Science.gov

Sample records for ether polymer maleic

  1. Improved lithographic performance for resists based on polymers having a vinyl ether-maleic anhydride (VEMA) backbone

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Woo; Choi, Sang-Jun; Jung, Dong-Won; Lee, Sook; Lee, Sung-Ho; Kang, Yool; Woo, Sang-Gyun; Moon, Joo-Tae; Kavanagh, Robert J.; Barclay, George G.; Orsula, George W.; Mattia, Joe; Caporale, Stefan; Adams, Timothy G.; Tanaka, Tsutomu; Kang, Doris

    2001-08-01

    ArF lithography, in combination with chemically amplified resists, has been investigated as one of the most promising technologies for producing patterns below 100 nm. In considering the polymer matrix for 193 nm photoresist applications, factors such as sensitivity, transparency to 193 nm radiation, adhesion to substrate, dry etch resistance, ease of synthesis, and availability of monomers are very critical. In these respects, remarkable progress has been made in development of ArF resist material. Polymers of acrylic and methacrylic esters show good imaging performance at 193 nm, but have insufficient dry-etch resistance under oxide or nitride etch condition. On the other hand, cyclic olefin-maleic anhydride (COMA) alternating copolymers exhibit good dry etch resistance, but have poor resolution capability. We previously reported a new platform, based on a vinyl ether-maleic anhydride (VEMA) alternating polymer system, that demonstrated both good resolution and high dry etch resistance. In this paper, VEMA systems with improved lithographic performance are presented. The new platform (VEMA) showed good performance in resolution, depth of focus (DOF), iso-dense bias, and post-etch roughness. With conventional illumination (NA=0.6, sigma=0.7), 120 nm dense line/space patterns with 0.4 (mu) M DOF were resolved. And 90 nm L/S patterns 0.6 (mu) M DOF were resolved with off-axis illumination (NA=0.63). Another important factor to be considered for the dry-etch process is post-etch roughness. In the case of VEMA system a clean surface was observed after etch under oxide, nitride, and poly conditions. The VEMA resist system is regarded as one of the most production-worthy material for real device manufacture.

  2. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dicyclopentadiene polymer with maleic... Significant New Uses for Specific Chemical Substances § 721.10316 Dicyclopentadiene polymer with maleic.... (1) The chemical substance identified generically as dicyclopentadiene polymer with maleic...

  3. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dicyclopentadiene polymer with maleic... Significant New Uses for Specific Chemical Substances § 721.10316 Dicyclopentadiene polymer with maleic.... (1) The chemical substance identified generically as dicyclopentadiene polymer with maleic...

  4. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dicyclopentadiene polymer with maleic... Significant New Uses for Specific Chemical Substances § 721.10316 Dicyclopentadiene polymer with maleic.... (1) The chemical substance identified generically as dicyclopentadiene polymer with maleic...

  5. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    PubMed Central

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  6. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  7. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  8. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid) Bioadhesive Nanoparticles

    PubMed Central

    Varshosaz, J.; Minaiyan, M.; Forghanian, M.

    2014-01-01

    The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT). Therefore, poly(methyl vinyl ether maleic acid) [P(MVEMA)] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1), iv solution of sCT (5 μg·kg−1), and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA) nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly. PMID:24701588

  9. Role of Cellulose Nanocrystals on the Microstructure of Maleic Anhydride Plasma Polymer Thin Films.

    PubMed

    Brioude, Michel M; Roucoules, Vincent; Haidara, Hamidou; Vonna, Laurent; Laborie, Marie-Pierre

    2015-07-01

    Recently, it was shown that the microstructure of a maleic anhydride plasma polymer (MAPP) could be tailored ab initio by adjusting the plasma process parameters. In this work, we aim to investigate the ability of cellulose nanocrystals (CNCs) to induce topographical structuration. Thus, a new approach was designed based on the deposition of MAPP on CNCs model surfaces. The nanocellulosic surfaces were produced by spin-coating the CNC suspension on a silicon wafer substrate and on a hydrophobic silicon wafer substrate patterned with circular hydrophilic microsized domains (diameter of 86.9 ± 4.9 μm), resulting in different degrees of CNC aggregation. By depositing the MAPP over these surfaces, it was possible to observe that the surface fraction of nanostructures increased from 20% to 35%. This observation suggests that CNCs can act as nucleation points resulting in more structures, although a critical density of the CNCs is required.

  10. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    PubMed

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.

  11. Poly(2-vinylnaphthalene-alt-maleic acid)-graft polystyrene as a photoactive polymer micelle and stabilizer for polystyrene latexes

    SciTech Connect

    Cao, T.; Yin, W.; Webber, S.E. )

    1994-12-05

    Polymerization of maleic anhydride and 2-vinylnaphthalene produces alternating polymers. Imidization of the polymer with amino-terminated polystyrene yields different loadings of an alternating polymer with polystyrene combs''. Upton rigorous hydrolysis one obtains poly(2-vinylnaphthalene-alt-maleic acid)-graft-polystyrene (P2VNMA-PS), which is a fluorescent polymer with unusual solution properties and with significant surface activity. P2VNMA-PS forms a small micelle structure in solution or can be used as a surfactant for an emulsion polymerization of polystyrene (no cosurfactant is required), producing monodisperse latex particles which are stable for pH > 3.9. Centrifugation shows that >90% of the P2VNMA-PS is associated with the latex particles. Fluorescence quenching studies of the naphthalene excimer with Tl[sup +] indicate that approximately 84% and 77% of the naphthalene groups remain exposed to the aqueous phase when this polymer is micellized or incorporated onto a latex particle, respectively. These data imply that the P2VNMA-PS polymer is permanently associated with the exterior of the latex particle, as one would expect given the amphiphilic nature of this polymer.

  12. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... maleic anhydride monomer content. Residual maleic anhydride monomer content shall be determined by a gas chromatographic method titled “Determination of Residual Maleic Anhydride in Polymers by Gas...

  13. New polymers for 193-nm single-layer resists based on substituted cycloolefins/maleic anhydride resins

    NASA Astrophysics Data System (ADS)

    Rushkin, Ilya L.; Houlihan, Francis M.; Kometani, Janet M.; Hutton, Richard S.; Timko, Allen G.; Reichmanis, Elsa; Nalamasu, Omkaram; Gabor, Allen H.; Medina, Arturo N.; Slater, Sydney G.; Neisser, Mark O.

    1999-06-01

    A series of new polymers for 193 nm single layer resist based on maleic anhydride/cycloolefin systems with minimum amount of acrylate units were synthesized. In order to minimize the acrylate content, the cycloolefin moiety of the polymers was functionalized with side groups designed to either promotes adhesion to silicon substrate and/or impart the imaging functionality. All polymers were prepared by free-radical polymerization in moderate to high yields and were characterized by variety of techniques. The initial lithographic evaluation of the new resists was carried out. It was found that acrylates can be successfully replaced with appropriately substituted cycloolefins to provide good resolution. The etch resistance of the new materials generally improves with increase in cycloolefin content. The Onishi and Kunz type plots will be discussed.

  14. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted...

  15. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted...

  16. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted...

  17. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted...

  18. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs...

  19. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs...

  20. 40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted...

  1. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs...

  2. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs...

  3. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs...

  4. Aluminum–phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy

    PubMed Central

    Muehlmann, Luis Alexandre; Ma, Beatriz Chiyin; Longo, João Paulo Figueiró; Almeida Santos, Maria de Fátima Menezes; Azevedo, Ricardo Bentes

    2014-01-01

    Photodynamic therapy is generally considered to be safer than conventional anticancer therapies, and it is effective against different kinds of cancer. However, its clinical application has been significantly limited by the hydrophobicity of photosensitizers. In this work, a system composed of the hydrophobic photosensitizer aluminum–phthalocyanine chloride (AlPc) associated with water dispersible poly(methyl vinyl ether-co-maleic anhydride) nanoparticles is described. AlPc was associated with nanoparticles produced by a method of solvent displacement. This system was analyzed for its physicochemical characteristics, and for its photodynamic activity in vitro in cancerous (murine mammary carcinoma cell lineage 4T1, and human mammary adenocarcinoma cells MCF-7) and noncancerous (murine fibroblast cell lineage NIH/3T3, and human mammary epithelial cell lineage MCF-10A) cell lines. Cell viability and the elicited mechanisms of cell death were evaluated after the application of photodynamic therapy. This system showed improved photophysical and photochemical properties in aqueous media in comparison to the free photosensitizer, and it was effective against cancerous cells in vitro. PMID:24634582

  5. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  6. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  7. Crosslinking Chemistry for Fluorocarbon Ether Bibenzoxazole Polymers

    DTIC Science & Technology

    1979-11-01

    soluble amber- colored gums which exhibited inherent viscosities in the range of 0.26 to 0.51 dl/g were obtained in yields of up to 90 percent. N -CF ) CH...dissolved to permit the formation of a viscous, amber- colored solution. The resultant gum exhibited an inherent viscosity of 0.20 dl/g. 3. POLYMER...reaction vessel. The excess copper and cuprous salts were filtered off, the organic layer separated, and the aqueous layer extracted with more

  8. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  9. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  10. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  11. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  12. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  13. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  14. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  15. Effects of Secondary Polymer Covalently Attached to Monodisperse, Poly(maleic anhydride-styrene)-Modified Colloidal Silica on Dispersibility in Organic Solvent.

    PubMed

    Yoshinaga; Shimada; Nishida; Komatsu

    1999-06-15

    Effects of surface-grafted polymer on the dispersibility of polymer-silica composite particles in ethyl acetate-methanol cosolvent were investigated. The composite particles were prepared by a two-step modification of monodisperse colloidal silica (120 nm in diameter). Modifications were carried out by first reacting the surface silanol of the colloidal silica with maleic anhydride-styrene copolymer silane coupling agent to prevent aggregation and then grafting, in acetone or tetrahydrofuran, amino group-terminated poly(methyl acrylate), poly(methyl methacrylate), or polystyrene to the maleic anhydride moiety on the surface. For poly(methyl acrylate) and poly(methyl methacrylate) graftings, composite particles with long polymer chains aggregated in methanol-rich cosolvent due to insoluble secondary polymer chain interaction among the particles. Particles with a small amount of relatively low-molecular-weight secondary polymer were dispersible in the methanol content range from 0 to 90 vol%. Polystyrene-modified particles never aggregated, even in 90 vol% methanol solution. An ESR study of the suspension in ethyl acetate-hexane cosolvent suggested that the dispersibility of these composite particles in ethyl acetate-rich solution is attributable to steric repulsion between solvated and expanded secondary polymer chains among the particles. The dispersibility of the composite particles in methanol-rich solution was controlled by a delicate balance between the electrostatic repulsion and the interparticle attraction due to the desolvated and insoluble polymer chain interaction among the particles. Copyright 1999 Academic Press.

  16. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... maleic anhydride monomer content shall be determined by a gas chromatographic method titled “Determination of Residual Maleic Anhydride in Polymers by Gas Chromatography,” which is incorporated...

  17. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... maleic anhydride monomer content shall be determined by a gas chromatographic method titled “Determination of Residual Maleic Anhydride in Polymers by Gas Chromatography,” which is incorporated...

  18. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... maleic anhydride monomer content shall be determined by a gas chromatographic method titled “Determination of Residual Maleic Anhydride in Polymers by Gas Chromatography,” which is incorporated...

  19. Maleic anhydride

    Integrated Risk Information System (IRIS)

    Maleic anhydride ; CASRN 108 - 31 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  20. Maleic hydrazide

    Integrated Risk Information System (IRIS)

    Maleic hydrazide ; CASRN 123 - 33 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  1. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  2. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  3. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  4. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  5. 75 FR 4288 - Oxirane, 2-Methyl-, Polymer with Oxirane, Dimethyl Ether; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... AGENCY 40 CFR Part 180 Oxirane, 2-Methyl-, Polymer with Oxirane, Dimethyl Ether; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of oxirane, 2-methyl-,polymer with... eliminates the need to establish a maximum permissible level for residues of oxirane, 2-methyl-, polymer...

  6. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  7. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  8. 40 CFR 721.10518 - Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl ether- and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (generic). 721.10518 Section... Substances § 721.10518 Diethylene glycol, polymer with diisocyanatoalkane, polyethylene glycol monomethyl... diisocyanatoalkane, polyethylene glycol monomethyl ether- and fluorinatedalkanol-blocked (PMN P-11-48) is subject...

  9. Transparent Films from CO2‐Based Polyunsaturated Poly(ether carbonate)s: A Novel Synthesis Strategy and Fast Curing

    PubMed Central

    Subhani, Muhammad Afzal; Köhler, Burkhard; Gürtler, Christoph; Leitner, Walter

    2016-01-01

    Abstract Transparent films were prepared by cross‐linking polyunsaturated poly(ether carbonate)s obtained by the multicomponent polymerization of CO2, propylene oxide, maleic anhydride, and allyl glycidyl ether. Poly(ether carbonate)s with ABXBA multiblock structures were obtained by sequential addition of mixtures of propylene oxide/maleic anhydride and propylene oxide/allyl glycidyl ether during the polymerization. The simultaneous addition of both monomer mixtures provided poly(ether carbonate)s with AXA triblock structures. Both types of polyunsaturated poly(ether carbonate)s are characterized by diverse functional groups, that is, terminal hydroxy groups, maleate moieties along the polymer backbone, and pendant allyl groups that allow for versatile polymer chemistry. The combination of double bonds substituted with electron‐acceptor and electron‐donor groups enables particularly facile UV‐ or redox‐initiated free‐radical curing. The resulting materials are transparent and highly interesting for coating applications. PMID:27028458

  10. Rheological Analysis of Polymer Interactions and Ageing of Poly(Methylvinylether-Co-Maleic Anhydride)/Poly(Vinyl Alcohol) Binary Networks and Their Effects on Mucoadhesion.

    PubMed

    Andrews, Gavin P; Laverty, Thomas P; Jones, David S

    2015-12-01

    Polymer blends of poly(vinylalcohol, PVA) and poly(methylvinylether-co-maleic anhydride, PMVE/MA) were formulated and their viscoelastic and mucoadhesive properties characterised. The viscoelastic and mucoadhesive properties were dependent on polymer concentration, molecular weight of PVA and PVA:PMVE/MA ratio. Alteration of these properties allowed platforms to be designed to offer defined rheological and mucoadhesive properties, properties that could not be achieved using monopolymeric platforms. A strong correlation was noted between the modulus of the polymeric blends and mucoadhesion. After storage, the polymeric blends underwent rheological structuring (ageing) with an attendant enhancement of mucoadhesion. In certain blends containing the highest molecular weight of PVA (146-186 kDa), storage ultimately resulted in an increase and then a significant decrease in the rheological and mucoadhesive properties, the latter phenomenon being accredited to polymer recrystallisation. Ageing of the rheological and mucoadhesive properties was modelled using an exponential growth model, allowing predictions of the storage period associated with the maxima in viscoelastic and mucoadhesive properties. These observations highlight the possible implications whenever interactive polymeric blends are employed in drug delivery. Caution is therefore urged whenever a formulation strategy based on interactive polymer blends is employed to ensure that ageing is fully understood and mathematically characterised.

  11. Carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance investigation of the interactions between maleic anhydride grafted polypropylene and wood polymers.

    PubMed

    Rude, Erica; Laborie, Marie-Pierre G

    2008-05-01

    The chemical interactions between maleic anhydride grafted polypropylene (MAPP) and wood were studied with solid-state carbon-13 cross-polarization magic-angle-spinning nuclear magnetic resonance ((13)C CPMAS NMR) spectroscopy. MAPP was synthesized with 100% (13)C enrichment at the C(1) and C(4) carbons to allow detection of the [1,4-(13)C(2)]MAPP functional groups and was melt blended with cellulose, lignin, and maple wood. In the cellulose/MAPP blend, changes in (13)C CPMAS NMR corrected signal intensities for the anhydride and dicarboxylic maleic acid functionalities suggested that esterification may have occurred predominantly from the more numerous diacid carbons. A single proton longitudinal relaxation in the rotating frame, (H)T(1rho), for the MAPP and the cellulose carbons in the blend suggested that they were spin coupled, i.e., homogeneous on a 10-200 Angstrom scale. Esterification was also suggested in the lignin/MAPP blend. Furthermore, the more significant changes in the intensities of the carbonyl signals and (H)T(1rho) values suggested that lignin may be more reactive to MAPP than cellulose. Finally, when maple was melt blended with MAPP, the same trends in the (13)C CP-MAS NMR spectra and (H)T(1rho) behavior were observed as when MAPP was blended with cellulose or lignin. This study therefore clarifies that during melt compounding of wood with MAPP, esterification occurs with wood polymers, preferentially with lignin. Understanding the interactions of MAPP with wood is of significance for the development of natural-fiber-reinforced thermoplastic composites.

  12. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    PubMed

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca(2+), Mg(2+), and Zn(2+)) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  13. Accelerated simulations of aromatic polymers: application to polyether ether ketone (PEEK)

    NASA Astrophysics Data System (ADS)

    Broadbent, Richard J.; Spencer, James S.; Mostofi, Arash A.; Sutton, Adrian P.

    2014-10-01

    For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example, the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase fivefold to 5 fs.

  14. 40 CFR 721.10054 - Phenol, polymer with formaldehyde, 3-[(2-aminocyclohexyl)amino]-2-hydroxypropyl ethers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phenol, polymer with formaldehyde, 3... Significant New Uses for Specific Chemical Substances § 721.10054 Phenol, polymer with formaldehyde, 3- -2... substance identified generically as a phenol, polymer with formaldehyde, 3- -2-hydroxypropyl ethers (PMN...

  15. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol...

  16. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol...

  17. 40 CFR 721.10054 - Phenol, polymer with formaldehyde, 3-[(2-aminocyclohexyl)amino]-2-hydroxypropyl ethers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phenol, polymer with formaldehyde, 3... Significant New Uses for Specific Chemical Substances § 721.10054 Phenol, polymer with formaldehyde, 3- -2... substance identified generically as a phenol, polymer with formaldehyde, 3- -2-hydroxypropyl ethers (PMN...

  18. 40 CFR 721.10054 - Phenol, polymer with formaldehyde, 3-[(2-aminocyclohexyl)amino]-2-hydroxypropyl ethers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phenol, polymer with formaldehyde, 3... Significant New Uses for Specific Chemical Substances § 721.10054 Phenol, polymer with formaldehyde, 3- -2... substance identified generically as a phenol, polymer with formaldehyde, 3- -2-hydroxypropyl ethers (PMN...

  19. Coating carbon nanotubes with polymer in supercritical carbon dioxide.

    PubMed

    Wang, Jiawei; Khlobystov, Andrei N; Wang, Wenxin; Howdle, Steven M; Poliakoff, Martyn

    2006-04-21

    A facile and efficient method has been developed for coating MWNTs with solvent resistant polymer in scCO2, which permits the selective deposition of high molecular weight fluorinated graft poly(methyl vinyl ether-alt-maleic anhydride) polymer onto MWNTs in scCO2 under 100-170 bar at 40 degrees C and forms quasi one-dimensional nanostructures with conducting cores and insulating surfaces.

  20. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether. 721.7260 Section 721.7260 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and...

  1. Phenylethynyl Terminated Arylene Ether Oxadiazole and Triazole Oligomers and Their Cured Polymers

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Hergenrother, P. M.

    2001-01-01

    Several novel phenylethynyl terminated arylene ether oligomers containing oxadiazole and triazole rings were prepared as part of an effort to develop high performance polymers with an attractive combination of properties (e.g. processability and mechanical performance) for future NASA applications. The oligomers displayed low melt viscosities and good solubilities. Thin films cast from solutions of the oligomers and cured for one hour at 350 C in air gave good tensile properties. Titanium to titanium (6Al-4V) tensile shear specimens were readily fabricated and provided moderate strengths. The chemistry and properties of these new materials are discussed.

  2. Toughening of BIS maleimide resins: Synthesis and characterization of maleimide terminated poly(arylene ether) oligomers and polymers

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Lyle, G. D.; Jurek, M. J.; Mohanty, D.; Hedrick, J. C.

    1986-01-01

    Amine functional poly(arylene ether) sulfones were previously reported. Herein, the chemistry was extended to amorphous poly(arylene ether) ketones because of their higher fracture toughness values, relative to the polysulfones. It was demonstrated that the amino functional oligomers undergo a self-crosslinking reaction at temperatures above about 220 C. This produces an insoluble, but ductile network that has excellent resistance. A ketamine structure hypothesis was proposed and verified using solid state magic angle NMR. In most cases, the water generated upon ketamine formation is too low to produce porosity and solid networks are obtained. The stability of the ketamine networks towards hydrolysis is excellent. The chemistry was further demonstrated to be able to crosslink preformed nonfunctional poly(arylene ether) ketones if a difunctional amine was utilized. This concept has the possibility of greatly improving the creep resistance of thermoplastics. Also, a new technique was developed for converting the amine functional oligomers cleanly into maleimide structures. This method involves reacting maleic anhydride with monomeric aminophenols in the presence of solvent mixtures.

  3. Evaluation of polymer inclusion membranes containing crown ethers for selective cesium separation from nuclear waste solution.

    PubMed

    Mohapatra, P K; Lakshmi, D S; Bhattacharyya, A; Manchanda, V K

    2009-09-30

    Transport behaviour of (137)Cs from nitric acid feed was investigated using cellulose triacetate plasticized polymer inclusion membrane (PIM) containing several crown ether carriers viz. di-benzo-18-crown-6 (DB18C6), di-benzo-21-crown-7 (DB21C7) and di-tert-butylbenzo-18-crown-6 (DTBB18C6). The PIM was prepared from cellulose triacetate (CTA) with various crown ethers and plasticizers. DTBB18C6 and tri-n-butyl phosphate (TBP) were found to give higher transport rate for (137)Cs as compared to other carriers and plasticizers. Effect of crown ether concentration, nitric acid concentration, plasticizer and CTA concentration on the transport rate of Cs was also studied. The Cs selectivity with respect to various fission products obtained from an irradiated natural uranium target was found to be heavily dependent on the nature of the plasticizer. The present work shows that by choosing a proper plasticizer, one can get either good transport efficiency or selectivity. Though TBP plasticized membranes showed good transport efficiency, it displayed poor selectivities. On the other hand, an entirely opposite separation behaviour was observed with 2-nitrophenyloctylether (NPOE) plasticized membranes suggesting the possible application of the later membranes for the removal of bulk (137)Cs from the nuclear waste. The stability of the membrane was tested by carrying out transport runs for nearly 25 days.

  4. Characterisation of water behaviour in cellulose ether polymers using low frequency dielectric spectroscopy.

    PubMed

    McCrystal, C B; Ford, J L; He, R; Craig, D Q M; Rajabi-Siahboomi, A R

    2002-08-28

    The behaviour of water in hydroxypropylmethylcellulose (HPMC) K100LV, K4M, K15M, K100M, E4M, F4M and HPC polymers was characterised using low frequency dielectric spectroscopy (LFDS). Dielectric responses of 25% (w/w) HPMC K15M gels and deionised water were found to be similar at +22 and 0 degrees C. However, at -30 degrees C, a dielectric response typical of a solid was apparent. The melting of frozen water within gels was detected as increases in the magnitude of the dielectric response with increase in temperature. More than one phase transition was visible in the majority of gels studied which may be related to the presence of different states of water melting at different temperatures. In addition to polymer concentration, both polymer molecular weight and substitution level influenced the nature of the transitions. The magnitude of the dielectric response was increased in all HPMC gel systems in comparison to the response seen in deionised water. Drug addition affected the transitions occurring during the melting of ice in the gels. This may be related to the presence of ionic species in the systems. LFDS studies on cellulose ether gels have provided some interesting evidence for the existence of more than one state of water within such gel systems. The results are in good agreement with thermal analysis findings in similar gel systems.

  5. Amorphous phase separation in crystallizable polymer blends based on poly (aryl ether ketones) and poly (ether imide)

    SciTech Connect

    Kalika, D.S.; Bristow, J.F.

    1996-12-31

    The morphology of a series of miscible crystallizable blends based on poly (aryl ether ketones) [PAEK] and poly (ether imide) [PEI] has been investigated as a function of blend composition and crystallization condition by dielectric relaxation spectroscopy. For blends of poly (ether ether ketone) [PEEK] and PEI, dielectric scans of the crystallized samples reveal two glass-rubber relaxations corresponding to the coexistence of a mixed interlamellar amorphous phase, and a pure PEI phase located in interfibrillar/interspherulitic regions. The exclusion of a significant fraction of PEI outside of the crystal lamellae reflects a fundamental change in the nature of interaction between the interlamellar PEEK segments and the PEI chains owing to the constraints imposed on the PEEK segments by the crystal surfaces. The degree of PEI exclusion is dependent upon kinetic factors, i.e. the rate of PEEK crystallization relative to the rate of PEI diffusion away from the advancing crystal front. As a result, lower crystallization temperatures lead to an increase in the amount of PEI trapped in the interlamellar regions. In this work, the morphological characteristics of the PEEK/PEI blends are compared with those of blends comprised of poly (ether ketone ketone) [PEKK] and PEI. The introduction of the {open_quotes}kinked{close_quote} isophthalate moiety in the PEKK backbone has been shown to disrupt the persistence of order at the crystal-amorphous interface, and thereby leads to a reduction in the degree of constraint imposed by the crystal lamellae on the amorphous (interlamellar) PEKK segments. The impact of this reduction in crystalline constraint on the nature of the PEKK/PEI intersegmental interactions and the corresponding PEI segregation is discussed.

  6. Poly(arylene ether)s containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)

    1996-01-01

    Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350.degree. C. to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.

  7. Study of improved resins for advanced supersonic technology composites. Part 1: Heteroaromatic polymers containing ether groups. Part 2: Curing chemistry of aromatic polymers and composite studies

    NASA Technical Reports Server (NTRS)

    Takekoshi, T.; Hillig, W. B.; Mellinger, G. A.

    1975-01-01

    Fourteen ether-containing, aromatic dianhydrides have been synthesized from N-phenyl-3 or 4-nitrophthalimide and various bisphenols. The process involves nucleophilic displacement of activated nitro groups with bisphenolate ions. Ether-containing dianhydrides were indefinitely stable in the presence of atmospheric moisture. One-step, high temperature solution polymerization of the ether-containing dianhydrides with m-phenylene diamine, 4,4'-oxydianiline and 1, 3-bis(4-aminophenoxy)benzene afforded 42 polyetherimides. The polyetherimides were all soluble in m-cresol except two which were found to be crystalline. The glass transition temperatures of the polyetherimides ranged from 178 to 277 C. Soluble polybenzimidazopyrrolones containing ether groups were also prepared from the same ether-containing dianhydrides and aromatic tetraamines by one-step solution polymerization. Using low molecular weight polyetherimides, various thermoset resin systems were developed and tested as matrices for fiber-reinforced composites. The curing chemistry involving reaction of the phthalonitrile group and the o-diaminophenyl group was found to be generally applicable to crosslinking various aromatic polymers other than polyimides.

  8. Synthesis and characterization of sulfonated poly(ether sulfone)s containing mesonaphthobifluorene for polymer electrolyte membrane fuel cell.

    PubMed

    Lim, Youngdon; Seo, Dongwan; Lee, Soonho; Hossain, Md Awlad; Lim, Jinseong; Lee, Sangyoung; Hong, Taehoon; Kim, Whangi

    2014-10-01

    The novel sulfonated poly(ether sulfone)s containing mesonaphthobifluorene (MNF) moiety were synthesized and characterized their properties. The prepared polymers have highly conjugated aromatic structure due to the MNF group which is an allotrope of carbon and one atom thick planar sheets of sp2-bonded carbon atoms. Poly(ether sulfone)s bearing tetraphenylethylene on polymer backbone were synthesized by polycondensation and followed intra-cyclization from tetraphenylethylene to form MNF by Friedel-craft reaction with Lewis acid (FeCl3). The sulfonation was performed selectively on MNF units with conc. sulfuric acid. The structural properties of the sulfonated polymers were investigated by 1H-NMR spectroscopy. The membranes were studied by ion exchange capacity (IEC), water uptake, and proton conductivity. The synthesized polymer electrolyte membranes showed better thermal and dimensional stabilities owing to the inducted highly conjugated aromatic structure in the polymer backbone. The water uptake of the synthesized membranes ranged from 23-52%, compared with 32.13% for Nafion 211 at 80 degrees C. The synthesized membranes exhibited proton conductivities (80 degrees C, RH 90%) of 74.6-100.4 mS/cm, compared with 102.7 mS/cm for Nafion 211.

  9. A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Zheng, Xuan; Liu, Hai; Wang, Guangjin; Cheng, Fan; Zheng, Genwen; Wen, Sheng; Law, Wing-Cheung; Tsui, Chi-Pong; Tang, Chak-Yin

    2016-09-01

    Remarkable progress has been made on the use of polymer electrolyte membranes (PEMs) for renewable-energy-related research. In particular, carbon nanotubes (CNTs) have emerged as versatile nanomaterials to modify PEMs. However, the inert ionic conduction ability and possible short-circuiting risk are the two major obstacles to their further development. In this work, CNTs are firstly functionalized with an inorganic proton conductor, boron phosphate (BPO4), using a facile polydopamine-assisted sol-gel method to yield BPO4@CNTs. This new additive is then used to modify sulfonated poly(ether ether ketone) (SPEEK). Polydopamine coating layer can act as an extraordinary glue to homogeneously adhere BPO4 nanoparticles on CNTs, thereby not only reducing the risk of short-circuiting, but also fabricating new proton-conducting pathways in the composite membranes. A comprehensive characterization reveals that the thermal stability, tensile properties, and dimensional stability of PEMs are significantly improved. Compared with pure SPEEK, the proton conductivity of SPEEK/BPO4@CNTs-2 is improved by 45% and 150% at 20 °C and at 80 °C, respectively. Furthermore, the H2/O2 cell performance of SPEEK/BPO4@CNTs-2 membrane exhibits a peak power density of 340.7 mW cm-2 at 70 °C, which is significantly better than that of pure SPEEK (254.2 mW cm-2), demonstrating the great potential of proton conductors-functionalized CNTs in PEMs.

  10. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-01

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d6) solution of the purified polymer using 1H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10-3 Scm-1 at 30°C and 3.383 × 10-3 Scm-1 at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  11. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    SciTech Connect

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  12. Evaluation of thermal gelation behavior of different cellulose ether polymers by rheology

    NASA Astrophysics Data System (ADS)

    Balaghi, S.; Edelby, Y.; Senge, B.

    2014-05-01

    Hydroxypropylmethylcellulose (HPMC) and Methylcellulose (MC) are cellulose ethers which can be dispersed in water and used as thickeners, emulsifiers, binders, film formers, and water-retention agents due to their hydrophilic and hydrophobic characteristics. In this study, various types of HPMCs, in comparison with two types of MCs were examined. The formed gels of the different cellulose ethers showed specific and various structural formation and network properties. The degree of methylation (Meth.) and hydroxypropylation (HyPr.) affected drastically the heat-induced gelation of the examined cellulose ethers.

  13. Maleic anhydride from normal butane

    SciTech Connect

    Cooley, S.D.; Doshi, B.

    1987-01-01

    Worldwide about one billion pounds of maleic anhydride is used annually in the manufacture of a number of commercially valuable products, including unsaturated polyester resins, agricultural chemicals, and lubricating oil additives. Maleic anhydride is not found in nature. It was first prepared in 1834 by heating malic acid (hydroxy-succinic acid, a compound found in apples and many other fruits). Maleic anhydride was not available commercially until ca. 1930 when the catalytic air oxidation of benzene was begun by National Aniline and Chemical on an industrial scale. The estimated worldwide production in 1985 was 1023 million pounds coming from more than 35 plants varying in capacity from 6 million pounds to 170 million pounds annually.

  14. Anhydrous state proton and lithium ion conducting solid polymer electrolytes based on sulfonated bisphenol-A-poly(arylene ethers)

    NASA Astrophysics Data System (ADS)

    Guha Thakurta, Soma

    Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed

  15. Generation of a Focused Poly(amino ether) Library: Polymer-mediated Transgene Delivery and Gold-Nanorod based Theranostic Systems

    PubMed Central

    Vu, Lucas; Ramos, James; Potta, Thrimoorthy; Rege, Kaushal

    2012-01-01

    A focused library of twenty-one cationic poly(amino ethers) was synthesized following ring-opening polymerization of two diglycidyl ethers by different oligoamines. The polymers were screened in parallel for plasmid DNA (pDNA) delivery, and transgene expression efficacies of individual polymers were compared to those of 25 kDa polyethylenimine (PEI), a current standard for polymer-mediated transgene delivery. Seven lead polymers that demonstrated higher transgene expression than PEI in pancreatic and prostate cancer cells lines were identified from the screen. All seven lead polymers showed highest transgene expression at a polymer:pDNA weight ratio of 5:1 in the MIA PaCa-2 pancreatic cancer cell line. Among the conditions studied, transgene expression efficacy correlated with minimal polymer cytotoxicity but not polyplex sizes. In addition, this study indicated that methylene spacing between amine centers in the monomers, amine content, and molecular weight of the polymers are all significant factors and should be considered when designing polymers for transgene delivery. A lead effective polymer was employed for coating gold nanorods, leading to theranostic nanoassemblies that possess combined transgene delivery and optical imaging capabilities, leading to potential theranostic systems. PMID:23382773

  16. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  17. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  18. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  19. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  20. EXAFS investigations of strontium complexation by a polymer-supported crown ether.

    SciTech Connect

    Dietz, M. L.; Jensen, M. P.; Chemistry

    2004-01-09

    Extended X-ray absorption fine-structure (EXAFS) measurements have been used to probe the coordination environment of strontium ion sorbed from aqueous nitric acid solutions on an extraction chromatographic resin comprising a macrocyclic polyether dispersed on a polymeric support. The strontium EXAFS of the metal ions sorbed onto the resin are consistent with a 1:1:2 strontium:crown ether:nitrate stoichiometry in which the strontium is enveloped in the crown ether ring and both nitrate anions are coordinated to the strontium as bidentate ligands. This is the same structure and stoichiometry observed for complexes in liquid-liquid extraction when the macrocyclic polyether is dissolved in a diluent with low water miscibility like 1-octanol.

  1. Sulfonimide-containing poly(arylene ether)s and poly(arylene ether sulfone)s, methods for producing the same, and uses thereof

    DOEpatents

    Hofmann, Michael A.

    2006-11-14

    The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.

  2. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.

    PubMed

    Ding, Frank; Hsu, S-H; Wu, D-H; Chiang, W-Y

    2009-01-01

    In order to develop new materials for biomedical and pharmaceutical applications, interpenetrating polymer networks (IPNs) based on poly(ethylene glycol) methyl ether acrylate (PEGMEA) and gelatin were synthesized. These two materials were cross-linked sequentially using N,N'-methylene bisacrylamide (NMBA) and glutaraldehyde (Glu). Two series of IPNs gels were synthesized by applying different amounts of PEGMEA and gelatin in the initial feed. Sequential IPNs were prepared by polymerizing and cross-linking PEGMEA in the presence of gelatin using redox initiators (e.g., ammonium peroxydisulfate (APS) and N,N,N',N'-tetramethyl ethylenediamine (TEMED)), as well as NMBA as the cross-linking agent. Gelatin in firm gel was then cross-linked with 1% glutaraldehyde. The swelling kinetics, mechanical properties and drug-release behavior of these IPNs were analyzed. The surface properties were examined by scanning electron microscopy. The results indicated that the swelling ratio decreased with an increase in the content of both PEGMEA and gelatin in the IPNs. PEGMEA/gelatin-based full-IPNs had a significantly higher shear modulus (G) and cross-linking density (rho) when the content of PEGMEA was increased. The drug loading was very high due to the full-IPN structure. The drug-release velocity was mainly affected by the content of PEGMEA.

  3. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing.

    PubMed

    D'Sa, Raechelle A; Meenan, Brian J

    2010-02-02

    This article reports the use of atmospheric pressure plasma processing to induce chemical grafting of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto polystyrene (PS) and poly(methyl methacrylate) (PMMA) surfaces with the aim of attaining an adlayer conformation which is resistant to protein adsorption. The plasma treatment was carried out using a dielectric barrier discharge (DBD) reactor with PEGMA of molecular weights (MW) 1000 and 2000, PEGMA(1000) and PEGMA(2000), being grafted in a two step procedure: (1) reactive groups are generated on the polymer surface followed by (2) radical addition reactions with the PEGMA. The surface chemistry, coherency, and topography of the resulting PEGMA grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM), respectively. The most coherently grafted PEGMA layers were observed for the 2000 MW PEGMA macromolecule, DBD processed at an energy dose of 105.0 J/cm(2) as indicated by ToF-SIMS images. The effect of the chemisorbed PEGMA layer on protein adsorption was assessed by evaluating the surface response to bovine serum albumin (BSA) using XPS. BSA was used as a model protein to determine the grafted macromolecular conformation of the PEGMA layer. Whereas the PEGMA(1000) surfaces showed some protein adsorption, the PEGMA(2000) surfaces appeared to absorb no measurable amount of protein, confirming the optimum surface conformation for a nonfouling surface.

  4. Interaction and release of catechin from anhydride maleic-grafted polypropylene films.

    PubMed

    López de Dicastillo, Carol; Castro-López, Maria Del Mar; Lasagabaster, Aurora; López-Vilariño, Jose M; González-Rodríguez, M Victoria

    2013-04-24

    In this paper, investigations were carried out on catechin-loaded maleic anhydride (MAH)-modified polypropylenes (PP). Two maleic-modified polypropylenes (PPMAH) with different maleic concentrations have been blended with PP and catechin to obtain composites of improved catechin retention with the aim of studying the possible interactions between these grafted polymers with antioxidants, and a secondary interest in developing an active antioxidant packaging. Composite physicochemical properties were measured by thermal analysis (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and oxidation induction time (OIT)) and infrared spectroscopy studies. Catechin release profiles into food simulants were obtained by HPLC-PDA-QqQ, following European legislation. Antiradical activity of composites was analyzed by the ABTS and DPPH method. The formation of intermolecular hydrogen bonds between catechin and functionalized PP has been confirmed by Fourier transform infrared (FTIR) studies. Besides, a small fraction of ester bonds, formed as a result of a chemical reaction between a fraction of the hydrolyzed anhydride and the catechin hydroxyl groups, is not discarded. OIT results also showed an increase in antioxidant effectiveness caused by the presence of catechin- and maleic-modified PPMAH in the blend formulations. Incorporation of MAH-grafted PP increased substantially the retention rate of catechin, being dependent on the MAH content of the grafted polypropylene. The described interactions between catechin and maleic groups, together with changes in PP morphology in comparison with reference PP explained lower antioxidant release. Besides formulation, antioxidant release was dependent on the type of food, the temperature, and the time.

  5. Sulfonated poly(ether ether ketone)/polypyrrole core-shell nanofibers: a novel polymeric adsorbent/conducting polymer nanostructures for ultrasensitive gas sensors.

    PubMed

    Wang, Wei; Li, Zhenyu; Jiang, Tingting; Zhao, Zhiwei; Li, Ye; Wang, Zhaojie; Wang, Ce

    2012-11-01

    Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form one-dimensional polymeric adsorbent/conducting polymer core-shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH₃ can facilitate the mass diffusion of NH₃ through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH₃ (20 ppb) at room temperature.

  6. Dual cross-linked organic-inorganic hybrid polymer electrolyte membranes based on quaternized poly(ether ether ketone) and (3-aminopropyl)triethoxysilane

    NASA Astrophysics Data System (ADS)

    Zhang, Na; Wang, Baolong; Zhao, Chengji; Zhang, Yurong; Bu, Fanzhe; Cui, Ying; Li, Xuefeng; Na, Hui

    2015-02-01

    Quaternized poly(ether ether ketone)s (QPEEKs) are synthesized to absorb phosphoric acid (PA) and used as high temperature proton exchange membranes (HTPEMs). In order to improve their oxidative and mechanical stability without sacrificing proton conductivities, a series of dual cross-linked organic-inorganic hybrid membranes are prepared using (3-aminopropyl)triethoxysilane (APTES) as a cross-linker. The amine of APTES reacts with two benzyl bromide groups to build the primary cross-linking network. The Si-O-Si network generated by the hydrolysis of triethoxysilane in APTES is the secondary cross-linking network. The dual cross-linking hybrid networks improve the mechanical and oxidative stability of PA doped membranes. They can endure up to 15.3 h in 3 wt.% H2O2, 4 ppm Fe2+ Fenton solution at 80 °C. During the hydrolysis of triethoxysilane, the release of small molecules (H2O and C2H5OH) forms many pores in surfaces and interior of membranes. These pores and the resulted Si-OH groups corporately enhance the PA absorbing ability and proton conductivity. The highest proton conductivity is 61.7 mS cm-1 for PA-QPEEK-10%APTES at 200 °C under anhydrous condition. These membranes show great potential to be used in HTPEM fuel cell.

  7. Polyphenylene ethers with imide linking groups

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Burks, H. D. (Inventor)

    1984-01-01

    Novel polyphenylene ethers with imide linking units are disclosed. These polymers incorporate the solvent and thermal resistance of polyimides and the processability of polyphenylene ethers. Improved physical properties over those of the prior art are obtained by incorporating meta linked ethers and/or polyphenylene oxides into the polymer backbone. A novel process for making polymers of this type is also disclosed. The process is unique in that the expected need of high process temperatures and/or special atmospheres are eliminated.

