respectively. To evaluate the effects of repeated inhalation of LFG on the fate of inhaled MTBE, rats were exposed for 7 consecutive days to 20 and 200 ppm LFG followed on d 8 by exposure to LFG containing 14C-MTBE. Three subgroups of rats were included for evaluation of respiratory parameters, rates and routes of excretion, and tissue distribution and elimination. MTBE and its chief metabolite, tertiary-butyl alcohol, were quantitated in blood and kidney (immediately after exposure), and the major urinary metabolites, 2-hydroxyisobutyric acid and 2-methyl-1,2- propanediol, were identified and quantified in urine. Inhalation of MTBE alone or as a component of LFG had no concentration-dependent effect on respiratory minute volume. The initial body burdens (IBBs) of MTBE equivalents achieved after 4 h of exposure to MTBE did not increase linearly with exposure concentration. MTBE equivalents rapidly distributed to all tissues examined, with the largest percentages distributed to liver. Between 40 and 400 ppm, there was a significant reduction in percentage of the IBB present in the major organs examined, both immediately and 72 h after exposure. At 400 ppm, the elimination rates of MTBE equivalents from tissues changed significantly. Furthermore, at 400 ppm there was a significant decrease in the elimination half-time of volatile organic compounds (VOCs) in breath and a significant increase in the percentage of the IBB of MTBE equivalents eliminated as VOCs in breath. LFG coexposure significantly decreased the percentage of the MTBE equivalent IBBs in tissues and increased rates of elimination of MTBE equivalents. The study results indicate that the uptake and fate of inhaled MTBE are altered upon increasing exposure levels from 4 to 400 ppm, suggesting that toxic effects observed previously upon repeated inhalation of concentrations of 400 ppm or greater may not necessarily be linearly extrapolated to effects that might occur at lower concentrations. Furthermore, coexposure to LFG, whether acute or repeated, decreases tissue burdens of MTBE equivalents and enhances the elimination rate of MTBE and its metabolites, thereby potentially reducing the toxic effects of the MTBE compared to when it is inhaled alone.
Degradation of MTBE and TBA by a new isolate from MTBE-contaminated soil.
Zhang, Rui-Ling; Huang, Guo-Qiang; Lian, Jing-Yan; Li, Xin-Gang
2007-01-01
Methyl tert-butyl ether (MTBE), a gasoline additive, possesses serious problems to the environmental health. In the present study, a bacterial culture named A-3 which could effectively degrade MTBE was isolated from the MTBE contaminated soil. The isolate was identified as Chryseobacterium sp., a new species capable of degrading MTBE. In order to enhance its degradation ability, selected environment factors were investigated. The results showed that the optimal temperature was in the range of 25-30 degrees C, the pH was 7.0, the inoculum size was 2 x 10(8) CFU/ml and the optimal concentration of MTBE was from 50 to 100 mg/L. The maximum MTBE utilization rate (upsilon(max)) was 102 nmol MTBE/(mg cell protein x h). Furthermore, it was found that the isolate could also degrade tert-butyl alcohol (TBA). The degradation rates of TBA were much faster than those of MTBE. The additional TBA would lead to the decrease of the initial MTBE degradation rate and the inhibitory effect of TBA increased with the increase of TBA concentration. Similar protein profiles at least seven peptides were demonstrated after SDS-PAGE analysis of crude extracts obtained from the cells growing in MTBE and TBA culture.
Adduction of DNA with MTBE and TBA in mice studied by accelerator mass spectrometry.
Yuan, Y; Wang, H F; Sun, H F; Du, H F; Xu, L H; Liu, Y F; Ding, X F; Fu, D P; Liu, K X
2007-12-01
Methyl tert-butyl ether (MTBE) is a currently worldwide used octane enhancer substituting for lead alkyls and gasoline oxygenate. Our previous study using doubly (14)C-labeled MTBE [(CH(3))(3) (14)CO(14)CH(3)] has shown that MTBE binds DNA to form DNA adducts at low dose levels in mice. To elucidate the mechanism of the binding reaction, in this study, the DNA adducts with singly (14)C-labeled MTBE, which was synthesized from (14)C-methanol and tert-butyl alcohol (TBA), or (14)C-labeled TBA in mice have been measured by ultra sensitive accelerator mass spectrometry. The results show that the methyl group of MTBE and tert-butyl alcohol definitely form adducts with DNA in mouse liver, lung, and kidney. The methyl group of MTBE is the predominant binding part in liver, while the methyl group and the tert-butyl group give comparable contributions to the adduct formation in lung and kidney.
Mackerer, C R; Angelosanto, F A; Blackburn, G R; Schreiner, C A
1996-09-01
Methyl tertiary-butyl ether (MTBE), which is added to gasoline as an octane enhancer and to reduce automotive emissions, has been evaluated in numerous toxicological tests, including those for genotoxicity. MTBE did not show any mutagenic potential in the Ames bacterial assay or any clastogenicity in cytogenetic tests. However, it has been shown to be mutagenic in an in vitro gene mutation assay using mouse lymphoma cells when tested in the presence, but not in the absence, of a rat liver-derived metabolic activation system (S-9). In the present study, MTBE was tested to determine if formaldehyde, in the presence of the S-9, was responsible for the observed mutagenicity. A modification of the mouse lymphoma assay was employed which permits determination of whether a suspect material is mutagenic because it contains or is metabolized to formaldehyde. In the modified assay, the enzyme formaldehyde dehydrogenase (FDH) and its co-factor, NAD+ are added in large excess during the exposure period so that any formaldehyde produced in the system is rapidly converted to formic acid which is not genotoxic. An MTBE dose-responsive increase in the frequency of mutants and in cytotoxicity occurred without FDH present, and this effect was greatly reduced in the presence of FDH NAD+. The findings clearly demonstrate that formaldehyde derived from MTBE is responsible for mutagenicity of MTBE in the activated mouse lymphoma assay. Furthermore, the results suggest that the lack of mutagenicity/clastogenicity seen with MTBE in other in vitro assays might have resulted from inadequacies in the test systems employed for those assays.
Total to withdraw from Qatar methanol - MTBE?
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Total is rumored to be withdrawing from the $700-million methanol and methyl tert-butyl ether (MTBE) Qatar Fuel Additives Co., (Qafac) project. The French company has a 12.5% stake in the project. Similar equity is held by three other foreign investors: Canada`s International Octane, Taiwan`s Chinese Petroleum Corp., and Lee Change Yung Chemical Industrial Corp. Total is said to want Qafac to concentrate on methanol only. The project involves plant unit sizes of 610,000 m.t./year of MTBE and 825,000 m.t./year of methanol. Total declines to comment.
PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER
Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...
Methyl tertiary-butyl ether: studies for potential human health hazards.
McGregor, Douglas
2006-04-01
When methyl tertiary-butyl ether (MTBE) in gasoline was first introduced to reduce vehicle exhaust emissions and comply with the Clean Air Act, in the United States, a pattern of complaints emerged characterised by seven "key symptoms." Later, carefully controlled volunteer studies did not confirm the existence of the specific key symptoms, although one study of self-reported sensitive (SRS) people did suggest that a threshold at about 11-15% MTBE in gasoline may exist for SRSs in total symptom scores. Neurobehavioral and psychophysiological studies on volunteers, including SRSs, found no adverse responses associated with MTBE at likely exposure levels. MTBE is well and rapidly absorbed following oral and inhalation exposures. Cmax values for MTBE are achieved almost immediately after oral dosing and within 2 h of continuous inhalation. It is rapidly eliminated, either by exhalation as unchanged MTBE or by urinary excretion of its less volatile metabolites. Metabolism is more rapid humans than in rats, for both MTBE and tert-butyl alcohol (TBA), its more persistent primary metabolite. The other primary metabolite, formaldehyde, is detoxified at a rate very much greater than its formation from MTBE. MTBE has no specific effects on reproduction or development, or on genetic material. Neurological effects were observed only at very high concentrations. In carcinogenicity studies of MTBE, TBA, and methanol (included as an endogenous precursor of formaldehyde, without the presence of TBA), some increases in tumor incidence have been observed, but consistency of outcome was lacking and even some degree of replication was observed in only three cases, none of which had human relevance: alpha(2u)-globulin nephropathy-related renal tubule cell adenoma in male rats; Leydig-cell adenoma in male rats, but not in mice, which provide the better model of the human disease; and B-cell-derived lymphoma/leukemia of doubtful pathogenesis that arose mainly in lungs of orally dosed female rats. In addition, hepatocellular adenomas were significantly higher in female CD-1 mice and thyroid follicular-cell adenomas were increased in female B6C3F1 mice treated with TBA, but these results lack any independent confirmation, which would have been possible from a number of other studies.
Role of volatilization in changing TBA and MTBE concentrations at MTBE-contaminated sites.
Eweis, Juana B; Labolle, Eric M; Benson, David A; Fogg, Graham E
2007-10-01
Tertiary butyl alcohol (TBA) is commonly found as an impurity in methyl tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals especially in the vadose zone, which is a source of contamination to groundwater. Here we show that volatilization, particularly through remediation by vapor extraction, can substantially affect the trends in TBA and MTBE concentrations and the respective mass available to impact groundwater aquifers, through the preferential removal of more volatile compounds, including MTBE, and the apparent enrichment of less volatile compounds like TBA. We demonstrate this phenomenon through numerical simulations of remedial-enhanced volatilization. Results show increases in TBA/MTBE concentration ratios consistent with ratios observed in groundwater at gasoline spill sites. Volatilization is an important, and potentially dominant, process that can result in concentration trends similar to those typically attributed to biodegradation.
AVOIDING HYDROLYSIS OF FUEL ETHER OXYGENATES DURING STATIC HEADSPACE ANALYSIS
A headspace autosampler, gas chromatograph and ion trap mass spectrometer (headspace GC/MS) were used for trace analysis of fuel oxygenates and related compounds and aromatics in water. A method has been developed for determination of methyl tert-butyl ether (MTBE), ethyl tert-b...
REDUCTIVE ACTIVATION OF DIOXYGEN FOR DEGRADATION OF METHYL TERT-BUTYL ETHER BY BIFUNCTION
Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, ...
Marchetti, Alfredo A; Knize, Mark G; Chiarappa-Zucca, Marina L; Pletcher, Ronald J; Layton, David W
2003-08-01
The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.
Widespread potential for microbial MTBE degradation in surface-water sediments
Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.
2001-01-01
Microorganisms indigenous to stream and lake bed sediments, collected from 11 sites throughout the United States, demonstrated significant mineralization of the fuel oxygenate, methyl-tert-butyl ether (MTBE). Mineralization of [U-14C]MTBE to 14CO2 ranged from 15 to 66% over 50 days and did not differ significantly between sediments collected from MTBE contaminated sites and from sites with no history of MTBE exposure. This result suggests that even the microbial communities indigenous to newly contaminated surface water systems will exhibit some innate ability to attenuate MTBE under aerobic conditions. The magnitude of MTBE mineralization was related to the sediment grain size distribution. A pronounced, inverse correlation (p < 0.001; r2 = 0.73) was observed between the final recovery of 14CO2 and the percentage content of silt and clay sized grains (grain diameter < 0.125 mm). The results of this study indicate that the microorganisms that inhabit the bed sediments of streams and lakes can degrade MTBE efficiently and that this capability is widespread in the environment. Thus aerobic bed sediment microbial processes may provide a significant environmental sink for MTBE in surface water systems throughout the United States and may contribute to the reported transience of MTBE in some surface waters.
An MTBE plume in the Upper Glacial Aquifer of Long Island, NY was simulated by combining MODFLOW and MT3D with a semi-analytical model for a gasoline release. The first step was to develop and calibrate a 3-dimensional steady-state numerical ground water flow model of the aquife...
Health assessment of gasoline and fuel oxygenate vapors: reproductive toxicity assessment.
Gray, Thomas M; Steup, David; Roberts, Linda G; O'Callaghan, James P; Hoffman, Gary; Schreiner, Ceinwen A; Clark, Charles R
2014-11-01
Vapor condensates of baseline gasoline (BGVC), or gasoline-blended with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for reproductive toxicity in rats at target concentrations of 2000, 10,000, or 20,000mg/m(3), 6h/day, 7days/week. BGVC and G/MTBE were assessed over two generations, the others for one generation. BGVC and G/MTBE F1 offspring were evaluated for neuropathology and changes in regional brain glial fibrillary acidic protein content. No neurotoxicity was observed. Male kidney weight was increased consistent with light hydrocarbon nephropathy. In adult rats, decreased body weight gain and increased liver weight were seen. Spleen weight decreased in adults and pups exposed to G/TBA. No pathological changes to reproductive organs occurred in any study. Decreased food consumption was seen in G/TAME lactating females. Transient decreases in G/TAME offspring weights were observed during lactation. Except for a minor increase in time to mating in G/TBA which did not affect other reproductive parameters, there were no adverse reproductive findings. The NOAEL for reproductive and offspring parameters was 20,000mg/m(3) for all vapor condensates except for lower offspring NOAELs of 10,000mg/m(3) for G/TBA and 2000mg/m(3) for G/TAME. Copyright © 2014 Elsevier Inc. All rights reserved.
Health assessment of gasoline and fuel oxygenate vapors: Reproductive toxicity assessment
Gray, Thomas M.; Steup, David; Roberts, Linda G.; O'Callaghan, James P.; Hoffman, Gary; Schreiner, Ceinwen A.; Clark, Charles R.
2016-01-01
Vapor condensates of baseline gasoline (BGVC), or gasoline-blended with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for reproductive toxicity in rats at target concentrations of 2000, 10,000, or 20,000 mg/m3, 6 h/day, 7 days/week. BGVC and G/MTBE were assessed over two generations, the others for one generation. BGVC and G/MTBE F1 offspring were evaluated for neuropathology and changes in regional brain glial fibrillary acidic protein content. No neurotoxicity was observed. Male kidney weight was increased consistent with light hydrocarbon nephropathy. In adult rats, decreased body weight gain and increased liver weight were seen. Spleen weight decreased in adults and pups exposed to G/TBA. No pathological changes to reproductive organs occurred in any study. Decreased food consumption was seen in G/TAME lactating females. Transient decreases in G/TAME off-spring weights were observed during lactation. Except for a minor increase in time to mating in G/TBA which did not affect other reproductive parameters, there were no adverse reproductive findings. The NOAEL for reproductive and offspring parameters was 20,000 mg/m3 for all vapor condensates except for lower offspring NOAELs of 10,000 mg/m3 for G/TBA and 2000 mg/m3 for G/TAME. PMID:24813181
Comparison of MTBE concentrations in groundwater of urban and nonurban areas in Germany.
Kolb, Axel; Püttmann, Wilhelm
2006-11-01
The occurrence of the gasoline oxygenate methyl tert-butyl ether (MTBE) in groundwater samples from known fuel-contaminated sites (n=29 samples), nonurban (n=74) and urban sites (n=67) in Germany was investigated. The analyses revealed detection frequencies of 58% (contaminated sites), 24% (nonurban sites) and 63% (urban sites) at a detection limit of 0.01 microgL(-1). Median (maximum) MTBE concentrations were calculated for nonurban and urban samples as 0.18 microgL(-1) (2.2 microgL(-1)) and 0.06 microgL(-1) (48 microg L(-1)). The data from nonurban samples revealed MTBE detections mainly at public supply wells with higher pumping rates than monitoring wells. MTBE was more frequently detected in urban samples, most probably due to the higher atmospheric input and direct liquid emissions from motorways or gas stations. Higher concentrations above 1.0 microgL(-1) in urban areas were found in wells located at industrial sites, where also a MTBE plume was accidentally detected during the study. The prevalence of MTBE in shallow aquifers was comparable to those in the USA.
National survey of MTBE and other VOCs in community drinking-water sources
Clawges, Rick M.; Rowe, Barbara L.; Zogorski, John S.
2001-01-01
Methyl tert-butyl ether (MTBE) is a volatile organic compound (VOC) that is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The chemical properties and widespread use of MTBE can result in contamination of private and public drinking-water sources. MTBE contamination is a concern in drinking water because of the compound's low taste and odor threshold and potential human-health effects.Because of this concern, a survey was initiated in collaboration with researchers and water suppliers. The purpose of this survey is to provide sound, unbiased, scientific information on the occurrence of MTBE and other VOCs in ground water, reservoirs, and rivers that are sources of drinking water used by communities of various sizes throughout the Nation. This fact sheet presents a general description of the survey.
The fate of MtBE during Fenton-like treatments through laboratory scale column tests.
Piscitelli, Daniela; Zingaretti, Daniela; Verginelli, Iason; Gavasci, Renato; Baciocchi, Renato
2015-12-01
In Situ Chemical Oxidation (ISCO) based on the Fenton's process is a proven technology for the treatment of groundwater contaminated by organic compounds. Nevertheless, the application of this treatment process to methyl tert-butyl ether (MtBE) is questioned, as there are concerns about its capacity to achieve complete mineralization. Many existing studies have focused on water contaminated by MtBE and are thus not representative of in situ treatments since they do not consider the presence of soil. In this work, the effectiveness of a Fenton-like process for MtBE treatment was proven in soil column tests performed at operating conditions (i.e., oxidant and contaminant concentration and flow rates) resembling those typically used for in situ applications. No MtBE by-products were detected in any of the tested conditions, thus suggesting that the tert-butyl group of MtBE was completely degraded. A mass balance based on the CO2 produced was used as evidence that most of the MtBE removed was actually mineralized. Finally, the obtained results show that preconditioning of soil with a chelating agent (EDTA) significantly enhanced MtBE oxidation. Copyright © 2015 Elsevier B.V. All rights reserved.
Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.
Hartle, R
1993-01-01
Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8020445
Exposure to methyl tert-butyl ether and benzene among service station attendants and operators.
Hartle, R
1993-12-01
Concerns for atmospheric pollution from auto exhaust have led to the blending of "oxygenates" with motor fuels. The most common oxygenate, methyl tert-butyl ether (MTBE) is currently required within several metropolitan areas (Denver and Phoenix) in the range of 12% of the motor fuel. Amendments to the Clean Air Act may expand this requirement to as many as 44 other areas of the United States in the near future. In consideration of the magnitude of potential uncontrolled exposures from its extensive use and a related concern involving the potential influence of MTBE blending on exposures to other constituents of gasoline (particularly benzene), an evaluation of exposures among service station attendants and operators was undertaken at the request, and in cooperation with, the American Petroleum Institute during the latter part of 1990. For application of the survey results to a broad audience, three categories or types of service stations were identified with regard to MTBE use and exposure potential: a) service stations that do not use MTBE or use it only as an octane enhancer, b) service stations with seasonal requirements to use 12-15% MTBE (the Denver, Colorado, and Phoenix, Arizona, metropolitan areas), and c) service stations equipped with stage II (active) vapor recovery systems (several coastal areas, most notably Southern California). At the two sampled service stations that use only minimal amounts of MTBE (less than 1%), only 1 of 32 personal breathing zone (PBZ) samples from attendants was above the analytical limit of detection, reported at 0.16 ppm. The geometric mean concentration of benzene among this same population (n = 32) was 0.04 ppm.(ABSTRACT TRUNCATED AT 250 WORDS)
Dissolution of cholesterol gall stones using methyltertbutyl ether: a safe effective treatment.
McNulty, J; Chua, A; Keating, J; Ah-Kion, S; Weir, D G; Keeling, P W
1991-01-01
Methyltertbutyl ether (MTBE) administered by percutaneous transhepatic catheter rapidly dissolves radiolucent cholesterol gall bladder stones. However, complete dissolution and clearance of non-cholesterol debris is essential to prevent recurrence. In this study we analysed 25 consecutive patients with reference to efficacy and recurrence based on the presence or absence of non-cholesterol stone fragments after dissolution. Placement of the catheter was successful in 24 patients, one patient requiring cholecystectomy for bile peritonitis. MTBE was infused and aspirated continuously, four to six cycles per minute, resulting in rapid stone dissolution (median six hours; range 4-23 hours for solitary stones and median seven hours, range 4-30 hours for multiple stones). In 18 patients who had complete dissolution, four (22%) had recurrent stones within six to 18 months. Five patients had residual debris which failed to clear completely despite bile acid treatment. One patient with an incomplete rim of calcium in a large stone did not respond to MTBE treatment. A further patient required cholecystectomy for symptomatic recurrence. There were no serious side effects observed. MTBE treatment is a rapid, safe, and effective treatment for patients who refuse surgery or who for medical reasons cannot undergo cholecystectomy. The results of this study confirm that complete dissolution of all fragments is essential and may prevent recurrence. Images Figure 2 PMID:1773965
In this study, we investigated the treatability of co-mingled groundwater contaminated with polycyclic aromatic hydrocarbons (PAHs), gasoline hydrocarbons, and methyl tert-butyl ether (MtBE) using an ex-situ aerobic biotreatment system. The PAHs of interest were nap...
The feasibility of biodegradation of the fuel oxygenate methyl tert-butyl ether (MTBE) under iron-reducing conditions was explored in batch and continuous-flow systems. A porous pot completely-mixed reactor was seeded with diverse cultures and operated under iron-reducing...
Baehr, Arthur L.; Reilly, Timothy J.
2001-01-01
Densely populated communities surround many of the larger lakes in northwestern New Jersey. These communities derive most of their water supply from wells. The lakes can be navigated by gasoline-powered watercraft, can be in various stages of eutrophication, may contain pathogens associated with bathing and waterfowl, and are periodically subjected to chemical applications to control aquatic plant growth. Another feature that contributes to water-quality concerns in lakeside communities is the widespread use of septic tanks. Concentrations of methyl tert-butyl ether (MTBE), a gasoline oxygenate, in samples from Cranberry Lake and Lake Lackawanna ranged from 20 to 30 ug/L (micrograms per liter) and 5 to 14 ug/L during the summers of 1998 and 1999, respectively. These levels were persistent throughout the depth of the lakes when mixing conditions were present. MTBE concentrations in samples from the top 20 feet of Lake Hopatcong during summer 1999 were about 10 ug/L and about 2 to 3 ug/L in samples below 20 feet. The source of the MTBE in the lakes was determined to be gasoline-powered watercraft. Other constituents of gasoline--tertiary amyl methyl ether (TAME) and benzene, toluene, ethylbenzene, and xylenes (BTEX)--were detected in the lakes but at much lower concentrations than MTBE. Ambient ground-water quality at Cranberry Lake and Lake Lackawanna appears to be affected by the use of gasoline-powered watercraft. MTBE was detected in water samples from 13 of the 14 wells sampled at Cranberry Lake in fall 1998 and summer 1999. The wells were selected to monitor ambient ground-water quality and had no history of contamination. In ground-water samples collected during fall 1998, MTBE concentrations ranged from 0.12 to 19.8 ug/L, and the median concentration was 0.43 ug/L. In samples from summer 1999, MTBE concentrations ranged from 0.14 to 13.2 ug/L, and the median concentration was 0.38 ug/L. MTBE was detected in samples from four of the five wells at Lake Lackawanna in summer 1999;concentrations ranged from 0.05 to 0.19 ug/L. Lake/ground water interaction is a feasible explanation for the nearly ubiquitous presence of MTBE in ground water. The movement of water from lakes to wells is feasible because many static water levels and essentially all pumped water levels in the wells were below lake levels. Furthermore, diatom fragments were present in samples from the wells. Ambient ground water at Cranberry Lake also may be affected by septic-tank effluent, as indicated by the relation among concentrations of nitrate, boron, and chloroform. This result indicates potential vulnerability of the water supply to contamination by other chemicals and pathogens. Radon in ambient ground water is a concern throughout northern New Jersey. In particular, the median radon concentrations in ground-water samples collected from 14 wells at Cranberry Lake in 1998 and 1999 were 1,282 and 1,046 pCi/L, respectively. The median radon concentration in five ground-water samples collected at Lake Lackawanna in 1999 was 340 pCi/L. Although these values exceed regulatory levels, they are not high relative to radon concentrations measured in northwestern New Jersey. Eight wells in a neighborhood of Cranberry Lake with known MTBE contamination were sampled by the U.S. Geological Survey in summer 1998. MTBE was detected at concentrations greater than or equal to 40 ug/L in five of the wells. Concentrations of TAME, another gasoline oxygenate, were highly correlated with concentrations of MTBE; MTBE concentrations were about 10 times the TAME concentrations. In all samples, however, the concentrations of the BTEX compounds were less than 0.05 ug/L, and the sample from the most highly contaminated well, where the MTBE concentration was 900 ug/L, had no detectable BTEX.
Müller, Roland H.; Rohwerder, Thore; Harms, Hauke
2007-01-01
The utilization of the fuel oxygenate methyl tert-butyl ether (MTBE) and related compounds by microorganisms was investigated in a mainly theoretical study based on the YATP concept. Experiments were conducted to derive realistic maintenance coefficients and Ks values needed to calculate substrate fluxes available for biomass production. Aerobic substrate conversion and biomass synthesis were calculated for different putative pathways. The results suggest that MTBE is an effective heterotrophic substrate that can sustain growth yields of up to 0.87 g g−1, which contradicts previous calculation results (N. Fortin et al., Environ. Microbiol. 3:407-416, 2001). Sufficient energy equivalents were generated in several of the potential assimilatory routes to incorporate carbon into biomass without the necessity to dissimilate additional substrate, efficient energy transduction provided. However, when a growth-related kinetic model was included, the limits of productive degradation became obvious. Depending on the maintenance coefficient ms and its associated biomass decay term b, growth-associated carbon conversion became strongly dependent on substrate fluxes. Due to slow degradation kinetics, the calculations predicted relatively high threshold concentrations, Smin, below which growth would not further be supported. Smin strongly depended on the maximum growth rate μmax, and b and was directly correlated with the half maximum rate-associated substrate concentration Ks, meaning that any effect impacting this parameter would also change Smin. The primary metabolic step, catalyzing the cleavage of the ether bond in MTBE, is likely to control the substrate flux in various strains. In addition, deficits in oxygen as an external factor and in reduction equivalents as a cellular variable in this reaction should further increase Ks and Smin for MTBE. PMID:17220260
CHLORINATED SOLVENT PLUME CONTROL
This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).
Recently, two papers reported the use of solid-phase microextraction (SPME) with polydimethylsiloxane(PDMS)/Carboxen fibers to determine trace levels of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (tBA) in water. Attempts were made to apply this technique to th...
Pankow, J.F.; Rathbun, R.E.; Zogorski, J.S.
1996-01-01
Large amounts of the 'fuel-oxygenate' compound methyl-tert-butyl ether (MTBE) are currently being used in gasoline to reduce carbon monoxide and ozone in urban air and to boost fuel octane. Because MTBE can be transported to surface waters in various ways, established theory was used to calculate half-lives for MTBE volatilizing from flowing surface waters. Similar calculations were made for benzene as a representative of the 'BTEX' group of compounds (benzene, toluene, ethyl benzene, and the xylenes), and for tert-butyl alcohol (TBA). The calculations were made as a function of the mean flow velocity u (m/day), the mean flow depth h (m), the ambient temperature, and the wind speed. In deep, slow-moving flows, MTBE volatilizes at rates which are similar to those for the BTEX compounds. In shallow, fast-moving flows, MTBE volatilizes more slowly than benzene, though in such flows both MTBE and benzene volatilize quickly enough that these differences may often not have much practical significance. TBA was found to be essentially nonvolatile from water.
Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise
2007-06-01
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.
Grady, Stephen J.
2002-01-01
Methyl tert-butyl ether (MTBE) was detected in source water used by 8.7 percent of randomly selected community water systems (CWSs) in the United States at concentrations that ranged from 0.2 to 20 micrograms per liter (μg/L). The Random Survey conducted by the U.S. Geological Survey, in cooperation with the Metropolitan Water District of Southern California and the Oregon Health & Science University, was designed to provide an assessment of the frequency of detection, concentration, and distribution of MTBE, three other ether gasoline oxygenates, and 62 other volatile organic compounds (VOCs) in ground- and surface-water sources used for drinking-water supplies. The Random Survey was the first of two components of a national assessment of the quality of source water supplying CWSs sponsored by the American Water Works Association Research Foundation. A total of 954 CWSs were selected for VOC sampling from the population of nearly 47,000 active, self-supplied CWSs in all 50 States, Native American Lands, and Puerto Rico based on a statistical design that stratified on CWS size (population served), type of source water (ground and surface water), and geographic distribution (State).At a reporting level of 0.2 μg/L, VOCs were detected in 27 percent of source-water samples collected from May 3, 1999 through October 23, 2000. Chloroform (in 13 percent of samples) was the most frequently detected of 42 VOCs present in the source-water samples, followed by MTBE. VOC concentrations were generally less than 10 μg/L 95 percent of the 530 detections and 63 percent were less than 1.0 μg/L. Concentrations of 1,1-dichloroethene, tetrachloroethene, trichloroethene, vinyl chloride, and total trihalomethanes (TTHMs), however, exceeded drinking-water regulations in eight samples.Detections of most VOCs were more frequent in surface-water sources than in ground-water sources, with gasoline compounds collectively and MTBE individually detected significantly more often in surface water. Use of personal and commercial motorized watercraft on surface-water bodies that are drinking-water sources is probably the reason for the elevated detections of gasoline contaminants relative to ground water. MTBE detections demonstrated a seasonal pattern with more frequent detections in surface water in summer months, which is consistent with seasonal watercraft use.The detection frequency of most VOCs was significantly related to urban land use and population density. Detections of any VOC, non-trihalo-methane compounds, gasoline compounds collectively, the specific gasoline compounds benzene, toluene, ethylbenzene, and xylenes (BTEX), MTBE, solvents, and refrigerants were significantly greater in areas with more than 60 percent urban land use and (or) population density greater than 1,000 people per square mile than in source waters from less urbanized or lower population-density areas. MTBE detections were five times more frequent in source waters from areas with high MTBE use than in source waters from low or no MTBE use, but, unlike other gasoline compounds, MTBE detections were not significantly related to the density of gasoline storage tanks near drinking-water sources.
Evaluation of volatilization as a natural attenuation pathway for MTBE
Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.
2004-01-01
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m-2/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.
MTBE, ethanol rules come under fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begley, R.
EPA is facing stiff challenges to the mandates for methyl tert-butyl ether (MTBE) and ethanol in its reformulated gasoline (RFG) program. Wisconsin officials are receiving hundreds of complaints about the alleged health effects and other problems with MTBE added to gasoline, and Gov. Tommy Thompson is demanding that EPA suspend the RFG program until April 1. Rep. James Sensenbrenner (R., WI) is threatening to introduce a bill to repeal the program in Wisconsin if EPA does not comply. However, EPA administrator Carol Browner says the agency will {open_quotes}defer any decision{close_quotes} on the request. EPA has sent technical experts to Milwaukeemore » to respond to and monitor citizens` complaints.« less
U.S. Geological Survey laboratory method for methyl tert-Butyl ether and other fuel oxygenates
Raese, Jon W.; Rose, Donna L.; Sandstrom, Mark W.
1995-01-01
Methyl tert-butyl ether (MTBE) was found in shallow ground-water samples in a study of 8 urban and 20 agricultural areas throughout the United States in 1993 and 1994 (Squillace and others, 1995, p. 1). The compound is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL), near Denver, uses state-of-the-art technology to analyze samples for MTBE as part of the USGS water-quality studies. In addition, the NWQL offers custom analyses to determine two other fuel oxygenates--ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). The NWQL was not able to obtain a reference standard for tert-amyl ethyl ether (TAEE), another possible fuel oxygenate (Shelley and Fouhy, 1994, p. 63). The shallow ground-water samples were collected as part of the USGS National Water-Quality Assessment Program. These samples were collected from 211 urban wells or springs and 562 agricultural wells sampled by the USGS in 1993 and 1994. The wells were keyed to specific land-use areas to assess the effects of different uses on ground-water quality (Squillace and others, 1995, p. 2). Ground-water samples were preserved on site to pH less than or equal to 2 with a solution of 1:1 hydrochloric acid. All samples were analyzed at the NWQL within 2 weeks after collection. The purpose of this fact sheet is to explain briefly the analytical method implemented by the USGS for determining MTBE and other fuel oxygenates. The scope is necessarily limited to an overview of the analytical method (instrumentation, sample preparation, calibration and quantitation, identification, and preservation of samples) and method performance (reagent blanks, accuracy, and precision).
[Study on three kinds of gasoline oxygenates-induced DNA damage in mice fibroblasts].
Song, Chonglin; Zhang, Zhifu; Chen, Xue; Zhang, Yanfeng; Wang, Chunhua; Liu, Keming
2002-10-01
To study DNA damage of three kinds of gasoline oxygenates. Single cell gel electrophoresis assay(Comet assay) was used to detect the damage effects of three gasoline oxygenates[methyl tertiary butyl ether(MTBE), ethanol anhydrous(EA) and dimethyl carbonate(DMC)] on DNA in L-929 mice fibroblasts. In certain concentation(37.500-150.000 mg/ml), MTBE could directly cause DNA damage of L-929 mice fibroblasts. There was obvious dose-effect relationship, i.e. when the concentration of MTBE was increased from 9.375 to 150.000 mg/ml, the comet rate also increased from 4% to 85%, and the length of comet tail changed correspondingly. The results of EA and DMC were negative. Under the condition of this experiment(150.000 mg/ml), MTBE could directly cause DNA damage while the effect of EA and DMC on DNA damage was not found.
Laboratory evidence of MTBE biodegradation in Borden aquifer material
NASA Astrophysics Data System (ADS)
Schirmer, Mario; Butler, Barbara J.; Church, Clinton D.; Barker, James F.; Nadarajah, Nalina
2003-02-01
Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.
Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions
NASA Astrophysics Data System (ADS)
Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng
The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.
Shim, Eun-Hwa; Kim, Jaisoo; Cho, Kyung-Suk; Ryu, Hee Wook
2006-05-01
This study evaluated the individual and combined removal capacities of benzene, toluene, and xylene (B, T, and X) in the presence and absence of methyl tert-butyl ether (MTBE) in a polyurethane biofilter inoculated with a BTX-degrading microbial consortium, and further examined their interactive effects in various mixtures. In addition, Polymerase chain reaction-denaturing gradient gel electrophoresis and phylogenetic analysis of 16S rRNA gene sequences were used to compare the microbial community structures found in biofilters exposed to the various gases and gas mixtures. The maximum individual elimination capacities (MECs) of B, T, and X were 200, 238, and 400 g m(-3) h(-1), respectively. There was no significant elimination of MTBE alone. Addition of MTBE decreased the MECs of B,T, and X to 75, 100, and 300 g m(-3) h(-1), respectively, indicating that benzene was most strongly inhibited by MTBE. When the three gases were mixed (B + T + X), the removal capacities of individual B, T, and X were 50, 90, and 200 g m(-3) h(-1), respectively. These capacities decreased to 40, 50, and 100 g m(-3) h(-1) when MTBE was added to the mix. The MEC of the three-gas mixture (B + T + X) was 340 g m(-3) h(-1), and that of the four-gas mixture was 200 g m(-3) h(-1). Although MTBE alone was not degraded by the biofilter, it could be co-metabolically degraded in the presence of toluene, benzene, or xylene with the MECs of 34, 23, and 14 g m(-3) h(-1), respectively. The microbial community structure analysis revealed that two large groups could be distinguished based on the presence or absence of MTBE, and many of the dominant bacteria in the consortia were closely related to bacteria isolated from aromatic hydrocarbon-contaminated sites and/ or oil wastewaters. These findings provide important new insights into biofiltration and may be used to improve the rational design of biofilters for remediation of petroleum gas-contaminated airstreams according to composition types of mixed gases.
Intrinsic bioremediation of MTBE-contaminated groundwater at a petroleum-hydrocarbon spill site
NASA Astrophysics Data System (ADS)
Chen, K. F.; Kao, C. M.; Chen, T. Y.; Weng, C. H.; Tsai, C. T.
2006-06-01
An oil-refining plant site located in southern Taiwan has been identified as a petroleum-hydrocarbon [mainly methyl tert-butyl ether (MTBE) and benzene, toluene, ethylbenzene, and xylenes (BTEX)] spill site. In this study, groundwater samples collected from the site were analyzed to assess the occurrence of intrinsic MTBE biodegradation. Microcosm experiments were conducted to evaluate the feasibility of biodegrading MTBE by indigenous microorganisms under aerobic, cometabolic, iron reducing, and methanogenic conditions. Results from the field investigation and microbial enumeration indicate that the intrinsic biodegradation of MTBE and BTEX is occurring and causing the decrease in MTBE and BTEX concentrations. Microcosm results show that the indigenous microorganisms were able to biodegrade MTBE under aerobic conditions using MTBE as the sole primary substrate. The detected biodegradation byproduct, tri-butyl alcohol (TBA), can also be biodegraded by the indigenous microorganisms. In addition, microcosms with site groundwater as the medium solution show higher MTBE biodegradation rate. This indicates that the site groundwater might contain some trace minerals or organics, which could enhance the MTBE biodegradation. Results show that the addition of BTEX at low levels could also enhance the MTBE removal. No MTBE removal was detected in iron reducing and methanogenic microcosms. This might be due to the effects of low dissolved oxygen (approximately 0.3 mg/L) within the plume. The low iron reducers and methanogens (<1.8×103 cell/g of soil) observed in the aquifer also indicate that the iron reduction and methanogenesis are not the dominant biodegradation patterns in the contaminant plume. Results from the microcosm study reveal that preliminary laboratory study is required to determine the appropriate substrates and oxidation-reduction conditions to enhance the biodegradation of MTBE. Results suggest that in situ or on-site aerobic bioremediation using indigenous microorganisms would be a feasible technology to clean up this MTBE-contaminated site.
Key, Katherine C; Sublette, Kerry L; Duncan, Kathleen; Mackay, Douglas M; Scow, Kate M; Ogles, Dora
2013-01-01
Although the anaerobic biodegradation of methyl tert -butyl ether (MTBE) and tert -butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13 C 5 -MTBE, 13 C 1 -MTBE (only methoxy carbon labeled), or 13 C 4 -TBA. 13 C-DNA and 12 C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert -butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13 C-labeled MTBE and TBA in situ and the 13 C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three 13 C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix , were only detected in the clone libraries where MTBE and TBA were fully labeled with 13 C, suggesting that they were involved in processing carbon from the tert -butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13 C. It is likely that members of this genus were secondary degraders cross-feeding on 13 C-labeled metabolites such as acetate.
Key, Katherine C.; Sublette, Kerry L.; Duncan, Kathleen; Mackay, Douglas M.; Scow, Kate M.; Ogles, Dora
2014-01-01
Although the anaerobic biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) has been documented in the laboratory and the field, knowledge of the microorganisms and mechanisms involved is still lacking. In this study, DNA-stable isotope probing (SIP) was used to identify microorganisms involved in anaerobic fuel oxygenate biodegradation in a sulfate-reducing MTBE and TBA plume. Microorganisms were collected in the field using Bio-Sep® beads amended with 13C5-MTBE, 13C1-MTBE (only methoxy carbon labeled), or13C4-TBA. 13C-DNA and 12C-DNA extracted from the Bio-Sep beads were cloned and 16S rRNA gene sequences were used to identify the indigenous microorganisms involved in degrading the methoxy group of MTBE and the tert-butyl group of MTBE and TBA. Results indicated that microorganisms were actively degrading 13C-labeled MTBE and TBA in situ and the 13C was incorporated into their DNA. Several sequences related to known MTBE- and TBA-degraders in the Burkholderiales and the Sphingomonadales orders were detected in all three13C clone libraries and were likely to be primary degraders at the site. Sequences related to sulfate-reducing bacteria and iron-reducers, such as Geobacter and Geothrix, were only detected in the clone libraries where MTBE and TBA were fully labeled with 13C, suggesting that they were involved in processing carbon from the tert-butyl group. Sequences similar to the Pseudomonas genus predominated in the clone library where only the methoxy carbon of MTBE was labeled with 13C. It is likely that members of this genus were secondary degraders cross-feeding on 13C-labeled metabolites such as acetate. PMID:25525320
Field Confirmation and Monitoring Tools for Aerobic Bioremediation of TBA and MTBE
NASA Astrophysics Data System (ADS)
North, K.; Rasa, E.; Mackay, D. M.; Scow, K. M.; Hristova, K. R.
2009-12-01
We have been investigating in situ biotreatment of an existing tert-butyl alcohol (TBA) plume at Vandenberg AFB by recirculation/oxygenation and evaluating monitoring tools for microbial community composition and activity inside and outside of the treatment zone. Results indicate that recirculation/oxygenation by two pairs of recirculation wells is effective at adding oxygen and decreasing methyl tert-butyl ether (MTBE) and TBA concentrations to detection limits along the flowpaths predicted. Compound-specific isotope analyses (CSIA) of groundwater and microbial community analyses (extraction and analysis of DNA) of groundwater and sediments are underway for sampling locations along flowpaths inside and outside of the treatment zone to seek confirmation of in situ biodegradation. We are also evaluating a novel approach to compare the performance of microbial “traps” in characterizing microbial communities: groundwater from the aerobic treatment zone is extracted, separated and directed to multiple chambers located in an air-conditioned ex situ experimental setup. The “traps” under evaluation are in separate chambers; influent and effluent are monitored. The traps being evaluated include Bio-Trap® housings containing Bio-Sep® beads baited with MTBE or TBA labeled with 13C and various unbaited materials. Insights from the various monitoring approaches will be discussed and compared.
Squillace, P.J.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.
1996-01-01
The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE) is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-1994 aspart of the U.S. Geological Survey's National Water-Quality Assessment program. Samples were collected from five drinking water wells, 12 springs, and 193 monitoring wells in urban areas. No MTBE was detected in drinking water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in eight areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in nine areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft drinking water health advisory. Because MTBE is persistent and mobile in groundwater, it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylene (BTEX) compounds, which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and non-point sources, such as recharge of precipitation and stormwater runoff.
Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E
2015-01-01
Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends. © 2014 GSI Environmental Inc. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.
Determining the Effects of Ethanol on Pump Station Facilities
DOT National Transportation Integrated Search
2010-04-23
Ethanol has been used for the last several years as an environmentally friendly alternative to methyl tertbutyl ether (MTBE), which is an oxygenate additive to gasoline, to increase octane levels, and to facilitate the combustion process. However, th...
Adsorption of BTEX, MTBE and TAME on natural and modified diatomite.
Aivalioti, Maria; Papoulias, Panagiotis; Kousaiti, Athanasia; Gidarakos, Evangelos
2012-03-15
The removal of BTEX (benzene, toluene, ethyl-benzene and m-,p-,o-xylenes), MTBE (methyl tertiary butyl ether) and TAME (tertiary amyl methyl ether) from aqueous solutions by raw, thermally, chemically and both chemically and thermally treated diatomite was studied, through batch adsorption experiments. In total, 14 different diatomite samples were created and tested. Selected physical characteristics of the adsorbents, such as specific surface area and pore volume distribution, were determined. Matrix and competitive adsorption effects were also explored. It was proved that the diatomite samples were effective in removing BTEX, MTBE and TAME from aqueous solutions, with the sample treated with HCl being the most effective, as far as its adsorption capacity and equilibrium time are concerned. Among the contaminants, BTEX appeared to have the strongest affinity, based on mass uptake by the diatomite samples. Matrix effects were proved to be strong, significantly decreasing the adsorption of the contaminants onto diatomite. The kinetics data proved a closer fit to the pseudo second order model, while the isotherm experimental data were a better fit to the Freundlich model. However, the latter produced values of the isotherm constant 1/n greater than one, indicating unfavorable adsorption. Copyright © 2011 Elsevier B.V. All rights reserved.
Liu, Jiemin; Jiang, Guibin; Zhou, Qunfang; Liu, Jingfu; Wen, Meijuan
2003-10-01
A laboratory-made micro-cryogenic chromatographic oven was mainly improved in size, which was controlled at 6 x 6 x 2.5 cm. A thermoelectric system was used to cool the capillary column instead of the traditional liquid cryogen. A cold block connected to the cryogenic module was directly solidified at room temperature with thermally conductive adhesive so that the uniformity of transferring heat was greatly improved, and the size of the system was reduced. Moreover, this system was inexpensive and convenient for both operation and control. The newly developed device coupled with headspace solid-phase microextraction (SPME) was successfully applied to the determination of methyl tert-butyl ether (MTBE) and its degradation products. During the analysis procedure, a 65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was used to extract MTBE and its degradation products. The extraction was controlled at 50 degrees C for 30 min and the NaCl content in the sample was maintained at 35%. The limits of detection (LODs) ranged from 0.006 microg mL(-1) (for MTBE) to 0.206 microg mL(-1) (for methyl acetate) and the relative standard deviations (RSD%) were below 4%. The spiked recoveries for the developed method were evaluated using various water samples as a matrix.
Shah, Nadeem W; Thornton, Steven F; Bottrell, Simon H; Spence, Michael J
2009-01-26
The potential for aerobic biodegradation of MTBE in a fractured chalk aquifer is assessed in microcosm experiments over 450 days, under in situ conditions for a groundwater temperature of 10 degrees C, MTBE concentration between 0.1 and 1.0 mg/L and dissolved O2 concentration between 2 and 10 mg/L. Following a lag period of up to 120 days, MTBE was biodegraded in uncontaminated aquifer microcosms at concentrations up to 1.2 mg/L, demonstrating that the aquifer has an intrinsic potential to biodegrade MTBE aerobically. The MTBE biodegradation rate increased three-fold from a mean of 6.6+/-1.6 microg/L/day in uncontaminated aquifer microcosms for subsequent additions of MTBE, suggesting an increasing biodegradation capability, due to microbial cell growth and increased biomass after repeated exposure to MTBE. In contaminated aquifer microcosms which also contained TAME, MTBE biodegradation occurred after a shorter lag of 15 or 33 days and MTBE biodegradation rates were higher (max. 27.5 microg/L/day), probably resulting from an acclimated microbial population due to previous exposure to MTBE in situ. The initial MTBE concentration did not affect the lag period but the biodegradation rate increased with the initial MTBE concentration, indicating that there was no inhibition of MTBE biodegradation related to MTBE concentration up to 1.2 mg/L. No minimum substrate concentration for MTBE biodegradation was observed, indicating that in the presence of dissolved O2 (and absence of inhibitory factors) MTBE biodegradation would occur in the aquifer at MTBE concentrations (ca. 0.1 mg/L) found at the front of the ether oxygenate plume. MTBE biodegradation occurred with concomitant O2 consumption but no other electron acceptor utilisation, indicating biodegradation by aerobic processes only. However, O2 consumption was less than the stoichiometric requirement for complete MTBE mineralization, suggesting that only partial biodegradation of MTBE to intermediate organic metabolites occurred. The availability of dissolved O2 did not affect MTBE biodegradation significantly, with similar MTBE biodegradation behaviour and rates down to ca. 0.7 mg/L dissolved O2 concentration. The results indicate that aerobic MTBE biodegradation could be significant in the plume fringe, during mixing of the contaminant plume and uncontaminated groundwater and that, relative to the plume migration, aerobic biodegradation is important for MTBE attenuation. Moreover, should the groundwater dissolved O2 concentration fall to zero such that MTBE biodegradation was inhibited, an engineered approach to enhance in situ bioremediation could supply O2 at relatively low levels (e.g. 2-3 mg/L) to effectively stimulate MTBE biodegradation, which has significant practical advantages. The study shows that aerobic MTBE biodegradation can occur at environmentally significant rates in this aquifer, and that long-term microcosm experiments (100s days) may be necessary to correctly interpret contaminant biodegradation potential in aquifers to support site management decisions.
Effects of gasoline components on MTBE and TBA cometabolism by Mycobacterium austroafricanum JOB5.
House, Alan J; Hyman, Michael R
2010-07-01
In this study we have examined the effects of individual gasoline hydrocarbons (C(5-10,12,14) n-alkanes, C(5-8) isoalkanes, alicyclics [cyclopentane and methylcyclopentane] and BTEX compounds [benzene, toluene, ethylbenzene, m-, o-, and p-xylene]) on cometabolism of methyl tertiary butyl ether (MTBE) and tertiary butyl alcohol (TBA) by Mycobacterium austroafricanum JOB5. All of the alkanes tested supported growth and both MTBE and TBA oxidation. Growth on C(5-8) n-alkanes and isoalkanes was inhibited by acetylene whereas growth on longer chain n-alkanes was largely unaffected by this gas. However, oxidation of both MTBE and TBA by resting cells was consistently inhibited by acetylene, irrespective of the alkane used as growth-supporting substrate. A model involving two separate but co-expressed alkane-oxidizing enzyme systems is proposed to account for these observations. Cyclopentane, methylcyclopentane, benzene and ethylbenzene did not support growth but these compounds all inhibited MTBE and TBA oxidation by alkane-grown cells. In the case of benzene, the inhibition was shown to be due to competitive interactions with both MTBE and TBA. Several aromatic compounds (p-xylene > toluene > m-xylene) did support growth and cells previously grown on these substrates also oxidized MTBE and TBA. Low concentrations of toluene (<10 microM) stimulated MTBE and TBA oxidation by alkane-grown cells whereas higher concentrations were inhibitory. The effects of acetylene suggest strain JOB5 also has two distinct toluene-oxidizing activities. These results have been discussed in terms of their impact on our understanding of MTBE and TBA cometabolism and the enzymes involved in these processes in mycobacteria and other bacteria.
Fate and Tranport of MTBE in Clay-Rich Materials
NASA Astrophysics Data System (ADS)
lenczewski, m e
2001-12-01
A recent report by the U.S. Geological Survey identified methyl tert-butyl ether (MTBE), a constituent of reformulated gasoline, as the most common contaminant of urban aquifers in the United States. MTBE has been released into groundwater supplies by leaking underground fuel tanks. In Illinois, it has been found in 26 of the 1,800 public water supplies and although detection was intermittent, levels were high enough to be offensive to users in some Illinois communities. MTBE is also being used in Mexico to solve the problem of air quality; however, it has the potential to harm the drinking water quality in the process. Early research on MTBE considered it resistant to biodegradation and unable to adsorb to soils and sediments. However, recent evidence indicates that biodegradation does occur under certain conditions and that sorption can occur to organic materials. This research project will investigate the biodegradation of MTBE and its sorption to the clay-rich glacial till found in northern Illinois and lacustrine clays found in the Chalco Basin, Mexico City, Mexico whose interaction with MTBE has not previously been studied. The principal hypothesis of this research is that the microorganisms and environmental factors in clay-rich materials will increase the biodegradation and sorption of MTBE as compared to sandy materials. The experiments will simulate a spill of MTBE or downgradient from a gasoline spill. Microcosms and batch isotherm experiments will be used to demonstrate the potential for biodegradation and sorption in these materials; however, laboratory results are not considered reliable estimates of actual field sorption and biodegradation rates. Therefore long-term column experiments will also be conducted in which large sample volumes of material that simulate the heterogeneities naturally observed in the environment. This research will increase understanding of the biodegradation and sorption of MTBE and lay the necessary groundwork to implement the optimal remediation method for sites contaminated by MTBE, helping to ensure a sustainable groundwater resource.
Fate of MTBE relative to benzene in a gasoline-contaminated aquifer (1993-98):
Landmeyer, James E.; Chapelle, Francis H.; Bradley, Paul M.; Pankow, James F.; Church, Clinton D.; Tratnyek, Paul G.
1998-01-01
Methyl tert-butyl ether (MTBE) and benzene have been measured since 1993 in a shallow, sandy aquifer contaminated by a mid-1980s release of gasoline containing fuel oxygenates. In wells downgradient of the release area, MTBK was detected before benzene, reflecting a chromatographic-like separation of these compounds in the direction of ground water flow. Higher concentrations of MTBE and benzene were measured in the deeper sampling ports of multilevel sampling wells located near the release area, and also up to 10 feet (3 m) below the water table surface in nested wells located farther from the release area. This distribution of higher concentrations at depth is caused by recharge events that deflect originally horizontal ground water flowlines. In the laboratory, microcosms containing aquifer material incubated with uniformly labeled 14C-MTBE under aerobic and anaerobic. Fe(III)-reducing conditions indicated a low but measurable biodegradation potential (<3%14C-MTBW as 14CO2) after a seven-month incubation period, Tert-butyl alcohol (TBA), a proposed microbial-MTBE transformation intermediate, was detected in MTBE-contaminated wells, but TBA was also measured in unsaturated release area sediments. This suggests that TBA may have been present in the original fuel spilled and does not necessarily reflect microbial degradation of MTBE. Combined, these data suggest that milligram per liter to microgram per liter decreases in MTBE concentrations relative to benzene are caused by the natural attenuation processes of dilution and dispersion with less-contaminated ground water in the direction of flow rather than biodegradation at this point source gasoline release site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, C.; Ong, H.Y.; Kok, P.W.
1996-12-31
The primary aim of this study was to determine the extent and levels of exposure to volatile organic compounds (VOCs) from automobile emissions in a group of immigration officers at a busy cross-border checkpoint. A majority (80%) of the workers monitored were exposed to benzene at levels between 0.01 and 0.5 ppm, with only 1.2% exceeding the current Occupational Safety and Health Administration occupational exposure limit of 1 ppm. The geometric mean (GM) concentrations of 8-hr time-weighted average exposure were 0.03 ppm, 0.9 ppm, and 2.46 ppm for methyl-tert-butyl ether (MTBE), benzene, and total hydrocarbons (THC), respectively. The highest time-weightedmore » average concentrations measured were 1.05 ppm for MTBE, 2.01 ppm for benzene, and 34 ppm for THC. It was found that motorbikes emitted a more significant amount of pollutants compared with motor cars. On average, officers at the motorcycle booths were exposed to four to five times higher levels of VOCs (GMs of 0.07 ppm, 0.23 ppm, and 4.7 ppm for MTBE, benzene, and THC) than their counterparts at the motor car booths (GMs of 0.01 ppm, 0.05 ppm, and 1.5 ppm). The airborne concentrations of all three pollutants correlated with the flow of vehicle traffic. Close correlations were also noted for the concentrations in ambient air for the three pollutants measured. Benzene and MTBE had a correlation coefficient of 0.97. The overall findings showed that the concentrations of various VOCs were closely related to the traffic density, suggesting that they were from a common source, such as exhaust emissions from the vehicles. The results also indicated that although benzene, MTBE, and THC are known to be volatile, a significant amount could still be detected in the ambient environment, thus contributing to our exposure to these compounds. 4 refs., 6 figs.« less
Rasa, Ehsan; Chapman, Steven W; Bekins, Barbara A; Fogg, Graham E; Scow, Kate M; Mackay, Douglas M
2011-11-01
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.
2011-11-01
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.
Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.
2011-01-01
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.
Rasa, Ehsan; Chapman, Steven W.; Bekins, Barbara A.; Fogg, Graham E.; Scow, Kate M.; Mackay, Douglas M.
2012-01-01
A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer. PMID:22115089
Kaykhaii, Massoud; Mirbaloochzahi, Mohammad Reza
2008-12-01
The applicability of the headspace liquid phase microextraction and gas chromatography (HS-LPME/GC) for the expeditious and reliable screening of 68 well water samples for selected fuel oxygenates compounds, viz. methyl tertiary-butyl ether (MTBE), tertiary-amyl methyl ether (TAME), ethyl tertiary-butyl ether (ETBE) and n-butyl ethyl ether (n-BEE) has been evaluated. The method used 3 microl of 1:1 benzyl alcohol/1-octanol as extraction solvent, 20 min extraction time with stirring at 1,250 rpm, at 20 degrees C and salt addition of a mixture of 0.3 g ml(-1) sodium sulphate/0.1 g ml(-1) sodium chloride. The enrichment factors of this method were from 171 to 571. Limits of detection were in the range of 77-110 ng l(-1). The relative standard deviations (RSDs) at 0.05, 0.50 and 10.0 mg l(-1) of spiking levels were in the range of 1.28-6.80% with recoveries between 96.2 and 106.0%. Sixty-eight groundwater wells that were located near different gasoline reservoirs in eight largest cities of the Sistan and Balouchestan province were screened by the method. Eight contaminated wells were identified contained MTBE at levels between 0.3 and 1.7 mg l(-1). In all cases, other target analytes were at low concentrations or not detected.
Health assessment of gasoline and fuel oxygenate vapors: subchronic inhalation toxicity.
Clark, Charles R; Schreiner, Ceinwen A; Parker, Craig M; Gray, Thomas M; Hoffman, Gary M
2014-11-01
Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess whether their use in gasoline influences the hazard of evaporative emissions. Test substances included vapor condensates prepared from an EPA described "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/m(3) and exposures were for 6h/day, 5days/week for 13weeks. A portion of the animals were maintained for a four week recovery period to determine the reversibility of potential adverse effects. Increased kidney weight and light hydrocarbon nephropathy (LHN) were observed in treated male rats in all studies which were reversible or nearly reversible after 4weeks recovery. LHN is unique to male rats and is not relevant to human toxicity. The no observed effect level (NOAEL) in all studies was 10,000mg/m(3), except for G/MTBE (<2000) and G/TBA (2000). The results provide evidence that use of the studied oxygenates are unlikely to increase the hazard of evaporative emissions during refueling, compared to those from gasoline alone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Delzer, Gregory C.; Ivahnenko, Tamara
2003-01-01
The large-scale use of the gasoline oxygenate methyl tert-butyl ether (MTBE), and its high solubility, low soil adsorption, and low biodegradability, has resulted in its detection in ground water and surface water in many places throughout the United States. Studies by numerous researchers, as well as many State and local environmental agencies, have discovered high levels of MTBE in soils and ground water at leaking underground gasoline-storage-tank sites and frequent occurrence of low to intermediate levels of MTBE in reservoirs used for both public water supply and recreational boating.In response to these findings, the American Water Works Association Research Foundation sponsored an investigation of MTBE and other volatile organic compounds (VOCs) in the Nation's sources of drinking water. The goal of the investigation was to provide additional information on the frequency of occurrence, concentration, and temporal variability of MTBE and other VOCs in source water used by community water systems (CWSs). The investigation was completed in two stages: (1) reviews of available literature and (2) the collection of new data. Two surveys were associated with the collection of new data. The first, termed the Random Survey, employed a statistically stratified design for sampling source water from 954 randomly selected CWSs. The second, which is the focus of this report, is termed the Focused Survey, which included samples collected from 134 CWS source waters, including ground water, reservoirs, lakes, rivers, and streams, that were suspected or known to contain MTBE. The general intent of the Focused Survey was to compare results with the Random Survey and provide an improved understanding of the occurrence, concentration, temporal variability, and anthropogenic factors associated with frequently detected VOCs. Each sample collected was analyzed for 66 VOCs, including MTBE and three other ether gasoline oxygenates (hereafter termed gasoline oxygenates). As part of the Focused Survey, 451 source-water samples and 744 field quality-control (QC) samples were collected from 78 ground-water, 39 reservoir and (or) lake, and 17 river and (or) stream source waters at fixed intervals for a period of 1 year.Using a common assessment level of 0.2 μg/L (micrograms per liter) (2.0 μg/L for methyl ethyl ketone), 37 of the 66 VOCs analyzed were detected in both surveys. However, VOCs, especially MTBE and other gasoline oxygenates, were detected more frequently in the Focused Survey than in the Random Survey. MTBE was detected in 55.5 percent of the CWSs sampled in the Focused Survey and in 8.7 percent of those sampled in the Random Survey. Little difference in occurrence, however, was observed for trihalomethanes (THMs), which were detected in 16.4 and 14.8 percent of Focused Survey and Random Survey CWSs, respectively. This may indicate a pervasive occurrence of THMs in several source-water types, regardless of CWS size or geographic location.Using data at or above the method detection limit to assess temporal variability and anthropogenic factors associated with frequent detection of select VOCs, concentrations in the Focused Survey in ground-water, reservoir, and river source waters were typically less than 1 μg/L. Also, at a 95-percent confidence interval, no statistically significant differences were observed in comparing concentrations in the first and second ground-water sample. A weak seasonal pattern was observed in samples collected from reservoirs and lakes where gasoline oxygenates and other gasoline compounds were detected more frequently during spring and summer, presumedly a result of increased use of motorized watercraft during these seasons. In contrast, seasonal patterns were not observed in samples collected from rivers and streams. The lack of seasonal differences in river and stream source waters sampled may indicate a common and continuous source of contamination.The most frequently detected VOC (MTBE) and the two most frequently occurring subgroups of VOCs (gasoline oxygenates and THMs) detected in CWS source waters were further characterized to evaluate some anthropogenic factors that may better explain their frequent occurrence. Gasoline oxygenates were detected in 73.9 percent of all CWSs sampled. The concentration of gasoline oxygenates was slightly correlated with watercraft use on reservoirs inside MTBE high-use areas (r2=0.3783) but not outside of these areas (r2=0.0242). In general, the concentration of gasoline oxygenates increased as watercraft use increased. THMs were detected in 47.8 percent of the CWSs supplied by surface water. The frequent occurrence of THMs in reservoir source waters was determined to be an artifact of disinfection and the recycling of chlorinated water to these reservoirs. All CWSs with frequent occurrence of THMs served by a reservoir indicated that chlorine was added to waters for various reasons and that the chlorinated water was then released back to,or upstream of, the reservoir or lake that was sampled.
According to recent reports by the California Department of Health Services, the State of Maine, and the United State Geological Survey (USGS); the fuel oxygenate methyl teri-butyl ether (MTBE) is present in 5 to 20 percent of the drinking water sources in California and the nort...
OBSERVATIONS FROM CONTAMINANT PLUMES ON LONG ISLAND
The aquifers of Long Island serve as a sole source drinking water supply for the entire
local population of about three million people. Where the shallow Upper Glacial Aquifer has been contaminated with petroleum hydrocarbons and methyl tert-butyl ether (MTBE), intensive site ...
Wei, Na; Finneran, Kevin T
2011-04-01
Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.
Squillace, P.T.; Zogorski, J.S.; Wilber, W.G.; Price, C.V.
1997-01-01
The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concentrations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE), is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient groundwater from urban areas that were collected during 1993-94 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Samples were collected from 5 drinking-water wells, 12 springs, and 1g3 monitoring wells in urban areas. No MTBE was detected in drinking-water wells. At a reporting level of 0.2 ??g/L, MTBE was detected most frequently in shallow groundwater from urban areas (27% of 210 wells and springs sampled in 8 areas) as compared to shallow groundwater from agricultural areas (1.3% of 549 wells sampled in 21 areas) or deeper groundwater from major aquifers (1.0% of 412 wells sampled in 9 areas). Only 3% of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ??g/L, which is the estimated lower limit of the United States Environmental Protection Agency draft lifetime drinking water health advisory. Because MTBE is persistent and mobile in groundwater) it can move from shallow to deeper aquifers with time. In shallow urban groundwater, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylenes (BTEX) compounds which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in groundwater include point sources, such as leaking storage tanks, and nonpoint sources, such as recharge of precipitation and storm-water runoff.
Squillace, P.J.
1995-01-01
The 1990 Clean Air Act Amendments require fuel oxygenates to be added to gasoline used in some metropolitan areas to reduce atmospheric concen- trations of carbon monoxide or ozone. Methyl tert-butyl ether (MTBE), is the most commonly used fuel oxygenate and is a relatively new gasoline additive. Nevertheless, out of 60 volatile organic chemicals analyzed, MTBE was the second most frequently detected chemical in samples of shallow ambient ground water from urban areas that were collected during 1993-94 as part of the U.S. Geological Survey's National Water-Quality Assessment program. Samples were collected from 5 drinking-water wells, 12 springs, and 193 monitoring wells in urban areas. No MTBE was detected in drinking-water wells. At a reporting level of 0.2 ug/L (micrograms per liter), MTBE was detected most frequently in shallow ground water from urban areas (27 percent of 210 wells and springs sampled in 8 areas) as compared to shallow ground water from agricultural areas (1.3 percent of 549 wells sampled in 21 areas) or deeper ground water from major aquifers (1 percent of 412 wells sampled in 9 areas). Only 3 percent of the shallow wells sampled in urban areas had concentrations of MTBE that exceed 20 ug/L, which is the estimated lower limit of the U.S. Environmental Protection Agency draft drinking-water health advisory. Because MTBE is persistent and mobile in ground water, it can move from shallow to deeper aquifers with time. In shallow urban ground water, MTBE generally was not found with benzene, toluene, ethylbenzene, or xylenes (BTEX) compounds which commonly are associated with gasoline spills. This disassociation causes uncertainty as to the source of MTBE. Possible sources of MTBE in ground water include point sources, such as leaking storage tanks, and nonpoint sources, such as recharge of precipitation and storm-water runoff.
Analysis of Fluorotelomer Alcohols in Soils: Optimization of Extraction and Chromatography
This article describes the development of an analytical method for the determination of fluorotelomer alcohols (FTOHs) in soil. The sensitive and selective determination of the telomer alcohols was performed by extraction with mthyl tert-butyl ether (MTBE) and analysis of the ext...
Vainiotalo, Sinikka; Kuusimäki, Leea; Pekari, Kaija
2006-09-01
The exposure of gasoline pump repairers and inspectors to gasoline was studied at service stations and repair shops in Finland in April-June 2004. The average air temperature ranged from 7 degrees C to 16 degrees C and wind speed from 2.5 to 7 m/s. The gasoline blends contained mixtures of methyl tert-butyl ether (MTBE) and tert-amyl methyl ether (TAME), the total content of oxygenates being 11-12%. The content of benzene was <1%. Breathing zone air was collected during the work task using passive monitors. The mean sampling period was 4.5 h. The mean TWA-8 h concentrations for MTBE, TAME, hexane, benzene, toluene, ethylbenzene and xylene were 4.5, 1.3, 0.55, 0.23, 2.2, 0.26 and 1.1 mg/m3, respectively. None of the individual benzene concentrations exceeded the binding limit value for benzene (3.25 mg/m3). The sum concentration of MTBE and TAME in urine was between 8.9 and 530 nmol/l in individual post-shift samples. The individual sum concentrations of the metabolites tert-butyl alcohol and tert-amyl alcohol collected the following morning after the exposure ranged from 81 to 916 nmol/l. All individual results were below corresponding biological action levels. Exposure to aromatic hydrocarbons was estimated from post-shift urine samples, with benzene showing the highest concentration (range 4.4 and 35 nmol/l in non-smokers). The exposure levels were similar to those measured in previous studies during unloading of tanker lorries and railway wagons. The results indicated a slightly higher exposure for inspectors, who calibrated fuel pump gauges at the service stations, than for pump repairers. No significant skin exposure occurred during the study.
Jo, W K; Park, K H
1998-01-01
This study was designed to allow systematic comparison of exposure on public (40-seater buses) and private (four passengers cars) transport modes for carbon monoxide (CO), methyl-tertiary butyl ether (MTBE), and benzene by carrying out simultaneous measurements along the same routes. There were statistically significant differences (p < 0.05) in the concentrations of all target compounds among the three microenvironments; inside autos; inside buses; and in ambient air. The target compounds were significantly correlated for all the three environments, with at least p < 0.05. The in-vehicle concentrations of MTBE and benzene were significantly higher (p < 0.0001), on the average 3.5 times higher, in the car with a carbureted engine than in the other three electronic fuel-injected cars. On the other hand, the CO concentrations were not significantly different among the four cars. The in-auto MTBE levels (48.5 micrograms/m3 as a median) measured during commutes in this study was 2-3 times higher than the New Jersey and Connecticut's results. The in-auto concentration of CO (4.8 ppm as a median) in this study was comparable with those in later studies in some American cities, but much lower than those in earlier studies in other American cities. The in-bus CO concentration was 3.6 ppm as a median. As a median, the in-auto concentration of benzene was 44.9 micrograms/m3, while the in-bus concentration 17.0 micrograms/m3. The in-auto/in-bus exposure ratios for all the target compounds was 31-40% higher than the corresponding concentration ratios, due to the higher travel speed on buses in the specified commute route as compared to the autos.
Mobil cuts the alcohol out of oxygenate production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, A.
1992-04-15
Mobil Corp. has unveiled a new etherification technology that can produce fuel oxygenated based only on olefinic refinery streams and water. The process has the potential to allow refiners to produce oxygenates without having to rely on an external supply of alcohols such as methanol or ethanol. Mobil has developed the technology around a new oxygenate, disopropyl ether (DIPE), based on propylene. However, the process has also been tested using mixed propylene/C{sub 4} and straight C{sub 4} streams, says Michael J. McNally, manager of Mobil`s Motor Gasoline Group (Paulsboro, NJ), producing ethers analogous to methyl tert-butyl ether (MTBE).
Quantifying residues from postharvest fumigation of almonds and walnuts with propylene oxide
USDA-ARS?s Scientific Manuscript database
A novel analytical approach, involving solvent extraction with methyl tert-butyl ether (MTBE) followed by gas chromatography (GC), was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO,...
DECISION-MAKING, SCIENCE AND GASOLINE ADDITIVES
Methyl-tert butyl ether (MTBE) has been used as a gasoline additive to serve two major purposes. The first use was as an octane-enhancer to replace organic lead, beginning in 1979. The second use, which began about 1992, was as an oxygenated additive to meet requirements ...
The role of mesopores in MTBE removal with granular activated carbon.
Redding, Adam M; Cannon, Fred S
2014-06-01
This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data. Copyright © 2014 Elsevier Ltd. All rights reserved.
1998-01-01
The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.
Health assessment of gasoline and fuel oxygenate vapors: immunotoxicity evaluation.
White, Kimber L; Peachee, Vanessa L; Armstrong, Sarah R; Twerdok, Lorraine E; Clark, Charles R; Schreiner, Ceinwen A
2014-11-01
Female Sprague Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential immunotoxicity of evaporative emissions. Test articles included vapor condensates prepared from "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/mg(3) administered for 6h/day, 5days/week for 4weeks. The antibody-forming cell (AFC) response to the T-dependent antigen, sheep erythrocyte (sRBC), was used to determine the effects of the gasoline vapor condensates on the humoral components of the immune system. Exposure to BGVC, G/MTBE, G/TAME, and G/TBA did not result in significant changes in the IgM AFC response to sRBC, when evaluated as either specific activity (AFC/10(6) spleen cells) or as total spleen activity (AFC/spleen). Exposure to G/EtOH and G/DIPE resulted in a dose-dependent decrease in the AFC response, reaching the level of statistical significance only at the high 20,000mg/m(3) level. Exposure to G/ETBE resulted in a statistically significant decrease in the AFC response at the middle (10,000mg/m(3)) and high (20,000mg/m(3)) exposure concentrations. Copyright © 2014 Elsevier Inc. All rights reserved.
Schreiner, Ceinwen A; Hoffman, Gary M; Gudi, Ramadevi; Clark, Charles R
2014-11-01
Micronucleus and sister chromatid exchange (SCE) tests were performed for vapor condensate of baseline gasoline (BGVC), or gasoline with oxygenates, methyl tert-butyl ether (G/MTBE), ethyl tert butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), t-butyl alcohol (TBA), or ethanol (G/EtOH). Sprague Dawley rats (the same 5/sex/group for both endpoints) were exposed to 0, 2000, 10,000, or 20,000mg/m(3) of each condensate, 6h/day, 5days/week over 4weeks. Positive controls (5/sex/test) were given cyclophosphamide IP, 24h prior to sacrifice at 5mg/kg (SCE test) and 40mg/kg (micronucleus test). Blood was collected from the abdominal aorta for the SCE test and femurs removed for the micronucleus test. Blood cell cultures were treated with 5μg/ml bromodeoxyuridine (BrdU) for SCE evaluation. No significant increases in micronucleated immature erythrocytes were observed for any test material. Statistically significant increases in SCE were observed in rats given BGVC alone or in female rats given G/MTBE. G/TAME induced increased SCE in both sexes at the highest dose only. Although DNA perturbation was observed for several samples, DNA damage was not expressed as increased micronuclei in bone marrow cells. Inclusion of oxygenates in gasoline did not increase the effects of gasoline alone or produce a cytogenetic hazard. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arletti, Rossella, E-mail: rossella.arletti@unito.it; Martucci, Annalisa; Alberti, Alberto
This paper reports a study of the location of Methyl Tertiary Butyl Ether (MTBE) and toluene molecules adsorbed in the pores of the organophylic zeolite mordenite from an aqueous solution. The presence of these organic molecules in the zeolite channels was revealed by structure refinement performed by the Rietveld method. About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the cavities of mordenite, representing 75% and 80% of the total absorption capacity of this zeolite. In both cases a water molecule was localized inside the side pocket of mordenite. The saturation capacity determinedmore » by the adsorption isotherms, obtained by batch experiments, and the weight loss given by thermogravimetric (TG) analyses were in very good agreement with these values. The interatomic distances obtained after the structural refinements suggest MTBE could be connected to the framework through a water molecule, while toluene could be bonded to framework oxygen atoms. The rapid and high adsorption of these hydrocarbons into the organophylic mordenite zeolite makes this cheap and environmental friendly material a suitable candidate for the removal of these pollutants from water. - graphical abstract: Location of MTBE (a) and toluene (b) in mordenite channels (projection along the [001] direction). Highlights: Black-Right-Pointing-Pointer We investigated the MTBE and toluene adsorption process into an organophilic zeolite mordenite. Black-Right-Pointing-Pointer The presence of MTBE and toluene in mordenite was determined by X-ray diffraction studies. Black-Right-Pointing-Pointer About 3 molecules of MTBE and 3.6 molecules of toluene per unit cell were incorporated into the zeolite cavities. Black-Right-Pointing-Pointer MTBE is connected to the framework through a water molecule. Black-Right-Pointing-Pointer Toluene is directly bonded to framework oxygen atoms.« less
Benson, J M; Barr, E B; Krone, J R
2001-05-01
The purpose of these studies was to extend previous evaluation of methyl tert-butyl ether (MTBE)* tissue distribution, metabolism, and excretion in rats to include concentrations more relevant to human exposure (4 and 40 ppm) and to determine the effects of coinhalation of the volatile fraction of unleaded gasoline on the tissue distribution, metabolism, and excretion of MTBE. Groups of male F344 rats were exposed nose-only for 4 hours to 4, 40, or 400 ppm 14C-MTBE or to 20 or 200 ppm of the light fraction of unleaded gasoline (LFG) containing 4 or 40 ppm 14C-MTBE, respectively. To evaluate the effects of repeated inhalation of LFG on MTBE tissue distribution, metabolism, and excretion, rats were exposed for 4 hours on each of 7 consecutive days to 20 or 200 ppm LFG with MTBE (4 or 40 ppm) followed on the eighth day by a similar exposure to LFG containing 14C-MTBE. Subgroups of rats were evaluated for respiratory parameters, initial body burdens, rates and routes of excretion, and tissue distribution and elimination. The concentrations of MTBE and its chief metabolite, tert-butyl alcohol (TBA), were measured in blood and kidney immediately after exposure, and the major urinary metabolites-2-hydroxyisobutyric acid (IBA) and 2-methyl-1,2-propanediol (2MePD)-were measured in urine. Inhalation of MTBE alone or as a component of LFG had no concentration-dependent effect on respiratory minute volume. The initial body burdens of MTBE equivalents achieved after 4 hours of exposure to MTBE did not increase linearly with exposure concentration. MTBE equivalents rapidly distributed to all tissues examined, with the largest percentages distributed to liver. The observed initial body burden did not increase linearly between 4 and 400 ppm. At 400 ppm, elimination half-times of MTBE equivalents from liver increased and from lung, kidney, and testes decreased compared with the two smaller doses. Furthermore, at 400 ppm the elimination half-time for volatile organic compounds (VOCs) in breath was significantly shorter and the percentage of the initial body burden of MTBE equivalents eliminated as VOCs in breath increased significantly. These changes probably reflect a saturation of blood with MTBE at 400 ppm and strongly suggest that the uptake and fate of MTBE are notably different at exposure concentrations above and below 400 ppm. Single and repeated coexposure to 20 and 200 ppm LFG with MTBE had opposite effects on the total body burden of MTBE equivalents present at the end of exposures compared with those achieved after 4 and 40 ppm MTBE exposures: 20 ppm LFG increased and 200 ppm LFG significantly decreased the burdens of MTBE equivalents present. The effects of coexposure to LFG on blood levels of MTBE equivalents paralleled the effects on body burden. These differences in overall uptake of MTBE equivalents cannot be attributed to alterations of minute volume. The reason for the increase in overall uptake after 20-ppm LFG exposure is not clear. Decreased MTBE absorption (uptake) after single and repeated coexposure to 200 ppm LFG may be due to a decrease in solubility of MTBE in blood caused by inhalation of other hydrocarbons. Investigations on the blood/air partition coefficient of MTBE in the absence and presence of LFG would be needed to confirm this hypothesis. Single and repeated coexposure to either 20 or 200 ppm LFG significantly decreased the percentage of the initial body burden from MTBE equivalents in tissues, including liver, kidney, and testes, immediately and 72 hours after
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The state agencies that implement the Underground Storage Tank program rely heavily on Monitored Natural Attenuation (MNA) to clean up contaminants such as benzene and methyl tertiary butyl ether (MTBE) at gasoline spill sites. This is possible because the contaminants are biolo...
MTBE (methyl tertiary butyl ether) is present at high concentrations in ground water at many sites where gasoline has been spilled from underground storage tanks. In addition, TBA (tertiary butyl alcohol) is also present at high concentrations in many of the same ground waters. ...
AN OVERVIEW OF HEALTH ISSUES FOR FUEL OXYGENATES
Oxygenates (e.g., methyl tertiary butyl ether [MTBE], ethanol) are required in gasoline in certain areas of the United Stated by the 1990 Clean Air Act Amendments and have also been used to increase gasoline octane since the 1970s. With the introduction of major new fuel program...