  8. Adjustable degradation and drug release of a thermosensitive hydrogel based on a pendant cyclic ether modified poly(ε-caprolactone) and poly(ethylene glycol)co-polymer.

    PubMed

    Wang, Weiwei; Deng, Liandong; Liu, Shasha; Li, Xu; Zhao, Xiumei; Hu, Renjie; Zhang, Jianhua; Han, Haijie; Dong, Anjie

    2012-11-01

    The convenient and precise fabrication of drug-hydrogel formulations with satisfactory degradability and a well-controlled drug release profile are crucial factors for injectable hydrogel formulations in clinical applications. Here a new injectable thermosensitive hydrogel formed from poly(ε-caprolactone) (PCL)-poly(ethylene glycol)-poly(ε-caprolactone) amphiphilicco-polymers with 1,4,8-trioxa[4.6]spiro-9-undecanone (TOSUO) moieties incorporated in the poly(ε-caprolactone) (PCL)block (PECT) was constructed to provide a route to tailor the degradation and drug release behavior. The effect of hydrophilic cyclic ether moieties on the degradation of and drug release by PECT hydrogels were evaluated in vitro and in vivo. The results indicated that a freeze-dried powder of paclitaxel-loaded PECT nanoparticles rapidly dissolved in water at ambient temperature with slightly shaking and formed a stable injectable in situ drug-hydrogel formulation at body temperature, which is convenient for clinical operations because it avoids the need for pre-quenching or long-term incubation. The paclitaxel distribution was also more quantitative and homogeneous on entrapping paclitaxel in PECT nanoparticles. Further, the small number of pendant cyclic ether groups in PCL could decrease the cystallinity and hydrophobicity and, as a result, the in vitro and in vivo retention time of PECT hydrogels and the release of entrapped paclitaxel could be tuned from a few weeks to months by varying the amount of PTOSUO in the hydrophobic block. Significantly, paclitaxel-loaded PECT nanoparticles and free paclitaxel could be simultaneously released during the in vitro paclitaxel release from PECT hydrogels. A histopathological evaluation indicated that in vivo injected PECT hydrogels produced only a modest inflammatory response. Thus pendant cyclic ether modification of PCL could be an effective way to achieve the desired degradation and drug release profiles of amphiphilicco-polymer

  9. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-maleic anhydride copolymers. 177.1820... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1820 Styrene-maleic anhydride copolymers. Styrene-maleic anhydride copolymers identified in paragraph (a) of this section may be...

  10. Cytotoxic effects of maleic hydrazide.

    PubMed

    Swietlińska, Z; Zuk, J

    1978-01-01

    Since 1950, maleic hydrazide (MH) has been introduced into agriculture as a major commercial herbicide and a depressant of plant growth in numerous circumstances such as suppression of sprouting of vegetables and stored food crops, control of sucker growth on tobacco plants, ratardation of flowering and prolongation of dormancy period. Since 1951 MH has been known as an effective chromosome-breaking agent in higher plants, in sharp contrast with its low effect on the chromosomes and general health of tested mammals. The selectivity of action of MH in plants and animals was obviously the main reason of low interest devoted to the chemical by people working the field of environmental mutagenesis. In early works the inhibitory effects of MH on plant growth were mainly considered to result from the suppression of plant metabolism (inhibition of enzymic activity) and interference of the compound with plant hormones and growth regulators. More recently, numerous experiments performed with various plant species have shown that MH acts as an inhibitor of the synthesis of nucleic acids and proteins. Similar results have been obtained with animal tumour cells. The chromosome-breaking effect of MH on plant chromosomes resembles very closely the chromosome-breaking properties of alkylating agents and other mutagenic compounds such as mitomycin C. MH-induced chromosomal aberrations have also been recorded in grasshoppers, fish and mice, although tests with some mammalian cell lines gave negative results. Among higher plants, selective sensitivity to the toxic effects of MH is well proved. This phenomenon seems to be due to the differential ability of various plant species to detoxicate the chemical. Plants can break down MH into several products, one of which, hydrazine, is a well-known mutagen and carcinogen. MH does not seem to be toxic to bacteria and fungi. The compound is degraded by soil microflora and hence can be utilized as a source of nitrogen nutrition. MH proved to

  11. Langmuir and Langmuir-Blodgett films of a maleic anhydride derivative: effect of subphase divalent cations.

    PubMed

    Martín-García, B; Velázquez, M Mercedes; Pérez-Hernández, J A; Hernández-Toro, J

    2010-09-21

    We report the study of the equilibrium and dynamic properties of Langmuir monolayers of poly(styrene-co-maleic anhydride) partial 2-buthoxyethyl ester cumene terminated polymer and the effect of the Mg(NO(3))(2) addition in the water subphase on the film properties. Results show that the polymer monolayer becomes more expanded when the electrolyte concentration in the subphase increases. Dense polymer films aggregate at the interface. The aggregates are transferred onto silicon wafers using the Langmuir-Blodgett methodology and the morphology is observed by AFM. The structure of aggregates depends on the subphase composition of the Langmuir film transferred onto the silicon wafer.

  12. Evidence of glass transition in thin films of maleic anhydride derivatives: Effect of the surfactant coadsorption

    NASA Astrophysics Data System (ADS)

    López-Dıaz, D.; Velázquez, M. M.

    2008-08-01

    The glass transition temperature of poly (maleic anhydride-alt-1-octadecen) and poly (styrene-co-maleic anhydride) cumene-terminated thin films has been measured by mechanical relaxation of Langmuir films of these polymers. The dynamical properties show glass-like features (non-Arrhenius relaxation times and non-Debye mechanical response) interpreted by the coupling model. The glass transition temperature values determined by a mechanical relaxation experiment (step-compression) agree very well with those obtained by surface potential measurements. It is found that the glass transition temperature values in thin films decrease by about 100K as compared with those corresponding to the bulk polymers. The coadsorption of the water-insoluble surfactant DODAB decreases the glass transition temperature.

  13. Biomaterial properties evaluation of poly(vinyl acetate- alt-maleic anhydride)/chitosan nanocapsules

    NASA Astrophysics Data System (ADS)

    Raţă, Delia Mihaela; Popa, Marcel; Chailan, Jean-François; Zamfir, Carmen Lăcrămioara; Peptu, Cătălina Anişoara

    2014-08-01

    Nanocapsules with diameter around 100 nm based on a natural polymer (chitosan) and a synthetic polymer poly(vinyl acetate- alt-maleic anhydride) [poly(MAVA)] by interfacial condensation method were prepared. The present study proposes a new type of biocompatible nanocapsules based on poly(vinyl acetate- alt-maleic anhydride-chitosan) (MCS) able to become a reliable support for inclusion and release of drugs. The spherical shape of the nanocapsules was evidenced by scanning electron microscopy. Nanocapsules presented a good Norfloxacin loading and release capacity. Haemocompatibility tests have demonstrated that the nanocapsules present a low toxicity and a good compatibility with sanguine medium. The biocompatibility properties of the nanocapsules after their intraperitoneal administration in rats were evidenced by histopathological examination of different organs (brain, liver, kidney, and lung). The results are encouraging and the nanocapsules can be used as controlled drug delivery systems.

  14. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane,...

  15. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane,...

  16. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol...

  17. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol...

  18. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane,...

  19. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol...

  20. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane,...

  1. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol...

  2. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxirane, methyl-, polymer with oxirane... Significant New Uses for Specific Chemical Substances § 721.522 Oxirane, methyl-, polymer with oxirane, mono(3...) The chemical substance identified as oxirane, methyl-, polymer with oxirane,...

  3. Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking

    DOEpatents

    Rave, Terence W.

    1979-01-01

    Hydrophilic fibers may be prepared by discharging a heated and pressurized dispersion of a styrene-maleic anhydride copolymer into a zone of reduced temperature and pressure, and then modifying the fibers so produced by treatment with an aqueous admixture of selected cationic and anionic water-soluble, nitrogen-containing polymers. Blends of the hydrophilic fibers with wood pulp provide paper products having improved physical properties.

  4. A new approach to reducing the flammability of layered double hydroxide (LDH)-based polymer composites: preparation and characterization of dye structure-intercalated LDH and its effect on the flammability of polypropylene-grafted maleic anhydride/d-LDH composites.

    PubMed

    Kang, Nian-Jun; Wang, De-Yi; Kutlu, Burak; Zhao, Peng-Cheng; Leuteritz, Andreas; Wagenknecht, Udo; Heinrich, Gert

    2013-09-25

    Dye structure-intercalated layered double hydroxide (d-LDH) was synthesized using a one-step method, and its intercalated behaviors have been characterized by Fourier transform infrared spectroscopy (FTIR), wide angle X-ray scattering (WAXS), scanning electron microscopy, thermogravimetric analysis (TGA), etc. As a novel functional potential fire-retarding nanofiller, it was used to prepare a polypropylene-grafted maleic anhydride (PP-g-MA)/d-LDH composite by refluxing the mixture of d-LDH and PP-g-MA in xylene, aiming to investigate its effect on the flammability of the PP-g-MA composite. The morphological properties, thermal stability, and flame retardant properties of the PP-g-MA/d-LDH composite were determined by FTIR, WAXS, transmission electron microscopy, TGA, and microscale combustion calorimetry. Compared with NO3-LDH (unmodified LDH) and LDH intercalated by sodium dodecylbenzenesulfonate (conventional organo-modified LDH), d-LDH can significantly decrease the heat release rate and the total heat release of the PP-g-MA composite, offering a new approach to imparting low flammability to LDH-based polymer composites.

  5. Inorganic-organic polymer electrolytes based on poly(vinyl alcohol) and borane/poly(ethylene glycol) monomethyl ether for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Aydın, Hamide; Şenel, Mehmet; Erdemi, Hamit; Baykal, Abdülhadi; Tülü, Metin; Ata, Ali; Bozkurt, Ayhan

    In this study, poly(vinyl alcohol) (PVA) was modified with poly(ethylene glycol) monomethyl ether (PEGME) using borane-tetrahydrofuran (BH 3/THF) complex. Molecular weights of both PVA and PEGME were varied prior to reaction. Boron containing comb-branched copolymers were produced and abbreviated as PVA1PEGMEX and PVA2PEGMEX. Then polymer electrolytes were successfully prepared by doping of the host matrix with CF 3SO 3Li at several stoichiomeric ratios with respect to EO to Li. The materials were characterized via nuclear magnetic resonance (1H NMR and 11B NMR), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG) and differential scanning calorimeter (DSC). The ionic conductivity of these novel polymer electrolytes were studied by dielectric-impedance spectroscopy. Li-ion conductivity of these polymer electrolytes depends on the length of the side units as well as the doping ratio. Such electrolytes possess satisfactory ambient temperature ionic conductivity (>10 -4 S cm -1). Cyclic voltammetry results illustrated that the electrochemical stability domain extends over 4 V.

  6. Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters.

    PubMed

    DiCiccio, Angela M; Coates, Geoffrey W

    2011-07-20

    We report the ring-opening copolymerization of maleic anhydride with a variety of epoxides catalyzed by a chromium(III) salen complex. Quantitative isomerization of the cis-maleate form of all polymers affords the trans-fumarate analogues. Addition of chain transfer reagents yields low M(n), narrow PDI polymer samples. This method provides access to a range of new unsaturated polyesters with versatile functionality, as well as the first synthesis of high molecular weight poly(propylene fumarate).

  7. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  8. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  9. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  10. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  11. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid, reaction product with... Specific Chemical Substances § 721.6181 Fatty acid, reaction product with substituted oxirane, formaldehyde... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  12. 40 CFR 721.10189 - Fatty acids, tall-oil, reaction products with (butoxymethyl) oxirane formaldehyde-phenol polymer...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... products with (butoxymethyl) oxirane formaldehyde-phenol polymer glycidyl ether, morpholinepropanamine...-phenol polymer glycidyl ether, morpholinepropanamine, propylene glycol diamine and aliphatic polyamine, N... products with (butoxymethyl) oxirane formaldehyde-phenol polymer glycidyl ether,...

  13. Chemical modification of wheat protein-based natural polymers: grafting and cross-linking reactions with poly(ethylene oxide) diglycidyl ether and ethyl diamine.

    PubMed

    Kurniawan, Lusiana; Qiao, Greg G; Zhang, Xiaoqing

    2007-09-01

    Mobile poly(ethylene oxide) diglycidyl ether (PEODGE) segments were chemically grafted onto a soluble wheat protein (WP), and different network structures were formed via coupling reactions with ethyl diamine (EDA) in different PEODGE/EDA (PE) ratios. When the PE ratio was 1:1, linear PEs were the predominant segments grafted onto WP chains and the whole WP-PEODGE-EDA (WPE) system was still soluble with an increased molecular weight. Reducing the amount of EDA in the systems produced insoluble cross-linked WPE networks. The broad distribution of network structures and chain mobility resulted in a broad glass transition for the WPE materials. However, the glass transition started at lower temperatures, and the materials became flexible at room temperature. The PE segments were present in all rigid, intermediate, and mobile phases in WPE networks, while the proportion of mobile WP chains was increased as a result of the plasticization effect from the mobile PE segments. The mobility of the most mobile component lipid was also restricted to some extent when forming the cross-linked WPE networks. The study demonstrated that the formation of different network structures with PE segments could significantly improve the flexibility of WP materials, vary the solubility, and modify the mechanical performance of WP-based natural polymer materials.

  14. Ring-polymer molecular dynamics studies on the rate coefficient of the abstraction channel of hydrogen plus ethane, propane, and dimethyl ether

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Chen, Jun

    2017-01-01

    To accurately compute the rates of the abstraction channels of hydrogen plus ethane (Et), propane (Pr), and dimethyl ether (DME), ring-polymer molecular dynamics (RPMD) method is used in conjunction with the recently constructed local permutation invariant polynomial neural-networks potential energy surface of the parent H + CH4 system [Q. Meng et al., J. Chem. Phys. 144, 154312 (2016)]. For H + Et, one of the H atoms in CH4 of the parent system is replaced by a methyl group, while for the H + DME reaction, it is replaced by the methoxyl group. For the H + Pr reaction, replacing one of the H atoms in CH4 by an ethyl group, the terminal channel is built, meanwhile the middle channel is considered through replacing two H atoms in CH4 by two methyl groups. Since the potential energy barriers of the title reactions must differ from the H + CH4 barrier, the corrections have to be made by computing the ratio of free-energy barriers between H + CH4 and the title reactions at coupled cluster with a full treatment singles and doubles (where the triples contribution is calculated by perturbation theory, that is, CCSD(T)) level. Comparing the present RPMD rates with the previous theoretical and experimental results, good agreement can be found. Moreover, probable reasons for the deviation between the present RPMD rates and the previous experimental ones are discussed.

  15. Hybrid Fluorosilicones for Aircraft Fuel Tank Sealants. Part 4. Synthesis of Fluorocarbon and Fluorocarbon Ether Hybrid Fluorosilicone Polymers.

    DTIC Science & Technology

    1974-05-01

    w 0) N t- x - -HP x )0; o 0 0 - r : H z z0) 4-) * 4 x (2) to ’d c 0 10 0)4 0 0 ;4 ~ o4o c 0 * 4 30 0 0 4-H4 -T m 0 .0 d4.3 NH 0 Hd Hr H NNi H E-4 4...SO G Cefne nvers ie fnoe el end Ientfyb bok ies n ly A9TRC aCrlmse r ers seIfnsem is Idef by atc nbe er oc fl ohr sii0 n It NS etomi poymr wee...3 A. Fluorosilicone-Fluoroether Hybrid Polymers (FES) .................... 3 1. Preparation of X (CFa)*O(CF2)nO(CF2

  16. Effect of reagent access on the reactivity of coals. Final report. [Maleic anhydride; dialkylmaleates

    SciTech Connect

    Larsen, J.W.

    1983-04-01

    The objective of this work is to determine the extent to which the mass transport of reagents into solid coals limits the reactivity of those coals. The purpose of task one is to determine the effect of reagent access on the acid catalyzed depolymerization of coals using phenols and/or alkyl phenyl ethers. For task two, the purpose is to determine the effect of coal swelling on its rate of reaction with a dienophile. Work on depolymerization of coals in hot, acidic phenol has been completed. The conclusion is that due to incomplete depolymerization, the complications of competing Friedel-Crafts alkylation, and the condensation reactions of the solvent, the depolymerization of coals in hot, acidic phenol is not a useful technique for solubilizing coals for structural investigations. In task two, the rate of the Diels-Alder reaction between bituminous coals and maleic anhydride was found to be diffusion controlled. The observations of simple Fickian diffusion and reaction rate constants much slower than the Diels-Alder reaction of maleic anhydride and anthracene have no other reasonable explanation than rate limiting mass transport. The diffusion rates were found to be independent of the degree of solvent swelling of the coal. In addition, the dependence of the observed rates on temperature and the size of the dienophile were measured. Results obtained using a series of dialkylmaleates are presented. Size was found to play only a small role as long as the reagent is planar. 2 tables.

  17. Ultrathin, flexible, and transparent polymer multilayer composites for the protection of silver surfaces.

    PubMed

    Langecker, Jens; Ritter, Helene; Fichini, Audrey; Rupper, Patrick; Faller, Markus; Hanselmann, Barbara

    2012-02-01

    Silver coatings at the nanoscale became of high interest for the integration of electronic functionalities on all kinds of objects for daily use. In these thin coatings, corrosion is a big problem as it destroys these thin layers and leads to a loss of conductivity due to missing bulk material. For protection of thin silver coatings against H(2)S induced corrosion, we developed nanocoatings based on the covalent layer-by-layer technique. We prepared composites by subsequent deposition of polyamines like polyethylenimine (PEI) or polyallylamine (PAAm) and polyanhydrides like poly(maleic anhydride-alt-methyl vinyl ether) (Gantrez) or poly(styrene-co-maleic anhydride) (PSMA). For the tuning of the hydrophobicity, the layers were terminated by reaction with palmitoylic acid derivatives. Reflectivity measurements, contact angle measurements, and AFM measurements were made to investigate how the coatings affect the surface properties. All coatings show a lower reflectivity below 450 nm compared to pure silver, depending on the number of layers deposited. The addition of a palmitoylic derivative to the surface increases the hydrophobicity, but only in case of the Gantrez-PVAm-composite, this approach leads to real hydrophobicity, reaching contact angles above 90°. AFM measurements show a decrease of the roughness of the polymer coated surfaces compared to the pure metal surfaces. Corrosion tests in a H(2)S atmosphere show a good protective effect of the palmitoyl-terminated composites. Martindale abrasion tests on coated textiles reveal a good stability of the prepared polymer composites.

  18. Diclofenac sodium (DS) loaded bioerodible polymer based constructs

    NASA Astrophysics Data System (ADS)

    Piras, M.; Chiellini, F.; Nikkola, L.; Ashammakhi, N.; Chiellini, E.

    2008-02-01

    Pain is a prevalent problem that can raise morbidity of patients. Pain killer releasing biodegradable materials have been developed by using different techniques and biomaterials. The objective of the current study is to evaluate the use of a new bioerodible polymer for release of diclofenac sodium (DS). 1-butanol hemiester poly(maleic anhydride-alt-2-methoxyethyl vinyl ether) (PAM14) was prepared in the university of Pisa and selected as polymer of choice for the study. Polymer solutions of 5-10% (in ethanol or in acetic acid) were prepared, half of them containing 2% DS. The solutions were then electrospun to produce nanomats that were subsequently characterized using SEM. Fiber diameter was 160 nm 1 μm. Increasing polymer concentration increased the size of the fibers but reduced the number of beads (with or without DS). In the specimens obtained from acetic acid solution, the addition of DS resulted in a reduction in fiber diameter and an increase in the inter-bead distance. Corresponding ethanol solutions gave more homogeneous specimens than did acetic acid, having a lower number of beads. With the addition of DS a reduction in fiber diameter was observed for the acetic acid specimens. However, in ethanol, adding DS resulted in increased fiber diameter. Accordingly, it can be concluded that it is feasible to develop electrospun diclofenac releasing bioerodible nanostructures that have potential use in pain management. Their further evaluation is however, needed both in vitro and in vivo.

  19. Ethyl ether

    Integrated Risk Information System (IRIS)

    Ethyl ether ; CASRN 60 - 29 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  20. Octabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Octabromodiphenyl ether ; CASRN 32536 - 52 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  1. Nonabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Nonabromodiphenyl ether ; CASRN 63936 - 56 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  2. Hexabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Hexabromodiphenyl ether ; CASRN 36483 - 60 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  3. Tetrabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Tetrabromodiphenyl ether ; CASRN 40088 - 47 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncar

  4. Tribromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Tribromodiphenyl ether ; CASRN 49690 - 94 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  5. Pentabromodiphenyl ether

    Integrated Risk Information System (IRIS)

    Pentabromodiphenyl ether ; CASRN 32534 - 81 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncar

  6. Solubilization of Membrane Proteins into Functional Lipid‐Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer

    PubMed Central

    Oluwole, Abraham Olusegun; Danielczak, Bartholomäus; Meister, Annette; Babalola, Jonathan Oyebamiji; Vargas, Carolyn

    2017-01-01

    Abstract Once removed from their natural environment, membrane proteins depend on membrane‐mimetic systems to retain their native structures and functions. To this end, lipid‐bilayer nanodiscs that are bounded by scaffold proteins or amphiphilic polymers such as styrene/maleic acid (SMA) copolymers have been introduced as alternatives to detergent micelles and liposomes for in vitro membrane‐protein research. Herein, we show that an alternating diisobutylene/maleic acid (DIBMA) copolymer shows equal performance to SMA in solubilizing phospholipids, stabilizes an integral membrane enzyme in functional bilayer nanodiscs, and extracts proteins of various sizes directly from cellular membranes. Unlike aromatic SMA, aliphatic DIBMA has only a mild effect on lipid acyl‐chain order, does not interfere with optical spectroscopy in the far‐UV range, and does not precipitate in the presence of low millimolar concentrations of divalent cations. PMID:28079955

  7. Optimization of the dilute maleic acid pretreatment of wheat straw

    PubMed Central

    2009-01-01

    Background In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from improved enzymatic digestibility of wheat straw solids; (2) xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3) maleic acid replenishment costs; (4) neutralization costs of pretreated material; (5) costs due to furfural production; and (6) heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables. Results When costs are disregarded, an almost complete glucan conversion to glucose can be reached (90% from solids, 7%-10% in liquid), after enzymatic hydrolysis. During the pretreatment, up to 90% of all xylan is converted to monomeric xylose. Taking cost factors into account, the optimal process conditions are: 50 min at 170°C, with 46 mM maleic acid, resulting in a yield of 65 €/Mg (megagram = metric ton) dry straw, consisting of 68 €/Mg glucose benefits (from solids: 85% of all glucan), 17 €/Mg xylose benefits (from liquid: 80% of all xylan), 17 €/Mg maleic acid costs, 2.0 €/Mg heating costs and 0.68 €/Mg NaOH costs. In all but the most severe of the studied conditions, furfural formation was so limited that associated costs are considered negligible. Conclusions After the dilute maleic acid pretreatment and subsequent enzymatic hydrolysis, almost complete conversion of wheat straw glucan and xylan is possible. Taking maleic acid replenishment, heating, neutralization and furfural formation into account, the optimum in the dilute maleic acid pretreatment of

  8. Controlled delivery of paclitaxel from stent coatings using novel styrene maleic anhydride copolymer formulations.

    PubMed

    Richard, Robert; Schwarz, Marlene; Chan, Ken; Teigen, Nikolai; Boden, Mark

    2009-08-01

    The controlled release of paclitaxel (PTx) from stent coatings comprising an elastomeric polymer blended with a styrene maleic anhydride (SMA) copolymer is described. The coated stents were characterized for morphology by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and for drug release using high-performance liquid chromatography (HPLC). Differential scanning calorimetry (DSC) was used to measure the extent of interaction between the PTx and polymers in the formulation. Coronary stents were coated with blends of poly(b-styrene-b-isobutylene-b-styrene) (SIBS) and SMA containing 7% or 14% maleic anhydride (MA) by weight. SEM examination of the stents showed that the coating did not crack or delaminate either before or after stent expansion. Examination of the coating surface via AFM after elution of the drug indicated that PTx resides primarily in the SMA phase and provided information about the mechanism of PTx release. The addition of SMA altered the release profile of PTx from the base elastomer coatings. In addition, the presence of the SMA enabled tunable release of PTx from the elastomeric stent coatings, while preserving mechanical properties. Thermal analysis reveled no shift in the glass transition temperatures for any of the polymers at all drug loadings studied, indicating that the PTx is not miscible with any component of the polymer blend. An in vivo evaluation indicated that biocompatibility and vascular response results for SMA/SIBS-coated stents (without PTx) are similar to results for SIBS-only-coated and bare stainless steel control stents when implanted in the non-injured coronary arteries of common swine for 30 and 90 days.

  9. Effect of maleic anhydride treatment on the mechanical properties of sansevieria fiber/vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan

    2017-03-01

    Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.

  10. Grafting of poly (lactic acid) with maleic anhydride using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S.

    2015-07-01

    The aim of this work was to modify poly lactic acid (PLA) via free radical grafting with maleic anhydride (MA) by using supercritical carbon dioxide (SCCO2). Benzoyl peroxide (BPO) was used as an initiator. The solubility of MA in SCCO2 was first determined to estimate the suitable grafting conditions and equilibrium. From the solubility study of MA in SCCO2, it was found that the solubility of MA in SCCO2 increased with the increasing pressure and dissolution time. PLA films were first prepared by compression molding. The ratio of MA to BPO was 2:1. The reaction temperature and pressure were 70°C and 100 bar respectively. The grafting reaction and the degree of grafting were characterized by nuclear magnetic resonance (NMR) spectroscopy and titration, respectively. Scanning electron microscope (SEM) technique and contact angle were used to confirm the changes in physical properties of PLA film grafted MA. NMR spectrum indicated that the grafting of MA onto PLA was successively achieved. Degree of grafting by using SCCO2 was as high as 0.98%. This provided rather high grafting degree compared with other processes. SEM pictures showed the rough surface structure on modified PLA film. In addition, contact angle results showed an improvement of the hydrophilicity by maleic anhydride grafting onto polymers.

  11. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  12. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  13. 40 CFR 721.6900 - Polymer of bisphenol A di-glyc-i-dal ether, substituted al-kenes, and but-a-diene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of bisphenol A di-glyc-i-dal... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6900 Polymer of bisphenol A di-glyc-i... subject to reporting. (1) The chemical substances identified generically as polymer of bisphenol...

  14. 40 CFR 721.10400 - Oxirane, 2-ethyl-, polymer with oxirane, mono-C12-14-sec-alkyl ethers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxirane, 2-ethyl-, polymer with... Significant New Uses for Specific Chemical Substances § 721.10400 Oxirane, 2-ethyl-, polymer with oxirane...) The chemical substance identified as oxirane, 2-ethyl-, polymer with oxirane,...

  15. 40 CFR 721.6900 - Polymer of bisphenol A di-glyc-i-dal ether, substituted al-kenes, and but-a-diene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of bisphenol A di-glyc-i-dal... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6900 Polymer of bisphenol A di-glyc-i... subject to reporting. (1) The chemical substances identified generically as polymer of bisphenol...

  16. 40 CFR 721.6900 - Polymer of bisphenol A di-glyc-i-dal ether, substituted al-kenes, and but-a-diene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of bisphenol A di-glyc-i-dal... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6900 Polymer of bisphenol A di-glyc-i... subject to reporting. (1) The chemical substances identified generically as polymer of bisphenol...

  17. 40 CFR 721.10401 - Oxirane, 2-ethyl-, polymer with oxirane, mono-C11-15-sec-alkyl ethers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxirane, 2-ethyl-, polymer with... Significant New Uses for Specific Chemical Substances § 721.10401 Oxirane, 2-ethyl-, polymer with oxirane...) The chemical substance identified as oxirane, 2-ethyl-, polymer with oxirane, mono...

  18. 40 CFR 721.6900 - Polymer of bisphenol A di-glyc-i-dal ether, substituted al-kenes, and but-a-diene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of bisphenol A di-glyc-i-dal... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6900 Polymer of bisphenol A di-glyc-i... subject to reporting. (1) The chemical substances identified generically as polymer of bisphenol...

  19. 40 CFR 721.6900 - Polymer of bisphenol A di-glyc-i-dal ether, substituted al-kenes, and but-a-diene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of bisphenol A di-glyc-i-dal... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6900 Polymer of bisphenol A di-glyc-i... subject to reporting. (1) The chemical substances identified generically as polymer of bisphenol...

  20. Synthesis and characterizations of electrospun sulfonated poly (ether ether ketone) SPEEK nanofiber membrane

    NASA Astrophysics Data System (ADS)

    Hasbullah, N.; Sekak, K. A.; Ibrahim, I.

    2016-07-01

    A novel electrospun polymer electrolyte membrane (PEM) based on Sulfonated Poly (ether ether ketone) were prepared and characterized. The poly (ether ether ketone) PEEK was sulfonated using concentrated sulfuric acid at room temperature for 60 hours reaction time. The degree sulfonation (DS) of the SPEEK are 58% was determined by H1 NMR using area under the peak of the hydrogen shielding at aromatic ring of the SPEEK. Then, the functional group of the SPEEK was determined using Fourier transfer infrared (FTIR) showed O-H vibration at 3433 cm-1 of the sulfonated group (SO2-OH). The effect of the solvent and polymer concentration toward the electrospinning process was investigated which, the DMAc has electrospun ability compared to the DMSO. While, at 20 wt.% of the polymer concentration able to form a fine and uniform nanofiber, this was confirmed by FESEM that shown electrospun fiber mat SPEEK surface at nano scale diameter.

  1. Thermoset epoxy polymers from renewable resources

    DOEpatents

    East, Anthony; Jaffe, Michael; Zhang, Yi; Catalani, Luiz H

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  2. Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride.

    PubMed

    Quiroz-Castillo, J M; Rodríguez-Félix, D E; Grijalva-Monteverde, H; Del Castillo-Castro, T; Plascencia-Jatomea, M; Rodríguez-Félix, F; Herrera-Franco, P J

    2014-01-30

    Novel films of polyethylene and chitosan were obtained using extrusion. These polymers have interesting properties, and processing them with methods that are of high use in the industry, such as the extrusion method, can have a significant effect on the potential applications of these materials. The individual materials were thermally characterized; after this, extruded films of low density polyethylene and chitosan mixtures were prepared with the addition of polyethylene-graft-maleic anhydride as a compatibilizer for the blends, and glycerol, as a plasticizer for chitosan. The use of compatibilizer and plasticizer agents improved the processability and compatibility of the mixtures, as well as their mechanical properties, as revealed by mechanical property measurements and scanning electron microscopy. It was possible to prepare blends with a maximum chitosan content of 20 wt%. The material stiffness increased with the increase of chitosan in the sample. FTIR studies revealed the existence of an interaction between the compatibilizer and chitosan.

  3. [Simple analysis of maleic hydrazide in agricultural products by HPLC].

    PubMed

    Kobayashi, Maki; Nagayama, Toshihiro; Takano, Ichiro; Tamura, Yasuhiro; Tateishi, Yukinari; Tomizawa, Sanae; Kimura, Naoko; Kitayama, Kyoko; Saito, Kazuo

    2002-12-01

    A simplified HPLC determination method for maleic hydrazide in agricultural products was developed, and commercial agricultural crops were investigated. The homogenate of agricultural products was extracted with water. The crude extract was purified on an ACCUCAT Bond Elut extraction cartridge using water. Maleic hydrazide was analyzed by HPLC with UV detection (303 nm). The HPLC separation was performed on a ZORBAX SB-Aq column with acetonitrile-water-phosphoric acid(5:95:0.01) as the mobile phase. Recoveries of maleic hydrazide from 15 agricultural products fortified at 1.0 and 10 micrograms/g were in the ranges of 92.6-104.9% and 94.2-101.3%, respectively. The limit of detection was 0.5 microgram/g in samples. The proposed method was applied to the determination of 242 commercial vegetables and fruits. Maleic hydrazide was detected in 2 samples of imported onion at the levels of 4.9 and 7.2 micrograms/g.

  4. Maleic acid treatment of biologically detoxified corn stover liquor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elimination of microbial and/or enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot-water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases. Other so...

  5. 40 CFR 180.175 - Maleic hydrazide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The label of the pesticide formulation containing the food additive conforms to labeling registered by...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... (2) A food additive known as maleic hydrazide (1,2-dihydro-3,6-pyridazinedione) may be present...

  6. 40 CFR 180.175 - Maleic hydrazide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The label of the pesticide formulation containing the food additive conforms to labeling registered by...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... (2) A food additive known as maleic hydrazide (1,2-dihydro-3,6-pyridazinedione) may be present...

  7. Chemistry and adhesive properties of poly(arylene ether)s containing heterocyclic units

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    1991-01-01

    Novel poly(arylene ether)s containing heterocyclic units were prepared, characterized, and evaluated as adhesives and composite matrices. The polymers were prepared by reacting a heterocyclic bisphenol with an activated aromatic dihalide in a polar aprotic solvent, using potassium carbonate. The polymerizations were generally carried out in N,N-dimethylacetamide at 155 C. In some cases, where the polymers were semicrystalline, higher temperatures and thus higher boiling solvents were necessary to keep the polymers in solution. Heterocyclic rings incorporated into the poly(arylene ether) backbone include phenylquinoxaline, phenylimidazole, benzimidazole, benzoxazole, 1,3,4-oxadiazole, and 1,2,4-triazole. The polymers were characterized by differential scanning calorimetry, solution viscosity, X-ray diffraction, thin film, and adhesive and (in some cases) composite properties. The glass transition temperatures, crystalline melt temperature, solubility, and mechanical properties varied depending upon the heterocyclic ring. The chemistry and properties of these materials are discussed.

  8. Simultaneous separation of chlorinated/brominated dioxins, polychlorinated biphenyls, polybrominated diphenyl ethers and their methoxylated derivatives from hydroxylated analogues on molecularly imprinted polymers prior to gas/liquid chromatography and mass spectrometry.

    PubMed

    Roszko, Marek; Szymczyk, Krystyna; Jędrzejczak, Renata

    2015-11-01

    Polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are important contaminants in the environment. In recent years also polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) have been reported as emerging environmental stressors. It has been suggested that hydroxylated polybrominated biphenyl ethers (OH-BDEs) are important - may be even the most important - precursors of brominated dioxins/furans. The aim of this study was to develop a robust, time-saving analytical procedure to collectively separate in animal tissues such compounds prior to determination of individual substances with a gas/liquid chromatograph coupled to an ion trap/time-of-flight mass spectrometer (GC/IT-MS or UPLC/TOF-MS). Two OH-CB/BDE separation methods including alkaline extraction and molecularly imprinted polymers (MIP) were compared. Performance of both methods was validated: absolute recovery values were in the 47-90% range depending on the compound, while recovery relative standard deviation was below 20% in most cases. Levels of the studied compounds have been assessed in some real life samples.

  9. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  10. Polybrominated diphenyl ethers listed as Stockholm Convention POPs, other brominated flame retardants and heavy metals in e-waste polymers in Nigeria.

    PubMed

    Sindiku, Omotayo; Babayemi, Joshua; Osibanjo, Oladele; Schlummer, Martin; Schluep, Mathias; Watson, Alan; Weber, Roland

    2015-10-01

    Polybrominated diphenyl ethers (PBDEs) were the first brominated persistent organic pollutants (POPs) listed in the Stockholm Convention. Parties to the convention are currently establishing inventories for developing action plans for the environmentally sound management of PBDE-containing materials. The major use of commercial octabromodiphenyl ether (c-OctaBDE) has been in casings from cathode ray tube (CRT) TVs and computer monitors. Large quantities of used e-waste and electronic equipment have been exported to developing countries with Nigeria being a major importer in Africa. The casings from 382 TVs and computers imported from major world regions to Nigeria were sampled in backyards and waste dumps. The samples were screened with X-ray flourescence (XRF) for bromine and analysed by gas chromatography/ electron capture detection (GC/ECD) for brominated flame retardants (BFRs). A high proportion of the CRT casings (61 %) contained more than 10,000 ppm bromine from BFRs. Decabromodiphenyl ether (DecaBDE) was the major flame retardant used in TV sets and tetrabromobisphenol A (TBBPA) for computer CRTs.The screening suggests that average PBDE levels (of c-OctaBDE + DecaBDE) in Nigerian-stockpiled CRT casings were 1.1 % for TV and 0.13 % for PC CRTs. These are above the Restriction of Hazardous Substances (RoHS) limit and should be separated for RoHS compliant recycling. The Nigerian e-waste inventory of 237,000 t of CRT plastic would therefore contain approx. 594 t c-OctaBDE and 1,880 t of DecaBDE. In Nigeria, as for most developing countries, there is currently no adequate e-waste management, plastic separation or destruction capacity. The data highlight the urgent need to develop environmentally sound management for this large material flow.

  11. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    SciTech Connect

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and

  12. Purification of aqueous cellulose ethers

    SciTech Connect

    Bartscherer, K.A.; de Pablo, J.J.; Bonnin, M.C.; Prausnitz, J.M.

    1990-07-01

    Manufacture of cellulose ethers usually involves high amounts of salt by-products. For application of the product, salt must be removed. In this work, we have studied the injection of high-pressure CO{sub 2} into an aqueous polymer-salt solution; we find that upon addition of isopropanol in addition to CO{sub 2}, the solution separates into two phases. One phase is rich in polymer and water, and the other phase contains mostly isopropanol, water and CO{sub 2}. The salt distributes between the two phases, thereby offering interesting possibilities for development of a new purification process for water-soluble polymers. This work presents experimental phase-equilibrium data for hydroxyethyl cellulose and sodium carboxymethyl cellulose with sodium acetate and potassium sulfate, respectively, in the region 40{degree}C and 30 to 80 bar. Based on these data, we suggest a process for the manufacture and purification of water-soluble cellulose ethers. 15 refs., 14 figs., 9 tabs.

  13. Profiling transcriptomes of human SH-SY5Y neuroblastoma cells exposed to maleic acid

    PubMed Central

    Wang, Chia-Chi; Lin, Yin-Chi; Cheng, Yin-Hua

    2017-01-01

    Background Maleic acid is a multi-functional chemical widely used in the field of industrial chemistry for producing food additives and food contact materials. As maleic acid may contaminate food by the release from food packages or intentional addition, it raises the concern about the effects of excessive dietary exposure to maleic acid on human health. However, the influence of maleic acid on human health has not been thoroughly studied. In silico toxicogenomics approaches have found the association between maleic acid and nervous system disease in human. The aim of this study is to experimentally explore the effects of maleic acid on human neuronal cells. Methods A microarray-based transcriptome profiling was performed to offer a better understanding of the effects of maleic acid on human health. Gene expression profiles of human neuroblastoma SH-SY5Y cells exposed to three concentrations of maleic acid (10, 50, and 100 μM) for 24 h were analyzed. Genes which were differentially expressed in dose-dependent manners were identified and further analyzed with an enrichment analysis. The expression profile of selected genes related to the inferred functional changes was validated using quantitative polymerase chain reaction (qPCR). Specific fluorescence probes were applied to observe the inferred functional changes in maleic acid-treated neuronal cells. Results A total of 316 differentially expressed genes (141 upregulated and 175 downregulated) were identified in response to the treatment of maleic acid. The enrichment analysis showed that DNA binding and metal ion binding were the significant molecular functions (MFs) of the neuronal cells affected by maleic acid. Maleic acid exposure decreased the expression of genes associated with calcium and thiol levels of the cells in a dose-dependent manner. The levels of intracellular calcium and thiol levels were also affected by maleic acid dose-dependent. Discussion The exposure to maleic acid is found to decrease the

  14. Advanced hybrid fluoropolymers from the cycloaddition of aryl trifluorovinyl ethers

    NASA Astrophysics Data System (ADS)

    Ligon, S. Clark, Jr.

    This dissertation discusses the synthesis of aryl trifluorovinyl ethers and their cycloaddition polymerization to give perfluorocyclobutyl (PFCB) polymers. To explore the stereochemistry of these polymers, simple monomfunctional aryl trifluorovinyl ethers were dimerized and the resultant cis and trans isomers were separated. Differences in structure help to improve understanding of the amorphous nature of the bulk PFCB polymeric material. To apply this knowledge, crown ether containing perfluorocyclobutyl (PFCB) polymers were synthesized for use in lithium ion battery applications. While poor solubility has hindered further development of these materials, slight modifications to structure may provide a solution. Also described is a fluorinated aryl vinyl ether and its attempted copolymerization with chlorotrifluoroethylene. While this copolymerization did not yield the desired materials, novel semifluorinated phenol precursors have been utilized in reactions with carboxylic acids to give polyesters and most recently with phosgene like species to give polycarbonates. Next, PFCB polymers were post functionalized with fluoroalkyl tethers to improve oleophobicity and hydrophobicity without decreasing thermal stability or optical clarity. In addition, various silica nanostructures were functionalized with aryl trifluorovinyl ethers. This includes the reaction of aryl silanes to give trifluorovinyl ether functional POSS and their polymerization to provide PFCB hybrid materials. Silane coupling agents were also used to functionalize colloidal silica and fumed silica nanoparticles. These procedures allow excellent dispersion of the silica nanoparticles throughout the fluoropolymer matrix. Finally, the reaction of aryl trifluorovinyl ether with nonfluorinated alkenes and alkynes was explored. In these reactions, the fluorinated olefin adds with the hydrocarbon olefin to give semifluorinated cyclobutanes (SFCB) and with the alkyne to give semifluorinated cyclobutene. The

  15. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  16. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  17. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  18. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  19. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols,...