Occurrence of the gasoline additive MTBE in shallow ground water in urban and agricultural areas
Squillace, Paul J.; Pope, Daryll A.; Price, Curtis V.
1995-01-01
Methyl tert-butyl ether (MTBE) is a volatile organic compound (VOC) derived from natural gas that is added to gasoline either seasonally or year round in many parts of the United States to increase the octane level and to reduce carbon monoxide and ozone levels in the air. In 1993, production of MTBE ranked second among all organic chemicals manufactured in the United States. Currently, the U.S. Environmental Protection Agency (EPA) tentatively classifies MTBE as a possible human carcinogen. Health complaints related to MTBE in the air were first reported in Fairbanks, Alaska in November 1992 when about 200 residents reported problems such as headaches, dizziness, eye irritation, burning of the nose and throat, disorientation, and nausea. Similar health complaints have been registered in Anchorage, Alaska; Missoula, Montana; Milwaukee, Wisconsin; and New Jersey.As part of the U.S. Geological Survey’s National Water-Quality Assessment (NAWQA) Program, concentrations of 60 VOCs were measured in samples from 211 shallow wells in 8 urban areas and 524 shallow wells in 20 agricultural areas. Chloroform and MTBE were the two most frequently detected VOCs. MTBE was detected in 27 percent of the urban wells and 1.3 percent of the agricultural wells. Concentrations ranged from less than the detection level of 0.2 μg/L (micrograms per liter) to as high as 23,000 μg/L. When detected, the median concentration of MTBE was 0.6 μg/L. MTBE was most frequently detected in shallow ground water in Denver, Colorado and urban areas in New England. In Denver, 79 percent of the samples from shallow urban wells had detectable concentrations of MTBE and in New England, 37 percent of the samples from urban wells had detectable concentrations. Only 3 percent of the wells sampled in urban areas had concentrations of MTBE that exceeded 20 μg/L, which is the estimated lower limit of the EPA draft drinking water health advisory level. Contaminant concentrations below the health advisory are not expected to cause any adverse effects over a lifetime of exposure. MTBE is on the EPA’s Drinking Water Priority List, which means it is a possible candidate for future regulation.
BTEX and MTBE adsorption onto raw and thermally modified diatomite.
Aivalioti, Maria; Vamvasakis, Ioannis; Gidarakos, Evangelos
2010-06-15
The removal of BTEX (benzene, toluene, ethyl-benzene and xylenes) and MTBE (methyl tertiary butyl ether) from aqueous solution by raw (D(R)) and thermally modified diatomite at 550, 750 and 950 degrees C (D(550), D(750) and D(950) respectively) was studied. Physical characteristics of both raw and modified diatomite such as specific surface, pore volume distribution, porosity and pH(solution) were determined, indicating important structural changes in the modified diatomite, due to exposure to high temperatures. Both adsorption kinetic and isotherm experiments were carried out. The kinetics data proved a closer fit to the pseudo-second order model. Maximum values for the rate constant, k(2), were obtained for MTBE and benzene (48.9326 and 18.0996 g mg(-1)h(-1), respectively) in sample D(550). The isotherm data proved to fit the Freundlich model more closely, which produced values of the isotherm constant 1/n higher than one, indicating unfavorable adsorption. The highest adsorption capacity, calculated through the values of the isotherm constant k(F), was obtained for MTBE (48.42 mg kg(-1) (mg/L)(n)) in sample D(950). Copyright 2010 Elsevier B.V. All rights reserved.
THE TRANSPORT AND FATE OF ETHANOL AND BTEX IN GROUNDWATER CONTAMINATED BY GASOHOL. (R821114)
Ethanol is used a component in all gasoline in Brazil, and its use could increase significantly in the U.S. to meet the requirements of the Clean Air Act Amendments. Recent problems with ground water contamination by methyl tert-butyl ether (MTBE) have made policymakers more c...
Liquid fuels of high octane values
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, P.J.
1989-03-14
This patent describes an unleaded fuel composition having an octane rating of about 100 or more, the fuel comprising toluene and alkylate and at least two further components selected from the group consisting of methyl tertiary-butyl ether, isopentane, and n-butane. It also describes a specific composition consisting of toluene, isopentane, alkylate, and MTBE.
Production of fuel-grade ethanol from renewable resources, such as biomass, is gaining attention due to the phase out of methyl t-butyl ether (MTBE) as a fuel oxygenate, national security issues related to non-domestic sources of fuels, and the effect of fossil fuel combustion on...
The production of fuel-grade ethanol from renewable resources, such as biomass, is gaining attention due to the phase out of methyl t-butyl ether (MTBE) as a fuel oxygenate, national security issues related to non-domestic sources of fuels, and the effect of fossil fuel combustio...
MTBE Hydrolysis in Dilute Aqueous Solution Using Heterogeneous Strong Acid Catalysts
NASA Astrophysics Data System (ADS)
Rixey, W. G.
2003-12-01
The objective of this research has been the development of a potential in situ catalytic process for the hydrolysis of methyl tertiary butyl ether (MTBE) to tertiary butyl alcohol (TBA) and methanol in ground water. Bench-scale batch reactor studies were conducted over a temperature range of 23 deg C to 50 deg C with several heterogeneous strong acid catalysts to obtain rates of hydrolysis of MTBE to TBA and methanol at dilute concentrations in water. Continuous flow experiments were then conducted to obtain kinetic data over a temperature range of 15 deg C to 50 deg C for various flow rates for the most active catalysts. It was found that the batch and continuous flow experiments yielded similar intrinsic kinetic rate constants when sorption of MTBE to the catalyst was accounted for. Additional fixed-bed experiments were conducted with deionized water and 0.005 M CaCl2 feed solutions containing 100 mg/L MTBE, respectively, to assess the deactivation of the catalyst, and deactivation was found to be controlled by ion exchange of H+ in the catalyst with Ca+2 in the feed. Our results indicate that, for low to moderate groundwater velocities and cation concentrations at ambient temperatures, an in situ reactive barrier process using the most active catalysts studied in this research could be a viable process in terms of both suitable conversion of MTBE and catalyst life. Although application to in situ remediation is emphasized, the results of this research are also applicable to ex-situ groundwater treatment.
Health assessment of gasoline and fuel oxygenate vapors: developmental toxicity in mice.
Roberts, L G; Gray, T M; Marr, M C; Tyl, R W; Trimmer, G W; Hoffman, G M; Murray, F J; Clark, C R; Schreiner, C A
2014-11-01
CD-1 mice were exposed to baseline gasoline vapor condensate (BGVC) alone or to vapors of gasoline blended with methyl tertiary butyl ether (G/MTBE). Inhalation exposures were 6h/d on GD 5-17 at levels of 0, 2000, 10,000, and 20,000mg/m(3). Dams were evaluated for evidence of maternal toxicity, and fetuses were weighed, sexed, and evaluated for external, visceral, and skeletal anomalies. Exposure to 20,000mg/m(3) of BGVC produced slight reductions in maternal body weight/gain and decreased fetal body weight. G/MTBE exposure did not produce statistically significant maternal or developmental effects; however, two uncommon ventral wall closure defects occurred: gastroschisis (1 fetus at 10,000mg/m(3)) and ectopia cordis (1 fetus at 2000mg/m(3); 2 fetuses/1 litter at 10,000mg/m(3)). A second study (G/MTBE-2) evaluated similar exposure levels on GD 5-16 and an additional group exposed to 30,000mg/m(3) from GD 5-10. An increased incidence of cleft palate was observed at 30,000mg/m(3) G/MTBE. No ectopia cordis occurred in the replicate study, but a single observation of gastroschisis was observed at 30,000mg/m(3). The no observed adverse effect levels for maternal/developmental toxicity in the BGVC study were 10,000/2000mg/m(3), 20,000/20,000 for the G/MTBE study, and 10,000/20,000 for the G/MTBE-2 study. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Roles of back diffusion and biodegradation reactions in sustaining MTBE/TBA plumes in alluvial media
NASA Astrophysics Data System (ADS)
Mackay, D. M.; Rasa, E.
2011-12-01
A plume of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted above regulatory concentration goals for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. Two-dimensional reactive transport simulations of MTBE and TBA along the plume centerline were conducted for a 20-year period following the spill. As previously reported by Rasa et al. (2011), these analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. After 2004, TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly reduced the time for MTBE and TBA concentrations to reach regulatory goals by limiting the chemical mass available for back diffusion to the aquifer. We have extended that prior work; using the same reaction and diffusion parameters, we explored the sensitivity of the results to thicknesses of the alluvial layers in order to determine under what sets of conditions a reaction zone accessed only by vertical diffusion through a silt from an underlying contaminated aquifer can significantly affect time to achievement of compliance goals within the aquifer.
MTBE and priority contaminant treatment with high energy electron beam injection
NASA Astrophysics Data System (ADS)
Cooper, William J.; Nickelsen, Michael G.; Mezyk, Stephen P.; Leslie, Greg; Tornatore, Paul M.; Hardison, Wayne; Hajali, Paris A.
2002-11-01
A study was conducted to examine the removal of methyl tert-butyl ether (MTBE) and 15 other organic compounds, as well as perchlorate ion, in waters of different quality. The 15 organic compounds consisted of halogenated solvents (chlorination), disinfection by-products, pesticides, and nitrosodimethylamine (NDMA). These studies were conducted using a pilot scale 20 kW mobile electron beam system at Water Factory 21, Orange County, CA where wastewater is treated and re-injected into the ground as a barrier to salt water intrusion. Future applications for this treated water include water reuse. Ground water and treated wastewater, after having gone through a reverse osmosis-polishing step (RO permeate), were used to prepare mixtures of the compounds. Using fundamental radiation chemistry, it was possible to examine the factors effecting removal efficiency of all the compounds as well as MTBE destruction and reaction by-product formation and removal. All of the organic compounds were destroyed in the studies and we also observed the destruction of perchlorate ion in one of the waters.
An improved high-throughput lipid extraction method for the analysis of human brain lipids.
Abbott, Sarah K; Jenner, Andrew M; Mitchell, Todd W; Brown, Simon H J; Halliday, Glenda M; Garner, Brett
2013-03-01
We have developed a protocol suitable for high-throughput lipidomic analysis of human brain samples. The traditional Folch extraction (using chloroform and glass-glass homogenization) was compared to a high-throughput method combining methyl-tert-butyl ether (MTBE) extraction with mechanical homogenization utilizing ceramic beads. This high-throughput method significantly reduced sample handling time and increased efficiency compared to glass-glass homogenizing. Furthermore, replacing chloroform with MTBE is safer (less carcinogenic/toxic), with lipids dissolving in the upper phase, allowing for easier pipetting and the potential for automation (i.e., robotics). Both methods were applied to the analysis of human occipital cortex. Lipid species (including ceramides, sphingomyelins, choline glycerophospholipids, ethanolamine glycerophospholipids and phosphatidylserines) were analyzed via electrospray ionization mass spectrometry and sterol species were analyzed using gas chromatography mass spectrometry. No differences in lipid species composition were evident when the lipid extraction protocols were compared, indicating that MTBE extraction with mechanical bead homogenization provides an improved method for the lipidomic profiling of human brain tissue.
Delzer, Gregory C.; Zogorski, John S.; Lopes, T.J.; Bosshart, R.L.
1996-01-01
Methyl tert-butyl ether (MTBE) is a gasoline oxygenate. Oxygenates such as MTBE, when added to gasoline, increase the gasoline's oxygen level and decrease vehicular carbon monoxide emissions and ozone levels in the atmosphere. MTBE disperses rapidly in water, was the second most frequently detected volatile organic compound (VOC) in a study of shallow urban ground water, and is less biodegradable than common gasoline compounds, such as benzene, toluene, ethylbenzene, and total xylene (BTEX). Urban stormwater is a possible source of MTBE found in shallow ground water. The U.S. Geological Survey (USGS) sampled stormwater in 16 cities and metropolitan areas that are required to obtain permits to discharge stormwater from their municipal storm-sewer system into surface water. Concentrations of 62 VOCs, including MTBE and BTEX compounds, were measured in 592 stormwater samples collected in these cities and metropolitan areas from 1991 through 1995. Concentration data for MTBE and BTEX compounds in stormwater were compiled and analyzed, and the findings are summarized in this report. This effort was part of an interagency assessment of the scientific basis and effectiveness of the Nation's oxygenated fuel program and was coordinated by the Office of Science and Technology Policy, Executive Office of the President. MTBE was the seventh most frequently detected VOC in urban stormwater, following toluene, total xylene, chloroform, total trimethylbenzene, tetrachloroethene, and naphthalene. MTBE was detected in 6.9 percentmg (41 of 592) of stormwater samples collected. When detected, concentrations of MTBE ranged from 0.2 to 8.7 micrograms per liter (ug/L), with a median of 1.5 ug/L. All detections of MTBE were less than the lower limit of the U.S. Environmental Protection Agency (EPA) draft lifetime health advisory (20 ug/L) for drinking water. Eighty- three percent of all detections of MTBE in stormwater were in samples collected during the October through March season of each year (1991- 95), which corresponds with the expected seasonal use of oxygenated gasoline in areas where carbon monoxide exceeds established air-quality standards. The median concentration of MTBE and benzene for all samples was statistically different and higher in samples collected during the October through March season than samples collected during the April through September season. Sixty-six percent of all MTBE detections occurred with BTEX compounds, and a proportionate increase in concentrations was found when these compounds occurred together. The proportionate increase could indicate a common source of MTBE and BTEX for those samples. Toluene and total xylene were the most frequently detected BTEX compounds and the most frequently detected VOCs in these investigations. Detected concentrations of toluene and total xylene ranged from 0.2 to 6.6 ug/L and 0.2 to 15 ug/L with median concentrations of 0.3 and 0.4 ug/L, respectively.
Kujawinski, Dorothea M; Stephan, Manuel; Jochmann, Maik A; Krajenke, Karen; Haas, Joe; Schmidt, Torsten C
2010-01-01
In order to monitor the behaviour of contaminants in the aqueous environment effective enrichment techniques often have to be employed due to their low concentrations. In this work a robust and sensitive purge and trap-gas chromatography-isotope ratio mass spectrometry method for carbon and hydrogen isotope analysis of fuel oxygenates in water is presented. The method evaluation included the determination of method detection limits, accuracy and reproducibility of deltaD and delta(13)C values. Lowest concentrations at which reliable delta(13)C values could be determined were 5 microg L(-1) and 28 microg L(-1) for TAME and MTBE, respectively. Stable deltaD values for MTBE and TAME could be achieved for concentrations as low as 25 and 50 microg L(-1). Good long-term reproducibility of delta(13)C and deltaD values was obtained for all target compounds. But deltaD values varying more than 5 per thousand were observed using different thermal conversion tubes. Thus, a correction of deltaD values in the analysis of groundwater samples was necessary to guarantee comparability of the results. The applicability of this method was shown by the analysis of groundwater samples from a gasoline contaminated site. By two dimensional isotope analysis two locations within this site were identified at which anaerobic and aerobic degradation of methyl tert-butyl ether occurred.
Quantifying Residues from Postharvest Propylene Oxide Fumigation of Almonds and Walnuts.
Jimenez, Leonel R; Hall, Wiley A; Rodriquez, Matthew S; Cooper, William J; Muhareb, Jeanette; Jones, Tom; Walse, Spencer S
2015-01-01
A novel analytical approach involving solvent extraction with methyl tert-butyl ether (MTBE) followed by GC was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO, propylene chlorohydrin (PCH) [1-chloropropan-2-ol (PCH-1) and 2-chloropropan-1-ol (PCH-2)], and propylene bromohydrin (PBH) [1-bromopropan-2-ol (PBH-1) and 2-bromopropan-1-ol (PBH-2)] was accomplished with a combination of electron impact ionization MS (EIMS), negative ion chemical ionization MS (NCIMS), and electron capture detection (ECD). Respective GC/EIMS LOQs for PPO, PCH-1, PCH-2, PBH-1, and PBH-2 in MTBE extracts were [ppm (μg/g nut)] 0.9, 2.1, 2.5, 30.3, and 50.0 for almonds and 0.8, 2.2, 2.02, 41.6, and 45.7 for walnuts. Relative to GC/EIMS, GC-ECD analyses resulted in no detection of PPO, similar detector responses for PCH isomers, and >100-fold more sensitive detection of PBH isomers. NCIMS did not enhance detection of PBH isomers relative to EIMS and was, respectively, approximately 20-, 5-, and 10-fold less sensitive to PPO, PCH-1, and PCH-2. MTBE extraction efficiencies were >90% for all analytes. The 10-fold concentration of MTBE extracts yielded recoveries of 85-105% for the PBH isomers and a concomitant decrease in LODs and LOQs across detector types. The recoveries of PCH isomers and PPO in the MTBE concentrate were relatively low (approximately 50 to 75%), which confound improvements in LODs and LOQs regardless of detector type.
Guisado, I M; Purswani, J; González-López, J; Pozo, C
2016-09-01
Among the strategies developed for contaminated groundwater bioremediation, those based on the use of bacteria adhering to inert supports and establishing biofilms have gained great importance in this field. Extractive membrane biofilm reactor (EMBFR) technology offers productive solutions for the removal of volatile and semi-volatile compounds. EMBFR technology is based on the use of extractive semipermeable membranes through which contaminants migrate to the biological compartment in which microorganisms with pollutant biotransformation and/or mineralization capacities can grow, forming an active biofilm on the membrane surface. The objective of this study was to assess the use of three bacterial strains (Paenibacillus sp. SH7 CECT 8558, Agrobacterium sp. MS2 CECT 8557, and Rhodococcus ruber EE6 CECT 8612), as inoculum in a lab-scale EMBFR running for 28 days under aerobic conditions to eliminate methyl tert-butyl ether (MTBE) from water samples. Three different hydraulic retention times (1, 6, and 12 h) were employed. MTBE degradation values were determined daily by a gas GC-MS technique, as well as suspended bacterial growth. The biofilm established by the bacterial strains on the semipermeable membrane was detected by Field-Emission Scanning Electron Microscopy (FESEM) at the end of each experiment. The acute toxicity of the treated effluents and biomedium was determined by Microtox © assay (EC 50 ).The results achieved from the MTBE degradation, biofilm formation, and toxicity analysis indicated that bacterial strains MS2 and EE6 were the best options as selective inoculum, although further research is needed, particularly with regard to their possible use as a mixed culture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1238-1245, 2016. © 2016 American Institute of Chemical Engineers.
Grady, S.J.; Casey, G.D.
2001-01-01
Data on volatile organic compounds (VOCs) in drinking water supplied by 2,110 randomly selected community water systems (CWSs) in 12 Northeast and Mid-Atlantic States indicate 64 VOC analytes were detected at least once during 1993-98. Selection of the 2,110 CWSs inventoried for this study targeted 20 percent of the 10,479 active CWSs in the region and represented a random subset of the total distribution by State, source of water, and size of system. The data include 21,635 analyses of drinking water collected for compliance monitoring under the Safe Drinking Water Act; the data mostly represent finished drinking water collected at the pointof- entry to, or at more distal locations within, each CWS?s distribution system following any watertreatment processes. VOC detections were more common in drinking water supplied by large systems (serving more than 3,300 people) that tap surface-water sources or both surface- and groundwater sources than in small systems supplied exclusively by ground-water sources. Trihalomethane (THM) compounds, which are potentially formed during the process of disinfecting drinking water with chlorine, were detected in 45 percent of the randomly selected CWSs. Chloroform was the most frequently detected THM, reported in 39 percent of the CWSs. The gasoline additive methyl tert-butyl ether (MTBE) was the most frequently detected VOC in drinking water after the THMs. MTBE was detected in 8.9 percent of the 1,194 randomly selected CWSs that analyzed samples for MTBE at any reporting level, and it was detected in 7.8 percent of the 1,074 CWSs that provided MTBE data at the 1.0-?g/L (microgram per liter) reporting level. As with other VOCs reported in drinking water, most MTBE concentrations were less than 5.0 ?g/L, and less than 1 percent of CWSs reported MTBE concentrations at or above the 20.0-?g/L lower limit recommended by the U.S. Environmental Protection Agency?s Drinking-Water Advisory. The frequency of MTBE detections in drinking water is significantly related to high- MTBE-use patterns. Detections are five times more likely in areas where MTBE is or has been used in gasoline at greater than 5 percent by volume as part of the oxygenated or reformulated (OXY/RFG) fuels program. Detection frequencies of the individual gasoline compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX)) were mostly less than 3 percent of the randomly selected CWSs, but collectively, BTEX compounds were detected in 8.4 percent of CWSs. BTEX concentrations also were low and just three drinkingwater samples contained BTEX at concentrations exceeding 20 ?g/L. Co-occurrence of MTBE and BTEX was rare, and only 0.8 percent of CWSs reported simultaneous detections of MTBE and BTEX compounds. Low concentrations and cooccurrence of MTBE and BTEX indicate most gasoline contaminants in drinking water probably represent nonpoint sources. Solvents were frequently detected in drinking water in the 12-State area. One or more of 27 individual solvent VOCs were detected at any reporting level in 3,080 drinking-water samples from 304 randomly selected CWSs (14 percent) and in 206 CWSs (9.8 percent) at concentrations at or above 1.0 ?g/L. High co-occurrence among solvents probably reflects common sources and the presence of transformation by-products. Other VOCs were relatively rarely detected in drinking water in the 12-State area. Six percent (127) of the 2,110 randomly selected CWSs reported concentrations of 16 VOCs at or above drinking-water criteria. The 127 CWSs collectively serve 2.6 million people. The occurrence of VOCs in drinking water was significantly associated (p<0.0001) with high population- density urban areas. New Jersey, Massachusetts, and Rhode Island, States with substantial urbanization and high population density, had the highest frequency of VOC detections among the 12 States. More than two-thirds of the randomly selected CWSs in New Jersey reported detecting VOC concentrations in drinking water at or above 1
Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.
Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B
1997-06-01
Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.
This work will complete work began under Identifying and Predicting Plume Diving Behavior at Groundwater Sites Containing MTBE: Part 1. As of September 2001, ORD Staff and ORD Contractors have characterized dividing MTBE plumes at Spring Green, Wisconsin; Milford, Michigan; and ...
Radiocarbon (14C) measurements provide an estimate of the fraction of carbon in a sample that is biogenic. In September 1997 during SCOS97 a series of 3-h canister samples of ambient air were collected at the Azusa air monitoring station during morning and afternoon periods. ...
Trends in groundwater quality in principal aquifers of the United States, 1988-2012
Lindsey, Bruce D.; Rupert, Michael G.
2014-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program analyzed trends in groundwater quality throughout the nation for the sampling period of 1988-2012. Trends were determined for networks (sets of wells routinely monitored by the USGS) for a subset of constituents by statistical analysis of paired water-quality measurements collected on a near-decadal time scale. The data set for chloride, dissolved solids, and nitrate consisted of 1,511 wells in 67 networks, whereas the data set for methyl tert-butyl ether (MTBE) consisted of 1, 013 wells in 46 networks. The 25 principal aquifers represented by these networks account for about 75 percent of withdrawals of groundwater used for drinking-water supply for the nation. Statistically significant changes in chloride, dissolved-solids, or nitrate concentrations were found in many well networks over a decadal period. Concentrations increased significantly in 48 percent of networks for chloride, 42 percent of networks for dissolved solids, and 21 percent of networks for nitrate. Chloride, dissolved solids, and nitrate concentrations decreased significantly in 3, 3, and 10 percent of the networks, respectively. The magnitude of change in concentrations was typically small in most networks; however, the magnitude of change in networks with statistically significant increases was typically much larger than the magnitude of change in networks with statistically significant decreases. The largest increases of chloride concentrations were in urban areas in the northeastern and north central United States. The largest increases of nitrate concentrations were in networks in agricultural areas. Statistical analysis showed 42 or the 46 networks had no statistically significant changes in MTBE concentrations. The four networks with statistically significant changes in MTBE concentrations were in the northeastern United States, where MTBE was widely used. Two networks had increasing concentrations, and two networks had decreasing concentrations. Production and use of MTBE peaked in about 2000 and has been effectively banned in many areas since about 2006. The two networks that had increasing concentrations were sampled for the second time close to the peak of MTBE production, whereas the two networks that had decreasing concentrations were sampled for the second time 10 years after the peak of MTBE production.
Benzene and MTBE Sorption in Fine Grain Sediments
NASA Astrophysics Data System (ADS)
Leal-Bautista, R. M.; Lenczewski, M. E.
2003-12-01
The practice of adding methyl tert-butyl ether (MTBE) to gasoline started in the late 1970s and increased dramatically in the 1990s. MTBE first was added as a substitute for tetra-ethyl lead then later as a fuel oxygenate. Although the use of MTBE has resulted in significant reduction in air pollution, it has become a significant groundwater contaminant due to its high solubility in water, high environmental mobility, and low potential for biodegradation. A recent report (1999-2001) by the Metropolitan Water District of Southern California in collaboration with United State Geological Survey and the Oregon Health and Science University found that MTBE was the second most frequent detected volatile organic compound in groundwater. In Illinois, MTBE has been found in 26 of the 1,800 public water supplies. MTBE has also been blended in Mexico into two types of gasoline sold in the country by the state oil company (PEMEX) but is not monitored in groundwater at this time. Early research on MTBE considered it unable to adsorb to soils and sediments, however, by increasing the organic matter and decreasing the size of the grains (silts or clays) this may increase sorption. The objective of this study is to determine if fine grained materials have the potential for sorption of MTBE due to its high specific surface area (10-700 m 2/g) and potentially high organic matter (0.5-3.8%). The experiment consisted of sorption isotherms to glacial tills from DeKalb, Illinois and lacustrine clays from Chalco, Mexico. Experiments were performed with various concentrations of MTBE and benzene (10, 50, 100, 500 and 1000 ug/L) at 10° C and 25° C. Results showed a range of values for the distribution coefficient (Kd, linear model). At 10° C the Kd value for MTBE was 0.187 mL/g for lacustrine clay while the glacial loess had a value of 0.009 mL/g. The highest Kd values with MTBE were 0.2859 mL/g for organic rich lacustrine clays and 0.014 mL/g for glacial loess at 25° C. The highest values with benzene were 0.323 mL/g for organic rich lacustrine clays and 0.119 mL/g for glacial loess at 10° C. At 25° C the organic rich lacustrine clays the Kd value was 0.332 mL/g, while Kd value for glacial loess was 0.114 mL/g. Sands with no organic matter (Ottawa sand) had a value of < 0.001 mL/g for both temperatures 25° C and 10° C and both organic compounds. The retardation factor (R) for MTBE was 1.559 at 10° C and 1.855 at 25° C for lacustrine clays; while the glacial tills R was 1.058 at 10° C and 1.095 at 25° C. The retardation factor for benzene was 1.967 at 10° C and 1.996 at 25° C for lacustrine clays; while the glacial tills R was 1.039 at 10° C and 1.037 at 25° C. These results indicate higher retardation values than previously determined for a clayey sand; therefore show that sorption can occur in fine grain materials especially with high organic matter. This study contributes to the understanding of the sorption of MTBE and improves the knowledge to implement the optimal remediation method for sites contaminated by MTBE.
Volatile organic compounds in stormwater from a community of Beijing, China.
Li, Haiyan; Wang, Youshu; Liu, Fei; Tong, Linlin; Li, Kun; Yang, Hua; Zhang, Liang
2018-08-01
Stormwater samples were collected from six different land use sites with three time-intervals during a precipitation event on August 12, 2016, from a community of Beijing, China. A total of 46 species volatile organic compounds (VOCs) were detected in these stormwater samples, including methyl tertiary-butyl ether (MTBE), aromatic hydrocarbons, halogenated aromatics, Halogenated alkanes, and alkenes. The total VOC concentrations varied in the six sites following order: highway junction > city road > gas station > park > campus > residential area, except for MTBE, which was much higher at gas station compared to other land use sites. ANOVA results indicated both land use and precipitation time intervals could significantly affect the VOC concentrations even in the small area. The Beijing atmospheric VOC concentrations were too low to explain the high concentrations in stormwater, suggesting that land surfaces may be the main sources of VOC other than the ambient atmosphere. MTBE and other VOCs correlation analysis indicated that MTBE mostly came from gasoline emissions, spills or vehicle exhausts, whereas the BTEX (benzene, toluene, ethylbenzene, Xylenes) and the halogenated aromatics were transferred from chemical plants through land surfaces accumulating and the wind blowing atmospheric VOCs. Xylenes/ethylbenzene (X/E) ratios variations indicated that stormwater incorporated larger amount of fresh emitted air during the precipitation event than prior to it. Information of these stormwater VOCs in this study could be used in the community pollution reduction strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Iran plans huge private sector MTBE plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alperowicz, N.
1992-01-15
An export-oriented 1-million m.t./year methyl tert-butyl ether (MTBE) plant is planned as one of Iran`s private sector investment projects. State-owned National Petrochemical Co (NPC; Tehran) and the Dubai-based Iranian businessman Abdul Wahab Galadari have signed a letter of intent allowing Galadari to develop the venture. Colt Engineering (Calgary, AL) is assisting Galadari with costs, planning and technology selection for the estimated $300-million plus venture. An important meeting with NPC is scheduled end of this month, says Galadari, and a financial package should be put together by end of March or April. The facility will most likely be wholly-owned by themore » Galadari family, roughly 50% by members resident in Iran and the remainder by the Dubai-based concern A.W. Galadari Sons. NPC says it may take a token shareholding in the venture.« less
Schäfer, Franziska; Muzica, Liudmila; Schuster, Judith; Treuter, Naemi; Rosell, Mònica; Harms, Hauke; Müller, Roland H.; Rohwerder, Thore
2011-01-01
Bacterial degradation pathways of fuel oxygenates such as methyl tert-butyl and tert-amyl methyl ether (MTBE and TAME, respectively) have already been studied in some detail. However, many of the involved enzymes are still unknown, and possible side reactions have not yet been considered. In Aquincola tertiaricarbonis L108, Methylibium petroleiphilum PM1, and Methylibium sp. strain R8, we have now detected volatile hydrocarbons as by-products of the degradation of the tert-alkyl ether metabolites tert-butyl and tert-amyl alcohol (TBA and TAA, respectively). The alkene isobutene was formed only during TBA catabolism, while the beta and gamma isomers of isoamylene were produced only during TAA conversion. Both tert-alkyl alcohol degradation and alkene production were strictly oxygen dependent. However, the relative contribution of the dehydration reaction to total alcohol conversion increased with decreasing oxygen concentrations. In resting-cell experiments where the headspace oxygen content was adjusted to less than 2%, more than 50% of the TAA was converted to isoamylene. Isobutene formation from TBA was about 20-fold lower, reaching up to 4% alcohol turnover at low oxygen concentrations. It is likely that the putative tert-alkyl alcohol monooxygenase MdpJ, belonging to the Rieske nonheme mononuclear iron enzymes and found in all three strains tested, or an associated enzymatic step catalyzed the unusual elimination reaction. This was also supported by the detection of mdpJK genes in MTBE-degrading and isobutene-emitting enrichment cultures obtained from two treatment ponds operating at Leuna, Germany. The possible use of alkene formation as an easy-to-measure indicator of aerobic fuel oxygenate biodegradation in contaminated aquifers is discussed. PMID:21742915
The atmosphere can be a source of certain water soluble volatile organic compounds in urban streams
Kenner, Scott J.; Bender, David A.; Zogorski, John S.; ,; James F. Pankow,
2014-01-01
Surface water and air volatile organic compound (VOC) data from 10 U.S. Geological Survey monitoring sites were used to evaluate the potential for direct transport of VOCs from the atmosphere to urban streams. Analytical results of 87 VOC compounds were screened by evaluating the occurrence and detection levels in both water and air, and equilibrium concentrations in water (Cws) based on the measured air concentrations. Four compounds (acetone, methyl tertiary butyl ether, toluene, and m- & p-xylene) were detected in more than 20% of water samples, in more than 10% of air samples, and more than 10% of detections in air were greater than long-term method detection levels (LTMDL) in water. Benzene was detected in more than 20% of water samples and in more than 10% of air samples. Two percent of benzene detections in air were greater than one-half the LTMDL in water. Six compounds (chloroform, p-isopropyltoluene, methylene chloride, perchloroethene, 1,1,1-trichloroethane, and trichloroethene) were detected in more than 20% of water samples and in more than 10% of air samples. Five VOCs, toluene, m- & p-xylene, methyl tert-butyl ether (MTBE), acetone, and benzene were identified as having sufficiently high concentrations in the atmosphere to be a source to urban streams. MTBE, acetone, and benzene exhibited behavior that was consistent with equilibrium concentrations in the atmosphere.
Biodegradation of MTBE by indigenous aquifer microorganisms under artificial oxic conditions
Landmeyer, J.E.; Bradley, P.M.
2001-01-01
The hypothesis that artificial oxic conditions will lead to MTBE biodegradation by indigenous microorganisms in anoxic, gasoline-contaminated aquifers was examined by adding oxygen in the form of a metal peroxide slurry to an anoxic part of gasoline-contaminated aquifer in South Carolina. Field observations of relatively rapid aerobic MTBE biodegradation following oxygen addition suggest that the indigenous bacteria have become acclimated not only to mg/L concentrations of MTBE in the gasoline plume, but also to periodic delivery of oxygen by recharge events. Significant natural attenuation of MTBE could occur if the oxygen limitations naturally associated with gasoline releases can be removed, either under natural conditions where discharging anoxic groundwater comes into contact with oxygen, or artificial conditions where oxygen can be added to aquifers containing mg/L concentrations of MTBE. This final solution might be an effective strategy for intercepting characteristically long MTBE plumes, particularly at sites not characterized by groundwater discharge to land surface. This is an abstract of a paper presented at the 222nd ACS National Meting (Chicago, IL 8/26-30/2001).
Patel, Lara A; Kindt, James T
2017-03-14
We introduce a global fitting analysis method to obtain free energies of association of noncovalent molecular clusters using equilibrated cluster size distributions from unbiased constant-temperature molecular dynamics (MD) simulations. Because the systems simulated are small enough that the law of mass action does not describe the aggregation statistics, the method relies on iteratively determining a set of cluster free energies that, using appropriately weighted sums over all possible partitions of N monomers into clusters, produces the best-fit size distribution. The quality of these fits can be used as an objective measure of self-consistency to optimize the cutoff distance that determines how clusters are defined. To showcase the method, we have simulated a united-atom model of methyl tert-butyl ether (MTBE) in the vapor phase and in explicit water solution over a range of system sizes (up to 95 MTBE in the vapor phase and 60 MTBE in the aqueous phase) and concentrations at 273 K. The resulting size-dependent cluster free energy functions follow a form derived from classical nucleation theory (CNT) quite well over the full range of cluster sizes, although deviations are more pronounced for small cluster sizes. The CNT fit to cluster free energies yielded surface tensions that were in both cases lower than those for the simulated planar interfaces. We use a simple model to derive a condition for minimizing non-ideal effects on cluster size distributions and show that the cutoff distance that yields the best global fit is consistent with this condition.
Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut
2004-01-01
In October 2003, the Energy Information Administration (EIA) published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) that noted significant uncertainties in gasoline supply for those states for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two states over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline.
NASA Astrophysics Data System (ADS)
Venosa, A. D.
2002-09-01
This Innovative Technology Evaluation Report documents the results of a demonstration of the high-energy electron injection (E-Beam) technology in application to groundwater contaminated with methyl t-butyl ether (MtBE) and with benzene, toluene, ethylbenzene, and xylenes (BTEX). The E-beam technology destroys organic contaminants in groundwater through irradiation with a beam of high-energy electrons. The demonstration was conducted at the Naval Base Ventura County (NBVC) in Port Hueneme, California.
1999-10-01
722939/19.xls Table 2.4 2-40 s:\\es\\wp\\projects\\733939\\18.doc of an anaerobic aquifer contaminated by landfill leachate (Table 2.3). After a 182-day...degradation was not observed in soils from a leachate -contaminated aquifer, a gasoline- contaminated aquifer, or sediment from a creek in Cincinnati...attenuation processes for the field conditions. As well, a study of the phytoremediation potential of the site showed that the plants in the study
Influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue.
López-Bascón, M A; Calderón-Santiago, M; Sánchez-Ceinos, J; Fernández-Vega, A; Guzmán-Ruiz, R; López-Miranda, J; Malagon, M M; Priego-Capote, F
2018-01-15
The main limitations of lipidomics analysis are the chemical complexity of the lipids, the range of concentrations at which they exist, and the variety of samples usually analyzed. These limitations particularly affect the characterization of polar lipids owing to the interference of neutral lipids, essentially acylglycerides, which are at high concentration and suppress ionization of low concentrated lipids in mass spectrometry detection. The influence of sample preparation on lipidomics analysis of polar lipids in adipose tissue by LC-MS/MS was the aim of this research. Two common extractants used for lipids isolation, methanol:chloroform (MeOH:CHCl 3 ) and methyl tert-butyl ether (MTBE), were qualitatively and quantitatively compared for the extraction of the main families of lipids. The obtained results showed that each family of lipids is influenced differently by the extractant used. However, as a general trend, the use of MTBE as extractant led to higher extraction efficiency for unsaturated fatty acids, glycerophospholipids and ceramides, while MeOH:CHCl 3 favored the isolation of saturated fatty acids and plasmalogens. The implementation of a solid-phase extraction (SPE) step for selective isolation of glycerophospholipids prior to LC-MS/MS analysis was assayed to evaluate its influence on lipids detection coverage as compared to direct analysis. This step was critical to enhance the detection coverage of glycerophospholipids by removal of ionization suppression effects caused by acylglycerides. Copyright © 2017 Elsevier B.V. All rights reserved.
Biodegradation of MTBE by indigenous aquifer microorganisms under artificial oxic conditions
Landmeyer, J.E.; Bradley, P.M.
2001-01-01
Oxygen in the form of a metal peroxide slurry (MgO2 and water) was added to an anoxic part of a gasoline-contaminated aquifer in South Carolina to test the hypothesis that artificial oxic conditions will lead to MTBE biodegradation by indigenous microorganisms in anoxic, gasoline-contaminated aquifers. The slurry slowly released dissolved oxygen upon hydrolysis with groundwater, and was a proprietary mixture consisting of ??? 25-35 wt % MgO2. Significant natural attenuation of MTBE could occur if the oxygen limitations naturally associated with gasoline releases could be removed, either under natural conditions where discharging anoxic groundwater comes into contact with oxygen, or artificial conditions where oxygen could be added to aquifers containing milligram per liter concentrations of MTBE. This final solution might be an effective strategy for intercepting characteristically long MTBE plumes, particularly at those sites not characterized by groundwater discharge to land surface.
Farobie, Obie; Matsumura, Yukihiko
2017-10-01
In this study, biodiesel production by using supercritical methyl acetate in a continuous flow reactor was investigated for the first time. The aim of this study was to elucidate the reaction kinetics of biodiesel production by using supercritical methyl. Experiments were conducted at various reaction temperatures (300-400°C), residence times (5-30min), oil-to-methyl acetate molar ratio of 1:40, and a fixed pressure of 20MPa. Reaction kinetics of biodiesel production with supercritical methyl acetate was determined. Finally, biodiesel yield obtained from this method was compared to that obtained with supercritical methanol, ethanol, and MTBE (methyl tertiary-butyl ether). The results showed that biodiesel yield with supercritical methyl acetate increased with temperature and time. The developed kinetic model was found to fit the experimental data well. The reactivity of supercritical methyl acetate was the lowest, followed by that of supercritical MTBE, ethanol, and methanol, under the same conditions. Copyright © 2017. Published by Elsevier Ltd.
Schmidt, Radomir; Klemme, David A; Scow, Kate; Hristova, Krassimira
2012-03-30
A pilot-scale sand-based fluidized bed bioreactor (FBBR) was utilized to treat both methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) from a contaminated aquifer. To evaluate the potential for re-use of the treated water, we tested for a panel of water quality indicator microorganisms and potential waterborne pathogens including total coliforms, Escherichia coli, Salmonella and Shigella spp., Campylobacter jejuni, Aeromonas hydrophila, Legionella pneumophila, Vibrio cholerae, Yersinia enterocolytica and Mycobacterium avium in both influent and treated waters from the bioreactor. Total bacteria decreased during FBBR treatment. E. coli, Salmonella and Shigella spp., C. jejuni, V. cholerae, Y. enterocolytica and M. avium were not detected in aquifer water or bioreactor treated water samples. For those pathogens detected, including total coliforms, L. pneumophila and A. hydrophila, numbers were usually lower in treated water than influent samples, suggesting removal during treatment. The detection of particular bacterial species reflected their presence or absence in the influent waters. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Jing; Drane, Wanzer; Liu, Xuefeng; Wu, Tiejian
2009-01-01
This study was to explore the relationships between personal exposure to ten volatile organic compounds (VOCs) and biochemical liver tests with the application of canonical correlation analysis. Data from a subsample of the 1999–2000 National Health and Nutrition Examination Survey were used. Serum albumin, total bilirubin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and γ-glutamyl transferase (GGT) served as the outcome variables. Personal exposures to benzene, chloroform, ethylbenzene, tetrachloroethene, toluene, trichloroethene, o-xylene, m-, p-xylene, 1,4-dichlorobenzene, and methyl tert-butyl ether (MTBE) were assessed through the use of passive exposure monitors worn by study participants. The first two canonical correlations were 0.3218 and 0.2575, suggesting a positive correlation mainly between the six VOCs (benzene, ethylbenzene, toluene, o-xylene, m-, p-xylene, and MTBE) and the three biochemical liver tests (albumin, ALP, and GGT) and a positive correlation mainly between the two VOCs (1,4-dichlorobenzene and tetrachloroethene) and the two biochemical liver tests (LDH and TB). Subsequent multiple linear regressions show that exposure to benzene, toluene, or MTBE was associated with serum albumin, while exposure to tetrachloroethene was associated with LDH and total bilirubin. In conclusion, exposure to certain VOCs as a group or individually may influence certain biochemical liver test results in the general population. PMID:19117555
Liu, Jing; Drane, Wanzer; Liu, Xuefeng; Wu, Tiejian
2009-02-01
This study was to explore the relationships between personal exposure to 10 volatile organic compounds (VOCs) and biochemical liver tests with the application of canonical correlation analysis. Data from a subsample of the 1999-2000 National Health and Nutrition Examination Survey were used. Serum albumin, total bilirubin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT) served as the outcome variables. Personal exposures to benzene, chloroform, ethylbenzene, tetrachloroethene, toluene, trichloroethene, o-xylene, m-,p-xylene, 1,4-dichlorobenzene, and methyl tert-butyl ether (MTBE) were assessed through the use of passive exposure monitors worn by study participants. The first two canonical correlations were 0.3218 and 0.2575, suggesting a positive correlation mainly between the six VOCs (benzene, ethylbenzene, toluene, o-xylene, m-,p-xylene, and MTBE) and the three biochemical liver tests (albumin, ALP, and GGT) and a positive correlation mainly between the two VOCs (1,4-dichlorobenzene and tetrachloroethene) and the two biochemical liver tests (LDH and TB). Subsequent multiple linear regressions show that exposure to benzene, toluene, or MTBE was associated with serum albumin, while exposure to tetrachloroethene was associated with LDH and total bilirubin. In conclusion, exposure to certain VOCs as a group or individually may influence certain biochemical liver test results in the general population.
Baehr, Arthur L.; Zapecza, Otto S.
1998-01-01
Oxygenated gasoline is used in watercraft on lakes across northern New Jersey. Many of these lakes are surrounded by communities similar to those at Cranberry Lake and at Lake Lackawanna, which depend largely on wells for water supply. Therefore, a regional assessment of the occurrence of these compounds in lakes and ground water is needed to determine the effect of the use of oxygenated gasoline on water quality in lakeside environments throughout northern New Jersey
Benson, Janet M.; Gigliotti, Andrew P.; March, Thomas H.; Barr, Edward B.; Tibbetts, Brad M.; Skipper, Betty J.; Clark, Charles R.; Twerdok, Lorraine
2011-01-01
Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m3 for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints. PMID:21432714
Benson, Janet M; Gigliotti, Andrew P; March, Thomas H; Barr, Edward B; Tibbetts, Brad M; Skipper, Betty J; Clark, Charles R; Twerdok, Lorraine
2011-01-01
Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m³ for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints.
Health effects of oxygenated fuels.
Costantini, M G
1993-01-01
The use of oxygenated fuels is anticipated to increase over the next decades. This paper reviews the toxicological and exposure information for methyl tertiary-butyl ether (MTBE), a fuel additive, and methanol, a replacement fuel, and discusses the possible health consequences of exposure of the general public to these compounds. For MTBE, the health effects information available is derived almost exclusively from rodent studies, and the exposure data are limited to a few measurements at some service stations. Based on these data, it appears unlikely that the normal population is at high risk of exposure to MTBE vapor. However, in the absence of health and pharmacokinetic data in humans or in nonhuman primates, this conclusion is not strongly supported. Similarly, there are a number of uncertainties to take into consideration in estimating human risk from the use of methanol as a fuel. Although methanol may be toxic to humans at concentrations that overwhelm certain enzymes involved in methanol metabolism, the data available provide little evidence to indicate that exposure to methanol vapors from the use of methanol as a motor vehicle fuel will result in adverse health effects. The uncertainties in this conclusion are based on the lack of information on dose-response relationship at reasonable, projected exposure levels and of studies examining end points of concern in sensitive species. In developing a quantitative risk assessment, more needs to be known about health effects in primates or humans and the range of exposure expected for the general public for both compounds. PMID:8020439
Health assessment of gasoline and fuel oxygenate vapors: developmental toxicity in rats.
Roberts, Linda G; Gray, Thomas M; Trimmer, Gary W; Parker, Robert M; Murray, F Jay; Schreiner, Ceinwen A; Clark, Charles R
2014-11-01
Gasoline-vapor condensate (BGVC) or condensed vapors from gasoline blended with methyl t-butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME) diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA) were evaluated for developmental toxicity in Sprague-Dawley rats exposed via inhalation on gestation days (GD) 5-20 for 6h/day at levels of 0 (control filtered air), 2000, 10,000, and 20,000mg/m(3). These exposure durations and levels substantially exceed typical consumer exposure during refueling (<1-7mg/m(3), 5min). Dose responsive maternal effects were reduced maternal body weight and/or weight change, and/or reduced food consumption. No significant malformations were seen in any study. Developmental effects occurred at 20,000mg/m(3) of G/TAME (reduced fetal body weight, increased incidence of stunted fetuses), G/TBA (reduced fetal body weight, increased skeletal variants) and G/DIPE (reduced fetal weight) resulting in developmental NOAEL of 10,000mg/m(3) for these materials. Developmental NOAELs for other materials were 20,000mg/m(3) as no developmental toxicity was induced in those studies. Developmental NOAELs were equal to or greater than the concurrent maternal NOAELs which ranged from 2000 to 20,000mg/m(3). There were no clear cut differences in developmental toxicity between vapors of gasoline and gasoline blended with the ether or alcohol oxygenates. Copyright © 2014 Elsevier Inc. All rights reserved.
Mukhopadhyay, Tufan K; MacLean, Nicholas L; Flores, Marco; Groy, Thomas L; Trovitch, Ryan J
2018-05-21
We report the preparation and electronic structure determination of chelate-reduced Mn(I) compounds that are relevant to electrocatalytic proton reduction mediated by [( Ph2PPr PDI)Mn(CO)][Br]. Reducing [( Ph2PPr PDI)Mn(CO)][Br] with excess Na-Hg afforded a neutral paramagnetic complex, ( Ph2PPr PDI)Mn(CO). This compound was found to feature a low spin Mn(I) center and a PDI radical anion as determined by magnetic susceptibility measurement (1.97 μ B ), EPR spectroscopy ( S = 1 / 2 ), and density functional theory calculations. When [( Ph2PPr PDI)Mn(CO)][Br] was reduced with K-Hg, Mn(I) complexes with highly activated CO ligands were obtained. Recrystallization of the reduced product from diethyl ether solution allowed for the isolation of dimeric [(κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 1 ,η 2 -CO)K(Et 2 O)] 2 (ν CO = 1710 cm -1 , 1656 cm -1 ), while methyl tert-butyl ether treatment afforded dimeric [(κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 1 -CO)K(MTBE) 2 ] 2 (ν CO = 1695 cm -1 , MTBE = methyl tert-butyl ether). Addition of 18-crown-6 to these products, or conducting the K-Hg reduction of [( Ph2PPr PDI)Mn(CO)][Br] in the presence of 18-crown-6, allowed for the isolation of a monomeric example, (κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 2 -CO)K(18-crown-6) (ν CO = 1697 cm -1 ). All three complexes were found to be diamagnetic and were characterized thoroughly by multinuclear 1D and 2D NMR spectroscopy and single crystal X-ray diffraction. Detailed analysis of the metrical parameters and spectroscopic properties suggest that all three compounds possess a Mn(I) center that is supported by a PDI dianion. Importantly, (κ 4 - Ph2PPr PDI)Mn(μ-η 1 ,η 2 -CO)K(18-crown-6) was found to react instantaneously with either HBF 4 ·OEt 2 or HOTf to evolve H 2 and generate the corresponding Mn(I) complex, [( Ph2PPr PDI)Mn(CO)][BF 4 ] or [( Ph2PPr PDI)Mn(CO)][OTf], respectively. These products are spectroscopically and electrochemically similar to previously reported [( Ph2PPr PDI)Mn(CO)][Br]. It is believed that the mechanism of [( Ph2PPr PDI)Mn(CO)][Br]-mediated proton reduction involves intermediates that are related to the compounds described herein and that their ambient temperature isolation is aided by the redox active nature of Ph2PPr PDI.
Health assessment of gasoline and fuel oxygenate vapors: neurotoxicity evaluation.
O'Callaghan, James P; Daughtrey, Wayne C; Clark, Charles R; Schreiner, Ceinwen A; White, Russell
2014-11-01
Sprague-Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from "baseline gasoline" (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000mg/mg(3) and exposures were for 6h/day, 5days/week for 13weeks. The functional observation battery (FOB) with the addition of motor activity (MA) testing, hematoxylin and eosin staining of brain tissue sections, and brain regional analysis of glial fibrillary acidic protein (GFAP) were used to assess behavioral changes, traditional neuropathology and astrogliosis, respectively. FOB and MA data for all agents, except G/TBA, were negative. G/TBA behavioral effects resolved during recovery. Neuropathology was negative for all groups. Analyses of GFAP revealed increases in multiplebrain regions largely limited to males of the G/EtOH group, findings indicative of minor gliosis, most significantly in the cerebellum. Small changes (both increases and decreases) in GFAP were observed for other test agents but effects were not consistent across sex, brain region or exposure concentration. Copyright © 2014 Elsevier Inc. All rights reserved.
Health assessment of gasoline and fuel oxygenate vapors: Neurotoxicity evaluation
O’Callaghan, James P.; Daughtrey, Wayne C.; Clark, Charles R.; Schreiner, Ceinwen A.; White, Russell
2016-01-01
Sprague–Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from “baseline gasoline” (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrations were 0, 2000, 10,000 or 20,000 mg/mg3 and exposures were for 6 h/day, 5 days/week for 13 weeks. The functional observation battery (FOB) with the addition of motor activity (MA) testing, hematoxylin and eosin staining of brain tissue sections, and brain regional analysis of glial fibrillary acidic protein (GFAP) were used to assess behavioral changes, traditional neuropathology and astrogliosis, respectively. FOB and MA data for all agents, except G/TBA, were negative. G/TBA behavioral effects resolved during recovery. Neuropathology was negative for all groups. Analyses of GFAP revealed increases in multiple brain regions largely limited to males of the G/EtOH group, findings indicative of minor gliosis, most significantly in the cerebellum. Small changes (both increases and decreases) in GFAP were observed for other test agents but effects were not consistent across sex, brain region or exposure concentration. PMID:24879970
Lico, M.S.
2004-01-01
On June 1, 1999, carbureted two-stroke engines were banned on waters within the Lake Tahoe Basin of California and Nevada. The main gasoline components MTBE (methyl tert-butyl ether) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were present at detectable concentrations in all samples taken from Lake Tahoe during 1997-98 prior to the ban. Samples taken from 1999 through 2001 after the ban contained between 10 and 60 percent of the pre-ban concentrations of these compounds, with MTBE exhibiting the most dramatic change (a 90 percent decrease). MTBE and BTEX concentrations in water samples from Lake Tahoe and Lower Echo Lake were related to the amount of boat use at the sampling sites. Polycyclic aromatic hydrocarbon (PAH) compounds are produced by high-temperature pyrolytic reactions. They were sampled using semipermeable membrane sampling devices in Lake Tahoe and nearby Donner Lake, where carbureted two-stroke engines are legal. PAHs were detected in all samples taken from Lake Tahoe and Donner Lake. The number of PAH compounds and their concentrations are related to boat use. The highest concentrations of PAH were detected in samples from two heavily used boating areas, Tahoe Keys Marina and Donner Lake boat ramp. Other sources of PAH, such as atmospheric deposition, wood smoke, tributary streams, and automobile exhaust do not contribute large amounts of PAH to Lake Tahoe. Similar numbers of PAH compounds and concentrations were found in Lake Tahoe before and after the ban of carbureted two-stroke engines. ?? by the North American Lake Management Society 2004.
An ex situ evaluation of TBA- and MTBE-baited bio-traps.
North, Katharine P; Mackay, Douglas M; Annable, Michael D; Sublette, Kerry L; Davis, Greg; Holland, Reef B; Petersen, Daniel; Scow, Kate M
2012-08-01
Aquifer microbial communities can be investigated using Bio-traps(®) ("bio-traps"), passive samplers containing Bio-Sep(®) beads ("bio-beads") that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are "baited" with organic contaminants enriched in (13)C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically "sample" about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4-5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE-baited bio-traps could be baited at lower initial total mass loading with no detriment to trapping ability. The bio-traps were able to collect detectable amounts of microbial DNA and thus allow some insight into the sparse microbial community present in the aquifer during remediation of the low concentration plume. Copyright © 2012 Elsevier Ltd. All rights reserved.
An ex situ evaluation of TBA- and MTBE-baited bio-traps
North, Katharine P.; Mackay, Douglas M.; Annable, Michael D.; Sublette, Kerry L.; Davis, Greg; Holland, Reef B.; Petersen, Daniel; Scow, Kate M.
2013-01-01
Aquifer microbial communities can be investigated using Bio-traps® (“bio-traps”), passive samplers containing Bio-Sep® beads (“bio-beads”) that are deployed in monitoring wells to be colonized by bacteria delivered via groundwater flow through the well. When bio-beads are “baited” with organic contaminants enriched in 13C, stable isotope probing allows assessment of the composition and activity of the microbial community. This study used an ex situ system fed by groundwater continuously extracted from an adjacent monitoring well within an experimentally-created aerobic zone treating a tert-butyl alcohol (TBA) plume. The goal was to evaluate aspects of bio-trap performance that cannot be studied quantitatively in situ. The measured groundwater flow through a bio-trap housing suggests that such traps might typically “sample” about 1.8 L per month. The desorption of TBA or methyl tert-butyl ether (MTBE) bait from bio-traps during a typical deployment duration of 6 weeks was approximately 90% and 45%, respectively, of the total initial bait load, with initially high rate of mass loss that decreased markedly after a few days. The concentration of TBA in groundwater flowing by the TBA-baited bio-beads was estimated to be as high as 3400 mg/L during the first few days, which would be expected to inhibit growth of TBA-degrading microbes. Initial inhibition was also implied for the MTBE-baited bio-trap, but at lower concentrations and for a shorter time. After a few days, concentrations in groundwater flowing through the bio-traps dropped below inhibitory concentrations but remained 4–5 orders of magnitude higher than TBA or MTBE concentrations within the aquifer at the experimental site. Desorption from the bio-beads during ex situ deployment occurred at first as predicted by prior sorption analyses of bio-beads but with apparent hysteresis thereafter, possibly due to mass transfer limitations caused by colonizing microbes. These results suggest that TBA- or MTBE-baited bio-traps could be baited at lower initial total mass loading with no detriment to trapping ability. The bio-traps were able to collect detectable amounts of microbial DNA and thus allow some insight into the sparse microbial community present in the aquifer during remediation of the low concentration plume. PMID:22621895
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, D.W.; Marchetti, A.A.
2001-10-01
Many studies have shown that the addition of oxygen bearing compounds to diesel fuel can significantly reduce particulate emissions. To assist in the evaluation of the environmental performance of diesel-fuel oxygenates, we have implemented a suite of diagnostic models for simulating the transport of compounds released to air, water, and soils/groundwater as well as regional landscapes. As a means of studying the comparative performance of DBM and TGME, we conducted a series of simulations for selected environmental media. Benzene and methyl tertiary butyl ether (MTBE) were also addressed because they represent benchmark fuel-related compounds that have been the subject ofmore » extensive environmental measurements and modeling. The simulations showed that DBM and TGME are less mobile in soil because of reduced vapor-phase transport and increased retention on soil particles. The key distinction between these two oxygenates is that DBM is predicted to have a greater potential than TGME for aerobic biodegradation, based on chemical structure.« less
Cajka, Tomas; Fiehn, Oliver
2017-01-01
This protocol describes the analysis, specifically the identification, of blood plasma lipids. Plasma lipids are extracted using methyl tert-butyl ether (MTBE), methanol, and water followed by separation and data acquisition of isolated lipids using reversed-phase liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry (RPLC-QTOFMS) operated in MS/MS mode. For lipid identification, acquired MS/MS spectra are converted to the mascot generic format (MGF) followed by library search using the in-silico MS/MS library LipidBlast. Using this approach, lipid classes, carbon-chain lengths, and degree of unsaturation of fatty-acid components are annotated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-12-31
The report H.R. 1589 is a bill to amend the Clean Air Act to authorize the Administrator of the Environmental Protection Agency to grant a waiver of the oxygenated fuels requirement. The use of methy tertiary butyl ether oxygenated fuels is referred to as M-T-B-E oxygenated fuels and at issue is a risk assessment of the health hazards of these ethanol fuels, particularly at low temperatures.
SIRT1 exhibits antioxidative effects in HT22 cells induced by tert-butyl alcohol.
Ma, Junxiang; Song, Dongmei; Zhang, Yuanyuan; Chen, Li; Zhang, Shixuan; Jia, Jiaxin; Chen, Tian; Guo, Caixia; Tian, Lin; Gao, Ai; Niu, Piye
2018-02-01
Tertiary butyl alcohol (TBA) is a principal metabolite of methyl tertiary-butyl ether (MTBE), a common pollutant worldwide in the ground or underground water, which is found to produce nervous system damage. Nevertheless, few data regarding the effects of TBA has been reported. Studies indicated that oxidative stress plays a pivotal role in MTBE neurotoxic mechanism. Sirtuin 1 (SIRT1) has been reported to exert a neuroprotective effect on various neurologic diseases via resistance to oxidative stress by deacetylating its substrates. In this study, we examined levels of oxidative stress after exposure to TBA for 6 h in HT22 cells and HT22 cells with SIRT1 silencing (transfected with SIRT1 siRNA) or high expression (preconditioned with agonists SRT1720). We found that TBA activated oxidative stress by increasing generation of intracellular reactive oxygen species (ROS), malondialdehyde (MDA) and Oxidized glutathione (GSSG), and decreasing contents of superoxide dismutase (SOD) and glutathione reductase (GSH). In additional, levels of TBA-induced oxidative stress were aggravated when SIRT1 silenced but alleviated when SIRT1 enhanced. Our study indicated that SIRT1 mitigated oxidative stress induced by TBA. © 2017 Wiley Periodicals, Inc.
Li, Lei; Quinlivan, Patricia A; Knappe, Detlef R U
2005-05-01
A method based on the Polanyi-Dubinin-Manes (PDM) model is presented to predict adsorption isotherms of aqueous organic contaminants on activated carbons. It was assumed that trace organic compound adsorption from aqueous solution is primarily controlled by nonspecific dispersive interactions while water adsorption is controlled by specific interactions with oxygen-containing functional groups on the activated carbon surface. Coefficients describing the affinity of water for the activated carbon surface were derived from aqueous-phase methyl tertiary-butyl ether (MTBE) and trichloroethene (TCE) adsorption isotherm data that were collected with 12 well-characterized activated carbons. Over the range of oxygen contents covered by the adsorbents (approximately 0.8-10 mmol O/g dry, ash-free activated carbon), a linear relationship between water affinity coefficients and adsorbent oxygen content was obtained. Incorporating water affinity coefficients calculated from the developed relationship into the PDM model, isotherm predictions resulted that agreed well with experimental data for three adsorbents and two adsorbates [tetrachloroethene (PCE), cis-1,2-dichloroethene (DCE)] that were not used to calibrate the model.
NASA Astrophysics Data System (ADS)
North, K. P.; Mackay, D. M.; Scow, K. M.
2010-12-01
In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did so within the first eight days. The lab experiment assessed a trap designed as an in situ microcosm, containing 13C-labeled benzene and a sulfate source, in order to quantify the amount of benzene leached from the trap and the rate of sulfate dissolution into the surrounding area. An “aquifer” was built in a tank and designed to mimic the well installations at a benzene-contaminated, sulfate-reducing site in Fillmore, CA. Multi-level upgradient and downgradient monitoring points were sampled throughout the six-week deployment and analyzed for sulfate and benzene. The trap and “aquifer” chemistry will be discussed and compared to the field experiment results.
Coast Guard exposure to gasoline, MTBE, and benzene vapors during inspection of tank barges.
Davenport, A C; Glynn, T J; Rhambarose, H
2000-01-01
A field study was conducted June through August 1996 in an attempt to quantify short-term exposure levels to Coast Guard personnel performing routine inspection activities aboard commercial tank barges carrying gasoline. Transfer and fleeting operations were monitored in the ports of Pittsburgh, Pa., Huntington, W.Va., Baton Rouge, La., and Galveston, Tex. A total of 43 personal and 68 area samples were analyzed for benzene and total hydrocarbons as gasoline ("gasoline"). Results can be summarized as follows: Personal exposure to benzene gave 15-min time-weighted-average (TWA) results ranging from <0.10 to 0.50 ppm. Area benzene levels ranged from <0.04 to 170 ppm. Personal monitoring for gasoline revealed a range of <2.0 to 590 mg/m3 with a GM of 23 mg/m3. Area sample results for gasoline ranged from 1.7 to 90,000 mg/m3. Twelve personal samples were collected for methyl-tert butyl ether (MTBE). Only two of these were above the limit of detection and had 15-min time-weighted averages of 22 ppm and 1.3 ppm. Eighteen MTBE area samples ranged in value from <3.0 to 38 ppm. Although none of the personal samples met or exceeded proposed or established short-term exposure standards, many of the area sampling results indicated that a significant risk of acute exposure exists in the vicinity of valves, pressure lines, and connections. This includes anticipated sources such as pressure vent valves as well as unexpected sources resulting from structural deficiencies onboard the vessels. These results further emphasize the value of safe work practices and proper vessel maintenance in controlling exposure to harmful chemicals.
Jechalke, Sven; Vogt, Carsten; Reiche, Nils; Franchini, Alessandro G; Borsdorf, Helko; Neu, Thomas R; Richnow, Hans H
2010-03-01
A novel aerated treatment pond for enhanced biodegradation of groundwater contaminants was tested under field conditions. Coconut fibre and polypropylene textiles were used to encourage the development of contaminant-degrading biofilms. Groundwater contaminants targeted for removal were benzene, methyl tert-butyl ether (MTBE) and ammonium. Here, we present data from the first 14 months of operation and compare contaminant removal rates, volatilization losses, and biofilm development in one pond equipped with coconut fibre to another pond with polypropylene textiles. Oxygen concentrations were constantly monitored and adjusted by automated aeration modules. A natural transition from anoxic to oxic zones was simulated to minimize the volatilization rate of volatile organic contaminants. Both ponds showed constant reductions in benzene concentrations from 20 mg/L at the inflow to about 1 microg/L at the outflow of the system. A dynamic air chamber (DAC) measurement revealed that only 1% of benzene loss was due to volatilization, and suggests that benzene loss was predominantly due to aerobic mineralization. MTBE concentration was reduced from around 4 mg/L at the inflow to 3.4-2.4 mg/L in the system effluent during the first 8 months of operation, and was further reduced to 1.2 mg/L during the subsequent 6 months of operation. Ammonium concentrations decreased only slightly from around 59 mg/L at the inflow to 56 mg/L in the outflow, indicating no significant nitrification during the first 14 months of continuous operation. Confocal laser scanning microscopy (CLSM) demonstrated that microorganisms rapidly colonized both the coconut fibre and polypropylene textiles. Microbial community structure analysis performed using denaturing gradient gel electrophoresis (DGGE) revealed little similarity between patterns from water and textile samples. Coconut textiles were shown to be more effective than polypropylene fibre textiles for promoting the recruitment and development of MTBE-degrading biofilms. Biofilms of both textiles contained high numbers of benzene metabolizing bacteria suggesting that these materials provide favourable growth conditions for benzene degrading microorganisms. Copyright 2009 Elsevier Ltd. All rights reserved.
Andreoli, R; Spatari, G; Pigini, D; Poli, D; Banda, I; Goldoni, M; Riccelli, M G; Petyx, M; Protano, C; Vitali, M; Barbaro, M; Mutti, A
2015-10-01
The aim of this work was to evaluate the oxidative damage to nucleic acids in children (5-11 years) associated with exposure to environmental pollutants and tobacco smoke (ETS). For each subject, urinary sampling was done twice (evening and next morning) to measure by tandem LC-MS-MS such oxidated products of nucleic acids as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and 8-oxo-7,8-dihydroguanine (8-oxoGua). Methyl tert-butyl ether (U-MTBE), benzene (U-Benz), and its metabolites (t,t-muconic and S-phenylmercapturic acids, t,t-MA and S-PMA, respectively) were determined as biomarkers of exposure to air pollution, and cotinine as a biomarker of exposure to ETS. Biomarkers of exposure (S-PMA and U-MTBE) and of DNA oxidation (8-oxodGuo) were dependent on the urbanization and industrialization levels and increased in the evening sample as compared to next morning (p<0.05). In both evening and next morning samples, 8-oxodGuo and 8-oxoGuo correlated with each other (r=0.596 and r=0.537, respectively, p<0.01) and with biomarkers of benzene exposure, particularly S-PMA (r=0.59 and r=0.45 for 8-oxodGuo and r=0.411 and r=0.383 for 8-oxoGuo, p<0.01). No such correlations were observed for U-MTBE and cotinine. Multiple linear regression analyses showed that 8-oxodGuo was positively associated with S-PMA at both sampling times (β=0.18 and β=0.14 for evening and next morning sampling, respectively; p<0.02) and weakly with U-MTBE (β=0.07, p=0.020) only in the evening urines. These results suggest that the selected biomarkers of exposure to benzene, particularly S-PMA, are good tracers of exposure to complex mixtures of oxidative pollutants and that the associated oxidative damage to nucleic acids is detectable even at very low levels of exposure. Copyright © 2015 Elsevier Inc. All rights reserved.
Using stable isotope analysis to discriminate gasoline on the basis of its origin.
Heo, Su-Young; Shin, Woo-Jin; Lee, Sin-Woo; Bong, Yeon-Sik; Lee, Kwang-Sik
2012-03-15
Leakage of gasoline and diesel from underground tanks has led to a severe environmental problem in many countries. Tracing the production origin of gasoline and diesel is required to enable the development of dispute resolution and appropriate remediation strategies for the oil-contaminated sites. We investigated the bulk and compound-specific isotopic compositions of gasoline produced by four oil companies in South Korea: S-Oil, SK, GS and Hyundai. The relative abundance of several compounds in gasoline was determined by the peak height of the major ion (m/z 44). The δ(13)C(Bulk) and δD(Bulk) values of gasoline produced by S-Oil were significantly different from those of SK, GS and Hyundai. In particular, the compound-specific isotopic value (δ(13)C(CSIA)) of methyl tert-butyl ether (MTBE) in S-Oil gasoline was significantly lower than that of gasoline produced by other oil companies. The abundance of several compounds in gasoline, such as n-pentane, MTBE, n-hexane, toluene, ethylbenzene and o-xylene, differed widely among gasoline from different oil companies. This study shows that gasoline can be forensically discriminated according to the oil company responsible for its manufacture using stable isotope analysis combined with multivariate statistical analysis. Copyright © 2012 John Wiley & Sons, Ltd.
Pankow, J.F.; Thomson, N.R.; Johnson, Richard L.; Baehr, A.L.; Zogorski, J.S.
1997-01-01
Infiltration and dispersion (including molecular diffusion) can transport volatile organic compounds (VOCs) from urban air into shallow groundwater. The gasoline additive methyl-tert-butyl ether (MTBE) is of special interest because of its (1) current levels in some urban air, (2) strong partitioning from air into water, (3) resistance to degradation, (4) use as an octane-booster since the 1970s, (5) rapidly increasing use in the 1990s to reduce CO and O3 in urban air, and (6) its frequent detection at low microgram per liter levels in shallow urban groundwater in Denver, New England, and elsewhere. Numerical simulations were conducted using a 1-D model domain set in medium sand (depth to water table = 5 m) to provide a test of whether MTBE and other atmospheric VOCs could move to shallow groundwater within the 10−15 y time frame over which MTBE has now been used in large amounts. Degradation and sorption were assumed negligible. In case 1 (no infiltration, steady atmospheric source), 10 y was not long enough to permit significant VOC movement by diffusion into shallow groundwater. Case 2 considered a steady atmospheric source plus 36 cm/y of net infiltration; groundwater at 2 m below the water table became nearly saturated with atmospheric levels of VOC within 5 y. Case 3 was similar to case 2, but considered the source to be seasonal, being “on” for only 5 of 12 months each year, as with the use of MTBE during the winter fuel-oxygenate season; groundwater at 2 m below the water table became equilibrated with 5/12 of the “source-on” concentration within 5 y. Cases 4 and 5 added an evapotranspiration (ET) loss of 36 cm/y, resulting in no net recharge. Case 4 took the ET from the surface, and case 5 took the ET from the capillary fringe at a depth of 3.5 m. Net VOC mass transfer to shallow groundwater after 5 y was less for both cases 4 and 5 than for case 3. However, it was significantly greater for cases 4 and 5 than for case 1, even though cases 1, 4, and 5 were all no-net recharge cases. The mechanism responsible for this effect was the dispersion acting on each downward infiltration event, and also on the ET-induced flow. The ability of MTBE to reach groundwater in cases 2−5 is taken as evidence of the potential importance of urban air as a non-point source for VOCs in shallow urban groundwater. Two subcases were run for both case 4 and case 5: subcase a (water and VOCs move with ET) and subcase b (water only moves with ET).
Church, Clinton D.; Pankow, James F.; Tratnyek, Paul G.
1999-01-01
Asessing the environmental fate of methyl tert-butyl ether (MTBE) has become a subject of renewed interest because of the large quantities of this compound that are being used as an oxygenated additive in gasoline. Various studies on the fate of MTBE have shown that it can be degraded to tert-butyl formate (TBF), particularly in the atmosphere. Although it is generally recognized that TBF is subject to hydrolysis, the kinetics and products of this reaction under environmentally relevant conditions have not been described previously. In this study, we determined the kinetics of TBF hydrolysis as a function of pH and temperature. Over the pH range of 5 to 7, the neutral hydrolysis pathway predominates, with kN = (1.0 ± 0.2) × 10−6/s. Outside this range, strong pH effects were observed because of acidic and basic hydrolyses, from which we determined that kA = (2.7 ± 0.5) × 10−3/(M·s) and kB = 1.7 ± 0.3/(M·s). Buffered and unbuffered systems gave the same hydrolysis rates for a given pH, indicating that buffer catalysis was not significant under the conditions tested. The activation energies corresponding to kN, kA, and kBwere determined to be 78 ± 5, 59 ± 4, and 88 ±11 kJ/mol, respectively. In all experiments, tert-butyl alcohol was found at concentrations corresponding to stoichiometric formation from TBF. Based on our kinetics data, the expected half-life for hydrolysis of TBF at pH = 2 and 4°C (as per some standard preservation protocols for water sampling) is 6 h. At neutral pH and 22°C, the estimated half-life is 5 d, and at pH = 11 and 22°C, the value is only 8 min.
Effect of gasoline formulation on the formation of photosmog: a box model study.
Geiger, Herald; Becker, Karl H; Wiesen, Peter
2003-04-01
Based on exhaust gas analyses from the combustion of five different types of gasoline in a passenger car operated on a chassis dynamometer, box model simulations of the irradiation of exhaust/NOx/air mixtures using an established chemical mechanism for a standardized photosmog scenario were performed. The fuel matrix used covered wide fractional ranges for paraffinic, olefinic, and aromatic hydrocarbons. Two fuels also contained methyl tertiary butyl ether (MTBE). The different O3 profiles calculated for each run were compared and interpreted. The O3 levels obtained were strongly influenced by the exhaust gas concentrations of aromatic and olefinic hydrocarbons. The higher exhaust content of these compounds caused higher O3 production in the smog system investigated. The conclusion of the present study is that the composition of gasoline cannot be taken directly for the estimation of the emissions' O3 creation potential from its combustion. Variation of the dilution in the different calculations showed evidence for an additional influence of transport effects. Accordingly, further detailed exhaust gas analyses followed by more complex modeling studies are necessary for a proper characterization of the relationship between fuel blend and gasoline combustion products.
USING SCIR TO PREDICT THE RATE OF BIOREMEDIATION OF MTBE
The 13C of MTBE was determined in ground water from four wells at a gasoline spill site in Orange County California. The natural logarithm of the fraction of MTBE remaining after biodegradation was estimated by subtracting the 13C of MTBE in gasoline from the 13C of MTBE in th...
Devices and methods to detect and quantify trace gases
Allendorf, Mark D.; Robinson, Alex
2016-05-03
Sensing devices based on a surface acoustic wave ("SAW") device coated with an absorbent crystalline or amorphous layer for detecting at least one chemical analyte in a gaseous carrier. Methods for detecting the presence of a chemical analyte in a gaseous carrier using such devices are also disclosed. The sensing devices and methods for their use may be configured for sensing chemical analytes selected from the group consisting of water vapor, carbon dioxide, methanol, ethanol, carbon monoxide, nitric oxide, nitrous oxide, organic amines, organic compounds containing NO.sub.2 groups, halogenated hydrocarbons, acetone, hexane, toluene, isopropanol, alcohols, alkanes, alkenes, benzene, functionalized aromatics, ammonia (NH.sub.3), phosgene (COCl.sub.2), sulfur mustard, nerve agents, sulfur dioxide, tetrahydrofuran (THF) and methyltertbutyl ether (MTBE) and combinations thereof.
First oxygenated gasoline season shakes out differently than expected
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, C.; Hackworth, J.H.; Shore, J.M.
1993-10-25
The U.S.'s first oxygenated gasoline season began Nov. 1, 1992. Refiners and marketers achieved compliance with these new specs with little upset to the gasoline production and distribution system. But although the season went smoothly, it did not shake out exactly as projected. Demand for oxygenated gasoline and, in particular, methyl tertiary butyl ether (MTBE), was lower than expected. Prior to the season, refiners were concerned that oxygenates might be in short supply. No supply shortages developed, however, and prices of both oxygenates and gasoline decreased during the season. The paper discusses gasoline demand, administration of the oxygenated gasoline program,more » spillover, reduced demand, ethanol, oxygenate supply, prices, ethanol tax credit, refinery economics, and the outlook for next season.« less
Stewart, Marie; Guertal, William R.; Barbaro, Jeffrey R.; McHale, Timothy J.
2004-01-01
A joint study by the Dover National Test Site, Dover Air Force Base, Delaware, and the U.S. Geological Survey was conducted from June 27 through July 18, 2001, to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site. This report provides a summary assessment of the distribution of methyl tert-butyl ether and a preliminary screening of selected constituents that may affect natural attenuation and remediation demonstrations at the Dover National Test Site. The information gathered during this study is designed to assist potential remedial investigators who are considering conducting a methyl tert-butyl ether remedial demonstration at the test site. In addition, the study supported a planned enhanced bioremediation demonstration and assisted the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. A direct-push drill rig was used to collect a total of 147 ground-water samples (115 VOC samples and 32 quality-assurance samples) at varying depths. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloro-ethene, 1.14 micrograms per liter of trichloro-ethene, 2.65 micrograms per liter of tetrachloro-ethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest concentrations of methyl tert-butyl ether were detected in the surficial aquifer from ?4.6 to 6.4 feet mean sea level; however, methyl tert-butyl ether was detected as deep as ?9.5 feet mean sea level. Increased methane concentrations and decreased dissolved oxygen concentrations that were found in association with the ground-water samples that contained methyl tert-butyl ether are preliminary indicators that will assist in determining if natural attenuation of methyl tert-butyl ether is occurring in the surficial aquifer. A full assessment of natural attenuation of methyl tert-butyl ether at the site is beyond the scope of this study, but the data collected during the study will be useful in selecting appropriate remedial methyl tert-butyl ether demonstrations.
Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.