  20. Removal of copper ions from aqueous solution by the sodium salt of the maleic acid-allylpropionate-styrene terpolymer.

    PubMed

    Akperov, Elchin; Akperov, Oktay; Jafarova, Elnara; Gafarova, Sabahiye

    2016-09-01

    The sodium salt of the maleic acid-allylpropionate-styrene terpolymer was used for recovery of copper ions from aqueous solution. Effects of contact time, sorbent weight and initial Cu(2+) ion concentrations on removal efficiency were tested. The maximum experimental sorption capacity of the sorbent for copper ions is 0.71 g g(-1). The sorption isotherm of copper ions onto a prepared polymer sorbent has been studied and the equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The adsorption isotherm data showed that copper ions adsorption on the sorbent was better fitted to the Langmuir isotherm model. The Lagergren pseudo-first- and pseudo-second-order kinetic models were applied to examine the kinetics of the copper ions sorption by the synthesized sorbent. The kinetic data are best described by the pseudo-second-order model. The calculated value of the maximum sorption capacity by the pseudo-second-order equation (0.62 g g(-1)) corresponds well with its experimentally found value (0.71 g g(-1)). Considering the obtained kinetic data, and the Fourier transform infrared spectroscopy (FT-IR) and UV-vis spectra of the sorbent after the sorption, it is possible to come to the conclusion that during the sorption process Cu(2+) ions enter a complex with the carboxylic groups of the maleic acid units of the sorbent.

  1. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  2. Tailoring polymer properties with layered silicates

    NASA Astrophysics Data System (ADS)

    Xu, Liang

    Polymer layered silicate nanocomposites have found widespread applications in areas such as plastics, oil and gas production, biomedical, automotive and information storage, but their successful commercialization critically depends on consistent control over issues such as complete dispersion of layered silicate into the host polymer and optimal interaction between the layered silicates and the polymers. Polypropylene is a commercially important polymer but usually forms intercalated structures with organically modified layered silicate upon mixing, even it is pre-treated with compatibilizing agent such as maleic anhydride. In this work, layered silicate is well dispersed in ammonium modified polypropylene but does not provide sufficient reinforcement to the host polymer due to poor interactions. On the other hand, interactions between maleic anhydride modified polypropylene and layered silicate are fine tuned by using a small amount of maleic anhydride and mechanical strength of the resultant nanocomposites are significantly enhanced. In particular, the melt rheological properties of layered silicate nanocomposites with maleic anhydride functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the maleic anhydride treated polypropylene based nanocomposites exhibit solid-like linear dynamic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized polypropylene based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interaction in maleic anhydride functionalized nanocomposites, which facilitates formation of a long-lived silicate network mediated by physisorbed polymer chains. Further, the transient shear stress of the maleic anhydride functionalized nanocomposites in start-up of steady shear is a function of the shear

  3. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  4. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  5. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  6. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  7. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  8. 21 CFR 872.3490 - Carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive. 872.3490 Section 872.3490 Food and Drugs... maleic acid calcium-sodium double salt denture adhesive. (a) Identification. A carboxymethylcellulose sodium and/or polyvinylmethylether maleic acid calcium-sodium double salt denture adhesive is a...

  9. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  10. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy

    PubMed Central

    Yan, Sijing; LU, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-01-01

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic. PMID:27535093

  11. Maleic acid treatment of biologically detoxified corn stover liquor.

    PubMed

    Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R

    2016-09-01

    Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase.

  12. Multiple functionalities of polyfluorene grafted with metal ion-intercalated crown ether as an electron transport layer for bulk-heterojunction polymer solar cells: optical interference, hole blocking, interfacial dipole, and electron conduction.

    PubMed

    Liao, Sih-Hao; Li, Yi-Lun; Jen, Tzu-Hao; Cheng, Yu-Shan; Chen, Show-An

    2012-09-05

    We present a novel electron transport (ET) polymer composed of polyfluorene grafted with a K(+)-intercalated crown ether involving six oxygen atoms (PFCn6:K(+)) for bulk-heterojunction polymer solar cells (PSCs) with regioregular poly(3-hexylthiophene) (P3HT) as the donor and indene-C(60) bisadduct (ICBA) or indene-[6,6]-phenyl-C(61)-butyric acid methyl ester (IPCBM) as the acceptor in the active layer and with Al or Ca/Al as the cathode. A remarkable improvement in the power conversion efficiency (PCE) (measured in air) was observed upon insertion of this ET layer, which increased the PCE from 5.78 to 7.5% for a PSC with ICBA and Ca/Al (5.53 to 6.63% with IPCBM) and from 3.87 to 6.88% for a PSC with ICBA and Al (3.06 to 6.21% with IPCBM). This ET layer provides multiple functionalities: (1) it generates an optical interference effect for redistribution of light intensity as an optical spacer; (2) it blocks electron-hole recombination at the interface with the cathode; (3) it forms an interfacial dipole that promotes the vacuum level of the cathode metal; and (4) it enhances electron conduction, as evidenced by (1) the increase in total absorption of 1:1 w/w P3HT:ICBA by a factor of 1.3; (2) the reduction in the hole-only current density profile by a factor of 3.3 at 2.0 × 10(5) V/cm; (3) the decrease of 0.81 eV in the work function of Al from 4.28 to 3.47 eV, as determined by UV photoelectron spectroscopy; and (4) the decrease in the series resistance of PSCs with ICBA and Al by a factor of 4.5, as determined by the current-voltage characteristic under dark conditions; respectively. The PSC of 7.5% is the highest among the reported values for PSC systems with the simplest donor polymer, P3HT.

  13. Molecular Engineering of Liquid Crystalline Polymers by Living Polymerization. 9. Living Cationic Polymerization of 5-((4-Cyano-4’-Biphenyl) oxy)pentyl Vinyl Ethers and 7-((4-Cyano-4’-Biphenyl)oxy)heptyl Vinyl Ether, and the Mesomorphic Behavior of the Resulting Polymers

    DTIC Science & Technology

    1990-10-16

    REPRODUCEDO A"? GOVERPNME14T EXPENSE AD 2979 T.pOCUMENTATION PiA,4j -* L E is RkEPoRT SC-R-Y CLA i.ATiO It lb RESTRiCTovE MARKiNGS 26 SECURITYr C...PROCuREMENT INSTRUMENT IDENTIFICATION NUMBER OGN IZAT7ION If picb & L . AZORE SS (Ciay, Sr, arad ZIP Coot) 10 SOURCE OF ’UNDING NUMBERS office of Naval...mesomorphic behavior of poly( L .-.) and poly(6-_7) is discussed and compared to that of 5-[(4-cyano-4’- biphenyl)oxy]pentyl ethyl ether (8)and 7-f (4-cyano

  14. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    NASA Astrophysics Data System (ADS)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  15. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid)

    NASA Astrophysics Data System (ADS)

    Yu, Jiaguo; Tang, Hua; Cheng, Bei; Zhao, Xiujian

    2004-10-01

    Calcium oxalate (CaOx) particles exhibiting different shapes and phase structures were fabricated by a simple precipitation reaction of sodium oxalate with calcium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal modifier at room temperature. The as-obtained products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of reaction conditions including pH, [Ca2+]/[C2O42-] ratio and concentration of PSMA and CaC2O4 on the crystal forms and morphologies of the as-obtained calcium oxalate were investigated. The results show that various crystal morphologies of calcium oxalate, such as parallelograms, plates, spheres, bipyramids etc. can be obtained depending on the experimental conditions. Higher polymer concentration favors formation of the metastable calcium oxalate dihydrate (COD) crystals. Lower pH is beneficial to the formation of plate-like CaOx crystals. Especially, the monodispersed parallelogram-like CaOx crystals can be produced by PSMA as an additive at pH 2. PSMA may act as a good inhibitor for urolithiasis since it induces the formation of COD and reduces the particle size of CaOx. This research may provide new insight into the morphological control of CaOx particles and the prevention of urolithiasis.

  16. Recent developments in high temperature organic polymers

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1991-01-01

    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  17. Crown ethers in graphene

    DOE PAGES

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; ...

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basicmore » structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.« less

  18. Crown ethers in graphene

    SciTech Connect

    Guo, Junjie; Lee, Jaekwang; Contescu, Cristian I.; Gallego, Nidia C.; Pantelides, Sokrates T.; Pennycook, Stephen J.; Moyer, Bruce A.; Chisholm, Matthew F.

    2014-11-13

    Crown ethers, introduced by Pedersen1, are at their most basic level neutral rings constructed of oxygen atoms linked by two- or three-carbon chains. They have attracted special attention for their ability to selectively incorporate various atoms2 or molecules within the cavity formed by the ring3-6. This property has led to the use of crown ethers and their compounds in a wide range of chemical and biological applications7,8. However, crown ethers are typically highly flexible, frustrating efforts to rigidify them for many uses that demand higher binding affinity and selectivity9,10. In this Letter, we report atomic-resolution images of the same basic structures of the original crown ethers embedded in graphene. This arrangement constrains the crown ethers to be rigid and planar and thus uniquely suited for the many applications that crown ethers are known for. First-principles calculations show that the close similarity of the structures seen in graphene with those of crown ether molecules also extends to their selectivity towards specific metal cations depending on the ring size. Atoms (or molecules) incorporated within the crown ethers in graphene offer a simple environment that can be easily and systematically probed and modeled. Thus, we expect that this discovery will introduce a new wave of investigations and applications of chemically functionalized graphene.

  19. A simple and rapid approach to evaluate the in vitro in vivo role of release controlling agent ethyl cellulose ether derivative polymer.

    PubMed

    Akhlaq, Muhammad; Khan, Gul Majid; Jan, Syed Umer; Wahab, Abdul; Hussain, Abid; Nawaz, Asif; Abdelkader, Hamdy

    2014-11-01

    Diclofenac sodium (DCL-Na) conventional oral tablets exhibit serious side effects when given for a longer period leading to noncompliance. Controlled release matrix tablets of diclofenac sodium were formulated using simple blending (F-1), solvent evaporation (F-2) and co-precipitation techniques (F-3). Ethocel® Standard 7 FP Premium Polymer (15%) was used as a release controlling agent. Drug release study was conducted in 7.4 pH phosphate buffer solutions as dissolution medium in vitro. Pharmacokinetic parameters were evaluated using albino rabbits. Solvent evaporation technique was found to be the best release controlling technique thereby prolonging the release rate up to 24 hours. Accelerated stability studies of the optimized test formulation (F-2) did not show any significant change (p<0.05) in the physicochemical characteristics and release rate when stored for six months. A simple and rapid method was developed for DCL-Na active moiety using HPLC-UV at 276nm. The optimized test tablets (F-2) significantly (p<0.05) exhibited peaks plasma concentration (cmax=237.66±1.98) and extended the peak time (tmax=4.63±0.24). Good in-vitro in vivo correlation was found (R(2)=0.9883) against drug absorption and drug release. The study showed that once-daily controlled release matrix tablets of DCL-Na were successfully developed using Ethocel® Standard 7 FP Premium.

  20. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    PubMed

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins.

  1. Evaluation of copolymer conformation states of vinylchloride-maleic anhydride

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.

    2016-11-01

    The quantum-chemical analysis and experimental study of alternating vinylchloride-maleic anhydride (VC-MA) copolymer macromolecules with polymerization degree 600 have been carried out. The VC-MA copolymer in solvents of different nature undergoes cycloanhydride-enol tautomerism and the macromolecules take the form of corrugated sticks according to viscometric measurements. The computer simulation has shown that the segment with polymerization degree n < 18 (model compound) is not a helix and rolls while if n = 18 the conformations get distorted. The model molecule optimal structure comprising a random sequence of alternating units of comonomers and their enol tautomers with minimal system total energy has been found by the semiempirical parametric method PM3.

  2. 40 CFR 721.10072 - Benzene, 1,1′-methylenebis[4-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....-hydro-.omega.-hydroxy-, oxirane, alkyl-, polymer with oxirane, ether with propanepolyol and Sartomer's... , .alpha.-hydro-.omega.-hydroxy-, oxirane, alkyl-, polymer with oxirane, ether with propanepolyol and... , .alpha.-hydro-.omega.-hydroxy-, oxirane, alkyl-, polymer with oxirane, ether with propanepolyol...

  3. Molecular Engineering of Liquid Crystalline Polymers by Living Polymerization. 8. Influence of Molecular Weight on the Phase Behavior pf Poly(Omega-((4-cyano-4’Biphenyl)oxy)alkyl Vinyl Ether)s with Ethyl, Propyl and Butyl Alkyl Groups

    DTIC Science & Technology

    1990-10-16

    diacetate l0 were synthesized as described previously. Methyl sulfide was refluxed over 9-borabicyclo[3,3, l ]nonane (crystalline, 98%, Aldrich) and then...LJ.I., poly(A-4) with different degrees of polynerization and narow molecular weight distribution was compared to that of L -1, U- and 6. and of 2.((4...vinyl ether I ( L ),, poy 3 [4-cyano-4’-biphenyl)oxy]propyl vinyl ether) &63) and poly (4-[4-cyano-4’- biphenyl)oxylbutyl vinyl ether) (6_-4). Their

  4. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification... adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer,...

  5. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  6. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  7. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  8. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  9. Catalytic oxidation of dimethyl ether

    SciTech Connect

    Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing

    2016-05-10

    A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.

  10. Triclosan antimicrobial polymers

    PubMed Central

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  11. Molecular Model for the Solubilization of Membranes into Nanodisks by Styrene Maleic Acid Copolymers

    PubMed Central

    Scheidelaar, Stefan; Koorengevel, Martijn C.; Pardo, Juan Dominguez; Meeldijk, Johannes D.; Breukink, Eefjan; Killian, J. Antoinette

    2015-01-01

    A recent discovery in membrane research is the ability of styrene-maleic acid (SMA) copolymers to solubilize membranes in the form of nanodisks allowing extraction and purification of membrane proteins from their native environment in a single detergent-free step. This has important implications for membrane research because it allows isolation as well as characterization of proteins and lipids in a near-native environment. Here, we aimed to unravel the molecular mode of action of SMA copolymers by performing systematic studies using model membranes of varying compositions and employing complementary biophysical approaches. We found that the SMA copolymer is a highly efficient membrane-solubilizing agent and that lipid bilayer properties such as fluidity, thickness, lateral pressure profile, and charge density all play distinct roles in the kinetics of solubilization. More specifically, relatively thin membranes, decreased lateral chain pressure, low charge density at the membrane surface, and increased salt concentration promote the speed and yield of vesicle solubilization. Experiments using a native membrane lipid extract showed that the SMA copolymer does not discriminate between different lipids and thus retains the native lipid composition in the solubilized particles. A model is proposed for the mode of action of SMA copolymers in which membrane solubilization is mainly driven by the hydrophobic effect and is further favored by physical properties of the polymer such as its relatively small cross-sectional area and rigid pendant groups. These results may be helpful for development of novel applications for this new type of solubilizing agent, and for optimization of the SMA technology for solubilization of the wide variety of cell membranes found in nature. PMID:25606677

  12. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    SciTech Connect

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  13. A sulfonated poly (aryl ether ether ketone ketone) isomer: synthesis and DMFC performance

    SciTech Connect

    Kim, Yu Seung; Liu, Baijun; Hu, Wei; Jiang, Zhenhua; Robertson, Gilles; Guiver, Michael

    2009-01-01

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily-prepared PEEKK post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported analogues and eveluated Nafion membranes.

  14. Vibrational spectroscopic study of pure and silica-doped sulfonated poly(ether ether ketone) membranes

    NASA Astrophysics Data System (ADS)

    Rangasamy, Vijay Shankar; Thayumanasundaram, Savitha; Seo, Jin Won; Locquet, Jean-Pierre

    2015-03-01

    We report the vibrational properties of sulfonated poly(ether ether ketone) (SPEEK) membranes, used as electrolytes in proton exchange membrane (PEM) fuel cells, studied by Fourier transform infrared (FTIR) spectroscopy. We discuss the changes in the vibrational modes of the functional groups present in the polymer arising due to the sulfonation process and the subsequent incorporation of silica particles functionalized with sulfonic acid group. From the infrared spectra, we confirm the incorporation of sulfonic acid group in the polymer chain as well as in the functionalized silica particles. We have also measured the variations in the peak area ratio of the characteristic out-of-plane vibrations of the aromatic rings in the PEEK polymer at 1280 cm-1 with respect to a reference peak at 1305 cm-1. These values were correlated to the crystallinity (XC) values experimentally determined by DSC technique, providing a non-destructive means to calculate the crystallinity of polymer membranes. The calculated XC values were in good agreement with the experimental values. The crystallinity was observed to decrease with increasing degree of sulfonation (DS), indicating the crystalline-to-amorphous phase modification of the polymer by sulfonation, which along with the enhanced ion-exchange capacity and water uptake, is responsible for the improved ionic conductivity at higher DS values.

  15. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  16. Cytotoxic effects of etephon and maleic hydrazide in Vero, Hep2, HepG2 cells.

    PubMed

    Yurdakok, Begum; Baydan, Emine; Okur, Hamza; Gurcan, Ismayil Safa

    2014-10-01

    The toxicity of etephon and maleic hydrazide, used as plant growth regulators in agriculture, were reported as low in mammals in previous studies. However, in vitro cytotoxicity studies in mammalian cells are currently missing to understand their toxicity at molecular level. In the current study, the cytotoxicity of these compounds, were studied in Vero (African green monkey kidney epithelium), HepG2 (human hepatocellular carcinoma), Hep2 (human epidermoid cancer) cells by MTT ((3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolium bromure) and LDH (lactate dehydrogenase) assays. Maleic hydrazide had lower IC50 values for all cell lines compared to ethephon. Least cytotoxic effect treated by ethephon were observed in Vero, followed by HepG2 and Hep2. Similarly maleic hydrazide also showed least cytotoxicity on Vero cells, followed by Hep2 and HepG2 cells (p < 0.05). IC50 values in general were found to be highest in Vero cells, followed by HepG2 and Hep2 cells (p < 0.05). LDH and MTT assays showed correllation and had close relation except HepG2-maleic hydrazide application with the correlation coefficient for all >0.868 (p < 0.05). This study is expected to be a basis to understand the cytotoxic effects of ethephon and maleic hydrazide in mammal cells to be supplemented by further studies.

  17. Polymer blend compositions and methods of preparation

    DOEpatents

    Naskar, Amit K.

    2016-09-27

    A polymer blend material comprising: (i) a first polymer containing hydrogen bond donating groups having at least one hydrogen atom bound to a heteroatom selected from oxygen, nitrogen, and sulfur, or an anionic version of said first polymer wherein at least a portion of hydrogen atoms bound to a heteroatom is absent and replaced with at least one electron pair; (ii) a second polymer containing hydrogen bond accepting groups selected from nitrile, halogen, and ether functional groups; and (iii) at least one modifying agent selected from carbon particles, ether-containing polymers, and Lewis acid compounds; wherein, if said second polymer contains ether functional groups, then said at least one modifying agent is selected from carbon particles and Lewis acid compounds. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  18. New developments in thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    Advances in high-temperature polymers since 1985 are discussed with the emphasis on the chemistry. High-temperature polymers refer to materials that exhibit glass-transition temperatures greater than 200 C and have the chemical structure expected to provide high thermooxidative stability. Specific polymers or series of polymers were selected to show how the chemical structure influences certain properties. Poly(arylene ethers) and polyimides are the two principal families of polymers discussed. Recent work on poly(arylene ethers) has concentrated on incorporating heterocyclic units within the polymer backbone. Recent polyimide work has centered on the synthesis of new polymers from novel monomers, several containing the trifluoromethyl group strategically located on the molecule. Various members in each of these polymer families display a unique combination of properties, heretofore unattainable. Other families of polymers are also briefly discussed with a polymer from an AB maleimidobenzocyclobutene exhibiting an especially attractive combination of properties.

  19. Solid/Liquid phase diagram of the ammonium sulfate/maleic acid/water system.

    PubMed

    Beyer, Keith D; Schroeder, Jason R; Pearson, Christian S

    2011-12-01

    We have studied the low temperature phase diagram and water activities of the ammonium sulfate/maleic acid/water system using differential scanning calorimetry and infrared spectroscopy of thin films. Using the results from our experiments, we have mapped the solid/liquid ternary phase diagram, determined the water activities based on the freezing point depression, and determined the ice/maleic acid phase boundary as well as the ternary eutectic composition and temperature. We also compare our results to the predictions of the extended AIM aerosol thermodynamics model and find good agreement for the ice melting points in the ice primary phase field of this system; however significant differences were found with respect to phase boundaries, maleic acid dissolution, and ammonium sulfate dissolution.

  20. Crystal structure of 2,3-di-methyl-maleic anhydride: continuous chains of electrostatic attraction.

    PubMed

    Wiscons, Ren A; Zeller, Matthias; Rowsell, Jesse L C

    2015-08-01

    In the crystal structure of 2,3-di-methyl-maleic anhydride, C6H6O3, the closest non-bonding inter-molecular distances, between the carbonyl C and O atoms of neighboring mol-ecules, were measured as 2.9054 (11) and 3.0509 (11) Å, which are well below the sum of the van der Waals radii for these atoms. These close contacts, as well as packing motifs similar to that of the title compound, were also found in the crystal structure of maleic anhydride itself and other 2,3-disubstituted maleic anhydrides. Computational modeling suggests that this close contact is caused by strong electrostatic inter-actions between the carbonyl C and O atoms.

  1. Effects of hydrophobicity of diffusion layer on the electroreduction of biomass derivatives in polymer electrolyte membrane reactors.

    PubMed

    Chen, Wei; He, Gaohong; Ge, Feilong; Xiao, Wu; Benziger, Jay; Wu, Xuemei

    2015-01-01

    For the first time, the hydrophobicity design of a diffusion layer based on the volatility of hydrogenation reactants in aqueous solutions is reported. The hydrophobicity of the diffusion layer greatly influences the hydrogenation performance of two model biomass derivatives, namely, butanone and maleic acid, in polymer electrolyte membrane reactors operated at atmospheric pressure. Hydrophobic carbon paper repels aqueous solutions, but highly volatile butanone can permeate in vapor form and achieve a high hydrogenation rate, whereas, for nonvolatile maleic acid, great mass transfer resistance prevents hydrogenation. With a hydrophilic stainless-steel welded mesh diffusion layer, aqueous solutions of both butanone and maleic acid permeate in liquid form. Hydrogenation of maleic acid reaches a similar level as that of butanone. The maximum reaction rate is 340 nmol cm(-2)  s(-1) for both hydrogenation systems and the current efficiency reaches 70 %. These results are better than those reported in the literature.

  2. Propylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Propylene glycol monoethyl ether ; CASRN 52125 - 53 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  3. Chloromethyl methyl ether (CMME)

    Integrated Risk Information System (IRIS)

    Chloromethyl methyl ether ( CMME ) ; CASRN 107 - 30 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  4. p-Bromodiphenyl ether

    Integrated Risk Information System (IRIS)

    p - Bromodiphenyl ether ; CASRN 101 - 55 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  5. Triethylene glycol monoethyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monoethyl ether ; CASRN 112 - 50 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  6. Triethylene glycol monobutyl ether

    Integrated Risk Information System (IRIS)

    Triethylene glycol monobutyl ether ; CASRN 143 - 22 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  7. Solvothermal process for grafting maleic anhydride onto poly(ethylene 1-octene)

    NASA Astrophysics Data System (ADS)

    Liu, Qiaochu; Qi, Rongrong; Shen, Yanhan; Zhou, Chixing

    2007-11-01

    Solvothermal process was developed to graft maleic anhydride (MAH) onto poly(ethylene 1-octene) (POE). Fourier transform infrared spectra (FT-IR) and 1H NMR spectra confirmed that maleic anhydride was successfully grafted onto the POE. The influences of MAH content, initiator concentration, POE concentration, reaction temperature, reaction time and solvents on the graft copolymerization were investigated through both of the grafting degree (GD) and gel content (GC). The results demonstrated that high grafting degree (up to 10.85%) could be obtained while the gel content was still low. Further studies revealed that POE-g-MAH could also be achieved in poor solvents of POE through this method.

  8. Propenyl ether monomers for photopolymerization

    DOEpatents

    Crivello, J.V.

    1996-10-22

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of the above formula together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  9. Propenyl ether monomers for photopolymerization

    DOEpatents

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  10. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  11. Determination of Physical and Chemical Structure of New High-Temperature Polymers

    DTIC Science & Technology

    thermal properties, and molecular weight. Several samples of the perfluoroalkyl bibenzoxazole polymers were examined. Considerable effort was directed...toward determination of the molecular weight of both perfluorosebacate and perfluoroalkyl ether-linked polymers. In addition, solubility, thermal...stability and subambient DTA of the perfluoroalkyl ether- linked polymers (elastomers) were investigated. Samples of the aromatic heterocyclic-ladder type

  12. Chemistry and properties of new poly(arylene ether imidazoles)

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1990-01-01

    As part of a program to develop high-temperature high-performance structural resins for aerospace applications, the chemistry and properties of new poly(arylene ether imidazoles) were investigated. The polymers were prepared by the nucleophilic displacement reaction of aromatic bis(imidazolephenols) with activated aromatic difluoro compounds. The amorphous thermoplastic polymers exhibited glass transition temperatures from 230 to 301 C, inherent viscosities from 0.46 to 1.46 dL/g, and number-average molecular weights as high as 59,300 g/mole. The polymers exhibit good toughness, adhesive, composite, and film properties. The chemical, physical, and mechanical properties of these materials are discussed.

  13. High temperature fuel cell membranes based on poly(arylene ether)s containing benzimidazole groups

    SciTech Connect

    Kim, Dae Sik; Kim, Yu Seung; Lee, Kwan - Soo; Boncella, James M; Kuiper, David; Guiver, Michael D

    2009-01-01

    Development of new high-performance polymer membranes that retain their proton conductivity under low humidity conditions is one of the most critical requirements to commercialize PEMFC systems. Current sulfonated proton exchange membranes acquire proton conductivity by water that solvates ion and carries proton. Consequently, a loss of water under low RH conditions immediately results in a loss of proton conductivity. One approach to maintain proton conductivity under low RH conditions is to replace water with a less volatile proton solvent. Kreuer has pointed out the possibility to develop fully polymeric proton-conducting membranes based on nitrogen-containing heterocycles such as imidazole, benzimidazole, and pyrazole. We have attempted to blend those less volatile proton solvent with sulfonated copolymers such as polystyrene sulfonic acid, Nafion, poly(arylene ether sulfone, BPSH-xx). [Ref. DOE review meeting 2007 and 2008] However, we observed that imidazole was slowly sublimated out as temperature and humidity increases which could cause poisoning of electro-catalyst, corrosion and losing conductivity. In this presentation, we report the synthesis of novel poly(arylene ether sulfone)s containing benzimidazole groups These benzimidazole containing polymer was blended with sulfonated poly(arylene ether sulfone). In the blend system, benzimidazole group attached to the polysulfone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups. Proton conductivity of the blend membranes was investigated as a function of water content at 80 C and compared the performance with water based proton conduction system.

  14. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  15. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  16. Water-soluble polymers and compositions thereof

    DOEpatents

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  17. Cationic Polymerization of Vinyl Ethers Controlled by Visible Light.

    PubMed

    Kottisch, Veronika; Michaudel, Quentin; Fors, Brett P

    2016-12-07

    Photoinitiated cationic polymerizations are widely used in industrial processes; however, gaining photocontrol over chain growth would expand the utility of these methods and facilitate the design of novel complex architectures. We report herein a cationic polymerization regulated by visible light. This polymerization proceeds under mild conditions: a combination of a metal-free photocatalyst, a chain-transfer agent, and light irradiation enables the synthesis of various poly(vinyl ether)s with good control over molecular weight and dispersity as well as excellent chain-end fidelity. Significantly, photoreversible cation formation in this system enables efficient control over polymer chain growth with light.

  18. Marchantin M trimethyl ether.

    PubMed

    Mombrú, A W; Suescun, L; Pandolfi, E; Seoane, G; López, G; Mariezcurrena, R

    2000-11-01

    The title macrocycle, C(31)H(30)O(5), is comprised of two bibenzyl ether moieties linked cyclically by spacers which each consist of two-carbon alkyl chains. The observed conformation of the macrocycle may be partly stabilized by intramolecular C-H.O close contacts. The packing appears to be directed by van der Waals forces. This work explains the occurrence of a signal found in the (1)H NMR spectra of both marchantinquinone and marchantin M trimethyl ether at delta = 5. 49 and 5.56 p.p.m., respectively. The shift in the position of the expected peak can be explained by the proximity of an H atom belonging to one of the aromatic rings to another ring in the same molecule.

  19. Poly(aryl-ether-ether-ketone) as a Possible Metalized Film Capacitor Dielectric: Accurate Description of the Band Gap Through Ab Initio Calculation

    DTIC Science & Technology

    2014-12-01

    temperature polymers that are available in commercial thin films (10 µm or less) include poly(phenylene sulfide ) (PPS), poly(ether-ether-ketone) (PEEK...conserving pseudopotentials with 1, 4, and 6 valence electrons for hydrogen (H), carbon (C), and oxygen (O), respectively. Brillouin zone...gradient approximation GPW Gaussian and plane-wave GTH Goedecker-Teter-Hutter H hydrogen HFX Hartree-Fock exact-exchange HSE Heyd-Scuseria

  20. Catalytic Hydrogenation of Maleic Acid at Moderate Pressures: A Laboratory Demonstration

    ERIC Educational Resources Information Center

    Amoa, Kwesi

    2007-01-01

    Moderate-pressure catalytic hydrogenation is often overlooked as a classroom demonstration because of the awkwardness of the equipment and the time constraints required for the conversion of reactants to products. This article demonstrates the reduction of maleic acid in about 90 minutes. (Contains 1 table and 1 figure.)

  1. A New Pathway to Aspartic Acid from Urea and Maleic Acid Affected by Ultraviolet Light

    NASA Astrophysics Data System (ADS)

    Terasaki, Masanori; Nomoto, Shinya; Mita, Hajime; Shimoyama, Akira

    2002-04-01

    The photochemistry of a mixture of urea and maleic acid, which are thought to have been widely present on the primitive Earth, was studied in order to examine a possibility of the formation of amino acids. When an aqueous solution of urea and maleic acid was irradiated with an ultraviolet light of wavelength 172 nm, urea was revealed to be rather resistant to photochemical decomposition. In contrast, maleic acid was completely decomposed within 4 h, reflecting the reactivity of a C-C double bond in the molecule. In the reaction mixture, 2-isoureidosuccinic acid was detected. The acid was considered to be formed by addition of an isoureido radical which had been produced from urea by the action of a hydroxyl radical, to a C-C double bond of maleic acid. The isoureido group of the product was revealed to undergo thermal rearrangement to afford 2-ureidosuccinic acid (N-carbamoylaspartic acid). The result suggested a novel pathway leading to the formation of aspartic acid from non-amino acid precursors, possibly effected by UV-light on the primitive Earth. The formation of ureidocarboxylic acids is of another significance, since they are capable of undergoing thermal polymerization, resulting in formation of polyamino acids.

  2. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1973-01-01

    Imide-linked perfluoroalkylene ether polymers, that were developed for the high temperature fuel tank sealant application, are discussed. Modifications of polymer structure and properties were realized through use of a new aromatic dianhydride intermediate containing an ether-linked perfluoroalkylene segment. Tests of thermal, oxidative and hydrolytic stability, fuel resistance, and adhesion are discussed along with tensile strength and elongation results. Efforts to effect a low temperature condensation of amic acid prepolymer to form imide links inside are described.

  3. Synthesis and fluorescence properties of divalent europium-poly(methacrylate containing crown ether structure) complexes

    SciTech Connect

    Higashiyama, N.; Nakamura, H.; Mishima, T.; Shiokawa, J.; Adachi, G. )

    1991-02-01

    This paper reports on divalent europium complexes with poly(methacrylate containing crown ether structure)s, poly(crown ether)s, prepared and their fluorescence properties studied. The polymers used were poly(15-crown-5-methyl methacrylate) (PMA15C5), copoly(15- crown-5-methyl methacrylate-X) (copoly(MA15C5-X)); (X = MMA, EMA, BMA, 2-methoxyethyl methacrylate (MAGI) 3,6,9,12,15- pentaoxahexadecyl methacrylate (MAG5)), poly(18-crown-6- methyl methacrylate) (PMA18C6), and copoly(18-crown-6-methyl methacrylate-MMA) (copoly(MA18C6-MMA)), which were obtained by bulk polymerization. The fluorescence properties of Eu{sup 2+} polymers activated by complexing Eu{sup 2+} ions with crown ether groups were measured in powder form. The Eu{sup 2+}-poly (crown ether)s irradiated by UV light generally gave blue bright emission in the region of 420-465 nm. It was Eu{sup 2+}-copoly(Ma15C5-X); (X = MMA, EMA, and MAG1) that showed the largest emission intensity among the Eu{sup 2+} polymers, and its emission intensity was ca. 20% of that for CaWO{sub 4}:Pb (NBS1026) whose quantum efficiency is about 76%. The intensities of emission for the Eu{sup 2+} polymers containing 15-crown-5 were much larger than that for the ones containing 18-crown-6.

  4. Synthesis and characterization of poly(silyl ether)s and modified poly(siloxane)s

    NASA Astrophysics Data System (ADS)

    Mabry, Joseph Mark

    Activated dihydridocarbonyltris(triphenylphosphine)ruthenium ( Ru) catalyzes the dehydrogenative silylation condensation copolymerization of ortho-quinones with alpha,o-dihydrido-oligodimethylsiloxanes to give high molecular weight copoly(arylene-1,2-dioxy/oligodimethylsiloxanylene)s in good chemical yield. The hydrosilylation polymerization of aliphatic o-dimethylsilyloxy ketones is also catalyzed by activated Ru to yield unsymmetrical poly(silyl ether)s. Likewise, Ru catalyzes the copolymerization of alpha,o-diketones with alpha,o-dihydrido-oligodimethylsiloxanes to yield symmetrical poly(silyl ether)s. A mechanism of the copolymerizations is proposed, in which beta-hydride elimination is favored over reductive elimination in the reaction of the ortho-quinones. Chiral centers affect the NMR spectra of the poly(silyl ether)s produced by hydrosilylation. The photoluminescence properties of the polymers were studied along with those of model compounds. The decrease in Tgs with increase in siloxane chain length as well as fluorescence spectra is discussed. RuH2(CO)(PPh3)3 (Ru), activated with a stoichiometric amount of styrene, catalyzes the anti-Markovnikov addition of an ortho C-H bond of benzophenone across the C-C double bonds of alpha,o-bis(trimethylsilyloxy)copoly(dimethylsiloxane/vinylmethylsiloxane), alpha,o-bis(vinyldimethsilyloxy)poly(dimethylsiloxane)s, and 1,3-divinyltetramethyldisiloxane to yield alpha,o-bis(trimethylsilyloxy)copoly[dimethylsiloxane/2-(2 '-benzophenonyl)ethylmethylsiloxane]s, alpha,o-bis[2-(2 '-benzophenonyl)ethyldimethylsilyloxy]poly(dimethylsiloxane)s, and 1,3-bis[2-(2'-benzophenonyl)ethyl]tetramethyldisiloxane, respectively. While the Mw/Mn and Tgs of the modified polysiloxanes are similar to those of the precursor polymers, an increase in molecular weight is observed upon heating. 1,3-bis[2-(2 '-Benzophenonyl)ethyl]tetramethyldisiloxane, a model compound, was utilized to test a mechanism for the increase in molecular weight. A

  5. Alcohol/ether separation by pervaporation. High performance membrane design

    SciTech Connect

    Roizard, D.; Jonquieres, A.; Leger, C.

    1999-02-01

    Several routes were investigated to design high performance membranes for the separation of tert-butyl ethers (octane enhancers) from alcohols by pervaporation. These routes aim at incorporating Lewis base groups into good film-forming polymers with different structures. The Lewis base groups showed a high affinity to alcohols in screening tests, thus imparting high pervaporation selectivity to the polymer materials. They led to several membranes able to extract pure ethanol out of the azeotropic mixture, but with very low permeation rates. Further modifications of the polymer structure allowed the authors to synthesize materials with greatly enhanced transfer rates and with acceptable selectivity for industrial applications. Structure-property relationships were derived from sorption and pervaporation data for a qualitative prediction of the effect of polymer structure on the flux and selectivity. For these solvent-polymer systems the diffusion phenomenon appears to further improve the pervaporation selectivity for alcohol compared with that given by the sorption process at the membrane face.

  6. Aliphatic polycarbonates based on carbon dioxide, furfuryl glycidyl ether, and glycidyl methyl ether: reversible functionalization and cross-linking.

    PubMed

    Hilf, Jeannette; Scharfenberg, Markus; Poon, Jeffrey; Moers, Christian; Frey, Holger

    2015-01-01

    Well-defined poly((furfuryl glycidyl ether)-co-(glycidyl methyl ether) carbonate) (P((FGE-co-GME)C)) copolymers with varying furfuryl glycidyl ether (FGE) content in the range of 26% to 100% are prepared directly from CO2 and the respective epoxides in a solvent-free synthesis. All materials are characterized by size-exclusion chromatography (SEC), (1)H NMR spectroscopy, and differential scanning calorimetry (DSC). The furfuryl-functional samples exhibit monomodal molecular weight distributions with Mw/Mn in the range of 1.16 to 1.43 and molecular weights (Mn) between 2300 and 4300 g mol(-1). Thermal properties reflect the amorphous structure of the polymers. Both post-functionalization and cross-linking are performed via Diels-Alder chemistry using maleimide derivatives, leading to reversible network formation. This transformation is shown to be thermally reversible at 110 °C.

  7. Poly(arylene ether)s That Resist Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul; Smith, Joseph G., Jr.

    1994-01-01

    Novel poly(arylene ether)s containing phosphine oxide (PAEPO's) made via aromatic nucleophilic displacement reactions of activated aromatic dihalides (or, in some cases, activated aromatic dinitro compounds) with new bisphenol monomers containing phosphine oxide. Exhibited favorable combination of physical and mechanical properties and resistance to monatomic oxygen in oxygen plasma environment. Useful as adhesives, coatings, films, membranes, moldings, and composite matrices.

  8. Statistical modelling of the rheological and mucoadhesive properties of aqueous poly(methylvinylether-co-maleic acid) networks: Redefining biomedical applications and the relationship between viscoelasticity and mucoadhesion.

    PubMed

    Jones, David S; Laverty, Thomas P; Morris, Caoimhe; Andrews, Gavin P

    2016-08-01

    Poly(methylvinylether-co-maleic acid) (PMVE/MA) is commonly used as a component of pharmaceutical platforms, principally to enhance interactions with biological substrates (mucoadhesion). However, the limited knowledge on the rheological properties of this polymer and their relationships with mucoadhesion has negated the biomedical use of this polymer as a mono-component platform. This study presents a comprehensive study of the rheological properties of aqueous PMVE/MA platforms and defines their relationships with mucoadhesion using multiple regression analysis. Using dilute solution viscometry the intrinsic viscosities of un-neutralised PMVE/MA and PMVE/MA neutralised using NaOH or TEA were 22.32±0.89dLg(-1), 274.80±1.94dLg(-1) and 416.49±2.21dLg(-1) illustrating greater polymer chain expansion following neutralisation using Triethylamine (TEA). PMVE/MA platforms exhibited shear-thinning properties. Increasing polymer concentration increased the consistencies, zero shear rate (ZSR) viscosities (determined from flow rheometry), storage and loss moduli, dynamic viscosities (defined using oscillatory analysis) and mucoadhesive properties, yet decreased the loss tangents of the neutralised polymer platforms. TEA neutralised systems possessed significantly and substantially greater consistencies, ZSR and dynamic viscosities, storage and loss moduli, mucoadhesion and lower loss tangents than their NaOH counterparts. Multiple regression analysis enabled identification of the dominant role of polymer viscoelasticity on mucoadhesion (r>0.98). The mucoadhesive properties of PMVE/MA platforms were considerable and were greater than those of other platforms that have successfully been shown to enhance in vivo retention when applied to the oral cavity, indicating a positive role for PMVE/MA mono-component platforms for pharmaceutical and biomedical applications.

  9. Structure-property study of keto-ether polyimides

    NASA Technical Reports Server (NTRS)

    Dezern, James F.; Croall, Catharine I.

    1991-01-01

    As part of an on-going effort to develop an understanding of how changes in the chemical structure affect polymer properties, an empirical study was performed on polyimides containing only ether and/or carbonyl connecting groups in the polymer backbone. During the past two decades the structure-property relationships in linear aromatic polyimides have been extensively investigated. More recently, work has been performed to study the effect of isomeric attachment of keto-ether polyimides on properties such as glass transition temperature and solubility. However, little work has been reported on the relation of polyimide structure to mechanical properties. The purpose of this study was to determine the effect of structural changes in the backbone of keto-ether polyimides on their mechanical properties, specifically, unoriented thin film tensile properties. This study was conducted in two stages. The purpose of the initial stage was to examine the physical and mechanical properties of a representative group (four) of polyimide systems to determine the optimum solvent and cure cycle requirements. These optimum conditions were then utilized in the second stage to prepare films of keto-ether polyimides which were evaluated for mechanical and physical properties. All of the polyimides were prepared using isomers of oxydianiline (ODA) and diaminobenzophenone (DABP) in combination with 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic anhydride (ODPA).