2001-01-01
The potential contribution of in situ biodegradation as a mechanism for natural attenuation of MTBE in surface water was studied. Surface water sediments from streams and lakes at 11 sites throughout the US. Microbial degradation of [U-14C] MTBE was observed in surface-water-sediment microcosms under anaerobic conditions, but the efficiency and products of anaerobic MTBE biodegradation were strongly dependent on the predominant terminal electron accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to t-butanol (TBA). Under more oxidizing conditions, minimal accumulation of 14C-TBA and significant mineralization of [U-14C] MTBE to 14CO2 were observed. Microorganisms inhabiting the bed sediments of streams and lakes could degrade MTBE effectively under a range of anaerobic terminal electron accepting conditions. Thus, anaerobic bed sediment microbial processes also might contribute to natural attenuation of MTBE in surface water systems throughout the US. This is an abstract of a paper presented at the 222nd ACS National Meting (Chicago, IL 8/26-30/2001).
Landon, Matthew K.; Burton, Carmen A.; Davis, Tracy A.; Belitz, Kenneth; Johnson, Tyler D.
2014-01-01
The variables affecting the occurrence of hydrocarbons in aquifers used for public supply in California were assessed based on statistical evaluation of three large statewide datasets; gasoline oxygenates also were analyzed for comparison with hydrocarbons. Benzene is the most frequently detected (1.7%) compound among 17 hydrocarbons analyzed at generally low concentrations (median detected concentration 0.024 μg/l) in groundwater used for public supply in California; methyl tert-butyl ether (MTBE) is the most frequently detected (5.8%) compound among seven oxygenates analyzed (median detected concentration 0.1 μg/l). At aquifer depths used for public supply, hydrocarbons and MTBE rarely co-occur and are generally related to different variables; in shallower groundwater, co-occurrence is more frequent and there are similar relations to the density or proximity of potential sources. Benzene concentrations are most strongly correlated with reducing conditions, regardless of groundwater age and depth. Multiple lines of evidence indicate that benzene and other hydrocarbons detected in old, deep, and/or brackish groundwater result from geogenic sources of oil and gas. However, in recently recharged (since ~1950), generally shallower groundwater, higher concentrations and detection frequencies of benzene and hydrocarbons were associated with a greater proportion of commercial land use surrounding the well, likely reflecting effects of anthropogenic sources, particularly in combination with reducing conditions.
Lund, Vidar; Anderson-Glenna, Mary; Skjevrak, Ingun; Steffensen, Inger-Lise
2011-09-01
The objectives of this study were to investigate migration of volatile organic compounds (VOCs) from cross-linked polyethylene (PEX) pipes used for drinking water produced by different production methods, and to evaluate their potential risk for human health and/or influence on aesthetic drinking water quality. The migration tests were carried out in accordance with EN-1420-1, and VOCs were analysed by gas chromatography-mass spectrometry. The levels of VOC migrating from new PEX pipes were generally low, and decreasing with time of pipe use. No association was found between production method of PEX pipes and concentration of migration products. 2,4-di-tert-butyl phenol and methyl tert-butyl ether (MTBE) were two of the major individual components detected. In three new PEX pipes, MTBE was detected in concentrations above the recommended US EPA taste and odour value for drinking water, but decreased below this value after 5 months in service. However, the threshold odour number (TON) values for two pipes were similar to new pipes even after 1 year in use. For seven chemicals for which conclusions on potential health risk could be drawn, this was considered of no or very low concern. However, odour from some of these pipes could negatively affect drinking water for up to 1 year.
AN ENRICHMENT CULTURE THAT DEGRADES MTBE UNDER ANAEROBIC CONDITIONS
Biodegradation of MTBE in ground water may be a significant factor helping to reduce MTBE contamination from gasoline spills. Previously, decreases in MTBE concentrations in wells at release sites were thought to be due exclusively to dispersion and dilution. Researchers have i...
DEGRADATION OF MTBE INTERMEDIATES USING FENTON'S REAGENT
In a previous study, the chemical oxidation of MTBE at low concentrations in water using the Fenton's reagent (FR) was investigated. At certain reaction conditions the process achieved 99.99% degradation of MTBE but it did not result in complete MTBE mineralization. In the pres...
FIELD OBSERVATIONS TO RECOGNIZE THE NATURAL BIODEGRADATION OF MTBE
At some gasoline spill sites (perhaps a third of sites nationwide) MTBE in ground water has been biologically degraded to TBA. This natural biodegradation of MTBE contributes to the natural attenuation of MTBE, but it produces TBA as a potential contaminant. Under ordinary cond...
Thermodynamic properties of hyperbranched polymer, Boltorn U3000, using inverse gas chromatography.
Domańska, Urszula; Zołek-Tryznowska, Zuzanna
2009-11-19
Mass-fraction activity coefficients at infinite dilution (Omega13(infinity)) of alkanes (C5-C10), cycloalkanes (C5-C8), alkenes (C5-C8), alkynes (C5-C8), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C1-C5), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (propanone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) in the hyperbranched polymer, Boltorn U3000 (B-U3000), have been determined by inverse gas chromatography (IGC) using the polymer as the stationary phase. The measurements were carried out at different temperatures between 308.15 and 348.15 K. The density and thermophysical properties of polymer were described. The specific retention volume (V(g)), the Flory-Huggins interaction parameter (chi13(infinity)), the molar enthalpy of sorption (the partial molar enthalpies of solute dissolution) (Delta(s)H), the partial molar excess enthalpy at infinite dilution of the solute and polymer (DeltaH1(E,infinity)), the partial molar Gibbs excess energy at infinite dilution (DeltaG1(E,infinity)), and the solubility parameter (delta3) were calculated.
FATE AND TRANSPORT OF MTBE AND OTHER GASOLINE COMPONENTS
This book chapter reviews the processes and interactions that control the transport and fate of MTBE and TBA in the subsurface. It describes the transport and fate of vapors of MTBE in the unsaturated zone, the partitioning of MTBE from gasoline spills directly into water, and t...
TREATMENT OF MTBE USING FENTON'S REAGENT
This paper addresses the removal of MTBE from water, using Fenton's Reagent. Although complete mineralization of MTBE by Fenton's Reagent was not achieved, greater than 99% destruction of MTBE was realized. This was accomplished at a Fe+2:H2O2 ratio of 1:1 and one hour of contact...
MICROCOSM STUDY OF ANAEROBIC BIODEGRADATION OF MTBE AND TBA
Ground water samples collected in at a gasoline spill sites in Orange County, California, suggested that MTBE was being transformed to TBA. In some of the most heavily contaminated wells, the concentration of TBA was higher than the concentration of MTBE (MTBE 2 µg/L and TBA 40,...
Serial-omics characterization of equine urine
Yuan, Min; Breitkopf, Susanne B.
2017-01-01
Horse urine is easily collected and contains molecules readily measurable using mass spectrometry that can be used as biomarkers representative of health, disease or drug tampering. This study aimed at analyzing microliter levels of horse urine to purify, identify and quantify proteins, polar metabolites and non-polar lipids. Urine from a healthy 12 year old quarter horse mare on a diet of grass hay and vitamin/mineral supplements with limited pasture access was collected for serial-omics characterization. The urine was treated with methyl tert-butyl ether (MTBE) and methanol to partition into three distinct layers for protein, non-polar lipid and polar metabolite content from a single liquid-liquid extraction and was repeated two times. Each layer was analyzed by high performance liquid chromatography—high resolution tandem mass spectrometry (LC-MS/MS) to obtain protein sequence and relative protein levels as well as identify and quantify small polar metabolites and lipids. The results show 46 urine proteins, many related to normal kidney function, structural and circulatory proteins as well as 474 small polar metabolites but only 10 lipid molecules. Metabolites were mostly related to urea cycle and ammonia recycling as well as amino acid related pathways, plant diet specific molecules, etc. The few lipids represented triglycerides and phospholipids. These data show a complete mass spectrometry based—omics characterization of equine urine from a single 333 μL mid-stream urine aliquot. These omics data help serve as a baseline for healthy mare urine composition and the analyses can be used to monitor disease progression, health status, monitor drug use, etc. PMID:29028822
MONITORING TO ASSOCIATE A PLUME OF MTBE IN GROUNDWATER WITH A VAPOR RELEASE
There is a class of MTBE plumes in ground water that have little of the BTEX compounds. It has been proposed that these MTBE plumes are caused by release of gasoline vapors from underground storage tanks. However, a mechanism to carry MTBE vapors into ground water has not been ...
This report reviews the current state of knowledge on the transport and fate of MTBE in ground water, with emphasis on the natural processes that can be used to manage the risk associated with MTBE in ground water or that contributes to natural attenuation of MTBE as a remedy. I...
This study focuses on three objectives: 1) to determine the feasibility of using a falling-film slurry photocatalytic reactor for the degradation of MTBE in water, 2) to assess the feasibility of MTBE photo-oxidation on TiO2 at low initial MTBE concentrations (<10 mg/L), and 3) t...
Fonkwe, Merline L D; Trapp, Stefan
2016-08-01
This research examines the feasibility of analyzing tree cores to detect benzene, toluene, ethylbenzene, and m, p, o-xylene (BTEX) compounds and methyl tertiary-butyl ether (MTBE) in groundwater in eastern Canada subarctic environments, using a former landfill site in the remote community of Happy Valley-Goose Bay, Labrador. Petroleum hydrocarbon contamination at the landfill site is the result of environmentally unsound pre-1990s disposal of households and industrial solid wastes. Tree cores were taken from trembling aspen, black spruce, and white birch and analyzed by headspace-gas chromatography-mass spectrometry. BTEX compounds were detected in tree cores, corroborating known groundwater contamination. A zone of anomalously high concentrations of total BTEX constituents was identified and recommended for monitoring by groundwater wells. Tree cores collected outside the landfill site at a local control area suggest the migration of contaminants off-site. Tree species exhibit different concentrations of BTEX constituents, indicating selective uptake and accumulation. Toluene in wood exhibited the highest concentrations, which may also be due to endogenous production. Meanwhile, MTBE was not found in the tree cores and is considered to be absent in the groundwater. The results demonstrate that tree-core analysis can be useful for detecting anomalous concentrations of petroleum hydrocarbons, such as BTEX compounds, in subarctic sites with shallow unconfined aquifers and permeable soils. This method can therefore aid in the proper management of contamination during landfill operations and after site closures.
CHARACTERIZING THE INTRINSIC REMEDIATION OF MTBE AT FIELD SITES
The project resulted in four peer reviewed publications and numerous presentations and conference proceedings papers. Two students received their master’s degrees as a result of the project funding and are currently employed in the private sector. The proj...
NASA Astrophysics Data System (ADS)
McKelvie, Jennifer R.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara
2007-12-01
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The δ 13C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of - 31.3 ± 0.5‰ ( n = 40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in 13C of MTBE by 40.6‰, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 μg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of δ 13C for TBA in groundwater samples in the "With ethanol lane" was - 26.0 ± 1.0‰ ( n = 32). Uniform δ 13C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of - 9.2‰ to - 15.6‰, and values of δ 13C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year - 1 ( n = 18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year - 1 calculated using contaminant mass-discharge for the "With ethanol lane".
INFLUENCE OF STRATIGRAPHY ON A DIVING MTBE PLUME AND ITS CHARACTERIZATION: A CASE STUDY
Conventional conceptual models applied at petroleum release sites are often based on assumptions of vertical contaminant migration through the vadose zone followed by horizontal, downgradient transport at the water table with limited, if any, additional downward migration. Howev...
AEROBIC BIODEGRADATION OF GASOLINE OXYGENATES MTBE AND TBA
MTBE degradation was investigated using a continuously stirred tank reactor (CSTR) with biomass retention (porous pot reactor) operated under aerobic conditions. MTBE was fed to the reactor at an influent concentration of 150 mg/l (1.70 mmol/l). A second identifical rector was op...
MICROCOSM STUDY OF ANAEROBIC BIODEGRDATOIN OF MTBE
The relative concentrations TBA to MTBE in ground water samples from a gasoline spill site in Orange County, California suggested that MTBE was being transformed to TBA. In some of the most heavily contaminated wells, the concentration of TBA was higher than the concentration of...
For the case studies, the MTBE, TBA, and BTEX plume will be studied in a longitudinal transect along the center-line of the plume, and at least two transects perpendicular to ground water flow. Water samples will be analyzed for the concentration of MTBE, TBA, BTEX, methane, sulf...
REMOVAL OF MTBE FROM WATER WITH ZEOLITES
MTBE has impacted public drinking water wells from releases of gasoline making the water non-potable. MTBE is highly soluble in water, has a low volatility, does not adsorb strongly to soil, and is not thought to be easily biodegradable. Traditional methods of removing organics ...
Trends in the occurrence of MTBE in drinking water in the Northeast United States
Moran, M.J.
2007-01-01
Public water systems in Connecticut, Maine, Maryland, New Hampshire, New Jersey, and Rhode Island sampled treated drinking water from 1993-2006 and analyzed the samples for MTBE. The US Geological Survey examined trends in the occurrence of MTBE in drinking water derived from ground water in these States for two near-decadal time steps; 1993-1999 and 2000-2006. MTBE was detected in 14% of drinking water samples collected in all States from 1993-1999 and in 19% of drinking water samples collected from the same systems from 2000-2006 and this difference was statistically significant. Trends in the occurrence of MTBE in each State by individual year indicated significant positive trends in Maryland and New Hampshire. Significant, increasing trends in MTBE concentrations were observed in Maryland and Rhode Island by individual year. This is an abstract of a paper presented at the 2007 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment and Remediation Conference (Houston, TX 11/5-6/2007).
Biodegradation kinetics of BTE-OX and MTBE by a diesel-grown biomass.
Acuna-Askar, K; de la Torre-Torres, M A; Guerrero-Munoz, M J; Garza-Gonzalez, M T; Chavez-Gomez, B; Rodriguez-Sanchez, I P; Barrera-Saldana, H A
2006-01-01
The biodegradation kinetics of BTE-oX and MTBE, mixed all together in the presence of diesel-grown bioaugmented bacterial populations as high as 885 mg/L VSS, was evaluated. The effect of soil in aqueous samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 54 h, every 6 h. All BTE-oX chemicals followed a first-order two-phase biodegradation kinetic model, whereas MTBE followed a zero-order removal kinetic model in all samples. BTE-oX removal rates were much higher than those of MTBE in all samples. The presence of soil in aqueous samples retarded BTE-oX and MTBE removal rates. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged between 64.8-98.9% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged between 18.7-40.8% and 7.2-10.3%, respectively.
Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fieweger, K.; Blumenthal, R.; Adomeit, G.
1997-06-01
The self-ignition of several spark-ignition (SI) engine fuels (iso-octane, methanol, methyl tert-butyl ether and three different mixtures of iso-octane and n-heptane), mixed with air, was investigated experimentally under relevant engine conditions by the shock tube technique. Typical modes of the self-ignition process were registered cinematographically. For temperatures relevant to piston engine combustion, the self-ignition process always starts as an inhomogeneous, deflagrative mild ignition. This instant is defined by the ignition delay time, {tau}{sub defl}. The deflagration process in most cases is followed by a secondary explosion (DDT). This transition defines a second ignition delay time, {tau}{sub DDT}, which is amore » suitable approximation for the chemical ignition delay time, if the change of the thermodynamic conditions of the unburned test gas due to deflagration is taken into account. For iso-octane at p = 40 bar, a NTC (negative temperature coefficient), behavior connected with a two step (cool flame) self-ignition at low temperatures was observed. This process was very pronounced for rich and less pronounced for stoichiometric mixtures. The results of the {tau}{sub DDT} delays of the stoichiometric mixtures were shortened by the primary deflagration process in the temperature range between 800 and 1,000 K. Various mixtures of iso-octane and n-heptane were investigated. The results show a strong influence of the n-heptane fraction in the mixture, both on the ignition delay time and on the mode of self-ignition. The self-ignition of methanol and MTBE (methyl tert-butyl ether) is characterized by a very pronounced initial deflagration. For temperatures below 900 K (methanol: 800 K), no secondary explosion occurs. Taking into account the pressure increase due to deflagration, the measured delays {tau}{sub DDT} of the secondary explosion are shortened by up to one order of magnitude.« less
Comber, Mike H I; Walker, John D; Watts, Chris; Hermens, Joop
2003-08-01
The use of quantitative structure-activity relationships (QSARs) for deriving the predicted no-effect concentration of discrete organic chemicals for the purposes of conducting a regulatory risk assessment in Europe and the United States is described. In the United States, under the Toxic Substances Control Act (TSCA), the TSCA Interagency Testing Committee and the U.S. Environmental Protection Agency (U.S. EPA) use SARs to estimate the hazards of existing and new chemicals. Within the Existing Substances Regulation in Europe, QSARs may be used for data evaluation, test strategy indications, and the identification and filling of data gaps. To illustrate where and when QSARs may be useful and when their use is more problematic, an example, methyl tertiary-butyl ether (MTBE), is given and the predicted and experimental data are compared. Improvements needed for new QSARs and tools for developing and using QSARs are discussed.
Simmie, John M; Würmel, Judith
2013-01-01
The rapid development in methods for transforming non-edible biomass into platform chemicals and fuels has accelerated over recent years. However, the determination of whether these 'next-generation' biofuels perform in a satisfactory manner in engines, turbines and burners has lagged behind. The evaluation of the ecological and toxicological aspects has also been unable to keep up. We show, by using 2,5-dimethylfuran (DMF) as a concrete example, how a range of studies is needed to establish the benefits and risks of using a particular biofuel. In this regard, the variable with the largest impact about which little is known is probably the behaviour of DMF when it is accidentally introduced into groundwater. A primary consideration is to avoid a repetition of the methyl tert-butyl ether (MTBE) fiasco. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
EFFECT OF BTEX AND ETHANOL ON ANAEROBIC BIOTRANSFORMATION OF MTBE
We have recently demonstrated that natural anaerobic biotransformation of MTBE to TBA can account for the natural attenuation of MTBE in a plume from a gasoline spill at Parsippany, New Jersey. It is well established in the literature that the presence of the BTEX compounds natu...
Fenton-Driven Chemical Regeneration of MTBE-Spent Granular Activated Carbon -- A Pilot Study
MTBE-spent granular activated carbon (GAC) underwent 3 adsorption/oxidation cycles. Pilot-scale columns were intermittently placed on-line at a ground water pump and treat facility, saturated with MTBE, and regenerated with H2O2 under different chemical, physical, and operational...
MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS(TM) CONTAINING PM1, SOS, ISOLITE (R)
MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...
MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE.
MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediation MTBE and BTEX contaminated groundwater. Seven BioNets were ...
ANALYSIS OF AN AEROBIC FLUIDIZED BED REACTOR DEGRADING MTBE AND BTEX AT REDUCED EBCTS
The purpose of this study was to investigate the biodegradation of MTBE and BTEX using a fluidized bed reactor (FBR) with granular activated carbon (GAC) as a biological attachment medium. Batch experiments were run to analyze the MTBE and TBA degradation kinetics of the culture ...
BTEX AND MTBE BIOREMEDIATION: BIONETS™ CONTAINING SOS, PM1 AND ISOLITE®
MTBE and BTEX (benzene, toluene, ethylbenzene, and xylenes) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets w...
MICROBIAL ANALYSIS OF MTBE, BTEX BIOREMEDIATION: BIONETS CONTAINING PM1, SOS, ISOLITE�
MTBE and BTEX (benzene, toluene, ethylbenzene, and xylene) are major problems of many sites in the United States. The objective of this study was to determine if biologically active in-situ BioNets could bioremediate MTBE and BTEX contaminated groundwater. Seven BioNets were plac...
Evaluation of bromide mass discharge in a sandy aquifer at Vandenberg AFB, CA
NASA Astrophysics Data System (ADS)
Mackay, D. M.; Rasa, E.; Einarson, M.; Kaiser, P.; Chakraborty, I.; Scow, K. M.
2009-12-01
Side-by-side experiments were conducted by UC Davis research team at a former fuel station at Vandenberg Air Force Base (AFB) to evaluate the rate of transformation of methyl tert-butyl ether (MTBE) to tert-butyl alcohol (TBA) impacted by ethanol and to investigate evidence of TBA degradation under sulfate reducing conditions. On one side we injected groundwater amended with ethanol and MTBE. In the other lane we injected groundwater amended with TBA. On both sides, injected ground water was spiked with bromide tracer to provide estimates of groundwater flow direction variations, flow velocity, dispersion, and mobile mass loss resulting from diffusive sequestration into aquitards. 162 monitoring wells were aligned into seven transects located downgradient of the injection wells. The mass discharge approach was used to evaluate the natural attenuation of the injected constituents. In this talk we will focus on calculations of mass discharge of the bromide tracer at each of the seven monitoring well transects. The amount of bromide mass discharged through each transect was calculated for any sampling time using field measurements of break through curves. Cumulative mass discharges were estimated and, by iteration based on mass balance, the flow properties of the aquifer were estimated. The calibration process resulted in subtle but quantitatively important changes in our assumptions regarding key physical properties of the aquifer (thickness, porosity) which could be only approximately estimated by standard methods (coring, CPT, etc.). On the basis of this calibration, a more robust approach was devised for evaluating the source and fate of TBA in the aquifer.
Framework for Evaluating Water Quality of the New England Crystalline Rock Aquifers
Harte, Philip T.; Robinson, Gilpin R.; Ayotte, Joseph D.; Flanagan, Sarah M.
2008-01-01
Little information exists on regional ground-water-quality patterns for the New England crystalline rock aquifers (NECRA). A systematic approach to facilitate regional evaluation is needed for several reasons. First, the NECRA are vulnerable to anthropogenic and natural contaminants such as methyl tert-butyl ether (MTBE), arsenic, and radon gas. Second, the physical characteristics of the aquifers, termed 'intrinsic susceptibility', can lead to variable and degraded water quality. A framework approach for characterizing the aquifer region into areas of similar hydrogeology is described in this report and is based on hypothesized relevant physical features and chemical conditions (collectively termed 'variables') that affect regional patterns of ground-water quality. A framework for comparison of water quality across the NECRA consists of a group of spatial variables related to aquifer properties, hydrologic conditions, and contaminant sources. These spatial variables are grouped under four general categories (features) that can be mapped across the aquifers: (1) geologic, (2) hydrophysiographic, (3) land-use land-cover, and (4) geochemical. On a regional scale, these variables represent indicators of natural and anthropogenic sources of contaminants, as well as generalized physical and chemical characteristics of the aquifer system that influence ground-water chemistry and flow. These variables can be used in varying combinations (depending on the contaminant) to categorize the aquifer into areas of similar hydrogeologic characteristics to evaluate variation in regional water quality through statistical testing.
Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell
2014-11-01
In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency. Copyright © 2014 Elsevier Inc. All rights reserved.
IMPACT OF ETHANOL ON THE NATURAL ATTENUATION OF MTBE IN A NORMALLY SULFATE-REDUCING AQUIFER
Two side-by-side experiments were conducted in an MTBE-contaminated aquifer at a former service station site to determine the effect of ethanol release on the fate of pre-existing MTBE contamination. On one side, we injected groundwater amended with 1-3 mg/L benzene, toluene, and...
USING δ13C TO PREDICT THE RATE OF BIODEGRADATION OF MTBE
It is difficult to estimate the rate of natural biodegradation of MTBE at field scale. Dispersion in the aquifer or dilution in the well can give a false impression of attenuation along a flow path. The first product of MTBE biodegradation is TBA. Many gasoline spills contain TB...
The recent findings of unusual oncentrations of MTBE in groundwater aquifers and surface waters [1] originated most probably from the leaking of underground storage gasoline tanks [2[ has led to a series of judicial and legislative actions, especially in the state of California w...
Isotope effects resulting from biodegradation of MTBE
To conduct the microcosm biodegradation study, sediment samples were collected from sites offering high potential of MTBE biodegradation. Sites where sediment samples were collected for the MTBE microcosm c...
Lee, Byeol-Nim; Son, Tae Yang; Park, Chi Hoon; Kim, Tae Hyun; Nam, Sang Yong
2018-09-01
In this study, various poly(ether ether ketone) were synthesized using three different monomers and the imidazolium group was introduced into synthesized poly(ether ether ketone)s by using substitution reaction. Synthesized polymers were used to prepare anion exchange membranes and to evaluate its properties. Thermal, chemical and structural properties were carried out using thermogravimetric analysis, nuclear magnetic resonance. The anion exchange membranes with different imidazolium moieties were characterized by several different analytical techniques such as water up take, ion exchange capacity, hydroxide conductivity for checking the possibility to apply the anion exchange membrane fuel cell. Consequently, results of characterization were studied to understand the correlation between stabilities of the membrane and functional group and polymer backbone structures. And we confirm membrane performance was improved by increasing imidazolium cation groups.
Both MtBE and Benzene are present at over 86% of the Underground Storage Tank sites in Kansas, USA that require active remediation. In situ remedial technologies, consisting primarily of soil vapor extraction and air sparging, are the preferred choice for treatment for MtBE site...
Temperature effect on tert-butyl alcohol (TBA) biodegradation kinetics in hyporheic zone soils.
Greenwood, Mark H; Sims, Ronald C; McLean, Joan E; Doucette, William J
2007-09-19
Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature. Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. First order mineralization rate constants of TBA at 5 degrees C, 15 degrees C and 25 degrees C were 7.84 +/- 0.14 x 10-3, 9.07 +/- 0.09 x 10-3, and 15.3 +/- 0.3 x 10-3 days-1, respectively (or 2.86 +/- 0.05, 3.31 +/- 0.03, 5.60 +/- 0.14 years-1, respectively). Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A) and activation energy (Ea) of 154 day-1 and 23,006 mol/J, respectively. Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature.
Zhang, Qinghai; Lin, Changhu; Duan, Wenjuan; Wang, Xiao; Luo, Aiqin
2013-12-12
pH-Zone refining counter-current chromatography was successfully applied to the preparative isolation and purification of six alkaloids from the ethanol extracts of Uncaria macrophylla Wall. Because of the low content of alkaloids (about 0.2%, w/w) in U. macrophylla Wall, the target compounds were enriched by pH-zone refining counter-current chromatography using a two-phase solvent system composed of petroleum ether-ethyl acetate-isopropanol-water (2:6:3:9, v/v), adding 10 mM triethylamine in organic stationary phase and 5 mM hydrochloric acid in aqueous mobile phase. Then pH-zone refining counter-current chromatography using the other two-phase solvent system was used for final purification. Six target compounds were finally isolated and purified by following two-phase solvent system composed of methyl tert-butyl ether (MTBE)-acetonitrile-water (4:0.5:5, v/v), adding triethylamine (TEA) (10 mM) to the organic phase and HCl (5 mM) to aqueous mobile phase. The separation of 2.8 g enriched total alkaloids yielded 36 mg hirsutine, 48 mg hirsuteine, 82 mg uncarine C, 73 mg uncarine E, 163 mg rhynchophylline, and 149 mg corynoxeine, all with purities above 96% as verified by HPLC Their structures were identified by electrospray ionization-mass spectrometry (ESI-MS) and 1H-NMR spectroscopy.
In Situ Bioremediation of MTBE in Groundwater
2003-06-01
by-products (carbon dioxide and water ). Groundwater leaving the down-gradient edge of the treatment zone contains MTBE at concentrations less than... groundwater treatment approaches ineffective or impracticable. Currently, conventional pump and treat (P&T) followed by aboveground water treatment and...carbon dioxide and water ). Groundwater leaving the down gradient edge of the treatment zone contains MTBE at concentrations less than or equal to the
Drechsler, Robin; Chen, Shaw-Wen; Dancy, Blair C. R.; Mehrabkhani, Lena
2016-01-01
Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions. PMID:27893806
Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge
2014-12-01
Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, <50%). Derivatization in presence of potassium hydroxide (KOH) failed at derivatizing free FAs (FFAs). Boron trifluoride (BF3) 7% in hexane/MeOH (1:1) was insufficient for the transesterification of cholesterol ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.
What Do We Know About Ethanol and Alkylates as Pollutants?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, D W; Marchetti, A A; Buscheck, T
Gov. Davis issued Executive Order D-5-99 in March 1999 calling for removal of methyl tertiary butyl ether (MTBE) from gasoline no later than December 31, 2002. The Executive Order required the California Air Board, State Water Resources Control Board (SWRCB) and Office of Environmental Health Hazard Assessment (OEHHA) to prepare an analysis of potential impacts and health risks that may be associated with the use of ethanol as a fuel oxygenate. The SWRCB contracted with the Lawrence Livermore National Laboratory (LLNL) to lead a team of researchers, including scientists from Clarkson University, University of Iowa, and University of California, Davis,more » in evaluating the potential ground and surface water impacts that may occur if ethanol is used to replace MTBE. These findings are reported in the document entitled Health and Environmental Assessment of the Use of Ethanol as a Fuel Oxygenate. This document has been peer reviewed and presented to the California Environmental Policy Council and may be viewed at: http://www-erd.llnl.gov/ethanol/. Ethanol used for fuels is made primarily from grains, but any feed stock containing sugar, starch, or cellulose can be fermented to ethanol. Ethanol contains 34.7% oxygen by weight. It is less dense than water, but infinitely soluble in water. Ethanol vapors are denser than air. One and a half gallons of ethanol have the same energy as one gallon of gasoline. Pure fuel ethanol, and gasoline with ethanol, conducts electricity, while gasoline without ethanol is an insulator. Corrosion and compatibility of materials is an issue with the storage of pure ethanol and gasoline with high percentages of ethanol, but these issues are less important if gasoline with less than 10% ethanol is used.« less
Zhang, Zhou; Wang, Xinming; Zhang, Yanli; Lü, Sujun; Huang, Zhonghui; Huang, Xinyu; Wang, Yuesi
2015-04-01
Benzene is a known human carcinogen causing leukemia, yet ambient air quality objectives for benzene are not available in China. The ambient benzene levels at four background sites in China's most developed coastal regions were measured from March 2012 to February 2013. The sites are: SYNECP, in the Northeast China Plain (NECP); YCNCP, in the North China Plain (NCP); THYRD, in the Yangtze River Delta (YRD) and DHPRD, in the Pearl River Delta (PRD). It was found that the mean annual benzene levels (578-1297 ppt) at the background sites were alarmingly higher, especially when compared to those of 60-480 pptv monitored in 28 cities in the United States. Wintertime benzene levels were significantly elevated at both sites (SYNECP and YCNCP) in northern China due to heating with coal/biofuels. Even at these background sites, the lifetime cancer risks of benzene (1.7-3.7E-05) all exceeded 1E-06 set by USEPA as acceptable for adults. At both sites in northern China, good correlations between benzene and CO or chloromethane, together with much lower toluene/benzene (T/B) ratios, suggested that benzene was largely related to coal combustion and biomass/biofuel burning. At the DHPRD site in the PRD, benzene revealed a highly significant correlation with methyl tert-butyl ether (MTBE), indicating that its source was predominantly from vehicle emissions. At the THYRD site in the YRD, higher T/B ratios and correlations between benzene and tetrachloroethylene, or MTBE, implied that benzene levels were probably affected by both traffic-related and industrial emissions. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessing Groundwater Contamination Vulnerability at Public Water Supply Wells in California
NASA Astrophysics Data System (ADS)
Moran, J. E.; Hudson, B.; Dooher, B. P.; Leif, R.; Eaton, G. F.; Davisson, L.
2001-12-01
The California Aquifer Susceptibility project, sponsored by the California State Water Resources Control Board, uses a probabilistic approach to assess the vulnerability of public water supply wells to contamination by anthropogenic compounds. Sources of contamination to groundwater occur near the earth's surface, and have been present mostly since WWII. Therefore, wells that receive water that has recharged in the recent past are more likely to intercept contaminants transported by advection. The parameters that the study uses to rank wells according to vulnerability are groundwater age dates (using the tritium/helium method), stable isotopes of the water molecule (for water source determination), and analysis of low level Volatile Organic Compounds (VOCs). Results of a pilot project in which 300 public water supply wells were tested for vulnerability will be presented. Basins sampled for the study include the Livermore Valley, Santa Clara Valley, and the Sacramento Basin. Methyl-tertiary-Butyl Ether (MTBE) may be a useful time marker in groundwater basins, with water recharged after the 1980's showing traces of MTBE. Low-level detections of other VOCs such as TCE and PCE can give an early warning of a contaminant plume. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and associated contaminants. Examination of these parameters also helps identify 'short circuits', whereby e.g., loss of integrity in well casing allows near surface contamination to reach 'old' (recharged >50 years ago) water. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.
Degradation of organic pollutants by methane grown microbial consortia.
Hesselsoe, Martin; Boysen, Susanne; Iversen, Niels; Jørgensen, Lars; Murrell, J Colin; McDonald, Ian; Radajewski, Stefan; Thestrup, Helle; Roslev, Peter
2005-10-01
Microbial consortia were enriched from various environmental samples with methane as the sole carbon and energy source. Selected consortia that showed a capacity for co-oxidation of naphthalene were screened for their ability to degrade methyl-tert-butyl-ether (MTBE), phthalic acid esters (PAE), benzene, xylene and toluene (BTX). MTBE was not removed within 24 h by any of the consortia examined. One consortium enriched from activated sludge ("AAE-A2"), degraded PAE, including (butyl-benzyl)phthalate (BBP), and di-(butyl)phthalate (DBP). PAE have not previously been described as substrates for methanotrophic consortia. The apparent Km and Vmax for DBP degradation by AAE-A2 at 20 degrees C was 3.1 +/- 1.2 mg l(-1) and 8.7 +/- 1.1 mg DBP (g protein x h)(-1), respectively. AAE-A2 also showed fast degradation of BTX (230 +/- 30 nmol benzene (mg protein x h)(-1) at 20 degrees C). Additionally, AAE-A2 degraded benzene continuously for 2 weeks. In contrast, a pure culture of the methanotroph Methylosinus trichosporium OB3b ceased benzene degradation after only 2 days. Experiments with methane mono-oxygenase inhibitors or competitive substrates suggested that BTX degradation was carried out by methane-oxidizing bacteria in the consortium, whereas the degradation of PAE was carried out by non-methanotrophic bacteria co-existing with methanotrophs. The composition of the consortium (AAE-A2) based on polar lipid fatty acid (PLFA) profiles showed dominance of type II methanotrophs (83-92% of biomass). Phylogeny based on a 16S-rRNA gene clone library revealed that the dominating methanotrophs belonged to Methylosinus/Methylocystis spp. and that members of at least 4 different non-methanotrophic genera were present (Pseudomonas, Flavobacterium, Janthinobacterium and Rubivivax).
Ghittori, S; Ferrari, M; Maestri, L; Negri, S; Zadra, P; Gremita, C; Imbriani, M
2005-01-01
The chemical risk in service stations may be due to toxic compounds present in fuel (particularly benzene and additives) and to the emission of exhausts and fine particulate from vehicles. Owing to the elimination of lead (Pb) from fuel and to the necessity of lowering CO emission, several oxygenated additives have been added to fuel, in particular methyl-tert-butyl-ether (MTBE), whose toxic properties are at present under investigation. The introduction of reformulated gasoline (RFG) and the use of catalytic converters (with possible release of platinum (Pt) in the environment) may have modified the risks for workers employed in service stations. The paper shows data collected from 26 subjects (divided into three specific tasks, namely: fuel dispenser, "self-service" attendant and controller, and cashier) to estimate the actual chemical risk and to compare it with the previous data taken from literature. For this purpose, besides performing the usual medical surveillance, we measured the environmental concentrations of benzene, MTBE and formaldehyde, the urinary levels of benzene metabolites S-phenylmercapturic acid (S-PMA) and t,t-muconic acid (MA) and of unmodified MTBE, and the blood concentrations of Pb and Pt for each subject. Mean values of these compounds were, respectively: 38.81 microg/m3; 174.04 microg/m3; 10.38 microg/m3; 2.36 microg/g creatinine; 96.57 microg/g creatinine; 1.41 microg/L; 7.00 microg/100 mL; 0.0738 ng/ml. The above values were much lower than the corresponding limit values reported by ACGIH and DFG. In particular, after the introduction of vapour recycle systems and the widespread use of "self-service" systems, airborne benzene concentration dropped from 300/400 microg/m3 to lower than 100 microg/m3, without noticeable increasing of exposure to formaldehyde. The disappearing of Pb from gasoline leads to a progressive lowering of its blood levels, while the possible risks due to the very low amounts of Pt released from catalytic converters have still to be defined exactly. Taken all in all, our results seem to indicate that, after the elimination of tetraethyl lead, the chemical risk for workers employed in service stations is now lower than in the past.
Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials
NASA Technical Reports Server (NTRS)
Orwoll, Robert A.
1997-01-01
The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.
Alfreider, Albin; Schirmer, Mario; Vogt, Carsten
2012-03-01
Groundwater polluted with methyl-tert-butyl ether (MTBE) and ammonium was investigated for chemolithoautotrophic CO(2) fixation capabilities based on detailed analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large subunit genes. Samples retrieved from a groundwater conditioning unit, characterized by different redox conditions, were examined for the presence of form IA, form IC (cbbL) and form II (cbbM) RubisCO genes and transcripts obtained from DNA- and RNA-extracts. Form IA RubisCO sequences, which revealed a complex and distinct variety in different sampling stations, were expressed in the original groundwater and in samples amended with oxygen, but not in the aquifer groundwater enriched with nitrate. Form IC RubisCO genes were exclusively detected in groundwater supplied with oxygen and sequences were affiliated with cbbL genes in nitrifying bacteria. cbbM genes were not expressed in the oxygen-amended groundwater, probably due to the low CO(2) /O(2) substrate specificity of this enzyme. Most form II RubisCO transcripts were affiliated with RubisCO genes of denitrifiers, which are important residents in the groundwater supplied with nitrate. The distinct distribution pattern and diversity of RubisCO genes and transcripts obtained in this study suggest that the induction of different RubisCO enzymes is highly regulated and closely linked to the actual environmental conditions. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Jiang, Jimeng; Savage, Phillip E.
2017-07-15
We determined how different reaction conditions influence the metals contents in biocrude oil and other product fractions from hydrothermal liquefaction (HTL) of microalgae. We then assessed the effect of using different solvents for biocrude recovery and adding catalysts on the metal content in the biocrude. The Fe content was lower and the Na content higher in biocrude produced at higher temperature (400 vs 350 °C) and longer holding time (60 vs 3 min). The Fe and Na contents were reduced over 50% and 95%, respectively, by use of methyl tert-butyl ether (MTBE ) rather than dichloromethane as the organic solventmore » for biocrude recovery and they were reduced over 98% via additional application of a supported Ni catalyst during HTL. Finally, this work demonstrates that the hydrothermal treatment conditions influence the metal content in biocrude and that judicious selection of solvent and catalyst can lead to significant reduction in the metal content in biocrude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colognesi, Daniele; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it
2014-10-07
We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of themore » host cage on the HD microscopic dynamics. The sH clathrate sample presents a much greater challenge, due to the uncertainties regarding the crystal structure, which is known only for similar crystals with different promoter, but nor for HD (or H{sub 2}) plus methyl tert-butyl ether (MTBE-d12)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinska, B.; Harshfield, G.; Fujita, E.
1997-12-31
Volatile organic compounds (VOC) were measured in California`s South Coast Air Basin (SoCAB) during the summers of 1995 and 1996 in order to determine the air quality impacts of the introduction in 1996 of California`s Phase 2 reformulated gasoline (RFG). Over 250 canister and 2,4-dinitrophenylhydrazine (DNPH)-impregnated cartridge samples were collected during each sampling campaign at four sampling sites--two source-dominated sites, a downwind receptor site, and a background site. Canister samples were analyzed for methane, speciated volatile hydrocarbons (C{sub 2}-C{sub 12}), carbon monoxide (CO), carbon dioxide (CO{sub 2}), and methyl tert-butyl ether (MTBE). DNPH were analyzed for C{sub 1}-C{sub 7} carbonylmore » compounds. This paper examines the changes in concentrations of C{sub 2}-C{sub 12} hydrocarbons in the SoCAB resulting from the introduction of Phase 2 RFG with particular emphasis on hydrocarbon species that are most affected by the reformulation.« less
The toxicity of selected gasoline components to glucose methanogenesis by aquifer microorganisms
Mormile, Melanie R.; Suflita, Joseph M.
1996-01-01
Six model hydrocarbons, representing various classes of chemicals found in gasoline, and methyl ethyl ketone, were assayed for their inhibitory effect on glucose methanogenesis in slurries prepared from aquifer sediments and ground water. Biogas (CH4and CO2) production was monitored with an automated pressure transducer system. Benzene, 1-methyl naphthalene, and methyltert-butyl ether (MTBE) were found to have no inhibitory influence on biogas production rates at concentrations up to 71·7 mg/L. Similarly, octane, cyclohexane, indan, and methyl ethyl ketone (MEK) were found to have only marginal negative effects on the rate of biogas production in aquifer slurries, at concentrations ranging from 51·7 to 72·1 mg/L. Thus, gasoline components had low apparent toxicities to microorganisms responsible for glucose methanogenesis in aquifier slurries. As the concentrations of the assayed hydrocarbons are about 100 times those typically reported after an aquifer has been contaminated with gasoline, it is unlikely that individual hydrocarbons will substantially impact anaerobic metabolic processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jimeng; Savage, Phillip E.
We determined how different reaction conditions influence the metals contents in biocrude oil and other product fractions from hydrothermal liquefaction (HTL) of microalgae. We then assessed the effect of using different solvents for biocrude recovery and adding catalysts on the metal content in the biocrude. The Fe content was lower and the Na content higher in biocrude produced at higher temperature (400 vs 350 °C) and longer holding time (60 vs 3 min). The Fe and Na contents were reduced over 50% and 95%, respectively, by use of methyl tert-butyl ether (MTBE ) rather than dichloromethane as the organic solventmore » for biocrude recovery and they were reduced over 98% via additional application of a supported Ni catalyst during HTL. Finally, this work demonstrates that the hydrothermal treatment conditions influence the metal content in biocrude and that judicious selection of solvent and catalyst can lead to significant reduction in the metal content in biocrude.« less
Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...
BTE-OX biodegradation kinetics with MTBE through bioaugmentation.
Acuna-Askar, K; Villarreal-Chiu, J F; Gracia-Lozano, M V; Garza-Gonzalez, M T; Chavez-Gomez, B; Rodriguez-Sanchez, I P; Barrera-Saldana, H A
2004-01-01
The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of bioaugmented bacterial populations as high as 880 mg/L VSS was evaluated. The effect of soil in aqueous samples and the effect of Tergitol NP-10 on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36 hours, every 6 hours. Benzene and o-xylene biodegradation followed a first-order one-phase kinetic model, whereas toluene and ethylbenzene biodegradation was well described by a first-order two-phase kinetic model in all samples. MTBE followed a zero-order removal kinetic model in all samples. The presence of soil in aqueous samples retarded BTE-oX removal rates, with the highest negative effect on o-xylene. The presence of soil enhanced MTBE removal rate. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged from 95.4-99.7% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged from 55.9-90.1% and 15.6-30.1%, respectively.
Temperature effect on tert-butyl alcohol (TBA) biodegradation kinetics in hyporheic zone soils
Greenwood, Mark H; Sims, Ronald C; McLean, Joan E; Doucette, William J
2007-01-01
Background Remediation of tert-butyl alcohol (TBA) in subsurface waters should be taken into consideration at reformulated gasoline contaminated sites since it is a biodegradation intermediate of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-butyl formate (TBF). The effect of temperature on TBA biodegradation has not been not been published in the literature. Methods Biodegradation of [U 14C] TBA was determined using hyporheic zone soil microcosms. Results First order mineralization rate constants of TBA at 5°C, 15°C and 25°C were 7.84 ± 0.14 × 10-3, 9.07 ± 0.09 × 10-3, and 15.3 ± 0.3 × 10-3 days-1, respectively (or 2.86 ± 0.05, 3.31 ± 0.03, 5.60 ± 0.14 years-1, respectively). Temperature had a statistically significant effect on the mineralization rates and was modelled using the Arrhenius equation with frequency factor (A) and activation energy (Ea) of 154 day-1 and 23,006 mol/J, respectively. Conclusion Results of this study are the first to determine mineralization rates of TBA for different temperatures. The kinetic rates determined in this study can be used in groundwater fate and transport modelling of TBA at the Ronan, MT site and provide an estimate for TBA removal at other similar shallow aquifer sites and hyporheic zones as a function of seasonal change in temperature. PMID:17877835
The current status of the U.S. MTBE industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, G.M.
1995-12-31
This paper reviews the status of the MTBE industry from its beginnings as a result of the Clean Air Act Amendments and the need for the use of oxygenates in non-attainment areas. During 1990--93 three world scale merchant plants were constructed and in 1994 two more were brought on stream. The paper tabulates reasons why MTBE gained the lion`s share of the oxygenates market. Finally the paper discusses the problems that now plague the industry and their causes.
Landmeyer, J.E.; Bradley, P.M.
2003-01-01
The effect of pre-existing factors, e.g., hydrologic, geochemical, and microbiological properties, on the results of oxygen addition to a reformulated gasoline-contaminated groundwater system was studied. Oxygen addition with an oxygen-release compound (a proprietary form of magnesium peroxide produced different results with respect to dissolved oxygen (DO) generation and contaminant decrease in the two locations. Oxygen-release compound injected at the former UST source area did not significantly change measured concentrations of DO, benzene, toluene, or MTBE. Conversely, oxygen-release compound injected 200 m downgradient of the former UST source area rapidly increased DO levels, and benzene, toluene, and MTBE concentrations decreased substantially. The different results could be related to differences in hydrologic and geochemical conditions that characterized the two locations prior to oxygen addition. The lack of recharge to ground water in the paved UST source area led to a much larger geochemical sink for DO compared to ground water in the unpaved area.
DESIGN OF A MTBE REMEDIATION TECHNOLOGY EVALUATION
This study examines the intrinsic variability of dissolved MTBE concentrations in ground water during the course of a pilot-scale bioremedial technology trial in Port Hueneme, California. A pre-trial natural gradient tracer experiment using bromide was conducted in an anaerobic t...
DEGRADATION OF MTBE BY PSYCHROPHILIC BACTERIA
MTBE, a gasoline additive, is a persistent and foul tasting contaminant that is more mobile in groundwater than BTEX (benzene, toluene, ethylbenzene, xylenes). It is turning up at many American crossroads. The objective of this well controlled study was to determine if biologic...
TECHNIQUES AND APPROACHES TO EVALUATE THE NATURAL ATTENUATION OF MTBE
Natural anaerobic biodegradation is the most important processes controlling natural attenuation of MTBE along a flow path. However, natural biological degradation has been particularly difficult to document at field scale. Biodegradation of the BTEX compounds produce the same ...
Effect of soil and a nonionic surfactant on BTE-oX and MTBE biodegradation kinetics.
Acuna-Askar, K; Gracia-Lozano, M V; Villarreal-Chiu, J F; Marmolejo, J G; Garza-Gonzalez, M T; Chavez-Gomez, B
2005-01-01
The biodegradation kinetics of BTE-oX and MTBE, mixed all together, in the presence of 905 mg/L VSS of BTEX-acclimated biomass was evaluated. Effects of soil and Tergitol NP-10 in aqueous samples on substrate biodegradation rates were also evaluated. Biodegradation kinetics was evaluated for 36 hours, every 6 hours. MTBE biodegradation followed a first-order one-phase kinetic model in all samples, whereas benzene, toluene and ethylbenzene biodegradation followed a first-order two-phase kinetic model in all samples. O-xylene biodegradation followed a first-order two-phase kinetic model in the presence of biomass only. Interestingly, o-xylene biodegradation was able to switch to a first-order one-phase kinetic model when either soil or soil and Tergitol NP-10 were added. The presence of soil in aqueous samples retarded benzene, toluene and ethylbenzene removal rates. O-xylene and MTBE removal rates were enhanced by soil. The addition of Tergitol NP-10 to aqueous samples containing soil had a positive effect on substrate removal rate in all samples. Substrate percent removals ranged 77-99.8% for benzene, toluene and ethylbenzene. O-xylene and MTBE percent removals ranged 50.1-65.3% and 9.9-43.0%, respectively.
Kelley, Keven M; Stenson, Alexandra C; Dey, Rajarashi; Whelton, Andrew J
2014-12-15
Green buildings are increasingly being plumbed with crosslinked polyethylene (PEX) potable water pipe. Tap water quality was investigated at a six month old plumbing system and chemical and odor quality impacts of six PEX pipe brands were examined. Eleven PEX related contaminants were found in the plumbing system; one regulated (toluene) and several unregulated: Antioxidant degradation products, resin solvents, initiator degradation products, or manufacturing aides. Water chemical and odor quality was monitored for new PEX-a, -b and -c pipes with (2 mg/L free chlorine) and without disinfectant over 30 days. Odor and total organic carbon (TOC) levels decreased for all pipes, but odor remained greater than the USA's Environmental Protection Agency's (USEPA) secondary maximum contaminant level. Odors were not attributed to known odorants ethyl-tert-butyl ether (ETBE) or methyl-tert-butyl ether (MTBE). Free chlorine caused odor levels for PEX-a1 pipe to increase from 26 to 75 threshold odor number (TON) on day 3 and affected the rate at which TOC changed for each brand over 30 days. As TOC decreased, the ultraviolet absorbance at 254 nm increased. Pipes consumed as much as 0.5 mg/L as Cl2 during each 3 day stagnation period. Sixteen organic chemicals were identified, including toluene, pyridine, methylene trichloroacetate and 2,4-di-tert-butylphenol. Some were also detected during the plumbing system field investigation. Six brands of PEX pipes sold in the USA and a PEX-a green building plumbing system impacted chemical and drinking water odor quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quast, Konrad W; Levine, Audrey D; Kester, Janet E; Fordham, Carolyn L
2016-04-01
Tertiary-butyl alcohol (TBA), a high-production volume (HPV) chemical, was sporadically detected in groundwater and coalbed methane (CBM) wells in southeastern Colorado's hydrocarbon-rich Raton Basin. TBA concentrations in shallow water wells averaged 75.1 μg/L, while detections in deeper CBM wells averaged 14.4 μg/L. The detection of TBA prompted a forensic investigation to try to identify potential sources. Historic and recent data were reviewed to determine if there was a discernable pattern of TBA occurrence. Supplemental samples from domestic water wells, monitor wells, CBM wells, surface waters, and hydraulic fracturing (HF) fluids were analyzed for TBA in conjunction with methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE), proxies for evidence of contamination from reformulated gasoline or associated oxygenates. Exploratory microbiological sampling was conducted to determine if methanotrophic organisms co-occurred with TBA in individual wells. Meaningful comparisons of historic TBA data were limited due to widely varying reporting limits. Mapping of TBA occurrence did not reveal any spatial patterns or physical associations with CBM operations or contamination plumes. Additionally, TBA was not detected in HF fluids or surface water samples. Given the widespread use of TBA in industrial and consumer products, including water well completion materials, it is likely that multiple diffuse sources exist. Exploratory data on stable isotopes, dissolved gases, and microbial profiling provide preliminary evidence that methanotrophic activity may be producing TBA from naturally occurring isobutane. Reported TBA concentrations were significantly below a conservative risk-based drinking water screening level of 8000 μg/L derived from animal toxicity data.
Salazar, Keith D; Brinkerhoff, Christopher J; Lee, Janice S; Chiu, Weihsueh A
2015-11-01
Subchronic and chronic studies in rats of the gasoline oxygenates ethyl tert-butyl ether (ETBE) and tert-butanol (TBA) report similar noncancer kidney and liver effects but differing results with respect to kidney and liver tumors. Because TBA is a major metabolite of ETBE, it is possible that TBA is the active toxic moiety in all these studies, with reported differences due simply to differences in the internal dose. To test this hypothesis, a physiologically-based pharmacokinetic (PBPK) model was developed for ETBE and TBA to calculate internal dosimetrics of TBA following either TBA or ETBE exposure. This model, based on earlier PBPK models of methyl tert-butyl ether (MTBE), was used to evaluate whether kidney and liver effects are consistent across routes of exposure, as well as between ETBE and TBA studies, on the basis of estimated internal dose. The results demonstrate that noncancer kidney effects, including kidney weight changes, urothelial hyperplasia, and chronic progressive nephropathy (CPN), yielded consistent dose-response relationships across routes of exposure and across ETBE and TBA studies using TBA blood concentration as the dose metric. Relative liver weights were also consistent across studies on the basis of TBA metabolism, which is proportional to TBA liver concentrations. However, kidney and liver tumors were not consistent using any dose metric. These results support the hypothesis that TBA mediates the noncancer kidney and liver effects following ETBE administration; however, additional factors besides internal dose are necessary to explain the induction of liver and kidney tumors. Published by Elsevier Inc.
COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION
Change of stable isotope composition of organic contaminants (isotopic fractionation) is a useful indicator of biotransformation. Most of applications to date are in the area of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (biotic- and abiotic transfor...
In Situ Biodegradation of MTBE and TBA
Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, and air sparging are common treatment technologies in Kansas. The technologies supply oxygen to support ...
Compound-Specific Carbon and Hydrogen Isotope Analysis - Field Evidence of MTBE Bioremediation
NASA Astrophysics Data System (ADS)
Kuder, T.; Kolhatkar, R. V.; Philp, P.; Wilson, J. T.; Landmeyer, J. E.; Allen, J.
2002-12-01
Compound-specific stable isotope analysis allows opportunity to determine the isotopic ratios of individual contaminants. The technique has been applied to confirm biodegradation in studies of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (including bio- and inorganic degradation) tend to favor molecules with the lighter isotopic species (e.g., 12C, 1H), resulting with enrichment of the unreacted substrate in the heavier isotopic species (13C, D), referred to as kinetic isotopic fractionation, so that the extent of fractionation may be used as a proxy for biodegradation. Processes such as volatilization, sorption etc., result in minimal degree of fractionation and do not interfere with the isotopic signal due to biodegradation. The results presented here show the first successful applications of compound-specific isotope analysis to understanding MTBE biodegradation in the field, at both aerobic and anaerobic sites. Observed fractionations suggest that two different biodegradation pathways may be involved. At a number of anaerobic locations major fractionation effects were observed for both C and H; enrichment factors Ÿnfor both elements were approaching or exceeding -10. A laboratory microcosm study using an enrichment culture yielded similar results (C data only). A characteristic feature of these sites was the presence of high concentrations of TBA. Conversely, at a number of sites, the C composition remained stable with little fractionation and stayed within the analytical precision range or changed minimally, while H displayed significant fractionation in excess of 60 per mil. Moderate agreement of the data with Rayleigh fractionation model was observed, suggesting that biodegradation effect was distorted by variability at the source or the plume was not homogeneous. The enrichment factor calculated for these data is similar to the one Ÿnpublished for aerobic microcosm of MTBE-degrading culture from Vandenberg AFB by Gray et al. (Env. Sci. Tech., 2002, 36, 1931-1938) and appears to be in excess of -60 for H and under -2 for C. The high H fractionation observed under aerobic conditions may be attributed to the initial, monooxygenase transformation of MTBE (cf., Deeb et al., Biodegradation, 2000, 11, 171-186). The anaerobic enzymatic reactions were not characterized yet, but a hydrolytic process may be responsible. Interestingly, isotopic fractionation at an anaerobic site, which was treated by oxygen injection, did not show differences between aerobic and anaerobic parts of the plume. Despite oxygen addition, there was no evidence for monooxygenase activity.
Hostettler, Frances D.; Rostad, Colleen E.; Kvenvolden, Keith A.; Delin, Geoffrey N.; Putnam, Larry D.; Kolak, Jonathan J.; Chaplin, Brain P.; Schaap, Bryan D.
2001-01-01
Free-phase hydrocarbons are present in the alluvial aquifer at Mandan, North Dakota. A large contaminant body of the hydrocarbons [light nonaqueous phase liquid (LNAPL)] floats on the water table about 20 feet below land surface. The main LNAPL body is about 6 feet thick, and the areal extent is about 657,000 square feet. A study was conducted to describe the hydrologic setting and characterize the geochemical composition of the free-phase hydrocarbons in the alluvial aquifer. Most of the study area is underlain by alluvium of the Heart River Valley that ranges in thickness from about 25 to 109 feet. The alluvium can be divided into three stratigraphic units silty clay, silty sand, and sand and is underlain by shales and sandstones. Monitoring wells were installed prior to this study, to an average depth of about 29 feet. Regional ground-water flow in the Heart River aquifer generally may be from west-northwest to eastsoutheast and is influenced by hydraulic connections to the river. Hydraulic connections also are probable between the aquifer and the Missouri River. Ground-water flow across the north boundary of the aquifer is minimal because of adjacent shales and sandstones of relatively low permeability. Recharge occurs from infiltration of precipitation and is spatially variable depending on the thickness of overlying clays and silts. Although the general water-table gradient may be from west-northwest to east-southeast, the flow directions can vary depending on the river stage and recharge events. Any movement of the LNAPL is influenced by the gradients created by changes in water-level altitudes.LNAPL samples were collected from monitoring wells using dedicated bailers. The samples were transferred to glass containers, stored in the dark, and refrigerated before shipment for analysis by a variety of analytical techniques. For comparison purposes, reference-fuel samples provided by the refinery in Mandan also were analyzed. These reference-fuel samples included a current diesel fuel, a closely related but slightly broader refinery-cut fuel, a crude-oil composite, unleaded regular gasoline, and additives. Four principal analytical techniques were used for geochemical characterization: Purge-and-trap gas chromatography/mass spectrometry (volatile components); capillary gas chromatography/mass spectrometry (semivolatile components); isotope ratio mass spectrometry (carbon isotopes; whole oils); and liquid chromatography/mass spectrometry with electrospray ionization (additives and other organic components). Volatile analytes included solvents, disinfection byproducts, halogenated hydrocarbons, and alkylbenzenes, including benzene, toluene, ethylbenzene, and meta-, para-, and orf/zo-xylenes. Semivolatile analytes included rt-alkanes, isoprenoid alkanes, cycloalkanes, and polycyclic aromatic hydrocarbons and related compounds (naphthalenes, phenanthrenes, and dibenzothiophenes and their alkylated derivatives). Of the additives, only the diesel-fuel additive with the red dye marker was amenable to electrospray ionization.Results indicate the LNAPL consists of closely correlatable diesel fuel at various stages of degradation. All LNAPL samples contained the red dye marker for diesel fuel. None of the samples contained chlorinated solvents associated with industries such as drycleaning or automotive maintenance. Solvents such as acetone, dimethyl ether, and methylene chloride and the gasoline additives methyl-t-butyl ether (MTBE), ethyl-t-butyl ether (ETBE), and t-amyl-methyl ether (TAME) were not found. With one possible exception, no evidence of a different diesel or other hydrocarbon fuel contribution was identified. At one site near the north edge of the main LNAPL body, evidence exists for traces of possible gasoline components in addition to the diesel fuel. The geochemical analysis of the LNAPL and correlations with other fuel products and additives strongly suggest episodic releases of a single, local-source, diesel fuel into the aquifer over an extended period of time.
Imide/arylene ether copolymers with pendent trifluoromethyl groups
NASA Technical Reports Server (NTRS)
Jensen, Brian J.; Havens, Stephen J.
1992-01-01
A series of imide/arylene ether block copolymers were prepared using an arylene ether block containing a hexafluoroisopropylidene group and an imide block containing a hexafluoroisopropylidene and a trifluoromethyl group in the polymer backbone. The copolymers were characterized and mechanical properties were determined and compared to the homopolymers.
Chemistry and adhesive properties of poly(arylene ether)s containing heterocyclic units
NASA Technical Reports Server (NTRS)
Connell, John W.
1991-01-01
Novel poly(arylene ether)s containing heterocyclic units were prepared, characterized, and evaluated as adhesives and composite matrices. The polymers were prepared by reacting a heterocyclic bisphenol with an activated aromatic dihalide in a polar aprotic solvent, using potassium carbonate. The polymerizations were generally carried out in N,N-dimethylacetamide at 155 C. In some cases, where the polymers were semicrystalline, higher temperatures and thus higher boiling solvents were necessary to keep the polymers in solution. Heterocyclic rings incorporated into the poly(arylene ether) backbone include phenylquinoxaline, phenylimidazole, benzimidazole, benzoxazole, 1,3,4-oxadiazole, and 1,2,4-triazole. The polymers were characterized by differential scanning calorimetry, solution viscosity, X-ray diffraction, thin film, and adhesive and (in some cases) composite properties. The glass transition temperatures, crystalline melt temperature, solubility, and mechanical properties varied depending upon the heterocyclic ring. The chemistry and properties of these materials are discussed.
USING DIRECT-PUSH TOOLS TO MAP HYDROSTRATIGRAPHY AND PREDICT MTBE PLUME DIVING
MTBE plumes have been documented to dive beneath screened intervals of conventional monitoring well networks at a number of LUST sites. This behavior makes these plumes difficult both to detect and remediate. Electrical conductivity logging and pneumatic slug testing performed in...
MTBE: THE CURRENT STATUS OF HEALTH AND ENVIRONMENTAL ISSUES
This presentation will provide an update on recent evaluations of the environmental and health issues surrounding the use of MTBE in gasoline in the United States and elsewhere. Several public health bodies around the world have recently evaluated aspects of the health risks of ...
Production, distribution, and cost of oxygenated gasoline blends as a CO control strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, J.G; Dworsky, B.S.
1988-01-01
During the past two decades, efforts to reduce the contribution of automotive emissions to air pollution have focused principally on the development of more stringent emission standards for new vehicles, and the use of inspection and maintenance (I/M) programs. Despite the achievements in the last few years, motor vehicles have remained a major source of air pollution in urban areas. Further reductions in either the emission standards or in I/M program pass/fail cutpoints are not politically feasible, and alternative methods to achieve emission reductions are being investigated. One potential method is through the use of alternative fuels that can reducemore » tailpipe emissions. For example, the addition of alcohol or ether into gasoline has been shown to lean out the engine and cut carbon monoxide emissions. This paper compares the costs of producing and distribution methanol, ethanol, and MTBE blends as part of a carbon monoxide control strategy. It addresses the costs of production, distribution, infrastructure development, and retailing associated with each fuel blend.« less
Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan
2013-10-20
R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method. Copyright © 2013 Elsevier B.V. All rights reserved.
Determination of haloacetic acids in water by ion chromatography--method development.
Lopez-Avila, V; Liu, Y; Charan, C
1999-01-01
The microextraction/ion chromatographic (IC) method developed in this study involves extraction of 9 haloacetic acids (HAAs) from aqueous samples (acidified with sulfuric acid to a pH of < 0.5 and amended with copper sulfate pentahydrate and sodium sulfate) with methyl tert-butyl ether (MTBE), back extraction into reagent water, and analysis by IC with conductivity detection. The separation column consists of an Ion Pac AG-11 (2 mm id x 50 mm length) guard column and an Ion Pac AS-11 (2 mm id x 250 mm length) analytical column, and the concentration column is a 4 mm id x 35 mm length Dionex TAC-LP column. Use of the 2 mm id Dionex AS-11 column improved detection limits especially for trichloracetic acid (TCAA), bromodichloroacetic acid (BDCAA), dibromochloroacetic acid (DBCAA), and tribromoacetic acid (TBAA). The peak interfering with BCAA elutes at the same retention time as nitrate; however, we have not confirmed the presence of nitrate. Stability studies indicate that HAAs are stable in water for at least 8 days when preserved with ammonium chloride at 100 mg/L and stored at 4 degrees C in the dark. At day 30, recoveries were still high (e.g., 92.1-106%) for dichloroacetic acid (DCAA), BCAA, dibromoacetic acid (DBAA), trichloroacetic acid (TCAA), BDCAA, and DBCAA. However, recoveries of monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), and TBAA were only 54.6, 56.8, and 66.8%, respectively. Stability studies of HAAs in H2SO4-saturated MTBE indicate that all compounds except TBAA are stable for 48 h when stored at 4 degrees C in the dark. TBAA recoveries dropped to 47.1% after 6 h of storage and no TBAA was detected after 48 h of storage. The method described here is only preliminary and was tested in only one laboratory. Additional research is needed to improve method performance.
Trombley, Thoams J.; Brown, Craig J.; Delzer, Gregory C.
2007-01-01
A water-quality assessment by the U.S. Geological Survey (USGS) determined the occurrence of anthropogenic (manmade) organic compounds (AOCs) in water from 15 community water system (CWS) wells and associated finished drinking water. The study, which focused on water from the unconfined glacial stratified aquifer in western and central Connecticut, was conducted as part of the USGS National Water-Quality Assessment Program (NAWQA) Source Water-Quality Assessment (SWQA) project and included analysis of water samples for 88 volatile organic compounds (VOCs), 120 pesticides, and 50 other anthropogenic organic compounds (OAOCs). During Phase I of the study, 25 AOCs were detected (12 VOCs, 10 pesticides, and 3 OAOCs) in source-water samples collected from 15 CWS wells sampled once from October 2002 to May 2003. Although concentrations generally were low (less than 1 microgram per liter), four compounds were detected at higher concentrations in ground water from four wells. The most frequently occurring AOCs were detected in more than half of the samples and included chloroform (87 percent), methyl tert-butyl ether (MTBE, 80 percent), 1,1,1-trichloroethane (67 percent), atrazine (60 percent), deethylatrazine (60 percent), perchloroethene (PCE, 53 percent), and simazine (53 percent). Trichloroethene (TCE) was detected in 47 percent of samples. Samples generally contained a mixture of compounds ranging from 2 to 19 detected compounds, with an average of 8 detected compounds per sample. During Phase II of the study, 42 AOCs were detected in source-water samples collected from 10 resampled CWS wells or their associated finished water. Trihalomethanes accounted for most of the VOCs detections with all concentrations less than 1 microgram per liter. Chloroform, the most frequently detected VOC, was found in all source-water and all finished-water samples. As with the Phase I samples, other frequently detected VOCs included MTBE, and the solvents 1,1,1-trichloroethane, PCE, and TCE. Triazine herbicides and their degradation products accounted for most of the detected pesticides.
The HiPOx technology is an advanced oxidation process that incorporates high-precision delivery of ozone and hydrogen peroxide to chemically destroy organic contaminants with the promise of minimizing bromate formation. A MTBE-contaminated groundwater from the Ventura County Nav...
The conventional approach to evaluate biodegradation of organic contaminants in ground water is to demonstrate an increase in the concentration of transformation products. This approach is problematic for MTBE from gasoline spills because the primary transformation product (TBA) ...
MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE IN GROUND WATER
Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typically con...
COMPOUND-SPECIFIC ISOTOPE ANALYSIS OF MTBE AND TBA FOR BIOREMEDIATION STUDIES
The utility of stable isotope ratios to detect biodegradation for a number of chemical compounds including MTBE and TBA has been demonstrated in a number of laboratory or field studies. Chemical reactions tend to favor molecules with the lighter isotopic species (e.g., 12C, 1H), ...
USING STABLE CARBON ISOTOPES TO ESTIMATE THE RATE OF NATURAL BIODEGRADATION OF MTBE AT FIELD SCALE
Natural biodegradation of fuel contaminants in ground water reduces the risk of contamination of drinking water wells. It is very difficult to estimate the natural rate of biodegradation of MTBE in ground water because its primary biodegradation product, TBA, is also a component...
NATURAL ATTENUATION OF MTBE IN THE SUBSURFACE UNDER METHANOGENIC CONDITIONS
This case study was conducted at the former Fuel Farm Site at the U.S.Coast Guard Support Center at Elizabeth City, North Carolina. The study is intended to answer the following questions. Can MTBE be biodegraded under methanogenic conditions in ground water that was contaminated...
DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER
EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...
TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE
At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...
MTBE BIOREMEDIATION WITH BIONETS(TM) CONTAINING ISOLITE, PM1, SOLD OXYGEN SOURCE (SOS) OR AIR
MTBE, a gasoline additive, is a persistent and foul tasting contaminant that is more mobile in groundwater than BTEX (benzene, toluene, ethylbenzene, xylenes). It is turning up at many American crossroads. The objective of this well controlled study was to determine if biological...
MTBE BIOREMEDIATION WITH BIONETS CONTAINING ISOLITE®, PM1, SOLID OXYGEN SOURCE (SOS) OR AIR
MTBE, a gasoline additive, is a persistent and foul tasting contaminant that is more mobile in groundwater than BTEX (benzene, toluene, ethylbenzene, xylenes). It is turning up at many American crossroads. The objective of this well controlled study was to determine if biological...
USING DIRECT-PUSH TOOLS TO MAP HYDROSTRATIGRAPHY AND PREDICT MTBE PLUME DIVING
Conventional wells for monitoring MTBE contamination at underground storage tank sites are screened a few feet above and a few feet below the water table. At some sites, a plume of contamination in ground water may dive below the screen of conventional monitoring wells and escap...
A significant challenge in environmental studies is to determine the onset and extent of MTBE bioremediation at an affected site, which may involve indirect approaches such as microcosm verification of microbial activities at a given site. Stable isotopic fractionation is cha...
Extraction and characterization of seed oil from naturally-grown Chinese tallow trees
Xiao-Qin Yang; Hui Pan; Tao Zeng; Todd F. Shupe; Chung-Yun Hse
2013-01-01
Seeds were collected from locally and naturally grown Chinese tallow trees (CTT) and characterized for general physical and chemical properties and fatty acid composition of the lipids. The effects of four different solvents (petroleum ether, hexane, diethyl ether, and 95 % ethanol) and two extraction methods (supercritical carbon dioxide (SC-CO2) and conventional...
MONITORED NATURAL ATTENUATION AND RISK MANAGEMENT OF MTBE AND TBA IN GROUND WATER
Monitored natural attenuation (as U.S. EPA defines the term) is a remedy, where natural processes bring the concentration of MTBE or TBA to an acceptable level in a reasonable period of time. The longevity of the plume is its critical property. The rate of attenuation is typica...
Natural Attenuation of Chlorinated Solvents and Fuel Components (BTEX and MTBE) in Ground Water
Monitored Natural Attenuation is widely used in the USA to deal with ground water contamination from fuel components such as the BTEX compounds or MTBE or TBA and from chlorinated solvents such as PCE, TCE, and TCA. This presentation reviews the theory and practice of MNA in the...
The efficacy of soil vacuum extraction or air sparging and soil vacuum extraction for remediation of ground water contamination with MTBE was compared to remediation of contamination with benzene. There was no practical difference.
Sites were identified that met the followin...
The primary objective of the Biostimulation Technology Evaluation was to determine if biodegradation was occurring in a ground-water Test Plot to a sufficient degree to reduce intrinsic MTBE to the State of California's treatability criteria of 5 mg/L or below. The evaluation wa...
Ground water at most UST spills sites in Kansas contains both MTBE and benzene, and both contaminants must be effectively treated to close the sites. Soil vacuum extraction, air sparging, and excavation are the most common treatment technologies in Kansas. To compare the relati...
In situ chemical oxidation of BTEX and MTBE by ferrate: pH dependence and stability.
Pepino Minetti, Roberto C; Macaño, Héctor R; Britch, Javier; Allende, M Carla
2017-02-15
Gasoline spills from underground storage tanks are a worldwide environmental problem. BTEX and MtBE are the compounds of gasoline that present the highest degree of migration due to their chemical properties, and are therefore able to impact groundwater reservoirs. In situ chemical oxidation (ISCO) is an emerging technology for groundwater remediation. Several compounds such as permanganate and hydrogen peroxide among others have been used as oxidants, a strong impact of pH on the relative stabilities and reduction potentials having been in each case determined. This paper presents a study of stability and degradation of BTEX and MtBE at different pH ranges of a novel oxidant for ISCO, potassium ferrate (K 2 FeO 4 ). To carry out this study, BTEX and MtBE solutions were prepared in different phosphate buffers (pH 5,8; 7; 9; 10 and 11) in concentration ratio of (FeO 4 -2 )/(BTEX+MtBE)=100:1. Each solution was analyzed at different times by gas chromatography with photoionization and tandem mass spectrometer detector. The results show a higher degree of degradation at pH 7 for Benzene and Toluene, and at pH 9 for Ethyl benzene and Xylenes, while MtBE proved recalcitrant to degradation by ferrate. The most favorable pH for stability of FeO 4 -2 solution was confirmed in 9-10. Copyright © 2016 Elsevier B.V. All rights reserved.
Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process.
Innocenti, Ivan; Verginelli, Iason; Massetti, Felicia; Piscitelli, Daniela; Gavasci, Renato; Baciocchi, Renato
2014-07-01
This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 μg/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel Side-Chain Liquid Cyrstalline Polymers
1989-01-01
Synthesis and Characterization of Liquid Crystalline Polyacrylates and Poly- methacrylates Containing Benzyl Ether and Diphenyl Ethane Based Mesogens J...Crystalline Polymethacrylates and Polyacrylates of trans 2-[4-(11- hydroxyundecanyloxy)-3,5-dimethylphenylI-4-(4-methoxyphenyl)-l,3-dioxane Makromol. Chem., 189...and Characterization of Liquid Crystalline Polyacrylates and Poly- met acrylates Containing Benzyl Ether and Diphenyl Ethane Based Mesogens J. Polym
NASA Astrophysics Data System (ADS)
Ali, Mawlood Maajal; Rizvi, S. J. A.; Azam, Ameer
2018-05-01
Poly ether ether ketone (PEEK) was sulfonated with 1.0 M sulphuric acid for varying durations to have various degrees of sulfonation (DS) from 43 to 55%. The FT-IR spectra confirmed the successful sulfonation of PEEK. The sulfonated PEEK (sPEEK) membranes were prepared by a solvent casting method using dimethylacetamide (DMAc) as solvent and upon drying the membranes were characterized. The DS% and ion exchange capacity (IEC) were determined by a back titration method. The IEC and DS of sPEEK was found to increase with the increment of sulfonation reaction time. Water uptake also increased with increase in the DS. The Thermogravimetric (TGA) curves revealed poor thermal stability of sPEEK. The proton conductivity of sPEEK membrane was found to considerably better with degree of sulfonation for fuel cell application.
Round robin test for odour testing of migration waters.
Rapp, Thomas; Günther, Herbert
2015-04-15
For a round robin test for EN 1420-1 (Odour assessment for organic materials in contact with drinking water) with 14 contributing laboratories from 10 European countries segments of a plastic pipe were sent to the laboratories which performed a migration test and an odour analysis of the migration waters (water that had contact with the organic material) according to the procedure described in the standard from 1999. In addition reference substances (Methyl tert-butyl ether, 1-butanol and hexanal) were investigated for their suitability to qualify the panels and the individual panellists. Methyl tert-butyl ether (MtBE) and 1-butanol proved to be suitable for this purpose, whereas hexanal showed a wide distribution of the individual odour threshold concentrations. Both possible testing options (unforced and forced choice) were performed and gave similar results. However, with respect to the qualification of the panellists and the data analysis the unforced choice procedure showed advantages. As human olfactory perception is used for the analysis, the reproducibility and the comparability between laboratories is of particular concern. For the pipe material the TON results of the different laboratories were in a range of ±1.5 dilutions based on a dilution factor of 2. This might be improved by taking the individual sensitivities of the panellists into account more strongly. Appropriate measures for the improvement of the test method appear to be the use of the proposed reference substances for the training of the panellists as well as the auditing and the selection of the panellists. The results of this round robin test are used in the revision process of the standard. Copyright © 2015 Elsevier Ltd. All rights reserved.
A systematic investigation of sample diluents in modern supercritical fluid chromatography.
Desfontaine, Vincent; Tarafder, Abhijit; Hill, Jason; Fairchild, Jacob; Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy
2017-08-18
This paper focuses on the possibility to inject large volumes (up to 10μL) in ultra-high performance supercritical fluid chromatography (UHPSFC) under generic gradient conditions. Several injection and method parameters have been individually evaluated (i.e. analyte concentration, injection volume, initial percentage of co-solvent in the gradient, nature of the weak needle wash solvent, nature of the sample diluent, nature of the column and of the analyte). The most critical parameters were further investigated using in a multivariate approach. The overall results suggested that several aprotic solvents including methyl tert-butyl ether (MTBE), dichloromethane, acetonitrile or cyclopentyl methyl ether (CPME) were well adapted for the injection of large volume in UHPSFC, while MeOH was generally the worst alternative. However, the nature of the stationary phase also had a strong impact and some of these diluents did not perform equally on each column. This was due to the existence of a competition in the adsorption of the analyte and the diluent on the stationary phase. This observation introduced the idea that the sample diluent should not only be chosen according to the analyte but also to the column chemistry to limit the interactions between the diluent and the ligands. Other important characteristics of the "ideal" SFC sample diluent were finally highlighted. Aprotic solvents with low viscosity are preferable to avoid strong solvent effects and viscous fingering, respectively. In the end, the authors suggest that the choice of the sample diluent should be part of the method development, as a function of the analyte and the selected stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.
Aslett, Denise; Haas, Joseph; Hyman, Michael
2011-09-01
Biodegradation of the gasoline oxygenates methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE) can cause tertiary butyl alcohol (TBA) to accumulate in gasoline-impacted environments. One remediation option for TBA-contaminated groundwater involves oxygenated granulated activated carbon (GAC) reactors that have been self-inoculated by indigenous TBA-degrading microorganisms in ground water extracted from contaminated aquifers. Identification of these organisms is important for understanding the range of TBA-metabolizing organisms in nature and for determining whether self-inoculation of similar reactors is likely to occur at other sites. In this study (13)C-DNA-stable isotope probing (SIP) was used to identify TBA-utilizing organisms in samples of self-inoculated BioGAC reactors operated at sites in New York and California. Based on 16S rRNA nucleotide sequences, all TBA-utilizing organisms identified were members of the Burkholderiales order of the β-proteobacteria. Organisms similar to Cupriavidus and Methylibium were observed in both reactor samples while organisms similar to Polaromonas and Rhodoferax were unique to the reactor sample from New York. Organisms similar to Hydrogenophaga and Paucibacter strains were only detected in the reactor sample from California. We also analyzed our samples for the presence of several genes previously implicated in TBA oxidation by pure cultures of bacteria. Genes Mpe_B0532, B0541, B0555, and B0561 were all detected in (13)C-metagenomic DNA from both reactors and deduced amino acid sequences suggested these genes all encode highly conserved enzymes. One gene (Mpe_B0555) encodes a putative phthalate dioxygenase-like enzyme that may be particularly appropriate for determining the potential for TBA oxidation in contaminated environmental samples.
Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico
EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water soften...
Evaluation of a UV/Ozone Treatment Process for Removal of MTBE in Groundwater Supplies in New Mexico
EPA’s Office of Research and Development is funding pilot-scale studies on MTBE contaminated groundwater using UV/ozone treatment technology (254 nm UV, 5.8 mg/L ozone). The pilot-scale treatment system consists of a GW well pump, a feed tank, a pretreatment system (water softene...
The gasoline additive MTBE has been extensively used in the U.S. since the late 70's to increase the octane rating in reformulated gasoline, replacing toxic organo-lead compounds. However, its use was boosted during the late 80's, when the study of additional physico-chemical pro...
The gasoline additive MTBE has been extensively used in the U.S. since the late 70's to increase the octane rating in reformulated gasoline, replacing toxic organo-lead compounds. However, its use was boosted during the late 80's, when the study of additional physico-chemical pro...
Matsumiya, Y; Murata, N; Tanabe, E; Kubota, K; Kubo, M
2010-06-01
To degrade ether-type polyurethane (ether-PUR), ether-PUR-degrading micro-organism was isolated. Moreover, ether-PUR-degrading mechanisms were analysed using model compounds of ether-PUR. A fungus designated as strain PURDK2, capable of changing the configuration of ether-PUR, has been isolated. This isolated fungus was identified as Alternaria sp. Using a scanning electron microscope, the grid structure of ether-PUR was shown to be melted and disrupted by the fungus. The degradation of ether-PUR by the fungus was analysed, and the ether-PUR was degraded by the fungus by about 27.5%. To analyse the urethane-bond degradation by the fungus, a degraded product of ethylphenylcarbamate was analysed using GC/MS. Aniline and ethanol were detected by degradation with the supernatant, indicating that the fungus secreted urethane-bond-degrading enzyme(s). PURDK2 also degraded urea bonds when diphenylmethane-4,4'-dibutylurea was used as a substrate. The enzyme(s) from PURDK2 degraded urethane and urea bonds to convert the high molecular weight structure of ether-PUR to small molecules; and then the fungus seems to use the small molecules as an energy source. Ether-PUR-degrading fungus, strain PURDK2, was isolated, and the urethane- and urea-bonds-degrading enzymes from strain PURDK2 could contribute to the material recycling of ether-PUR.
Pereira, Jose Henrique; Heins, Richard A; Gall, Daniel L; McAndrew, Ryan P; Deng, Kai; Holland, Keefe C; Donohue, Timothy J; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Adams, Paul D
2016-05-06
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; ...
2016-03-03
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less
Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; McAndrew, Ryan P.; Deng, Kai; Holland, Keefe C.; Donohue, Timothy J.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Adams, Paul D.
2016-01-01
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. PMID:26940872
Non-Leaching, Benign Antifouling Multilayer Polymer Coatings for Marine Applications
2010-03-01
polymerization b block BF3•Et2O boron trifluoride diethyl etherate BNL Brookhaven National Labs BF3•Et2O boron trifluoride diethyl etherate BSA...surface characterization of the polymers. We also acknowledge Brookhaven National Laboratory ( BNL ) where the NEXAFS surface characterization was...National Synchrotron Light Source at Brookhaven National Laboratory ( BNL ). The X-ray beam was elliptically polarized (polarization factor = 0.85
AGU 2002-2003 Congressional Science Fellow
NASA Astrophysics Data System (ADS)
Illa Amerson, a Ph.D. candidate at the Oregon Health & Science University in Beaverton, was selected as AGU's 26th Congressional Science Fellow for 2002-2003. Starting in September, Amerson will serve a one-year assignment in the office of a senator or representative, or on a committee's staff as one of only a handful of scientists on Capitol Hill in Washington, D.C. Once in an office, Amerson can expect to work as a regular member of the staff, serving as a legislative assistant. Her duties could include advising her boss how to vote on specific bills, writing speeches or press releases, crafting legislation, meeting with lobbyists and special interest groups, and even answering constituent mail.Amerson expects to receive her Ph.D. in environmental science and engineering this summer. Her dissertation focuses on the environmental impact of the gasoline additive methyl tert-butyl ether (MTBE). She completed a M.S. in civil and environmental engineering at Arizona State University and a S.B. in chemical engineering at the Massachusetts Institute of Technology Amerson has also spent three years working in environmental regulation and consulting, dealing primarily with air and water quality issues.
Point-of-entry treatment of petroleum contaminated water supplies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malley, J.P. Jr.; Eliason, P.A.; Wagler, J.L.
1993-03-01
Contamination of individual wells in rural area from leaking petroleum storage tanks poses unique problems for regulatory agencies utilities, and potentially responsible parties. A potential solution is the use of point-of-entry (POE) treatment techniques. Results indicate POE systems using aeration followed by granular activated carbon (GAC) are a viable, cost effective, short-term solution while ground water remediation is performed or an alternate drinking water supply is secured. Selection and design of POE systems should consider variations in water usage and contaminant concentrations. Iron and manganese did not affect POE system performance at the ten sites studied. However, iron precipitation wasmore » observed and may pose problems in some POE applications. Increased concentrations of nonpurgeable dissolved organic carbon consisting primarily of methy-t-butyl ether (MTBE) and hydrophilic petroleum hydrocarbons were found in the raw waters but did not affect volatile organic chemical (VOC) removals by aeration of GAC. Microbial activity as measured by heterotrophie plate count significantly increased through four of the ten POE systems studied. Reliability of the POE systems will best be achieved by specifying top quality system components, educating POE users, and providing routine maintenance and VOC monitoring. 20 refs., 9 figs., 4 tabs.« less
Kane, Eleanor V; Newton, Rob
2010-10-01
Gasoline comprises over 500 chemicals, including the known or suspected carcinogens benzene, 1,3-butadiene, ethylbenzene and methyl tert-butyl ether (MTBE). To assess whether work in the production, distribution and use of gasoline is associated with non-Hodgkin lymphoma (NHL), we reviewed the published literature on this topic. English-language peer-reviewed articles were identified by keyword searches of bibliographic databases. Twenty-two cohorts and thirteen case-control studies examined the risk of NHL among persons employed in the downstream petroleum industry. No positive associations were found with the exception of one study. The pooled risk estimate from a random-effects meta-analysis was 1.02 (95% confidence interval (CI) 0.94-1.12). Although there were no estimates available, exposure is likely to have varied by occupation, location and time period; there was no evidence however that risk estimates varied by any of these factors. NHL is a heterogeneous disease, yet no data were reported for NHL subtypes. In summary, there is no suggestion across an extensive literature that exposure to gasoline at the levels workers' experience in an occupational setting increases the risk of NHL. Copyright © 2010 Elsevier Ltd. All rights reserved.
The presence and steady increase in environmental and human concentrations of PBDEs (polybrominated diphenyl ethers) has heightened interest in the potential toxicological consequences of these chemicals. Currently available data on exposure, pharmacokinetics, toxicity, and biom...
Schifter, I; Vera, M; Díaz, L; Guzmán, E; Ramos, F; López-Salinas, E
2001-05-15
Motor vehicle emission tests were performed on 12 in-use light duty vehicles, made up of the most representative emission control technologies in Mexico City: no catalyst, oxidative catalyst, and three way catalyst. Exhaust regulated (CO, NOx, and hydrocarbons) and toxic (benzene, formaldehyde, acetaldehyde, and 1,3-butadiene) emissions were evaluated for MTBE (5 vol %)- and ethanol (3, 6, and 10 vol %)-gasoline blends. The most significant overall emissions variations derived from the use of 6 vol % ethanol (relative to a 5% MTBE base gasoline) were 16% decrease in CO, 28% reduction in formaldehyde, and 80% increase in acetaldehyde emissions. A 26% reduction in CO emissions from the oldest fleet (< MY 1991, without catalytic converter), which represents about 44% of the in-use light duty vehicles in Mexico city, can be attained when using 6 vol% ethanol-gasoline, without significant variation in hydrocarbons and NOx emissions, when compared with a 5% vol MTBE-gasoline. On the basis of the emissions results, an estimation of the change in the motor vehicle emissions of the metropolitan area of Mexico city was calculated for the year 2010 if ethanol were to be used instead of MTBE, and the outcome was a considerable decrease in all regulated and toxic emissions, despite the growing motor vehicle population.
NASA Astrophysics Data System (ADS)
Huang, Xinyu; Zhang, Yanli; Yang, Weiqiang; Huang, Zuzhao; Wang, Yujun; Zhang, Zhou; He, Quanfu; Lü, Sujun; Huang, Zhonghui; Bi, Xinhui; Wang, Xinming
2017-07-01
Traffic restriction (TR) is a widely adopted control measure in case of heavy air pollution particularly in urban areas, yet it is hard to evaluate the effect of TR on reducing VOC emissions based on monitoring data since ambient VOC mixing ratios are influenced not only by source emissions but also by meteorological conditions and atmospheric degradation. Here we collected air samples for analysis of VOCs before, during and after a TR drill carried out in Guangzhou in September 2010 at both a roadside and a rooftop (∼50 m above the ground) site. TR measures mainly included the "odd-even license" rule and banning high-emitting "yellow label" vehicles. The mixing ratios of non-methane hydrocarbons (NMHCs) did not show significant changes at the roadside site with total NMHCs of 39.0 ± 11.8 ppbv during non-TR period and 39.1 ± 14.8 ppbv during TR period, whereas total NMHCs decreased from 30.4 ± 14.3 ppbv during the non-TR period to 22.1 ± 10.6 ppbv during the TR period at rooftop site. However, the ratios of methyl tert-butyl ether (MTBE), benzene and toluene against carbon monoxide (MTBE/CO, T/CO and B/CO) at the both sampling sites dropped significantly. The ratios of toluene to benzene (T/B) instead increased significantly. Changes in these ratios all consistently indicated reduced input from traffic emissions particularly gasoline vehicles. Source attribution by positive matrix factorization (PMF) confirmed that during the TR period gasoline vehicles contributed less VOCs in percentages while industrial sources, biomass burning and LPG shared larger percentages. Assuming that emissions from industrial sources remained unchanged during the TR and non-TR periods, we further used the PMF-retrieved contribution percentages to deduce the reduction rate of traffic-related VOC emissions, and obtained a reduction rate of 31% based on monitoring data at the roadside site and of 34% based on the monitoring data at the rooftop site. Considering VOC emissions from all sources in Guangzhou city, the TR control measures adopted could reduce VOC up to 15%.
Zhang, Hongna; Wen, Bei; Hu, Xiaoyu; Wu, Yali; Luo, Lei; Chen, Zien; Zhang, Shuzhen
2015-07-24
Degradation of fluorotelomer alcohols (FTOHs) was recognized as an additional source of perfluorocarboxylic acids (PFCAs). Quantification of FTOHs and their degradation products can help shed light on the sources and fates of PFCAs in the environment. In this study, an analytical method was developed for the determination of 6:2 and 8:2 FTOHs, and their degradation products of poly- and perfluorinated acids, including fluorotelomer saturated and unsaturated carboxylic acids (FTCAs and FTUCAs), secondary polyfluorinated alcohols and PFCAs in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The extract efficiencies of different methods including ethyl acetate and methanol (MeOH) for FTOHs and acetonitrile, MeOH, methyl tert-butyl ether (MTBE), NaOH-MeOH and NaOH-MTBE for poly- and perfluorinated acids were tested. The results showed that 6:2 and 8:2 FTOHs and their degradation products could be simultaneously and satisfactorily extracted by MeOH, cleaned up by Envi-Carb graphitized carbon and solid phase extraction, respectively, and determined by UPLC-MS/MS separately. NaOH in the extractant caused the conversion of 6:2 FTCA and 8:2 FTCA into the corresponding FTUCAs. The selected methods have matrix recoveries ranged from 52% to 102%, and detection limits of 0.01-0.46ng/g dry weight for FTOHs and their degradation products in soil and plant. The optimized method was applied successfully to quantify FTOHs and their degradation products in two biosolids-amended soils and plants. The total concentrations of FTOHs in the soils were 44.1±5.8 and 82.6±7.1ng/g, and in plants tissues 3.58±0.25 and 8.33±0.66ng/g. The total concentrations of poly- and perfluorinated acids in the soils were 168.0±13.2 and 349.6±11.2ng/g, and in plants tissues 78.0±6.4 and 75.5±5.3ng/g. Copyright © 2015 Elsevier B.V. All rights reserved.
Source apportionment modeling of volatile organic compounds in streams
Pankow, J.F.; Asher, W.E.; Zogorski, J.S.
2006-01-01
It often is of interest to understand the relative importance of the different sources contributing to the concentration cw of a contaminant in a stream; the portions related to sources 1, 2, 3, etc. are denoted cw,1, cw,2, cw,3, etc. Like c w, 'he fractions ??1, = cw,1/c w, ??2 = cw,2/cw, ??3 = cw,3/cw, etc. depend on location and time. Volatile organic compounds (VOCs) can undergo absorption from the atmosphere into stream water or loss from stream water to the atmosphere, causing complexities affecting the source apportionment (SA) of VOCs in streams. Two SA rules are elaborated. Rule 1: VOC entering a stream across the air/water interface exclusively is assigned to the atmospheric portion of cw. Rule 2: VOC loss by volatilization, flow loss to groundwater, in-stream degradation, etc. is distributed over cw,1 cw,2, c w,3, etc. in proportion to their corresponding ?? values. How the two SA rules are applied, as well as the nature of the SA output for a given case, will depend on whether transport across the air/water interface is handled using the net flux F convention or using the individual fluxes J convention. Four hypothetical stream cases involving acetone, methyl-tert-butyl ether (MTBE), benzene, chloroform, and perchloroethylene (PCE) are considered. Acetone and MTBE are sufficiently water soluble from air for a domestic atmospheric source to be capable of yielding cw values approaching the common water quality guideline range of 1 to 10 ??g/L. For most other VOCs, such levels cause net outgassing (F > 0). When F > 0 in a given section of stream, in the net flux convention, all of the ??j, for the compound remain unchanged over that section while cw decreases. A characteristic time ??d can be calculated to predict when there will be differences between SA results obtained by the net flux convention versus the individual fluxes convention. Source apportionment modeling provides the framework necessary for comparing different strategies for mitigating contamination at points of interest along a stream. ?? 2006 SETAC.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Adam, Abdel Majid A.; Saad, Hosam A.
2015-04-01
The study of the complexing ability of macrocyclic compounds to organic and inorganic substances is of great interest. The aim of this work is to provide basic data that can be used to the assessment of macrocyclic crown ethers quantitatively based on charge-transfer (CT) complexation. This goal was achieved by preparing CT complexes of two interesting mixed nitrogen-oxygen crown ethers with acido acceptors (chloranilic and picric acid), which were fully structurally characterized. The crown ethers are 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane (HDHC) and 1,4,10-trioxa-7,13-diaza-cyclopentadecane (TDPD). The obtained complexes were structurally characterized via elemental analysis, IR, Raman, 1H NMR, and UV-visible spectroscopy. Thermal properties of these complexes were also studied, and their kinetic thermodynamic parameters were calculated. Furthermore, the microstructure properties of these complexes have also been investigated using X-ray diffraction (XRD) and scanning electron microscope (SEM).
NASA Astrophysics Data System (ADS)
Nebipasagil, Ali
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and a,u-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivity of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and alpha,o-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology.
Imide/arylene ether block copolymers
NASA Technical Reports Server (NTRS)
Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.
1991-01-01
Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.
USDA-ARS?s Scientific Manuscript database
Polyepoxide cardanol glycidyl ether (PECGE), a novel cardanol derivative, was synthesized and used as reactive diluent for petroleum-based epoxy resin in this work. The synthetic condition was first optimized, and the resultant PECGE diluent was characterized using Fourier transform infrared spectro...
Spence, Michael J; Bottrell, Simon H; Thornton, Steven F; Richnow, Hans H; Spence, Keith H
2005-09-01
Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has occurred in the sulphate reduction zone. Benzene degradation may be associated with denitrification since increased benzene delta13C is associated with increased delta15N in residual nitrate. Re-supply of electron acceptors by diffusion from the matrix into fractures and dispersive mixing is an important constraint on degradation rates and natural attenuation capacity in this dual-porosity aquifer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robeson, R.M.; Bonnesen, P.
2007-01-01
The synthesis of a series of novel dinorbornyl-16-crown-5 and dinorbornyl-18-crown-6 ethers that incorporate the exo-cis-2,3-norbornyl moiety within the macrocycle framework is described. The key starting material for the crown ethers, exo-cis-2,3-norbornanediol, was successfully prepared on a large (>30g) scale in 88% yield from norbornylene by osmium tetroxide-catalyzed hydroxylation. The syn and anti isomers of the dinorbornyl-16-crown-5 ether family were prepared using diethylene glycol with ring closure achieved using a methallyl linkage. The isomers cis-syn-cis and cis-anti-cis di-norbornano-15-methyleno-16-crown-5 (6A and 6B) could be separated using column chromatography, and a single crystal of the syn isomer 6A suitable for X-ray crystal structuremore » analysis was obtained, thereby confi rming the syn orientation. The syn and anti isomers of the dinorbornyl-18-crown-6 ether family were successfully prepared employing a different synthetic strategy, involving the potassium–templated cyclization of two bis-hydroxyethoxy-substituted exo-cis-2,3-norbornyl groups under high dilution conditions. Attempts to fully separate cis-syn-cis di-norbornano-18-crown-6 (10A) and cis-anti-cis di-norbornano-18-crown-6 (10B) from one another using column chromatography were unsuccessful. All intermediates and products were checked for purity using either thin layer chromatography or gas chromatography, and characterized by proton and carbon NMR. Crown ethers 6AB and 10AB are to our knowledge the fi rst crown ethers to incorporate the exo-cis-2,3-norbornyl moiety into the crown ring to be successfully synthesized and characterized.« less
NASA Technical Reports Server (NTRS)
Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.
1987-01-01
A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.
Calculation of a double reactive azeotrope using stochastic optimization approaches
NASA Astrophysics Data System (ADS)
Mendes Platt, Gustavo; Pinheiro Domingos, Roberto; Oliveira de Andrade, Matheus
2013-02-01
An homogeneous reactive azeotrope is a thermodynamic coexistence condition of two phases under chemical and phase equilibrium, where compositions of both phases (in the Ung-Doherty sense) are equal. This kind of nonlinear phenomenon arises from real world situations and has applications in chemical and petrochemical industries. The modeling of reactive azeotrope calculation is represented by a nonlinear algebraic system with phase equilibrium, chemical equilibrium and azeotropy equations. This nonlinear system can exhibit more than one solution, corresponding to a double reactive azeotrope. The robust calculation of reactive azeotropes can be conducted by several approaches, such as interval-Newton/generalized bisection algorithms and hybrid stochastic-deterministic frameworks. In this paper, we investigate the numerical aspects of the calculation of reactive azeotropes using two metaheuristics: the Luus-Jaakola adaptive random search and the Firefly algorithm. Moreover, we present results for a system (with industrial interest) with more than one azeotrope, the system isobutene/methanol/methyl-tert-butyl-ether (MTBE). We present convergence patterns for both algorithms, illustrating - in a bidimensional subdomain - the identification of reactive azeotropes. A strategy for calculation of multiple roots in nonlinear systems is also applied. The results indicate that both algorithms are suitable and robust when applied to reactive azeotrope calculations for this "challenging" nonlinear system.
Ging, Patricia B.; Delzer, Gregory C.; Hamilton, Pixie A.
2009-01-01
Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, solvents, gasoline hydrocarbons, personal-care and domestic-use products, refrigerants, and propellants. A total of 103 of 277 compounds were detected at least once among the 30 samples of source water for a community water system on the Elm Fork Trinity River near Carrollton, Texas, collected approximately monthly during 2002-05. The diversity of compounds detected indicates a variety of different sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including overland runoff and groundwater discharge) to drinking-water supplies. Nine compounds were detected year-round in source-water samples, including chloroform, methyl tert-butyl ether (MTBE), and selected herbicide compounds commonly used in the Trinity River Basin and in other urban areas across the United States. About 90 percent of the 42 compounds detected most frequently in source water (in at least 20 percent of the samples) also were detected most frequently in finished water (after treatment but before distribution). Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the detected compounds.
Liang, Taigang; Yue, Wenyan; Du, Xue; Ren, Luhui; Li, Qingshan
2012-01-01
Praeruptorin D (PD), a major pyranocoumarin isolated from Radix Peucedani, exhibited antitumor and anti-inflammatory activities. The aim of this study was to investigate the pharmacokinetics and tissue distribution of PD in rats following intravenous (i.v.) administration. The levels of PD in plasma and tissues were measured by a simple and sensitive reversed-phase high-performance liquid chromatography (HPLC) method. The biosamples were treated by liquid-liquid extraction (LLE) with methyl tert-butyl ether (MTBE) and osthole was used as the internal standard (IS). The chromatographic separation was accomplished on a reversed-phase C(18) column using methanol-water (75:25, v/v) as mobile phase at a flow rate of 0.8 mL/min and ultraviolet detection wave length was set at 323 nm. The results demonstrate that this method has excellent specificity, linearity, precision, accuracy and recovery. The pharmacokinetic study found that PD fitted well into a two-compartment model with a fast distribution phase and a relative slow elimination phase. Tissue distribution showed that the highest concentration was observed in the lung, followed by heart, liver and kidney. Furthermore, PD can also be detected in the brain, which indicated that PD could cross the blood-brain barrier after i.v. administration.
A Novel Microwave-Induced Plasma Ionization Source for Ion Mobility Spectrometry
NASA Astrophysics Data System (ADS)
Dai, Jianxiong; Zhao, Zhongjun; Liang, Gaoling; Duan, Yixiang
2017-03-01
This work demonstrates the application of a novel microwave induced plasma ionization (MIPI) source to ion mobility spectrometry (IMS). The MIPI source, called Surfatron, is composed of a copper cavity and a hollow quartz discharge tube. The ion mobility spectrum of synthetics air has a main peak with reduced mobility of 2.14 cm2V-1s-1 for positive ion mode and 2.29 cm2V-1s-1 for negative ion mode. The relative standard deviations (RSD) are 0.7% and 1.2% for positive and negative ion mode, respectively. The total ion current measured was more than 3.5 nA, which is much higher than that of the conventional 63Ni source. This indicates that a better signal-to-noise ratio (SNR) can be acquired from the MIPI source. The SNR was 110 in the analysis of 500 pptv methyl tert-butyl ether (MTBE), resulting in the limit of detection (SNR = 3) of 14 pptv. The linear range covers close to 2.5 orders of magnitude in the detection of triethylamine with a concentration range from 500 pptv to 80 ppbv. Finally, this new MIPI-IMS was used to detect some volatile organic compounds, which demonstrated that the MIPI-IMS has great potential in monitoring pollutants in air.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, Keith D., E-mail: Salazar.keith@epa.gov; Brinkerhoff, Christopher J., E-mail: Brinkerhoff.Chris@epa.gov; Lee, Janice S., E-mail: Lee.JaniceS@epa.gov
Subchronic and chronic studies in rats of the gasoline oxygenates ethyl tert-butyl ether (ETBE) and tert-butanol (TBA) report similar noncancer kidney and liver effects but differing results with respect to kidney and liver tumors. Because TBA is a major metabolite of ETBE, it is possible that TBA is the active toxic moiety in all these studies, with reported differences due simply to differences in the internal dose. To test this hypothesis, a physiologically-based pharmacokinetic (PBPK) model was developed for ETBE and TBA to calculate internal dosimetrics of TBA following either TBA or ETBE exposure. This model, based on earlier PBPKmore » models of methyl tert-butyl ether (MTBE), was used to evaluate whether kidney and liver effects are consistent across routes of exposure, as well as between ETBE and TBA studies, on the basis of estimated internal dose. The results demonstrate that noncancer kidney effects, including kidney weight changes, urothelial hyperplasia, and chronic progressive nephropathy (CPN), yielded consistent dose–response relationships across routes of exposure and across ETBE and TBA studies using TBA blood concentration as the dose metric. Relative liver weights were also consistent across studies on the basis of TBA metabolism, which is proportional to TBA liver concentrations. However, kidney and liver tumors were not consistent using any dose metric. These results support the hypothesis that TBA mediates the noncancer kidney and liver effects following ETBE administration; however, additional factors besides internal dose are necessary to explain the induction of liver and kidney tumors. - Highlights: • We model two metabolically-related fuel oxygenates to address toxicity data gaps. • Kidney and liver effects are compared on an internal dose basis. • Noncancer kidney effects are consistent using TBA blood concentration. • Liver weight changes are consistent using TBA metabolic rate. • Kidney and liver tumors are not consistent using any internal dose metric.« less
Sorbents for High Temperature Removal of Arsenic from Coal-Derived Synthesis Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alptekin, G.O.; Copeland, R.; Dubovik, M.
2002-09-20
Gasification technologies convert coal and other heavy feedstocks into synthesis gas feed streams that can be used in the production of a wide variety of chemicals, ranging from hydrogen through methanol, ammonia, acetic anhydride, dimethyl ether (DME), methyl tertiary butyl ether (MTBE), high molecular weight liquid hydrocarbons and waxes. Syngas can also be burned directly as a fuel in advanced power cycles to generate electricity with very high efficiency. However, the coal-derived synthesis gas contains a myriad of trace contaminants that may poison the catalysts that are used in the downstream manufacturing processes and may also be regulated in powermore » plant emissions. Particularly, the catalysts used in the conversion of synthesis gas to methanol and other liquid fuels (Fischer-Tropsch liquids) have been found to be very sensitive to the low levels of poisons, especially arsenic, that are present in the synthesis gas from coal. TDA Research, Inc. (TDA) is developing an expendable high capacity, low-cost chemical absorbent to remove arsenic from coal-derived syngas. Unlike most of the commercially available sorbents that physically adsorb arsenic, TDA's sorbent operates at elevated temperatures and removes the arsenic through chemical reaction. The arsenic content in the coal gas stream is reduced to ppb levels with the sorbent by capturing and stabilizing the arsenic gas (As4) and arsenic hydrides (referred to as arsine, AsH3) in the solid state. To demonstrate the concept of high temperature arsenic removal from coal-derived syngas, we carried out bench-scale experiments to test the absorption capacity of a variety of sorbent formulations under representative conditions. Using on-line analysis techniques, we monitored the pre- and post-breakthrough arsine concentrations over different sorbent samples. Some of these samples exhibited pre-breakthrough arsine absorption capacity over 40% wt. (capacity is defined as lb of arsenic absorbed/lb of sorbent), while maintaining an arsine outlet concentration at less than 10 ppb.« less
Krenek, Kimberly A; Barnes, Ryan C; Talcott, Stephen T
2014-10-01
A detailed characterization of mango pulp polyphenols and other minor phytochemicals was accomplished for the first time in the cultivar 'Keitt' whereby the identification and semiquantification of five hydroxybenzoic acids, four cinnamic acids, two flavonoids, and six apocarotenoids was accomplished. Among the most abundant compounds were two monogalloyl glucosides (MGG) identified as having an ester- or ether-linked glucose, with the ester-linked moiety present in the highest concentration among nontannin polyphenolics. Additionally, the impact of side activities of three commercial cell-wall degrading enzymes during 'Keitt' mango pulp processing was evaluated to determine their role on the hydrolysis of ester- and ether-linked phenolic acids. The use of Crystalzyme 200XL reduced the concentration of ester-linked MGG by 66%, and the use of Rapidase AR 2000 and Validase TRL completely hydrolyzed ether-linked MGG after 4 h of treatment at 50 °C. Fruit quality, in vivo absorption rate, and bioactivity of mango phytochemicals rely on their chemical characterization, and characterizing changes in composition is critical for a complete understanding of in vivo mechanisms.
Biaxial deformation behaviour of poly-ether-ether-ketone
NASA Astrophysics Data System (ADS)
Turner, Josh; Menary, Gary; Martin, Peter
2018-05-01
The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).
Geology and ground-water resources of the Lawrenceville area, Georgia
Chapman, Melinda J.; Crawford, Thomas J.; Tharpe, W. Todd
1999-01-01
The population of the Atlanta Metropolitan area continues to grow at a rapid pace and the demand for water supplies steadily increases. Exploration for ground-water resources, as a supplement to surface-water supplies, is being undertaken by many city and county governments. The application of effective investigative methods to characterization of the complex igneous and metamorphic fractured bedrock aquifers of the Piedmont physiographic province is essential to the success of these ground-water exploration programs. The U.S. Geological Survey, in cooperation with the City of Lawrenceville, Ga., began a study in December 1994 to apply various investigative techniques for field characterization of fractured crystalline-bedrock aquifers near Lawrenceville. Five major lithologic units were mapped in the Lawrenceville, Ga., area as part of an ongoing study of ground-water resources-amphibolite, biotite gneiss, button schist, granite gneiss, and quartzite/aluminous schist. These units generally are thin in outcrop width, have low angles of dip (nearly 0 to 20 degrees, dip reversals occur over short distances), and exhibit some shearing characteristics. The most productive unit for ground-water resources, on the basis of subsurface data collected through 1997, is the amphibolite. Historically, two wells drilled into this unit are recognized as having possibly the highest yields in the Piedmont region of northern Georgia. The City of Lawrenceville refurbished one well at the Rhodes Jordan Wellfield in 1990, and has pumped this well at an average rate of about 230 gallons per minute since 1995. In general, the composition of water collected from the bedrock wells, regolith wells, and City Lake is similar; calcium and bicarbonate are the dominant cation and anion, respectively. Water from the regolith wells and the lake have lower concentrations of major ions than does water from the bedrock wells. Many of the ground-water samples collected from the Rhodes Jordan Wellfield during October-November 1995, and from the wellfield and three additional observation well sites during August 1996, contain volatile organic compounds. Volatile organic compounds were detected in ground-water samples collected from several bedrock and regolith wells located in urban areas. Trace concentrations of tetrachloroethylene, trichloroethylene, 1,1-dichloroethane, trichlorofluoromethane, 1,1,1-trichloroethane, and cis-1,2-dichloroethene were detected. Methyl-tert-butyl ether (MTBE)-a compound used to increase the octane level in gasoline-was detected at concentrations above expected urban background levels in bedrock wells in the Rhodes Jordan Wellfield. Concentrations of MTBE ranged from 0.6 to 12 micrograms per liter in October-November 1995, and from 0.6 to 26 micrograms per liter in August 1996. Continuous ground-water-level data suggest that the fractured crystalline-bedrock aquifer (amphibolite unit) at the Rhodes Jordan Wellfield, generally is dewatered to a depth near a productive fracture during the regular pumping cycle of 18 hours per day, 5 days on and 2 days off per week. However, when the stress on the aquifer is increased by extending the pumping period up to as much as 18 days, or by pumping longer that 18 hours per day, the aquifer exhibits an unusual condition of recovery. Areal effects of pumping have been observed at distances of as much as one mile, extending across surface-water drainage divides.
NASA Astrophysics Data System (ADS)
Dodson, Robin E.; Levy, Jonathan I.; Spengler, John D.; Shine, James P.; Bennett, Deborah H.
Concentrations of many volatile organic compounds (VOCs) are often higher inside residences than outdoors as a result of sources or activities within the residences. These sources can be located directly in the living space of the home or in areas associated with the home such as an attached garage, basement, or common apartment hallway. To characterize the contributions from these areas to indoor residential concentrations, VOC concentrations were measured inside, outside, and, if present, in the attached garage, basement, or common hallway of an apartment of 55 residences in the Boston area, most over two seasons, as part of the Boston Exposure Assessment in Microenvironments (BEAM) Study. Of the 55 residences in the study, 11 had attached garages and basements, 24 had only basements, 10 other residences had common apartment hallways, and the remaining 10 were treated as single compartment residences. Concentrations in the garage were up to 5-10 times higher at the median than indoor concentrations for mobile source pollutants including benzene, toluene, ethylbenzene, and xylenes. Basement/indoor concentration ratios were significantly >1 for methylene chloride, ethylbenzene, m, p-xylene, and o-xylene, and summer ratios tended to be higher than winter ratios. Approximately, 20-40% of the indoor concentration for compounds associated with gasoline sources, such as methyl t-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes, can be attributed to an attached garage at the residence, with garages laterally attached to the first floor of the home having a larger impact. At the median, basements contributed to approximately 10-20% of the estimated indoor concentrations. For apartments, approximately 5-10% of the estimated indoor concentrations confer with air from the hallway. Contributions of these secondary zones to concentrations in the living area of a home were calculated using concentration and airflow estimates. Our findings illustrate the potential significance of these non-living spaces from an exposure perspective and suggest potentially effective mitigation measures.
Escamilla-Pérez, Angel Manuel; Louvain, Nicolas; Boury, Bruno; Brun, Nicolas; Mutin, P Hubert
2018-04-03
Mesoporous TiO 2 -carbon nanocomposites were synthesized using an original non-hydrolytic sol-gel (NHSG) route, based on the reaction of simple ethers (diisopropyl ether or tetrahydrofuran) with titanium tetrachloride. In this atom-economic, solvent-free process, the ether acts not only as an oxygen donor but also as the sole carbon source. Increasing the reaction temperature to 180 °C leads to the decomposition of the alkyl chloride by-product and to the formation of hydrocarbon polymers, which are converted to carbon by pyrolysis under argon. The carbon-TiO 2 nanocomposites and their TiO 2 counterparts (obtained by calcination) were characterized by nitrogen physisorption, XRD, solid state 13 C NMR and Raman spectroscopies, SEM, and TEM. The nanocomposites are mesoporous with surface areas of up to 75 m 2 g -1 and pore sizes around 10 nm. They are composed of aggregated anatase nanocrystals coated by an amorphous carbon film. Playing on the nature of the ether and on the reaction temperature allows control over the carbon content in the nanocomposites. The nature of the ether also influences the size of the TiO 2 crystallites and the morphology of the nanocomposite. To further characterize the carbon coating, the behavior of the carbon-TiO 2 nanocomposites and bare TiO 2 samples toward lithium insertion-deinsertion was investigated in half-cells. This simple NHSG approach should provide a general method for the synthesis of a wide range of carbon-metal oxide nanocomposites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gasoline-Related Compounds in Lakes Mead and Mohave, Nevada, 2004-06
Lico, Michael S.; Johnson, B. Thomas
2007-01-01
The distribution of man-made organic compounds, specifically gasoline-derived compounds, was investigated from 2004 to 2006 in Lakes Mead and Mohave and one of its tributary streams, Las Vegas Wash. Compounds contained in raw gasoline (benzene, toluene, ethylbenzene, xylenes; also known as BTEX compounds) and those produced during combustion of gasoline (polycyclic aromatic hydrocarbon compounds; also known as PAH compounds) were detected at every site sampled in Lakes Mead and Mohave. Water-quality analyses of samples collected during 2004-06 indicate that motorized watercraft are the major source of these organic compounds to the lakes. Concentrations of BTEX increase as the boating season progresses and decrease to less than detectable levels during the winter when few boats are on the water. Volatilization and microbial degradation most likely are the primary removal mechanisms for BTEX compounds in the lakes. Concentrations of BTEX compounds were highest at sampling points near marinas or popular launching areas. Methyl tert-butyl ether (MTBE) was detected during 2004 but concentrations decreased to less than the detection level during the latter part of the study; most likely due to the removal of MTBE from gasoline purchased in California. Distribution of PAH compounds was similar to that of BTEX compounds, in that, concentrations were highest at popular boating areas and lowest in areas where fewer boats traveled. PAH concentrations were highest at Katherine Landing and North Telephone Cove in Lake Mohave where many personal watercraft with carbureted two-stroke engines ply the waters. Lake-bottom sediment is not a sink for PAH as indicated by the low concentrations detected in sediment samples from both lakes. PAH compounds most likely are removed from the lakes by photochemical degradation. PAH compounds in Las Vegas Wash, which drains the greater Las Vegas metropolitan area, were present in relatively high concentrations in sediment from the upstream reaches. Concentrations of PAH compounds were low in water and sediment samples collected farther downstream, thus the bottom sediment in the upstream part of the wash may be an effective trap for these compounds. Bioavailable PAH compounds were present in all samples as determined using the Fluoroscan method. Microtox acute toxicity profiles indicated that Callville Bay in Lake Mead and the two Lake Mohave sites had only minor evidence that toxic compounds are present.
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Faramarzi, Ellahe; Shabanian, Meisam
2011-04-01
New poly(amide-imide)-montmorillonite reinforced nanocomposites containing Bis(4-N-trimellitylimido) diphenyl ether moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 4 was synthesized by the direct polycondensation reaction of Bis(4-N-trimellitylimido) diphenyl ether 3 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). Morphology and structure of the resulting PAI-nanocomposite films 4a and 4b with 10 and 20 mass% silicate particles respectively, were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The properties of nanocomposites films were investigated by using Uv-vis spectroscopy, thermogravimetric analysis (TGA) and water uptake measurements.
Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...
2016-09-17
Eichrom’s Pb resin, a crown-ether-based extraction chromatography resin, was characterized for separation of the flerovium (Fl) homologs, Pb and Sn. Batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HNO 3 matrix. Pb(II) was strongly retained on the resin at all HNO 3 concentrations, while Sn(IV) showed no uptake. Extraction kinetics for Pb(II) were examined and show suitable uptake on the second time scale. Here, separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns.
Vaporization behavior of an alkyl diphenyl ether and a commercial lubricant
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurray, Jake W.; Frame, Barbara J.; Voit, Stewart L.
The equilibrium vapor pressure as a function of temperature for an alkyl diphenyl ether with a vaporization coefficient significantly smaller than unity was characterized using the combined Langmuir free evaporation and mass loss Knudsen effusion technique. Results are compared using different cell designs and discrepancies, difficulties, and complications are discussed. In conclusion, the enthalpy and entropy of vaporization are estimated using the average temperature of the measurements.
Vaporization behavior of an alkyl diphenyl ether and a commercial lubricant
McMurray, Jake W.; Frame, Barbara J.; Voit, Stewart L.
2018-05-24
The equilibrium vapor pressure as a function of temperature for an alkyl diphenyl ether with a vaporization coefficient significantly smaller than unity was characterized using the combined Langmuir free evaporation and mass loss Knudsen effusion technique. Results are compared using different cell designs and discrepancies, difficulties, and complications are discussed. In conclusion, the enthalpy and entropy of vaporization are estimated using the average temperature of the measurements.
Yang, Xiaohui; Li, Ning; Lin, Xuliang; Pan, Xuejun; Zhou, Yonghong
2016-11-09
The present study demonstrates that the concentrated lithium bromide (LiBr) solution with acid as catalyst was able to selectively cleave the β-O-4 aryl ether bond and lead to lignin depolymerization under mild conditions (e.g., in 60% LiBr with 0.3 M HCl at 110 °C for 2 h). Four industrial lignins from different pulping and biorefining processes, including softwood kraft lignin (SKL), hardwood kraft lignin (HKL), softwood ethanol organosolv lignin (EOL), and acid corncob lignin (ACL), were treated in the LiBr solution. The molecular weight, functional group, and interunit linkages of the lignins were characterized using GPC, FTIR, and NMR. The results indicated that the β-O-4 aryl ether bonds of the lignins were selectively cleaved, and both LiBr and HCl played crucial roles in catalyzing the cleavage of the ether bonds.
Sato, Yusuke; Moriuchi, Hideki; Hishiyama, Shojiro; Otsuka, Yuichiro; Oshima, Kenji; Kasai, Daisuke; Nakamura, Masaya; Ohara, Seiji; Katayama, Yoshihiro; Fukuda, Masao; Masai, Eiji
2009-01-01
Degradation of arylglycerol-β-aryl ether is the most important process in bacterial lignin catabolism. Sphingobium sp. strain SYK-6 degrades guaiacylglycerol-β-guaiacyl ether (GGE) to α-(2-methoxyphenoxy)-β-hydroxypropiovanillone (MPHPV), and then the ether linkage of MPHPV is cleaved to generate α-glutathionyl-β-hydroxypropiovanillone (GS-HPV) and guaiacol. We have characterized three enantioselective glutathione S-transferase genes, including two genes that are involved in the ether cleavage of two enantiomers of MPHPV and one gene that is involved in the elimination of glutathione from a GS-HPV enantiomer. However, the first step in the degradation of four different GGE stereoisomers has not been characterized. In this study, three alcohol dehydrogenase genes, ligL, ligN, and ligO, which conferred GGE transformation activity in Escherichia coli, were isolated from SYK-6 and characterized, in addition to the previously cloned ligD gene. The levels of amino acid sequence identity of the four GGE dehydrogenases, which belong to the short-chain dehydrogenase/reductase family, ranged from 32% to 39%. Each gene was expressed in E. coli, and the stereospecificities of the gene products with the four GGE stereoisomers were determined by using chiral high-performance liquid chromatography with recently synthesized authentic enantiopure GGE stereoisomers. LigD and LigO converted (αR,βS)-GGE and (αR,βR)-GGE into (βS)-MPHPV and (βR)-MPHPV, respectively, while LigL and LigN transformed (αS,βR)-GGE and (αS,βS)-GGE to (βR)-MPHPV and (βS)-MPHPV, respectively. Disruption of the genes indicated that ligD is essential for the degradation of (αR,βS)-GGE and (αR,βR)-GGE and that both ligL and ligN contribute to the degradation of the two other GGE stereoisomers. PMID:19542348
Walker, C.E.; Schrock, R.M.; Reilly, T.J.; Baehr, A.L.
2005-01-01
Groundwater under the direct influence of surface water (GWUDISW) is of concern in communities where growing public demand on groundwater resources has resulted in increased withdrawals and hydraulic stress near surface water bodies. Under these conditions, contaminants such as methyl-tert butyl ether (MTBE) and biological materials have been detected in domestic wells. Other contaminants and pathogens associated with surface water are not routinely tested for in groundwater-supplied systems. To address the need for methods to easily identify potentially vulnerable supplies, a direct immunoassay for the quantitative detection of diatoms in raw water samples was developed as a measure of surface water influence on groundwater. Cell wall preparations from Nitzschia palea Ku??tzing, a freshwater diatom found throughout North America, were used to produce a polyclonal antibody that was applied in a direct enzyme-linked immunosorbent assay (ELISA) developed to detect the presence of N. palea cell wall components. The direct immunoassay allows detection at 500 cells L-1, a level similar to diatom concentrations observed in samples of groundwater collected near the test site. This investigation was the first attempt to utilize an ELISA as an indicator of surface water influence on groundwater. Further research is needed to develop more specific diatom-based monoclonal antibodies, determine cross-reactivity, and optimize sample processing and ELISA procedures for development of a standardized method. ?? Springer 2005.
Walker, C.E.; Schrock, R.M.; Reilly, T.J.; Baehr, A.L.
2005-01-01
Groundwater under the direct influence of surface water (GWUDISW) is of concern in communities where growing public demand on groundwater resources has resulted in increased withdrawals and hydraulic stress near surface water bodies. Under these conditions, contaminants such as methyl-tert butyl ether (MTBE) and biological materials have been detected in domestic wells. Other contaminants and pathogens associated with surface water are not routinely tested for in groundwater-supplied systems. To address the need for methods to easily identify potentially vulnerable supplies, a direct immunoassay for the quantitative detection of diatoms in raw water samples was developed as a measure of surface water influence on groundwater. Cell wall preparations from Nitzschia palea Kützing, a freshwater diatom found throughout North America, were used to produce a polyclonal antibody that was applied in a direct enzyme-linked immunosorbent assay (ELISA) developed to detect the presence of N. palea cell wall components. The direct immunoassay allows detection at 500 cells L−1, a level similar to diatom concentrations observed in samples of groundwater collected near the test site. This investigation was the first attempt to utilize an ELISA as an indicator of surface water influence on groundwater. Further research is needed to develop more specific diatom-based monoclonal antibodies, determine cross-reactivity, and optimize sample processing and ELISA procedures for development of a standardized method.
Rohwerder, Thore; Müller, Roland H; Weichler, M Teresa; Schuster, Judith; Hübschmann, Thomas; Müller, Susann; Harms, Hauke
2013-10-01
Aerobic anoxygenic photosynthesis (AAP) is found in an increasing number of proteobacterial strains thriving in ecosystems ranging from extremely oligotrophic to eutrophic. Here, we have investigated whether the fuel oxygenate-degrading betaproteobacterium Aquincola tertiaricarbonis L108 can use AAP to compensate kinetic limitations at low heterotrophic substrate fluxes. In a fermenter experiment with complete biomass retention and also during chemostat cultivation, strain L108 was challenged with extremely low substrate feeding rates of tert-butyl alcohol (TBA), an intermediate of methyl tert-butyl ether (MTBE). Interestingly, formation of photosynthetic pigments, identified as bacteriochlorophyll a and spirilloxanthin, was only induced in growing cells at TBA feeding rates less than or equal to maintenance requirements observed under energy excess conditions. Growth continued at rates between 0.001 and 0.002 h(-1) even when the TBA feed was decreased to values close to 30 % of this maintenance rate. Partial sequencing of genomic DNA of strain L108 revealed a bacteriochlorophyll synthesis gene cluster (bchFNBHL) and photosynthesis regulator genes (ppsR and ppaA) typically found in AAP and other photosynthetic proteobacteria. The usage of light as auxiliary energy source enabling evolution of efficient degradation pathways for kinetically limited heterotrophic substrates and for lowering the threshold substrate concentration Smin at which growth becomes zero is discussed.
Wholly Aromatic Ether-imides. Potential Materials for n-Type Semiconductors
NASA Technical Reports Server (NTRS)
Dingemans, Theo J.; St.Clair, Terry L.; Samulski, Edward T.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We report on the synthesis and characterization of a novel series low-molar-mass ether-imide rod-shaped model compounds. All ether-imides were obtained by terminating the appropriate rigid core dianhydride, i.e. pyromellitic dianhydride (PMDA), 1,4,5,8-naphthalenetetracarboxylic dianhydride (NDA), 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), and 3,3,4,4'-oxydiphthalic dianhydride (ODPA) with three flexible aryl-ether tails of different chain length. The mono-functional aryl-ether amines, i.e. 4-(3-phenoxy-phenoxy)-phenylamine (2) and 4-(3-phenoxy-3-phenoxy-phenoxy)-phenylamine (4), were synthesized using standard fluoro-displacement and Ullmann condensation techniques. The corresponding ether-imide model compounds were obtained in high yields using a one-step solution imidization procedure. Increasing the number of meta-substituted aryl-ether units reduces the melt transition temperatures and at the same time it increases the solubility of the model compounds. Most model compounds are crystalline solids and form isotropic melts upon heating. 2,7-Bis-(-4-phenoxy-phenyl)-benzo[Imn][3,8]phenanthroline1,3,6,8-tetraone (NDA-n0), however, displays a smectic A (SA) when cooled from the isotropic phase, followed by what appears to be either a highly ordered smectic phase or a, columnar phase. This is the first example, known to date, in which a mesophase is detected in a wholly aromatic ether-imide compound. For all compounds we present spectroscopic data and X-ray diffraction data. Cyclic voltammetry was used to determine the redox behavior and pertinent energy levels of the model compounds.
NASA Technical Reports Server (NTRS)
Hong, S. D.; Chung, S. Y.; Fedors, R. F.; Moacanin, J.; Gupta, A.
1984-01-01
The fracture toughness of an incorporation of a carboxyl-terminated butadiene acrylonitrile (CTBN) elastomer in diglycidyl ether bisphenol A (DGEBA) resin was investigated. Measurements of dynamic mechanical properties, scanning electron microscopy and small-angle X-ray scattering were carried out to characterize the state of cure, morphology and particle size and size distribution of the neat resins and their graphite fiber reinforced composites.
Middlesex FUSRAP Site - A Path to Site-Wide Closure - 13416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David M.; Edge, Helen
2013-07-01
The road-map to obtaining closure of the Middlesex Sampling Plant FUSRAP site in Middlesex, New Jersey (NJ) has required a multi-faceted approach, following the CERCLA Process. Since 1998, the US ACE, ECC, and other contractors have completed much of the work required for regulatory acceptance of site closure with unrestricted use. To date, three buildings have been decontaminated, demolished, and disposed of. Two interim storage piles have been removed and disposed of, followed by the additional removal and disposal of over 87,000 tons of radiologically and chemically-impacted subsurface soils by the summer of 2008. The US ACE received a determinationmore » from the EPA for the soils Operable Unit, (OU)-1, in September 2010 that the remedial excavations were acceptable, and meet the criteria for unrestricted use as required by the 2004 Record of Decision (ROD) for OU-1. Following the completion of OU-1, the project delivery team performed additional field investigation of the final Operable Unit for Middlesex, OU-2, Groundwater. As of December 2012, the project delivery team has completed a Supplemental Remedial Investigation, which will be followed with a streamlined Feasibility Study, Proposed Plan, and ROD. Several years of historical groundwater data was available from previous investigations and the FUSRAP Environmental Surveillance Program. Historical data indicated sporadic detections of Volatile Organic Compounds (VOCs), primarily trichloroethylene (TCE), carbon tetrachloride (CT), and methyl tert-butyl ether (MTBE), with no apparent trend or pattern indicating extent or source of the VOC impact. In 2008, the project delivery team initiated efforts to re-assess the Conceptual Site Model (CSM) for groundwater. The bedrock was re-evaluated as a leaky multi-unit aquifer, and a plan was developed for additional investigations for adequate bedrock characterization and delineation of groundwater contaminated primarily by CT, TCE, and tetrachloroethene (PCE). The investigation was designed to accumulate multiple lines of evidence to determine the source and to delineate the extent of contamination, as required to complete the CERCLA Process and gain regulatory acceptance. Investigative techniques included in-well vertical flow tracing, borehole geophysics and packer testing of temporary test holes to characterize contamination in the bedrock fractures beneath the site, and to delineate likely source areas. (authors)« less
NASA Astrophysics Data System (ADS)
Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias
2013-04-01
Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation. The method was developed for the multi-element isotope analysis (carbon and hydrogen) of priority volatile organic groundwater pollutants (methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene and o-xylene (BTEX)), and for carbon isotope analysis of chlorinated benzenes and ethenes. The extraction and injection conditions were optimized in terms of maximum sensitivity and minimum isotope effects. During the injection of the headspace sample, the liner is maintained at a low temperature, such that the compounds are retained in a hydrophobic insert packing while the water vapor is eliminated through the split line. With the optimized conditions, it was possible to inject up to 5mL headspace sample with no significant carbon or hydrogen isotopic effects except for the most hydrophobic substance (MTBE), which was subject to a small and reproducible isotope fractionation for hydrogen. The increment on method sensitivity was at least 20 fold in comparison with conventional static headspace analysis. The environmental applicability of the HS-PTV-GC-IRMS method was evaluated by the analysis of groundwater samples from different contaminated field sites, containing BTEX and chlorinated volatile organic contaminants in the low µg/L range. The results obtained demonstrate that this pre-concentration technique is highly promising to enhance the limits of detection of current CSIA methods and broaden its possibilities.
Polybrominated Diphenyl Ethers (PBDEs)
EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.
Seeger, Eva M; Maier, Uli; Grathwohl, Peter; Kuschk, Peter; Kaestner, Matthias
2013-02-01
For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kaya, Hatice; Bulut, Osman; Kamali, Ali Reza; Ege, Duygu
2018-06-01
Favorable implant-tissue interactions are crucial to achieve successful osseointegration of the implants. Poly(ether ether ketone) (PEEK) is an interesting alternative to titanium in orthopedics because of its low cost, high biocompatibility and comparable mechanical properties with cancellous bone. Despite these advantages; however, the untreated surface of PEEK fails to osseointegrate due to its bioinert and hydrophobic behavior. This paper deals with the surface modification of PEEK with a novel method. For this, PEEK was first treated with concentrated sulfuric acid to prepare sulfonated PEEK (SPEEK) films using a solvent casting method. Then, 1 and 2 wt% multi-walled carbon nanotube was incorporated into SPEEK to form nanocomposite films. The samples were characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy. After successful preparation of the nanocomposite films, L-arginine was covalently conjugated on the nanocomposite films to further improve their surface properties. Subsequently, the samples were characterized using X-ray Photoemission Spectroscopy (XPS), water contact angle measurements and Atomic Force Microscopy (AFM) and Dynamic Mechanical Thermal Analysis (DMTA). Finally, cell culture studies were carried out by using Alamar Blue assay to evaluate the biocompatibility of the films. The results obtained indicate the successful preparation of L-arginine-conjugated MWCNT/SPEEK nanocomposite films. The modified surface shows potential to improve implants' mechanical and biological performances.
Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf
2010-01-01
This paper presents new data on the levels of polybrominated diphenyl ethers (PBDEs) in American airline workers. This pilot study did not find elevated total PBDEs in the blood of nine flight attendants and one aircraft pilot who have worked in airplanes for at least the past 5 years. These findings are not consistent with the findings of elevated blood levels of PBDEs from the 2008 Christiansson et al. publication "Polybrominated diphenyl ethers in aircraft cabins - A source of human exposure?" We agree that more research needs to be done on larger, more representative samples of airline workers to better characterize exposure of airline workers and other frequent flyers to PBDEs.
Novel Ordered Crown Ether-Containing Polyimides for Ion Conduction
NASA Technical Reports Server (NTRS)
Irvin, Jennifer A.; Stasko, Daniel; Fallis, Stephen; Guenthner, Andrew J.; Webber, Cynthia; Blackwell, John; Chvalun, Sergei N.
2003-01-01
We report the synthesis and characterization of thermally-stable polyimides for use as battery and fuel cell electrolyte membranes. Dianhydrides used were 1,4,5,8- naphthalenetetracarboxylic dianhydride and/or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride. Diamines used were anti-4,4-diaminodibenzo-l8-crown-6, 4,4'- diaminodibenzo-24-crown-8, 2,2-bis(4-aminophenyl)hexafluoropropane, and/or 2,5- diaminobenzenesulfonic acid. The polymers were characterized using electrochemical impedance spectroscopy (EIS), thermal analysis and X-ray diffraction. Polymers containing the hexafluoroisopropylidene (HFIP) group were soluble in common organic solvents, while polymers without the HFIP group were very poorly soluble. Sulfonation yields polymers that are sparingly soluble in aqueous base and/or methanol. Degree of sulfonation, determined by titration, was between one and three sulfonate groups per repeat unit. Proton conductivity was determined as a function of water content, with a maximum conductivity of l x 10(exp -2) per centimeter when fully hydrated. Crown ether-containing polymers exhibit a high degree of order that may be indicative of crown ether channel formation, which may facilitate Li(+) transport for use in battery membranes.
Preparation and physicochemical characterization of 5 niclosamide solvates and 1 hemisolvate.
van Tonder, Elsa C; Mahlatji, Mabatane D; Malan, Sarel F; Liebenberg, Wilna; Caira, Mino R; Song, Mingna; de Villiers, Melgardt M
2004-02-23
The purpose of the study was to characterize the physicochemical, structural, and spectral properties of the 1:1 niclosamide and methanol, diethyl ether, dimethyl sulfoxide, N,N' dimethylformamide, and tetrahydrofuran solvates and the 2:1 niclosamide and tetraethylene glycol hemisolvate prepared by recrystallization from these organic solvents. Structural, spectral, and thermal analysis results confirmed the presence of the solvents and differences in the structural properties of these solvates. In addition, differences in the activation energy of desolvation, batch solution calorimetry, and the aqueous solubility at 25 degrees C, 24 hours, showed the stability of the solvates to be in the order: anhydrate > diethyl ether solvate > tetraethylene glycol hemisolvate > methanol solvate > dimethyl sulfoxide solvate > N,N' dimethylformamide solvate. The intrinsic and powder dissolution rates of the solvates were in the order: anhydrate > diethyl ether solvate > tetraethylene glycol hemisolvate > N,N' dimethylformamide solvate > methanol solvate > dimethyl sulfoxide solvate. Although these nonaqueous solvates had higher solubility and dissolution rates than the monohydrous forms, they were unstable in aqueous media and rapidly transformed to one of the monohydrous forms.
Kayser, Marie J; Reinholdt, Marc X; Kaliaguine, Serge
2011-03-31
Fuel cells are at the battlefront to find alternate sources of energy to the highly polluting, economically and environmentally constraining fossil fuels. This work uses an organosilicon molecule presenting two amine functions, bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS) with the aim of preparing cross-linked sulfonated poly(ether ether ketone) (SPEEK) based membranes. The hybrid membranes obtained at varying APTMDS loadings are characterized for their acid, proton conductivity, water uptake, and swelling properties. APTMDS may be considered as an extreme case of silica nanoparticle and is therefore most advantageously distributed within the polymeric matrix. The two amine groups can interact, via electrostatic interactions, with the sulfonic acid groups of SPEEK, resulting in a double anchoring of the molecule. The addition of a small amount of APTMDS is enhancing the mechanical and hydrolytic properties of the membranes and allows some unfolding of the polymer chains, rendering some acid sites accessible to water molecules and thus available for proton transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, J.P. III; Deng, H.; Boyd, E.P.
1994-04-13
The first lanthanide(II) cationic species with coordination numbers 7,8, and 9 have been structurally characterized. Mercury amalgams of the elemental lanthanides (Ln(Hg) where Ln = Sm, Eu, Yb) cleanly reduce Mn[sub 2](CO)[sub 10] and Co[sub 2](CO)[sub 8] in polydentate ethers to [Mn(CO)[sub 5
NASA Technical Reports Server (NTRS)
Cecere, James A.; Senger, James S.; Mcgrath, James E.; Steiner, Paul A.; Wong, Raymond S.
1987-01-01
Multifunctional epoxy resin networks were chemically modified with thermoplastic amine terminated poly(arylene ether sulfones) of controlled molecular weights. This system was then examined as both neat resin and as a matrix resin for carbon fiber composites. The neat resin displayed a significant increase in both fracture toughness and energy release rate values. This was attributed to the altered morphology, which could be varied from particles of polysulfone in an epoxy matrix to that of a quasi-continuous polysulfone phase.
Mono-, di-, and tri- tert-butyl ethers of glycerol . A molecular spectroscopic study
NASA Astrophysics Data System (ADS)
Jamróz, Małgorzata E.; Jarosz, Małgorzata; Witowska-Jarosz, Janina; Bednarek, Elżbieta; Tęcza, Witold; Jamróz, Michał H.; Dobrowolski, Jan Cz.; Kijeński, Jacek
2007-07-01
MS, NMR, IR and Raman molecular spectroscopy techniques were applied to characterize 3- tert-butoxy-propane-1,2-diol, 1,3-di- tert-butoxy-propan-2-ol, and 1,2,3-tri- tert-butoxy-propane. These ethers are the main products of glycerol etherification reaction and are excellent oxygen additives for diesel fuel. Computational DFT/ B3LYP/6-31G ** studies were performed to support and rationalize both vibrational spectroscopy analysis and the isomer ratio.
Synthesis and Characterization of Polyimides with Ether Linkages
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Fu, Joyce; Scheiman, Daniel A.
1998-01-01
A series of polyimides derived from a newly synthesized diamine, namely, 4,4-bis(4-aminophenoxy)-2,2-dimethylbiphenyl (BAPD), were developed and characterized. Their physical and thermal properties were compared to polyimides based on'commercially available 2,2-bis(4-(4-aminophenoxy)phenyl)propane (BAPP).
Izbicki, John A.; Mendez, Gregory O.; Burton, Carmen A.
2000-01-01
The Santa Ana River drains about 2,670 square miles of the densely populated coastal area of southern California, near Los Angeles. Almost all the flow in the river, more than 200,000 acre-feet annually, is diverted into ponds where it infiltrates and recharges underlying aquifers. About 2 million people are dependent on these aquifers for water supply. Stormflow in the Santa Ana River is considered a source of 'high-quality' water suitable for use as a source of ground-water recharge. To test this assumption, stormflow samples were collected at two locations--below Prado Dam and at the diversion point downstream from Imperial Highway--for 12 winter storms between 1995 and 1998. Nitrate concentrations decreased during stormflow from a median concentration of 7.8 milligrams per liter in base flow to concentrations less than 1 milligram per liter in some large storms. Concentrations of chemically reduced forms of nitrogen (nitrite, ammonia, and organic nitrogen) increased during stormflow and are the predominant forms of nitrogen in large stormflows. Dissolved organic carbon (DOC) concentrations increased from a median concentration of 4.6 milligrams per liter in base flow to more than 20 milligrams per liter in some stormflows. Concentrations of DOC were especially high during the first storm of the rainy season, and large increases in DOC concentrations were measured even as a result of small early season storms that did not cause large increases in streamflow. DOC present during early season stormflow had less ultraviolet absorbance at 254 nanometers (UV254 ) per unit of carbon than did DOC from late season stormflows. DOC in water held in storage behind Prado Dam had the highest UV254 absorbance per unit of carbon. Maximum pesticide concentrations in stormflow did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels. Most pesticide concentrations were less than 1 microgram per liter and less than the detection limits obtained using standard drinking water analyses. Increases in concentrations of pesticides such as diazinon, malathion, and chlorpyrifos in stormflow result from runoff from urban areas downstream from Prado Dam. In general, large late season stormflows have the most pesticide detections of all stormflows sampled. Concentrations of methyl tert-butyl ether (MTBE), a gasoline additive, during base flow were as high as 0.9 microgram per liter and concentrations decreased during stormflow. Like pesticides, the concentrations did not exceed the U.S. Environmental Protection Agency Maximum Contaminant Levels for MTBE.
Avilés-Moreno, Juan Ramón; Berden, Giel; Oomens, Jos; Martínez-Haya, Bruno
2018-02-07
The recognition of arginine plays a central role in modern proteomics and genomics. Arginine is unique among natural amino acids due to the high basicity of its guanidinium side chain, which sustains specific interactions and proton exchange biochemical processes. The search for suitable macrocyclic ionophores constitutes a promising route towards the development of arginine receptors. This study evaluates the conformational features involved in the binding of free arginine by the polyether macrocycle (18-crown-6)-tetracarboxylic acid. Infrared action vibrational spectroscopy and quantum-chemical computations are combined to characterize the complexes with net charges +1 and +2. The spectrum of the +1 complex can be explained in terms of a configuration predominantly stabilized by a robust bidentate coordination of guanidinium with a carboxylate group formed from the deprotonation of one side group of the crown ether. The released proton is transferred to the amino terminus of arginine, which then coordinates with the crown ether ring. In an alternative type of conformation, partly consistent with experiment, the amino terminus is neutral and the guanidinium group inserts into the crown ether cavity. In the +2 complexes, arginine is always doubly protonated and the most stable conformations are characterized by a tripodal coordination of the ammonium -NH 3 + group of arginine with the oxygen atoms of the macrocycle ring, while the interactions of the amino acid with the side carboxylic acid groups of the crown ether acquire a remarkable lesser role.
Helmich, Kate E.; Pereira, Jose Henrique; Gall, Daniel L.; ...
2015-12-04
Here, lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, wemore » present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.« less
Ko, Kyung-Seok; Kong, In Chul
2017-02-01
This study examined the applicability of a freeze-dried bioluminescent bioreporter, Pseudomonas putida mt-2 KG1206 (called KG1206), to the biomonitoring of groundwater samples. Samples were collected from the monitoring wells of gas station tanks or old pipeline leakage sites in Korea. In general, the freeze-dried strain in the presence of pure inducer chemicals showed low bioluminescence activity and a different activity order compared with that of the subcultured strain. The effects of KNO 3 as a bioluminescence stimulant were observed on the pure inducers and groundwater samples. The stimulation rates varied according to the type of inducers and samples, ranging from 2.2 to 20.5 times (for pure inducers) and from 1.1 to 11 times (for groundwater samples) the total bioluminescence of the control. No considerable correlations were observed between the bioluminescence intensity of the freeze-dried strain and the inducer concentrations in the samples (R 2 < 0.1344). However, samples without a high methyl tertiary butyl ether (MTBE) level and those from the gas station leakage site showed reasonable correlations with the bioluminescence activity with R 2 values of 0.3551 and 0.4131, respectively. These results highlight the potential of using freeze-dried bioluminescent bacteria as a rapid, simple, and portable tool for the preliminary biomonitoring of specific pollutants at contaminated sites.
Can we protect everybody from drinking water contaminants?
Howd, Robert A
2002-01-01
Dozens of chemicals, both natural and manmade, are often found in drinking water. Some, such as the natural contaminants uranium and arsenic, are well-known toxicants with a large toxicology database. Other chemicals, such as methyl tertiary-butyl ether (MTBE) from leaking fuel tanks, we learn about as we go along. For still others, such as the alkyl benzenes, there are very little available data, and few prospects of obtaining more. In some cases, chemicals are purposely added to drinking water for beneficial purposes (e.g., chlorine, fluoride, alum), which may cause a countervailing hazard. Removing all potentially toxic chemicals from the water is virtually impossible and is precluded for beneficial uses and for economic reasons. Determination of safe levels of chemicals in drinking water merges the available toxicity data with exposure and human effect assumptions into detailed hazard assessments. This process should incorporate as much conservatism as is needed to allow for uncertainty in the toxicity and exposure estimates. Possible sensitive subpopulations such as unborn children, infants, the elderly, and those with common diseases such as impaired kidney function must also be considered. However, the range of sensitivity and the variability of toxicity and exposure parameters can never be fully documented. In addition, the validity of the low-dose extrapolations, and whether the toxic effect found in animals occurs at all in humans, is never clear. This publication discusses how these competing needs and uncertainties intersect in the development of Public Health Goals for uranium, fluoride, arsenic, perchlorate, and other highly debated chemicals.
Yi, Tao; Zhu, Lin; Zhu, Guo-Yuan; Tang, Yi-Na; Xu, Jun; Fan, Jia-Yi; Zhao, Zhong-Zhen; Chen, Hu-Biao
2016-09-13
This paper reports a novel strategy based on high-speed counter-current chromatography (HSCCC) technique to separate in vivo metabolites from refined extract of urine after administration of an herbal medicine. Saussurea laniceps (SL) was chosen as a model herbal medicine to be used to test the feasibility of our proposed strategy. This strategy succeeded in the case of separating four in vivo metabolites of SL from the urine of rats. Briefly, after oral administration of SL extract to three rats for ten days (2.0 g/kg/d), 269.1 mg of umbelliferone glucuronide (M1, purity, 92.5%), 432.5 mg of scopoletin glucuronide (M2, purity, 93.2%), 221.4 mg of scopoletin glucuronide (M3, purity, 92.9%) and 319.0 mg of scopoletin glucuronide (M4, purity, 90.4%) were separated from 420 mL of the rat urine by HSCCC using a two-phase solvent system composed of methyl tert-butyl ether-n-butanol-acetonitrile-water (MTBE-n-BuOH-ACN-H2O) at a volume ratio of 10:30:11:49. The chemical structures of the four metabolites, M1 to M4, were confirmed by MS and (1)H, (13)C NMR. As far as we know, this is the first report of the successful separation of in vivo metabolites by HSCCC after administration of an herbal medicine.
NASA Astrophysics Data System (ADS)
Li, Lei
The objectives were (1) to identify activated pore structure and surface chemistry characteristics that assure the effective removal of trace organic contaminants from aqueous-solution, and (2) to develop a procedure to predict the adsorption capacity of activated carbons from fundamental adsorbent and adsorbate properties. A matrix of activated carbon fibers (ACFs) (with three activation levels and four surface chemistry levels) and three commercially available granular activated carbons (GACs) served as the adsorbents. BET surface area, pore size distribution, elemental composition, point of zero charge and infrared spectroscopy data were obtained to characterize the adsorbents. The adsorption of relative hydrophilic methyl tertiary-butyl ether (MTBE) and relative hydrophobic trichloroethene (TCE) were conducted in both ultrapure water and Sacramento-San Joaquin Delta water. The results showed that an effective adsorbent for the removal of micropollutants from water requires (1) a large volume of micropores with widths that are about 1.5 times larger than the kinetic diameter of the target adsorbate, (2) a micropore size distribution that extends to widths that are approximately twice the kinetic diameter of the target adsorbate to prevent pore blockage by NOM, and (3) a hydrophobic pore surface chemistry with the sum of oxygen and nitrogen contents less than 2 to 3 mmol/g. A procedure based on the Polanyi Potential Theory (PPT) was developed to predict the adsorption capacities of activated carbons from fundamental adsorbent and adsorbate properties. A correlation between the coalescing factor for water adsorption and adsorbent oxygen content was developed. Based on this correlation, the PPT yielded reasonable estimates of aqueous phase adsorption capacities for both relatively polar and non-polar adsorbates on both relatively hydrophobic and hydrophilic activated carbons. With the developed procedure, the adsorption capacities of organic compounds that are partially miscible in water can be predicted from (1) N2 and CO2 adsorption isotherms of a given adsorbent, (2) the adsorbent oxygen content, and (3) the molar volume and parachor of the target adsorbate.
Piano, Valentina; Nenci, Simone; Magnani, Francesca; Aliverti, Alessandro; Mattevi, Andrea
2016-12-02
Although the precise functions of ether phospholipids are still poorly understood, significant alterations in their physiological levels are associated either to inherited disorders or to aggressive metastatic cancer. The essential precursor, alkyl-dihydroxyacetone phosphate (DHAP), for all ether phospholipids species is synthetized in two consecutive reactions performed by two enzymes sitting on the inner side of the peroxisomal membrane. Here, we report the characterization of the recombinant human DHAP acyl-transferase, which performs the first step in alkyl-DHAP synthesis. By exploring several expression systems and designing a number of constructs, we were able to purify the enzyme in its active form and we found that it is tightly bound to the membrane through the N-terminal residues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong
2003-01-01
Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Lyle, G. D.; Jurek, M. J.; Mohanty, D.; Hedrick, J. C.
1986-01-01
Amine functional poly(arylene ether) sulfones were previously reported. Herein, the chemistry was extended to amorphous poly(arylene ether) ketones because of their higher fracture toughness values, relative to the polysulfones. It was demonstrated that the amino functional oligomers undergo a self-crosslinking reaction at temperatures above about 220 C. This produces an insoluble, but ductile network that has excellent resistance. A ketamine structure hypothesis was proposed and verified using solid state magic angle NMR. In most cases, the water generated upon ketamine formation is too low to produce porosity and solid networks are obtained. The stability of the ketamine networks towards hydrolysis is excellent. The chemistry was further demonstrated to be able to crosslink preformed nonfunctional poly(arylene ether) ketones if a difunctional amine was utilized. This concept has the possibility of greatly improving the creep resistance of thermoplastics. Also, a new technique was developed for converting the amine functional oligomers cleanly into maleimide structures. This method involves reacting maleic anhydride with monomeric aminophenols in the presence of solvent mixtures.
NASA Astrophysics Data System (ADS)
Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan
2015-07-01
The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.
Wang, Qihui; Li, Bo; Wang, Yuhuai; Shou, Zhouxiang; Shi, Guolong
2015-05-01
A three-dimensional hierarchical CdO nanostructure with a novel bio-inspired morphology is reported. The field emission scanning electronic microscopy, transmission electron microscopy and X-ray diffractometer were employed to characterize the as-prepared samples. In gas-sensing measurements, acetone and diethyl ether were employed as target gases to investigate cataluminescence (CTL) sensing properties of the CdO nanostructure. The results show that the as-fabricated CdO nanostructure exhibited outstanding CTL properties such as stable intensity, high signal/noise values, short response and recovery time. The limit of detection of acetone and diethyl ether was ca. 6.5 ppm and 6.7 ppm, respectively, which was below the standard permitted concentrations. Additionally, a principal components analysis method was used to investigate the recognizable ability of the CTL sensor, and it was found that acetone and diethyl ether can be distinguished clearly. The performance of the bio-inspired CdO nanostructure-based sensor system suggested the promising application of the CdO nanostructure as a novel highly efficient CTL sensing material. Copyright © 2014 John Wiley & Sons, Ltd.
The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics.
Müller, Axel; Becker, Roland; Dorgerloh, Ute; Simon, Franz-Georg; Braun, Ulrike
2018-05-14
Microplastics are increasingly entering marine, limnic and terrestrial ecosystems worldwide, where they sorb hydrophobic organic contaminants. Here, the sorption behavior of the fuel-related water contaminants benzene, toluene, ethyl benzene and xylene (BTEX) and four tertiary butyl ethers to virgin and via UV radiation aged polypropylene (PP) and polystyrene (PS) pellets was investigated. Changes in material properties due to aging were recorded using appropriate polymer characterization methods, such as differential scanning calorimetry, Fourier transform infrared spectroscopy, gel permeation chromatography, X-ray photoelectron spectroscopy, and microscopy. Pellets were exposed to water containing BTEX and the ethers at 130-190 μg L -1 for up to two weeks. Aqueous sorbate concentrations were determined by headspace gas chromatography. Sorption to the polymers was correlated with the sorbate's K ow and was significant for BTEX and marginal for the ethers. Due to substantially lower glass transition temperatures, PP showed higher sorption than PS. Aging had no effect on the sorption behavior of PP. PS sorbed less BTEX after aging due to an oxidized surface layer. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop
2018-04-01
A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.
Ganesh, Shimoga D.; Pai, Vasantakumar K.; Kariduraganavar, Mahadevappa Y.; Jayanna, Madhu B.
2014-01-01
Poly(1,3,4-oxadiazole-ether) with reactive carboxylic acid pendants was synthesized from solution polymerization via nucleophilic displacement polycondensation among 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole (BFPOx) and 4,4′-bis(4-hydroxyphenyl) valeric acid (BHPA). Without altering the polymeric segments, benzimidazole modified poly(1,3,4-oxadiazole-ether)s were prepared by varying stoichiometric ratios of 1,2-phenylenediamine. The molecular structural characterization of these polymers was achieved by, FT-IR, NMR, TGA, elemental analysis, and analytical techniques. The weight-average molecular weight of virgin polymer with carboxylic acid functionality was determined by gel permeation chromatography (GPC) and was found to be 22400 (Mw/Mn = 2.07). All the synthesized polyethers were compressed into pellets and electrical contacts were established to perform dielectric properties. PMID:27437448
NASA Technical Reports Server (NTRS)
Herbert, C. G.; Bass, R. G.
1994-01-01
As part of a continuing effort to prepare novel thermally stable high-performance polymers, poly(arylene ether isoxazole)s have been prepared by fluoride ion-catalyzed aromatic nucleophilic substitution reactions with bis(trimethylsiloxyphenyl) isoxazoles and activated bisarylhalides in diphenyl sulfone. Initial investigation involving the preparation of these materials with isoxazole bisphenols and activated bisarylhalides in the presence of potassium carbonate indicated that, under reaction conditions necessary to prepare high-molecular-weight materials, the isoxazole monomer was converted to an enamino ketone. This side reaction was avoided by using fluoride as a base. However, trimethylsilyl ether derivatives of the isoxazole bisphenols were required in these polymerizations for the preparation of high-molecular-weight materials. Moderate to high inherent viscosity eta(sub inh): 0.43-0.87 dl/g) materials with good thermal stability (air: 409-477 C, helium: 435-512 C) can be prepared by the silyl ether method. Glass transition temperatures ranged from 182 to 225 C for polymers with phenyl pendants and from 170 to 214 C for those without. Molecular weight control by 2% endcapping and the incorporation of a phenyl pendant at the 4 position of the isoxazole is necessary to yield polymers soluble in polar aprotic solvents at room temperature. There is evidence, however, indicating the existence of crosslinks between the polymer chains when the silyl ether approach is utilized.
Stanley, F. E.; Warner, A. M.; Schneiderman, E.; Stalcup, A. M.
2009-01-01
This work demonstrates a novel, convenient utilization of capillary electrophoresis (CE) instrumentation for the determination of critical micelle concentrations (CMCs). Solution viscosity differences across a range of surfactant concentrations were monitored by hydrodynamically forcing an analyte towards the detector. Upon reaching the surfactant's CMC value, migration times were observed to change drastically. CMC values for four commonly employed anionic surfactants were determined - sodium dodecyl sulfate: 8.1 mM; sodium caprylate- 300 mM; sodium decanoate- 86 mM; sodium laurate- 30 mM; and found to be in excellent agreement with values previously reported in the literature. The technique was then applied to the less well-characterized nonionic surfactants poly(oxyethylene) 8 myristyl ether (CMC ~ 9 μM), poly(oxyethylene) 8 decyl ether (CMC ~ 0.95 mM) and poly(oxyethylene) 4 lauryl ether. PMID:19836753
IRIS Toxicological Review of 2,2',4,4'-Tetrabromodiphenyl ...
The U.S. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessments of congeners of polybrominated diphenyl ethers (PDBEs), this review is about 2,2',4,4'-Tetrabromodiphenyl Ether, or commonly referred to as tetraBDE (BDE-47). Following the external peer review this assessment will appear in the Integrated Risk Information System (IRIS) database. Peer review will ensure that science is used credibly and appropriately in derivation of the dose-response assessments and toxicological characterization. EPA is updating the Integrated Risk Information System (IRIS) health assessments for the PBDEs.