  10. Sorbents based on crown ethers: preparation and application for the sorption of strontium

    NASA Astrophysics Data System (ADS)

    Bezhin, N. A.; Dovhyi, I. I.

    2015-12-01

    The key approaches to the synthesis of crown ether-based sorbents, including immobilization both with and without covalent bonding, are reviewed. Examples of sorbent preparation using anodic oxidation, chemical modification of polymers, polycondensation reactions, chemical modification of inorganic supports and radiochemical synthesis for covalent bonding of crown ether moieties are considered. Immobilization methods without covalent bonding including support synthesis in the presence of crown ethers, impregnation of supports with a crown ether solution and the use of powdered crown ether as a sorbent are presented. The applications of sorbents for selective removal of strontium from solutions of radioactive waste and spent nuclear fuel, for radiochemical analysis (determination of strontium in water, soil and biological materials) and for separation of strontium and yttrium isotopes are discussed. The bibliography includes 114 references.

  11. Synthesis of Caffeine/Maleic Acid Co-crystal by Ultrasound-assisted Slurry Co-crystallization.

    PubMed

    Apshingekar, Prafulla P; Aher, Suyog; Kelly, Adrian L; Brown, Elaine C; Paradkar, Anant

    2016-10-28

    A green approach has been used for co-crystallization of noncongruent co-crystal pair of caffeine/maleic acid using water. Ultrasound is known to affect crystallization; hence, the effect of high power ultrasound on the ternary phase diagram has been investigated in detail using a slurry co-crystallization approach. A systematic investigation was performed to understand how the accelerated conditions during ultrasound-assisted co-crystallization will affect different regions of the ternary phase diagram. Application of ultrasound showed considerable effect on the ternary phase diagram, principally on caffeine/maleic acid 2:1 (disappeared) and 1:1 co-crystal (narrowed) regions. Also, the stability regions for pure caffeine and maleic acid in water were narrowed in the presence of ultrasound, expanding the solution region. The observed effect of ultrasound on the phase diagram was correlated with solubility of caffeine and maleic acid and stability of co-crystal forms in water.

  12. Alkyl substituted cyclic ethers in 2,300 M yr old Transvaal algal stromatolite

    NASA Technical Reports Server (NTRS)

    Zumberge, J. E.; Nagy, B.

    1975-01-01

    Two cyclic ethers have been identified for the first time from insoluble polymer-like kerogen in a Precambrian rock by ozonolysis, gas chromatography, and mass spectrometry. The ethers are 2-n-propyl-3-methyltetrahydrofuran and 2-n-propyltetrahydropyran. These compounds could prove to be the oldest indigenous biochemical fossils. The sample was obtained 750 m stratigraphically above the base of the Transvaal Sequence from an outcrop approximately 315 km north-east of Johannesburg, South Africa.

  13. On the Formation of Maleic Anhydride on a Vanadyl Pyrophosphate Surface: A Theoretical Study of the Mechanism

    DTIC Science & Technology

    1990-05-25

    synthesis of maleic anhydride from n - butane over a vanadium phosphorous oxide surface in the presence of molecular oxygen [equation ( 1 )]. 7 / • 3.5 0 2 (g...active vanadium phosphorous oxide phase in the oxidation of n - butane has been disputed in the literature. 7 0, 0 Generally, it is agreed that the presence...mechanism for the selective oxidation of n - butane to maleic anhydride. Satsuma et al. have described the surface structure in terms of the number of

  14. Preparation and Mechanical Properties of Chitosan-graft Maleic Anhydride Reinforced with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Fajrin, A.; Sari, L. A.; Rahmawati, N.; Saputra, O. A.; Suryanti, V.

    2017-02-01

    The research aims to develop biodegradable composites as bio-based plastics from chitosan. The composites were prepared via solution casting method by introducing the maleic anhydride (MAH) as grafting agent and montmorillonite (MMt) as reinforcement. The grafting process of chitosan was conducted by varying concentrations of MAH which were 10, 20, and 30% w/w. It was observed that the chitosan-graft-maleic anhydride (Cs-g-MAH) containing 10% w/w of MAH increased its tensile strength by 70%. Reinforcement material was added to the Cs-g-MAH by varying MMt concentrations, e.g. 3, 6, 9 and 12% w/w. It was noted that the presence of 9% w/w of MMt in the Cs-g-MAH gave the best mechanical properties of the Cs-g-MAH/MMt composite.

  15. Wheat Gluten Blends with Maleic Anhydride-Functionalized Polyacrylate Cross-Linkers for Improved Properties.

    PubMed

    Diao, Cheng; Xia, Hongwei; Parnas, Richard S

    2015-10-14

    A family of polyacrylate-based cross-linkers was synthesized to maximize the toughness of high Tg, high modulus wheat gluten blends in the glassy state. Mechanical testing and damping measurements were conducted to provide an example where the work of fracture and strength of the blend substantially exceeds polystyrene while maintaining flexure stiffness in excess of 3 GPa. The new rubbery cross-linkers, polymethyl acrylate-co-maleic anhydride and polyethyl acrylate-co-maleic anhydride, improve WG mechanical properties and reduce water absorption simultaneously. MDSC, FTIR, HPLC, and NMR data confirmed the cross-linking reaction with wheat gluten. Flexural, DMA, and water absorption testing were carried out to characterize the property improvements. DMA was conducted to investigate the relationship between energy damping and mechanical property improvement. If the cross-linker damping temperature is close to the testing temperature, the entire sample exhibits high damping, toughness, and strength.

  16. Protein adsorption from flowing solutions on pure and maleic acid copolymer modified glass particles.

    PubMed

    Klose, Theresia; Welzel, Petra B; Werner, Carsten

    2006-08-01

    The adsorption of human serum albumin (HSA) and lysozyme (LSZ) on pure as well as maleic acid (MA) copolymer coated spherical soda lime glass particles was investigated under flowing conditions. Coating the glass particles with two different maleic acid copolymers alters the properties of the particle surface concerning its charge and hydrophobicity in a well-defined gradation. Frontal chromatography was used to determine the surface concentration of the adsorbed proteins and to establish adsorption isotherms. The introduced methodology was demonstrated to provide a powerful means to study protein adsorption at solid/liquid interfaces. Investigations with virginal and protein-preadsorbed glass particles revealed that even under streaming conditions HSA is irreversibly adsorbed, whereas LSZ partially desorbs. For LSZ and HSA the adsorbed amounts and the isotherms strongly depend on the surface "history", i.e. the presence or absence of preadsorbed protein layers, and the kind of surface modification of the glass. Compared to the soda lime glass surface the adsorption of HSA was strongly increased on surfaces modified with a hydrophobic maleic acid copolymer indicating a strong hydrophobic protein-surface interaction. By coating the surface with a hydrophilic and more negatively charged maleic acid copolymer the adsorption of HSA to that surface was lower and comparable to the adsorption onto plain glass due to the electrostatic repulsion between HSA and the modified surface. In contrast the affinity to any of the investigated particle surfaces was generally higher for LSZ than for HSA which can be mainly attributed to the electrostatic attraction between LZS and the surface. The adsorbed amount of LSZ on the copolymer coated particle surfaces was much higher than on the pure soda lime glass particles indicating superposed hydrophobic interactions in the case of the hydrophobic MA copolymer layer and an increased density of anionic sites as well as interactions of

  17. pH-sensitive micelles self-assembled from multi-arm star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) for controlled anticancer drug delivery.

    PubMed

    Yang, You Qiang; Zhao, Bin; Li, Zhen Dong; Lin, Wen Jing; Zhang, Can Yang; Guo, Xin Dong; Wang, Ju Fang; Zhang, Li Juan

    2013-08-01

    A series of amphiphilic 4- and 6-armed star triblock co-polymers poly(ε-caprolactone)-b-poly(2-(diethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (4/6AS-PCL-b-PDEAEMA-b-PPEGMA) were developed by a combination of ring opening polymerization and continuous activators regenerated by electron transfer atom transfer radical polymerization. The critical micelle concentration values of the star co-polymers in aqueous solution were extremely low (2.2-4.0mgl(-1)), depending on the architecture of the co-polymers. The self-assembled blank and doxorubicin (DOX)-loaded three layer micelles were spherical in shape with an average size of 60-220nm determined by scanning electron microscopy and dynamic light scattering. The in vitro release behavior of DOX from the three layer micelles exhibited pH-dependent properties. The DOX release rate was significantly accelerated by decreasing the pH from 7.4 to 5.0, due to swelling of the micelles at lower pH values caused by the protonation of tertiary amine groups in DEAEMA in the middle layer of the micelles. The in vitro cytotoxicity of DOX-loaded micelles to HepG2 cells suggested that the 4/6AS-PCL-b-PDEAEMA-b-PPEGMA micelles could provide equivalent or even enhanced anticancer activity and bioavailability of DOX and thus a lower dosage is sufficient for the same therapeutic efficacy. The results demonstrate that the pH-sensitive multilayer micelles could have great potential application in delivering hydrophobic anticancer drugs for improved cancer therapy.

  18. Novel Ordered Crown Ether-Containing Polyimides for Ion Conduction

    NASA Technical Reports Server (NTRS)

    Irvin, Jennifer A.; Stasko, Daniel; Fallis, Stephen; Guenthner, Andrew J.; Webber, Cynthia; Blackwell, John; Chvalun, Sergei N.

    2003-01-01

    We report the synthesis and characterization of thermally-stable polyimides for use as battery and fuel cell electrolyte membranes. Dianhydrides used were 1,4,5,8- naphthalenetetracarboxylic dianhydride and/or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride. Diamines used were anti-4,4-diaminodibenzo-l8-crown-6, 4,4'- diaminodibenzo-24-crown-8, 2,2-bis(4-aminophenyl)hexafluoropropane, and/or 2,5- diaminobenzenesulfonic acid. The polymers were characterized using electrochemical impedance spectroscopy (EIS), thermal analysis and X-ray diffraction. Polymers containing the hexafluoroisopropylidene (HFIP) group were soluble in common organic solvents, while polymers without the HFIP group were very poorly soluble. Sulfonation yields polymers that are sparingly soluble in aqueous base and/or methanol. Degree of sulfonation, determined by titration, was between one and three sulfonate groups per repeat unit. Proton conductivity was determined as a function of water content, with a maximum conductivity of l x 10(exp -2) per centimeter when fully hydrated. Crown ether-containing polymers exhibit a high degree of order that may be indicative of crown ether channel formation, which may facilitate Li(+) transport for use in battery membranes.

  19. Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Kyoung Heon

    2015-09-01

    We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.

  20. Polyarylene Ethers with Improved Properties

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M. (Inventor); Jensen, B. J. (Inventor); Havens, S. J. (Inventor)

    1986-01-01

    This invention relates to novel polyarylene ethers which possess the combination of high strength, toughness, and high use temperature with ease of extrusion and formation into complex objects. These polyarylene ethers are suitable for use in adhesives, coatings, films, membranes, and composite matrices. The polyarylene ethers of this invention are the polycondensation products from the reaction of either 1,3-bis (4-chloro or fluorobenzoyl) benzene with any one of the following bisphenolic compounds: bis (3-hydroxyphenyl) methane; bis (4-hydroxyphenyl) methane; 1,1-dimethyl-bis (4-hydroxyphenyl)methane, or 9,9-bis (4-hydroxyphenyl) fluorene. Random and block copolymers are also comprehended.

  1. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  2. Chemistry and properties of poly(arylene ether 1,3,4-oxadiazole)s and poly(arylene ether 1,2,4-triazole)s

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.; Wolf, P.

    1992-01-01

    Poly(arylene ether)s containing l,3,4-oxadiazole and 1,2,4-triazole units were prepared by the aromatic nucleophilic displacement reaction of bisphenol oxadiazole and bisphenol triazole compounds with activated aromatic dihalides. The polymers exhibited glass transition temperatures (Tg) ranging from 182 to 242 C, and several polymers exhibited melting transitions (Tm) ranging from 265 to 390 C. Inherent viscosities ranged from 1.02 to 3.40 dl/g, indicating relatively high molecular weights. Thin films exhibited tensile strengths, moduli, and elongations at 23 C of 90-110 MPa, 2.7-3.6 GPa, and 4-7 percent, respectively. Titanium-to-titanium tensile shear specimens of a poly(arylene ether 1,3,4-oxadiazole) exhibited tensile shear strengths at 23 and 150 C of 22.1 and 17.9 MPa, respectively.

  3. Sub-micronic capsules based on gelatin and poly(maleic anhydride-alt-vinyl acetate) obtained by interfacial condensation with potential biomedical applications.

    PubMed

    Iurea, Delia Mihaela; Peptu, Cătălina Anişoara; Chailan, Jean-François; Carriere, Pascal; Popa, Marcel

    2013-06-01

    New sub-micronic capsules based on a copolymer of maleic anhydride-alt-vinyl acetate and a natural polymer (gelatin) using an interfacial condensation method were obtained. Sub-micronic capsules were characterized by Fourier Transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) method, zeta-potential, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties were investigated by thermogravimetric analysis (TGA). According to some parameters of the synthesis reaction (polymer weight ratio, acetone/water ratio, surfactant concentration), the mean diameter of the sub-micronic capsules can be tuned from 200 to 760 nm. The sub-micronic capsules show a higher agglomeration tendency as the amount of gelatin in their composition increases. The swelling capacity in aqueous solutions is dependent on the composition and size of the sub-micronic capsules, decreasing with their diameter and gelatin composition. The drug loading and release capacity was studied using Penicillin G (sodium salt) (PG), and it has been proved that it is influenced by the sub-micronic capsules morphology induced by preparation parameters. Encapsulation and controlled release of small molecule were successfully carried out, demonstrating the potential biomedical applications of these new easily obtained sub-micronic capsules.

  4. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  5. Photothermal and morphological characterization of PLA/PCL polymer blends

    NASA Astrophysics Data System (ADS)

    Correa-Pacheco, Z. N.; Jiménez-Pérez, J. L.; Sabino, M. A.; Cruz-Orea, A.; Loaiza, M.

    2015-09-01

    Nowadays, some synthetic polymers have been replaced by biodegradable polymers in order to avoid environmental contamination. Among these biodegradables polymers, aliphatic polyesters such as polylactic acid (PLA) and polycaprolactone (PCL) have been widely used. In the present study, solvent-casting films of PLA, PCL and polymer blends with and without compatibilizer (PLA grafted with maleic anhydride) were prepared. The thermal diffusivity ( α) of each sample was obtained by using the open photoacoustic cell technique. Morphology and thermal properties were determined by using scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry (DSC), respectively. The blends showed lower thermal diffusivity compared to pure polymers. However, when the compatibilizer was used, the highest value of thermal diffusivity was obtained. Also, cold crystallization with the highest value of enthalpy of fusion was observed for the compatibilized sample, which was revealed by DSC. To our knowledge, this is the first time that the thermal diffusivity of these biodegradable polymer blends is reported.

  6. Process for crosslinking and extending conjugated diene-containing polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1977-01-01

    A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.

  7. Trifluoromethyl-substituted polymers

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E.

    1990-01-01

    The synthesis of polymers is discussed. It includes: (1) the synthesis of fluorine-containing crosslinked poly(ether ketones); (2) the synthesis and characterization of poly(imide amides) and their N-methylated analogues; (3) the synthesis of fluorine-containing aromatic polyethers; (4) the synthesis of novel fluorine-containing aromatic polysiloxanes; and (5) the conversion of 6F-containing polythioethers to polysulfones. It is hoped that these polymers will find use as low dielectric materials in electronic applications, function as thermal control coatings, or be suitable elastomeric sealants for extreme service conditions.

  8. Space, Time, Ether, and Kant

    NASA Astrophysics Data System (ADS)

    Wong, Wing-Chun Godwin

    This dissertation focused on Kant's conception of physical matter in the Opus postumum. In this work, Kant postulates the existence of an ether which fills the whole of space and time with its moving forces. Kant's arguments for the existence of an ether in the so-called Ubergang have been acutely criticized by commentators. Guyer, for instance, thinks that Kant pushes the technique of transcendental deduction too far in trying to deduce the empirical ether. In defense of Kant, I held that it is not the actual existence of the empirical ether, but the concept of the ether as a space-time filler that is subject to a transcendental deduction. I suggested that Kant is doing three things in the Ubergang: First, he deduces the pure concept of a space-time filler as a conceptual hybrid of the transcendental object and permanent substance to replace the category of substance in the Critique. Then he tries to prove the existence of such a space-time filler as a reworking of the First Analogy. Finally, he takes into consideration the empirical determinations of the ether by adding the concept of moving forces to the space -time filler. In reconstructing Kant's proofs, I pointed out that Kant is absolutely committed to the impossibility of action-at-a-distance. If we add this new principle of no-action-at-a-distance to the Third Analogy, the existence of a space-time filler follows. I argued with textual evidence that Kant's conception of ether satisfies the basic structure of a field: (1) the ether is a material continuum; (2) a physical quantity is definable on each point in the continuum; and (3) the ether provides a medium to support the continuous transmission of action. The thrust of Kant's conception of ether is to provide a holistic ontology for the transition to physics, which can best be understood from a field-theoretical point of view. This is the main thesis I attempted to establish in this dissertation.

  9. Poly(arylene)-based anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Bae, Chulsung

    2015-06-09

    Poly(arylene) electrolytes including copolymers lacking ether groups in the polymer may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  10. Preparation of Soy Polymers by a Green Processing Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate was conducted in liquid carbon dioxide. The resulting polymers (RPESO) were characterized using Infrared (IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), 1H NM...

  11. Carbon nanoscrolls by pyrolysis of a polymer

    NASA Astrophysics Data System (ADS)

    Yadav, Prasad; Warule, Sambhaji; Jog, Jyoti; Ogale, Satishchandra

    2012-12-01

    3D network of carbon nanoscrolls was synthesized starting from pyrolysis of poly(acrylic acid-co-maleic acid) sodium salt. It is a catalyst-free process where pyrolysis of polymer leads to formation of carbon form and sodium carbonate. Upon water soaking of pyrolysis product, the carbon form undergoes self-assembly to form carbon nanoscrolls. The interlayer distance between the walls of carbon nanoscroll was found to be 0.34 nm and the carbon nanoscrolls exhibited a surface area of 188 m2/g as measured by the BET method.

  12. Space charge behaviour in maleic anhydride grafted polyethylene/ethylene - vinyl - acetate copolymer laminates

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyung; Park, Jung Ki; Han, Jae Hong; Suh, Kwang S.

    1997-01-01

    Charge distributions in maleic anhydride (MAH) grafted polyethylene (g-PE)/ethylene - vinyl - acetate (EVA) copolymer laminates have been measured with materials of different composition. All laminates showed interfacial charge, the polarity and the magnitude of which are explained by interfacial polarization. It was found that the interfacial charge increased with the increase of MAH content in the g-PE, whereas it decreased with the increase of vinyl - acetate content in the EVA. This feature was attributed to the differences in electrical conductivity of the materials. Details of the experimental results are described.

  13. Coal-water slurry viscosity reduction using olefin/maleic acid salt copolymers

    SciTech Connect

    Matt, J.; Ferrara, J.M.

    1984-04-10

    An improved coal-water slurry of the type comprising at least 45% by weight of finely divided coal particles and a dispersing agent, said slurry being characterized as having a Brookfield viscosity at 60 rpm of less than 4,000 centipoise, the improvement which comprises adjusting the pH of said slurry to at least 6 and using as the dispersing agent, a water-soluble salt of an olefin/maleic acid copolymer having a molecular weight within the range of about between 3,000-50,000.

  14. Electrospun mats from styrene/maleic anhydride copolymers: modification with amines and assessment of antimicrobial activity.

    PubMed

    Ignatova, Milena; Stoilova, Olya; Manolova, Nevena; Markova, Nadya; Rashkov, Iliya

    2010-08-11

    New antimicrobial microfibrous electrospun mats from styrene/maleic anhydride copolymers were prepared. Two approaches were applied: (i) grafting of poly(propylene glycol) monoamine (Jeffamine® M-600) on the mats followed by formation of complex with iodine; (ii) modification of the mats with amines of 8-hydroxyquinoline or biguanide type with antimicrobial activity. Microbiological screening against S. aureus, E. coli and C. albicans revealed that both the formation of complex with iodine and the covalent attachment of 5-amino-8-hydroxyquinoline or of chlorhexidine impart high antimicrobial activity to the mats. In addition, S. aureus bacteria did not adhere to modified mats.

  15. The modification and characterization of maleic anhydride-styrene-methyl metacrylate terpolymer by poly(ethylene adipate)

    NASA Astrophysics Data System (ADS)

    Boztuğ, Ali; Basan, Satilmiş

    2007-03-01

    In this study, the functionality of maleic anhydride was utilized in the maleic anhydride-styrene-methyl metacrylate (MAStMMA) terpolymer. First, the polyester of poly(ethylene adipate), PEA, polycondensation copolymer was synthesized from ethylene glycol and adipic acid monomers. PEA was then modified on its maleic anhydride units in the MAStMMA terpolymer which has been synthesized previously. This modified copolymer was characterized by FTIR (Fourier Transform Infrared spectroscopy). The viscosimetric and thermomechanical characterization of MAStMMA terpolymer and its modified copolymer were also performed and the results were compared. The modified copolymer obtained was found to be more elastic and more soluble, and had lower viscosity and density.

  16. Factors influencing catalytic wet peroxide oxidation of maleic acid in aqueous phase over copper/micelle templated silica-3-aminopropyltrimethoxysilane catalyst.

    PubMed

    Daniel, Lilian; Katima, Jamidu H Y

    2009-01-01

    Catalytic wet peroxide oxidation (CWPO) of initial maleic acid feed concentration (0.005 to 0.03 M) was carried out in a temperature range of 20-50 degrees Celsius, on micelle templated silica-3-aminopropyltrimethoxysilane (MTS-AMP) supported copper catalyst. The influence of various operating parameters such as initial feed concentration of maleic acid, temperature, catalyst loading and the stability of the catalyst were investigated. CWPO reactions were performed in a stirred batch reactor at an atmospheric pressure in the presence of H(2)O(2) as an oxidant. Total conversion of maleic acid into acetic acid was obtained under mild conditions (i.e. atmospheric pressure and 40 degrees Celsius). Blank experiments showed no measurable maleic acid conversion (i.e. only approximately 0.5% conversion of initial maleic acid), indicating that a significant oxidation reaction of maleic acid is enhanced by the presence of a catalyst. Copper on micelle templated silica-3-aminopropyltrimethoxysilane catalyst therefore was found to be suitable for aqueous phase oxidation of maleic acid with 100% of maleic acid conversion.

  17. Characterization of the hyperline of D1/D0 conical intersections between the maleic acid and fumaric acid anion radicals

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Sumita, Masato

    2004-10-01

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D0) and the lowest excited doublet state (D1) near a 90°-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D1/D0 CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis→trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  18. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOEpatents

    Smith, L.A. Jr.

    1983-03-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

  19. Cross-linked sulfonated poly(ether ether ketone) by using diamino-organosilicon for proton exchange fuel cells.

    PubMed

    Kayser, Marie J; Reinholdt, Marc X; Kaliaguine, Serge

    2011-03-31

    Fuel cells are at the battlefront to find alternate sources of energy to the highly polluting, economically and environmentally constraining fossil fuels. This work uses an organosilicon molecule presenting two amine functions, bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS) with the aim of preparing cross-linked sulfonated poly(ether ether ketone) (SPEEK) based membranes. The hybrid membranes obtained at varying APTMDS loadings are characterized for their acid, proton conductivity, water uptake, and swelling properties. APTMDS may be considered as an extreme case of silica nanoparticle and is therefore most advantageously distributed within the polymeric matrix. The two amine groups can interact, via electrostatic interactions, with the sulfonic acid groups of SPEEK, resulting in a double anchoring of the molecule. The addition of a small amount of APTMDS is enhancing the mechanical and hydrolytic properties of the membranes and allows some unfolding of the polymer chains, rendering some acid sites accessible to water molecules and thus available for proton transport.

  20. International Topical Workshop on Advances in Silicon-Based Polymer Science (2nd) Held in Makaha, Oahu, Hawaii on December 16-20, 1990

    DTIC Science & Technology

    1990-12-20

    monofunctional reagents such as phthalic anhydride and maleic anhydride , yielding nonreactive or potentially reactive endgroups, respectively...polymerization will be discussed, i.e., formation of ionic aggregates, interactions with monomer and polymer and complexes with nucleophilic additives. In the...pattern of the process. The second major discussed problem will be kinetics and mecha- nism of the formation of oligomers in the polymerization

  1. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  2. Flexible Polyimide Aerogel Cross-linked by Poly(maleic Anhydride-alt-alkylene)

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.; Wilkewitz, Brittany Marie

    2014-01-01

    Aerogels are potential materials for aerospace applications due to their lower thermal conductivity, lighter weight, and low dielectric constant. However, silica aerogels are restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extreme aerospace environments. In order to fit the needs of aerospace applications, developing new thermal insulation materials that are flexible, and moisture resistant is needed. To this end, we fabricated a series of polyimide aerogels crosslinked with different poly(maleic anhydride-alt-alkylene)s as seen in Scheme 1. The polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA), and different diamines or diamine combinations. The resulting aerogels have low density (0.06 gcm3 to 0.16 gcm3) and high surface area (240-440 m2g). The effect of the different backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed. These novel polyalkylene-imide aerogels may be potential candidates for applications such as space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Scheme 1. Network of polyimide aerogels crosslinked with deifferent poly(maleic anhydride).

  3. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E.; Gueven, O.

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  4. Synthesis of Perfluoroaliphatic Ether Monomers

    DTIC Science & Technology

    1977-07-01

    number) Perfluoroalkyl ether a,w-diiodides were hydrolyzed in fuming sulfuric acid to the corresponding symmetrical diacyl fluorides. Under certain...Oligomers 4 1. Preparation of CF2 1CF 2 0CF 2 COF 5 2. Addition of TFEO to CF2 1CF 2 0CF 2 COF 7 B. Hydrolysis of Perfluoroalkyl -a-w-diiodides 9 1...Preparation of OXF/TFEO Oligomers 14 D. Preparation of HFPO-terminated OXF/TFEO Oligomers 16 III. EXPERIMENTAL 19 A. Preparation of Perfluoroalkyl Ether Halides

  5. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ether hook. 868.5420 Section 868.5420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a...

  6. Contributions of polymers to bentonite and saponite fluids

    SciTech Connect

    Guven, N.; Carney, L.L.; Panfil, D.J. . Dept. of Geosciences)

    1991-02-01

    Polymers have been used in drilling fluids for many years. However, the confusion surrounding the use of polymers in the oil field has severely limited their effectiveness. Many oilfield workers simply put all polymers in the same category without regard to the many differences that exist among them. Homopolymers and copolymers of acrylic acid and a copolymer of styrene and maleic anhydride are found to have profound effects on the rheological and filtration properties of clay-based fluids up to 300{degrees}F. These contributions of the polymers are greatly diminished when the clay/polymer fluids were autoclaved at 400{degrees}F. Thus, the effects of these polymers are expected to be negligible at and above 400{degrees}F. Homo- and co-polymers of acrylic acid with molecular weights below 5000 almost eliminate the anomalous viscosity rise of the bentonite fluids at temperatures between 250--450{degrees}F. A homopolymer of acrylic acid with a molecular weight of 60,000 and a co-polymer of styrene and maleic anhydride with very high molecular weight further enhances the anomalous viscosity rise of the bentonite fluid. The original viscosity profile of the saponite fluid is characterized with a high initial viscosity up to 200{degrees}F which is followed by a steep thinning at higher temperatures. The addition of homo- and co-polymer of acrylic acid causes a complete reversal in the fluid viscosity. They become thin at lower temperatures (up to 250{degrees}F) and experience a sudden viscosity rise at higher temperatures. All the above polymers greatly improve the filtration losses of the fluids at room temperatures as indicated by the API test. The filtration tests at high pressure and high temperatures were inconclusive due to the frequent blow-outs that occur during the tests.

  7. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA-MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA-MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA-DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  8. Propylene glycol monomethyl ether (PGME)

    Integrated Risk Information System (IRIS)

    Propylene glycol monomethyl ether ( PGME ) ; CASRN 107 - 98 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess

  9. Bis(chloromethyl)ether (BCME)

    Integrated Risk Information System (IRIS)

    Bis ( chloromethyl ) ether ( BCME ) ; CASRN 542 - 88 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  10. p,p\\'-Dibromodiphenyl ether

    Integrated Risk Information System (IRIS)

    p , p ' - Dibromodiphenyl ether ; CASRN 2050 - 47 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  11. Bis(chloroethyl)ether (BCEE)

    Integrated Risk Information System (IRIS)

    Bis ( chloroethyl ) ether ( BCEE ) ; CASRN 111 - 44 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments fo

  12. Desoxyhemigossypol-6-methyl-ether

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desoxyhemigossypol-6-methyl ether is an antimicrobial compound produced by the cotton plant in response to attack by pathogens. For the first time, we now report the crystal structure of this compound. This may prove useful in studies on the interaction of the compound with pathogenic fungal cells...

  13. Lacinilene C 7-methyl ether

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lacinilene C 7-methyl ether is an antimicrobial compound produced by the cotton plant in response to attack by pathogens. For the first time, we now report the crystal structure of this compound. This may prove useful in studies on the interaction of the compound with pathogenic fungal cells....

  14. Preparation and characterization of poly(methyl methacrylate) and poly(maleic anhydride-co-diallyl phthalate) grafted carbon black through γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Bo, Yang; Cui, Jiayang; Cai, Yangben; Xu, Shiai

    2016-02-01

    In this study, the grafting polymerization of methyl methacrylate (MMA) monomer and maleic anhydride/diallyl phthalate (MAH/DAP) co-monomer onto the surface of carbon black (CB) were carried out at room temperature and normal pressure by γ-ray irradiation. The surface chemistry of grafted CBs were characterized by infrared spectroscopy (IR), thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The results show that there are some remanent polymers on the surface of modified CBs after extract for 48 h, indicating that poly(methyl methacrylate) (PMMA) and poly(MAH-co-DAP) have been successfully grafted onto the surface of CB without using initiator due to the high energy of γ-ray irradiation. Dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that the grafted CBs have smaller average aggregate size and better dispersibility than that of CB in absolute ethanol. In addition, it was found that the amount of oxygen groups and the irradiation doses/dose rates have little effect on the grafting degree of CB.

  15. Composites of vinyl polystyrylpyridine/bismaleimide-aliphatic ether copolymers

    NASA Technical Reports Server (NTRS)

    Heimbuch, Alvin H.; Rosser, Robert W.; Hsu, Ming-Ta S.

    1989-01-01

    An aliphatic ether bismaleimide was prepared and coreacted with a polyvinylstyrylpyridine (VPSP) oligomer. Studies showed that a controlled ratio of aliphatic to aromatic units in the polymer backbone improved both processibility and interlaminar shear properties for the carbon-fiber composite system. This modified resin was readily soluble in tetrahydrofuran, allowing for better fiber impregnation and thus enhancing adhesive properties and reproducibility. DSC studies have shown a lower cure temperature for the copolymer than for the neat aliphatic bismaleimide, and a glass transition temperature of 260 C, which is more than adequate for most applications. Limited measurements indicated an improvement in toughness (impact resistance).

  16. Determination of fumaric and maleic acids with stacking analytes by transient moving chemical reaction boundary method in capillary electrophoresis.

    PubMed

    He, Jian-Feng; Yang, Wei-Ying; Yao, Fu-Jun; Zhao, Hong; Li, Xiang-Jun; Yuan, Zhuo-Bin

    2011-06-17

    The paper presents an on-line transient moving chemical reaction boundary (MCRB) method for simply but efficiently stacking analytes in capillary electrophoresis (CE). The CE technique was developed for a rapid determination of fumaric and maleic acid. Based on the theory of MCRB, Effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were investigated to acquire the optimum conditions. The optimized separations were carried out in a 20 mmol/L sulphate neutralized with ethylenediamine to pH 6.0 electrolytes using a capillary coated with poly (diallyldimethylammonium chloride) and direct UV detection at 214 nm. The optimized preconcentrations were carried out in 50 mmol/L borax (pH 9.0). The calibration curves were linear in the concentration range of 1.0×10⁻⁷-1.0×10⁻⁴ mol/L and 5.0×10⁻⁷-1.0×10⁻⁴ mol/L for fumaric and maleic acid with correlation coefficients higher than 0.9991. The detection limits were 5.34×10⁻⁸ mol/L for fumaric acid and 1.92×10⁻⁷ mol/L for maleic acid. This method was applied for determination of fumaric acid in apple juice and of fumaric and maleic acid in dl-malic, the recovery tests established for real samples were within the range 95-105%. This work provided a valid and simple approach to detect fumaric and maleic acid.

  17. Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Hu, Jun; Dang, Bin; He, Jinliang

    2016-10-01

    This paper reports excellent electrical properties in polypropylene grafted with maleic anhydride (PP-g-MAH) and a related mechanism of the enhanced electrical properties. The chemical structure of PP-g-MAH was analyzed and its effect on space charge accumulation, electrical breakdown strength and DC conductivity was studied. Compared with pure PP, the PP-g-MAH exhibits remarkably suppressed space charge accumulation, enhanced electrical breakdown strength and reduced conduction current. The mechanism enhancing the electrical properties was studied by measuring the trap level distribution. It can be explained that abundant deep traps are introduced in PP-g-MAH with the introduction of polar groups in MAH, which reduces the charge mobility and raises the charge injection barrier so as to suppress space charge accumulation. This investigation would contribute to propose a new material modification strategy for designing high-voltage direct current insulation material in addition to the inclusion of nanoparticles.

  18. Glyphosate, alachor and maleic hydrazide have genotoxic effect on Trigonella foenum-graecum L.

    PubMed

    Siddiqui, Sazada; Meghvansi, Mukesh K; Khan, Shoukat Saeed

    2012-05-01

    In the present study effects of herbicides glyphosate (GP), alachlor (AL) and maleic hydrazide (MH) is studied on mitotic cells of Trigonella foenum-graecum L. Seeds of T. foenum-graecum L. treated with a series of concentrations ranging from 0.1%, 0.2%, 0.3%, 0.4% and 0.5% for 1, 2 and 6 h and their effect on mitotic index and chromosomal aberrations was studied. The results indicate that these herbicides reduced mitotic index in dose-dependent manner. In addition, increase in the percentage of abnormal mitotic plates was observed in herbicide treated groups which was both concentration and time dependent. Commonly observed abnormalities were c-mitosis, laggards, bridges, stickiness, c-anaphase, precocious separation, un-equal distribution and fragments. The result of the present investigation indicates that commonly used herbicides GP, AL and MH have significant genotoxic effect on T. foenum-graecum plant.

  19. A new alternative to expandable pedicle screws: Expandable poly-ether-ether-ketone shell.

    PubMed

    Demir, Teyfik

    2015-05-01

    Screw pullout is a very common problem in the fixation of sacrum with pedicle screws. The principal cause of this problem is that the cyclic micro motions in the fixation of sacrum are higher than the other regions of the vertebrae that limit the osteo-integration between bone and screw. In addition to that, the bone quality is very poor at sacrum region. This study investigated a possible solution to the pullout problem without the expandable screws' handicaps. Newly designed poly-ether-ether-ketone expandable shell and classical pedicle screws were biomechanically compared. Torsion test, pullout tests, fatigue tests, flexion/extension moment test, axial gripping capacity tests and torsional gripping capacity tests were conducted in accordance with ASTM F543, F1798 and F1717. Standard polyurethane foam and calf vertebrae were used as embedding medium for pullout tests. Classical pedicle screw pullout load on polyurethane foam was 564.8 N compared to the failure load for calf vertebrae's 1264 N. Under the same test conditions, expandable poly-ether-ether-ketone shell system's pullout loads from polyurethane foam and calf vertebrae were 1196.3 and 1890 N, respectively. The pullout values for expandable poly-ether-ether-ketone shell were 33% and 53% higher than classical pedicle screw on polyurethane foam and calf vertebrae, respectively. The expandable poly-ether-ether-ketone shell exhibited endurance on its 90% of yield load. Contrary to poly-ether-ether-ketone shell, classical pedicle screw exhibited endurance on 70% of its yield load. Expandable poly-ether-ether-ketone shell exhibited much higher pullout performance than classical pedicle screw. Fatigue performance of expandable poly-ether-ether-ketone shell is also higher than classical pedicle screw due to damping the micro motion capacity of the poly-ether-ether-ketone. Expandable poly-ether-ether-ketone shell is a safe alternative to all other expandable pedicle screw systems on mechanical perspective.

  20. Preparation, characterization, and modeling of α-zirconium phosphonates with ether-functional surfaces

    PubMed Central

    Furman, Benjamin R.; Wellinghoff, Stephen T.; Thompson, Paul M.; Beall, Gary W.; Laine, Richard M.; Rawls, H. Ralph

    2009-01-01

    Layered α-zirconium(IV) phosphonates were prepared from novel ether-terminal alkyl phosphonic acids, providing nanoplatelets with brush-like polar surfaces. The precursor materials were characterized by NMR, mass spectrometry, and elemental analysis. The derived nanoparticles were examined by XRD, TEM, TGA, and elemental analysis. The experimental compositions were slightly rich in organophosphorus content. In general, the layered materials had good crystallinity, with layer reflections appearing up to (005) and d-spacings consistent with the anticipated α-phase structure. Computer simulations suggest that tailored surface chemistries, including ether functionalities, will offer favorable thermodynamic interactions with polyester polymer matrices. PMID:20090854

  1. Shifting from hydrogen bond network to π-π stacking: a key mechanism for reversible thermochromic sulfonated poly(ether ether ketone).

    PubMed

    Jarumaneeroj, Chatchai; Tashiro, Kohji; Chirachanchai, Suwabun

    2014-08-01

    Sulfonated poly(ether ether ketone) (SPEEK) thin film performs reversible thermochromic property by developing the color to be yellowish at the temperature above 190 °C. The detailed analyses based on temperature-dependent techniques suggest the thermal treatment inducing the shifting of the hydrogen bond network between the sulfonated group and the hydrated water molecules to the π-π stacking among aromatic rings in SPEEK chains. Although it is general that the polymer chain packing is unfavorable at high temperature, the present work shows a good example that when the polymer chains can form specific molecular interaction, such as π-π stacking, even in harsh thermal treatment, a rearrangement will effectively occur, which leads to an external stimuli-responsive property.

  2. A New Approach to Prepare Vegetable Oil-Based Polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymers from vegetable oils, such as soybean oil, were prepared by cationic polymerization in supercritical carbon dioxide (scCO2) medium. Boron trifluoride diethyl etherate (BF3.OEt2) was selected as catalyst. The resulting polymers have molecular weight ranging from 21,842 to 118,300 g/mol. Nu...

  3. Measuring exposures to glycol ethers.

    PubMed

    Clapp, D E; Zaebst, D D; Herrick, R F

    1984-08-01

    In 1981, NIOSH began investigating the potential reproductive health effects resulting from exposures to a class of organic solvents known generically as glycol ethers (GE). This research was begun as a result of the NIOSH criteria document development program which revealed little data available on the health effects of glycol ether exposure. Toxicologic research was begun by NIOSH and other researchers which suggested substantial reproductive effects in animals. These animal data motivated a study of human exposures in the occupational setting. In 1981 and 1982 NIOSH conducted several walk-through surveys which included preliminary measurements of exposures in a variety of industries including painting trades, coal mining, production blending and distribution facilities, aircraft fueling, and communications equipment repair facilities. The human exposure data from these surveys is summarized in this paper with most results well below 1 parts per million (ppm) and only a few values approaching 10 ppm. Blood samples were collected at one site resulting in GE concentrations below the limit of detection. Exposures to airborne glycol ethers, in the industries investigated during the collection of this data, revealed several problems in reliably sampling GE at low concentrations. It became apparent, from the data and observations of work practices, that air monitoring alone provided an inadequate index of GE exposure. Further field studies of exposure to GE are anticipated, pending location of additional groups of exposed workers and development of more reliable methods for characterizing exposure, especially biological monitoring.

  4. 78 FR 70878 - Octadecanoic Acid, 12-Hydroxy-, Homopolymer, Ester With 2-Methyloxirane Polymer With Oxirane...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... AGENCY 40 CFR Part 180 Octadecanoic Acid, 12-Hydroxy-, Homopolymer, Ester With 2- Methyloxirane Polymer... residues of Octadecanoic Acid, 12-Hydroxy-, Homopolymer, Ester with 2-Methyloxirane Polymer with Oxirane... 2- Methyloxirane Polymer with Oxirane Monobutyl Ether on food or feed commodities. DATES:...

  5. Hydrogen bond cross-linked sulfonated poly(imino ether ether ketone) (PIEEK) for fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Chang, Guanjun; Shang, Zhenfang; Yang, Li

    2015-05-01

    A new diamine monomer, 3,3‧-dihydroxydiphenylamine, is prepared by the palladium catalyzed C-N coupling reaction and the following reduction reaction of 3-bromoanisole and m-anisidine. A series of novel hydrogen bond cross-linked sulfonated poly(imino ether ether ketone) (SPIEEK) are obtained by the copolymerization of sodium 5,5‧-carbonylbis(2-fluorobenzene sulfonate), 4,4‧-difluorobenzophenone with 3,3‧-dihydroxydiphenylamine. The structures of resulting polymers are characterized by means of FT-IR, 1H NMR spectroscopy, and elemental analysis; the results show an agreement with the proposed structure. The resulting SPIEEK membranes display much better resistance to swelling than these without imino groups due to the strong interchain interaction through imino and sulfonic acid groups. The SPIEEK-60 and SPIEEK-80 membrane show the proton conductivity of 0.118 and 0.154 S cm-1 at 80 °C which is higher than Nafion 117 (0.082 S cm-1 at 80 °C). Moreover, the SPIEEK membranes exhibit good mechanical properties and lower methanol permeability due to the hydrogen bondings between the polymer chains.

  6. Crystalline Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    Series of imide/arylene ether block copolymers prepared by using arylene ether blocks to impart low melt viscosity, and imide blocks to provide high strength and other desirable mechanical properties. Work represents extension of LAR-14159 on imide/arylene ether copolymers in form of films, moldings, adhesives, and composite matrices. Copolymers potentially useful in variety of high-temperature aerospace and microelectronic applications.

  7. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  8. Aza crown ether compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.

  9. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  10. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  11. Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes.

    PubMed

    Chen, Dongyang; Hickner, Michael A

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by ¹H NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 °C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 °C but much lower stability at 80 °C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  12. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    SciTech Connect

    Chen, DY; Hickner, MA

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  13. Preparation and characterization of poly (arylene ether isoxazole)s by fluoride ion-mediated aromatic nucleophilic displacement reactions

    NASA Technical Reports Server (NTRS)

    Herbert, C. G.; Bass, R. G.

    1994-01-01

    As part of a continuing effort to prepare novel thermally stable high-performance polymers, poly(arylene ether isoxazole)s have been prepared by fluoride ion-catalyzed aromatic nucleophilic substitution reactions with bis(trimethylsiloxyphenyl) isoxazoles and activated bisarylhalides in diphenyl sulfone. Initial investigation involving the preparation of these materials with isoxazole bisphenols and activated bisarylhalides in the presence of potassium carbonate indicated that, under reaction conditions necessary to prepare high-molecular-weight materials, the isoxazole monomer was converted to an enamino ketone. This side reaction was avoided by using fluoride as a base. However, trimethylsilyl ether derivatives of the isoxazole bisphenols were required in these polymerizations for the preparation of high-molecular-weight materials. Moderate to high inherent viscosity eta(sub inh): 0.43-0.87 dl/g) materials with good thermal stability (air: 409-477 C, helium: 435-512 C) can be prepared by the silyl ether method. Glass transition temperatures ranged from 182 to 225 C for polymers with phenyl pendants and from 170 to 214 C for those without. Molecular weight control by 2% endcapping and the incorporation of a phenyl pendant at the 4 position of the isoxazole is necessary to yield polymers soluble in polar aprotic solvents at room temperature. There is evidence, however, indicating the existence of crosslinks between the polymer chains when the silyl ether approach is utilized.

  14. PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries.

    PubMed

    Seidel, S M; Jeschke, S; Vettikuzha, P; Wiemhöfer, H-D

    2015-08-04

    Improved hybrid polymer electrolyte membranes are introduced based on ether-modified polysiloxanes and poly(vinylidene fluoride-co-hexafluoropropylene) yielding a safe separator membrane, which is able to be sprayed directly onto lithium ion battery active materials, with an active role for enhanced ion transport.

  15. Low dielectric fluorinated poly(phenylene ether ketone) film and coating

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.

  16. 27 CFR 21.108 - Ethyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not...

  17. Polymeric Electrolyte Containing 12-Crown-4 Ether

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, Ganesa; Distefano, Salvador

    1992-01-01

    Experiments show incorporation of 12-crown-4 ether into solid electrolytes based on polyethylene oxide enhances their electrochemical properties. More specifically, 12-crown-4 ether increases Faradaic efficiency for Li+ ions in low-power secondary Li cells and enables operation of these cells at lower temperatures with higher efficiencies.

  18. The Use of Maleic Hydrazide for Effective Hybridization of Setaria viridis

    PubMed Central

    Rizal, Govinda; Karki, Shanta; Garcia, Richard; Larazo, Nikki; Alcasid, Michael; Quick, William Paul

    2015-01-01

    An efficient method for crossing green foxtail (Setaria viridis) is currently lacking. S. viridis is considered to be the new model plant for the study of C4 system in monocots and so an effective crossing protocol is urgently needed. S. viridis is a small grass with C4-NADP (ME) type of photosynthesis and has the advantage of having small genome of about 515 Mb, small plant stature, short life cycle, multiple tillers, and profuse seed set, and hence is an ideal model species for research. The objectives of this project were to develop efficient methods of emasculation and pollination, and to speed up generation advancement. We assessed the response of S. viridis flowers to hot water treatment (48°C) and to different concentrations of gibberellic acid, abscisic acid, maleic hydrazide (MH), and kinetin. We found that 500 μM of MH was effective in the emasculation of S. viridis, whilst still retaining the receptivity of the stigma to pollination. We also report effective ways to accelerate the breeding cycle of S. viridis for research through the germination of mature as well as immature seeds in optimized culture media. We believe these findings will be of great interest to researchers using Setaria. PMID:25910193

  19. Separation of maleic anhydride grafted polypropylene using multidimensional high-temperature liquid chromatography.

    PubMed

    Prabhu, K N; Macko, T; Brüll, R; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2016-04-08

    Functionalization addresses a property gap of polyolefins and opens new perspectives due to improved surface properties in applications like composites (e.g., glass fiber reinforced polypropylene) and anti-corrosive coatings for metals. Various techniques have been developed to characterize functionalized polyolefins, yet no analytical approach addressing their chemical heterogeneity exists. Using High Temperature Size Exclusion Chromatography (HT-SEC) coupled to infrared spectroscopy we could show for two model samples of polypropylene grafted maleic anhydride (PP-g-MA), differing in their nominal MA content, that the grafting density increases with decreasing molar mass. Crystallization Analysis Fractionation (CRYSTAF) does not enable to separate these samples according to their composition to the extent required. Yet, when using High Temperature High Performance Liquid Chromatography (HT-HPLC), with either silica gel or Mica as stationary phase and a gradient mobile phase, a deformulation into a grafted and a non-grafted fraction could be achieved. This was confirmed by analyzing the eluted fractions by infrared spectroscopy. Hyphenating the separation according to composition with a separation according to molar mass (HT-HPLC x HT-SEC) enabled for the first time to reveal the bivariate distribution of PP-g-MA with regard to the molar mass and composition. Using on-line infrared detection quantitative information on the compositional and molar mass parameters of the individual fractions could be obtained.

  20. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer.

    PubMed

    Dominguez Pardo, Juan J; Dörr, Jonas M; Iyer, Aditya; Cox, Ruud C; Scheidelaar, Stefan; Koorengevel, Martijn C; Subramaniam, Vinod; Killian, J Antoinette

    2017-01-01

    A promising tool in membrane research is the use of the styrene-maleic acid (SMA) copolymer to solubilize membranes in the form of nanodiscs. Since membranes are heterogeneous in composition, it is important to know whether SMA thereby has a preference for solubilization of either specific types of lipids or specific bilayer phases. Here, we investigated this by performing partial solubilization of model membranes and analyzing the lipid composition of the solubilized fraction. We found that SMA displays no significant lipid preference in homogeneous binary lipid mixtures in the fluid phase, even when using lipids that by themselves show very different solubilization kinetics. By contrast, in heterogeneous phase-separated bilayers, SMA was found to have a strong preference for solubilization of lipids in the fluid phase as compared to those in either a gel phase or a liquid-ordered phase. Together the results suggest that (1) SMA is a reliable tool to characterize native interactions between membrane constituents, (2) any solubilization preference of SMA is not due to properties of individual lipids but rather due to properties of the membrane or membrane domains in which these lipids reside and (3) exploiting SMA resistance rather than detergent resistance may be an attractive approach for the isolation of ordered domains from biological membranes.

  1. Effect of maleic anhydride on the damping property of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Fan, Y. C.; Gong, X. L.; Jiang, W. Q.; Zhang, W.; Wei, B.; Li, W. H.

    2010-05-01

    In this study, maleic anhydride (MA) was selected as the compatibilizer to modify the interfaces of magnetorheological elastomers (MREs) for improving the damping property. Several samples of MREs with different contents of MA were prepared. The content of bound-rubber was measured by the extraction method. The microstructures were observed by using an environmental scanning electron microscope (SEM). The dynamic performances of these samples, including shear storage modulus, loss factor and MR effect were measured with a modified dynamic mechanical analyzer (DMA). The tensile strength was tested by using an electronic tensile machine. The experimental results indicate that both the content of bound-rubber and the compatibility between the magnetic particles and rubber matrix were enhanced with the increase of MA. The enhancement of the bond between the two phases resulted in different mechanical properties: the increase of shear storage modulus; the reduction of the loss factor; the stability improvement of the loss factor; the enhancement of the tensile strength; and the reduction of the MR effect.

  2. Polymorphs of acyclovir-maleic acid salt and their reversible phase transition

    NASA Astrophysics Data System (ADS)

    Wang, Lianyan; Zhao, Yumei; Zhang, Zhengfeng; Wang, Jianming; Wang, Qiang; Zheng, Zhibing; Deng, Zongwu; Zhang, Hailu

    2017-01-01

    Acyclovir is a commonly used antiviral drug while its solubility is far from satisfied. It was reported that 1:1 acyclovir-maleic acid salt (ACV-MAL) possesses much higher maximum apparent solubility. In this contribution, a new crystal structure of ACV-MAL was solved at room temperature. This new crystal structure and previously reported structure at low temperature can transform to each other via a reversible solid phase transformation, which has been confirmed by single-crystal X-ray diffraction, solid state NMR and cycling differential scanning calorimetry tests. The phase change temperature is ca. 283-293 K (10-20 °C), which is slightly lower than room temperature (298 ± 2 K/25 ± 2 °C), but is in the range of ambient temperature. This kind of near room temperature phase transformation is less concerned and tends to be neglected. This case report reminds that more attention should be paid to the polymorphism of pharmaceuticals at such temperature range due to its fundamental and practical significance.

  3. Highly carbonylated cellulose nanofibrous membranes utilizing maleic anhydride grafting for efficient lysozyme adsorption.

    PubMed

    Ma, Juncheng; Wang, Xueqin; Fu, Qiuxia; Si, Yang; Yu, Jianyong; Ding, Bin

    2015-07-22

    Construction of adsorptive materials for simple, efficient, and high-throughput adsorption of proteins is critical to meet the great demands of highly purified proteins in biotechnological and biopharmaceutical industry; however, it has proven extremely challenging. Here, we report a cost-effective strategy to create carbonyl groups surface-functionalized nanofibrous membranes under mild conditions for positively charged protein adsorption. Our approach allows maleic anhydride to in situ graft on cellulose nanofibrous membranes (CMA) to construct adsorptive membranes with large surface area and tortuous porous structure. Thereby, the resultant CMA membranes exhibited high adsorption capacity of 160 mg g(-1), fast equilibrium within 12 h, and good reversibility to lysozyme. Moreover, the dynamic adsorption was performed under low pressure-drops (750 Pa), with a relatively high saturation adsorption amount of 118 mg g(-1), which matched well with the requirements for proteins purification. Considering the excellent adsorption performance of the as-prepared adsorptive membranes, this simple and intriguing approach may pave a way for the design and development of robust and cost-effective adsorption membranes to meet the great demands for fast and efficient adsorption of positively charged proteins.

  4. Adsorption of α-amylase onto poly(acrylamide/maleic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Tümtürk, H.; Çaykara, T.; Şen, M.; Güven, O.

    1999-08-01

    Poly(acrylamide/maleic acid) [P(AAm/MA)] hydrogels were prepared by irradiating the ternary mixtures of AAm/MA and water by γ rays at ambient temperature. The influence of the MA on the adsorption of α-amylase, optimum working conditions and storage stability of enzyme were investigated. The adsorption capacity of hydrogels were found to increase from 0.40 to 0.71 mg α-amylase/g dry gel with increasing amount of MA in the gel system. Maximum enzyme activities were observed at lower pH values and higher temperatures for adsorbed enzyme compared with free enzyme. Kinetic parameters were calculated as 2.51 g/dm 3 for Km and 1.67×10 -3 g/dm 3 min for Vmax for free enzyme and in the range of 12.3-12.9 g/dm 3 for Km and 1.63×10 -3-1.96×10 -3 g/dm 3 min for Vmax depending on the amount of MA in the hydrogel. While, the enzymatic activity of free enzyme was completely lost after 20 days, adsorbed enzyme retained 47-59% of its original activity after 20 days, depending on the amount of MA in the hydrogels.

  5. Isolation and biochemical characterization of maleic-acid hydratase, an iron-requiring hydro-lyase.

    PubMed

    Dreyer, J L

    1985-07-01

    A procedure for the isolation of maleic acid hydratase (D-malate hydro-lyase, EC 4.2.1.31) of about 95% purity from rabbit kidneys is described. The enzyme consists of a single polypeptide chain of 582 amino-acid residues with an approximate molecular mass of 68 kDa. The enzyme is very unstable and has an absolute requirement for chloride ions. Addition of sodium sulphide during the purification process was essential to maintain the enzyme in an activatable state. The pure preparation has low activity but responds to activation with Fe2+ ions, Na2S and a thiol. The sequence of adding the activating reagents is critical to achieve optimal activity. Ni2+ and to a lesser extent Co2+ can replace iron in the activation process. The enzyme incorporates 4-5 mol iron/mol and 4.5-6 mol sulphide/mol during activation. In this process an [Fe-S] cluster appears to be built up, as indicated by optical and electron paramagnetic resonance (EPR) spectroscopy. In activated samples exposed to air the [Fe-S] cluster is EPR-detectable through an axial signal with g = 2.01 and g = 2.029 whose temperature and power saturation characteristics were similar to those of other [3Fe-xS] clusters. The activated enzyme, however, is readily inactivated even upon minor manipulation with destruction of the iron-sulfur core.

  6. An expedient synthesis of linden ether.

    PubMed

    Serra, Stefano; Cominetti, Alessandra A

    2014-03-01

    We here describe a comprehensive study on the preparation of the intensive flavor 3,9-epoxy-p-mentha-1,4(8)-diene (1). Key steps of the presented synthesis are the selective addition of MeLi to the keto-ester 7, the regioselective cyclization of the obtained triol to give the ethers 4 and 8 and the selective dehydration of ether 4 through the use of POCI3 and pyridine. It is worth noting that the presented synthesis represents the first expedient and reliable entry to ether 1. Being present in linden honey, 1 is also known as linden ether and it has been regarded as a potential marker for the authentication of the linden honey origin. Therefore, ether 1 can be used as a useful reference standard for the analysis of the natural flavors, as we demonstrated by means of its identification in a sample ofunifloral linden honey.

  7. Silver-containing polymer composition used in spacecraft and semiconductor optoelectronics control systems

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Tuev, V. I.

    2015-10-01

    The copolymer of the vinyl chloride-maleic anhydride and silver nano- and microparticle (70 wt %) composition is offered as a conductive adhesive for fixing various chips on the dielectric substrate. The wiring volume resistivity is up to 3.1×10-8 Ohm×m. The adhesive strength of the silver-containing polymer composition (70% of Ag) applied under a shear on the dielectric substrate is 106 N/mm2. Adhesive layers obtained from these substances have a high thermal conductivity up to λ = 199.93 W/m×K that depends on the amount of Ag in the polymer composition.

  8. Fire and heat resistant laminating resins based on maleimido substituted aromatic cyclotriphosphazene polymer

    NASA Technical Reports Server (NTRS)

    Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1987-01-01

    4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy trisphenoxy cyclotriphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.

  9. Silver-containing polymer composition used in spacecraft and semiconductor optoelectronics control systems

    SciTech Connect

    Ivanov, A. A. Tuev, V. I.

    2015-10-27

    The copolymer of the vinyl chloride-maleic anhydride and silver nano- and microparticle (70 wt %) composition is offered as a conductive adhesive for fixing various chips on the dielectric substrate. The wiring volume resistivity is up to 3.1×10{sup −8} Ohm×m. The adhesive strength of the silver-containing polymer composition (70% of Ag) applied under a shear on the dielectric substrate is 106 N/mm{sup 2}. Adhesive layers obtained from these substances have a high thermal conductivity up to λ = 199.93 W/m×K that depends on the amount of Ag in the polymer composition.

  10. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Zhongyi; Tian, Huimin; Wang, Siwen; Zhang, Bei; Cao, Ying; He, Guangwei; Li, Zongyu; Wu, Hong

    2015-08-01

    The development of alkaline anion exchange membrane (AEM) with both high ion conductivity and stabilities is of great significance for fuel cell applications. In this study, a facile acid-base blending method is designed to improve AEM performances. Basic imidazolium-functionalized poly (ether ether ketone) with a high functionalization degree is employed as polymer matrix to pursue high ion-exchange capacity (IEC) as well as high hydroxide conductivity, meanwhile acidic sulfonated poly (ether ether ketone) (SPEEK) is employed as the cross-linking agent to enhance the stabilities of the blend membranes. Particularly, an in-situ Menshutkin/crosslinking method is exploited to prevent the flocculation in the preparation process of blend membranes. As a result, dense and defect-free blend membranes are obtained. The blend membranes exhibit high level of IEC up to 3.15 mmol g-1, and consequently possess elevated hydroxide conductivity up to 31.59 mS cm-1 at 30 °C. In addition, benefiting from the strong electrostatic interaction introduced by the acid-base blending, the stabilities and methanol resistance of blend membranes are enhanced.

  11. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, B.A.; Taylor, A.M.

    1998-11-24

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene. 2 figs.

  12. Radiation effects on high performance polymers

    NASA Technical Reports Server (NTRS)

    Orwoll, R. A.

    1986-01-01

    Polymer matrix materials are candidates for use in large space antennas and space platforms that may be deployed in geosynchronous orbit 22,500 miles above the Earth. A principal concern is the long term effects of an environment that is hostile to organic polymers, including high energy electromagnetic radiation, bombardment by charged particles, and large abrupt changes in temperature. Two polyarylene ethers which might be utilized as models for polymers in space applications were subjected to dosages of 70 keV electrons up to 3.4 x 10 to the 10th power rad. The irradiated films were then examined to determine the effects of the high-energy electrons.

  13. Redox polymer electrodes for advanced batteries

    DOEpatents

    Gregg, Brian A.; Taylor, A. Michael

    1998-01-01

    Advanced batteries having a long cycle lifetime are provided. More specifically, the present invention relates to electrodes made from redox polymer films and batteries in which either the positive electrode, the negative electrode, or both, comprise redox polymers. Suitable redox polymers for this purpose include pyridyl or polypyridyl complexes of transition metals like iron, ruthenium, osmium, chromium, tungsten and nickel; porphyrins (either free base or metallo derivatives); phthalocyanines (either free base or metallo derivatives); metal complexes of cyclams, such as tetraazacyclotetradecane; metal complexes of crown ethers and metallocenes such as ferrocene, cobaltocene and ruthenocene.

  14. Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells.

    PubMed

    Chen, Honglin; Gigli, Matteo; Gualandi, Chiara; Truckenmüller, Roman; van Blitterswijk, Clemens; Lotti, Nadia; Munari, Andrea; Focarete, Maria Letizia; Moroni, Lorenzo

    2016-01-01

    Bioactive scaffolds for tissue engineering call for demands on new materials which can enhance traditional biocompatibility requirements previously considered for clinical implantation. The current commercially available thermoplastic materials, such as poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(ε-caprolactone) (PCL) and their copolymers, have been used to fabricate scaffolds for regenerative medicine. However, these polymers have limitations including lacking of broadly tuning mechanical and degradable properties, and activation of specific cell-scaffold interactions, which limit their further application in tissue engineering. In the present study, electrospun scaffolds were successfully fabricated from a new class of block poly(butylene succinate)-based (PBS-based) copolyesters containing either butylene thiodiglycolate (BTDG) or butylene diglycolate (BDG) sequences. The polyesters displayed tunable mechanical properties and hydrolysis rate depending on the molecular architecture and on the kind of heteroatom introduced along the polymer backbone. To investigate their potential for skeletal regeneration, human mesenchymal stromal cells (hMSCs) were cultured on the scaffolds in basic, osteogenic and chondrogenic media. Our results demonstrated that PBS-based copolyesters containing thio-ether linkages (i.e. BTDG segments) were more favorable for chondrogenesis of hMSCs than those containing ether linkages (i.e. BDG sequences). In contrast, PBS-based copolyesters containing ether linkages showed enhanced mineralization. Therefore, these new functional scaffolds might hold potential for osteochondral tissue engineering applications.

  15. Two crown-ether-coordinated caesium halogen salts.

    PubMed

    Well, Natalija van; Klein, Christian; Ritter, Franz; Assmus, Wolf; Krellner, Cornelius; Bolte, Michael

    2014-05-01

    The crystal structures of two crown-ether-coordinated caesium halogen salt hydrates, namely di-μ-bromido-bis[aqua(1,4,7,10,13,16-hexaoxacyclooctadecane)caesium(I)] dihydrate, [Cs2Br2(C12H24O6)2(H2O)2]·2H2O, (I), and poly[[diaquadi-μ-chlorido-μ-(1,4,7,10,13,16-hexaoxacyclooctadecane)dicaesium(I)] dihydrate], {[Cs2Cl2(C12H24O6)(H2O)2]·2H2O}n, (II), are reported. In (I), all atoms are located on general positions. In (II), the Cs(+) cation is located on a mirror plane perpendicular to the a axis, the chloride anion is located on a mirror plane perpendicular to the c axis and the crown-ether ring is located around a special position with site symmetry 2/m, with two opposite O atoms exactly on the mirror plane perpendicular to the a axis; of one water molecule, only the O atom is located on a mirror plane perpendicular on the a axis, while the other water molecule is completely located on a mirror plane perpendicular to the c axis. Whereas in (I), hydrogen bonds between bromide ligands and water molecules lead to one-dimensional chains running along the b axis, in (II) two-dimensional sheets of water molecules and chloride ligands are formed which combine with the polymeric caesium-crown polymer to give a three-dimensional network. Although both compounds have a similar composition, i.e. a Cs(+) cation with a halogen, an 18-crown-6 ether and a water ligand, the crystal structures are rather different. On the other hand, it is remarkable that (I) is isomorphous with the already published iodide compound.

  16. The effect of oxygen concentration on the boundary lubricating characteristics of an unformulated C-ether to 300 C

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1973-01-01

    The effect of oxygen concentration on the boundary lubricating characteristics of an unformulated C-ether was studied with the use of a ball-on disk sliding-friction apparatus. Results were compared with those obtained with a polyphenyl ether. Experimental conditions included oxygen concentrations ranging from 20 percent (air) to 0.001 percent (nitrogen), a load of 1 kilogram, a sliding speed of 17 meters per minute, and disk temperatures ranging from 20 to 300 C (77 to 572 F). The C-ether yielded better boundary lubricating characteristics than did the polyphenyl ether in air and nitrogen over most of the temperature range. The C-ether exhibited lower wear at high oxygen levels (10 to 20 percent O2) from 25 to 200 C (77 to 392 F) and at low oxygen levels (0.001 to 1.0 percent O2) from 200 to 300 C (392 to 572 F). Friction polymer was observed around the wear scars of most test specimens. Friction polymer generation and its effect on wear are discussed in light of current theories.

  17. Thermotropic behavior of poly(oxyethylene) cholesterol ethers.

    PubMed

    López-Quintela, M Arturo; Akahane, Akira; Rodríguez, Carlos; Kunieda, Hironobu

    2002-03-01

    The thermotropic behavior of poly(oxyethylene) cholesterol ether surfactants was studied by differential scanning calorimetry and small-angle X-ray scattering. Contrary to what is usually observed in conventional poly(oxyethylene)-type surfactant systems, poly(oxyethylene) cholesterol ether surfactants show a change of the fusion mechanism as the chain length is varied. For long chain lengths (n > or = 15) the usual solid-liquid transition is found, but for short chain lengths (n < or = 10) the transition goes through a birefringent lamellar phase. The appearance of this liquid crystal (LC) phase seems to be related with the predominance of the cholesterol part in the short chain polyoxyethylene surfactants. On the contrary, for long polyexyethylene chains the polymer gains in importance and only a solid crystalline structure is observed at low temperatures. An antiparallel packing structure with totally overlapped chains is found for both, the solid and the LC phase. The chains seem to be in a zigzag configuration, and only for the longest surfactant here studied (n = 30) a change of the chain configuration to a much shorter meander configuration is observed.

  18. A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol.

    PubMed

    Pavarelli, Giulia; Velasquez Ochoa, Juliana; Caldarelli, Aurora; Puzzo, Francesco; Cavani, Fabrizio; Dubois, Jean-Luc

    2015-07-08

    We investigated the synthesis of maleic anhydride by oxidehydration of a bio-alcohol, 1-butanol, as a possible alternative to the classical process of n-butane oxidation. A vanadyl pyrophosphate catalyst was used to explore the one-pot reaction, which involved two sequential steps: 1) 1-butanol dehydration to 1-butene, catalysed by acid sites, and 2) the oxidation of butenes to maleic anhydride, catalysed by redox sites. A non-negligible amount of phthalic anhydride was also formed. The effect of different experimental parameters was investigated with chemically sourced 1-butanol, and the results were then confirmed by using genuinely bio-sourced 1-butanol. In the case of bio-1-butanol, however, the purity of the product remarkably affected the yield of maleic anhydride. It was found that the reaction mechanism includes the oxidation of butenes to crotonaldehyde and the oxidation of the latter to either furan or maleic acid, both of which are transformed to produce maleic anhydride.

  19. Thin film composite nanofiltration membranes fabricated from quaternized poly(ether ether ketone) with crosslinkable moiety using a benign solvent.

    PubMed

    Dong, Xue; Zhang, Qifeng; Zhang, Suobo; Li, Shenghai

    2016-02-01

    Thin film composite nanofiltration membranes were fabricated through dip-coating and in situ cross-linking of quaternized poly(ether ether ketone) containing a certain amount of tertiary amine groups (QAPEEKs) on polyacrylonitrile (PAN) support. The effects of the variables in membrane formation such as the coating polymer concentration, the curing temperature, and the cross-linking agent types on resultant membrane were studied and the membrane properties such as the barrier layer chemical structure, the surface element composition and morphology were investigated. The obtained performance of uncross-linked and cross-linked QAPEEK-70 thin film composites in nanofiltration test was compared. The results indicated that the cross-linking improved the composite membranes' performance. For instance, the membrane cross-linked by bisphenol A diglycidyl ether (BPADGE) named M-C-BPADGE exhibited a MgCl2 rejection of 97.8%, a water flux of 11.8Lm(-2)h(-1), a MWCO of 800Da and corresponding pore size of 0.69nm, while for its uncross-linked membrane named M-U, a MgCl2 rejection of 91.2%, a water flux of 13.5Lm(-2)h(-1), a MWCO with 960Da and a pore size of 0.77nm were found. Furthermore, the M-C-BPADGE membrane exhibited selectivities of 16.0 for separation of mixed Mg(2+) and Na(+) cations, much larger than selectivity of 5.2 obtained for M-U, suggesting that the cross-linked membranes are promising in cation separation.

  20. Relaxation behavior and nonlinear properties of thermally stable polymers based on glycidyl derivatives of quercetin

    NASA Astrophysics Data System (ADS)

    Mishurov, Dmytro; Voronkin, Andrii; Roshal, Alexander; Brovko, Oleksandr

    2016-07-01

    Cross-linked polymers on the basis of di-, tri and tetraglycidyl ethers of quercetin (3,3‧,4‧,5,7-pentahydroxyflavone) were synthesized, and then, poled in electrical field of corona discharge. Investigations of structural, thermal and optical parameters of the polymer films were carried out. It was found that the polymers obtained from di- and triglycidyl quercetin ethers had high values of macroscopic quadratic susceptibilities and substantial stability of nonlinear optical (NLO) properties after the poling. Tetraglycidyl ether of quercetin forms the polymer of lower quadratic susceptibility, which demonstrates noticeable relaxation process resulting in decrease of the NLO effect. It is supposed that the difference of the NLO properties is due to peculiarities of physical network of the polymers, namely to the ratio between numbers of hydrogen bonds formed by hydroxyl groups of chromophore fragments and by the ones of interfragmental parts of the polymeric chains.

  1. Chain-extended poly(aryl ether ketones)

    SciTech Connect

    Robeson, L.M.; Winslow, P.A.; Matzner, M.; Harris, J.E.; Maresca, L.M.

    1992-06-09

    This patent describes a process for preparing a poly(aryl ether ketone) polymer. It comprises reacting (n) moles of HAr H with (n + 1) moles of YCOAr{sub 1}COY under Friedel-Crafts polymerization conditions; reacting the product obtained with 2XAR{sub 2}H under Friedel-Crafts polymerization conditions; reacting the product obtained with HOAr{sub 3}OH in the presence of a base and an aprotic solvent; wherein Ar and Ar{sub 1} are divalent aromatic groups, Ar{sub 2} is a divalent aromatic group wherein the substituents X and CO are in para or ortho position relative to each other, Ar{sub 3} is a residue of a dihydric phenol, X and Y are halogen, n is an integer of 1 to 50 and X is one or greater.

  2. Synthesis and therapeutic effect of styrene–maleic acid copolymer-conjugated pirarubicin

    PubMed Central

    Tsukigawa, Kenji; Liao, Long; Nakamura, Hideaki; Fang, Jun; Greish, Khaled; Otagiri, Masaki; Maeda, Hiroshi

    2015-01-01

    Previously, we prepared a pirarubicin (THP)-encapsulated micellar drug using styrene–maleic acid copolymer (SMA) as the drug carrier, in which active THP was non-covalently encapsulated. We have now developed covalently conjugated SMA-THP (SMA-THP conjugate) for further investigation toward clinical development, because covalently linked polymer–drug conjugates are known to be more stable in circulation than drug-encapsulated micelles. The SMA-THP conjugate also formed micelles and showed albumin binding capacity in aqueous solution, which suggested that this conjugate behaved as a macromolecule during blood circulation. Consequently, SMA-THP conjugate showed significantly prolonged circulation time compared to free THP and high tumor-targeting efficiency by the enhanced permeability and retention (EPR) effect. As a result, remarkable antitumor effect was achieved against two types of tumors in mice without apparent adverse effects. Significantly, metastatic lung tumor also showed the EPR effect, and this conjugate reduced metastatic tumor in the lung almost completely at 30 mg/kg once i.v. (less than one-fifth of the maximum tolerable dose). Although SMA-THP conjugate per se has little cytotoxicity in vitro (1/100 of free drug THP), tumor-targeted accumulation by the EPR effect ensures sufficient drug concentrations in tumor to produce an antitumor effect, whereas toxicity to normal tissues is much less. These findings suggest the potential of SMA-THP conjugate as a highly favorable candidate for anticancer nanomedicine with good stability and tumor-targeting properties in vivo. PMID:25529761

  3. Anticlastogenic effect of Spirulina maxima extract on the micronuclei induced by maleic hydrazide in Tradescantia.

    PubMed

    Ruiz Flores, L Elvia; Madrigal-Bujaidar, Eduardo; Salazar, María; Chamorro, Germán

    2003-02-07

    The aim of this investigation was to determine if extracts of Spirulina maxima reduce the genotoxic damage induced by maleic hydrazide (MH) using the Tradescantia biosssay. Two types of extracts from the alga were prepared: an aqueous extract with two different concentrations, 100 and 500 mg/ml, and a second one, the extract of a 1% solution of dimethyl sulfoxide (DMSO) which corresponded to 100 mg/ml of the alga. The capacity of MH to induce micronuclei (MN) was initially established by administering 0.005, 0.01, and 0.015 mg/ml of the chemical to the Tradescantia inflorescences, and observing its effect after 24 h.The results of this experiment showed a significant MN increase with the two high concentrations tested, although no dose-response effect was observed. For the anticlastogenic assay, the extracts of Spirulina were applied to the inflorescences alone or immediately before the application of MH (0.01 mg/ml) and the induced MN were observed 24 h later. We found that none of the extracts increased the MN level with respect to the untreated plants; also, that MH more or less doubled the basal micronuclei frequency, and finally, that all tested extracts reduced the genotoxic damage caused by MH. The inhibitory indices obtained for the aqueous extracts (100 and 500 mg/ml) and for the DMSO extract were respectively 59, 85, and 56.3%. These data indicate that Spirulina is an anticlastogenic agent and suggest that it is advisable to extend studies on this matter using other biological models.

  4. Highly sensitive colorimetric detection of lead using maleic acid functionalized gold nanoparticles.

    PubMed

    Ratnarathorn, Nalin; Chailapakul, Orawon; Dungchai, Wijitar

    2015-01-01

    Highly sensitive colorimetric detection for Pb(2+) has been developed using maleic acid (MA) functionalized GNP. The -COOH on MA was used to modify GNP surface whereas the other -COOH functional group have strong affinity to coordination behavior of Pb(2+) allowing the selective formation more than other ions. MA-GNPs solution changed from red to blue color after the addition of Pb(2+) due to nanoparticle aggregation. The different optical absorption and discriminate of particle size between the MA-GNPs solution with and without Pb(2+) were characterized by UV-visible spectroscopy and transmission electron microscopy (TEM), respectively. The color intensity as a function of Pb(2+) concentration gave a linear response in the range of 0.0-10.0 µg L(-1) (R(2)=0.990). The detection limit was found at 0.5 µg L(-1) by naked eye and can be completed the analysis within 15 min. The MA-GNPs aggregated with Pb(2+) showed high selectivity when was compared to other metal ions (As(3+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Hg(2+), Mg(2+), Mn(2+), Ni(2+), Pb(2+) and Zn(2+)) and anions (Cl(-), NO3(-) and SO4(2-)). Our proposed method was also applied for the determination of Pb(2+) in real drinking water samples from 5 sources. The result of real water samples were not statistically significant different from the standard methods at the 95% confidence level (pair t-test method). Moreover, we evaluated our proposed method for the determination of trace Pb(2+) concentration in real breast milk samples. The recoveries were acceptable and ranged from 101 to 104% for spiked Pb(2+) in real breast milk samples. Thus, MA-GNP colorimetric sensing provides a simple, rapid, sensitive, easy-to-use, inexpensive and low detection limit for the monitoring of Pb(2+).

  5. Releasable Conjugation of Polymers to Proteins.

    PubMed

    Gong, Yuhui; Leroux, Jean-Christophe; Gauthier, Marc A

    2015-07-15

    Many synthetic strategies are available for preparing well-defined conjugates of peptides/proteins and polymers. Most reports on this topic involve coupling methoxy poly(ethylene glycol) to therapeutic proteins, a process referred to as PEGylation, to increase their circulation lifetime and reduce their immunogenicity. Unfortunately, the major dissuading dogma of PEGylation is that, in many cases, polymer modification leads to significant (or total) loss of activity/function. One approach that is gaining momentum to address this challenge is to release the native protein from the polymer with time in the body (releasable PEGylation). This contribution will present the state-of-the-art of this rapidly evolving field, with emphasis on the chemistry behind the release of the peptide/protein and the means for altering the rate of release in biological fluids. Linkers discussed include those based on the following: substituted maleic anhydride and succinates, disulfides, 1,6-benzyl-elimination, host-guest interactions, bicin, β-elimination, biodegradable polymers, E1cb elimination, β-alanine, photoimmolation, coordination chemistry, zymogen activation, proteolysis, and thioesters.

  6. Enzyme immobilization on reactive polymer films.

    PubMed

    Cordeiro, Ana L; Pompe, Tilo; Salchert, Katrin; Werner, Carsten

    2011-01-01

    Immobilized enzymes are currently used in many bioanalytical and biomedical applications. This protocol describes the use of thin films of maleic anhydride copolymers to covalently attach enzymes directly to solid supports at defined concentrations. The concentration and activity of the surface-bound enzymes can be tuned over a wide range by adjusting the concentration of enzyme used for immobilization and the physicochemical properties of the polymer platform, as demonstrated here for the proteolytic enzyme Subtilisin A. The versatile method presented allows for the immobilization of biomolecules containing primary amino groups to a broad variety of solid carriers, ranging from silicon oxide surfaces to standard polystyrene well plates and metallic surfaces. The approach can be used to investigate the effects of immobilized enzymes on cell adhesion, and on the catalysis of specific reactions.

  7. A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Pérez-Pellitero, Javier; Mackie, Allan D; Malfreyt, Patrice; Boutin, Anne

    2011-09-15

    We propose a new transferable force field to simulate phase equilibrium and interfacial properties of systems involving ethers and glycol ethers. On the basis of the anisotropic united-atom force field, only one new group is introduced: the ether oxygen atom. The optimized Lennard-Jones (LJ) parameters of this atom are identical whatever the molecule simulated (linear ether, branched ether, cyclic ether, aromatic ether, diether, or glycol ether). Accurate predictions are achieved for pure compound saturated properties, critical properties, and surface tensions of the liquid-vapor interface, as well as for pressure-composition binary mixture diagrams. Multifunctional molecules (1,2-dimethoxyethane, 2-methoxyethanol, diethylene glycol) have also been studied using a recently proposed methodology for the calculation of the intramolecular electrostatic energy avoiding the use of additional empirical parameters. This new force field appears transferable for a wide variety of molecules and properties. It is furthermore worth noticing that binary mixtures have been simulated without introducing empirical binary parameters, highlighting also the transferability to mixtures. Hence, this new force field gives future opportunities to simulate complex systems of industrial interest involving molecules with ether functions.

  8. Polybrominated Diphenyl Ethers (PBDEs) Action Plan

    EPA Pesticide Factsheets

    Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants in a number of applications. EPA is concerned that some of the component congeners are persistent, bioaccumulative and toxic.

  9. Triethylene Glycol Monomethyl Ether; Final Test Rule

    EPA Pesticide Factsheets

    EPA is issuing a final test rule under section 4 of the Toxic Substances Control Act (TSCA) requiring manufacturers and processors of triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) to perform developmental neurotoxicity tasting.

  10. Co-processing as a tool to improve aqueous dispersibility of cellulose ethers.

    PubMed

    Sharma, Payal; Modi, Sameer R; Bansal, Arvind K

    2015-01-01

    Cellulose ethers are important materials with numerous applications in pharmaceutical industry. They are widely employed as stabilizers and viscosity enhancers for dispersed systems, binders in granulation process and as film formers for tablets. These polymers, however, exhibit challenge during preparation of their aqueous dispersions. Rapid hydration of their surfaces causes formation of a gel that prevents water from reaching the inner core of the particle. Moreover, the surfaces of these particles become sticky, thus leading to agglomeration, eventually reducing their dispersion kinetics. Numerous procedures have been tested to improve dispersibility of cellulose ethers. These include the use of cross-linking agents, alteration in the synthesis process, adjustment of water content of cellulose ether, modification by attaching hydrophobic substituents and co-processing using various excipients. Among these, co-processing has provided the most encouraging results. This review focuses on the molecular mechanisms responsible for the poor dispersibility of cellulose ethers and the role of co-processing technologies in overcoming the challenge. An attempt has been made to highlight various co-processing techniques and specific role of excipients used for co-processing.

  11. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  12. Evaluation of poly(styrene-alt-maleic anhydride)-ethanol as enteric coating material.

    PubMed

    Lai, Xiaolin; Sun, Chengdong; Tian, Hua; Zhao, Wenjun; Gao, Lin

    2008-03-20

    This study aims at evaluating the potential of SMA-ethanol as enteric coating polymer for erythromycin tablets. SMA-ethanol was synthesized and characterized for physicochemical properties, molecular weight and thermal analysis. Free films were prepared by adding different kinds and amounts of plasticizers, the film surface topography was determined by a SEM, the tensile strength, water vapor transmission rate and moisture absorption were also tested to choose the most promising film. DBP was proved to be the most suitable plasticizer with a best using amount of 20%, such polymer films had low vapor transmission rate and low moisture absorption which were very important to an enteric coating material. The polymer was further characterized for film coating by evaluating the release of erythromycin tablets in vitro, tablets coated with SMA-ethanol can satisfy the drug release requests of USP when the film weight gains were between 4 and 6%; tablets coated with both a subcoat and the polymer showed excellent gastro-resistance, less than 0.2% drug release occurred even with weight gains as less as 2% after 2h exposure to acid (pH 1), while over 90% drug release occurred in pH 6.8 sodium phosphate buffer within 45 min, regardless of weight gains of coating material, moreover, we confirmed that the application of a subcoat could decrease the amount of required coating polymer. In conclusion, the potential use of SMA-ethanol as enteric coating material was demonstrated.

  13. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  14. Conformations and Barriers to Methyl Group Internal Rotation in Two Asymmetric Ethers: Propyl Methyl Ether and Butyl Methyl Ether

    NASA Astrophysics Data System (ADS)

    Long, B. E.; Dechirico, F.; Cooke, S. A.

    2012-06-01

    The conformational preferences of the O-C-C-C unit are important in many biological systems with the unit generally preferring a gauche configuration compared to an anti configuration. Butyl methyl ether and propyl methyl ether provide very simple systems for this phenomenom to manifest. Pure rotational spectra of the title molecules have been recorded using chirped pulse Fourier transform microwave spectroscopy (CP-FTMW). In the case of butyl methyl ether, only one conformer has been observed. This conformer has torsional angles of COCC = 180°, OCCC = 62° and CCCC = 180° (anti-gauche-anti) and rotational constants of A = 10259.4591(33) MHz, B = 1445.6470(13) MHz, and C = 1356.2944(14) MHz. The rotational spectrum was doubled and has been analyzed to produce an effective barrier to methyl group internal rotation of 780(35) cm-1. A prior rotational spectroscopic study on propyl methyl ether had focused only on the high energy anti-anti conformer. We have analyzed spectra from the lowest energy anti-gauche conformer and the spectroscopic constants will be presented. A summary of the differences in conformational energies and methyl group internal rotation barriers for the class of aliphatic asymmetric ethers will be presented. K. N. Houk, J. E. Eksterowicz, Y.-D. Wu, C. D. Fuglesang, D. B. Mitchell. J. Am. Chem. Soc. 115 (4170), 1993. Hiroshi Kato, Jun Nakagawa, Michiro Hayashi. J. Mol. Spectrosc. 80 (272), 1980.

  15. Polymer-coated fluorescent CdSe-based quantum dots for application in immunoassay.

    PubMed

    Speranskaya, Elena S; Beloglazova, Natalia V; Lenain, Pieterjan; De Saeger, Sarah; Wang, Zhanhui; Zhang, Suxia; Hens, Zeger; Knopp, Dietmar; Niessner, Reinhard; Potapkin, Dmitry V; Goryacheva, Irina Yu

    2014-03-15

    The paper describes all stages of synthesis and characterization of biocompatible CdSe-based core/shell quantum dots (QDs) and their application as fluorescent label for immunoassay. Special attention was focused on development of maleic anhydride-based amphiphilic polymers for QDs solubilization in aqueous media. In this work two PEG-amines were tried for polymer modification: monoamine Jeffamine M 1000 used previously in some researches and diamine Jeffamine ED-2003 applied for the first time for QDs solubilization. The use of different Jeffamines allows us to obtain QDs with carboxyl or amine functional groups available for conjugation. The influence of polymer composition on optical properties of the nanocrystals and their stability in aqueous solutions as well as on their conjugation with biomolecules was studied. QDs with different coatings were used as biolabels in quantitative fluorescence microtiter plate immunoassay and qualitative on-site column test. It was found that quantum dots covered with amphiphilic polymer prepared from poly(maleic anhydride-alt-1-octadecene) and Jeffamine ED-2003 retained up to 90% of their initial brightness, easily conjugated with protein and showed low non-specific adsorption. In optimized conditions the obtained QDs were successfully used for determination of mycotoxin deoxynivalenol in wheat and maize samples by fluorescence microtiter plate immunoassay with an IC50 of 220 μg kg(-1) and by on-site column test with cut-off of 500 μg kg(-1).

  16. Molecular Engineering of Liquid Crystalline Polymers by Living Polymerization. 10. Influence of Molecular Weight on the Phase Transitions of Poly(Omega-((4-Cyano-4’-Biphenyl)oxy)alkyl Vinyl Ethers)s with Nonyl and Decanyl Alkyl Groups

    DTIC Science & Technology

    1990-10-16

    Report No. 41 NAMAE OF PERFOMN4iNG OIRGANLZAI0N 60 OF~iCE SYMBOL 76 NAME OF MONITORING ORGANIZATION ase Western Reserve Univ. 4Btak N L ADRESS (Oty...PL/NO’NG/SPONSOMRNG 8b OfFCE SYMBOL 9 PROCUJREMENT INSTRUJMENT IOENTIFiC-ATiON NJMBEgt ,ftGANLZATION 0f sp9J’catJe) L ADORE S(Cfry. Stire..ria ZIP...polymerization of 9.-[(4-cyano-4’-biphenyl)oxylnonyI vinyl ether ( L -9) and 10-[(4- cyano-4’-bipnenyl)oxy]decanyl vinyl ether (6-10) are described. The

  17. Stereocontrolled Cyanohydrin Ether Synthesis through Chiral Brønsted Acid-Mediated Vinyl Ether Hydrocyanation

    PubMed Central

    Lu, Chunliang; Su, Xiaoge; Floreancig, Paul E.

    2013-01-01

    Vinyl ethers can be protonated to generate oxocarbenium ions that react with Me3SiCN to form cyanohydrin alkyl ethers. Reactions that form racemic products proceed efficiently upon converting the vinyl ether to an α-chloro ether prior to cyanide addition in a pathway that proceeds through Brønsted acid-mediated chloride ionization. Enantiomerically enriched products can be accessed by directly protonating the vinyl ether with a chiral Brønsted acid to form a chiral ion pair. Me3SiCN acts as the nucleophile and PhOH serves as a stoichiometric proton source in a rare example of an asymmetric bimolecular nucleophilic addition reaction into an oxocarbenium ion. Computational studies provide a model for the interaction between the catalyst and the oxocarbenium ion. PMID:23968162

  18. 78 FR 4792 - Epoxy Polymer; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... AGENCY 40 CFR Part 180 Epoxy Polymer; Exemption From the Requirement of a Tolerance AGENCY: Environmental... requirement of a tolerance for residues of polymers of one or more diglycidyl ethers of bisphenol A...- cyclohexane-dicarboxylic anhydride and 1,2,3,6-tetrahydrophthalic anhydride; also referred to as epoxy...

  19. Molecular Engineering of Liquid Crystal Polymers by Lining Polymerization. 16. Tailor-Made sC* Mesophase in Copolymers of 4-((S-(-)-2- Methyl-1-Butyl)Oxycarbonyl)-4’-omega-Oxyalkyl-1-Vinyl Ether)Biphenyl With Undecanyl and Octyl Alkyl Groups

    DTIC Science & Technology

    1991-10-30

    4-{ [S-(-)-2-Methyl- l -Butyl]Oxycarbonyl) -4’-(W-Oxyalkyl- 1 -Vinyl Ethcr)Biphenyl with Undecanyl and Octyl Alkyl Groups 12. PERSONAL AUTHOR(S...polymerization lower than 40 and polydispersities 1.15 were synthesized and characterized by differential scanning calorimetry (DSC) and thermal optical...an enantiotropic unidentified sx mesophase. Copolymers of 14-8 with 4-{[S(-)2-methyl- l -butyll oxycarbonyl)- 4 ’-( l - oxyuindecanyl-lI-vinyl ether

  20. A plasticized polymer-electrolyte-based photoelectrochemical solar cell

    SciTech Connect

    Mao, D.; Ibrahim, M.A.; Frank, A.J.

    1998-01-01

    A photoelectrochemical solar cell based on an n-GaAs/polymer-redox-electrolyte junction is reported. Di(ethylene glycol) ethyl ether acrylate containing ferrocene as a redox species and benzoin methyl ether as a photoinitiator is polymerized in situ. Propylene carbonate is used as a plasticizer to improve the conductivity of the polymer redox electrolyte. For thin (1 {micro}m) polymer electrolytes, the series resistance of the cell is negligible. However, the short-circuit photocurrent density of the cell at light intensities above 10 mW/cm{sup 2} is limited by mass transport of redox species within the polymer matrix. At a light intensity of 70 mW/cm{sup 2}, a moderate light-to-electrical energy conversion efficiency (3.1%) is obtained. The interfacial charge-transfer properties of the cell in the dark and under illumination are studied.

  1. Exploration of CO2-Philicity of Poly(vinyl acetate-co-alkyl vinyl ether) through Molecular Modeling and Dissolution Behavior Measurement.

    PubMed

    Hu, Dongdong; Sun, Shaojun; Yuan, Pei-Qing; Zhao, Ling; Liu, Tao

    2015-09-24

    Hydrocarbon CO2-philes are of great interest for use in expanding CO2 applications as a green solvent. In this work, multiscale molecular modeling and dissolution behavior measurement were both applied to explore CO2-philicity of the poly(vinyl acetate) (PVAc)-based copolymer. Introduction of a favorable comonomer, i.e., vinyl ethyl ether (VEE), could significantly reduce the polymer-polymer interaction on the premise that the polymer-CO2 interaction was not weakened but enhanced. The ab initio calculated interaction of the model molecules with CO2 demonstrated that the ether group in VEE or VBE was the suitable CO2-philic segment. From the molecular dynamics (MD) simulations of polymer/CO2 systems, the interaction energy and Flory-Huggins parameter (χ12) of poly(VAc-alt-VEE)/CO2 supported that poly(VAc-alt-VEE) possessed better CO2-philicity than PVAc. The dissolution behaviors of the synthesized poly(VAc-co-alkyl vinyl ether) copolymers in CO2 showed the best CO2-phile had the VEE content of about 34 mol %. The MD simulations also indicated that the interaction of random poly(VAc-co-VEE) containing about 30 mol % VEE with CO2 was the strongest and the χ12 was the smallest in these polymer/CO2 systems. Not only could the VEE monomer reduce the polymer-polymer interaction, but it could also enhance the polymer-CO2 interaction with an optimized composition. Introducing a suitable comonomer with a certain composition might be a promising strategy to form the synergistic effect of polymer-polymer interaction and polymer-CO2 interaction for screening the hydrocarbon CO2-philes.

  2. Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Borup, Rodney L.

    The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.

  3. Chemistry and properties of poly(arylene ether benzoxazole)s

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.

    1992-01-01

    Several new poly(arylene ether benzoxazole)s (PAEBs) were prepared by the nucleophilic displacement reaction of activated aromatic difluorides with two novel bis(hydroxyphenyl benzoxazole), using potassium carbonate. The 6F-containing PAEBs exhibited better solubility and higher Tgs than did the 6,6'-bis-(2-(4-hydroxyphenyl)benzoxazole)-derived polymers. Several of the 6,6'bis(2-(4-hydroxyphenyl)benzoxazole)-derived polymers exhibited crystallinity by DSC and wide-angle X-ray diffraction. Unorientated thin film properties of the 6F-containing PAEBs were comparable to those of other 6F-containing PAEBS that were previously reported. The chemistry and the physical and mechanical properties of the above polymers are discussed.

  4. Ether and the atmospheric chemistry data assimilation

    NASA Astrophysics Data System (ADS)

    Ricaud, P.; Phulpin, T.; Girod, F.; Boonne, C.

    The French atmospheric chemistry data base Ether has been developed and funded by the French Space Agency (CNES) and the Institut National des Sciences de l'Univers (INSU/CNRS) for about 6 years. The role of Ether is to assist French atmospheric researchers, European scientists, as long as they are involved in co-operation agreements with French scientists, to locate, access and interpret atmospheric data. This centre gathers data from satellite, balloon campaigns linked to satellite validation, aircraft and model results for stratospheric and tropospheric purposes and from different levels of production (raw data, physical data, interpolated or assimilated data). All Ether data are available on-line through a World Web interface (http://ether.ipsl.jussieu.fr). Software and added-value services are provided to assist in the manipulation of the data or to generate higher levels standard data products. Extensive information is also provided on the data collection procedures, formats, contact names and references to scientific papers. In addition to data support activities, a major goal of Ether is to promote the creation of different expertise networks on varying atmospheric chemistry topics. The first working group has been created on data assimilation. It consists in gathering expertises in different themes (satellites, assimilation techniques, modelling, real-time processing) in order to optimally develop a tool able to answer different scientific questions relative to the evolution of the Earth atmosphere in terms of chemistry and dynamics. Based on the PALM tool able to interconnect different codes, it will be able to process different satellite data using two atmospheric models and assimilation schemes within the French Ether data base. Ether will focus on the handling and on the development of added-value services of data for which the French community is directly or indirectly involved. For these projects Ether will provide all the data needed, and will

  5. Synthesis of Fluorinated Polymers and Evaluation of Wettability.

    PubMed

    Kimura, Tamami; Kasuya, Maria Carmelita; Hatanaka, Kenichi; Matsuoka, Koji

    2016-03-17

    Two kinds of fluorinated polymers were synthesized: an acrylate polymer having a fluorinated triethylene glycol as a pendant group (2a) and a fluoroalkyl acrylate polymer (2b). The contact angle of these fluorinated polymers against water, non-fluorinated alcohols and fluorinated alcohols were evaluated. As compared with the fluoroalkyl polymer (2b), fluoroethylene glycol polymer (2a) showed smaller contact angle against water and non-fluorinated alcohols. This supports the proposition that changing the alkyl chain into the ethylene glycol-type chain gave some interaction between etheric oxygen and water or non-fluorinated alcohols. In addition, fluoroalkyl acrylate polymer (2b) showed remarkably low values of critical surface tension.

  6. Layer-by-layer assembly and characterization of multilayers of a manganese porphyrin linked poly(4-vinylpyridinium) derivative and poly(styrenesulfonic acid-o-maleic) acid.

    PubMed

    Wang, Hong-Lei; Sun, Qing; Chen, Meng; Miyake, Jun; Qian, Dong-Jin

    2011-08-16

    Multilayers of manganese(III) porphyrin-linked poly(vinylpyridinium) (MnTMPyP-PVPMe) polyelectrolyte and poly(styrenesulfonic acid-o-maleic) acid (PSS) have been assembled on gold, quartz, and indium tin oxide surfaces by a layer-by-layer (LBL) technique. The assembly process was monitored by measuring their absorption spectra and frequency change after each assembly, both of which confirmed the formation of three-dimensional MnTMPyP-PVPMe/PSS multilayers. The Soret absorption band of porphyrin red shifted about 8 nm in the multilayer compared with that in the dilute aqueous solution. The average mass changes for each assembly of MnTMPyP-PVPMe and PSS were estimated to be about 2.9 and 0.25 μg/cm(2), respectively. X-ray photoelectron spectra revealed that the as-prepared multilayers were composed of S 2p, C 1s, N 1s, O 1s, and Mn 2p, corresponding to polymers of MnTMPyP-PVPMe and PSS. A rough surface was observed after the assembly of MnTMPyP-PVPMe on the gold surface, but it became smoother when the PSS layer was adsorbed. The significant difference in the mass change and film morphology after the assembly of MnTMPyP-PVPMe compared to those after the assembly of PSS was ascribed to the reason that the MnTMPyP-PVPMe polyelectrolyte contained large metalloporphyrin macrocycles, which were axially coordinated to the pyridyl substituents of the PVP polymeric backbones. The cyclic voltammograms revealed two couples of redox waves in the phosphate electrolyte solution at pH 11, which corresponded to the electron-transfer processes of Mn(II)/Mn(III) and Mn(III)/Mn(IV) of polymeric manganese porphyrin MnTMPyP-PVPMe. The charge-transfer process was also investigated. Finally, the present MnTMPyP-PVPMe/PSS multilayers were used as a heterogeneous catalyst for the decoloration of an azo dye.

  7. Morphology and phase controlled cobalt nanostructures in magnetic polypropylene nanocomposites: the role of alkyl chain-length in maleic anhydride grafted polypropylene.

    PubMed

    He, Qingliang; Yuan, Tingting; Luo, Zhiping; Haldolaarachchige, Neel; Young, David P; Wei, Suying; Guo, Zhanhu

    2013-04-04

    A novel function of maleic anhydride grafted polypropylene (PP) with different backbone chain-lengths was demonstrated, i.e., in controlling the cobalt morphologies (dispersed polyhedral vs. assembled chain nanostructure), crystalline structures (ε- vs. β-phase), and magnetic property (242 vs. 808 Oe) in the synthesized magnetic PP nanocomposites.

  8. The carry-through of residues of maleic hydrazide from treated potatoes, following manufacture into potato crisps and 'jacket' potato crisps.

    PubMed

    Lewis, D J; Thorpe, S A; Wilkinson, K; Reynolds, S L

    1998-07-01

    Potatoes, which had been treated 'in the field' with a commercial formulation of maleic hydrazide, were processed into potato crisps and jacket potato crisps on a factory production line using standard manufacturing conditions. Samples were taken at strategic points throughout the process and analysed to determine the degree of carry-through of residues. Results demonstrated that ca 56% of the maleic hydrazide residue in a potato could be carried through into the potato crisps, irrespective of which type of crisp was being manufactured. Results from a similarly constructed study investigating the fate of pesticides applied post-harvest showed that carry-through was less than 10%. This difference is explained in terms of the different modes of action of the two classes of pesticides being investigated. It is known that, as maleic hydrazide is a systemic pesticide, it will be located within the flesh of the potato tuber and is therefore likely to be protected from the various stages of the crisping process. However, the post-harvest non-systemic pesticides are applied to the exterior surface of the tuber and are therefore not likely to be protected in the same way. The results also showed that, due to the concentration effect caused by the loss of moisture during crisp manufacture, the levels of maleic hydrazide residues in crisps (on a mg/kg product basis) were approximately twice those measured in the original potatoes.

  9. Characterization of maleic acid/anhydride copolymer films by low-rate dynamic liquid-fluid contact angle measurements using axisymmetric drop shape analysis.

    PubMed

    Uhlmann, Petra; Skorupa, Sebastian; Werner, Carsten; Grundke, Karina

    2005-07-05

    Thin films of alternating maleic acid/anhydride copolymers (poly(octadecene-alt-maleic acid/anhydride), POMA; poly(propene-alt-maleic acid/anhydride), PPMA; poly(styrene-alt-maleic acid/anhydride), PSMA) were studied to unravel the influence of the comonomer characteristics in the backbone on the surface-energetic properties of the copolymer films in the dry state and in contact with aqueous solutions. Water contact angle measurements revealed a graduation of the wettability of the dry hydrolyzed and annealed copolymer films that was dependent on the comonomer unit. It ranged from moderately hydrophilic (PPMA, annealed gamma(sv) = 39.9 mJ/m2) to very hydrophobic (POMA, annealed, gamma(sv) = 18.4 mJ/m2) surfaces. Liquid-fluid contact angle measurements using captive air bubbles were performed in different aqueous media (pure water, phosphate-buffered saline, and 10(-)(3) M KCl of two different pH values (pH = 3 and pH = 10) to study the copolymer films in their hydrated states relevant for biointerfacial phenomena. It was found that the graduation of the wettability of the copolymer films in the dry state is overall maintained upon immersion in aqueous solutions. The dependence of the wettability on the pH value of the aqueous medium could be related to the (de)protonation of the carboxylic groups.

  10. SELECTIVE HYDROGENATION OF MALEIC ANHYDRIDE TO Y-BUTROLACTONE OVER PD/AL2O3 CATALYST USING SUPERCRITICAL CARBON DIOXIDE MEDIUM

    EPA Science Inventory

    Hydrogenation of maleic anhydride to g-butyrolactone over Pd/Al2O3 catalyst under supercritical carbondioxide medium

    Unnikrishnan R. Pillai and Endalkachew Sahle-Demessie
    National Risk Management Research laboratory (NRMRL), Clean Processes Branch, MS 443, United States...

  11. SELECTIVE HYDROGENATION OF MALEIC ANHYDRIDE TO Y-BUTYROLACTONE OVER PD/AL(2)O(3) CATALYST USING SUPERCRITICAL CO(2) AS SOLVENT

    EPA Science Inventory

    A selective hydrogenation of maleic anhydride to either y-butyrolactone or succinic anhydride over simple Pd/Al(2)O(3) catalyst under supercritical CO(2) medium is described for the first time which has considerable promise for obht lab-scale as well as industrial selective hydro...

  12. Keto-Functionalized Polymer Scaffolds As Versatile Precursors to Polymer Side Chain Conjugates.

    PubMed

    Liu, Jingquan; Li, Ronald C; Sand, Gregory J; Bulmus, Volga; Davis, Thomas P; Maynard, Heather D

    2013-01-01

    A new methacrylate monomer with a reactive ketone side-chain, 2-(4-oxo-pentanoate) ethyl methacrylate (PAEMA), was synthesized and subsequently polymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization to give a polymer with a narrow molecular weight distribution (PDI = 1.25). The polymer was chain extended with poly(ethylene glycol methyl ether acrylate) (PEGMA) to yield a block copolymer. Aminooxy containing small molecules and oligoethylene glycol were conjugated to the ketone functionality of the side chain in high yields. Cytotoxicity of the oxime-linked tetra(ethylene glycol) polymer to mouse fibroblast cells was investigated; the polymer was found to be non-cytotoxic up to 1 mg/mL. The ease with which this polymer is functionalized, suggests that it may be useful in forming tailored polymeric medicines.

  13. New Development of Polymer-Based Cotton for Breathable Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, we converted the poly (ethylene oxide) dibromide to poly (ethylene oxide) diazides and reacted to study cycloaddition polymerization with bisphenol-A dipropargyl ether to produce elastomers compatible with cotton (Polymer Preprints, 2005, 46(1), 737-738). The reactants were characterized w...

  14. Preparation of soybean oil polymers with high molecular weight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cationic polymerization of soybean oils was initiated by boron trifluoride diethyl etherate BF3.O(C2H5)2 in supercritical carbon dioxide (scCO2) medium. The resulting polymers had molecular weight ranging from 21,842 to 118,300 g/mol. Nuclear magnetic resonance spectroscopy (NMR) and gel perme...

  15. Inhalation anaesthesia: from diethyl ether to xenon.

    PubMed

    Bovill, J G

    2008-01-01

    Modern anaesthesia is said to have began with the successful demonstration of ether anaesthesia by William Morton in October 1846, even though anaesthesia with nitrous oxide had been used in dentistry 2 years before. Anaesthesia with ether, nitrous oxide and chloroform (introduced in 1847) rapidly became commonplace for surgery. Of these, only nitrous oxide remains in use today. All modern volatile anaesthetics, with the exception of halothane (a fluorinated alkane), are halogenated methyl ethyl ethers. Methyl ethyl ethers are more potent, stable and better anaesthetics than diethyl ethers. They all cause myocardial depression, most markedly halothane, while isoflurane and sevoflurane cause minimal cardiovascular depression. The halogenated ethers also depress the normal respiratory response to carbon dioxide and to hypoxia. Other adverse effects include hepatic and renal damage. Hepatitis occurs most frequently with halothane, although rare cases have been reported with the other agents. Liver damage is not caused by the anaesthetics themselves, but by reactive metabolites. Type I hepatitis occurs fairly commonly and takes the form of a minor disturbance of liver enzymes, which usually resolves without treatment. Type II, thought to be immune-mediated, is rare, unpredictable and results in a severe fulminant hepatitis with a high mortality. Renal damage is rare, and was most often associated with methoxyflurane because of excessive plasma fluoride concentrations resulting from its metabolism. Methoxyflurane was withdrawn from the market because of the high incidence of nephrotoxicity. Among the contemporary anaesthetics, the highest fluoride concentrations have been reported with sevoflurane, but there are no reports of renal dysfunction associated with its use. Recently there has been a renewed interest in xenon, one of the noble gases. Xenon has many of the properties of an ideal anaesthetic. The major factor limiting its more widespread is the high cost, about

  16. Functional Aromatic Poly(1,3,4-Oxadiazole-Ether)s with Benzimidazole Pendants: Synthesis, Thermal and Dielectric Studies

    PubMed Central

    Ganesh, Shimoga D.; Pai, Vasantakumar K.; Kariduraganavar, Mahadevappa Y.; Jayanna, Madhu B.

    2014-01-01

    Poly(1,3,4-oxadiazole-ether) with reactive carboxylic acid pendants was synthesized from solution polymerization via nucleophilic displacement polycondensation among 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole (BFPOx) and 4,4′-bis(4-hydroxyphenyl) valeric acid (BHPA). Without altering the polymeric segments, benzimidazole modified poly(1,3,4-oxadiazole-ether)s were prepared by varying stoichiometric ratios of 1,2-phenylenediamine. The molecular structural characterization of these polymers was achieved by, FT-IR, NMR, TGA, elemental analysis, and analytical techniques. The weight-average molecular weight of virgin polymer with carboxylic acid functionality was determined by gel permeation chromatography (GPC) and was found to be 22400 (Mw/Mn = 2.07). All the synthesized polyethers were compressed into pellets and electrical contacts were established to perform dielectric properties. PMID:27437448

  17. 41. LOOKING WEST AT BUILDING NO. 519, ETHER AND ALCOHOL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. LOOKING WEST AT BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, (LEFT) AND BUILDING NO. 521, ETHER VAULT, (RIGHT) IN FOREGROUND - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  18. 37. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, NORTHWEST CORNER OF BUILDING. BUILDING NO. 521 (ETHER VAULT) IN BACKGROUND LEFT. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  19. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  20. Discovery of Antibiotics-derived Polymers for Gene Delivery using Combinatorial Synthesis and Cheminformatics Modeling

    PubMed Central

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal

    2014-01-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709

  1. Discovery of antibiotics-derived polymers for gene delivery using combinatorial synthesis and cheminformatics modeling.

    PubMed

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Ramos, James; Breneman, Curt M; Rege, Kaushal

    2014-02-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and 'building block' polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology.

  2. High octane ethers from synthesis gas-derived alcohols

    SciTech Connect

    Klier, K.; Herman, R.G.; Johansson, M.; Feeley, O.C.

    1992-01-01

    The objective of the proposed research is to synthesize high octane ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from H{sub 2}/CO/CO{sub 2} coal-derived synthesis gas via alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers.

  3. Production of nabumetone nanoparticles: Effect of molecular weight, concentration and nature of cellulose ether stabiliser.

    PubMed

    Goodwin, D J; Martini, L G; Lawrence, M J

    2016-12-05

    The ability of a range of hydrophilic nonionic cellulose ethers (CEs) (namely methylhydroxethylcellulose, hydroxypropylmethylcellulose, ethylhydroxyethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose) to prepare stable nabumetone nanoparticles (<1000nm, as measured by laser diffraction) using wet-bead milling has been investigated. Due to the limited range of CE molecular weights commercially available, the CEs were degraded using ultrasonication for varying lengths of time to yield CEs of lower molecular weight. Of the CEs tested, only hydroxyethylcellulose was found not to stabilise the production of nabumetone nanoparticles at any of the molecular weights tested, namely viscosity average molecular weights (Mv) in the range of 236-33kg/mol. All other CEs successfully stabilised nabumetone nanoparticles, with the lower molecular weight/viscosity polymers within a series being more likely to result in nanoparticle production than their higher molecular weight counterparts. Unfortunately due to the nature of the ultrasonication process, it was not possible to compare the size of nabumetone particles produced using polymers of identical Mv. There was, however, enough similarity in the Mv of the various polymers to draw the general conclusion that there was no strong correlation between the Mv of the various polymers and their ability to produce nanoparticles. For example hydroxypropylcellulose of 112.2kg/mol or less successfully produced nanoparticles while only ethylhydroxyethylcellulose and hydroxypropylmethyl polymers of 52 and 38.8kg/mol or less produced nanoparticles. These results suggest that polymer molecular weight is not the only determinant of nanoparticle production and that structure of the polymer is at least as important as its molecular weight. In particular the hydrophobic nature of the CE was thought to be an important factor in the production of nabumetone nanoparticles: the more hydrophobic the polymer, the stronger its interaction

  4. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    PubMed

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  5. 40 CFR 721.3435 - Butoxy-substituted ether alkane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butoxy-substituted ether alkane. 721... Substances § 721.3435 Butoxy-substituted ether alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as butoxy-substituted ether...

  6. 40 CFR 721.3465 - Stilbene diglycidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Stilbene diglycidyl ether. 721.3465... Substances § 721.3465 Stilbene diglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as stilbene diglycidyl ether (PMN P-96-1427) is subject...

  7. 39. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, LOOKING AT SOUTHWEST CORNER WITH BUILDING NO. 521, ETHER VAULT, AND BUILDING NO. 519-A, ETHER & ALOCOHL STORAGE TANKS, IN BACKGROUND RIGHT. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  8. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  9. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  10. Spectroscopic and thermal studies of chromium(III), molybdenum(VI) and ruthenium(0) complexes of maleic hydrazide

    NASA Astrophysics Data System (ADS)

    Mohamed, Hassan A.; Ali, Saadia A.; Ramadan, Ramadan M.

    2006-07-01

    Interaction of maleic hydrazide (LH 2) with [Cr(CO) 6] in air at atmospheric pressure resulted in the formation of the complex [(LH)Cr(μ-O) 2Cr(LH)] ( 1). Reaction of LH 2 with [Mo(CO) 6] in air also gave the complex [(LH 2)O 2Mo(μ-O) 2MoO 2(LH 2)] ( 2). Under the same conditions, the reaction of LH 2 with [Ru 3(CO) 12] resulted in the formation of the tricarbonyl complex [Ru(CO) 3(LH 2)] ( 3). The complexes were characterized by elemental analysis, IR, and 1H NMR spectroscopy. The thermal properties of the complexes were investigated by thermogravimetry technique.

  11. Spectroscopic and thermal studies of chromium(III), molybdenum(VI) and ruthenium(0) complexes of maleic hydrazide.

    PubMed

    Mohamed, Hassan A; Ali, Saadia A; Ramadan, Ramadan M

    2006-07-01

    Interaction of maleic hydrazide (LH(2)) with [Cr(CO)(6)] in air at atmospheric pressure resulted in the formation of the complex [(LH)Cr(mu-O)(2)Cr(LH)] (1). Reaction of LH(2) with [Mo(CO)(6)] in air also gave the complex [(LH(2))O(2)Mo(mu-O)(2)MoO(2)(LH(2))] (2). Under the same conditions, the reaction of LH(2) with [Ru(3)(CO)(12)] resulted in the formation of the tricarbonyl complex [Ru(CO)(3)(LH(2))] (3). The complexes were characterized by elemental analysis, IR, and (1)H NMR spectroscopy. The thermal properties of the complexes were investigated by thermogravimetry technique.

  12. Recovery of uranium(VI) from aqueous solution by 2-picolylamine functionalized poly(styrene-co-maleic anhydride) resin.

    PubMed

    Liu, Shudi; Yang, Ying; Liu, Tonghuan; Wu, Wangsuo

    2017-07-01

    A 2-picolylamine functionalized poly(styrene-co-maleic anhydride) resin was synthesized and characterized by FT-IR, elemental analysis, SEM and XPS. To recover uranium from aqueous solution, the influence factors such as pH values, contact time, temperature and initial uranium concentration were optimized. Adsorption kinetics fitted well with the pseudo-second-order model, whereas adsorption isotherm matched well with the Langmuir isothermal adsorption model, with the maximum sorption capacity of 518.39mgg(-1) at pH 5.30 and 298K. The uptake of uranium could be implied in 0.01M coexisted ions environment. Besides, the resin could be regenerated by 0.1M HNO3 and repeatedly utilized in circles. The study proved that the resin has potential application prospects for disposal of uranium(VI).

  13. Molecular Engineering of Liquid Crystal Polymers by Living Polymerization. 13. Synthesis and Living Cationic Polymerization of 4-((S(-)-2- Methyl-1-Butyl)Oxycarbonyl)-4’-(omega-Oxyalkyl-1-Vinyl Ether)Biphenyl with Undecanyl and Hexyl Alkyl Groups

    DTIC Science & Technology

    1991-04-10

    Ether (9& 9-6 was synthesized by the same prozedure as the one used for in the synthesis of 9-11. 6-Bromohexan- l -ol (12 g, 66.3 mmol) and 1,10...its distribution is unlimited. 91-00241 ______________ \\Il\\I\\\\ll\\\\ll\\1\\ l \\\\lll/!ll\\\\ l \\ll 5 21 0 9 3 "’REPORT DOCUMENTATION PAGE I& 49POAT S$ C.AiTf...apo.Cabie) & L . ADORESS (Cmry. State, ia ZIP Coot) 10 SOURCE of tUNOtNG F4UMIERS Offic o.C Naval Research PRGA POE. TASK VYORX UNIT 800 N. QuincY ELEMENT

  14. A Group of Sequence-Related Sphingomonad Enzymes Catalyzes Cleavage of β-Aryl Ether Linkages in Lignin β-Guaiacyl and β-Syringyl Ether Dimers

    PubMed Central

    2014-01-01

    Lignin biosynthesis occurs via radical coupling of guaiacyl and syringyl hydroxycinnamyl alcohol monomers (i.e., “monolignols”) through chemical condensation with the growing lignin polymer. With each chain-extension step, monolignols invariably couple at their β-positions, generating chiral centers. Here, we report on activities of bacterial glutathione-S-transferase (GST) enzymes that cleave β-aryl ether bonds in lignin dimers that are composed of different monomeric units. Our data reveal that these sequence-related enzymes from Novosphingobium sp. strain PP1Y, Novosphingobium aromaticivorans strain DSM12444, and Sphingobium sp. strain SYK-6 have conserved functions as β-etherases, catalyzing cleavage of each of the four dimeric α-keto-β-aryl ether-linked substrates (i.e., guaiacyl-β-guaiacyl, guaiacyl-β-syringyl, syringyl-β-guaiacyl, and syringyl-β-syringyl). Although each β-etherase cleaves β-guaiacyl and β-syringyl substrates, we have found that each is stereospecific for a given β-enantiomer in a racemic substrate; LigE and LigP β-etherase homologues exhibited stereospecificity toward β(R)-enantiomers whereas LigF and its homologues exhibited β(S)-stereospecificity. Given the diversity of lignin’s monomeric units and the racemic nature of lignin polymers, we propose that bacterial catabolic pathways have overcome the existence of diverse lignin-derived substrates in nature by evolving multiple enzymes with broad substrate specificities. Thus, each bacterial β-etherase is able to cleave β-guaiacyl and β-syringyl ether-linked compounds while retaining either β(R)- or β(S)-stereospecificity. PMID:25232892

  15. Separation of Dimethyl Ether from Syn-Gas Components by Poly(dimethylsiloxane) and Poly(4-methyl-1-pentene) Membranes

    SciTech Connect

    Christopher J. Orme; Frederick F. Stewart

    2011-05-01

    Permeability and selectivity in gas transport through poly(4-methyl-1-pentene) (TPX) and poly(dimethylsiloxane) (PDMS) using variable temperature mixed gas experiments is reported. Selected gases include H2, CO, CH4, CO2, and dimethyl ether (DME). The DME data is the first to be reported through these membranes. In this paper, the chosen polymers reflect both rubbery and crystalline materials. Rubbery polymers tend to be weakly size sieving, which, in this work, has resulted in larger permeabilities, lower separation factors, and lower activation energies of permeation (Ep). Conversely, the crystalline TPX membranes showed much greater sensitivity to penetrant size; although the gas condensability also played a role in transport.

  16. Review of glycol ether and glycol ether ester solvents used in the coating industry.

    PubMed Central

    Smith, R L

    1984-01-01

    Ethylene oxide-based glycol ether and glycol ether ester solvents have been used in the coatings industry for the past fifty years. Because of their excellent performance properties (evaporation rate, blush resistance, flow-out and leveling properties, solubility for coating resins, solvent activity, mild odor, good coupling ability, good solvent release) a complete line of ethylene oxide-based solvents of various molecular weights has been developed. These glycol ether and glycol ether ester solvents have better solvent activity for coating resin than ester or ketone solvents in their evaporation rate range. The gloss, flow and leveling, and general performance properties of many coating systems are dependent on the use of these products in the coating formula. Because of the concern about the toxicity of certain ethylene oxide-based solvents, other products are being evaluated as replacements in coating formulas. PMID:6499793

  17. The Effect of Nano-Morphology Modification Using an Amphiphilic Polymer on the Proton Conductivity of Composite Membrane for a Polymer Membrane-Based Fuel Cell.

    PubMed

    Roh, Sung-Hee; Rho, Seon-Gyun; Kim, Sang-Chai; Kim, Ju-Young; Jung, Ho-Young

    2016-02-01

    The effect of morphology modification using an amphiphilic polymer on the proton conductivity of composite membrane for a polymer membrane-based fuel cell was investigated. The proton conductivity of each composite membrane was analyzed by the electrochemical impedance spectroscopy (EIS). The morphological change was confirmed by scanning electron microscope (SEM). In the composite membrane, the proton conductive component was sulfonated poly(ether ether ketone) (sPEEK), while the nonconductive component was poly(vinylidenedifluoride) and the amphiphilic polymer as a compatibilizer was urethane acrylate non-ionomer (UAN). UAN as a compatibilizer improved the interfacial stability between sPEEK and PVdF polymers, even though two polymers were apparently immiscible. The homogeneous distribution of sPEEK and PVdF domains in the composite membrane was obtained with the introduction of UAN due to the amphiphilicity. Therefore, it was found that the proton conductivity of the composite membrane increased with the incorporation of UAN as a compatibilizer.

  18. POLYBROMINATED DIPHENYL ETHERS IN US SOILS

    EPA Science Inventory

    Chemical analysis of thirty-three soil samples from 15 US states reveals Polybrominated Diphenyl Ethers (PBDEs), in every sample.PBDE concentrations rangefrom 0.09 to 1200 parts per billion by mass. These data are the first analysis of soil concentrations of PBDEs in soils from a...

  19. Dimensionally Stable Ether-Containing Polyimide Copolymers

    NASA Technical Reports Server (NTRS)

    Fay, Catharine C. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    Novel polyimide copolymers containing ether linkages were prepared by the reaction of an equimolar amount of dianhydride and a combination of diamines. The polyimide copolymers described herein possess the unique features of low moisture uptake, dimensional stability, good mechanical properties, and moderate glass transition temperatures. These materials have potential application as encapsulants and interlayer dielectrics.

  20. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... that fits inside a patient's mouth and that is intended to deliver vaporized ether. (b) Classification... the quality system regulation in part 820 of this chapter, with the exception of § 820.180,...

  1. 21 CFR 868.5420 - Ether hook.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... that fits inside a patient's mouth and that is intended to deliver vaporized ether. (b) Classification... the quality system regulation in part 820 of this chapter, with the exception of § 820.180,...

  2. Orphan enzymes in ether lipid metabolism.

    PubMed

    Watschinger, Katrin; Werner, Ernst R

    2013-01-01

    Ether lipids are an emerging class of lipids which have so far not been investigated and understood in every detail. They have important roles as membrane components of e.g. lens, brain and testis, and as mediators such as platelet-activating factor. The metabolic enzymes for biosynthesis and degradation have been investigated to some extent. As most involved enzymes are integral membrane proteins they are tricky to handle in biochemical protocols. The sequence of some ether lipid metabolising enzymes has only recently been reported and other sequences still remain obscure. Defined enzymes without assigned sequence are known as orphan enzymes. One of these enzymes with uncharacterised sequence is plasmanylethanolamine desaturase, a key enzyme for the biosynthesis of one of the most abundant phospholipids in our body, the plasmalogens. This review aims to briefly summarise known functions of ether lipids, give an overview on their metabolism including the most prominent members, platelet-activating factor and the plasmalogens. A special focus is set on the description of orphan enzymes in ether lipid metabolism and on the successful strategies how four previous orphans have recently been assigned a sequence. Only one of these four was characterised by classical protein purification and sequencing, whereas the other three required alternative strategies such as bioinformatic candidate gene selection and recombinant expression or development of an inhibitor and multidimensional metabolic profiling.

  3. Bis(2-chloro-1-methylethyl) ether

    Integrated Risk Information System (IRIS)

    Bis ( 2 - chloro - 1 - methylethyl ) ether ; CASRN 108 - 60 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assess

  4. Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol)

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 006F www.epa.gov / iris TOXICOLOGICAL REVIEW OF ETHYLENE GLYCOL MONOBUTYL ETHER ( EGBE ) ( CAS No . 111 - 76 - 2 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) March 2010 U.S . Environmental Protection Agency Washington , DC DISCLAIMER Thi

  5. 40 CFR 721.3380 - Anilino ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3380 Anilino ether. Link to an amendment published at 79 FR 34637, June 18, 2014. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as anilino...

  6. Methyl tert-butyl ether (MTBE)

    Integrated Risk Information System (IRIS)

    Methyl tert - butyl ether ( MTBE ) ; CASRN 1634 - 04 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  7. POLYBROMINATED DIPHENYL ETHERS IN SOUTHERN MISSISSIPPI CATFISH

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in a wide variety of consumer products. Concerns surrounding these compounds are primarily due do their ubiquitous presence in the environment as well as in human tissue, such as milk, coupled with evidence indi...

  8. Imide/arylene ether block copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Hergenrother, P. M.; Bass, R. G.

    1991-01-01

    Two series of imide/arylene either block copolymers were prepared using an arylene ether block and either an amorphous or semi-crystalline imide block. The resulting copolymers were characterized and selected physical and mechanical properties were determined. These results, as well as comparisons to the homopolymer properties, are discussed.

  9. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter

    NASA Astrophysics Data System (ADS)

    Bastarrachea, Luis J.; Goddard, Julie M.

    2016-08-01

    A method to prepare a self-healing, antimicrobial polymer coating that retains efficacy against Escherichia coli O157:H7 in the presence of organic matter is reported. A coating composed of branched polyethyleneimine (PEI) and styrene maleic anhydride copolymer (SMA) was applied to a maleic anhydride functionalized polypropylene support. The chemistry of the polymer coating was designed to impart hydrophobicity due to the styrene subunits, intrinsic antimicrobial character (>99.9% reduction) from the cationic primary amine groups, and enhanced antimicrobial character (> 99.99% reduction) after chlorination of N-halamine forming groups. Antimicrobial effectiveness was demonstrated under conditions of increasing organic load. Up to 500 ppm horse serum, chlorinated coatings retained full antimicrobial character (>99.99% reduction). Even at 50,000 ppm of horse serum, the coating provided ∼90% reduction as prepared, and between ∼75% and ∼80% reduction in the form of N-halamines. Microscopy confirmed no evidence of bacterial adhesion on the coating surface. Finally, the coating exhibited self-healing properties after exposure to acid and alkaline solutions and restoration by heat, as confirmed through spectroscopy from the rebuilding of characteristic chemical bonds. Such robust antimicrobial polymer coatings with efficacy under conditions of increasing organic load may support reducing microbial cross-contamination in food and biomedical industries.

  10. Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane

    NASA Astrophysics Data System (ADS)

    Wang, Limei; Dou, Liyan; Guan, Guoying

    2017-03-01

    Side-chain-type sulfonated poly(aryl ether sulfone) (SPES) was synthesized and then electrospun into mats. Phosphosilicate glass (PS) via in situ sol-gel synthesis was enclosed in the mats to form a new reinforced composite membrane. The SPES/PS composite membranes showed satisfactory dimensional change behavior with varying humidity. Especially, the composite membrane exhibits excellent proton conductivity at harsh measurement conditions of low humidity at 80°C. The composite membrane with outstanding combined properties has potential applications for high temperature polymer electrolyte membrane fuel cells.

  11. Polyaryl ethers and related polysiloxane copolymer molecular coatings preparation and radiation degrdation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.

    1983-01-01

    Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.

  12. Modification of epoxy-reinforced glass-cloth composites with a perfluorinated alkyl ether elastomer

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Chen, T. S.; Taylor, M.

    1984-01-01

    A perfluorinated alkyl ether diacyl fluoride prepolymer (molecular weight about 1500) was coreacted with Epon 828 epoxy resin and diamino diphenyl sulfone to obtain an elastomer-toughened, glass-cloth composite. Improvements in flexural toughness, impact resistance, and water resistance, without loss of strength, modulus of elasticity or a lowering of the glass-transition temperature, were realized over those of the unmodified composite. Factors concerning optimization of the process are discussed. Results suggest that a simultaneously interpenetrating polymer network may be formed which gives rise to a measured improvement in composite mechanical properties.

  13. Preparation of Sulfonated Poly(aryl ether sulfone) Electrospun Mat/Phosphosilicate Composite Proton Exchange Membrane

    NASA Astrophysics Data System (ADS)

    Wang, Limei; Dou, Liyan; Guan, Guoying

    2017-01-01

    Side-chain-type sulfonated poly(aryl ether sulfone) (SPES) was synthesized and then electrospun into mats. Phosphosilicate glass (PS) via in situ sol-gel synthesis was enclosed in the mats to form a new reinforced composite membrane. The SPES/PS composite membranes showed satisfactory dimensional change behavior with varying humidity. Especially, the composite membrane exhibits excellent proton conductivity at harsh measurement conditions of low humidity at 80°C. The composite membrane with outstanding combined properties has potential applications for high temperature polymer electrolyte membrane fuel cells.

  14. Ionic Transport Across Interfaces of Solid Glass and Polymer Electrolytes

    SciTech Connect

    Tenhaeff, Wyatt E; Yu, Xiang; Hong, Kunlun; Perry, Kelly A; Dudney, Nancy J

    2011-01-01

    A study of lithium cation transport across solid-solid electrolyte interfaces to identify critical resistances in nanostructured solid electrolytes is reported. Bilayers of glass and polymer thin film electrolytes were fabricated and characterized for this study. The glass electrolyte was lithium phosphorous oxynitride (Lipon), and two polymer electrolytes were studied: poly(methyl methacrylate-co-poly(ethylene glycol) methyl ether methacrylate) and poly(styrene-co-poly(ethylene glycol) methyl ether methacrylate). Both copolymers contained LiClO{sub 4} salt. In bilayers where polymer electrolyte layers are fabricated on top of Lipon, the interfacial resistance dominates transport. At 25 C, the interfacial resistance is at least three times greater than the sum of the Lipon and polymer electrolyte resistances. By reversing the structure and fabricating Lipon on top of the polymer electrolytes, the interfacial resistance is eliminated. Experiments to elucidate the origin of the interfacial resistance in the polymer-on-Lipon bilayers reveal that the solvent mixtures used to fabricate the polymer layers do not degrade the Lipon layer. The importance of the polymer electrolytes' mechanical properties is also discussed.

  15. High performance polymers and polymer matrix composites for spacecraft structural applications

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Connell, J. W.

    1992-01-01

    A program implemented by NASA Langley Research Center to develop and evaluate new polymers and polymer matrix composites for spacecraft structural applications is examined. Various polymeric films, moldings, and adhesives are evaluated for resistance to atomic oxygen and high energy electron and UV radiation. Thin films from the poly(arylene ether)s containing phenylphosphine oxide groups and the siloxane-epoxies exhibited minor weight loss compared to Kapton polyimide after exposure. Large doses (greater than 10 exp 9 rads) of electron radiation, simulating 30 yr of exposure in GEO, are found to alter the chemical structure of epoxies by both chain scission and cross-linking. The thermal cycling representative of both LEO and GEO environments can cause microcracking in composites which can in turn affect the dimensional stability and produce mechanical property reductions. The processing and fabrication issues associated with precision composite spacecraft components are also addressed.

  16. Polymer-organoclay nanocomposites by melt processing

    NASA Astrophysics Data System (ADS)

    Cui, Lili

    2009-12-01

    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  17. Process for making propenyl ethers and photopolymerizable compositions containing them

    DOEpatents

    Crivello, J.V.

    1996-01-23

    Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} (V) wherein n is an integer from one to six and A is selected from cyclic ethers, polyether, and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  18. Process for making propenyl ethers and photopolymerizable compositions containing them

    DOEpatents

    Crivello, James V.

    1996-01-01

    Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.

  19. Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems.

    PubMed

    Wang, Wentao; Ji, Xin; Na, Hyon Bin; Safi, Malak; Smith, Alexandra; Palui, Goutam; Perez, J Manuel; Mattoussi, Hedi

    2014-06-03

    We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.

  20. 54 FR 38044: National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By- Product Recovery Plants

    EPA Pesticide Factsheets

    Final Rule on National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.

  1. Inhibition of diethyl ether degradation in Rhodococcus sp. strain DEE5151 by glutaraldehyde and ethyl vinyl ether.

    PubMed

    Kim, Yong-Hak; Engesser, Karl-Heinrich

    2005-02-15

    Alkyl ether-degrading Rhodococcus sp. strain DEE5151, isolated from activated sewage sludge, has an activity for the oxidation of a variety of alkyl ethers, aralkyl ethers and dibenzyl ether. The whole cell activity for diethyl ether oxidation was effectively inhibited by 2,3-dihydrofurane, ethyl vinyl ether and glutaraldehyde. Glutaraldehyde of less than 30 microM inhibited the activity by a competitive manner with the inhibition constant, K(I) of 7.07+/-1.36 microM. The inhibition type became mixed at higher glutaraldehyde concentrations >30 microM, probably due to the inactivation of the cell activity by the Schiff-base formation. Structurally analogous ethyl vinyl ether inhibited the diethyl ether oxidation activity in a mixed manner with decreasing the apparent maximum oxidation rate, v(max)(app), and increasing the apparent Michaelis-Menten constant, K(M)(app). The mixed type inhibition by ethyl vinyl ether seemed to be introduced not only by the structure similarity with diethyl ether, but also by the reactivity of the vinyl ether with cellular components in the whole cell system.

  2. Synthesis and Characterization of Poly (Arylene Ether Benzimidazole) Oligomers

    NASA Technical Reports Server (NTRS)

    Leonard, Michael J.

    1995-01-01

    Several poly(arylene ether benzimidazole) oligomers were prepared by the nucleophilic aromatic substitution reaction of a bisphenol benzimidazole and various alkyl-substituted aromatic bisphenols with an activated aromatic dihalide in N, N-dimethylacetarnide. Moderate to high molecular weight terpolymers were obtained in all cases, as shown by their inherent viscosities, which ranged from 0.50 to 0.87 dL g(sup -1). Glass transition temperatures (T(sub g)s) of polymer powders ranged from 267-280 C. Air-dried unoriented thin film T(sub g)s were markedly lower than those of the powders, whereas T(sub g)s of films dried in a nitrogen atmosphere were identical to those of the corresponding powders. In addition, air-dried films were dark amber and brittle, whereas nitrogen-dried films were yellow and creasable. Nitrogen-dried films showed slightly higher thin-film tensile properties than the air-dried films, as well.

  3. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers.

  4. Ether bridge formation in loline alkaloid biosynthesis

    PubMed Central

    Pan, Juan; Bhardwaj, Minakshi; Faulkner, Jerome R.; Nagabhyru, Padmaja; Charlton, Nikki D.; Higashi, Richard M.; Miller, Anne-Frances; Young, Carolyn A.; Grossman, Robert B.; Schardl, Christopher L.

    2014-01-01

    Lolines are potent insecticidal agents produced by endophytic fungi of cool-season grasses. These alkaloids are composed of a pyrrolizidine ring system and an uncommon ether bridge linking carbons 2 and 7. Previous results indicated that 1-aminopyrrolizidine was a pathway intermediate. We used RNA interference to knock down expression of lolO, resulting in the accumulation of a novel alkaloid identified as exo-1-acetamidopyrrolizidine based on high-resolution MS and NMR. Genomes of endophytes differing in alkaloid profiles were sequenced, revealing that those with mutated lolO accumulated exo-1-acetamidopyrrolizidine but no lolines. Heterologous expression of wild-type lolO complemented a lolO mutant, resulting in the production of N-acetylnorloline. These results indicated that the non-heme iron oxygenase, LolO, is required for ether bridge formation, probably through oxidation of exo-1-acetamidopyrrolizidine. PMID:24374065

  5. Thrust measurement of dimethyl ether arcjet thruster

    NASA Astrophysics Data System (ADS)

    Kakami, Akira; Beppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi

    2011-04-01

    The present paper describes thrust measurement results for an arcjet thruster using Dimethyl ether (DME) as the propellant. DME is an ether compound and can be stored as a liquid due to its relatively low freezing point and preferable vapor pressure. The thruster successfully produced high-voltage mode at DME mass flow rates above 30 mg/s, whereas it yielded low-voltage mode below 30 mg/s. Thrust measurements yielded a thrust of 0.15 N and a specific impulse of 270 s at a mass flow rate of 60 mg/s with a discharge power of 1300 W. The DME arcjet thruster was comparable to a conventional one for thrust and discharge power.

  6. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  7. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  8. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    NASA Astrophysics Data System (ADS)

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  9. Rhodium-Catalyzed Dehydrogenative Silylation of Acetophenone Derivatives: Formation of Silyl Enol Ethers versus Silyl Ethers.

    PubMed

    Garcés, Karin; Lalrempuia, Ralte; Polo, Víctor; Fernández-Alvarez, Francisco J; García-Orduña, Pilar; Lahoz, Fernando J; Pérez-Torrente, Jesús J; Oro, Luis A

    2016-10-04

    A series of rhodium-NSiN complexes (NSiN=bis (pyridine-2-yloxy)methylsilyl fac-coordinated) is reported, including the solid-state structures of [Rh(H)(Cl)(NSiN)(PCy3 )] (Cy=cyclohexane) and [Rh(H)(CF3 SO3 )(NSiN)(coe)] (coe=cis-cyclooctene). The [Rh(H)(CF3 SO3 )(NSiN)(coe)]-catalyzed reaction of acetophenone with silanes performed in an open system was studied. Interestingly, in most of the cases the formation of the corresponding silyl enol ether as major reaction product was observed. However, when the catalytic reactions were performed in closed systems, formation of the corresponding silyl ether was favored. Moreover, theoretical calculations on the reaction of [Rh(H)(CF3 SO3 )(NSiN)(coe)] with HSiMe3 and acetophenone showed that formation of the silyl enol ether is kinetically favored, while the silyl ether is the thermodynamic product. The dehydrogenative silylation entails heterolytic cleavage of the Si-H bond by a metal-ligand cooperative mechanism as the rate-determining step. Silyl transfer from a coordinated trimethylsilyltriflate molecule to the acetophenone followed by proton transfer from the activated acetophenone to the hydride ligand results in the formation of H2 and the corresponding silyl enol ether.

  10. Promoting environmentally sound management of polybrominated diphenyl ethers in Asia.

    PubMed

    Li, Jinhui; Zhao, Nana; Liu, Xue; Wu, Xiaoyang

    2014-06-01

    Polybrominated diphenyl ethers with persistent organic pollutant properties are required to be controlled by the Stockholm Convention. Recently, polybrominated diphenyl ether contamination has become widespread in Asia, mainly because of the disposal and recycling processes of polybrominated diphenyl ether-containing wastes. The management status, production, usage, import/export, treatment, and disposal, as well as implementation deficiencies for the environmentally sound management of polybrominated diphenyl ethers and polybrominated diphenyl ether-containing materials in ten Asian countries were investigated and assessed in this study. This information could help the participating countries implement the Stockholm Convention and could promote the regional environmentally sound management of polybrominated diphenyl ether-containing articles and products. The results obtained were as follows. (1) Most of the countries studied lacked environmental policies and regulations, or even standards of polybrominated diphenyl ether pollution management and emission control actions. Accurate data on the consumption and importation of polybrominated diphenyl ether-containing materials, however, were not available for all the participating countries. In addition, there were no special treatment or disposal systems for polybrominated diphenyl ether-containing materials, or emission-cutting measures for the treatment of waste in these countries, owing to the lack of sufficient funding or technologies. (2) The improper dismantling of e-waste is a major source of polybrominated diphenyl ether emissions in these countries. (3) Proper e-waste management could result in a breakthrough in the environmentally sound management of this major polybrominated diphenyl ether-containing material flow, and could significantly reduce polybrominated diphenyl ether emissions. Finally, based on the study results, this article puts forward some recommendations for improving the environmentally

  11. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    PubMed

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-08

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  12. Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.

    2012-09-01

    Composite materials have been used for aerospace for some time now and have gained virtually 100% acceptance as the materials of choice. Speciality polymers like poly ether sulphones (PES), poly ether ether ketones(PEEK), poly ether imides (PEI) are highly preferred materials as plastic matrix due to their superior temperature performance, excellent wear & friction resistance, excellent dimensional accuracy, high tensile strength, high modulus, precise machinability and chemical resistance. In recent years nanoadditives like single and multiwall carbon nanotubes, graphenes and graphene oxides(GO) are finding huge market potential in aerospace and automobile industries. But manufacture related factors such as particle/ matrix interphases, surface activation, mixing process, particle agglomeration, particle size and shape may lead to different property effects. In this research GO/PES composites were prepared by high shear melt blending technique. GO monolayers were exfoliated from natural graphite flake and dispersed homogeneously in PES matrix for the GO content ranging between 0.5 to 2.0 volume percentage with a high shear twin screw batch mixer. These melt blended nanocomposites were injection moulded for mechanical property validation of tensile strength, flexural modulus and impact resistance. Addition of 0.5 volume percentage of GO enhanced the tensile strength and flexural modulus by 40% and 90% respectively. The results show that addition of GO to PES increase mechanical properties due to the formation of continuous network, good dispersion and strong interfacial interactions. The strong interfacial interactions were accounted for the increase in glass transition temperature. Also there was a significant improvement in the impact resistance of the PES/ GO nanocomposite. The injection moulded samples were tested for stealth performance by measuring the electromagnetic shielding property.

  13. Biodegradation of glycol ethers in soil

    SciTech Connect

    Gonsior, S.J.; West, R.J.

    1995-08-01

    Because of the widespread use of glycol ethers in applications ranging from consumer products to use as chemical intermediates, there is a need to better understand the fate of these compounds in the environment. Soil biodegradation studies were conducted for three propylene glycol ethers: 1-methoxy-2-propanol, 1-phenoxy-2-propanol, and 1-methoxy-2-propanol acetate. The test compounds were labeled with carbon-14 at either the methoxy or phenoxy substituents. Biodegradation of the three compounds was observed in two sandy loam soils. The time required for disappearance of 50% of the test compounds ranged from < 1 d at 0.2 ppm (w/w) to <7 d at 107 ppm. Degradation rates were slower in a sandy soil, reflecting the lower concentration of microorganisms present. No significant accumulation of intermediate products was observed, and ultimate yields of {sup 14}CO{sub 2} were in the range of 40 to 65% of the initial concentration. Results indicated that the glycol ethers were degraded in a variety of soils under aerobic conditions.

  14. Nikola Tesla, the Ether and his Telautomaton

    NASA Astrophysics Data System (ADS)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  15. Computational Study of Nanosized Drug Delivery from Cyclodextrins, Crown Ethers and Hyaluronan in Pharmaceutical Formulations.

    PubMed

    Torrens, Francisco; Castellano, Gloria

    2015-01-01

    The problem in this work is the computational characterization of cyclodextrins, crown ethers and hyaluronan (HA) as hosts of inclusion complexes for nanosized drug delivery vehicles in pharmaceutical formulations. The difficulty is addressed through a computational study of some thermodynamic, geometric and topological properties of the hosts. The calculated properties of oligosaccharides of D-glucopyranoses allow these to act as co-solvents of polyanions in water. In crown ethers, the central channel is computed. Mucoadhesive polymer HA in formulations releases drugs in mucosas. Geometric, topological and fractal analyses are carried out with code TOPO. Reference calculations are performed with code GEPOL. From HA to HA·3Ca and hydrate, the hydrophilic solvent-accessible surface varies with the count of H-bonds. The fractal dimension rises. The dimension of external atoms rises resulting 1.725 for HA. It rises going to HA·3Ca and hydrate. Nonburied minus molecular dimension rises and decays. Hydrate globularity is lower than O(water), Ca(2+) and O(HA). Ca(2+) rugosity is smaller than for hydrate, O(HA) and O(water). Ca(2+) and O(water) accessibilities are greater than hydrate. Conclusions are drawn on: (1) the relative stability of linear/cyclic and shorter/larger polymers; (2) the atomic analysis of properties allows determining the atoms with maximum reactivity.

  16. Preparation and Characterization of poly(Azomethines) Containing Ether and Methylene Bridges: Photophysical, Electrochemical, Conductivity and Thermal Properties.

    PubMed

    Kaya, İsmet; Yılmaz, Tahsin

    2017-01-01

    In this paper, a series of polyazomethines (PAZs) were prepared using dihydroxy substituted Schiff bases and 1,4-diiodobenzene. Also, different group effect such as methylene carbon and etheric oxygen bridges on photophysical, electrochemical, conductivity and thermal properties were clarified. The new polymeric materials structures were confirmed by means of (1)H-NMR, FT-IR and UV-vis measurements. The molecular weight distributions of polymers were determined with gel permeation chromatography (GPC) measurements. Photophysical behaviors of polymers were explored by UV-vis absorption and fluorescence measurements. TGA-DTA and DSC techniques have been used for the thermal characterization of the PAZs. Thermal data and fluorescence measurements showed that etheric oxygen bridge containing polymers have a bit higher char and emission intensity than the methylene carbon bridge carrying polymers. According to TG analysis, Ton values of P-2MPDP, P-2-OPDP, P-4-MPDP and P-4-OPDP were found as 210, 250, 249 and 233 °C, respectively. The HOMO-LUMO energy levels, electrochemical (E' g ) and optical (E g ) band gaps were calculated from cyclic voltammetry (CV) and UV-vis measurements, respectively. The electrochemical (E g ') band gaps values of P-2MPDP, P-2-OPDP, P-4-MPDP and P-4-OPDP were calculated as 2.68, 2.32, 2.34 and 2.07, respectively. Additionally, four-point probe technique was used to measure solid state electrical conductivities of both doped and undoped states of the PAZs.

  17. Tunable surface properties from bioinspired polymers

    NASA Astrophysics Data System (ADS)

    van Zoelen, Wendy; Rosales, Adrianne; Murnen, Hannah; Zuckermann, Ronald; Segalman, Rachel

    2011-03-01

    Anti-fouling properties can be derived from patterned or ``ambiguous'' surfaces displaying multiple surface properties. Biological polymers with precisely controlled chain shapes and self-assembled structures are attractive materials for these applications, in which tunability is of great importance. We have investigated the surface properties of polypeptoids, a class of non-natural biomimetic polymers based on an N-substituted glycine backbone, that combine many of the advantageous properties of bulk polymers with those of synthetically produced proteins. Polypeptoids are of particular interest as they can be made in a sequence controlled fashion with functionalities already known to impart fouling-resistance (ethers, zwitterions, hydrophobicity, and nanoscale patterning). We demonstrate their surface stability and processibility from the standpoint of coating performance and also discuss controlled self-assembly of these materials. Used strategies include mediation of crystallization by incorporating chain defects and specific interactions.

  18. From ether theory to ether theology: Oliver Lodge and the physics of immortality.

    PubMed

    Raia, Courtenay Grean

    2007-01-01

    This article follows the development of physicist Oliver Lodge's religio-scientific worldview, beginning with his reticent attraction to metaphysics in the early 1880s to the full formulation of his "ether theology" in the late 1890s. Lodge undertook the study of psychical phenomena such as telepathy, telekinesis, and "ectoplasm" to further his scientific investigations of the ether, speculating that electrical and psychical manifestations were linked phenomena that described the deeper underlying structures of the universe, beneath and beyond matter. For Lodge, to fully understand the ether was to force from the universe an ultimate Revelation, and psychical research, as the most modern and probatory science, was poised to replace religion as the means of that disclosure.

  19. Transparent lithiated polymer films for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew N.; Auxier, John D.; Urffer, Matthew J.; Penumadu, Dayakar; Schweitzer, George K.; Miller, Laurence F.

    2013-09-01

    Novel water-soluble 6Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using 6Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum 6Li loading obtained that resulted in a transparent film was 4.36% by mass (6Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of 6Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein.

  20. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    NASA Astrophysics Data System (ADS)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  1. Cycloaddition of Arynes and Cyclic Enol Ethers as a Platform for Access to Stereochemically Defined 1,2-Disubstituted Benzocyclobutenes

    PubMed Central

    Yedulla, Vijayendar R.; Pradhan, Padmanava; Yang, Lijia; Lakshman, Mahesh K.

    2015-01-01

    Benzocyclobutenes (BCBs) are important entities in a multitude of areas, such as complex organic synthesis, materials and polymer chemistry, and electronics. Whereas reactions between arynes and ketene acetals have been well studied, reactions with cyclic enol ethers are unknown. A cis olefin geometry in cyclic enol ethers makes them well suited for formal [2 + 2] cycloaddition with arynes than for competing ene reactions, making them effective reactants. Reactions of 2,3-dihydrofuran, 2,3-dihydro-3H-pyran, 5-butyl-2,3-dihydrofuran, (S)-2-((benzyloxy)methyl)-2,3-dihydrofuran, and 1,4-dioxene with various arynes were successful. An advantage of the use of cyclic enol ethers is that despite the plausible intermediacy of zwitterionic intermediates, the products are limited to a cis ring junction. This can be exploited for potential access to stereochemically-defined 1,2-disubstituted BCBs. As a demonstration, ether ring cleavage with BBr3 provided trans-functionalized BCBs and displacement with azide then provided cis derivatives. DFT computations have been utilized to understand the structures of three arynes in relation to the cycloadditions and for a predictive evaluation of product ratios in two cases. A comparative evaluation of the HOMO energies of a related series of cyclic olefins has also been performed by DFT computations. PMID:27642260

  2. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  3. Electroless nickel-phosphorus coating on poly (ether ether ketone)/carbon nanotubes composite

    NASA Astrophysics Data System (ADS)

    Zhai, Tong; Di, Lizhi; Yang, De'an

    2014-05-01

    In order to improve electromagnetic shielding property of poly (ether ether ketone)/carbon nanotubes composite, a nickel-phosphorus coating was covered on the composite by electroless plating. The morphologies of the substrates and the coatings were characterized by SEM. XPS was performed to analyze the surface composition and chemical states before and after chemical etching. The results showed that lots of microscopic holes appeared and evenly distributed on the surface, and the concentration of hydrophilic groups on the surface increased after the composite was etched. Thermal shock test showed that the adhesive strength between the coating and the composite was good.

  4. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  5. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  6. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  7. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  8. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and...

  9. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (Etbe) ...

    EPA Pesticide Factsheets

    EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of ethyl tertiary butyl ether (ETBE) that when finalized will appear on the Integrated Risk Information System (IRIS) database. The draft Toxicological Review of Ethyl Tertiary Butyl Ether provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to ethyl tertiary butyl ether.

  10. Intranasal Administration of Maleic Anhydride-Modified Human Serum Albumin for Pre-Exposure Prophylaxis of Respiratory Syncytial Virus Infection

    PubMed Central

    Sun, Zhiwu; Wang, Qian; Jia, Ran; Xia, Shuai; Li, Yuan; Liu, Qi; Xu, Wei; Xu, Jin; Du, Lanying; Lu, Lu; Jiang, Shibo

    2015-01-01

    Respiratory syncytial virus (RSV) is the leading cause of pediatric viral respiratory tract infections. Neither vaccine nor effective antiviral therapy is available to prevent and treat RSV infection. Palivizumab, a humanized monoclonal antibody, is the only product approved to prevent serious RSV infection, but its high cost is prohibitive in low-income countries. Here, we aimed to identify an effective, safe, and affordable antiviral agent for pre-exposure prophylaxis (PrEP) of RSV infection in children at high risk. We found that maleic anhydride (ML)-modified human serum albumin (HSA), designated ML-HSA, exhibited potent antiviral activity against RSV and that the percentages of the modified lysines and arginies in ML- are correlated with such anti-RSV activity. ML-HSA inhibited RSV entry and replication by interacting with viral G protein and blocking RSV attachment to the target cells, while ML-HAS neither bound to F protein, nor inhibited F protein-mediated membrane fusion. Intranasal administration of ML-HSA before RSV infection resulted in significant decrease of the viral titers in the lungs of mice. ML-HSA shows promise for further development into an effective, safe, affordable, and easy-to-use intranasal regimen for pre-exposure prophylaxis of RSV infection in children at high risk in both low- and high-income countries. PMID:25690799

  11. Synthesis, growth, structural, optical, thermal and mechanical properties of an organic Urea maleic acid single crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Vinothkumar, P.; Kumar, R. Mohan; Jayavel, R.; Bhaskaran, A.

    2016-07-01

    A potential organic urea maleic acid (UMA) was synthesized and single crystals were grown at room temperature by slow evaporation and seed rotation methods. The grown crystal has been subjected to single crystal XRD analysis and found to have been crystallized in a noncentrosymmetric monoclinic crystal system with Cc as space group. The High resolution X-ray diffraction analysis revealed that the specimen is free from structural grain boundaries. The transparency of the grown crystal was confirmed by optical absorption and transmittance spectra with lower cut-off wavelength of 285 nm. The microhardness test was carried out on different planes to study the load dependent hardness values. The dislocation density of the UMA crystal was estimated from the etching studies. The dielectric permittivity and dielectric loss of the grown crystal was carried out as a function of frequency for different temperatures along three crystallographic axes. Thermal properties of UMA crystals were studied by TG-DTA analysis and it is stable upto 112 °C. The laser induced surface damage threshold of the grown crystal was measured using Nd: YAG laser. The birefringence of the crystal measured in the visible region was found to vary with the wavelength. The particle size dependent SHG of the sample was measured with different input energies by Kurtz's powder method using Nd:YAG laser.

  12. Olefin-maleic-anhydride copolymer based additives: a novel approach for compatibilizing blends of waste polyethylene and crumb rubber.

    PubMed

    Tóth, Balázs; Varga, Csilla; Bartha, László

    2015-04-01

    In our work processing conditions and mechanical properties of waste polyethylene (PE)/crumb rubber (CR) blends have been improved by new types of compatibilizing additives synthesized from experimental olefin-maleic-anhydride copolymers at our laboratory. Compatibilizing additives have been introduced into the PE/CR blends in 0.2 wt% while CR concentration has been varied between 10 and 50 wt%. For comparison of the effects commercially available MA-g-PO type compatibilizing additives have also been applied. Tensile and Charpy impact tests of the compression moulded samples have been carried out. Several experimental additives have enhanced properties of the PE/CR blends either from the point of view of tensile or Charpy impact strength while commercial additives have had improving effects only on one of the abovementioned mechanical properties but not for both of them simultaneously. Since good mechanical properties could be achieved by our experimental compatibilizers good adhesion in the waste PE/CR samples have been considered and was proven by SEM graphs either.

  13. Estimating regio and stereoselectivity in [4+2] cycloadditions of vinyl-substituted cyclic dienes with maleic anhydride.

    PubMed

    Gayatri, Gaddamanugu; Sastry, G Narahari

    2009-10-29

    Density functional theory calculations are performed to examine the regio and stereoselective preferences in [4+2] cycloaddition reactions of vinyl cyclopentadiene (1 and 2) and vinyl heterocyclic (1-N, 1-O, 1-S, 2-N, 2-O and 2-S) systems with maleic anhydride. Stepwise and concerted pathways of model systems 1 and 2 as dienes with ethylene as dienophile reveal that the reactions proceed through asynchronous and concerted pathway. 3-Vinyl systems (2) are predicted to be more reactive compared to 2-vinyl systems (1). The regio and stereoselective preferences are evaluated based on activation energies, reaction energies, density functional based descriptors and atoms in molecules analysis. In all cases, extra-annular cycloadducts are more feasible compared to intra-annular cycloadducts. Stereoselectivity depends on the favorable secondary orbital interactions. Solvents such as water, tetrahydrofuran, acetone, and dimethyl sulphoxide are employed to understand the effects of solvents on the cycloadduct formation. The computational results thus obtained are compared with the earlier experimental observations that are available.

  14. Wholly Aromatic Ether-Imides as n-Type Semiconductors

    NASA Technical Reports Server (NTRS)

    Weiser, Erik; St. Clair, Terry L.; Dingemans, Theo J.; Samulski, Edward T.; Irene, Gene

    2006-01-01

    Some wholly aromatic ether-imides consisting of rod-shaped, relatively-low-mass molecules that can form liquid crystals have been investigated for potential utility as electron-donor-type (ntype) organic semiconductors. It is envisioned that after further research to improve understanding of their physical and chemical properties, compounds of this type would be used to make thin film semiconductor devices (e.g., photovoltaic cells and field-effect transistors) on flexible electronic-circuit substrates. This investigation was inspired by several prior developments: Poly(ether-imides) [PEIs] are a class of engineering plastics that have been used extensively in the form of films in a variety of electronic applications, including insulating layers, circuit boards, and low-permittivity coatings. Wholly aromatic PEIs containing naphthalene and perylene moieties have been shown to be useful as electrochromic polymers. More recently, low-molecular-weight imides comprising naphthalene-based molecules with terminal fluorinated tails were shown to be useful as n-type organic semiconductors in such devices as field-effect transistors and Schottky diodes. Poly(etherimide)s as structural resins have been extensively investigated at NASA Langley Research Center for over 30 years. More recently, the need for multi-functional materials has become increasingly important. This n-type semiconductor illustrates the scope of current work towards new families of PEIs that not only can be used as structural resins for carbon-fiber reinforced composites, but also can function as sensors. Such a multi-functional material would permit so-called in-situ health monitoring of composite structures during service. The work presented here demonstrates that parts of the PEI backbone can be used as an n-type semiconductor with such materials being sensitive to damage, temperature, stress, and pressure. In the near future, multi-functional or "smart" composite structures are envisioned to be able

  15. Synthesis of biotinylated aldehyde polymers for biomolecule conjugation.

    PubMed

    Alconcel, Steevens N S; Kim, Sung Hye; Tao, Lei; Maynard, Heather D

    2013-06-25

    Biotinylated polymers with side-chain aldehydes were prepared for use as multifunctional scaffolds. Two different biotin-containing chain transfer agents (CTAs) and an aldehyde-containing monomer, 6-oxohexyl acrylate (6OHA), are synthesized. Poly(ethylene glycol) methyl ether acrylate (PEGA) and 6OHA are copolymerized by reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of the biotinylated CTAs. The resulting polymers are analyzed by GPC and(1) H NMR spectroscopy. The polymer end groups contained a disulfide bond, which could be readily reduced in solution to remove the biotin. Reactivity of the aldehyde side chains is demonstrated by oxime and hydrazone formation at the polymer side chains, and conjugate formation of fluorescently labeled polymers with streptavidin is investigated by gel electrophoresis.

  16. Divinyl ether synthase gene, and protein and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2006-12-26

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  17. Divinyl ether synthase gene and protein, and uses thereof

    DOEpatents

    Howe, Gregg A.; Itoh, Aya

    2011-09-13

    The present invention relates to divinyl ether synthase genes, proteins, and methods of their use. The present invention encompasses both native and recombinant wild-type forms of the synthase, as well as mutants and variant forms, some of which possess altered characteristics relative to the wild-type synthase. The present invention also relates to methods of using divinyl ether synthase genes and proteins, including in their expression in transgenic organisms and in the production of divinyl ether fatty acids, and to methods of suing divinyl ether fatty acids, including in the protection of plants from pathogens.

  18. Ether Cleavage Re-Investigated: Elucidating the Mechanism of BBr3-Facilitated Demethylation of Aryl Methyl Ethers

    PubMed Central

    Kosak, Talon M; Conrad, Heidi A; Korich, Andrew L; Lord, Richard L

    2015-01-01

    One of the most well-known, highly utilized reagents for ether cleavage is boron tribromide (BBr3), and this reagent is frequently employed in a 1:1 stoichiometric ratio with ethers. Density functional theory calculations predict a new mechanistic pathway involving charged intermediates for ether cleavage in aryl methyl ethers. Moreover, these calculations predict that one equivalent of BBr3 can cleave up to three equivalents of anisole, producing triphenoxyborane [B(OPh)3] prior to hydrolysis. These predictions were validated by gas chromatography analysis of reactions where the BBr3:anisole ratio was varied. Not only do we confirm that sub-stoichiometric equivalents may be used for ether demethylation, but the findings also support our newly proposed three cycle mechanism for cleavage of aryl methyl ethers. PMID:26693209

  19. Design and preparation of novel polyarylene ether materials based on Diels-Alder reaction as the crosslinker for electrooptical modulators

    NASA Astrophysics Data System (ADS)

    Gao, Wu; Hou, Wenjun; Zhen, Zhen; Liu, Xinhou; Liu, Jialei; Fedorchuk, A. A.; Czaja, P.

    2016-07-01

    Novel crosslinkable organic linear electro-optical (EO) material based on polyarylene ether as the main chain host polymer was designed and prepared. The host polymer with rigid aromatic has demonstrated a good compatibility with the guest chromophore. Long side chain with anthracene ensured the crosslinkable reaction and appropriate glass transition temperature of the host polymer (55 °C). The EO r33 tensor coefficient for this novel EO material has been magnitude of 66 pm/V at 1310 nm and the excellent long term stability at 85 °C. These parameters permit to consider their application in fabrication of organic electro optical devices. The semi-empirical and DFT quantum chemical simulations were performed for 4 principal chromophores to clarify a role of cross-linker in the enhancement of the ground state dipole moments and effective hyperpolarizabilities.

  20. Morphological Changes During Secondary Crystallization and Melting in Poly(ether ether ketone) as Studied by Small Angle X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Verma, Ravi; Marand, Herve; Hsiao, Benjamin

    1996-03-01

    Poly(aryl ether ether ketone) [PEEK] is a semicrystalline polymer which exhibits the double endothermic melting behavior. Most authors are of the opinion that the origin of the low endotherm lies in the melting of thinner crystals, although some argue in favor of a melting-recrystallization model. It is now established that the low endotherm develops linearly with logarithm of crystallization time. However, all morphological studies conducted to date on the origin of the low endotherm have been limited to short times. As a result, the exact morphological changes associated with the low endotherm are not fully understood. We have monitored the morphological changes during long time melt crystallization and subsequent melting in PEEK. Morphological changes were monitored via real time small angle X-ray scattering [SAXS] using synchrotron radiations. Our novel analysis of the SAXS data indicates that the development of the low endotherm is accompanied by the formation of! secondary lamellar stacks compris ed of thinner lamellae (average thickness 70 A vs 120 A for primary lamallae). Further, our analysis suggests that during melting, the low endotherm is accompanied by the melting of these secondary lamellar stacks.

  1. Novel melt-processable poly(ether ether ketone)(PEEK)/inorganic fullerene-like WS(2) nanoparticles for critical applications.

    PubMed

    Naffakh, Mohammed; Díez-Pascual, Ana M; Marco, Carlos; Gómez, Marián A; Jiménez, Ignacio

    2010-09-09

    The combination of high-performance thermoplastic poly(ether ether ketone) (PEEK) with inorganic fullerene-like tungsten disulfide (IF-WS(2)) nanoparticles offers an attractive way to combine the merits of organic and inorganic materials into novel polymer nanocomposite materials. Here, we report the processing of novel PEEK/IF-WS(2) nanocomposites, which overcome the nanoparticle agglomerate formation and provide PEEK-particle interactions. The IF-WS(2) nanoparticles do not require exfoliation or modification, making it possible to obtain stronger, lighter materials without the complexity and processing cost associated with these treatments. The nanocomposites were fabricated by melt blending, after a predispersion step based on ball milling and mechanical treatments in organic solvent, which leads to the dispersion of individually IF-WS(2) nanoparticles in the PEEK matrix as confirmed by scanning electron microscopy. In order to determine the performance of the PEEK/IF-WS(2) nanocomposites for potential critical applications, particularly for the aircraft industry, we have extensively investigated these materials with a wide range of structural, thermal, and mechanical techniques using time-resolved synchrotron X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dynamic-mechanical analysis, and tensile and impact tests as well as thermal measurements. Modulus, tensile strengh, thermal stability, and thermal conductivity of PEEK exhibited remarkable improvement with the addition of IF-WS(2).

  2. Preparation of main-chain-type and side-chain-type sulfonated poly(ether ether ketone) membranes for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Tsai, Jie-Cheng; Lin, Chien-Kung

    Novel main-chain-type and side-chain-type sulphonated poly(ether ether ketone)s (MS-SPEEKs) are synthesised by reacting the sulphonic acid groups of pristine SPEEKs with 2-aminoethanesulphonic acid to improve the nano-phase separated morphology of the material. 1H NMR and FT-IR spectroscopy are employed to determine the structure and composition of main-chain-type and side-chain-type sulphonated polymers. Flexible and tough membranes with reasonable thermal properties are obtained. The MS-SPEEKs show good hydrolytic stability, and water uptake values ranging from 15% to 30% are observed. Compared to Nafion 117 ®, the methanol permeability of the MS-SPEEKs is dramatically reduced to 8.83 × 10 -8 cm 2 s -1 to 3.31 × 10 -7 cm 2 s -1. The proton conductivity increases with increasing temperature, reaching 0.013-0.182 S cm -1. A maximum power density and open circuit voltage of 115 mW cm -2 and 0.830 V are obtained at 80 °C, respectively, which is significantly greater than the values generated with Nafion 117 ®. The introduction of pendent side-chain-type sulphonic acid groups increases the single-cell performance by more than approximately 20%; thus, the lower water diffusivity, methanol permeability, electro-osmotic drag coefficient and high cell performance indicated that MS-SPEEK is a promising candidate for DMFC applications.

  3. In situ compatibilizer-reinforced interface between a flexible polymer (a functionalized polypropylene) and a rodlike polymer (a thermotropic liquid crystalline polymer).

    PubMed

    Seo, Yongsok; Ninh, Tran Hai; Hong, Soon Man; Kim, Sehyun; Kang, Tae Jin; Kim, Hansung; Kim, Jinyeol

    2006-03-28

    We present an investigation of the interfacial reinforcement between a flexible folded-chain polymer (functionalized polypropylene-maleic anhydride-grafted polypropylene, MAPP) and a rodlike polymer (a themotropic liquid crystalline polymer, TCLP - poly(ester amide)). Fracture toughness was measured using an asymmetric double-cantilever beam test (ADCB). High fracture toughness at the bonding temperature of 200 degrees C indicates that a chemical reaction has occurred at the interface to provide a strong interaction between MAPP and TLCP. Despite the higher modulus of TLCP, the fracture was propagated in the TLCP phase because of inherent TLCP domain structure. An analysis on the locus of failure revealed that at constant bonding temperature the fracture toughness between MAPP and TLCP was influenced not only by the bonding temperature but also by the bonding time. The fracture toughness increased with the bonding temperature until 200 degrees C was reached and then decreased at higher bonding temperature. The fracture toughness increased with annealing time until it reached a plateau value. We ascribe the dependence of the fracture toughness on the bonding time to the progressive occurrence of two different failure mechanisms, adhesive failure and cohesive failure. The adhesive strength increased with bonding temperature whereas the cohesive strength decreased because of weaker adhesion between TLCP crystalline domains. The dependence of fracture toughness on bonding time was explained in terms of the TLCP crystalline domain structure.

  4. Study of polymer particles suspensions for electrophoretic deposition.

    PubMed

    De Riccardis, M Federica; Martina, Virginia; Carbone, Daniela

    2013-02-14

    Recently a great interest has been expressed in electrophoretic deposition (EPD) of polymers, both as particles and as chains. It is generally accepted that also for polymer particles, the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is valid, therefore, in principle, polymer suspensions suitable for EPD could be easily obtained by dispersing polymer particles in an aqueous or nonaqueous medium. Nevertheless, this work demonstrated that in order to obtain good quality deposits based on poly(ether ether ketone) (PEEK) and poly(tetrafluoroethylene) (PTFE), some additives have to be used. In the case of PEEK, a dispersant providing citrate anions was successfully used, whereas for PTFE a steric suspension stabilization was reached by adding polyvinylpyrrolidone (PVP). In such a way, codeposition of PEEK and PTFE was achieved. The efficiency of the EPD process was demonstrated by means of differential scanning calorimetry (DSC) measurements. A thermal program consisting of heat/cool/heat cycles at a low rate was used in order to evaluate the crystalline amount of each polymer in the deposits. In order to explain the obtained results, it needed to also consider the dimension and structural characteristic of the polymer particles.

  5. Unprecedented reactions: from epichlorohydrin to epoxyglycidyl substituted divinyl ether and its conversion into epoxyglycidyl propargyl ether.

    PubMed

    Yao, Yiwu; Li, Zheng; Qiu, Yatao; Bai, Jinhong; Su, Jinyue; Zhang, Dayong; Jiang, Sheng

    2015-09-18

    The reaction of epichlorohydrin with concentrated sodium hydroxide in hexane under phase transfer conditions has surprisingly led to the formation of the symmetrical di(3-epoxyglycidyl-1-propenyl) ether 1 which contains both nucleophilic and electrophilic moieties. When it was reacted with n-butyllithium, intermediate 1 once again surprisingly generated epoxyglycidyl propargyl ether, which was further reacted in situ with a variety of benzaldehydes to furnish the corresponding substituted propargylic alcohols in good yields. While the reaction is operationally simple, it provides a powerful method for the synthesis of the important products from commodity materials such as epichlorohydrin. Moreover, these reactions may have revealed that some fundamental properties of the hydroxide anion in those once thought straightforward reactions are not well understood. A careful analysis of the experimental data suggests that an unprecedented concerted elimination of the epoxyglycidyl ether with sodium hydroxide may be operative and an alpha deprotonation followed by alpha elimination of the di(3-epoxyglycidyl-1-propenyl) ether with alkyllithium may have been involved.

  6. Unprecedented reactions: from epichlorohydrin to epoxyglycidyl substituted divinyl ether and its conversion into epoxyglycidyl propargyl ether

    PubMed Central

    Yao, Yiwu; Li, Zheng; Qiu, Yatao; Bai, Jinhong; Su, Jinyue; Zhang, Dayong; Jiang, Sheng

    2015-01-01

    The reaction of epichlorohydrin with concentrated sodium hydroxide in hexane under phase transfer conditions has surprisingly led to the formation of the symmetrical di(3-epoxyglycidyl-1-propenyl) ether 1 which contains both nucleophilic and electrophilic moieties. When it was reacted with n-butyllithium, intermediate 1 once again surprisingly generated epoxyglycidyl propargyl ether, which was further reacted in situ with a variety of benzaldehydes to furnish the corresponding substituted propargylic alcohols in good yields. While the reaction is operationally simple, it provides a powerful method for the synthesis of the important products from commodity materials such as epichlorohydrin. Moreover, these reactions may have revealed that some fundamental properties of the hydroxide anion in those once thought straightforward reactions are not well understood. A careful analysis of the experimental data suggests that an unprecedented concerted elimination of the epoxyglycidyl ether with sodium hydroxide may be operative and an alpha deprotonation followed by alpha elimination of the di(3-epoxyglycidyl-1-propenyl) ether with alkyllithium may have been involved. PMID:26383123

  7. Unprecedented reactions: from epichlorohydrin to epoxyglycidyl substituted divinyl ether and its conversion into epoxyglycidyl propargyl ether

    NASA Astrophysics Data System (ADS)

    Yao, Yiwu; Li, Zheng; Qiu, Yatao; Bai, Jinhong; Su, Jinyue; Zhang, Dayong; Jiang, Sheng

    2015-09-01

    The reaction of epichlorohydrin with concentrated sodium hydroxide in hexane under phase transfer conditions has surprisingly led to the formation of the symmetrical di(3-epoxyglycidyl-1-propenyl) ether 1 which contains both nucleophilic and electrophilic moieties. When it was reacted with n-butyllithium, intermediate 1 once again surprisingly generated epoxyglycidyl propargyl ether, which was further reacted in situ with a variety of benzaldehydes to furnish the corresponding substituted propargylic alcohols in good yields. While the reaction is operationally simple, it provides a powerful method for the synthesis of the important products from commodity materials such as epichlorohydrin. Moreover, these reactions may have revealed that some fundamental properties of the hydroxide anion in those once thought straightforward reactions are not well understood. A careful analysis of the experimental data suggests that an unprecedented concerted elimination of the epoxyglycidyl ether with sodium hydroxide may be operative and an alpha deprotonation followed by alpha elimination of the di(3-epoxyglycidyl-1-propenyl) ether with alkyllithium may have been involved.

  8. Investigation of Polymer Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.

    1996-01-01

    The positron annihilation lifetime spectroscopy (PALS) using a low energy flux generator may provide a reasonably accurate technique for measuring molecular weights of linear polymers and characterization of thin polyimide films in terms of their dielectric constants and hydrophobity etc. Among the tested samples are glassy poly arylene Ether Ketone films, epoxy and other polyimide films. One of the proposed techniques relates the free volume cell size (V(sub f)) with sample molecular weight (M) in a manner remarkably similar to that obtained by Mark Houwink (M-H) between the inherent viscosity (eta) and molecular wieght of polymer solution. The PALS has also demonstrated that free-volume cell size in thermoset is a versatile, useful parameter that relates directly to the polymer segmental molecular weight, the cross-link density, and the coefficient of thermal expansion. Thus, a determination of free volume cell size provides a viable basis for complete microstructural characterization of thermoset polyimides and also gives direct information about the cross-link density and coefficient of expansion of the test samples. Seven areas of the research conducted are reported here.

  9. Phenylethynyl-Terminated Poly(Arylene Ethers)

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Bryant, Robert G.; Hergenrother, Paul M.

    1994-01-01

    Phenylethynyl-terminated poly(arylene ethers) synthesized in wide range of molecular weights by adjusting monomer ratios and adding appropriate amounts of 4-phenylethynyl-4'-fluorobenzophenone to monomers to end-cap oligomers during polymerization. Have low molecular weights and low melt viscosities, and are easily processed as adhesives, composites, and moldings. Thermally cured to provide materials that are crosslinked and insoluble in common organic solvents. Exhibit increased resistance to solvents, greater tensile moduli, and better high-temperature properties. Useful as adhesives, composite matrices, and moldings, especially in applications in which combination of toughness and resistance to solvents needed.

  10. Epoxy resin cure. [Phenyl glycidyl ether

    SciTech Connect

    Smith, R.E.; Woodburn, G.L.

    1986-07-01

    The reactions that occur between the model epoxy, phenyl glycidyl ether, and the cure agent dicyandiamide (DICY) have been investigated using nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), gel permeation chromatography (GPC), and high-performance liquid chromatography (HPLC) techniques. It is shown that the reaction at 130/sup 0/C requires 90 min for completion when catalyzed by boron trifluoride monoethyl amine (BF/sub 3/-MEA). At least three major products are formed. The identity of these products is based on previously published spectroscopic data. 3 refs., 5 figs.

  11. Obstetric and Other Uses of Ether Before Ether Day, According to the Boston Medical and Surgical Journal of 1828-1846.

    PubMed

    Stoller, Sundrayah N; Minehart, Rebecca D; Alston, Theodore A

    2016-04-01

    From the inception of the Boston Medical and Surgical Journal in 1828 until the prominent public demonstration of surgical anesthesia on Ether Day of 1846, ether was often mentioned in the journal. Many of the examples were related to obstetrics. Because molecular structures were not available in the early 1800s, diverse volatile liquids were termed ethers. In addition to sulphuric ether, so-called ethers included cyanide-releasing propionitrile and ethanolic solutions of chloroform and of the potent vasodilator ethyl nitrite. Familiarity with anesthetically unsuitable ethers may have long deterred consideration of inhaled sulphuric ether for analgesia and anesthesia.

  12. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  13. Polymer flooding

    SciTech Connect

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  14. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  15. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  16. IRIS Toxicological Review of Decabromodiphenyl Ether (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Toxicological Review of Decabromodiphenyl Ether: in support of the Integrated Risk Information System (IRIS). The updated Summary for Decabromodiphenyl Ether and accompanying toxicological review have been added to the IRIS Da...

  17. Process for producing dimethyl ether form synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  18. The Ether Wind and the Global Positioning System.

    ERIC Educational Resources Information Center

    Muller, Rainer

    2000-01-01

    Explains how students can perform a refutation of the ether theory using information from the Global Positioning System (GPS). Discusses the functioning of the GPS, qualitatively describes how position determination would be affected by an ether wind, and illustrates the pertinent ideas with a simple quantitative model. (WRM)

  19. 40 CFR 721.825 - Certain aromatic ether diamines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Certain aromatic ether diamines. 721... Substances § 721.825 Certain aromatic ether diamines. (a) Chemical substances and significant new uses...,5-benzenetetracarboxylic acid, diethyl ester, compound with 4,4′- -2,5-diylbis(oxy)]bis (1:1) (PMN...

  20. 40 CFR 721.825 - Certain aromatic ether diamines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Certain aromatic ether diamines. 721... Substances § 721.825 Certain aromatic ether diamines. (a) Chemical substances and significant new uses...,5-benzenetetracarboxylic acid, diethyl ester, compound with 4,4′- -2,5-diylbis(oxy)]bis (1:1) (PMN...

  1. 47. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, 4TH LEVEL, LOOKING NORTH AT TOPS OF ALCOHOL AND ETHER DISTILLATION TOWERS. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  2. 46. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, CONTROL PANEL LEVEL (2ND DECK) OF ETHER AND ALCOHOL STILL BUILDING, LOOKING NORTH, SHOWING TWO ALCOHOL DISTILLATION TOWERS BEHIND 'MIXED SOLVENT UNIT' CONTROL PANEL. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  3. IRIS Toxicological Review of Decabromodiphenyl Ether (Final Report)

    EPA Science Inventory

    EPA is announcing the release of the final report, Toxicological Review of Decabromodiphenyl Ether: in support of the Integrated Risk Information System (IRIS). The updated Summary for Decabromodiphenyl Ether and accompanying Quickview have also been added to the IRIS Data...

  4. 48. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, 5TH LEVEL, LOOKING NORTH AT ETHER AND ALCOHOL CONDENSERS AT TOP OF TOWER. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  5. Process for producing dimethyl ether from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-06-04

    This invention pertains to a Fischer Tropsch process for converting synthesis gas to an oxygenated hydrocarbon with particular emphasis on dimethyl ether. Synthesis gas comprising carbon monoxide and hydrogen are converted to dimethyl ether by carrying out the reaction in the presence of an alkali metal-manganese-iron carbonyl cluster incorporated onto a zirconia-alumina support.

  6. Biosynthesis of archaeal membrane ether lipids

    PubMed Central

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA). In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol) and the tetraether (or caldarchaeol) lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria. PMID:25505460

  7. Computer-Aided Design and Computer-Aided Manufacturing Hydroxyapatite/Epoxide Acrylate Maleic Compound Construction for Craniomaxillofacial Bone Defects.

    PubMed

    Zhang, Lei; Shen, Shunyao; Yu, Hongbo; Shen, Steve Guofang; Wang, Xudong

    2015-07-01

    The aim of this study was to investigate the use of computer-aided design and computer-aided manufacturing hydroxyapatite (HA)/epoxide acrylate maleic (EAM) compound construction artificial implants for craniomaxillofacial bone defects. Computed tomography, computer-aided design/computer-aided manufacturing and three-dimensional reconstruction, as well as rapid prototyping were performed in 12 patients between 2008 and 2013. The customized HA/EAM compound artificial implants were manufactured through selective laser sintering using a rapid prototyping machine into the exact geometric shapes of the defect. The HA/EAM compound artificial implants were then implanted during surgical reconstruction. Color-coded superimpositions demonstrated the discrepancy between the virtual plan and achieved results using Geomagic Studio. As a result, the HA/EAM compound artificial bone implants were perfectly matched with the facial areas that needed reconstruction. The postoperative aesthetic and functional results were satisfactory. The color-coded superimpositions demonstrated good consistency between the virtual plan and achieved results. The three-dimensional maximum deviation is 2.12 ± 0.65  mm and the three-dimensional mean deviation is 0.27 ± 0.07  mm. No facial nerve weakness or pain was observed at the follow-up examinations. Only 1 implant had to be removed 2 months after the surgery owing to severe local infection. No other complication was noted during the follow-up period. In conclusion, computer-aided, individually fabricated HA/EAM compound construction artificial implant was a good craniomaxillofacial surgical technique that yielded improved aesthetic results and functional recovery after reconstruction.

  8. Apical microleakage of different root canal sealers after use of maleic acid and EDTA as final irrigants.

    PubMed

    Ulusoy, Ozgür Ilke; Nayir, Yelda; Celik, Kezban; Yaman, Sis Darendeliler

    2014-01-01

    This study aimed to compare the effects of ethylenediaminetetraacetic acid (EDTA) and maleic acid (MA) on the sealing ability of various root canal sealers. Eighty root canals were instrumented and irrigated with either EDTA or MA. They were divided into eight experimental groups and obturated as follows: Group 1: MA + Hybrid Root SEAL/gutta-percha. Group 2: EDTA + Hybrid Root SEAL/gutta-percha. Group 3: MA + iRoot SP/gutta-percha. Group 4: EDTA + iRoot SP/gutta-percha. Group 5: MA + EndoREZ/EndoREZ points. Group 6: EDTA + EndoREZ/EndoREZ points. Group 7: MA + AH Plus/gutta-percha. Group 8: EDTA + AH Plus/gutta-percha. Another ten roots were used as negative and positive controls. The microleakage of each sample was measured at 2-min intervals for 8 min using the fluid filtration method. Data were statistically analyzed with one-way ANOVA, post-hoc Tukey, and paired-samples t tests. The minimum microleakage values were obtained from the teeth obturated with AH Plus and EndoREZ selaers (p < 0.001). The samples with Hybrid Root SEAL showed the maximum leakage (p < 0.001). There were significant differences between the groups irrigated with MA or EDTA in terms of microleakage (p < 0.05). Use of MA resulted in higher microleakage values compared with those using EDTA. The type of final irrigation solution seems to influence the postobturation apical seal. Use of AH Plus and EndoREZ sealers showed better sealing ability compared with IRoot SP and Hybrid Root SEAL.

  9. Influence of chemical structure on hydration and gas transport mechanisms of sulfonated poly(aryl ether ketone) membranes.

    PubMed

    Simon, Sandra; Espuche, Eliane; Gouanvé, Fabrice; Chauveau, Edouard; Marestin, Catherine; Mercier, Régis

    2012-10-25

    This work reports the influence of the chemical structure of two sulfonated poly(aryl ether ketone)s (SPAEK) on the hydration and gas transport mechanism of thin membranes made thereupon. For this purpose, two sulfonated poly(aryl ether ketone)s having the same ionic exchange capacity (IEC) but bearing a different repartition of the sulfonic acid groups along the polymer backbone were prepared. These polymers were synthesized by direct copolymerization of two specific sulfonated precursors, bisphenol AF and 4,4'-difluorobenzophenone. The morphology of the membranes was studied by transmission electron microscopy, and the thermal properties of the ionomers were determined from differential scanning calorimetry and thermogravimetric analyses. A detailed analysis of the water sorption isotherms and kinetics was performed. The gas transport properties were also determined for He, H(2), and CO(2) in the full range of water activity. From the detailed analysis of the water sorption isotherm and of the relative contributions of the Fickian diffusion and relaxation phenomena, a water sorption mechanism was proposed in relation with the SPAEK architectures and polymers' chain mobility. This mechanism allowed explaining the different evolution of the gas transport properties observed as a function of the gas nature and hydration rate.

  10. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2017-04-01

    We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.

  11. Pendant Dynamics of Ethylene-Oxide Containing Polymers with Diverse Backbones

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua; Wang, Jing-Han Helen; Chen, Quan; Runt, James; Colby, Ralph

    In the last twenty years, a wide variety of ion conducting polymers have used ether oxygens to facilitate ion conduction, and it is therefore important to understand the dynamics of ether oxygens (EOs) when attached to different polymer backbones. Four different EO-containing polymer architectures are studied by dielectric spectroscopy to understand the backbone effect on the EO dipoles. Polysiloxanes, polyphosphazenes, polymethylmethacrylates, and a polyester ether are compared, with different EO pendant lengths for the siloxane and methylmethacrylate backbones. The flexible polysiloxanes and polyphosphazene backbones impart superior segmental mobility with a glass transition temperature 15 K lower than that of the organic backbone polymers. Short EO pendants are found to impart a lower static dielectric constant at comparable EO content as compared to longer EO pendants of either inorganic or organic backbones. The long-pendant polymethylmethacrylate polymers show two relaxations corresponding to fast EOs near the pendant tail end and slow EOs close to the slower backbone, whereas the long-pendant polysiloxane shows a single relaxation due to the siloxane backbone relaxing faster than the EO pendant. Supported by the NSF Division of Materials Research Polymers Program through Grants DMR-1404586 (RHC) and DMR-1505953 (JR).

  12. Non-woven fibrous materials with antibacterial properties prepared by tailored attachment of quaternized chitosan to electrospun mats from maleic anhydride copolymer.

    PubMed

    Ignatova, Milena; Petkova, Zhanina; Manolova, Nevena; Markova, Nadya; Rashkov, Iliya

    2012-01-01

    In order to impart antibacterial properties to microfibrous electrospun materials from styrene/maleic anhydride copolymers, quaternized chitosan derivatives (QCh) containing alkyl substituents of different chain lengths are covalently attached to the mats. A complete inhibition of the growth of bacteria, S. aureus (Gram-positive) and E. coli (Gram-negative), for a contact time of 30–120 min or a decrease of the bacterial titer by 2–3 log units is observed depending on the quaternization degree, the chain length of the alkyl substituent, and the molar mass of QCh. The modified mats are also effective in suppressing the adhesion of pathogenic S. aureus bacteria.

  13. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    PubMed

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-03-10

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pHmax 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. (1)H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  14. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, Raimond; Aldissi, Mahmoud

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  15. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  16. Voltage-Dependent Luminescence Properties of Molecularly Doped Polymer System

    NASA Astrophysics Data System (ADS)

    Mingliang, Wang; Junxiang, Zhang; Juzheng, Liu; Chunxiang, Xu

    2001-05-01

    Single-layer light-emitting diodes (LEDs) are fabricated using a mixture of a blue-emitting polymer and green-emitting 9, 10-bis(phenylethynyl)anthracene as emitting layer. The blend device with these two components in the emitting layer exhibits voltage-induced evolution of the electroluminescence. But when polystyrene is also blended into the emitting layer, the EL spectra show emission bands from both ether-PPV and BPEA in proportion to concentrations of the two materials, and the spectra exhibit no change with applied voltage. This implies that doping inert polymer is helpful in suppressing voltage-induced evolution of electroluminescence in LED blends.

  17. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Mai, Zhensheng; Zhang, Huamin; Li, Xianfeng; Bi, Cheng; Dai, Hua

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test.

  18. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements.

    PubMed

    Brockett, Claire L; John, Gemma; Williams, Sophie; Jin, Zhongmin; Isaac, Graham H; Fisher, John

    2012-08-01

    Total hip replacement has been a successful surgical intervention for over 50 years, with the majority of bearings using a polyethylene cup. Long-term failure due to osteolysis and loosening has been widely documented and alternative bearings have been sought. A novel carbon fiber-reinforced poly-ether ether ketone (CFR-PEEK) cup was investigated through experimental friction and wear studies. Friction studies demonstrated the bearings operated in a boundary lubrication condition, with friction factors higher than those for other hip replacement bearings. The wear study was conducted with 36 mm diameter bearings tested against Biolox Delta heads for a period of 10 million cycles. The mean volumetric wear rate was 0.3 mm(3)/Mc, indicating the ceramic-on-CFR-PEEK bearing to be a very low wearing option for total hip replacement.

  19. Ethylene glycol monomethyl ether and propylene glycol monomethyl ether: metabolism, disposition, and subchronic inhalation toxicity studies

    SciTech Connect

    Miller, R.R.; Hermann, E.A.; Young, J.T.; Landry, T.D.; Calhoun, L.L.

    1984-08-01

    Short-term and subchronic vapor inhalation studies have shown that there are pronounced differences in the toxicological properties of ethylene glycol monomethyl ether (EGME) and propylene glycol monomethyl ether (PGME). Overexposure to EGME has resulted in adverse effects on testes, bone marrow and lymphoid tissues in laboratory animals. PGME does not affect these tissues, and instead, overexposure to PGME has been associated with increases in liver weight and central nervous system depression. EGME is primarily oxidized to methoxyacetic acid in male rats, while PGME apparently undergoes O-demethylation to form propylene glycol. Since methoxyacetic acid has been shown to have the same spectrum of toxicity as EGME in male rats, the observed differences in the toxicological properties of EGME and PGME are thought to be due to the fact that the two materials are biotransformed via different routes to different types of metabolites. 6 references, 3 figures, 12 tables.

  20. Synthesis and characterization of poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s

    NASA Astrophysics Data System (ADS)

    Haw, Tan Ching; Ahmad, Azizan; Anuar, Farah Hannan

    2015-09-01

    In this study, poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s was synthesized in the framework of environmental friendly products to meet the need for highly flexible polymers. Triblock copolymer with poly(ethylene glycol) as center block and poly(D,L-lactide) as side block were first synthesized by ring-opening polymerization of D,L-lactide, followed by chain extension reaction of triblocks using hexamethylene diisocyanate (HMDI). NMR and infra-red spectroscopies were used to determine the molecular composition whereas XRD analysis revealed crystallinity behavior of synthesized multiblock copolymers.

  1. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was

  2. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers.

    PubMed

    Sjödin, A; Hagmar, L; Klasson-Wehler, E; Kronholm-Diab, K; Jakobsson, E; Bergman, A

    1999-08-01

    Polybrominated diphenyl ethers (PBDEs) are used as additives in polymers and textiles to prohibit the development of fires. Because of the production and use of PBDEs, their lipophilic characteristics, and persistence, these compounds have become ubiquitous environmental contaminants. The aim of the present study was to determine potential exposures of PBDEs to clerks working full-time at computer screens and personnel at an electronics-dismantling plant, with hospital cleaners as a control group. Five PBDE congeners--2,2',4,4'-tetraBDE; 2,2',4,4',5,5'-hexaBDE; 2,2',4,4',5, 6'-hexaBDE; 2,2',3,4,4',5',6-heptaBDE; and decaBDE--were quantified in blood serum from all three categories of workers. Subjects working at the dismantling plant showed significantly higher levels of all PBDE congeners in their serum as compared to the control group. Decabromodiphenyl ether is present in concentrations of 5 pmol/g lipid weight (lw) in the personnel dismantling electronics; these concentrations are comparable to the concentrations of 2,2',4, 4'-tetraBDE. The latter compound was the dominating PBDE congener in the clerks and cleaners. The major compound in personnel at the dismantling plant was 2,2',3,4,4',5',6-heptaBDE. Concentrations of this PBDE congener are almost twice as high as for 2,2',4, 4'-tetraBDE in these workers and seventy times the level of this heptaBDE in cleaners. The total median PBDE concentrations in the serum from workers at the electronics-dismantling plant, clerks, and cleaners were 37, 7.3, and 5.4 pmol/g lw, respectively. The results show that decabromodiphenyl ether is bioavailable and that occupational exposure to PBDEs occurs at the electronics-dismantling plant.

  3. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish workers.

    PubMed Central

    Sjödin, A; Hagmar, L; Klasson-Wehler, E; Kronholm-Diab, K; Jakobsson, E; Bergman, A

    1999-01-01

    Polybrominated diphenyl ethers (PBDEs) are used as additives in polymers and textiles to prohibit the development of fires. Because of the production and use of PBDEs, their lipophilic characteristics, and persistence, these compounds have become ubiquitous environmental contaminants. The aim of the present study was to determine potential exposures of PBDEs to clerks working full-time at computer screens and personnel at an electronics-dismantling plant, with hospital cleaners as a control group. Five PBDE congeners--2,2',4,4'-tetraBDE; 2,2',4,4',5,5'-hexaBDE; 2,2',4,4',5, 6'-hexaBDE; 2,2',3,4,4',5',6-heptaBDE; and decaBDE--were quantified in blood serum from all three categories of workers. Subjects working at the dismantling plant showed significantly higher levels of all PBDE congeners in their serum as compared to the control group. Decabromodiphenyl ether is present in concentrations of 5 pmol/g lipid weight (lw) in the personnel dismantling electronics; these concentrations are comparable to the concentrations of 2,2',4, 4'-tetraBDE. The latter compound was the dominating PBDE congener in the clerks and cleaners. The major compound in personnel at the dismantling plant was 2,2',3,4,4',5',6-heptaBDE. Concentrations of this PBDE congener are almost twice as high as for 2,2',4, 4'-tetraBDE in these workers and seventy times the level of this heptaBDE in cleaners. The total median PBDE concentrations in the serum from workers at the electronics-dismantling plant, clerks, and cleaners were 37, 7.3, and 5.4 pmol/g lw, respectively. The results show that decabromodiphenyl ether is bioavailable and that occupational exposure to PBDEs occurs at the electronics-dismantling plant. Images Figure 1 Figure 2 PMID:10417362

  4. Correlating electronic structure and chemical durability of sulfonated poly(arylene ether sulfone)s

    NASA Astrophysics Data System (ADS)

    Lawrence, Jimmy; Yamashita, Koichi; Yamaguchi, Takeo

    2015-04-01

    Many different proton-conducting polymeric materials have been developed for polymer electrolyte membrane fuel cells (PEMFCs). The development of perfluorosulfonic acid-based, polymer electrolyte membranes (PFSA-PEMs) was followed by aromatic hydrocarbon-based PEMs (HC-PEMs), which allow for tailored design and optimization of their molecular structures. Although many new PFSA-PEMs and HC-PEMs have shown promising proton conductivity and thermal stability, chemical degradation of these materials in an oxidizing environment remains a significant technical barrier in PEMFC development. Here, we used accelerated degradation tests and electronic structure analysis to examine the chemical stability of sulfonated poly(arylene ether sulfone) (SPES) copolymers, a highly thermally stable HC-PEM. HOMO levels, the presence of main chain-protecting steric groups, and HOMO-LUMO location along the main chain have significant effects on the chain scission modes and degradation rate of SPES copolymers. Rational design of HC-PEMs to suppress midpoint scission can open many opportunities in the development of highly robust polymer electrolytes for fuel cell and other energy storage applications.

  5. Influence of nanoporous poly(ether imide) particle extracts on human aortic endothelial cells (HAECs).

    PubMed

    Kumar, Reddi K; Basu, Sayantani; Lemke, Horst-Dieter; Jankowski, Joachim; Kratz, Karl; Lendlein, Andreas; Tetali, Sarada D

    2016-01-01

    Accumulated uremic toxins like indoxyl sulphate, hippuric acid and p-cresyl sulphates in renal failure patients stimulate proinflammatory effects, and consequently kidney and cardiovascular diseases. Low clearance rate of these uremic toxins from the blood of uremic patients by conventional techniques like hemodialysis is due to their strong covalent albumin binding (greater than 95%) and hydrophobic nature, which led to alternatives like usage of hydrophobic adsorber's in removing these toxins from the plasma of kidney patients. Polymers like polyethylene, polyurethane, polymethylmethacrylate, cellophane and polytetrafluoroethylene were already in use as substitutes for metal devices as dialysis membranes. Among new synthetic polymers, one such ideal adsorber material are highly porous microparticles of poly(ether imide) (PEI) with diameters in the range from 50-180μm and a porosity around 88±2% prepared by a spraying and coagulation process.It is essential to make sure that these synthetic polymers should not evoke any inflammatory or apoptotic response during dialysis. Therefore in our study we evaluated in vitro effect of PEI microparticle extracts in human aortic endothelial cells (HEACs) concerning toxicity, inflammation and apoptosis. No cell toxicity was observed when HAECs were treated with PEI extracts and inflammatory/apoptotic markers were not upregulated in presence of PEI extracts. Our results ensure biocompatibility of PEI particles and further hemocompatibility of particles will be tested.

  6. Polyimides containing oxyethylene units. Part 4: Polymerization of dianhydrides containing ether linkages

    NASA Technical Reports Server (NTRS)

    Harris, F. W.; Karnavas, A. J.; Das, S.; Cucuras, C. N.; Hergenrother, P. M.

    1986-01-01

    The development of new composite resins for various aerospace applications is attempted. Although it is highly desirable that these polymers be soluble in order to facilitate processing, they must display considerable solvent-resistance in use. A recent approach has involved the synthesis of a new series of polyimides containing flexible linkages. The polymers were prepared by the polymerization of aromatic dianhydrides with diamines containing oxyethylene linkages. For example, the polymerization of 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) with 1,2-bis(4-aminophenoxy)ethane (1a) and bis2-(4-aminophenoxy)ethylether (lb), afforded highly crystalline polyimides that were completely insoluble. However, a polyimide that was amorphous and soluble was obtained from the polymerization of BTDA and an isomer of lb, i.e., bis2-(3-aminophenoxy)ethyl ether (4b). In an attempt to obtain a soluble, amorphous polyimide that could be annealed into a crysalline state, block copolymers of 1b and 4b and BTDA were prepared. Copolymers containing less than 20 weight % 1b were soluble in organic solvents. However, these polymers did not crystallize when heated above their Tg's. Copolymers containing higher levels of 1b were semicrystalline and insoluble. The polymerization of the diamines containing oxyethylene linkages with 4,4'-oxydiphthalic anhydride (ODPA) and a new dianhydride, i.e., 4,4'-oxyethyleneoxyethyleneoxydiphthalic anhydride (OEDA) was investigated. It was postulated that the use of these more flexible dianhydrides would result in more processable polyimides.

  7. The chromatography of poly(phenylene ether) on a porous graphitic carbon sorbent.

    PubMed

    Moyses, Stephan; Ginzburg, Anton

    2016-10-14

    A Porous Graphitic Carbon (PGC) column was evaluated for the analysis of poly(phenylene ether) (PPE). This column appears particularly well-suited for the separation of this polymer. Conditions for the elution of PPE either in adsorption mode with chloroform or size exclusion with 1,2,4-trichlorobenzene (TCB) as eluent were established. Elution of homologous species is obtained in chloroform that follows Martin's rule. A separation based on a gradient consisting of a sequence of non-solvent (acetonitrile), solvent/adsorli (chloroform) provided the highest peak capacity. In TCB, it is possible to obtain rapid size-based separation: with a flow rate of 0.7ml/min, the run time is less than two minutes for a series of polystyrene standards. The PGC column performs remarkably well in this mode and may be a viable solution when a short analysis time is critical such as in a combinatorial laboratory or in a two-dimensional chromatograph. In addition to its value as a sorbent for polymer separation, this column also deserves the attention of the materials engineer. Indeed, the PGC sorbent can be used as a model to probe the interaction between polymers and graphitic fillers such as carbon nanotubes or graphite nanosheets.

  8. Polymer inflation

    NASA Astrophysics Data System (ADS)

    Hassan, Syed Moeez; Husain, Viqar; Seahra, Sanjeev S.

    2015-03-01

    We consider the semiclassical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a Gaussian coherent state. For quadratic potentials, the semiclassical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by an epoch of slow-roll inflation. We compute polymer corrections to the slow-roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. We also show how in this model, it is possible to obtain a significant amount of slow-roll inflation from sub-Planckian initial data, hence circumventing some of the criticisms of standard scenarios. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  9. Time Scales of Ion Transport in Imidazolium-based Polymers

    NASA Astrophysics Data System (ADS)

    Choi, U. Hyeok; Ye, Yuesheng; Lee, Minjae; Gibson, Harry; Elabd, Yossef; Runt, James; Colby, Ralph

    2011-03-01

    We synthesize and characterize ionic polymers with imidazolium cations covalently attached to the polymer chain and various ionic liquid counterions for ionic actuators. The imidazolium cations are attached to the polymers with flexible alkyl spacer chains and also have a variety of alkyl and alkyl ether termini. The anionic counterions are also varied; tetrafluoroborate (BF4) , hexafluorophosphate (PF6) and bis(trifluoromethanesulfonyl)imide (TFSI) were mainly used in this study. Dielectric relaxation spectroscopy (DRS) is utilized to measure the dielectric constant and conductivity, as a function of temperature. The 1953 Macdonald model is applied to estimate the number density of conducting ions and their mobility, from electrode polarization at low frequencies in DRS. The 1988 Dyre model is used to determine ion hopping times from the frequency-dependent conductivity at higher frequencies. The consequence of polymer structural variations will be elucidated for these vital characteristics.

  10. Novel Elastomeric Membranes Developed for Polymer Electrolytes in Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Maryann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    Lithium-based polymer batteries for aerospace applications need to be highly conductive from -70 to 70 C. State-of-the-art polymer electrolytes are based on polyethylene oxide (PEO) because of the ability of its ether linkages to solvate lithium ions. Unfortunately, PEO has a tendency to form crystalline regions below 60 C, dramatically lowering conductivity below this temperature. PEO has acceptable ionic conductivities (10(exp -4) to 10(exp -3) S/cm) above 60 C, but it is not mechanically strong. The room-temperature conductivity of PEO can be increased by adding solvent or plasticizers, but this comes at the expense of thermal and mechanical stability. One of NASA Glenn Research Center s objectives in the Polymer Rechargeable System program (PERS) is to develop novel polymer electrolytes that are highly conductive at and below room temperature without added solvents or plasticizers.

  11. Development of specialty chemicals from dimethyl ether

    SciTech Connect

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Dimethyl ether (DME) may be efficiently produced from coal-bases syngas in a high pressure, mechanically agitated slurry reactor. DME synthesis occurs in the liquid phase using a dual catalyst. By operating in a dual catalyst mode, DME may be converted from in-situ produced methanol resulting in higher methyl productivities and syngas conversions over methanol conversion alone. The feasibility of utilizing DME as a building block for more valuable specialty chemicals has been examined. A wide variety of petrochemicals may be produced from DME including light olefins, gasoline range hydrocarbons, oxygenates, and glycol precursors. These chemicals represent an important part of petroleum industries inventory of fine chemicals. Carbonylation, hydrocarbonylation, and oxidative dimerization are but a few of the reactions in which DME may undergo conversion. DME provides an additional route for the production of industrially important petrochemicals.

  12. Acyclic archaebacterial ether lipids in swamp sediments

    NASA Astrophysics Data System (ADS)

    Pauly, George G.; Van Vleet, Edward S.

    1986-06-01

    Acyclic phytanyl diether glycerol and biphytanyl ether lipids have been quantified in two modern swamp sediment cores in concentrations ranging up to 360 μg/ml porewater. Methanogenic bacteria are the only known source organisms which can inhabit the swamp sediments. Variations in relative abundance between these lipids may reflect taxonomic changes in methanogen populations or the stage of growth. Maxima in methanogen lipid concentrations coincide with local maxima of 13C of organic matter, possibly the result of a pool effect on CO 2 or acetate. Methane production estimates calculated from lipid concentrations in swamp sediments range from 0.1 to 1.3 mmol cm -2 yr -1, values which are consistent with published methane fluxes.

  13. Star/linear polymer topology transformation facilitated by mechanical linking of polymer chains.

    PubMed

    Aoki, Daisuke; Uchida, Satoshi; Takata, Toshikazu

    2015-06-01

    Topology transformation of a star polymer to a linear polymer is demonstrated for the first time. A three-armed star polymer possessing a mechanical linking of two polymer chains was synthesized by the living ring-opening polymerization of δ-valerolactone initiated by a pseudo[2]rotaxane having three hydroxy groups as the initiator sites on the wheel component and at both axle termini. The polymerization was followed by the propagation end-capping reaction with a bulky isocyanate not only to prevent the wheel component deslippage but also to introduce the urethane moiety at the axle terminal. The resulting rotaxane-linked star polymer with a fixed rotaxane linkage based on the ammonium/crown ether interaction was subjected to N-acetylation of the ammonium moiety, which liberated the components from the interaction to move the wheel component to the urethane terminal as the interaction site, eventually affording the linear polymer. The physical property change caused by the present topology transformation was confirmed by the hydrodynamic volume and viscosity.

  14. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    PubMed

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m(3)). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary.

  15. Formulating liquid ethers for microtubular SOFCs

    NASA Astrophysics Data System (ADS)

    Kendall, Kevin; Slinn, Matthew; Preece, John

    One of the key problems of applying solid oxide fuel cells (SOFCs) in transportation is that conventional fuels like kerosene and diesel do not operate directly in SOFCs without prereforming to hydrogen and carbon monoxide which can be handled by the nickel cermet anode. SOFCs can internally reform certain hydrocarbon molecules such as methanol and methane. However, other liquid fuels usable in petrol or diesel internal combustion engines (ICEs) have not easily been reformable directly on the anode. This paper describes a search for liquid fuels which can be mixed with petrol or diesel and also injected directly into an SOFC without destroying the nickel anode. When fuel molecules such as octane are injected onto the conventional nickel/yttria stabilised zirconia (Ni/YSZ) SOFC fuel electrode, the anode rapidly becomes blocked by carbon deposition and the cell power drops to near zero in minutes. This degeneration of the anode can be inhibited by injection of air or water into the anode or by some upstream reforming just before entry to the SOFC. Some smaller molecules such as methane, methanol and methanoic acid produce a slight tendency to carbon deposition but not sufficient to prevent long term operation. In this project we have investigated a large number of molecules and now found that some liquid ethers do not significantly damage the anode when directly injected. These molecules and formulations with other components have been evaluated in this study. The theory put forward in this paper is that carbon-carbon bonds in the fuel are the main reason for anode damage. By testing a number of fuels without such bonds, particularly liquid ethers such as methyl formate and dimethoxy methane, it has been shown that SOFCs can run without substantial carbon formation. The proposal is that conventional fuels can be doped with these molecules to allow hybrid operation of an ICE/SOFC device.

  16. Characterization of Microsolvated Crown Ethers from Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Perez, Cristobal; Schnell, Melanie; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    Since they were first synthetized, crown ethers have been extensively used in organometallic chemistry due to their unparalleled binding selectivity with alkali metal cations. From a structural point of view, crown ethers are heterocycles containing oxygen and/or other heteroatoms, although the most common ones are formed from ethylene oxide unit. Crown ethers are conventionally seen as being hydrophilic inside and hydrophobic outside when the structures found for the metal cation complexes are considered. However, crown ethers are extremely flexible and in isolation may present a variety of stable conformations so that their structure may be easily adapted in presence of a strong ligand as an alkali metal cation minimize the energy of the resulting complex. Water can be considered a soft ligand which interacts with crown ethers through moderate hydrogen bonds. It is thus interesting to investigate which conformers are selected by water to form complexes, the preferred interaction sites and the possible conformational changes due to the presence of one or more water molecules. Previous studies identified microsolvated crown ethers but in all cases with a chromophore group attached to the structure. Here we present a broadband rotational spectroscopy study of microsolvated crown ethers produced in a pulsed molecular jet expansion. Several 1:1 and 1:2 crown ether:water aggregates are presented for 12-crown-4, 15-crown-5 and 18-crown-6. Unambiguous identification of the structures has been achieved using isotopic substitution within the water unit. The subtle changes induced in the structures of the crown ether monomer upon complexation and the hydrogen-bonding network that hold them together will be also discussed. F. Gámez, B. Martínez-Haya, S. Blanco,J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2014, 14 12912-12918 V. A. Shubert, C.W. Müller and T. Zwier, J. Phys. Chem. A 2009, 113 8067-8079

  17. Carboranylcyclotriphosphazenes and their polymers. [thermal insulation

    NASA Technical Reports Server (NTRS)

    Allcock, H. R.; Obrien, J. P.; Scopelianos, A. G.; Fewell, L. L. (Inventor)

    1981-01-01

    Carboranyl-substituted polyphosphazenes are prepared by heat polymerizing a carboranyl halocyclophosphazene at 250 C for about 120 hours in the absence of oxygen and moisture. The cyclophosphazene is obtained by allowing a lithium carborane, e.g., the reaction product of methyl-o-carborane with n-butyllithium in ethyl ether, to react with e.g., hexachlorocyclotriphosphazene at ambient temperatures and in anhydrous conditions. For greater stability in the presence of moisture, the chlorine substituents of the polymer are then replaced by aryloxy or alkoxy groups, such as CF3CH2O. The new substantially inorganic polymers are thermally stable materials which produce a high char yield when exposed to extreme temperatures, and can thus serve to insulate less heat and fire resistant substances.

  18. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    NASA Astrophysics Data System (ADS)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-12-01

    High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  19. Controlled release of protein from biodegradable multi-sensitive injectable poly(ether-urethane) hydrogel.

    PubMed

    Li, Xiaomeng; Wang, Yangyun; Chen, Jiaming; Wang, Yinong; Ma, Jianbiao; Wu, Guolin

    2014-03-12

    The synthesis and characterization of multi-sensitive polymers for use as injectable hydrogels for controlled protein/drug delivery is reported. A series of biodegradable multi-sensitive poly(ether-urethane)s were prepared through a simple one-pot condensation of poly(ethylene glycol), 2,2'-dithiodiethanol, N-methyldiethanolamine, and hexamethylene diisocyanate. The sol-gel phase transition behaviors of the obtained copolymers were investigated. Experimental results showed that the aqueous medium comprising the multi-segment copolymers underwent a sol-to-gel phase transition with increasing temperature and pH. At a certain concentration, the copolymer solution could immediately change to a gel under physiological conditions (37 °C and pH 7.4), indicating their suitability as in situ injectable hydrogels in vivo. Insulin was used as a model protein drug for evaluation of the injectable hydrogels as a site-specific drug delivery system. The controlled release of insulin from the hydrogel devices was demonstrated by degradation of the copolymer, which is modulated via the 2,2'-dithiodiethanol content in the poly(ether-urethane)s. These hydrogels having multi-responsive properties may prove to be promising candidates for injectable and controllable protein drug delivery devices.

  20. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    PubMed

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits.