Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung
2014-04-23
Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.
Assumma, Luca; Nguyen, Huu-Dat; Iojoiu, Cristina; Lyonnard, Sandrine; Mercier, Régis; Espuche, Eliane
2015-07-01
Perfluorosulfonated poly(arylene ether sulfone) multiblock copolymers have been shown to be promising as proton exchange membranes. The commonly used approach for preparation of the membrane is solvent casting; the properties of the resulting membranes are very dependent on the membrane processing conditions. In this paper, we study the effects of block length, selectivity of the solvent, and thermal treatment on the membrane properties such as morphology, water uptake, and ionic conductivity. DiMethylSulfOxide (DMSO), and DiMethylAcetamide (DMAc) were selected as casting solvents based on the Flory-Huggins parameter calculated by inversion gas chromatography (IGC). It was found that the solvent selectivity has a mild impact on the mean size of the ionic domains and the expansion upon swelling, while it dramatically affects the supramolecular ordering of the blocks. The membranes cast from DMSO exhibit more interconnected ionic clusters yielding higher conductivities and water uptake as compared to membranes cast from DMAc. A 10-fold increase in proton conductivity was achieved after thermal annealing of membranes at 150 °C, and the ionomers with longer block lengths show conductivities similar to Nafion at 80 °C and low relative humidity (30%).
Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes
Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM
2012-02-07
Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.
Hofmann, Michael A.
2006-11-14
The present invention is directed to sulfonimide-containing polymers, specifically sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, and processes for making the sulfonimide-containing poly(arylene ether)s and sulfonimide-containing poly(arylene ether sulfone)s, for use conductive membranes and fuel cells.
NASA Astrophysics Data System (ADS)
Ali, Mawlood Maajal; Rizvi, S. J. A.; Azam, Ameer
2018-05-01
Poly ether ether ketone (PEEK) was sulfonated with 1.0 M sulphuric acid for varying durations to have various degrees of sulfonation (DS) from 43 to 55%. The FT-IR spectra confirmed the successful sulfonation of PEEK. The sulfonated PEEK (sPEEK) membranes were prepared by a solvent casting method using dimethylacetamide (DMAc) as solvent and upon drying the membranes were characterized. The DS% and ion exchange capacity (IEC) were determined by a back titration method. The IEC and DS of sPEEK was found to increase with the increment of sulfonation reaction time. Water uptake also increased with increase in the DS. The Thermogravimetric (TGA) curves revealed poor thermal stability of sPEEK. The proton conductivity of sPEEK membrane was found to considerably better with degree of sulfonation for fuel cell application.
Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.
Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok
2014-10-01
Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.
2009-01-01
Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonatedmore » poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.« less
Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam
2011-07-14
Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.
NASA Astrophysics Data System (ADS)
Jasti, Amaranadh; Shahi, Vinod K.
2014-12-01
Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.
NASA Astrophysics Data System (ADS)
Nebipasagil, Ali
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and a,u-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivity of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and alpha,o-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology.
High temperature polymers for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Einsla, Brian Russel
Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect.
NASA Astrophysics Data System (ADS)
Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan
2014-06-01
In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.
Materials for use as proton conducting membranes for fuel cells
Einsla, Brian R [Blacksburg, VA; McGrath, James E [Blacksburg, VA
2009-01-06
A family of polymers having pendent sulfonate moieties connected to polymeric main chain phenyl groups are described. These polymers are prepared by the steps of polymerization (using a monomer with a phenyl with an alkoxy substitution), deportation by converting the alkoxy to a hydroxyl, and functionalization of the polymer with a pendant sulfonate group. As an example, sulfonated poly(arylene ether sulfone) copolymers with pendent sulfonic acid groups are synthesized by the direct copolymerization of methoxy-containing poly(arylene ether sulfone)s, then converting the methoxy groups to the reactive hydroxyl form, and finally functionalizing the hydroxyl form with proton-conducting sites through nucleophilic substitution. The family of polymers may have application in proton exchange membranes and in other applications.
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Xu, Ya'nan; Chen, Shouwen; Li, Jiansheng; Han, Weiqing; Sun, Xiuyun; Wu, Dihua; Hu, Zhaoxia; Wang, Lianjun
2018-03-01
A series of novel blend ultrafiltration (UF) membranes have been successfully prepared from commercial poly (ether sulfone), lab-synthesized sulfonated poly (aryl ether sulfone) (SPAES, 1 wt%) and copper nanoparticles (0 ∼ 0.4 wt%) via immersion precipitation phase conversion. The micro-structure and separation performance of the membranes were characterized by field emission scanning electron microscopy (SEM) and cross-flow filtration experiments, respectively. Sodium alginate, bovine serum albumin and humic acid were chosen as model organic foulants to investigate the antifouling properties, while E. coil was used to evaluate the antibacterial property of the fabricated membranes. By the incorporation with SPAES and copper nanoparticles, the hydrophilicity, antifouling and antibacterial properties of the modified UF membranes have been profoundly improved. At a copper nanoparticles content of 0.4 wt%, the PES/SPAES/nCu(0.4) membrane exhibited a high pure water flux of 193.0 kg/m2 h, reaching the smallest contact angle of 52°, highest flux recovery ratio of 79% and largest antibacterial rate of 78.9%. Furthermore, the stability of copper nanoparticles inside the membrane matrix was also considerably enhanced, the copper nanoparticles were less than 0.08 mg/L in the effluent during the whole operation.
Smith, Jr., Lawrence A.
1985-01-01
Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Smith, L.A. Jr.
1985-11-05
Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isoolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Zhang, Xuan; Hu, Zhaoxia; Luo, Linqiang; Chen, Shanshan; Liu, Jianmei; Chen, Shouwen; Wang, Lianjun
2011-07-15
Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide-terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)-catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft-crosslinked membranes as polymer electrolyte membranes. The phenoxide-terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by (1) H NMR and tapping-mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase-separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30-90% relative humidity. The anisotropic proton conductivity ratios (σ(formula see text) ) of the membranes in water are in the range 0.65-0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft-crosslinked membranes are promising candidates for applications as polymer electrolyte membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Hong, Young Taik; Lee, Chang Hyun; Park, Hyung Su; Min, Kyung A.; Kim, Hyung Joong; Nam, Sang Yong; Lee, Young Moo
In the present study, modified acid-base blend membranes were fabricated via incorporation of sulfonated poly(arylene ether benzimidazole) (SPAEBI) into sulfonated poly(arylene ether sulfone) (SPAES). These membranes had excellent methanol-barrier properties in addition to an ability to compensate for the loss of proton conductivity that typically occurs in general acid-base blend system. To fabricate the membranes, SPAEBIs, which served as amphiphilic polymers with different degrees of sulfonation (0-50 mol%), were synthesized by polycondensation and added to SPAES. It resulted in the formation of acid-amphiphilic complexes such as [PAES-SO 3] - +[H-SPAEBI] through the ionic crosslinking, which prevented SO 3H groups in the complex from transporting free protons in an aqueous medium, contributing to a reduction of ion exchange capacity values and water uptake in the blend membranes, and leading to lower methanol permeability in a water-methanol mixture. Unfortunately, the ionic bonding formation was accompanied by a decrease of bound water content and proton conductivity, although the latter problem was solved to some extent by the incorporation of additional SO 3H groups in SPAEBI. In the SPAES-SPAEBI blend membranes, enhancement of proton conductivity and methanol-barrier property was prominent at temperatures over 90 °C. The direct methanol fuel cell (DMFC) performance, which was based on SPAES-SPAEBI-50-5, was 1.2 times higher than that of Nafion ® 117 under the same operating condition.
NASA Astrophysics Data System (ADS)
Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng
2015-06-01
A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.
Lee, Shih-Wei; Chen, Jyh-Chien; Wu, Jin-An; Chen, Kuei-Hsien
2017-03-22
Novel sulfonated poly(ether sulfone) copolymers (S4PH-x-PSs) based on a new aromatic diol containing four phenyl substituents at the 2, 2', 6, and 6' positions of 4,4'-diphenyl ether were synthesized. Sulfonation was found to occur exclusively on the 4 position of phenyl substituents by NMR spectroscopy. The ion exchange capacity (IEC) values can be controlled by adjusting the mole percent (x in S4PH-x-PS) of the new diol. The fully hydrated sulfonated poly(ether sulfone) copolymers had good proton conductivity in the range 0.004-0.110 S/cm at room temperature. The surface morphology of S4PH-x-PSs and Nafion 212 was investigated by atomic force microscopy (tapping-mode) and related to the percolation limit and proton conductivity. Single H 2 /O 2 fuel cell based on S4PH-40-PS loaded with 0.25 mg/cm 2 catalyst (Pt/C) exhibited a peak power density of 462.6 mW/cm 2 , which was close to that of Nafion 212 (533.5 mW/cm 2 ) at 80 °C with 80% RH. Furthermore, fuel cell performance of S4PH-35-PS with various relative humidity was investigated. It was confirmed from polarization curves that the fuel cell performance of S4PH-35-PS was not as high as that of Nafion 212 under fully hydrated state due to higher interfacial resistance between S4PH-35-PS and electrodes. While under low relative humidity (53% RH) at 80 °C, fuel cells based on S4PH-35-PS showed higher peak power density (234.9 mW/cm 2 ) than that (214.0 mW/cm 2 ) of Nafion 212.
NASA Astrophysics Data System (ADS)
Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan
2015-07-01
The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.
Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin
2017-06-14
Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.
NASA Astrophysics Data System (ADS)
Guha Thakurta, Soma
Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed significantly to the anhydrous state proton conductivity. Third, a new category of single lithium ion conducting SPEs was developed by crosslinking a polyether epoxy, poly(ethylene glycol)diglicidyl ether (PEGDGE) (lithium ion solvent), in sulfonated polysulfone (SPSU) matrix. The effects of degree of sulfonation and electrolyte composition on ionic conductivity, thermal, and tensile properties of SPEs were investigated. It was found that ion-dipole interactions between lithium sulfonate (SO3Li) and PEGDGE were responsible for the reduction in size of the dispersed epoxy phase and increased thermal stability. Lithium sulfonate promoted compatibilization and also caused improvement in elongation at break. A low molecular weight electrolyte salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was further dissolved in PEGDGE phase prior to its crosslinking in SPSU matrix, and the ionic conductivity and thermal properties were evaluated as a function of doping level. The ionic conductivity showed remarkable improvement compared to the undoped system.
Pabba, Chittari; Gregg, Brian T; Kitchen, Douglas B; Chen, Zhen Jia; Judkins, Angela
2011-01-01
A series of novel hydroxamic acid based histone deacetylases (HDAC) inhibitors with aryl ether and aryl sulfone residues at the terminus of a substituted, unsaturated 5-carbon spacer moiety have been synthesized for the first time and evaluated. Compounds with meta- and para-substitution on the aryl ring of ether hydroxamic acids 19c, 20c, 19e, 19f and 19g are potent HDAC inhibitors with activities at low nanomolar levels. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kayser, Marie J; Reinholdt, Marc X; Kaliaguine, Serge
2011-03-31
Fuel cells are at the battlefront to find alternate sources of energy to the highly polluting, economically and environmentally constraining fossil fuels. This work uses an organosilicon molecule presenting two amine functions, bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS) with the aim of preparing cross-linked sulfonated poly(ether ether ketone) (SPEEK) based membranes. The hybrid membranes obtained at varying APTMDS loadings are characterized for their acid, proton conductivity, water uptake, and swelling properties. APTMDS may be considered as an extreme case of silica nanoparticle and is therefore most advantageously distributed within the polymeric matrix. The two amine groups can interact, via electrostatic interactions, with the sulfonic acid groups of SPEEK, resulting in a double anchoring of the molecule. The addition of a small amount of APTMDS is enhancing the mechanical and hydrolytic properties of the membranes and allows some unfolding of the polymer chains, rendering some acid sites accessible to water molecules and thus available for proton transport.
NASA Technical Reports Server (NTRS)
Cecere, J. A.; Mcgrath, J. E.; Hedrick, J. L.
1986-01-01
Epoxy resin networks cured with DDS were modified by incorporating tough ductile thermoplastics such as the amine terminated polyether sulfones and amine terminated polyether ketones. Both linear copolymers were able to significantly improve the fracture toughness values at the 15 and 30 weight percent concentrations examined. These improvements in fracture toughness were achieved without any significant change in the flexural modulus.
McGrath, James E [Blacksburg, VA; Park, Ho Bum [Austin, TX; Freeman, Benny D [Austin, TX
2011-10-04
The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.
1993-02-11
aged for 14 days at 120OF and 95% relative humidity (hot and humid ). After... aging tests indicate, Uralane 5774-A/B is not adversely affected by hot and humid environments . In fact, in many cases, mechanical strengths improved...Presently included in these industrially important thermoplastics are the poly (arylene ether ketone )s (PEKs) and poly (arylene ether sulfone)s (PESs). Poly
2009-04-27
an aromatic acidic polymer such as SPEEK or SPSf. Figure 5 shows four basic polymers in which benzimidazole (BIm), amino- benzimidazole (ABIm...Z., A. Manthiram, and M. D. Guiver, “Blend Membranes Based on Sulfonated Polyetheretherketone and Polysulfone Bearing Benzimidazole Side Groups for...Sulfonated Poly(ether ether ketone) and Polysulfone Bearing Benzimidazole Side Groups for Direct Methanol Fuel Cells,” Electrochemical and Solid State Letters
NASA Technical Reports Server (NTRS)
Cecere, James A.; Senger, James S.; Mcgrath, James E.; Steiner, Paul A.; Wong, Raymond S.
1987-01-01
Multifunctional epoxy resin networks were chemically modified with thermoplastic amine terminated poly(arylene ether sulfones) of controlled molecular weights. This system was then examined as both neat resin and as a matrix resin for carbon fiber composites. The neat resin displayed a significant increase in both fracture toughness and energy release rate values. This was attributed to the altered morphology, which could be varied from particles of polysulfone in an epoxy matrix to that of a quasi-continuous polysulfone phase.
NASA Technical Reports Server (NTRS)
Lewis, D. A.; O'Donnell, James H.; Hedrick, J. L.; Ward, T. C.; Mcgrath, J. E.
1989-01-01
The effects of Co-60 gamma radiation on a series of poly(arylene ether sulfones) prepared by nucleophilic activated aromatic substitution are investigated experimentally. The preparation of the test compounds is described, and the test results are presented in extensive tables and graphs. Radiation-induced degradation, as measured by SO2 production, was found to be lowest in compounds based on biphenol rather than bisphenol A; these findings were also well correlated with ultimate-tensile-strain measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis
2015-08-28
Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C,more » except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.« less
Xu, Xianlin; Li, Rui; Tang, Chenxiao; Wang, Hang; Zhuang, Xupin; Liu, Ya; Kang, Weimin; Shi, Lei
2018-03-15
Cellulose nanofibers were embedded into sulfonated poly (ether sulfone) matrix to heighten the water retention and proton conductivity of proton exchange membranes (PEMs). Cellulose nanofibers were obtained by hydrolyzing cellulose acetate nanofibers, which were prepared via electrostatic-induction-assisted solution blow spinning. Morphology, thermal stability, and mechanical properties of the PEMs were investigated. The results showed that proton conductivity, water uptake, and methanol permeability of the composite membranes were improved. Hydrophilicity of the composite membranes was gradually improved with the addition of nanofibers. When the content of nanofibers was 5 wt%, the highest proton conductivity was 0.13 S/cm (80 °C, 100% RH). Therefore, the cellulose nanofiber could be used as support materials to enhance the performance of proton exchange membranes, the composite membranes have potential application in Direct methanol fuel cells (DMFCs). Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Chan; Zhuang, Xupin; Li, Xiaojie; Wang, Wei; Cheng, Bowen; Kang, Weimin; Cai, Zhanjun; Li, Mengqin
2016-04-20
To balance the relationship among proton conductivity and mechanic strength of sulfonated poly(ether sulfone) (SPES) membrane, chitin nanowhisker-supported nanocomposite membranes were prepared by incorporating whiskers into SPES. The as-prepared chitin whiskers were prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) mediated oxidation of α-chitin from crab shells. The structure and properties of the composite membranes were examined as proton exchange membrane (PEM). Results showed that chitin nanowhiskers were dispersed incompactly in the SPES matrix. Thermal stability, mechanical properties, water uptake and proton conductivity of the nanocomposite films were improved from those of the pure SPES film with increasing whisker content, which ascribed to strong interactions between whiskers and between SPES molecules and chitin whiskers via hydrogen bonding. These indicated that composition of filler and matrix got good properties and whisker-supported membranes are promising materials for PEM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mineart, Kenneth P.; Dickerson, Joshua D.; Love, Dillon M.; ...
2017-01-24
Since nanostructured amphiphilic macromolecules capable of affording high ion and water transport are becoming increasingly important in a wide range of contemporary energy and environmental technologies, the swelling kinetics and temperature dependence of water uptake are investigated in a series of midblock-sulfonated thermoplastic elastomers. Upon self-assembly, these materials maintain a stable hydrogel network in the presence of a polar liquid. In this study, real-time water-sorption kinetics in copolymer films prepared by different casting solvents are elucidated by synchrotron small-angle X-ray scattering and gravimetric measurements, which directly correlate nanostructural changes with macroscopic swelling to establish fundamental structure-property behavior. By monitoring themore » equilibrium swelling capacity of these materials over a range of temperatures, an unexpected transition in the vicinity of 50 degrees C has been discovered. Furthermore, depending on copolymer morphology and degree of sulfonation, hydrothermal conditioning of specimens to temperatures above this transition permits retention of superabsorbent swelling at ambient temperature.« less
Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan
2013-12-30
Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.
Novel Ordered Crown Ether-Containing Polyimides for Ion Conduction
NASA Technical Reports Server (NTRS)
Irvin, Jennifer A.; Stasko, Daniel; Fallis, Stephen; Guenthner, Andrew J.; Webber, Cynthia; Blackwell, John; Chvalun, Sergei N.
2003-01-01
We report the synthesis and characterization of thermally-stable polyimides for use as battery and fuel cell electrolyte membranes. Dianhydrides used were 1,4,5,8- naphthalenetetracarboxylic dianhydride and/or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride. Diamines used were anti-4,4-diaminodibenzo-l8-crown-6, 4,4'- diaminodibenzo-24-crown-8, 2,2-bis(4-aminophenyl)hexafluoropropane, and/or 2,5- diaminobenzenesulfonic acid. The polymers were characterized using electrochemical impedance spectroscopy (EIS), thermal analysis and X-ray diffraction. Polymers containing the hexafluoroisopropylidene (HFIP) group were soluble in common organic solvents, while polymers without the HFIP group were very poorly soluble. Sulfonation yields polymers that are sparingly soluble in aqueous base and/or methanol. Degree of sulfonation, determined by titration, was between one and three sulfonate groups per repeat unit. Proton conductivity was determined as a function of water content, with a maximum conductivity of l x 10(exp -2) per centimeter when fully hydrated. Crown ether-containing polymers exhibit a high degree of order that may be indicative of crown ether channel formation, which may facilitate Li(+) transport for use in battery membranes.
López-Chávez, Ernesto; Peña-Castañeda, Yésica A; de la Portilla-Maldonado, L César; Guzmán-Pantoja, Javier; Martínez-Magadán, José Manuel; Oviedo-Roa, Raúl; de Landa Castillo-Alvarado, Fray; Cruz-Torres, Armando
2014-07-01
The design of polymer electrolyte membranes for fuel cells must satisfy two equally important fundamental principles: optimization of the reactivity and the selectivity in order to improve the ion transport properties of the membrane as well as its long-term stability in the hydrated state at high temperature (above 100 °C). A study utilizing density functional theory (DFT) to elucidate the effect of the degree of sulfonation on the chemical stability, reactivity, and selectivity of poly(ether imide) (PEI), which allows the ionic transport properties of the membrane to be predicted, is reported here. Sulfonated poly(ether imide) (SPEI) structures with (-SO3H) n (n = 1-6) groups were built and optimized in order to calculate the above properties as functions of the number of sulfonyl groups. A comparative study demonstrated that the SPEI with four sulfonyl groups in its backbone is the polymer with the properties best suited for use in fuel cells.
NASA Astrophysics Data System (ADS)
Guan, Shanshan; Zhang, Shouhai; Liu, Peng; Zhang, Guozhen; Jian, Xigao
2014-03-01
Sulfonated copoly (phthalazinone biphenyl ether sulfone) (SPPBES) composite nanofiltration membranes were fabricated by adding low molecular weight additives into SPPBES coating solutions during a dip coating process. Three selected additives: glycol, glycerol and hydroquinone were used in this work. The effect of additives on the membrane performance was studied and discussed in terms of rejection and permeation flux. Among all the composite membranes, the membrane prepared with glycol as an additive achieved the highest Na2SO4 rejection, and the membrane fabricated with glycerol as an additive exhibited the highest flux. The salts rejection of SPPBES composite membranes increased in the following order MgCl2 < NaCl ≤ MgSO4 < Na2SO4. The morphologies of the SPPBES composite membranes were characterized by SEM, it was found that the membrane prepared with hydroquinone showed a rough membrane surface. Composite membrane fabricated with glycol or glycerol as the additive showed very good chemical stability.
NASA Astrophysics Data System (ADS)
Li, Zhen; He, Guangwei; Zhao, Yuning; Cao, Ying; Wu, Hong; Li, Yifan; Jiang, Zhongyi
2014-09-01
In this study, octahedral crystal MIL101(Cr) with a uniform size of ∼400 nm is synthesized via hydrothermal reaction. It is then functionalized with sulfonic acid groups by concentrated sulfuric acid and trifluoromethanesulfonic anhydride in nitromethane. The sulfonated MIL101(Cr) are homogeneously incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare hybrid membranes. The performances of hybrid membranes are evaluated by proton conductivity, methanol permeability, water uptake and swelling property, and thermal stability. The methanol permeability increased slightly from 6.12 × 10-7 to 7.39 × 10-7 cm2 s-1 with the filler contents increasing from 0 to 10 wt. %. However, the proton conductivity of the hybrid membranes increased significantly. The proton conductivity is increased up to 0.306 S cm-1 at 75 °C and 100% RH, which is 96.2% higher than that of pristine membranes (0.156 S cm-1). The increment of proton conductivity is attributed to the following multiple functionalities of the sulfonated MIL101(Cr) in hybrid membranes: i) providing sulfonic acid groups as facile proton hopping sites; ii) forming additional proton-transport pathways at the interfaces of polymer and MOFs; iii) constructing hydrogen-bonded networks for proton conduction via -OH provided by the hydrolysis of coordinatively unsaturated metal sites.
Advanced Materials for PEM-Based Fuel Cell Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. McGrath; Donald G. Baird; Michael von Spakovsky
2005-10-26
Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 degrees C. However, application of these membranes is limited due tomore » their high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in herein.« less
Wu, Hao; Fu, Yu; Guo, Chunyu; Li, Yanbo; Jiang, Nanzhe; Yin, Chengri
2018-07-01
The microbial fuel cell (MFC) has emerged as a promising technology for wastewater treatment and energy recovery, but the expensive cost of proton exchange membranes (PEMs) is a problem that need to be solved. In this study, a two-chamber MFC based on our self-made PEM sulfonated poly (ether ether ketone) membrane was set up to treat phenol/acetone wastewater and synchronously generate power. The maximum output voltage was 240-250 mV. Using phenol and acetone as substrates, the power generation time in an operation cycle was 289 h. The MFC exhibited good removal performance, with no phenol or acetone detected, respectively, when the phenol concentration was lower than 50 mg/L and the acetone concentration was lower than 100 mg/L. This study provides a cheap and eco-friendly way to treat phenol/acetone wastewater and generate useful energy by MFC technology. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui
2017-05-01
A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.
Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan
2014-01-01
Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118
NASA Astrophysics Data System (ADS)
Liu, Dong; Peng, Jinhua; Li, Zhuoyao; Liu, Bin; Wang, Lei
2018-02-01
Sulfonated polymer/graphene oxide (GO) nanocomposites exhibit excellent properties as proton exchange membranes. However, few investigations on highly branched sulfonated poly(arylene ether)s (HBSPE)/GO nanocomposites as proton exchange membranes are reported. In order to obtain HBSPE-based nanocomposite membranes with better dispersibility and properties, a novel GO containing flexible alkylsulfonated side chains (SGO) is designed and prepared for the first time in this work. The HBSPE/SGO nanocomposite membranes with excellent dispersibility are successfully prepared. The properties of these membranes, including the mechanical properties, ion-exchange capacity, water uptake, proton conductivity, and methanol resistance, are characterized. The nanocomposite membranes exhibit higher tensile strength (32.67 MPa), higher proton conductivity (0.39 S cm-1 at 80 °C) and lower methanol permeability (4.89 × 10-7 cm2 s-1) than the pristine membrane. The nanocomposite membranes also achieve a higher maximum power density (82.36 mW cm-2) than the pristine membrane (67.85 mW cm-2) in single-cell direct methanol fuel cell (DMFC) tests, demonstrating their considerable potential for applications in DMFCs.
NASA Astrophysics Data System (ADS)
Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop
2018-04-01
A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.
1983-01-01
Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.
NASA Astrophysics Data System (ADS)
Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying
2018-05-01
To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.
Advanced Materials for PEM-Based Fuel Cell Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. McGrath
2005-10-26
Proton exchange membrane fuel cells (PEMFCs) are quickly becoming attractive alternative energy sources for transportation, stationary power, and small electronics due to the increasing cost and environmental hazards of traditional fossil fuels. Two main classes of PEMFCs include hydrogen/air or hydrogen/oxygen fuel cells and direct methanol fuel cells (DMFCs). The current benchmark membrane for both types of PEMFCs is Nafion, a perfluorinated sulfonated copolymer made by DuPont. Nafion copolymers exhibit good thermal and chemical stability, as well as very high proton conductivity under hydrated conditions at temperatures below 80 ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂðC. However, application of these membranes is limited due to theirmore » high methanol permeability and loss of conductivity at high temperatures and low relative humidities. These deficiencies have led to the search for improved materials for proton exchange membranes. Potential PEMs should have good thermal, hydrolytic, and oxidative stability, high proton conductivity, selective permeability, and mechanical durability over long periods of time. Poly(arylene ether)s, polyimides, polybenzimidazoles, and polyphenylenes are among the most widely investigated candidates for PEMs. Poly(arylene ether)s are a promising class of proton exchange membranes due to their excellent thermal and chemical stability and high glass transition temperatures. High proton conductivity can be achieved through post-sulfonation of poly(arylene ether) materials, but this most often results in very high water sorption or even water solubility. Our research has shown that directly polymerized poly(arylene ether) copolymers show important advantages over traditional post-sulfonated systems and also address the concerns with Nafion membranes. These properties were evaluated and correlated with morphology, structure-property relationships, and states of water in the membranes. Further improvements in properties were achieved through incorporation of inorganic fillers, such as phosphotungstic acid and zirconium hydrogen phosphate. Block copolymers were also studied due to the possibility to achieve a desired combination of homopolymer properties as well as the unique morphologies that are possible with block copolymers. Bezoyl substituted poly(p-phenylene) blocks were combined with poly(arylene ether) blocks to merge the structural rigidity of the poly(p-phenylene) with the ductility and high protonic conductivity of the poly(arylene ether)s. As evidenced by our many refereed publications and preprints, the research that we have conducted over the past several years has made a valuable and significant contribution to the literature and to the state of understanding of proton exchange membranes. Our early efforts at scale-up have suggested that the directly polymerized disulfonated poly(arylene ether sulfone) copolymers are commercially viable alternatives for proton exchange membranes. A new process for bipolar plates was developed and is described. An important single domain PEMFC model was developed and is documented in this final report.« less
Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin
2014-02-06
In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.
Xu, Wanxing; Li, Xianfeng; Cao, Jingyu; Zhang, Hongzhang; Zhang, Huamin
2014-01-01
In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on. PMID:24500376
SPEEK/PVDF/PES Composite as Alternative Proton Exchange Membrane for Vanadium Redox Flow Batteries
NASA Astrophysics Data System (ADS)
Fu, Zhimin; Liu, Jinying; Liu, Qifeng
2016-01-01
A membrane consisting of a blend of sulfonated poly(ether ether ketone) (SPEEK), poly(vinylidene fluoride) (PVDF), and poly(ether sulfone) (PES) has been fabricated and used as an ion exchange membrane for application in vanadium redox flow batteries (VRBs). The vanadium ion permeability of the SPEEK/PVDF/PES membrane was one order of magnitude lower than that of Nafion 117 membrane. The low-cost composite membrane exhibited better performance than Nafion 117 membrane at the same operating condition. A VRB single cell with SPEEK/PVDF/PES membrane showed significantly lower capacity loss, higher coulombic efficiency (>95%), and higher energy efficiency (>82%) compared with Nafion 117 membrane. In the self-discharge test, the duration of the cell with the SPEEK/PVDF/PES membrane was nearly two times longer than that with Nafion 117 membrane. Considering these good properties and its low cost, SPEEK/PVDF/PES membrane is expected to have excellent commercial prospects as an ion exchange membrane for VRB systems.
Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan
2014-11-12
Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.
NASA Astrophysics Data System (ADS)
Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun
2018-01-01
Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.
Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G
2005-04-28
Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.
Kwon, Taehoon; Cho, Hyeongrae; Lee, Jang-Woo; Henkensmeier, Dirk; Kang, Youngjong; Koo, Chong Min
2017-08-30
Ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA) are assembled into bending ionic polymer actuators. CuPCSA is an organic filler with very high sulfonation degree (IEC = 4.5 mmol H + /g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane, probably due to its good dispersibility in SPAES-containing solutions. SPAES/CuPCSA actuators exhibit larger ion conductivity (102 mS cm -1 ), tensile modulus (208 MPa), strength (101 MPa), and strain (1.21%), exceptionally faster response to electrical stimuli, and larger mechanical power density (3028 W m -3 ) than ever reported for ion-conducting polymer actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next-generation transducers with high power density, which are currently developed, e.g., for underwater propulsion and endoscopic surgery.
Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele
2015-01-01
In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers. PMID:28793427
Boaretti, Carlo; Roso, Martina; Lorenzetti, Alessandra; Modesti, Michele
2015-07-07
In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate) and material (sulfonation degree) variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.
Wang, Lingren; He, Min; Gong, Tao; Zhang, Xiang; Zhang, Lincai; Liu, Tao; Ye, Wei; Pan, Changjiang; Zhao, Changsheng
2017-11-21
It has been widely recognized that functional groups on biomaterial surfaces play important roles in blood compatibility. To construct an effective antithrombotic bio-interface onto the poly(ether sulfone) (PES) membrane surface, bio-functional groups of sodium carboxylic (-COONa), sodium sulfonic (-SO 3 Na) and amino (-NH 2 ) groups were introduced onto the PES membrane surface in three steps: the synthesis of PES with carboxylic (-COOH) groups (CPES) and water-soluble PES with sodium sulfonic (-SO 3 Na) groups and amino (-NH 2 ) groups (SNPES); the introduction of carboxylic groups onto the PES membrane by blending CPES with PES; and the grafting of SNPES onto CPES/PES membranes via the coupling of amino groups and carboxyl groups. The physical/chemical properties and bioactivities were dependent on the proportions of the additives. After introducing bio-functional groups, the excellent hemocompatibility of the modified membranes was confirmed by the inhibited platelet adhesion and activation, prolonged clotting times, suppressed blood-related complement and leukocyte-related complement receptor activations. Furthermore, cell tests indicated that the modified membranes showed better cytocompatibility in endothelial cell proliferation than the pristine PES membrane due to the synergistic promotion of the functional groups. To sum up, these results suggested that modified membranes present great potential in fields using blood-contacting materials, such as hemodialysis and surface endothelialization.
Yuen, Alexander; Wojtecki, Rudy J.; Hedrick, James L.; García, Jeannette M.
2016-01-01
It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers. PMID:27354514
Jones, Gavin O; Yuen, Alexander; Wojtecki, Rudy J; Hedrick, James L; García, Jeannette M
2016-07-12
It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.
NASA Astrophysics Data System (ADS)
Hu, Zhaoxia; Lu, Yao; Zhang, Xulve; Yan, Xiaobo; Li, Na; Chen, Shouwen
2018-06-01
Proton exchange membranes based on fluorinated poly(ether sulfone)s with disulfonated naphthyl pendants (sSPFES) have been successfully prepared by post functionalization through polymeric SNAr reaction. Copolymer structure was confirmed by H-nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy, the physico-chemical properties of the sSPFES membranes were evaluated by thermogravimetric analysis, gel permeation chromatography, electro-chemical impedance spectroscopy, atomic force microscopy, Fenton, water-swelling and fuel cell test. The pendant grafting degree was controlled by varying the feeding amount of the disulfonaphthols, resulting in the ion exchange capacity about 1.28-1.73 mmol/g. The obtained sSPFES membranes were thermal stable, mechanical ductile, and exhibited dimensional change less than 17%, water uptake below 70%, and proton conductivity as high as 0.17-0.28 S/cm at 90°C in water. In a single H2/O2 fuel cell test at 80°C, the sSPFES-B-3.2 membrane (1.61 mmol/g) showed the maximum power output of 593-658 mW/cm2 at 60%-80% relative humidity, indicating their rather promising potential for fuel cell applications.
NASA Astrophysics Data System (ADS)
Hu, Zhaoxia; Lu, Yao; Zhang, Xulve; Yan, Xiaobo; Li, Na; Chen, Shouwen
2018-05-01
Proton exchange membranes based on fluorinated poly(ether sulfone)s with disulfonated naphthyl pendants (sSPFES) have been successfully prepared by post functionalization through polymeric SNAr reaction. Copolymer structure was confirmed by H-nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy, the physico-chemical properties of the sSPFES membranes were evaluated by thermogravimetric analysis, gel permeation chromatography, electro-chemical impedance spectroscopy, atomic force microscopy, Fenton, water-swelling and fuel cell test. The pendant grafting degree was controlled by varying the feeding amount of the disulfonaphthols, resulting in the ion exchange capacity about 1.28-1.73 mmol/g. The obtained sSPFES membranes were thermal stable, mechanical ductile, and exhibited dimensional change less than 17%, water uptake below 70%, and proton conductivity as high as 0.17-0.28 S/cm at 90°C in water. In a single H2/O2 fuel cell test at 80°C, the sSPFES-B-3.2 membrane (1.61 mmol/g) showed the maximum power output of 593-658 mW/cm2 at 60%-80% relative humidity, indicating their rather promising potential for fuel cell applications.
NASA Astrophysics Data System (ADS)
Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun
2017-10-01
The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.
21 CFR 177.1650 - Polysulfide polymer-polyepoxy resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
...(2-chloroethyl) formal Bis(dichloropropyl) formal Cross-linking agent. Butyl alcohol Solvent. Carbon black (channel process) Chlorinated paraffins Cross-linking agent. Epoxidized linseed oil Epoxidized... monobutyl ether Solvent. Magnesium chloride Methyl isobutyl ketone Solvent. Naphthalene sulfonic acid...
NASA Astrophysics Data System (ADS)
Chen, Dongju; Li, Dandan; Li, Xianfeng
2017-06-01
A hierarchical poly (ether sulfone) (PES) porous membrane is facilely fabricated via a hard template method for vanadium flow battery (VFB) application. The construction of this hierarchical porous membrane is prepared via removing templates (phenolphthalein). The pore size can be well controlled by optimizing the template content in the cast solution, ensuring the membrane conductivity and selectively. The prepared hierarchical porous membrane can combine high ion selectivity with high proton conductivity, which renders a good electrochemical performance in a VFB. The optimized hierarchical porous membrane shows a columbic efficiency of 94.52% and energy efficiency of 81.66% along with a superior ability to maintain stable capacity over extended cycling at a current density of 80 mA cm-2. The characteristics of low cost, proven chemical stability and high electrochemical performance afford the hierarchical PES porous membrane great prospect in VFB application.
NASA Astrophysics Data System (ADS)
Kaya, Hatice; Bulut, Osman; Kamali, Ali Reza; Ege, Duygu
2018-06-01
Favorable implant-tissue interactions are crucial to achieve successful osseointegration of the implants. Poly(ether ether ketone) (PEEK) is an interesting alternative to titanium in orthopedics because of its low cost, high biocompatibility and comparable mechanical properties with cancellous bone. Despite these advantages; however, the untreated surface of PEEK fails to osseointegrate due to its bioinert and hydrophobic behavior. This paper deals with the surface modification of PEEK with a novel method. For this, PEEK was first treated with concentrated sulfuric acid to prepare sulfonated PEEK (SPEEK) films using a solvent casting method. Then, 1 and 2 wt% multi-walled carbon nanotube was incorporated into SPEEK to form nanocomposite films. The samples were characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy. After successful preparation of the nanocomposite films, L-arginine was covalently conjugated on the nanocomposite films to further improve their surface properties. Subsequently, the samples were characterized using X-ray Photoemission Spectroscopy (XPS), water contact angle measurements and Atomic Force Microscopy (AFM) and Dynamic Mechanical Thermal Analysis (DMTA). Finally, cell culture studies were carried out by using Alamar Blue assay to evaluate the biocompatibility of the films. The results obtained indicate the successful preparation of L-arginine-conjugated MWCNT/SPEEK nanocomposite films. The modified surface shows potential to improve implants' mechanical and biological performances.
Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo
2018-06-01
Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Gold(I)-Catalyzed Cascade Cyclization of Allenyl Epoxides
Tarselli, Michael A.; Lucas Zuccarello, J
2009-01-01
Cationic gold(I) phosphite catalysts activate allenes for epoxide cascade reactions. The system is tolerant of numerous functional groups (sulfones, esters, ethers, sulfonamides) and proceeds at room temperature in dichloromethane. The cyclization pathway is sensitive to the substitution pattern of the epoxide, and the backbone structure of the A-ring. It is capable of producing medium-ring ethers, fused 6-5 bicyclic, and linked pyran-furan structures. The resulting cycloisomers are reminiscent of structures found in numerous polyether natural products. PMID:19588972
NASA Astrophysics Data System (ADS)
Nguyen, Minh Dat Thinh; Yang, Sungwoo; Kim, Dukjoon
2016-10-01
Poly(arylene ether ketone) (PAEK) possessing carboxylic groups at the pendant position is synthesized, and the substitution degree of pendant carboxylic groups is controlled by adjusting the ratio of 4,4-bis(4-hydroxyphenyl)valeric acid and 2,2-bis(4-hydroxyphenyl)propane. Dual sulfonated 3,3-diphenylpropylamine (SDPA) is grafted onto PAEK as a proton-conducting moiety via the amidation reaction with carboxylic groups. The transparent and flexible membranes with different degrees of sulfonation are fabricated so that we can test and compare their structure and properties with a commercial Nafion® 115 membrane for PEMFC applications. All prepared PAEK-SDPA membranes exhibit good oxidative and hydrolytic stability from Fenton's and high temperature water immersion test. SAXS analysis illustrates an excellent phase separation between the hydrophobic backbone and hydrophilic pendant groups, resulting in big ionic clusters. The proton conductivity was measured at different relative humidity, and its behavior was analyzed by hydration number of the membrane. Among a series of membranes, some samples (including B20V80-SDPA) show not only higher proton conductivity, but also higher integrated cell performance than those of Nafion® 115 at 100% relative humidity, and thus we expect these to be good candidate membranes for proton exchange membrane fuel cells (PEMFCs).
Effect of chain structure on hydrogen bonding in vinyl acetate - vinyl alcohol copolymers
NASA Astrophysics Data System (ADS)
Merekalova, Nadezhda D.; Bondarenko, Galina N.; Denisova, Yuliya I.; Krentsel, Liya B.; Litmanovich, Arkadiy D.; Kudryavtsev, Yaroslav V.
2017-04-01
FTIR spectroscopy and semi-empirical AM1 method are used to study hydrogen bonding in multiblock and random equimolar copolymers of vinyl acetate and vinyl alcohol. An energetically beneficial zip-holder complex, built on multiple inter- and intrachain hydroxyl-hydroxyl bonds and an intrachain hydroxyl-acetyloxy bond, can be formed between two vinyl alcohol sequences. As a result, multiblock copolymers reveal stronger degree of association that affects crystallinity, as well as various rheological and relaxation properties discussed in the literature. Macromolecular complexes in random copolymers are weak and tend to be destroyed in the presence of residual DMF solvent and adsorbed water. Nevertheless, a rather stable interchain quaternary complex can be formed that includes vinyl alcohol and vinyl acetate units and DMF and water molecules. For a single chain it is shown that an H-bond between neighboring vinyl alcohol and vinyl acetate monomer units mostly engages a carbonyl oxygen atom of the vinyl acetate, if the vinyl alcohol belongs to a short (<5 units) sequence, and an ether oxygen atom in the other case. On the whole, the quantum chemistry calculations shed much light on the origin of distinctions in the copolymer FTIR spectra, which may seem subtle when considered standalone.
Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s
NASA Astrophysics Data System (ADS)
Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.
2017-11-01
Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.
NASA Astrophysics Data System (ADS)
Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei
2018-03-01
Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.
Hydroperoxide Traces in Common Cyclic Ethers as Initiators for Controlled RAFT Polymerizations.
Eggers, Steffen; Abetz, Volker
2018-04-01
Herein, a reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced for reactive monomers like N-acryloylpyrrolidine or N,N-dimethylacrylamide working without a conventional radical initiator. As a very straightforward proof of principle, the method takes advantage of the usually inconvenient radical-generating hydroperoxide contaminations in cyclic ethers like tetrahydrofuran or 1,4-dioxane, which are very common solvents in polymer sciences. The polymerizations are surprisingly well controlled and the polymers can be extended with a second block, indicating their high livingness. "Solvent-initiated" RAFT polymerizations hence prove to be a feasible access to tailored materials with minimal experimental effort and standard laboratory equipment, only requiring the following ingredients: hydroperoxide-contaminated solvent, monomer, and RAFT agent. In other respects, however, the potential coinitiating ability of the used solvent is to be considered when investigating the kinetics of RAFT polymerizations or aiming for the synthesis of high-livingness polymers, e.g., multiblock copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimised mounting conditions for poly (ether sulfone) in radiation detection.
Nakamura, Hidehito; Shirakawa, Yoshiyuki; Sato, Nobuhiro; Yamada, Tatsuya; Kitamura, Hisashi; Takahashi, Sentaro
2014-09-01
Poly (ether sulfone) (PES) is a candidate for use as a scintillation material in radiation detection. Its characteristics, such as its emission spectrum and its effective refractive index (based on the emission spectrum), directly affect the propagation of light generated to external photodetectors. It is also important to examine the presence of background radiation sources in manufactured PES. Here, we optimise the optical coupling and surface treatment of the PES, and characterise its background. Optical grease was used to enhance the optical coupling between the PES and the photodetector; absorption by the grease of short-wavelength light emitted from PES was negligible. Diffuse reflection induced by surface roughening increased the light yield for PES, despite the high effective refractive index. Background radiation derived from the PES sample and its impurities was negligible above the ambient, natural level. Overall, these results serve to optimise the mounting conditions for PES in radiation detection. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fabrication of composite membranes using copper metal organic framework for energy application
NASA Astrophysics Data System (ADS)
Gahlot, Swati; Rajput, Abhishek; Kulshrestha, Vaibhav
2018-04-01
Present manuscript deals with the synthesis of nanocomposite polymer electrolyte membrane (PEM) based on copper based metal organic framework (Cu-MOF) and sulfonated poly ether sulfone (SPES) for fuel cell application. Prepared material and composite membrane has been analyzed through various techniques. Structural and thermal characterization of prepared material has been carried out through XRD, FTIR and TGA technique. Measurement shows the successful synthesis of MOF and also confirms the thermal stability. Prepared membranes shows good physicochemical properties and good ionic conductivity which can be utilized as PEM for fuel cell application.
Association of a multifunctional ionic block copolymer in a selective solvent
Etampawala, Thusitha N.; Aryal, Dipak; Osti, Naresh C.; ...
2016-11-14
The self-assembly of multiblock copolymers in solutions is controlled by a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interaction of the individual blocks with the solvent. The current study elucidates the association of pentablock copolymers in a mixture of selective solvents which are good for the hydrophobic segments and poor for the hydrophilic blocks using small angle neutron scattering (SANS). The pentablock consists of a center block of randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability. We find that the pentablock forms ellipsoidal core-shellmore » micelles with the sulfonated polystyrene in the core and Gaussian decaying chains of swollen poly-ethylene-r-propylene and poly-t-butyl styrene tertiary in the corona. With increasing solution concentration, the size of the micelle, the thickness of the corona, and the aggregation number increase, while the solvent fraction in the core decreases. As a result, in dilute solution the micelle increases in size as the temperature is increased, however, temperature effects dissipate with increasing solution concentration.« less
Many per- and polyfluorinated compounds have been shown to be globally distributed with some also having the additional undesirable properties of persistence, bioaccumulation, and toxicity. To address these concerns, many industrial manufacturers have moved away from their tradi...
Cui, Qianqian; Pan, Yitao; Zhang, Hongxia; Sheng, Nan; Dai, Jiayin
2018-06-11
Novel 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and legacy PFASs, such as perfluorohexane sulfonate (PFHxS), have been used to replace perfluorooctane sulfonate (PFOS), a known persistent organic pollutant. Thus, it is critical to understand these PFOS alternatives regarding their sources and concentrations in the natural environment. In this study, 41 surface water samples as well as edible aquatic organisms were collected from Baiyangdian Lake, the largest freshwater lake in Hebei Province, China. Perfluorooctanoate acid (PFOA) and PFHxS were the predominant PFASs detected in the surface water, reaching concentrations of 8 397.23 ng/L and 1 478.03 ng/L, respectively, with PFHxS accounting for the greatest proportion (∼80.00%) in most water samples. PFHxS (mean: 87.53 ng/g) and PFOS (mean: 35.94 ng/g) were also the most prevalent compounds detected in aquatic organisms. Estimated daily intake (EDI) values of PFOS (16.56 ng/kg bw/d) and PFHxS (16.11 ng/kg bw/d) via aquatic food and drinking water were the highest among PFASs, indicating potential exposure risks to residents. In addition, fish product consumption was the important exposure pathway for residents to PFOA, PFHxS, PFOS, and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA). This study reports on the highest PFHxS levels ever recorded in surface water, suggesting that further quantification of PFHxS in human serum and assessment of its health risks to local residents are warranted and critical. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Wei; Qin, Hui; Li, Jingwen; Zhang, Qian; Zhang, Huanhuan; Wang, Zaoshi; He, Xin
2017-10-01
Chlorinated polyfluorinated ether sulfonate (Cl-PFESA; trade name F-53B) is an alternative product for perfluorooctane sulfonate (PFOS) used in metal plating; little is known about its levels in the environment and its risks. To our knowledge, the present study constitutes the first report of Cl-PFESA in the atmosphere. In 2006 to 2014, C8 Cl-PFESA, along with ionic perfluoroalkyl acids (PFAAs), was detected in atmospheric particulate matter in Dalian, China. Concentrations of C8 Cl-PFESA increased from 140 pg/m 3 in 2007 to 722 pg/m 3 in 2014. Levels of 11 (total) ionic PFAAs increased in 2006 to 2008 and decreased afterward, with a range of 35.7 to 860 pg/m 3 . The PFAAs in the particulate matter were dominated by perfluorocarboxylates, with perfluorooctanoate detected at the highest concentration at a mean level of 71.7 pg/m 3 , followed by perfluoroheptanoate and perfluorohexanoate. Perfluorosulfonates were detected at lower levels, with mean concentrations of PFOS, perfluorobutanesulfonate, and perfluorohexane sulfonate of 5.73, 1.64, and 1.24 pg/m 3 , respectively. Back-trajectory analysis suggested that the air mass approaching Dalian during the sampling originated from the northwest, where fluorochemical industry parks and metal plating industries are densely located. No significant correlation was observed between Cl-PFESA and the ionic PFAAs. The relatively high Cl-PFESA concentrations suggested that it possibly contributed largely to the previously reported exposure to undefined organic fluorine compounds, for which further research on emission and environmental risks is needed. Environ Toxicol Chem 2017;36:2581-2586. © 2017 SETAC. © 2017 SETAC.
Modification of epoxy-reinforced glass-cloth composites with a perfluorinated alkyl ether elastomer
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Chen, T. S.; Taylor, M.
1984-01-01
A perfluorinated alkyl ether diacyl fluoride prepolymer (molecular weight about 1500) was coreacted with Epon 828 epoxy resin and diamino diphenyl sulfone to obtain an elastomer-toughened, glass-cloth composite. Improvements in flexural toughness, impact resistance, and water resistance, without loss of strength, modulus of elasticity or a lowering of the glass-transition temperature, were realized over those of the unmodified composite. Factors concerning optimization of the process are discussed. Results suggest that a simultaneously interpenetrating polymer network may be formed which gives rise to a measured improvement in composite mechanical properties.
Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing ...
Morphology Effect on Proton Dynamics in Nafion® 117 and Sulfonated Polyether Ether Ketone
NASA Astrophysics Data System (ADS)
Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki
2016-09-01
We report results of our experimental and theoretical studies on the dynamics of proton conductivity in Nafion® 117 and self-fabricated sulfonated polyether ether ketone (SPEEK) membranes. Knowing that the presence of water molecules in the diffusion process results in a lower energy barrier, we determined the diffusion barriers and corresponding tunneling probabilities of Nafion® 117 and SPEEK system using a simple theoretical model that excludes the medium (water molecules) in the initial calculations. We then propose an equation that relates the membrane conductivity to the tunneling probability. We recover the effect of the medium by introducing a correction term into the proposed equation, which takes into account the effect of the proton diffusion distance and the hydration level. We have also experimentally verified that the proposed equation correctly explain the difference in conductivity between Nafion® 117 and SPEEK. We found that membranes that are to be operated in low hydration environments (high temperatures) need to be designed with short diffusion distances to enhance and maintain high conductivity.
Gahlot, Swati; Kulshrestha, Vaibhav
2015-01-14
Nanohybrid membranes of electrically aligned functionalized carbon nanotube f CNT with sulfonated poly ether ether ketone (SPEEK) have been successfully prepared by solution casting. Functionalization of CNTs was done through a carboxylation and sulfonation route. Further, a constant electric field (500 V·cm(-2)) has been applied to align CNTs in the same direction during the membrane drying process. All the membranes are characterized chemically, thermally, and mechanically by the means of FTIR, DSC, DMA, UTM, SEM, TEM, and AFM techniques. Intermolecular interactions between the components in hybrid membranes are established by FTIR. Physicochemical measurements were done to analyze membrane stability. Membranes are evaluated for proton conductivity (30-90 °C) and methanol crossover resistance to reveal their potential for direct methanol fuel cell application. Incorporation of f CNT reasonably increases the ion-exchange capacity, water retention, and proton conductivity while it reduces the methanol permeability. The maximum proton conductivity has been found in the S-sCNT-5 nanohybrid PEM with higher methanol crossover resistance. The prepared membranes can be also used for electrode material for fuel cells and batteries.
NASA Astrophysics Data System (ADS)
Rong, Guolong; Zhou, Di; Han, Xiaocui; Pang, Jinhui
2018-01-01
Zwitterionic poly(arylene ether sulfone) (PAES-NS) was synthesized via copolymerization by using a bisphenol monomer with a pyridine group. The chemical structures of the copolymers were confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopy; the copolymers showed good thermal stability. A series of polyphenysulfone (PPSU)/PAES-NS blend ultrafiltration (UF) membranes was prepared via conventional immersion precipitation phase inversion methods The morphologies of the modified membranes were investigated by scanning electron microscopy (SEM). The surface hydrophilicity of the UF membranes was studied by water contact angle measurement, indicating that the zwitterionic group increased the membrane hydrophilicity. UF of solvated model pollutants using the membranes showed a significant reduction of the irreversible adsorption of the foulants, illustrating the excellent anti-fouling properties of the membrane. The water flux of the PAES-NS membrane was significantly enhanced, being almost three times higher than that of the pristine PPSU membrane, with retention of a high rejection level. After three UF cycles, the water flux recovery of the PAES-NS membrane was as high as 96%.
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-01
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui
2016-09-14
Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.
NASA Astrophysics Data System (ADS)
Chen, Liyun; Zhang, Shouhai; Chen, Yuning; Jian, Xigao
2017-07-01
A series of novel sulfonated poly(phthalazinone ether ketone)s containing pendant phenyl moieties (SPPEK-Ps) are synthesized and thoroughly characterized. The chemical structures of the polymers are confirmed by 1H NMR and FTIR analysis. The physicochemical properties and single cell performance of SPPEK-P membranes are systematically evaluated, revealing that the membranes are thermally, chemically and mechanically stable. The area resistances of SPPEK-P-90 and SPPEK-P-100 are 0.75 Ω cm2 and 0.34 Ω cm2, respectively. SPPEK-P membranes are impermeable to the bulky hydrated VO2+ ion and exhibited low V3+ ion permeability (SPPEK-P-90, 2.53 × 10-5 cm min-1) (Nafion 115 membrane: 9.0 × 10-4 cm min-1). Tests of SPPEK-P-90 in vanadium redox flow batteries (VRFBs) demonstrate a comparable columbic efficiency (CE) and energy efficiency (EE) to that of Nafion 115, where the CE is 98% and the EE is 83% at 60 mA cm-2. Moreover, the SPPEK-P-90 membrane exhibits stable performance in cell over 100 charge-discharge cycles (∼450 h).
NASA Astrophysics Data System (ADS)
Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.
2015-07-01
Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.
Chen, Hong; Han, Jianbo; Cheng, Jiayi; Sun, Ruijun; Wang, Xiaomeng; Han, Gengchen; Yang, Wenchao; He, Xin
2018-06-04
Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) caused great concerns recently as novel fluorinated alternatives. However, information on their bioconcentration, bioaccumulation and biomagnification in marine ecosystems is limited. In this study, 152 biological samples including invertebrates, fishes, seabirds and mammals collected from Bohai Sea of China were analyzed to investigate the residual level, spatial distribution, bioaccumulation and biomagnification of Cl-PFESAs. 6:2 Cl-PFESA was found in concentrations ranging from
NASA Astrophysics Data System (ADS)
Shimizu, Ryo; Tsuji, Junichi; Sato, Nobuyuki; Takano, Jun; Itami, Shunsuke; Kusakabe, Masato; Miyatake, Kenji; Iiyama, Akihiro; Uchida, Makoto
2017-11-01
The chemical durabilities of two proton-conducting hydrocarbon polymer electrolyte membranes, sulfonated benzophenone poly(arylene ether ketone) (SPK) semiblock copolymer and sulfonated phenylene poly(arylene ether ketone) (SPP) semiblock copolymer are evaluated under accelerated open circuit voltage (OCV) conditions in a polymer electrolyte fuel cell (PEFC). Post-test characterization of the membrane electrodes assemblies (MEAs) is carried out via gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. These results are compared with those of the initial MEAs. The SPP cell shows the highest OCV at 1000 h, and, in the post-test analysis, the SPP membrane retains up to 80% of the original molecular weight, based on the GPC results, and 90% of the hydrophilic structure, based on the NMR results. The hydrophilic structure of the SPP membrane is more stable after the durability evaluation than that of the SPK. From these results, the SPP membrane, with its simple hydrophilic structure, which does not include ketone groups, is seen to be significantly more resistant to radical attack. This structure leads to high chemical durability and thus impedes the chemical decomposition of the membrane.
Poly(arylene ether-co-imidazole)s as toughness modifiers for epoxy resins
NASA Technical Reports Server (NTRS)
Mcdaniel, Patricia D. (Inventor); Connell, John W. (Inventor)
1994-01-01
A toughened epoxy was prepared by reacting an epoxy resin with a poly(arylene ether-co-imidazole)s (PAEI). The epoxy resin comprises N,N,N',N'tetraglycidyl-4,4'- methylenebisbenzenamine and 4-aminophenyl sulfone. The PAEI was prepared by reacting an aromatic bisphenol, a bisphenol imidazole, and an activated aromatic dihalide or dinitro compound in the presence of potassium carbonate in a polar aprotic solvent at an elevated temperature. The epoxies which were modified with these particular PAEI's showed a significant increase in toughness with only a 10 weight percent loading of the PAEI into the epoxy. These toughened epoxies were used to prepare composites and molded parts.
The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers
NASA Astrophysics Data System (ADS)
LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.
2016-09-01
Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.
Solvent resistant thermoplastic aromatic poly(imidesulfone) and process for preparing same
NASA Technical Reports Server (NTRS)
St.clair, T. L.; Yamaki, D. A. (Inventor)
1983-01-01
A process for preparing a thermoplastic poly(imidesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistance which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.
Process for preparing solvent resistant, thermoplastic aromatic poly(imidesulfone)
NASA Technical Reports Server (NTRS)
St.clair, T. L.; Yamaki, D. A. (Inventor)
1984-01-01
A process for preparing a thermoplastic poly(midesulfone) is disclosed. This resulting material has thermoplastic properties which are generally associated with polysulfones but not polyimides, and solvent resistant which is generally associated with polyimides but not polysulfones. This system is processable in the 250 to 350 C range for molding, adhesive and laminating applications. This unique thermoplastic poly(imidesulfone) is obtained by incorporating an aromatic sulfone moiety into the backbone of an aromatic linear polyimide by dissolving a quantity of a 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) in a solution of 3,3'-diaminodiphenylsulfone and bis(2-methoxyethyl)ether, precipitating the reactant product in water, filtering and drying the recovered poly(amide-acid sulfone) and converting it to the poly(imidesulfone) by heating.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Lyle, G. D.; Jurek, M. J.; Mohanty, D.; Hedrick, J. C.
1986-01-01
Amine functional poly(arylene ether) sulfones were previously reported. Herein, the chemistry was extended to amorphous poly(arylene ether) ketones because of their higher fracture toughness values, relative to the polysulfones. It was demonstrated that the amino functional oligomers undergo a self-crosslinking reaction at temperatures above about 220 C. This produces an insoluble, but ductile network that has excellent resistance. A ketamine structure hypothesis was proposed and verified using solid state magic angle NMR. In most cases, the water generated upon ketamine formation is too low to produce porosity and solid networks are obtained. The stability of the ketamine networks towards hydrolysis is excellent. The chemistry was further demonstrated to be able to crosslink preformed nonfunctional poly(arylene ether) ketones if a difunctional amine was utilized. This concept has the possibility of greatly improving the creep resistance of thermoplastics. Also, a new technique was developed for converting the amine functional oligomers cleanly into maleimide structures. This method involves reacting maleic anhydride with monomeric aminophenols in the presence of solvent mixtures.
Custer, T.W.; Kannan, K.; Tao, L.; Yun, S.-H.; Trowbridge, A.
2010-01-01
Archived Great Blue Heron (Ardea herodias) eggs (N = 16) collected in 1993 from three colonies on the Mississippi River in Minnesota were analyzed in 2007 for perfluorinated compounds (PFCs) and polybrominated diphenyl ethers (PBDEs). One of the three colonies, Pig's Eye, was located near a presumed source of PFCs. Based on a multivariate analysis, the pattern of nine PFC concentrations differed significantly between Pig's Eye and the upriver (P = 0.002) and downriver (P = 0.02) colonies; but not between the upriver and downriver colonies (P = 0.25). Mean concentrations of perfluorooctane sulfonate (PFOS), a major PFC compound, were significantly higher at the Pig's Eye colony (geometric mean = 940 ng/g wet weight) than at upriver (60 ng/g wet weight) and downriver (131 ng/g wet weight) colonies. Perfluorooctane sulfonate concentrations from the Pig's Eye colony are among the highest reported in bird eggs. Concentrations of PFOS in Great Blue Heron eggs from Pig's Eye were well below the toxicity thresholds estimated for Bobwhite Quail (Colinus virginianus) and Mallards (Anas platyrhynchos), but within the toxicity threshold estimated for White Leghorn Chickens (Gallus domesticus). The pattern of six PBDE congener concentrations did not differ among the three colonies (P = 0.08). Total PBDE concentrations, however, were significantly greater (P = 0.03) at Pig's Eye (geometric mean = 142 ng/g wet weight) than the upriver colony (13 ng/g wet weight). Polybrominated diphenyl ether concentrations in two of six Great Blue Heron eggs from the Pig's Eye colony were within levels associated with altered reproductive behavior in American Kestrels (Falco sparverius).
Abstracts of AF Materials Laboratory Reports. January 1973 - December 1973
1974-07-01
substituted polymers with aryl ether , ketone and sulfone units in the backbone has been studied. The best resins seem to have come from simple...exposed to hostile environments such as heat aging plus salt spray, humid aging , humid aging and elevated temperature cycling, and fatigue...unclassified results of materials and process and radome characterization effort. Environmental exposure including thermal aging resulted in significant
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.
1982-01-01
The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.
Park, Sin Young; Cheong, Won Jo
2016-05-01
Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vo, Nhat Tri; Patra, Astam K; Kim, Dukjoon
2017-01-18
Mesoporous silica nanoparticles (MSNs) with uniform size (<50 nm) yet with different pore diameters were synthesized, and used as fillers in poly(ether sulfone) (PES) films in order to decrease their coefficient of thermal expansion (CTE) without sacrificing optical transparency. Here, both CTE and optical transparency of the MSN/PES nanocomposite films gradually decreased with increasing MSN concentration. The PES films containing MSNs with larger pores showed the best performance in CTE and optical transparency. While the CTE decreased by 32.3% with increasing MSN content up to 0.5 wt%, the optical transparency decreased by only less than 6.9% because of the small and uniform particle size of less than 50 nm, which minimizes light scattering. This pore size effect is more clearly observed via an annealing process, which enables the polymer chains to slowly move and fill in the free volume in the pores of the MSN, and thus restricts the thermal motion. The effect of the silica nanoparticles was investigated not only on the thermal stability but also on the mechanical stability. We expect the MSNs synthesized in this study to be used as a promising filler to enhance the thermal and mechanical stability of the PES substrate without sacrificing its optical transparency.
NASA Astrophysics Data System (ADS)
Klose, Carolin; Breitwieser, Matthias; Vierrath, Severin; Klingele, Matthias; Cho, Hyeongrae; Büchler, Andreas; Kerres, Jochen; Thiele, Simon
2017-09-01
We show that the combination of direct membrane deposition with proton conductive nanofiber reinforcement yields highly durable and high power density fuel cells. Sulfonated poly(ether ketone) (SPEK) was directly electrospun onto gas diffusion electrodes and then filled with Nafion by inkjet-printing resulting in a 12 μm thin membrane. The ionic membrane resistance (30 mΩ*cm2) was well below that of a directly deposited membrane reinforced with chemically inert (PVDF-HFP) nanofibers (47 mΩ*cm2) of comparable thickness. The power density of the fuel cell with SPEK reinforced membrane (2.04 W/cm2) is 30% higher than that of the PVDF-HFP reinforced reference sample (1.57 W/cm2). During humidity cycling and open circuit voltage (OCV) hold, the SPEK reinforced Nafion membrane showed no measurable degradation in terms of H2 crossover current density, thus fulfilling the target of 2 mA/cm2 of the DOE after degradation. The chemical accelerated stress test (100 h OCV hold at 90 °C, 30% RH, H2/air, 50/50 kPa) revealed a degradation rate of about 0.8 mV/h for the fuel cell with SPEK reinforced membrane, compared to 1.0 mV/h for the PVDF-HFP reinforced membrane.
Custer, T.W.; Kannan, K.; Tao, L.; Saxena, A.R.; Route, B.
2009-01-01
In 2007 archived great blue heron (Ardea herodias) eggs collected from Indiana Dunes National Lakeshore, IN, (Indiana Dunes) in 1993 were analyzed for 11 perfluorinated compounds (PFCs) and 7 polybrominated diphenyl ethers (PBDEs). Concentrations of perfluorooctane sulfonate, the major contributor to total PFC concentrations, were below the toxicity thresholds estimated for bobwhite quail (Colinus virginianus) and mallards (Anas platyrhynchos), but within the toxicity threshold estimated for white leghorn chickens (Gallus domesticus). The ranking of PBDE congener concentrations by percent concentration (PBDE-47 > -99 > -100 > -153 > -154 > -28 > -183) was consistent with the Penta-PBDE formulation. Total PBDE concentrations in great blue heron eggs from Indiana Dunes were elevated and probably reflect local contamination from highly urbanized and industrialized inputs into Lake Michigan. Polybrominated diphenyl ether concentrations were within levels associated with altered reproductive behavior in other avian species and based on trends in other Great Lakes birds are probably higher today.
Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih
2005-01-01
Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.
The Synthesis of Tetraamino Aryl Ethers.
1975-01-01
FJSRL-TR-75-0001 with melting points over 500 C and solubilities restricted to strong acids such as sulfuric (H2S04) or methane sulfonic (CH3SO3H...Buchi Rotavapor. Melting points were determined on a Kofler melting point apparatus and are uncorrected. Elemefital microanalyses were per- formed by...Polymerizations in organic solvents, in melts and in polyphosphoric acid (PPA) or similar materials have been used suc- cessfully in their synthesis. The
NASA Astrophysics Data System (ADS)
Kakati, Nitul; Das, Gautam; Yoon, Young Soo
2016-01-01
A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.
Elhusseiny, Amel F; Hassan, Hammed H A M
2013-02-15
Square planar Pd (II) and octahedral Pt (IV) complexes with novel spherical aramides nanoparticles containing flexible linkages ligands have been synthesized and characterized using analytical and spectral techniques. The synthesized complexes have been tested for their antimicrobial activity using Kirby-Bauer disc diffusion method. The antitumor activity has been performed using liver carcinoma (HEPG2), breast carcinoma (MCF7) and colon carcinoma (HCT 116) cell lines. Palladium complexes of polyamides containing sulfones showed the highest potency as antibacterial and antifungal agents. Platinum complexes containing sulfone and ether flexible linkages and chloro groups exhibited high potency as antitumor and antimicrobial agents. The uniform sizes of these nanomaterials could find biological uses such as immune assay and other medical purposes. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Herbert, C. G.; Bass, R. G.
1994-01-01
As part of a continuing effort to prepare novel thermally stable high-performance polymers, poly(arylene ether isoxazole)s have been prepared by fluoride ion-catalyzed aromatic nucleophilic substitution reactions with bis(trimethylsiloxyphenyl) isoxazoles and activated bisarylhalides in diphenyl sulfone. Initial investigation involving the preparation of these materials with isoxazole bisphenols and activated bisarylhalides in the presence of potassium carbonate indicated that, under reaction conditions necessary to prepare high-molecular-weight materials, the isoxazole monomer was converted to an enamino ketone. This side reaction was avoided by using fluoride as a base. However, trimethylsilyl ether derivatives of the isoxazole bisphenols were required in these polymerizations for the preparation of high-molecular-weight materials. Moderate to high inherent viscosity eta(sub inh): 0.43-0.87 dl/g) materials with good thermal stability (air: 409-477 C, helium: 435-512 C) can be prepared by the silyl ether method. Glass transition temperatures ranged from 182 to 225 C for polymers with phenyl pendants and from 170 to 214 C for those without. Molecular weight control by 2% endcapping and the incorporation of a phenyl pendant at the 4 position of the isoxazole is necessary to yield polymers soluble in polar aprotic solvents at room temperature. There is evidence, however, indicating the existence of crosslinks between the polymer chains when the silyl ether approach is utilized.
Tensile Properties of a Cellulose Ether Hydrogel
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Gehrke, Stevin H.
2003-01-01
Poly(hydroxycellulose) solutions were molded into dumbell-shaped specimens crosslinked with divinyl sulfone. The resulting hydrogels were tested in tension at room temperature and also at a temperature above the 40 C shrinkage transition. In contrast to behavior seen in some other responsive gels, apparent initial tangent moduli were lower in the shrunken state; breaking elongations were significantly higher. Possible molecular mechanisms are suggested, and implications for the design of temperature-responsive actuators ("artificial muscles") from this material are discussed.
Korchev, A S; Konovalova, T; Cammarata, V; Kispert, L; Slaten, L; Mills, G
2006-01-03
The present study is centered on the processes involved in the photochemical generation of nanometer-sized Ag particles via illumination at 350 nm of aqueous solutions and cross linked films containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol). Optical and electron paramagnetic resonance experiments, including electron nuclear double resonance data, proved conclusively that the photogenerated chromophore exhibiting a band with lambda(max) = 565 nm is an alpha-hydroxy aromatic (ketyl) radical of the polymeric ketone. This reducing species was produced by illumination of either solutions or films, but the radical lifetime extended from minutes in the fluid phase to hours in the solid. Direct evidence is presented that this long-lived chromophore reduces Ag(I), Cu(II), and Au(III) ions in solution. A rate constant of k = 1.4 x 10(3) M(-)(1) s(-)(1) was obtained for the reduction of Ag(+) by the ketyl radical from the post-irradiation formation of Ag crystallites. FTIR results confirmed that the photoprocess yielding polymeric ketyl radicals involves a reaction between the macromolecules. The photochemical oxidation of the polymeric alcohol, as well as the formation of light-absorbing macromolecular products and polyols, indicates that the sulfonated polyketone experienced transformations similar to those encountered during illumination of the benzophenone/2-propanol system.
NASA Astrophysics Data System (ADS)
Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan
2018-01-01
Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.
Molecular glass positive i-line photoresist materials containing 2,1,4-DNQ and acid labile group
NASA Astrophysics Data System (ADS)
Wang, Liyuan; Yu, Jinxing; Xu, Na
2010-04-01
Recent years increasing attention has been given to molecular glass resist materials. In this paper, maleopimaric acid, cycloaddition reaction product of rosin with maleic anhydride, was reacted with hydroxylamine and then further esterified with 2-diazo-1-naphthoquinone-4-sulfonyl chloride to give N-hydroxy maleopimarimide sulfonate. The carboxylic acid group of the compound was then protected by the reaction of this compound with vinyl ethyl ether or dihydropyran. Thus obtained compounds were amorphous. When irradiated with i-line light, the 2,1,4-DNQ group undergo photolysis not only to give off nitrogen gas but also generate sulfonic acid which can result in the decomposition of the acid labile group. So, a novel chemically amplified positive i-line molecular glass photoresists can be formed by the compound and other acidolytic molecular glass compounds. The lithographic performance of the resist materials is evaluated.
Synthesis and characteristics of polyarylene ether sulfones
NASA Technical Reports Server (NTRS)
Viswanathan, R.; Johnson, B. C.; Ward, T. C.; Mcgrath, J. E.
1981-01-01
A method utilizing potassium carbonate/dimethyl acetamide, as base and solvent respectively, was used for the synthesis of several homopolymers and copolymers derived from various bisphenols. It is demonstrated that this method deviates from simple second order kinetics; this deviation being due to the heterogeneous nature of the reaction. Also, it is shown that a liquid induced crystallization process can improve the solvent resistance of these polymers. Finally, a Monte Carlo simulation of the triad distribution of monomers in nonequilibrium copolycondensation is discussed.
NASA Astrophysics Data System (ADS)
Han, Hailan; Li, Hai Qiang; Liu, Meiyu; Xu, Lishuang; Xu, Jingmei; Wang, Shuang; Ni, Hongzhe; Wang, Zhe
2017-02-01
A series of novel organic-inorganic crosslinked hybrid proton exchange membranes were prepared using sulfonated poly(arylene ether ketone sulfone) polymers containing carboxyl groups (C-SPAEKS), (3-aminopropyl)-triethoxysilane (KH550), and tetraethoxysilane (TEOS). KH550 acted as a "bridge" after reacting with carboxyl and sulfonic groups of C-SPAEKS to form covalent and ionic crosslinked structure between the C-SPAEKS and SiO2 phase. The crosslinked hybrid membranes (C-SPAEKS/K-SiO2) were characterized by FT-IR spectroscopy, TGA, and electrochemistry, etc. The thermal stability, mechanical properties and proton conductivity of the crosslinked hybrid membranes were improved by the presence of both crosslinked structure and inorganic phase. The proton conductivity of C-SPAEKS/K-SiO2-8 was recorded as 0.110 S cm-1, higher than that of Nafion® (0.028 S cm-1) at 120 °C. Moreover, the methanol permeability of the C-SPAEKS/K-SiO2-8 was measured as 3.86 × 10-7 cm2 s-1, much lower than that of Nafion® 117 membranes (29.4 × 10-7 cm2 s-1) at 25 °C.
NASA Astrophysics Data System (ADS)
Shin, Dongwon; Han, Myungseong; Shul, Yong-Gun; Lee, Hyejin; Bae, Byungchan
2018-02-01
The oxidative stability of membranes constructed from a composite of pristine sulfonated poly(arylene ether sulfone) and cerium was investigated by conducting an accelerated oxidative-stability test at the open-circuit voltage (OCV). The membranes were analyzed in situ through OCV and impedance measurements, cyclic voltammetry, and linear-sweep voltammetry to monitor the electrochemical properties during the stability test. Although the high-frequency resistance of a composite membrane was slightly higher than that of a pristine membrane because of the exchange of protons from the sulfonic acid with cerium ions, the composite membrane maintained its potential for much longer than the pristine membrane. The effect of the cerium ions as radical scavengers was confirmed by analyzing the drain water and chemical structure after operation. These post-operation analyses confirmed that cerium ions improved the oxidative stability of the hydrocarbon-based polymer during fuel-cell operation. It is clear that the cerium-based radical scavengers prevented chemical degradation of the polymer membrane as well as the electrode in terms of hydrogen cross-over, polymer-chain scission, and the electrochemical surface area, while they rarely diffused outward from the membrane.
Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui
2017-09-20
Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.
Liu, Wei; Li, Jingwen; Gao, Lichen; Zhang, Zhou; Zhao, Jing; He, Xin; Zhang, Xin
2018-02-01
Chlorinated polyfluorinated ether sulfonate (Cl-PFESA) is a novel alternative compound for perfluorooctane sulfonate (PFOS), with its environmental risk not well known. The bioaccumulation and toxic effects of Cl-PFESA in the freshwater alga is crucial for the understanding of its potential hazards to the aquatic environment. Scenedesmus obliquus was exposed to Cl-PFESA at ng L -1 to mg L -1 , with the exposure regime beginning at the environmentally relevant level. The total log BAF of Cl-PFESA in S. obliquus was 4.66, higher than the reported log BAF of PFOS in the freshwater plankton (2.2-3.2). Cl-PFESA adsorbed to the cell surface accounted for 33.5-68.3% of the total concentrations. The IC50 of Cl-PFESA to algal growth was estimated to be 40.3 mg L -1 . Significant changes in algal growth rate and chlorophyll a/b contents were observed at 11.6 mg L -1 and 13.4 mg L -1 of Cl-PFESA, respectively. The sample cell membrane permeability, measured by the fluorescein diacetate hydrolyzation, was increased by Cl-PFESA at 5.42 mg L -1 . The mitochondrial membrane potential, measured by Rh123 staining, was also increased, indicating the hyperpolarization induced by Cl-PFESA. The increasing ROS and MDA contents, along with the enhanced SOD, CAT activity, and GSH contents, suggested that Cl-PFESA caused oxidative damage in the algal cells. It is less possible that current Cl-PFESA pollution in surface water posed obvious toxic effects on the green algae. However, the bioaccumulation of Cl-PFESA in algae would contribute to its biomagnification in the aquatic food chain and its effects on membrane property could potentially increase the accessibility and toxicity of other coexisting pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.
2011-01-01
In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373
Fan, Wei; Shi, Wen; Zhang, Wenting; Jia, Yinnong; Zhou, Zhengyuan; Brusnahan, Susan K; Garrison, Jered C
2016-10-01
This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that exploitation of the cathepsin S activity in MPS tissues can be utilized to substantially lower non-target accumulation, suggesting this is a promising approach for the development of diagnostic and radiotherapeutic nanomedicine platforms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structure-property relationships in polymers for dielectric capacitors
NASA Astrophysics Data System (ADS)
Gupta, Sahil
Effective energy storage is a key challenge of the 21st century that has fueled research in the area of energy storage devices. In this dissertation, structure-property relationships have been evaluated for polymers that might be suitable for storing energy in high-energy density, high-temperature capacitors. Firstly, hydroxyl-modified polypropylenes (PPOH) were synthesized by copolymerization of the propylene and undecenyloxytrimethylsilane monomers. The presence of H-bonding in PPOH copolymers increased their glass-transition temperature. Steric hindrance by the comonomer reduced the PP crystal growth rate and crystal size, resulting in a melting point depression. The comonomer was restricted outside the crystalline domains leaving the alpha-monoclinic crystal structure of PP unaffected, but increasing the fold-surface free energy. Crystallization was slower for PPOH copolymers than PP, but exhibited a skewed bell curve as a function of hydroxyl concentration. H-bonding persisted even at melt temperatures up to 250°C resulting in a higher elasticity and viscosity for PPOH copolymers. Secondly, sulfonated poly(ether ether ketone) (HSPEEK) was synthesized by sulfonating PEEK with sulfuric acid, and further neutralized with Zn to obtain ZnSPEEK. The thermal and dielectric properties of SPEEK were compared with PEEK. The glass-transition increased and melting point were high enough to enable the use of polymer at 180°C. The incorporation of sulfonic groups in PEEK increased the dielectric constant. HSPEEK had a higher dielectric constant than ZnSPEEK due to higher dipolar mobility, but the dielectric loss was also higher for HSPEEK due to electrode polarization and DC conduction. These results were consistent with our observations from sulfonated polystyrene (HSPS), which was used as a >model&lang' polymer. Lastly, commercial poly(4-methyl-1-pentene) (P4MP) was characterized to check its viability as a high-temperature polymer dielectric. Thermal stability up to 200°C, high melting point (> 225°C) and melting onset at 160 - 190°C indicated that P4MP could be used at 180 - 200°C. Thin free-standing films (~10 mum) with controlled crystal structure and surface morphology were prepared using blade coating and their drying dynamics were measured using a custom-designed solvent-casting platform. These films were further stretched uniaxially or biaxially, and their effect on the dielectric properties of P4MP was studied.
Strynar, Mark; Dagnino, Sonia; McMahen, Rebecca; Liang, Shuang; Lindstrom, Andrew; Andersen, Erik; McMillan, Larry; Thurman, Michael; Ferrer, Imma; Ball, Carol
2015-10-06
Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing shorter chain per- and polyfluorinated compounds to try to reduce the potential for bioaccumulation in humans and wildlife. Some of these new compounds contain central ether oxygens or other minor modifications of traditional perfluorinated structures. At present, there has been very limited information published on these "replacement chemistries" in the peer-reviewed literature. In this study we used a time-of-flight mass spectrometry detector (LC-ESI-TOFMS) to identify fluorinated compounds in natural waters collected from locations with historical perfluorinated compound contamination. Our workflow for discovery of chemicals included sequential sampling of surface water for identification of potential sources, nontargeted TOFMS analysis, molecular feature extraction (MFE) of samples, and evaluation of features unique to the sample with source inputs. Specifically, compounds were tentatively identified by (1) accurate mass determination of parent and/or related adducts and fragments from in-source collision-induced dissociation (CID), (2) in-depth evaluation of in-source adducts formed during analysis, and (3) confirmation with authentic standards when available. We observed groups of compounds in homologous series that differed by multiples of CF2 (m/z 49.9968) or CF2O (m/z 65.9917). Compounds in each series were chromatographically separated and had comparable fragments and adducts produced during analysis. We detected 12 novel perfluoroalkyl ether carboxylic and sulfonic acids in surface water in North Carolina, USA using this approach. A key piece of evidence was the discovery of accurate mass in-source n-mer formation (H(+) and Na(+)) differing by m/z 21.9819, corresponding to the mass difference between the protonated and sodiated dimers.
Shi, Yali; Vestergren, Robin; Zhou, Zhen; Song, Xiaowei; Xu, Lin; Liang, Yong; Cai, Yaqi
2015-12-15
Following the global actions to phase out perfluoroctanesulfonic acid (PFOS) a large number of alternative per- and polyfluoroalkyl substances, with poorly defined hazard properties, are being used in increasing quantities. Here, we report on the first detection of the chlorinated polyfluoroalkyl ether sulfonic acid F-53B in biological samples and determine the tissue distribution and whole body bioaccumulation factors (BAFwhole body) in crucian carp (Carassius carassius). Analysis of fish samples from Xiaoqing River (XR) and Tangxun Lake (TL) demonstrated a similar level of F-53B contamination with median concentrations in blood of 41.9 and 20.9 ng/g, respectively. Tissue/blood ratios showed that distribution of F-53B primarily occurs to the kidney (TL: 0.48, XR: 0.54), gonad (TL: 0.36, XR: 0.54), liver (TL: 0.38, XR: 0.53), and heart (TL: 0.47, XR: 0.47). Median Log BAFwhole body values for F-53B (XR: 4.124, TL: 4.322) exceeded regulatory bioaccumulation criterion and were significantly higher than those of PFOS in the same data sets (XR: 3.430, TL: 3.279). On the basis of its apparent omnipresence and strong bioaccumulation propensity, it is hypothesized that F-53B could explain a significant fraction of previously unidentified organofluorine in biological samples from China, and regulatory actions for this compound are encouraged.
Wang, Wei; Li, Zhenyu; Jiang, Tingting; Zhao, Zhiwei; Li, Ye; Wang, Zhaojie; Wang, Ce
2012-11-01
Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form one-dimensional polymeric adsorbent/conducting polymer core-shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH₃ can facilitate the mass diffusion of NH₃ through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH₃ (20 ppb) at room temperature.
Removal of Tetranitromethane from Air Streams
1975-10-08
aryl sulfonates, Monsanto Corp., St, Louis, Mo., "Sterox SE", a polyoxyethylene thio ether, Monsanto Corp., "Deysonol", sodium lauryl sulfate , DuPont...910 M_ 50 16 1.06 6 810b 1% Daxad 55 17 1.05 4. 6 500b 0.5% Santomerse S 57 18 1.03 —- — c,b 0.5% Na Lauryl Sulfate — — 20 1.04 4. 6 910 0.5...hydrogen peroxide decomposed much less rapidly and could be used as TNM scavengers. Initial experiments with aqueous solutions of sodium sulfite
NASA Astrophysics Data System (ADS)
Gajendiran, Mani; Balashanmugam, Pannerselvam; Kalaichelvan, P. T.; Balasubramanian, Sengottuvelan
2016-06-01
The effect of π-back-bonding between AuNPs and the carbonyl group of multiblock copolyester on tuberculosis multi-drug delivery has been investigated. The carbonyl group of copolyester has vacant p orbitals and these vacant orbitals accept electron clouds from the filled d orbitals of Au0 to form π-back-bonding, which enhances the electron density for the carbonyl oxygen. This high electron density results in the strong binding of drug molecules with multiblock copolyesters and hence sustained drug release is achieved for a longer duration when compared to polymer systems without AuNPs. A new series of tartarate-linked poly(lactic-co-glycolic acid) (PLGA)—polyethylene glycol (PEG)-based multiblock copolymers has been synthesized using a solvent-free melt reaction. The biocompatibility of multiblock copolyesters and AuNP nanoconjugates was investigated with an in vitro cytotoxicity study on the Vero cell line. Three major tuberculosis drugs, namely, rifampicin-, isoniazid- and pyrazinamide-loaded AuNP multiblock copolymer NPs were prepared by probe sonication followed by the self-assembly method. An in vitro drug release experiment was carried out and the amount of the three drugs released at various time intervals was determined simultaneously by the HPLC technique. The nanoconjugates exhibit 33%-40% RIF, 71%-95% INH, 77%-99% PYZ loading efficiencies, while the polymer NPs exhibit relatively lesser values. The nanoconjugates show sustained drug release for up to 264 h.
Elemental sulfur identified in urine of cheetah, Acinonyx jubatus.
Burger, Ben V; Visser, Runine; Moses, Alvira; Le Roux, Maritha
2006-06-01
The urine of the cheetah, Acinonyx jubatus, is almost odorless, and probably for this reason, it has not attracted much attention from scientists. Using gas chromatography-mass spectrometry, we identified 27 and 37 constituents in the headspace vapor of the urine of male and female cheetah, respectively. These constituents, composed of hydrocarbons, short-chain ethers, aldehydes, saturated and unsaturated cyclic and acyclic ketones, 2-acetylfuran, dimethyl disulfide, dimethyl sulfone, phenol, myristic acid (tetradecanoic acid), urea, and elemental sulfur, are all present in the headspace vapor in very small quantities; dimethyl disulfide is present in such a low concentration that it cannot be detected by the human nose. This is only the second example of elemental sulfur being secreted or excreted by an animal. It is hypothesized that the conversion of sulfur-containing compounds in the cheetah's diet to elemental sulfur and to practically odorless dimethyl sulfone enables this carnivore to operate as if "invisible" to the olfactory world of its predators as well as its prey, which would increase its chances of survival.
NASA Astrophysics Data System (ADS)
Xu, Guo-Rong; Liu, Xiao-Yu; Xu, Jian-Mei; Li, Lu; Su, Hui-Chao; Zhao, He-Li; Feng, Hou-Jun
2018-03-01
Herein, high flux nanofiltration (NF) membranes were fabricated by combined procedures of electrospinning, layer-by-layer (LBL) assembly, and phase inversion. The membranes displayed three-dual structure constituted polyether sulfone (PES) coating layer, LBL assembly modified electrospun polyester (PET) nanofibrous mats, and non-woven supports. High flux NF membranes thus prepared are characterized by ultrathin phase inversion layer (∼10 μm) while that of conventional membranes are 100-150 μm, implying that very high flux could be expected. Various factors including electrospinning conditions, chitosan (CHI)/alginate (ALG) concentration, PES concentration, exposed time, coagulating temperature, thermal treatment, and sulfonated poly ether ketone (SPEEK) content were systematically investigated. Structures of the membranes were characterized by field emission scanning electron microscopy (FESEM), mechanical properties test, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and static contact angle measurements. The separation experiments indicated that thus prepared membranes exhibited high flux of as high as ∼75 L m-2 h-1 with Mg SO4 rejection of ∼80%.
Haukås, Marianne; Berger, Urs; Hop, Haakon; Gulliksen, Bjørn; Gabrielsen, Geir W
2007-07-01
The present study reports concentrations and biomagnification potential of per- and polyfluorinated alkyl substances (PFAS) in species from the Barents Sea food web. The examined species included sea ice amphipod (Gammarus wilkitzkii), polar cod (Boreogadus saida), black guillemot (Cepphus grylle) and glaucous gull (Larus hyperboreus). These were analyzed for PFAS, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and polybrominated diphenyl ethers (PBDEs). Perfluorooctane sulfonate (PFOS) was the predominant of the detected PFAS. Trophic levels and food web transfer of PFAS were determined using stable nitrogen isotopes (delta(15)N). No correlation was found between PFOS concentrations and trophic level within species. However, a non-linear relationship was established when the entire food web was analyzed. Biomagnification factors displayed values >1 for perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), PFOS and SigmaPFAS(7). Multivariate analyses showed that the degree of trophic transfer of PFAS is similar to that of PCB, DDT and PBDE, despite their accumulation through different pathways.
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Ash, Robert L.
1992-01-01
A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.
A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.
Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices
NASA Astrophysics Data System (ADS)
Oh, Hyukkeun
Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid group and a poly(ether ether ketone) backbone showed the highest proton conductivity and proton diffusion coefficient among the three ionomers, demonstrating the effect of the perfluorinated side chains. The proton conductivity of the novel ionomer was comparable to that of Nafion over a wide humidity range and temperature. A lithium perfluorosulfonate ionomer based on aromatic poly(arylene ether)s with pendant lithium perfluoroethyl sulfonates was prepared by ion exchange of the perlfuorosulfonic acid ionomer, and subsequently incoroporated into a lithium-ion battery cell as a single-ion conducting electrolyte. The microporous polymer film saturated with organic carbonates exhibited a nearly unity Li + transfer number, high ionic conductivity (e.g. > 10-3 S m-1 at room temperature) over a wide range of temperatures, high electrochemical stability, and excellent mechanical properties. Excellent cyclability with almost identical charge and discharge capacities have been demonstrated at ambient temperature in the batteries assembled from the prepared single-ion conductors. The mechanical stability of the polymer film was attributed to the rigid polymer backbone which was largely unaffected by the presence of plasticizing organic solvents, while the porous channels with high concentration of the perfluorinated side chains resulted in high ionic conductivity. The expected high charge-rate performance was not achieved, however, due to the high interfacial impedance present between the polymer electrolyte and the electrodes. Several procedural modifications were employed in order to decrease the interfacial impedance of the battery cell. The poly(arylene ether) based ionomer was saturated with an ionic liquid mixture, in order to explore the possibility of its application as a safe, inflammable electrolyte. A low-viscosity ionic liquid with high ionic conductivity, 1-butyl-3-methylimidazolium thiocyanate which has never been successfully utilized as an electrolyte for lithium-ion batteries was incorporated into a battery cell as a solvent mixture with propylene carbonate and lithium bis(trifluoromethane)sulfonimide impregnated in a free-standing hybrid electrolyte film. Outstanding ionic conductivity was achieved and the lithium half cell comprising a LTO cathode and a lithium metal anode separated by the solid polymer electrolyte showed good cyclability at room temperature and even at 0°C. The presence of a sufficient amount of propylene carbonate, which resulted in flammability of the polymer electrolyte, was discovered to be critical in the electrochemical stability of the polymer electrolyte.
NASA Astrophysics Data System (ADS)
Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki
2018-03-01
We synthesized graphene oxide-sulfonated polyether ether ketone (GO-SPEEK) composite membrane and compare its proton conductivity with that of Nafion® 117 and SPEEK membranes. From experimental measurements, we found that GO-SPEEK has better proton conductivity (σGO-SPEEK = 3.8 × 10-2 S cm-1) when compared to Nafion® 117 (σNafion = 2.4 × 10-2 S cm-1) and SPEEK (σSPEEK = 2.9 × 10-3 S cm-1). From density functional theory (DFT-) based total energy calculations, we found that GO-SPEEK has the shortest proton diffusion distance among the three membranes, yielding the highest tunneling probability. Hence, GO-SPEEK exhibits the highest conductivity. The short proton diffusion distance in GO-SPEEK, as compared to Nafion® 117 and SPEEK, can be attributed to the presence of oxygenated functional groups of GO in the polymer matrix. This also explains why GO-SPEEK requires the lowest hydration level to reach its maximum conductivity. Moreover, we have successfully shown that the proton conductivity σ is related to the tunneling probability T, i.e., σ = σ‧ exp(-1/T). We conclude that the proton diffusion distance and hydration level are the two most significant factors that determine the membrane’s good conductivity. The distance between ionic sites of the membrane should be small to obtain good conductivity. With this short distance, lower hydration level is required. Thus, a membrane with short separation between the ionic sites can have enhanced conductivity, even at low hydration conditions.
An electrostatic Particle-In-Cell code on multi-block structured meshes
NASA Astrophysics Data System (ADS)
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; Vernon, Louis J.; Moulton, J. David
2017-12-01
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. Despite the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where an arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma-material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. Compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.
An electrostatic Particle-In-Cell code on multi-block structured meshes
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca; ...
2017-09-14
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less
An electrostatic Particle-In-Cell code on multi-block structured meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meierbachtol, Collin S.; Svyatskiy, Daniil; Delzanno, Gian Luca
We present an electrostatic Particle-In-Cell (PIC) code on multi-block, locally structured, curvilinear meshes called Curvilinear PIC (CPIC). Multi-block meshes are essential to capture complex geometries accurately and with good mesh quality, something that would not be possible with single-block structured meshes that are often used in PIC and for which CPIC was initially developed. In spite of the structured nature of the individual blocks, multi-block meshes resemble unstructured meshes in a global sense and introduce several new challenges, such as the presence of discontinuities in the mesh properties and coordinate orientation changes across adjacent blocks, and polyjunction points where anmore » arbitrary number of blocks meet. In CPIC, these challenges have been met by an approach that features: (1) a curvilinear formulation of the PIC method: each mesh block is mapped from the physical space, where the mesh is curvilinear and arbitrarily distorted, to the logical space, where the mesh is uniform and Cartesian on the unit cube; (2) a mimetic discretization of Poisson's equation suitable for multi-block meshes; and (3) a hybrid (logical-space position/physical-space velocity), asynchronous particle mover that mitigates the performance degradation created by the necessity to track particles as they move across blocks. The numerical accuracy of CPIC was verified using two standard plasma–material interaction tests, which demonstrate good agreement with the corresponding analytic solutions. And compared to PIC codes on unstructured meshes, which have also been used for their flexibility in handling complex geometries but whose performance suffers from issues associated with data locality and indirect data access patterns, PIC codes on multi-block structured meshes may offer the best compromise for capturing complex geometries while also maintaining solution accuracy and computational efficiency.« less
Oil recovery method utilizing glyceryl ether sulfonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naylor, C.G.
1984-03-13
Petroleum may be recovered from petroleum containing formations having high salinity and/or high temperature by injecting into the formation an aqueous fluid containing an effective amount of a surface active agent characterized by the formula: R-O-(A-O)N-(CH2-CH(-CH2-O-CH2-CH2-SO3X)-O)M-H wherein R is an alkyl or alkylaryl radical, AO is an alkylene oxide radical, n is an integer of from 1 to 50, m is an integer from 1 to 10 and X is a sodium, potassium or ammonium cation.
1990-10-16
washed with concentrated sulfuric acid , then with water, dried over anhydrous magnesium sulfate, refluxed over calcium hydride and freshly distilled...oxide, filtered, and fractionally distilled under reduced pressure. Trifluoromethane sulfonic acid (triflic acid , 98%, Aldrich) w s distilled under...flask. Then the flask was filled with argon, cooled to 0°C and the methylene chloride, dimethyl sulfide and triflic acid were added via a syringe. The
Short-wavelength ablation of polymers in the high-fluence regime
NASA Astrophysics Data System (ADS)
Liberatore, Chiara; Mann, Klaus; Müller, Matthias; Pina, Ladislav; Juha, Libor; Vyšín, Ludek; Rocca, Jorge J.; Endo, Akira; Mocek, Tomas
2014-05-01
Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10 Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror coated with a Si/Sc multilayer. The same materials were irradiated with 13.5 nm radiation emitted by plasmas produced by focusing an optical laser beam onto a xenon gas-puff target. A Schwarzschild focusing optics coated with a Mo/Si multilayer was installed at the source to achieve energy densities exceeding 0.1 J cm-2 in the tight focus. The existing experimental system at the Laser Laboratorium Göttingen was upgraded by implementing a 1.2 J driving laser. An increase of the SXR fluence was secured by improving the alignment technique.
Regularized Generalized Canonical Correlation Analysis
ERIC Educational Resources Information Center
Tenenhaus, Arthur; Tenenhaus, Michel
2011-01-01
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and…
Wu, Chi; Xie, Zuowei; Zhang, Guangzhao; Zi, Guofu; Tu, Yingfeng; Yang, Yali; Cai, Ping; Nie, Ting
2002-12-07
A combination of polymer physics and synthetic chemistry has enabled us to develop self-assembly assisted polymerization (SAAP), leading to the preparation of long multi-block copolymers with an ordered chain sequence and controllable block lengths.
Ru, Chunyu; Li, Zhenhua; Zhao, Chengji; Duan, Yuting; Zhuang, Zhuang; Bu, Fanzhe; Na, Hui
2018-03-07
Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH 2 -SO 3 H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH 2 of MNS and -SO 3 H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm -1 , which was much higher than those of the pristine membrane (0.145 S·cm -1 ) and recast Nafion (0.134 S·cm -1 ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm 2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.
Internal Passage Heat Transfer Prediction Using Multiblock Grids and a Kappa-Omega Turbulence Model
NASA Technical Reports Server (NTRS)
Rigby, David L.; Ameri, Ali A.; Steinthorsson, Erlendur
1996-01-01
Numerical simulations of the three-dimensional flow and heat transfer in a rectangular duct with a 180 C bend were performed. Results are presented for Reynolds numbers of 17,000 and 37,000 and for aspect ratios of 0.5 and I.O. A kappa-omega turbulence model with no reference to distance to a wall is used. Direct comparison between single block and multiblock grid calculations are made. Heat transfer and velocity distributions are compared to available literature with good agreement. The multi-block grid system is seen to produce more accurate results compared to a single-block grid with the same number of cells.
Pan, Huaizhong; Yang, Jiyuan; Kopecková, Pavla; Kopecek, Jindrich
2011-01-10
Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.
Plane Smoothers for Multiblock Grids: Computational Aspects
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane
1999-01-01
Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.
An installed nacelle design code using a multiblock Euler solver. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
An efficient multiblock Euler design code was developed for designing a nacelle installed on geometrically complex airplane configurations. This approach employed a design driver based on a direct iterative surface curvature method developed at LaRC. A general multiblock Euler flow solver was used for computing flow around complex geometries. The flow solver used a finite-volume formulation with explicit time-stepping to solve the Euler Equations. It used a multiblock version of the multigrid method to accelerate the convergence of the calculations. The design driver successively updated the surface geometry to reduce the difference between the computed and target pressure distributions. In the flow solver, the change in surface geometry was simulated by applying surface transpiration boundary conditions to avoid repeated grid generation during design iterations. Smoothness of the designed surface was ensured by alternate application of streamwise and circumferential smoothings. The capability and efficiency of the code was demonstrated through the design of both an isolated nacelle and an installed nacelle at various flow conditions. Information on the execution of the computer program is provided in volume 2.
TopMaker: Technique Developed for Automatic Multiblock Topology Generation Using the Medial Axis
NASA Technical Reports Server (NTRS)
Rigby, David L.
2004-01-01
The TopMaker technique was developed in an effort to reduce the time required for grid generation in complex numerical studies. Topology generation accounts for much of the man-hours required for structured multiblock grids. With regard to structured multiblock grids, topology refers to how the blocks are arranged and connected. A two-dimensional multiblock topology generation technique has been developed at the NASA Glenn Research Center. Very general configurations can be addressed by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, a multiblock topology can be generated without user intervention. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns, where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in computational fluid dynamics, where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid-generation process.
Vázquez-Romero, Ana; Cárdenas, Lydia; Blasi, Emma; Verdaguer, Xavier; Riera, Antoni
2009-07-16
A new approach to the synthesis of prostaglandin and phytoprostanes B(1) is described. The key step is an intermolecular Pauson-Khand reaction between a silyl-protected propargyl acetylene and ethylene. This reaction, promoted by NMO in the presence of 4 A molecular sieves, afforded the 3-tert-butyldimethylsilyloxymethyl-2-substituted-cyclopent-2-en-1-ones (III) in good yield and with complete regioselectivity. Deprotection of the silyl ether, followed by Swern oxidation, gave 3-formyl-2-substituted-cyclopent-2-en-1-ones (II). Julia olefination of the aldehydes II with the suitable chiral sulfone enabled preparation of PPB(1) type I and PGB(1).
An installed nacelle design code using a multiblock Euler solver. Volume 2: User guide
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
This is a user manual for the general multiblock Euler design (GMBEDS) code. The code is for the design of a nacelle installed on a geometrically complex configuration such as a complete airplane with wing/body/nacelle/pylon. It consists of two major building blocks: a design module developed by LaRC using directive iterative surface curvature (DISC); and a general multiblock Euler (GMBE) flow solver. The flow field surrounding a complex configuration is divided into a number of topologically simple blocks to facilitate surface-fitted grid generation and improve flow solution efficiency. This user guide provides input data formats along with examples of input files and a Unix script for program execution in the UNICOS environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.; Pugmire, David; Geveci, Berk
The FY18Q1 milestone of the ECP/VTK-m project includes the implementation of a multiblock data set, the completion of a gradients filtering operation, and the release of version 1.1 of the VTK-m software. With the completion of this milestone, the new multiblock data set allows us to iteratively schedule algorithms on composite data structures such as assemblies or hierarchies like AMR. The new gradient algorithms approximate derivatives of fields in 3D structures with finite differences. Finally, the release of VTK-m version 1.1 tags a stable release of the software that can more easily be incorporated into external projects.
Compressed multi-block local binary pattern for object tracking
NASA Astrophysics Data System (ADS)
Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao
2018-04-01
Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.
NASA Astrophysics Data System (ADS)
Guo, Tongqing; Chen, Hao; Lu, Zhiliang
2018-05-01
Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.
NASA Astrophysics Data System (ADS)
Sheng, Li; Xu, Hongjie; Guo, Xiaoxia; Fang, Jianhua; Fang, Liang; Yin, Jie
2011-03-01
A series of sulfonated polybenzimidazoles (SPBIs) with varied ion exchange capacities (IECs) have been synthesized by random condensation copolymerization of a new sulfonated dicarboxylic acid monomer 4,6-bis(4-carboxyphenoxy)benzene-1,3-disulfonate (BCPOBDS-Na), 4,4‧-dicarboxydiphenyl ether (DCDPE) and 3,3‧-diaminobenzidine (DAB) in Eaton's reagent at 140 °C. Most of the SPBIs show good solubility in polar aprotic organic solvents such as dimethylsulfoxide (DMSO) and N,N-dimethylacetamide (DMAc). Thermogravimetric analysis (TGA) reveals that the SPBIs have excellent thermal stability (desulfonation temperatures (on-set) > 370 °C). The SPBI membranes show good mechanical properties of which tensile strength, elongation at break, and storage modulus are in the range of 89-96 MPa, 12-42%, and 2.4-3.1 GPa, respectively. Moreover, the SPBI membranes exhibit phosphoric acid (PA) uptake in the range of 180-240% (w/w) in 85 wt% PA at 50 °C, while high mechanical properties (13-20 MPa) are maintained. The SPBI membrane with 240% (w/w) PA uptake displays fairly high proton conductivity (37.3 mS cm-1) at 0% relative humidity at 170 °C. The fuel cell fabricated with the PA-doped SPBI membrane (PA uptake = 240% (w/w)) displays good performance with the highest output power density of 0.58 W cm-2 at 170 °C with hydrogen-oxygen gases under ambient pressure without external humidification.
All-SPEEK flexible supercapacitor exploiting laser-induced graphenization
NASA Astrophysics Data System (ADS)
Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S.
2017-09-01
Flexible supercapacitors have emerged as one of the more promising and efficient space-saving energy storage system for portable and wearable electronics. Laser-induced graphenization has been recently proposed as a powerful and scalable method to directly convert a polymeric substrate into a 3D network of few layer graphene as high-performance supercapacitor electrode. Unfortunately this outstanding process has been reported to be feasible only for few thermoplastic polymers, strongly limiting its future developments. Here we show that laser induced graphenization of sulfonated poly(ether ether ketone) (SPEEK) can be obtained and the mechanism of this novel process is proposed. The resulting material can act at the same time as binder-free electrode and current collector. Moreover SPEEK is also used both as separator and polymeric electrolyte allowing the assembling of an all-SPEEK flexible supercapacitor. Chemico-physical characterization provides deep understanding of the laser-induced graphenization process, reported on this polymer for the first time, while the device performance studied by cyclic voltammetry, charging-discharging, and impedance spectroscopy prove the enormous potential of the proposed approach.
Melero, Juan A; Vicente, Gemma; Paniagua, Marta; Morales, Gabriel; Muñoz, Patricia
2012-01-01
The present study is focused on the etherification of biodiesel-derived glycerol with anhydrous ethanol over arenesulfonic acid-functionalized mesostructured silicas to produce ethyl ethers of glycerol that can be used as gasoline or diesel fuel biocomponents. Within the studied range, the best conditions to maximize glycerol conversion and yield towards ethyl-glycerols are: T=200 °C, ethanol/glycerol molar ratio=15/1, and catalyst loading=19 wt%. Under these reaction conditions, 74% glycerol conversion and 42% yield to ethyl ethers have been achieved after 4 h of reaction but with a significant presence of glycerol by-products. In contrast, lower reaction temperatures (T=160 °C) and moderate catalyst loading (14 wt%) in presence of a high ethanol concentration (ethanol/glycerol molar ratio=15/1) are necessary to avoid the formation of glycerol by-products and maximize ethyl-glycerols selectivity. Interestingly, a close catalytic performance to that achieved using high purity glycerol has been obtained with low-grade water-containing glycerol. Copyright © 2011 Elsevier Ltd. All rights reserved.
A general multiblock Euler code for propulsion integration. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.
2000-01-01
A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.
FANS-3D Users Guide (ESTEP Project ER 201031)
2016-08-01
governing laminar and turbulent flows in body-fitted curvilinear grids. The code employs multi-block overset ( chimera ) grids, including fully matched...governing incompressible flow in body-fitted grids. The code allows for multi-block overset ( chimera ) grids, which can be fully matched, arbitrarily...interested reader may consult the Chimera Overset Structured Mesh-Interpolation Code (COSMIC) Users’ Manual (Chen, 2009). The input file used for
Rodríguez, Ricardo I; Ramírez, Elsie; Yuste, Francisco; Sánchez-Obregón, Rubén; Alemán, José
2018-02-16
The generation of diastereomerically enriched secondary benzyl propargyl alcohols by the asymmetric addition of ortho-sulfinylbenzyl carbanions to sulfonylacetylene derivatives via formation of a Csp-Csp 3 bond is described. This reaction proceeds through an unusual α-attack (anti-Michael addition) of the ortho-sulfinylbenzyl carbanions, followed by elimination of the arylsulfonyl moiety. The scope of this alkynylation reaction is also discussed. Moreover, the development of a new approach for the synthesis of optically active tertiary benzylpropargyl alcohols is described, discussing the possible stereocourse of the reaction so as the influence of the ether 18-crown-6 and steric importance of acetylenic substituent.
Iterative weighting of multiblock data in the orthogonal partial least squares framework.
Boccard, Julien; Rutledge, Douglas N
2014-02-27
The integration of multiple data sources has emerged as a pivotal aspect to assess complex systems comprehensively. This new paradigm requires the ability to separate common and redundant from specific and complementary information during the joint analysis of several data blocks. However, inherent problems encountered when analysing single tables are amplified with the generation of multiblock datasets. Finding the relationships between data layers of increasing complexity constitutes therefore a challenging task. In the present work, an algorithm is proposed for the supervised analysis of multiblock data structures. It associates the advantages of interpretability from the orthogonal partial least squares (OPLS) framework and the ability of common component and specific weights analysis (CCSWA) to weight each data table individually in order to grasp its specificities and handle efficiently the different sources of Y-orthogonal variation. Three applications are proposed for illustration purposes. A first example refers to a quantitative structure-activity relationship study aiming to predict the binding affinity of flavonoids toward the P-glycoprotein based on physicochemical properties. A second application concerns the integration of several groups of sensory attributes for overall quality assessment of a series of red wines. A third case study highlights the ability of the method to combine very large heterogeneous data blocks from Omics experiments in systems biology. Results were compared to the reference multiblock partial least squares (MBPLS) method to assess the performance of the proposed algorithm in terms of predictive ability and model interpretability. In all cases, ComDim-OPLS was demonstrated as a relevant data mining strategy for the simultaneous analysis of multiblock structures by accounting for specific variation sources in each dataset and providing a balance between predictive and descriptive purpose. Copyright © 2014 Elsevier B.V. All rights reserved.
Toribio, Alix; Delannay, Eldra; Richard, Bernard; Plé, Karen; Zèches-Hanrot, Monique; Nuzillard, Jean-Marc; Renault, Jean-Hugues
2007-01-26
The pH-zone refining centrifugal partition chromatography technique was used to separate the two acetylcholinesterase inhibitors huperzines A and B from a crude alkaloid extract of the club moss Huperzia serrata. Complete co-elution of huperzines A and B was initially observed with the well-known methyl tert-butyl ether-acetonitrile-water (4:1:5, v/v/v) solvent system with triethylamine (8mM) as the displacer and methane sulfonic acid (6mM) as the retainer. An efficient biphasic system was designed on the basis of solvent association that provided selectivity in the elution mode: n-heptane/ethyl acetate/n-propanol/water (5:15:35:45, v/v/v/v). Lowering the bridge solvent content (n-propanol) of this system increased the polarity difference between the two phases thus adapting it to the pH-zone refining mode. Thus, the purification of these compounds was achieved using the biphasic system n-heptane/ethyl acetate/n-propanol/water (10:30:15:45, v/v/v/v) with triethylamine (8mM) as the displacer and methane sulfonic acid (6mM) as the retainer.
Rotander, Anna; Kärrman, Anna; Toms, Leisa-Maree L; Kay, Margaret; Mueller, Jochen F; Gómez Ramos, María José
2015-02-17
Fluorinated surfactant-based aqueous film-forming foams (AFFFs) are made up of per- and polyfluorinated alkyl substances (PFAS) and are used to extinguish fires involving highly flammable liquids. The use of perfluorooctanesulfonic acid (PFOS) and other perfluoroalkyl acids (PFAAs) in some AFFF formulations has been linked to substantial environmental contamination. Recent studies have identified a large number of novel and infrequently reported fluorinated surfactants in different AFFF formulations. In this study, a strategy based on a case-control approach using quadrupole time-of-flight tandem mass spectrometry (QTOF-MS/MS) and advanced statistical methods has been used to extract and identify known and unknown PFAS in human serum associated with AFFF-exposed firefighters. Two target sulfonic acids [PFOS and perfluorohexanesulfonic acid (PFHxS)], three non-target acids [perfluoropentanesulfonic acid (PFPeS), perfluoroheptanesulfonic acid (PFHpS), and perfluorononanesulfonic acid (PFNS)], and four unknown sulfonic acids (Cl-PFOS, ketone-PFOS, ether-PFHxS, and Cl-PFHxS) were exclusively or significantly more frequently detected at higher levels in firefighters compared to controls. The application of this strategy has allowed for identification of previously unreported fluorinated chemicals in a timely and cost-efficient way.
Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M
2011-10-01
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
An interactive multi-block grid generation system
NASA Technical Reports Server (NTRS)
Kao, T. J.; Su, T. Y.; Appleby, Ruth
1992-01-01
A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.
Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony; Farmer, James; Martinelli, Luigi; Saunders, David
1996-01-01
This work describes the implementation of optimization techniques based on control theory for complex aircraft configurations. Here control theory is employed to derive the adjoint differential equations, the solution of which allows for a drastic reduction in computational costs over previous design methods (13, 12, 43, 38). In our earlier studies (19, 20, 22, 23, 39, 25, 40, 41, 42) it was shown that this method could be used to devise effective optimization procedures for airfoils, wings and wing-bodies subject to either analytic or arbitrary meshes. Design formulations for both potential flows and flows governed by the Euler equations have been demonstrated, showing that such methods can be devised for various governing equations (39, 25). In our most recent works (40, 42) the method was extended to treat wing-body configurations with a large number of mesh points, verifying that significant computational savings can be gained for practical design problems. In this paper the method is extended for the Euler equations to treat complete aircraft configurations via a new multiblock implementation. New elements include a multiblock-multigrid flow solver, a multiblock-multigrid adjoint solver, and a multiblock mesh perturbation scheme. Two design examples are presented in which the new method is used for the wing redesign of a transonic business jet.
Adjustable bridge blocks make huge difference to the self-assembly of multiblock copolymers
NASA Astrophysics Data System (ADS)
Li, Weihua
We present theoretical studies on two types of multiblock copolymers, whose self-assemblies lead to a lot of novel ordered nanostructures. The first example is BABCB multiblock terpolymer, where A- and C-blocks separately aggregate into isolated domains and the three B-blocks with adjustable lengths form the matrix. As a result, the middle B-block forms a natural bridge connecting A- and C-domains. In contrast to ABC, the BABCB can form many binary spherical and cylindrical phases with tunable coordination numbers. In addition, the ABCB solution can form a lot of planet-satellite micellar superstructures with tunable number of satellites that varies from 3 to 20. The another system is AB-type multiblock copolymers. In contrast to the above system, there is no natural bridge. Accordingly, we introduce multiple arms into the architecture which tend to partition themselves into different domains to maximize their configurational entropy, thus forming effective bridges. Furthermore, each arm is devised as BAB triblock to enable adjustable length of bridges. With this copolymer, we predict a few non-classical ordered phases, including a square array cylinder. Our study opens the possibilities of fabricating desired nanostructures using designed block copolymers. National Natural Science Foundation of China (No. 21322407, 21574026).
Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike
2015-12-04
This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.
Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T.C. Mike
2015-01-01
This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa) and low water swelling (λ < 15) even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications. PMID:26690232
Euler solutions for an unbladed jet engine configuration
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.
1991-01-01
A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation.
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
Xiao, Lifen; Zhu, Wen; Chen, Jiqiang; Zhang, Ke
2017-02-01
Cyclic multiblock polymers with high-order blocks are synthesized via the combination of single-electron transfer living radical polymerization (SET-LRP) and copper-catalyzed azide-alkyne cycloaddition (CuAAC). The linear α,ω-telechelic multiblock copolymer is prepared via SET-LRP by sequential addition of different monomers. The SET-LRP approach allows well control of the block length and sequence as A-B-C-D-E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1 H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Zhanwen; Lin, Jiaping; Zhang, Liangshun; Wang, Liquan; Wang, Gengchao; Tian, Xiaohui; Jiang, Tao
2018-06-14
We applied a multi-scale approach coupling dissipative particle dynamics method with a drift-diffusion model to elucidate the photovoltaic properties of multiblock copolymers consisting of alternating electron donor and acceptor blocks. A series of hierarchical lamellae-in-lamellar structures were obtained from the self-assembly of the multiblock copolymers. A distinct improvement in photovoltaic performance upon the morphology transformation from lamella to lamellae-in-lamella was observed. The hierarchical lamellae-in-lamellar structures significantly enhanced exciton dissociation and charge carrier transport, which consequently contributed to the improved photovoltaic performance. Based on our theoretical calculations, the hierarchical nanostructures can achieve a much enhanced energy conversion efficiency, improved by around 25% compared with that of general ones, through structure modulation on number and size of the small-length-scale domains. Our findings are supported by recent experimental evidence and yield guidelines for designing hierarchical materials with improved photovoltaic properties.
Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Rissanou, Anastassia N.; Tzeli, Despoina S.; Anastasiadis, Spiros H.; Bitsanis, Ioannis A.
2014-05-01
Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (AnBn)m consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 500-5000 units) and very differing energetic conditions for the two blocks (very good—almost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks.
1-Bromoethene-1-sulfonyl fluoride (BESF) is another good connective hub for SuFEx click chemistry.
Smedley, Christopher J; Giel, Marie-Claire; Molino, Andrew; Barrow, Andrew S; Wilson, David J D; Moses, John E
2018-05-25
We demonstrate 1,2-dibromoethane-1-sulfonyl fluoride (DESF) as a bench-stable and readily accessible precursor to the robust SuFEx connector, 1-bromoethene-1-sulfonyl fluoride (BESF). The in situ generation of BESF from DESF opens up several new reaction profiles, including application in the syntheses of unprecedented 3-substituted isoxazole-5-sulfonyl fluorides, 1-substituted-1H-1,2,3-triazole-4-sulfonyl fluorides, 2-amino-1-bromoethane-1-sulfonyl fluorides and 4-bromo-β-sultams in good to excellent yields. These new modules comprise a pendant sulfonyl fluoride handle, which further undergoes facile and selective SuFEx reactions with a selection of aryl silyl ethers to generate stable and useful sulfonate connections.
Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak
2018-05-07
The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.
Manayil, Jinesh C; Osatiashtiani, Amin; Mendoza, Alvaro; Parlett, Christopher M A; Isaacs, Mark A; Durndell, Lee J; Michailof, Chrysoula; Heracleous, Eleni; Lappas, Angelos; Lee, Adam F; Wilson, Karen
2017-09-11
Fast pyrolysis bio-oils possess unfavorable physicochemical properties and poor stability, in large part, owing to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom- and energy-efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid (PrSO 3 H) silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates. The incorporation of macropores (200 nm) enhances the activity of mesoporous SBA-15 architectures (post-functionalized by hydrothermal saline-promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of the turnover frequency (TOF) enhancement increasing with carboxylic acid chain length from 5 % (C 3 ) to 110 % (C 12 ). Macroporous-mesoporous PrSO 3 H/SBA-15 also provides a two-fold TOF enhancement over its mesoporous analogue for the esterification of a real, thermal fast-pyrolysis bio-oil derived from woodchips. The total acid number was reduced by 57 %, as determined by GC×GC-time-of-flight mass spectrometry (GC×GC-ToFMS), which indicated ester and ether formation accompanying the loss of acid, phenolic, aldehyde, and ketone components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chelating ionic liquids for reversible zinc electrochemistry.
Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R
2013-05-21
Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.
Singularity classification as a design tool for multiblock grids
NASA Technical Reports Server (NTRS)
Jones, Alan K.
1992-01-01
A major stumbling block in interactive design of 3-D multiblock grids is the difficulty of visualizing the design as a whole. One way to make this visualization task easier is to focus, at least in early design stages, on an aspect of the grid which is inherently easy to present graphically, and to conceptualize mentally, namely the nature and location of singularities in the grid. The topological behavior of a multiblock grid design is determined by what happens at its edges and vertices. Only a few of these are in any way exceptional. The exceptional behaviors lie along a singularity graph, which is a 1-D construct embedded in 3-D space. The varieties of singular behavior are limited enough to make useful symbology on a graphics device possible. Furthermore, some forms of block design manipulation that appear appropriate to the early conceptual-modeling phase can be accomplished on this level of abstraction. An overview of a proposed singularity classification scheme and selected examples of corresponding manipulation techniques is presented.
Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang
2015-02-01
It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.
A multiblock multigrid three-dimensional Euler equation solver
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Elmiligui, Alaa; Melson, N. Duane; Vonlavante, E.
1990-01-01
Current aerodynamic designs are often quite complex (geometrically). Flexible computational tools are needed for the analysis of a wide range of configurations with both internal and external flows. In the past, geometrically dissimilar configurations required different analysis codes with different grid topologies in each. The duplicity of codes can be avoided with the use of a general multiblock formulation which can handle any grid topology. Rather than hard wiring the grid topology into the program, it is instead dictated by input to the program. In this work, the compressible Euler equations, written in a body-fitted finite-volume formulation, are solved using a pseudo-time-marching approach. Two upwind methods (van Leer's flux-vector-splitting and Roe's flux-differencing) were investigated. Two types of explicit solvers (a two-step predictor-corrector and a modified multistage Runge-Kutta) were used with multigrid acceleration to enhance convergence. A multiblock strategy is used to allow greater geometric flexibility. A report on simple explicit upwind schemes for solving compressible flows is included.
Microphase Separation Controlled Beta Sheet Crystallization Kinetics in Silk Fibroin Protein.
NASA Astrophysics Data System (ADS)
Hu, Xiao; Lu, Qiang; Kaplan, David; Cebe, Peggy
2009-03-01
We investigate the mechanism of isothermal crystallization kinetics of beta-sheet crystals in silk multiblock fibrous proteins. The Avrami analysis kinetic theory, for studies of synthetic polymer crystal growth, is for the first time extended to investigate protein self-assembly in beta-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy, differential scanning calorimetry and synchrotron real-time wide-angle X-ray scattering. Results indicate formation of beta sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic homopolymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to synthetic block copolymers. This model could be widely applicable in other proteins with multiblock (i.e., crystallizable and non-crystallizable) domains.
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
Effects of surfactants on the properties of mortar containing styrene/methacrylate superplasticizer.
Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA.
Effects of Surfactants on the Properties of Mortar Containing Styrene/Methacrylate Superplasticizer
Negim, El-Sayed; Kozhamzharova, Latipa; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig
2014-01-01
The physical and mechanical properties of mortar containing synthetic cosurfactants as air entraining agent are investigated. The cosurfactants consist of a combination of 2% dodecyl benzene sodium sulfonate (DBSS) and either 1.5% polyvinyl alcohol (PVA) or 1.5% polyoxyethylene glycol monomethyl ether (POE). Also these cosurfactants were used to prepare copolymers latex: styrene/butyl methacrylate (St/BuMA), styrene/methyl methacrylate (St/MMA), and styrene/glycidyl methacrylate (St/GMA), in order to study their effects on the properties of mortar. The properties of mortar examined included flow table, W/C ratio, setting time, water absorption, compressive strength, and combined water. The results indicate that the latex causes improvement in mortar properties compared with cosurfactants. Also polymer latex containing DBSS/POE is more effective than that containing DBSS/PVA. PMID:24955426
Kiran, S Aditya; Arthanareeswaran, G; Thuyavan, Y Lukka; Ismail, A F
2015-11-01
In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation. Copyright © 2015 Elsevier Inc. All rights reserved.
Enteromorpha compressa Exhibits Potent Antioxidant Activity
Shanab, Sanaa M. M.; Shalaby, Emad A.; El-Fayoumy, Eman A.
2011-01-01
The green macroalgae, Enteromorpha compressa (Linnaeus) Nees, Ulva lactuca, and E. linza, were seasonally collected from Abu Qir bay at Alexandria (Mediterranean Sea) This work aimed to investigate the seasonal environmental conditions, controlling the green algal growth, predominance, or disappearance and determining antioxidant activity. The freshly collected selected alga (E. compressa) was subjected to pigment analysis (chlorophyll and carotenoids) essential oil and antioxidant enzyme determination (ascorbate oxidase and catalase). The air-dried ground alga was extracted with ethanol (crude extract) then sequentially fractionated by organic solvents of increasing polarity (petroleum ether, chloroform, ethyl acetate, and water). Antioxidant activity of all extracts was assayed using different methods (total antioxidant, DPPH [2, 2 diphenyl-1-picrylhydrazyl], ABTS [2, 2 azino-bis ethylbenzthiazoline-6-sulfonic acid], and reducing power, and β-carotene linoleic acid bleaching methods). The results indicated that the antioxidant activity was concentration and time dependent. Ethyl acetate fraction demonstrated higher antioxidant activity against DPPH method (82.80%) compared to the synthetic standard butylated hydroxyl toluene (BHT, 88.5%). However, the crude ethanolic extract, pet ether, chloroform fractions recorded lower to moderate antioxidant activities (49.0, 66.0, and 78.0%, resp.). Using chromatographic and spectroscopic analyses, an active compound was separated and identified from the promising ethyl acetate fraction. PMID:21869863
Tao, Lingyan; Lin, Zhonglin; Chen, Jiashan; Wu, Yongjiang; Liu, Xuesong
2017-10-25
Gardeniae Fructus is widely used in the pharmaceutical industry, and many studies have confirmed its medical and economic value. In this study, samples collected from different liquid-liquid extraction batches of Gardeniae Fructus were detected by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Seven analytes, neochlorogenic acid (5-CQA), cryptochlorogenic acid (4-CQA), chlorogenic acid (3-CQA), geniposidic acid (GEA), deacetyl-asperulosidic acid methyl ester (DAAME), genipin-gentiobioside (GGB), and gardenoside (GA), were chosen as quality property indexes of Gardeniae Fructus. The two kinds of spectra were each used to build models by single partial least squares (PLS). Additionally, both spectral data were combined and modeled by multiblock PLS. For single spectroscopy modeling results, NIR had a better prediction for high-concentration analytes (3-CQA, DAAME, GGB, and GA) whereas MIR performed better for low-concentration analytes (5-CQA, 4-CQA, and GEA). The multiblock methodology was found to be better compared to single spectroscopy models for all seven analytes. Specifically, the coefficients of determination (R 2 ) of the NIR, MIR, and multiblock PLS calibration models of all seven components were higher than 0.95. Relative standard errors of prediction (RSEP) were all less than 7%, except for models of GGB, which were 10.36%, 13.24%, and 8.15% for the NIR-PLS, MIR-PLS, and multiblock models, respectively. These results indicate that MIR and NIR spectrographic techniques could provide a new choice for quality control in industrial production of Gardeniae Fructus. Copyright © 2017 Elsevier B.V. All rights reserved.
Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.
NASA Astrophysics Data System (ADS)
Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain
2014-11-01
Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.
Multiblock grid generation with automatic zoning
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1995-01-01
An overview will be given for multiblock grid generation with automatic zoning. We shall explore the many advantages and benefits of this exciting technology and will also see how to apply it to a number of interesting cases. The technology is available in the form of a commercial code, GridPro(registered trademark)/az3000. This code takes surface geometry definitions and patterns of points as its primary input and produces high quality grids as its output. Before we embark upon our exploration, we shall first give a brief background of the environment in which this technology fits.
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.
1991-01-01
A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.
Glyceryl ether sulfonates for use in oil recovery fluids and processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, D.R.
1984-08-21
Petroleum may be recovered from petroleum containing formations having high salinity by injecting into the formation an aqueous fluid containing an effective amount of a surface active agent characterized by the formula: R/sub 1/(OCH/sub 2/CH(OH)CH/sub 2/) /SUB m/ (R/sub 2/) /SUB n/ OR/sub 3/SO/sub 3/X wherein R/sub 1/ is an alkyl or alkylaryl radical, m is an integer of from 1 to 10, R/sub 2/ is an ethoxy radical and/or 1,2-propoxy radical, n is an integer of from 0 to 10, R/sub 3/ is an ethylene or 1,3-propylene radical, X is a sodium, potassium or ammonium cation; and driving themore » fluid through the formation and thereby displacing and recovering petroleum from the formation.« less
McCorquodale, Peter; Ullrich, Paul; Johansen, Hans; ...
2015-09-04
We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.
A multi-block adaptive solving technique based on lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao
2018-05-01
In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.
TopMaker: A Technique for Automatic Multi-Block Topology Generation Using the Medial Axis
NASA Technical Reports Server (NTRS)
Heidmann, James D. (Technical Monitor); Rigby, David L.
2004-01-01
A two-dimensional multi-block topology generation technique has been developed. Very general configurations are addressable by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, the multiblock topology is generated with no user intervention required. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in the area of computational fluid dynamics where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid generation process.
Microphase separation in random multiblock copolymers
NASA Astrophysics Data System (ADS)
Govorun, E. N.; Chertovich, A. V.
2017-01-01
Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.
Babu, Dasari Bosu; Giribabu, Krishnan; Ramesha, Kannadka
2018-06-13
Minimizing the shuttle effect by constraining polysulfides to the cathode compartment and activating the passive layer between cathode and separator are highly important for improving the Li-S cell performance, Coulombic efficiency, and cycle life. Here, we report a submicron thin coating of permselective sulfonated poly(ether ether ketone) (SPEEK) composite layer on the separator that would reduce polysulfide crossover, imparting a significant improvement in cycle life. It is observed that SPEEK increases the stability, and adding Nafion improves the capacity value. Among different ratios of Nafion and SPEEK (25:75, 50:50, and 75:25), the composite with a SPEEK/Nafion ratio of 50:50 showed a controlled shuttle effect with a stable cell capacity of 600 mA h g -1 up to 300 cycles. This modified separator with permselective coatings not only reduces the polysulfide shuttle but also improves the wettability and interfacial contact, which results in an improvement in average cell potential and lithium diffusivity. It is demonstrated here that the combination of functional (ionomer coating on separator) and nonfunctional (extra cathode layer) physical barriers effectively suppresses the polysulfide crossover and improves the electrochemical performance of Li-S batteries. The cell shows an initial capacity of 1300 mA h g -1 and a capacity retention of 650 mA h g -1 over 500 cycles with a 6 mg/cm 2 sulfur loading.
Para rubber seed oil: new promising unconventional oil for cosmetics.
Lourith, Nattaya; Kanlayavattanakul, Mayuree; Sucontphunt, Apirada; Ondee, Thunnicha
2014-01-01
Para rubber seed was macerated in petroleum ether and n-hexane, individually, for 30 min. The extraction was additionally performed by reflux and soxhlet for 6 h with the same solvent and proportion. Soxhlet extraction by petroleum ether afforded the greatest extractive yield (22.90 ± 0.92%). Although antioxidant activity by means of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) assay was insignificantly differed in soxhleted (8.90 ± 1.15%) and refluxed (9.02 ± 0.71%) by n-hexane, soxhlet extraction by n-hexane was significantly (p < 0.05) potent scavenged 2,2'-azino-bis(3-ethylbenzothaiazoline)-6-sulfonic acid) or ABTS radical with trolox equivalent antioxidant capacity (TEAC) of 66.54 ± 6.88 mg/100 g oil. This extract was non cytotoxic towards normal human fibroblast cells. In addition, oleic acid and palmitic acid were determined at a greater content than in the seed of para rubber cultivated in Malaysia, although linoleic and stearic acid contents were not differed. This bright yellow extract was further evaluated on other physicochemical characters. The determined specific gravity, refractive index, iodine value, peroxide value and saponification value were in the range of commercialized vegetable oils used as cosmetic raw material. Therefore, Para rubber seed oil is highlighted as the promising ecological ingredient appraisal for cosmetics. Transforming of the seed that is by-product of the important industrial crop of Thailand into cosmetics is encouraged accordingly.
Frébortová, Jitka; Novák, Ondrej; Frébort, Ivo; Jorda, Radek
2010-02-01
Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-one (DIMBOA) was isolated from maize phloem sap as a compound enhancing the degradation of isopentenyl adenine by maize cytokinin dehydrogenase (CKX), after oxidative conversion by either laccase or peroxidase. Laccase and peroxidase catalyze oxidative cleavage of DIMBOA to 4-nitrosoresorcinol-1-monomethyl ether (coniferron), which serves as a weak electron acceptor of CKX. The oxidation of DIMBOA and coniferron generates transitional free radicals that are used by CKX as effective electron acceptors. The function of free radicals in the CKX-catalyzed reaction was also verified with a stable free radical of 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid. Application of exogenous cytokinin to maize seedlings resulted in an enhanced benzoxazinoid content in maize phloem sap. The results indicate a new function for DIMBOA in the metabolism of the cytokinin group of plant hormones.
Wada, Carol K
2004-01-01
Matrix metalloproteinases (MMPs) have been implicated in several pathologies. At Abbott Laboratories, the matrix metalloproteinases inhibitor drug discovery program has focused on the discovery of a potent, selective, orally bioavailable MMP inhibitor for the treatment of cancer. The program evolved from early succinate-based inhibitors to utilizing in-house technology such as SAR by NMR to develop a novel class of biaryl hydroxamate MMP inhibitors. The metabolic instability of the biaryl hydroxamates led to the discovery of a new class of N-formylhydroxylamine (retrohydroxamate) biaryl ethers, exemplified by ABT-770 (16). Toxicity issues with this pre-clinical candidate led to the discovery of another novel class of retrohydroxamate MMP inhibitors, the phenoxyphenyl sulfones such as ABT-518 (19j). ABT-518 is a potent, orally bioavailable, selective inhibitor of MMP-2 and 9 over MMP-1 that has been evaluated in Phase I clinical trials in cancer patients.
Guimarães, José S; Bogado, Alexey L Gomel; da Cunha, Thiago Cezar B; Garcia, João Luis
2007-01-01
The objective of this study was to evaluate in vitro the action of eight chemical principles by disinfection efficacy (DE) of Eimeria tenella oocysts. Disinfection efficacy was evaluated by either destruction or sporulation inhibition of the oocysts. Eight treatments were performed: T1 (Glutaraldehyde 42.5 g + Benzalkonium Chloride 7.5 g); T2 (Benzalkonium chloride + quaternary ammonium salt); T3 (formol 37% + Sodium Dodecylbenzene Sulfonate 12%); T4 (sodium hypochlorite 2%); T5 (Orthodichlorobenzene 60% + Xylene 30%); T6 (Polyoctyl polyamino ethyl glycine + Polyoxyethylene alkylphenol ether + Sodium Chloride); T7 (Chloramine T) and finally T8 (free iodine 2.25% + Phosphoric acid 15 g). The control test was carried out with distilled water (T9). The best DE were observed, respectively, in T3 (79.49%), T5 (75.60%) and T4 (65.56%) treatments.
Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.
Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan
2016-10-14
This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.
Advances in chemical synthesis of structurally modified bioactive RNAs.
Li, Ziyuan; Zhou, Haipin; Wu, Xiaoming; Yao, Hequan
2013-01-01
Methods for the chemical synthesis of RNA have been available for almost half century, and presently, RNA could be chemically synthesized by automated synthesizers, using protected ribonucleosides preactivated as phosphoramidites, which has already been covered by many reviews. In addition to advancement on synthetic methods, a variety of modifications have also been made on the synthesized oligonucleotides, and previous reviews on the general synthesis of RNAs have not covered this area. In this tutorial review, three types of modifications have been summarized standing at the viewpoint of medicinal chemistry: (1) modifications on nucleobase, comprising substituent introduction and replacement with pseudobase; (2) modifications on ribose, consisting of modifications on the 2', 3' or 5'-position, alternation of configuration, and conformational restriction on ribose; (3) modifications on internucleoside linkages, including amide, formacetal, sulfide, sulfone, ether, phosphorothiolate and phosphorothioate linkages. Synthetic methods achieving these modifications along with the functions or values of these modifications have also been discussed and commented on.
Low severity coal conversion by ionic hydrogenation: Quarterly report, October--December 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maioriello, J.; Larsen, J.W.
1988-12-31
A newly developed reaction system consisting of H/sub 2/O:BF/sub 3//H/sub 2//(CH/sub 3/CN)/sub 2/PtCl/sub 2/ was applied to the ionic hydrogenation of aromatic and functionalized aromatic compounds. Hydrogenations were carried out in this aqueous system at 50/degree/C and 500 psi H/sub 2/. Aryl ethers were hydrogenated and cleaved, yielding deoxygenated, fully saturated compounds as the major products. Reactions of nitrogen-containing aromatic compounds resulted in partial saturation of aromatic rings without cleavage of the C-N bonds. Aromatic and PNA compounds can be fully or partially hydrogenated depending on their structures. Aromatic thiols, sulfides and thiophenes poison the catalyst; the oxidized sulfur formsmore » (sulfonic acids, sulfones) were not reduced and did not poison the catalyst. It was found that certain aromatic compounds were easier to hydrogenate than others. Ionic hydrogenation of Wyodak cola using a H/sub 2/O:BF/sub 3//H/sub 2//(MeCN)/sub 2/PtCl/sub 2/ resulted in no significant increase in THF extractability (5.8--9.6% THF-extractables, wt) over that of the parent coal (4.6--6.7% THF-extractables, wt). Ionic hydrogenation of a demineralized Wyodak coal (1 M aq. citric acid, reflux 1 day) resulted in a slight increase in THF extractability (10.4%) over the untreated parent coal (5.6--5.8%). 4 refs., 1 fig., 1 tab.« less
Weiber, E Annika; Jannasch, Patric
2014-09-01
A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hertrampf, A; Sousa, R M; Menezes, J C; Herdling, T
2016-05-30
Quality control (QC) in the pharmaceutical industry is a key activity in ensuring medicines have the required quality, safety and efficacy for their intended use. QC departments at pharmaceutical companies are responsible for all release testing of final products but also all incoming raw materials. Near-infrared spectroscopy (NIRS) and Raman spectroscopy are important techniques for fast and accurate identification and qualification of pharmaceutical samples. Tablets containing two different active pharmaceutical ingredients (API) [bisoprolol, hydrochlorothiazide] in different commercially available dosages were analysed using Raman- and NIR Spectroscopy. The goal was to define multivariate models based on each vibrational spectroscopy to discriminate between different dosages (identity) and predict their dosage (semi-quantitative). Furthermore the combination of spectroscopic techniques was investigated. Therefore, two different multiblock techniques based on PLS have been applied: multiblock PLS (MB-PLS) and sequential-orthogonalised PLS (SO-PLS). NIRS showed better results compared to Raman spectroscopy for both identification and quantitation. The multiblock techniques investigated showed that each spectroscopy contains information not present or captured with the other spectroscopic technique, thus demonstrating that there is a potential benefit in their combined use for both identification and quantitation purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
Polymer electrolyte membrane assembly for fuel cells
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)
2002-01-01
An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.
Polymer electrolyte membrane assembly for fuel cells
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)
2000-01-01
An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.
High-Temperature Shape Memory Polymers
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra; Weiss, Robert A.
2012-01-01
physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing radiation ( radiation, neutrons), or by chemical crosslinking to form a covalent permanent network. With respect to other shape memory polymers, this invention is novel in that it describes the use of a thermoplastic composition that can be thermally molded or solution-cast into complex "permanent" shapes, and then reheated or redissolved and recast from solution to prepare another shape. It is also unique in that the shape memory behavior is provided by a non-polymer additive.
Metal-organic and supramolecular architectures based on mechanically interlocked molecules
NASA Astrophysics Data System (ADS)
Fernando, Isurika Rosini
The focus of this work is on mechanically interlocked molecules (MIMs), which have unusual physicochemical and mechanical properties with potential applications in nano-scale/molecular devices and high strength materials. Rotaxanes, for example, consist of an axle-like molecule threaded through a wheel-like molecule, with bulky groups at the two ends of the axle preventing the wheel from dissociating. The position of the wheel along the axle can be switched in a controllable and reversible manner by applying external stimuli, a feature that might lead to the next generation of computers. Molecularly woven materials (MWMs), another example of molecules with mechanically interlocked features, are predicted to be unprecedentedly strong while being lightweight and flexible. With the ultimate goal of achieving control over the functioning of molecular devices in the solid state, a variety of pseudorotaxane building blocks were prepared and characterized, including a novel, rare blue-colored motif. The temperature-dependent assembly/disassembly of pseudorotaxanes was exploited for the construction of single-wavelength colorimetric temperature sensors over a 100 °C window. Pseudorotaxanes based on aromatic crown ether wheels and disubstituted 4,4'-bipyridinium axles were converted into rotaxanes upon binding to metal complexes (zinc, cadmium, mercury, copper, cobalt), and the formation of ordered crystalline arrays was studied in the solid state. The columnar organization of pseudorotaxanes by Hg2X6 2-- complexes (X = Cl, Br, I), leading to unprecedented dichroic (blue/red) rotaxane crystals, was demonstrated for the first time. From the crystal structures studied it became apparent that negatively charged metal complexes are needed for successful assembly with the positively charged pseudorotaxane units. To be able to use the more common, positively charged metal ions for rotaxane framework construction, neutral and negatively charged pseudorotaxanes were synthesized, by attaching anionic substituents (carboxylates, sulfonates) to either the wheel or the axle component. It was found that pseudorotaxane formation also enabled resolution of two sulfonated crown ether isomers, which were inseparable by conventional methods. Organic ligands for MWM precursors were designed and synthesized according to multi-step schemes. Helical metal-complexes based on these ligands were prepared and characterized. Chromatography, Nuclear Magnetic Resonance and UV-Visible spectroscopy, Mass spectrometry, Electrochemistry, Thermogravimetric Analysis and X-ray crystallography were used in identification, purification and characterization of the compounds involved.
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
Algorithms for the automatic generation of 2-D structured multi-block grids
NASA Technical Reports Server (NTRS)
Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.
1995-01-01
Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.
Load Balancing Strategies for Multi-Block Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak; Lopez-Benitez, Noe; Biegel, Bryan (Technical Monitor)
2002-01-01
The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficient high performance computations of large-scale realistic applications using this methodology, the individual grids must be properly partitioned among the parallel processors. Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we present three different load balancing strategies far overset grids and analyze their effects on the parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.
Numerical study of supersonic combustors by multi-block grids with mismatched interfaces
NASA Technical Reports Server (NTRS)
Moon, Young J.
1990-01-01
A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.
Ammari, Faten; Bassel, Léna; Ferrier, Catherine; Lacanette, Delphine; Chapoulie, Rémy; Bousquet, Bruno
2016-10-01
In this study, multi-block analysis was applied for the first time to LIBS spectra provided by a portable LIBS system (IVEA Solution, France) equipped with three compact Czerny-Turner spectrometers covering the spectral ranges 200-397nm, 398-571nm and 572-1000nm. 41 geological samples taken from a laboratory-cave situated in the "Vézère valley", an area rich with prehistoric sites and decorated caves listed as a UNESCO world heritage in the south west of France, were analyzed. They were composed of limestone and clay considered as underlying supports and of two types of alterations referred as moonmilk and coralloid. Common Components and Specific Weights Analysis (CCSWA) allowed sorting moonmilk and coralloid samples. The loadings revealed higher amounts of magnesium, silicon, aluminum and strontium in coralloids and the saliences emphasized that among the three spectrometers installed in the LIBS instrument used in this work; that covering the range 572-1000nm was less contributive. This new approach for processing LIBS data not only provides good results for sorting geological materials but also clearly reveals which spectral range contains most of the information. This specific advantage of multi-block analysis could lead for some applications to simplify the design and to reduce the size of LIBS instruments. Copyright © 2016 Elsevier B.V. All rights reserved.
Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.
Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G
2016-06-09
Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.
He, Min; Cui, Xiaofei; Jiang, Huiyi; Huang, Xuelian; Zhao, Weifeng; Zhao, Changsheng
2017-02-01
In this study, heparin-mimicking hydrogel thin films are covalently attached onto poly(ether sulfone) membrane surfaces to improve anticoagulant property. The hydrogel films display honeycomb-like porous structure with well controlled thickness and show long-term stability. After immobilizing the hydrogel films, the membranes show excellent anticoagulant property confirmed by the activated partial thromboplastin time values exceeding 600 s. Meanwhile, the thrombin time values increase from 20 to 61 s as the sodium allysulfonate proportions increase from 0 to 80 mol%. In vitro investigations of protein adsorption and blood-related complement activation also confirm that the membranes exhibit super-anticoagulant property. Furthermore, gentamycin sulfate is loaded into the hydrogel films, and the released drug shows significant inhibition toward E. coli bacteria. It is believed that the surface attached heparin-mimicking hydrogel thin films may show high potential for the applications in various biological fields, such as blood contacting materials and drug loading materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acetylene terminated matrix resins
NASA Technical Reports Server (NTRS)
Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.
1985-01-01
The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.
A Highly Ion-Selective Zeolite Flake Layer on Porous Membranes for Flow Battery Applications.
Yuan, Zhizhang; Zhu, Xiangxue; Li, Mingrun; Lu, Wenjing; Li, Xianfeng; Zhang, Huamin
2016-02-24
Zeolites are crystalline microporous aluminosilicates with periodic arrangements of cages and well-defined channels, which make them very suitable for separating ions of different sizes, and thus also for use in battery applications. Herein, an ultra-thin ZSM-35 zeolite flake was introduced onto a poly(ether sulfone) based porous membrane. The pore size of the zeolite (ca. 0.5 nm) is intermediary between that of hydrated vanadium ions (>0.6 nm) and protons (<0.24 nm). The resultant membrane can thus be used to perfectly separate vanadium ions and protons, making this technology useful in vanadium flow batteries (VFB). A VFB with a zeolite-coated membrane exhibits a columbic efficiency of >99 % and an energy efficiency of >81 % at 200 mA cm(-2), which is by far the highest value ever reported. These convincing results indicate that zeolite-coated membranes are promising in battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Blagojević, S. M.; Pejić, N. D.; Blagojević, S. N.
2017-12-01
The physicochemical properties of initial formulation, that is anionic/amphoteric surfactants mixture SLES/AOS/CAB (sodium lauryl ether sulfate (SLES), α-olefin sulfonates (AOS) and cocamidopropyl betaine (CAB) at ratio 80 : 15 : 5) with nonionic surfactant of amine oxide type (lauramine oxide (AO)) in various concentration (1-5%) were studied. To characterize the surfactants mixture, the critical micelle concentration (CMC), surface tension (γ), foam volume, biodegradability and irritability were determined. This study showed that adding of AO in those mixtures lowered both γ and CMC as well as enhanced SLES/AOS/CAB foaming properties, but did not significantly affect biodegradability and irritability of initial formulation. Moreover, an increase in AO concentration has a meaningful synergistic effect on the initial formulation properties. All those results indicates that a nonionic surfactant of amine oxide type significantly improves the performance of anionic/amphoteric mixed micelle systems, and because of that anionic/amphoteric/nonionic mixture can be used in considerably lower concentrations as a cleaning formulation.
Characterization of multiblock copolymers by chromatographic techniques.
N'Goma, Patrick Yoba; Radke, Wolfgang; Malz, Frank; Ziegler, Hans Jörg; Zierke, Michael; Behl, Marc; Lendlein, Andreas
2011-02-01
Multiblock copolymers (MBC) composed of blocks of poly(1,4-dioxanone) (PPDO) and poly(e-caprolactone) (PCL) were investigated in order to gain information on the extend of chemical heterogeneity of the samples. A gradient chromatographic method was established allowing separation of purely PPDO- from purely PCL-containing chains. Application of the gradient to MBC made of PPDO- and PCL-diols connected by trimethylhexamethylene diisocyanate (TMDI) resulted in two well separated peaks which were analyzed by means of FTIR, 1H-NMR and pyrolysis GC-MS. It was shown that the first peak was composed to a large extent of PPDO and only lower amounts of PCL were incorporated. Conversely, the second peak consisted predominantly of PCL with only a minor fraction of PPDO. Thus, the MBCs having PPDO and PCL segments show an unexpected broad chemical heterogeneity.
NASA Technical Reports Server (NTRS)
Sjogreen, Bjoern; Yee, H. C.
2007-01-01
Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.
Simulations of Turbine Cooling Flows Using a Multiblock-Multigrid Scheme
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Ameri, Ali A.; Rigby, David L.
1996-01-01
Results from numerical simulations of air flow and heat transfer in a 'branched duct' geometry are presented. The geometry contains features, including pins and a partition, as are found in coolant passages of turbine blades. The simulations were performed using a multi-block structured grid system and a finite volume discretization of the governing equations (the compressible Navier-Stokes equations). The effects of turbulence on the mean flow and heat transfer were modeled using the Baldwin-Lomax turbulence model. The computed results are compared to experimental data. It was found that the extent of some regions of high heat transfer was somewhat under predicted. It is conjectured that the underlying reason is the local nature of the turbulence model which cannot account for upstream influence on the turbulence field. In general, however, the comparison with the experimental data is favorable.
Grieshaber, Sarah E.; Farran, Alexandra J. E.; Lin-Gibson, Sheng; Kiick, Kristi L.; Jia, Xinqiao
2009-01-01
We are interested in developing elastin–mimetic hybrid polymers (EMHPs) that capture the multiblock molecular architecture of tropoelastin as well as the remarkable elasticity of mature elastin. In this study, multiblock EMHPs containing flexible synthetic segments based on poly(ethylene glycol) (PEG) alternating with alanine-rich, lysine-containing peptides were synthesized by step-growth polymerization using α,ω-azido-PEG and alkyne-terminated AKA3KA (K = lysine, A = alanine) peptide, employing orthogonal click chemistry. The resulting EMHPs contain an estimated three to five repeats of PEG and AKA3KA and have an average molecular weight of 34 kDa. While the peptide alone exhibited α-helical structures at high pH, the fractional helicity for EMHPs was reduced. Covalent cross-linking of EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residue in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 MPa when hydrated. The mechanical properties of xEMHP are comparable to a commercial polyurethane elastomer (Tecoflex SG80A) under the same conditions. In vitro toxicity studies showed that while the soluble EMHPs inhibited the growth of primary porcine vocal fold fibroblasts (PVFFs) at concentrations ≥0.2 mg/mL, the cross-linked hybrid elastomers did not leach out any toxic reagents and allowed PVFFs to grow and proliferate normally. The hybrid and modular approach provides a new strategy for developing elastomeric scaffolds for tissue engineering. PMID:19763157
Bouzidi, Amel; Benzarti, Anissa; Arem, Amira El; Mahfoudhi, Adel; Hammami, Saoussen; Gorcii, Mohamed; Mastouri, Maha; Hellal, Ahmed Noureddine; Mighri, Zine
2016-07-01
In the present investigation, extracts obtained from L. guyonianum Durieu ex Boiss. aerial parts were used to evaluate total phenolic, flavonoid and tannin contents. A study of antioxidant activities of the prepared samples was carried out on the basis of 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2-2'-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS+.) and ferric reducing antioxidant power (FRAP) assays. Moreover, the efficiency of methanolic, chloroformic and petroleum ether extracts and the deriving fractions from the methanolic extract was tested against human bacterial and fungal pathogenic strains using micro dilution method in 96 multiwell microtiter plate. Furthermore, leaves and stems extracts were subjected to RP-HPLC for phenolic compounds identification. Results showed that polyphenolic contents and antioxidant activities varied considerably as function of solvent polarity. Moreover, antiradical capacities against DPPH, ABTS(+.) and reducing power were maxima in methanol aerial parts extract which showed the highest polyphenol contents (134mg CE/g DW). The antimicrobial activities showed that methanolic, chloroformic and petroleum ether extracts were found to be most potent against Pseudomonas aeruginosa and Staphylococcus aureus with MIC values of 23 and 46μ.mL(-1), respectively. The fractions F(13) and F(16) have a great antifungal potential against Candida glabrata, Candida krusei and Candida parapsilesis (MIC=39μ.mL(-1)). The RP-HPLC analysis lead the identification of gallic, procatechuic and trans-cinnamic acids, methyl-4-hydroxybenzoate, n-propyl-3,4,5-trihydroxybenzoate, epicatechin, naringin and myricetin in L. guyonianum Durieu ex Boiss. leaves and stems extracts.
Simulation study of sulfonate cluster swelling in ionomers
NASA Astrophysics Data System (ADS)
Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut
2009-12-01
We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts. These subsequently swell, but then maintain constant the number of sulfonates per cluster. We find that the distribution of water in low-sulfonate membranes depends strongly on the sulfonate concentration. For a relatively low sulfonate concentration, nearly all the side-chain terminal groups are within cluster formations, and the average water loading per cluster matches the water content of membrane. However, for a relatively higher sulfonate concentration the water-to-sulfonate ratio becomes nonuniform. The clusters become wetter, while the intercluster bridges become drier. We note the formation of unusual shells of water-rich material that surround the sulfonate clusters.
Wang, Yuan; Shi, Yali; Vestergren, Robin; Zhou, Zhen; Liang, Yong; Cai, Yaqi
2018-09-15
Non-invasive samples present ethical and practical benefits for investigating human exposure to hazardous contaminants, but analytical challenges and difficulties to interpret the results limit their application in biomonitoring. Here we investigated the potential for using hair, nail and urine samples as a measure of internal exposure to an array of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in two populations with different exposure conditions. Paired urine-serum measurements of PFASs from a group of highly exposed fishery employees displayed strong correlations for PFASs with three to eight perfluorinated carbons (ρ > 0.653; p < 0.01). Consistent statistical correlations and transfer ratios in nails and hair from both populations demonstrated that these non-invasive samples can be used as a measure of internal exposure to perfluorooctane sulfonic acid and C8 chlorinated polyfluoralkyl ether sulfonic acid (C8 Cl-PFESA). Contrastingly, the infrequent detections and/or lack of consistent transfer ratios for perfluorooctanoic acid, perfluorononanoic acid and short-chain PFASs in hair and nail samples indicate passive uptake from the external environment rather than uptake and internal distribution. Collectively, the study supports the use of urine samples as a valid measure of internal exposure for a range of short- and medium-chain PFASs, while the validity of nail and hair samples as a measure of internal exposure may vary for different PFASs and populations. The ubiquitous detection of C8 Cl-PFESA in all sample matrices from both populations indicates widespread exposure to this contaminant of emerging concern in China. Copyright © 2018 Elsevier B.V. All rights reserved.
Optimization of superplasticizer in portland pozzolana cement mortar and concrete
NASA Astrophysics Data System (ADS)
Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.
2018-02-01
Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.
Numerical Boundary Condition Procedures
NASA Technical Reports Server (NTRS)
1981-01-01
Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.
Pan, Huaizhong; Sima, Monika; Miller, Scott C.; Kopečková, Pavla; Yang, Jiyuan; Kopeček, Jindřich
2013-01-01
Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by post-polymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone-targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate. PMID:23731780
MAG3D and its application to internal flowfield analysis
NASA Technical Reports Server (NTRS)
Lee, K. D.; Henderson, T. L.; Choo, Y. K.
1992-01-01
MAG3D (multiblock adaptive grid, 3D) is a 3D solution-adaptive grid generation code which redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. The code is applicable to structured grids with a multiblock topology. It is independent of the original grid generator and the flow solver. The code uses the coordinates of an initial grid and the flow solution interpolated onto the new grid. MAG3D uses a numerical mapping and potential theory to modify the grid distribution based on properties of the flow solution on the initial grid. The adaptation technique is discussed, and the capability of MAG3D is demonstrated with several internal flow examples. Advantages of using solution-adaptive grids are also shown by comparing flow solutions on adaptive grids with those on initial grids.
Polar order in nanostructured organic materials
NASA Astrophysics Data System (ADS)
Sayar, M.; Olvera de la Cruz, M.; Stupp, S. I.
2003-02-01
Achiral multi-block liquid crystals are not expected to form polar domains. Recently, however, films of nanoaggregates formed by multi-block rodcoil molecules were identified as the first example of achiral single-component materials with macroscopic polar properties. By solving an Ising-like model with dipolar and asymmetric short-range interactions, we show here that polar domains are stable in films composed of aggregates as opposed to isolated molecules. Unlike classical molecular systems, these nanoaggregates have large intralayer spacings (a approx 8 nm), leading to a reduction in the repulsive dipolar interactions which oppose polar order within layers. In finite-thickness films of nanostructures, this effect enables the formation of polar domains. We compute exactly the energies of the possible structures consistent with the experiments as a function of film thickness at zero temperature (T). We also provide Monte Carlo simulations at non-zero T for a disordered hexagonal lattice that resembles the smectic-like packing in these nanofilms.
NASA Technical Reports Server (NTRS)
Janus, J. Mark; Whitfield, David L.
1990-01-01
Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Ethylene polymer, chloro-sulfonated is produced by chloro-sulfonation of a carbon tetrachloride solution of... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium mono- and dimethyl naphthalene sulfonates... sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in... statement declaring the presence of sodium mono- and dimethyl naphthalene sulfonates. [42 FR 14491, Mar. 15...
Study on the generation of perfluorooctane sulfonate from the aqueous film-forming foam.
Kishi, Takahiro; Arai, Mitsuru
2008-11-15
Perfluorooctane sulfonate (C(8)HF(17)SO(3)) and perfluorooctane acid (C(8)HF(15)O(2)) are artificial chemicals and have been used all over the world, mainly as water repellent agents, fluorochemical surfactants, coating agents, etc. However, perfluorooctane sulfonate and perfluorooctane acid are environmental contaminants because of their stability, bio-accumulativeness, and long-term persistence in the ecological environment. At the present day, they are diffused all over the world. Lately, this diffusion is viewed with suspicion and there is a movement towards their restriction, even if the environmental fate of them is still under investigation. Fluorochemical surfactants are key compounds in the aqueous film-forming foam (AFFF) formulations. AFFFs are used for massive conflagration such as industrial fire and petroleum fire because of their efficient fire control. On the other hand, a lot of AFFFs are used in case of massive conflagration and most of them enter ocean and groundwater. Actually, perfluorooctane sulfonate and perfluorooctane sulfonate related substances were detected from the fire-fighting facility of US forces. Therefore, there is the possibility of generating perfluorooctane sulfonate and perfluorooctane sulfonate related substances from fluorochemical surfactants in the AFFFs. In this study, activated sludge added AFFF were analyzed for perfluorooctane sulfonate and perfluorooctane acid with time. And the perfluorooctane sulfonate was directly detected after 2 days using LC-MS. This shows that AFFF can be decomposed perfluorooctane sulfonate by microorganisms easily. However, perfluorooctane sulfonate would not decompose at all. Additionally, activated sludge added N-polyoxyethylene-N-propyl perfluorooctane sulfonamide which is one of the fluorochemical surfactants used in the AFFF was analyzed for perfluorooctane sulfonate and perfluorooctane acid with time and the perfluorooctane sulfonate was detected too.
Wielsøe, Maria; Kern, Peder; Bonefeld-Jørgensen, Eva Cecilie
2017-06-13
Environmental Persistent Organic Pollutants (POPs) can alter the hormone homeostasis by mimicking, interfering or blocking the function of hormones; moreover POPs are hypothesized to modify the risk of breast cancer. The association between POPs and breast cancer has been widely studied but the conclusions are inconsistent. The present study examined the associations between serum levels of POPs and breast cancer with focus on the highly exposed Greenlandic Inuit population. The study design was a case-control study of Inuit women from Greenland. The participants were asked to complete a questionnaire with information on reproductive history and lifestyle and to provide a blood sample. The sampling was carried out in two time periods (2000-2003 and 2011-2014). The serum levels were determined of 14 polychlorinated biphenyls (PCBs), 11 organochlorine pesticides (OCPs), 16 perfluoroalkyl acids (PFAAs), 1 polybrominated biphenyl (PBB), and 9 polybrominated diphenyl ethers (PBDEs). Independent samples t-test was used to compare differences between cases and controls and odds ratios (OR) adjusted for identified confounders were obtained using logistic regression. The study population included 77 breast cancer cases and 84 controls. The majority of the measured compounds declined significantly from 2000 - 2003 to 2011-2014. However, for the perfluorinated carboxylic acids (PFCAs) an increase was observed. The serum levels were significantly higher in cases compared to controls for the majority of the compounds, and after adjusting for age the difference was maintained for ∑OCP, dichlorodiphenyldichloroethylene (p,p'-DDE), ∑PFAA, ∑perfluorinated sulfonic acids (PFSA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS). For the lipophilic POPs, high serum levels (middel/highest vs. lowest tertile) of ∑PCB, ∑estrgoenicPCB, PCB99, PCB138, PCB153, PCB170, PCB170, and PCB183 was associated with breast cancer risk; for the amphiphilic PFAAs, high serum levels of ∑PFAA, ∑PFCA, ∑PFSA, perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), PFHxS, and PFOS were associated with breast cancer risk. Significant, positive associations between breast cancer risk and PCBs and PFAAs were observed. The associations indicate that environmental exposure to POPs can be a factor increasing the risk for breast cancer in Inuit women.
NASA Astrophysics Data System (ADS)
Chen, Yufei; Li, Zhichao; Teng, Chengjun; Li, Fangliang; Han, Yang
2016-11-01
Nano-alumina was chemically modified with super-critical ethanol enabling a surface active coating. Modified nano-alumina was incorporated in polymer blends based on thermoplastic polyether sulfone and thermosetting bismaleimide resin to produce novel nanocomposites designated as SCE-Al2O3/PES-MBAE. In the SCE-Al2O3/PES-MBAE nano-composites, the matrix was originally formed from 4,4'-diamino diphenyl methane bismaleimide (MBMI) using the diluents of 3,3'-diallyl bisphenol A (BBA) and bisphenol-A diallyl ether (BBE), while polyether sulfone (PES) was used as toughening agent along with super-critically modified nano-alumina (SCE-Al2O3) as filler material. The content of SCE-Al2O3 was varied from 0 wt.% to 6 wt.%. The nano-composites were characterized for their morphological, spectroscopic and dielectric properties. Fourier transform infrared spectroscopy (FT-IR) indicated that ethanol molecules had adhered to the surface of the nano-Al2O3 in super-critical state. A reaction between MBMI and allyl compound occurred and SCE-Al2O3 was doped into the polymer matrix. Volume resistivity of the composite initially increased and then decreased. The modification due to SCE-Al2O3 could overcome the undesirable impact of PES by using a bare minimum level of SCE-Al2O3. The dielectric constant ( ɛ) and dielectric loss (tan δ) as in the case of volume resistivity were initially increased and then decreased with the content of SCE-Al2O3 in the composite. The dielectric constant, dielectric loss and dielectric strength of SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE nano-composite were 3.53 (100 Hz), 1.52 × 10-3 (100 Hz) and 15.66 kV/mm, respectively, which indicated that the dielectric properties of the composite fulfilled the basic requirements of electrical and insulating material. It was evident from the morphological analysis that the SCE-Al2O3 was evenly dispersed at the nanoscale; for example, the size of SCE-Al2O3 in SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE measured less than 50 nm.
Surface treated carbon catalysts produced from waste tires for fatty acids to biofuel conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, Zachary D.; Adhikari, Shiba P.; Wright, Marcus W.
A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 .mu.m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.
A Review of Shock Mitigation Techniques (Briefing Charts)
2015-04-01
Public Release; Distribution Unlimited (PA# 96TW- 2014-0154). 6 Viscoelastic • Polyurea – energy dissipation from hard and soft...Response of Coarse-Grained Models of Multiblock versus Diblock Copolymers: Insights into Dissipative Properties of Polyurea ”, Macromolecules, 2012, 45 (7
Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings
NASA Astrophysics Data System (ADS)
Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.
2018-06-01
Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.
Emerging Persistent Organic Pollutants in Chinese Bohai Sea and Its Coastal Regions
Wang, Yawei; Pan, Yuanyuan
2014-01-01
Emerging persistent organic pollutants (POPs) have widely aroused public concern in recent years. Polybrominated diphenyl ethers (PBDEs) and perfluorooctane sulfonyl fluoride/perfluorooctane sulfonic acid (POSF/PFOS) had been newly listed in Stockholm Convention in 2009, and short chain chlorinated paraffins (SCCPs) and hexabromocyclododecanes (HBCDs) were listed as candidate POPs. Bohai Sea is located in the arms of numbers of industrial cities, the semienclosed location of which makes it an ideal sink of emerging pollutants. In the present paper, latest contamination status of emerging POPs in Bohai Sea was reviewed. According to the literature data, Bohai Sea areas are not heavily contaminated by emerging POPs (PBDE: 0.01–720 ng/g; perfluorinated compounds: 0.1–304 ng/g; SCCPs: 64.9–5510 ng/g; HBCDs: nd-634 ng/g). Therefore, humans are not likely to be under serious risk of emerging POPs exposure through consuming seafood from Bohai Sea. However, the ubiquitous occurrence of emerging POPs in Bohai Sea region might indicate that more work should be done to expand the knowledge about potential risk of emerging POPs pollution. PMID:24688410
40 CFR 721.10035 - Alkylbenzene sulfonate (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate (generic). 721... Substances § 721.10035 Alkylbenzene sulfonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate (PMN-02...
40 CFR 721.10035 - Alkylbenzene sulfonate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylbenzene sulfonate (generic). 721... Substances § 721.10035 Alkylbenzene sulfonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate (PMN-02...
A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers
NASA Technical Reports Server (NTRS)
Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)
1997-01-01
The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.
Boccard, Julien; Rudaz, Serge
2016-05-12
Many experimental factors may have an impact on chemical or biological systems. A thorough investigation of the potential effects and interactions between the factors is made possible by rationally planning the trials using systematic procedures, i.e. design of experiments. However, assessing factors' influences remains often a challenging task when dealing with hundreds to thousands of correlated variables, whereas only a limited number of samples is available. In that context, most of the existing strategies involve the ANOVA-based partitioning of sources of variation and the separate analysis of ANOVA submatrices using multivariate methods, to account for both the intrinsic characteristics of the data and the study design. However, these approaches lack the ability to summarise the data using a single model and remain somewhat limited for detecting and interpreting subtle perturbations hidden in complex Omics datasets. In the present work, a supervised multiblock algorithm based on the Orthogonal Partial Least Squares (OPLS) framework, is proposed for the joint analysis of ANOVA submatrices. This strategy has several advantages: (i) the evaluation of a unique multiblock model accounting for all sources of variation; (ii) the computation of a robust estimator (goodness of fit) for assessing the ANOVA decomposition reliability; (iii) the investigation of an effect-to-residuals ratio to quickly evaluate the relative importance of each effect and (iv) an easy interpretation of the model with appropriate outputs. Case studies from metabolomics and transcriptomics, highlighting the ability of the method to handle Omics data obtained from fixed-effects full factorial designs, are proposed for illustration purposes. Signal variations are easily related to main effects or interaction terms, while relevant biochemical information can be derived from the models. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, S. C.; Hayter, E. J.; Pruhs, R.; Luong, P.; Lackey, T. C.
2016-12-01
The geophysical scale circulation of the Mid Atlantic Bight and hydrologic inputs from adjacent Chesapeake Bay watersheds and tributaries influences the hydrodynamics and transport of the James River estuary. Both barotropic and baroclinic transport govern the hydrodynamics of this partially stratified estuary. Modeling the placement of dredged sediment requires accommodating this wide spectrum of atmospheric and hydrodynamic scales. The Geophysical Scale Multi-Block (GSMB) Transport Modeling System is a collection of multiple well established and USACE approved process models. Taking advantage of the parallel computing capability of multi-block modeling, we performed one year three-dimensional modeling of hydrodynamics in supporting simulation of dredged sediment placements transport and morphology changes. Model forcing includes spatially and temporally varying meteorological conditions and hydrological inputs from the watershed. Surface heat flux estimates were derived from the National Solar Radiation Database (NSRDB). The open water boundary condition for water level was obtained from an ADCIRC model application of the U. S. East Coast. Temperature-salinity boundary conditions were obtained from the Environmental Protection Agency (EPA) Chesapeake Bay Program (CBP) long-term monitoring stations database. Simulated water levels were calibrated and verified by comparison with National Oceanic and Atmospheric Administration (NOAA) tide gage locations. A harmonic analysis of the modeled tides was performed and compared with NOAA tide prediction data. In addition, project specific circulation was verified using US Army Corps of Engineers (USACE) drogue data. Salinity and temperature transport was verified at seven CBP long term monitoring stations along the navigation channel. Simulation and analysis of model results suggest that GSMB is capable of resolving the long duration, multi-scale processes inherent to practical engineering problems such as dredged material placement stability.
40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate, amine...
40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylbenzene sulfonate, amine salt... Substances § 721.1625 Alkylbenzene sulfonate, amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate, amine...
[Synthesis, solubility, lipids-lowering and liver-protection activities of sulfonated formononetin].
Wang, Qiu-ya; Meng, Qing-hua; Zhang, Zun-ting; Tian, Zhen-jun; Liu, Hui
2009-04-01
A water-soluble compound, sodium formononetin-3'-sulfonate with good lipid-lowering and liver-protection activities was synthesized. It was synthesized by sulfonation reaction, and its structure was characterized by IR, NMR and elemental analyses. The solubility of sodium formononetin-3'-sulfonate in water and n-octanol/water partition coefficient were determined by UV spectrophotometry. The lipid-lowering and liver-protection activities of sodium formononetin-3'-sulfonate were tested by using rat's high fat model induce by feeding with high fat food. The results showed that sodium formononetin-3'-sulfonate not only had favorable water, solubility but also had good lipid-lowering and liver-protection activities.
Kinetics Modeling of Hypergolic Propellants
2013-07-01
comprehensive preconditioning and employs the line Gauss Seidel algorithm for the solution of the linear system. A multi-block unstructured mesh is...Explosives, Pyrotechnics, 33(3):209–212, 2008. 24Wei-Guang Liu, Shiqing Wang, Siddharth Dasgupta, Stefan T Thynell, William A Goddard III, Sergey Zybin
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
Huang, Lihong; Zhuang, Xiuli; Hu, Jun; Lang, Le; Zhang, Peibiao; Wang, Yu; Chen, Xuesi; Wei, Yen; Jing, Xiabin
2008-03-01
To obtain one biodegradable and electroactive polymer as the scaffold for tissue engineering, the multiblock copolymer PLAAP was designed and synthesized with the condensation polymerization of hydroxyl-capped poly( l-lactide) (PLA) and carboxyl-capped aniline pentamer (AP). The PLAAP copolymer exhibited excellent electroactivity, solubility, and biodegradability. At the same time, as one scaffold material, PLAAP copolymer possesses certain mechanical properties with the tensile strength of 3 MPa, tensile Young 's modulus of 32 MPa, and breaking elongation rate of 95%. We systematically studied the compatibility of PLAAP copolymer in vitro and proved that the electroactive PLAAP copolymer was innocuous, biocompatible, and helpful for the adhesion and proliferation of rat C6 cells. Moreover, the PLAAP copolymer stimulated by electrical signals was demonstrated as accelerating the differentiation of rat neuronal pheochromocytoma PC-12 cells. This biodegradable and electroactive PLAAP copolymer thus possessed the properties in favor of the long-time application in vivo as nerve repair scaffold materials in tissue engineering.
The three-dimensional Multi-Block Advanced Grid Generation System (3DMAGGS)
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, Kenneth J.
1993-01-01
As the size and complexity of three dimensional volume grids increases, there is a growing need for fast and efficient 3D volumetric elliptic grid solvers. Present day solvers are limited by computational speed and do not have all the capabilities such as interior volume grid clustering control, viscous grid clustering at the wall of a configuration, truncation error limiters, and convergence optimization residing in one code. A new volume grid generator, 3DMAGGS (Three-Dimensional Multi-Block Advanced Grid Generation System), which is based on the 3DGRAPE code, has evolved to meet these needs. This is a manual for the usage of 3DMAGGS and contains five sections, including the motivations and usage, a GRIDGEN interface, a grid quality analysis tool, a sample case for verifying correct operation of the code, and a comparison to both 3DGRAPE and GRIDGEN3D. Since it was derived from 3DGRAPE, this technical memorandum should be used in conjunction with the 3DGRAPE manual (NASA TM-102224).
Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine
2017-01-18
Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.
Bisphenol A sulfonation is impaired in metabolic and liver disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu
Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results:more » In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.« less
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section for...
40 CFR 721.10564 - Mixed amino diaryl sulfone isomers (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed amino diaryl sulfone isomers... Specific Chemical Substances § 721.10564 Mixed amino diaryl sulfone isomers (generic). (a) Chemical... as mixed amino diaryl sulfone isomers (PMN P-08-39) is subject to reporting under this section for...
40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., sulfonated aromatic (generic name). 721.950 Section 721.950 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.950 Sodium salt of an alkylated, sulfonated... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84...
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...
40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., sulfonated aromatic (generic name). 721.950 Section 721.950 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.950 Sodium salt of an alkylated, sulfonated... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfonated-copper phthalocyanine salt... Significant New Uses for Specific Chemical Substances § 721.9674 Sulfonated-copper phthalocyanine salt of a... chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium salt...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt (PMN...
Nanoscale structure and morphology of sulfonated polyphenylenes via atomistic simulations
Abbott, Lauren J.; Frischknecht, Amalie L.
2017-01-23
We performed atomistic simulations on a series of sulfonated polyphenylenes systematically varying the degree of sulfonation and water content to determine their effect on the nanoscale structure, particularly for the hydrophilic domains formed by the ionic groups and water molecules. We found that the local structure around the ionic groups depended on the sulfonation and hydration levels, with the sulfonate groups and hydronium ions less strongly coupled at higher water contents. In addition, we characterized the morphology of the ionic domains employing two complementary clustering algorithms. At low sulfonation and hydration levels, clusters were more elongated in shape and poorlymore » connected throughout the system. As the degree of sulfonation and water content were increased, the clusters became more spherical, and a fully percolated ionic domain was formed. As a result, these structural details have important implications for ion transport.« less
Haug, W; Schmidt, A; Nörtemann, B; Hempel, D C; Stolz, A; Knackmuss, H J
1991-01-01
Under anaerobic conditions the sulfonated azo dye Mordant Yellow 3 was reduced by the biomass of a bacterial consortium grown aerobically with 6-aminonaphthalene-2-sulfonic acid. Stoichiometric amounts of the aromatic amines 6-aminonaphthalene-2-sulfonate and 5-aminosalicylate were generated and excreted into the medium. After re-aeration of the culture, these amines were mineralized by different members of the bacterial culture. Thus, total degradation of a sulfonated azo dye was achieved by using an alternating anaerobic-aerobic treatment. The ability of the mixed bacterial culture to reduce the azo dye was correlated with the presence of strain BN6, which possessed the ability to oxidize various naphthalenesulfonic acids. It is suggested that strain BN6 has a transport system for naphthalenesulfonic acids which also catalyzes uptake of sulfonated azo dyes. These dyes are then gratuitously reduced in the cytoplasm by unspecific reductases. PMID:1781678
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...
Isegawa, Kazuhisa; Nagami, Tetsuo; Jomori, Shinji; Yoshida, Masaaki; Kondoh, Hiroshi
2016-09-14
Changes in the chemical states of sulfonic groups of Nafion in polymer electrolyte fuel cells (PEFCs) under gas-flowing conditions were studied using in situ S-K XANES spectroscopy. The applied potential to the electrodes and the humidity of the cell were changed under flowing H 2 gas in the anode and He gas in the cathode. While the potential shows no significant effect on the S-K XANES spectra, the humidity is found to induce reversible changes in the spectra. Comparison of the spectral changes with simulations based on the density functional theory calculations indicates that the humidity influences the chemical state of the sulfonic group; under wet conditions the sulfonic group is in the form of a sulfonate ion. By drying treatment the sulfonate ion binds to hydrogen and becomes sulfonic acid. Furthermore, a small fraction of the sulfonic acid irreversibly decomposes to atomic sulfur. The peak energy of the atomic sulfur suggests that the generated atomic sulfur is adsorbed on the Pt catalyst surfaces.
Numerical simulation of rough-surface aerodynamics
NASA Astrophysics Data System (ADS)
Chi, Xingkai
Computational fluid dynamics (CFD) simulations of flow over surfaces with roughness in which the details of the surface geometry must be resolved pose major challenges. The objective of this study is to address these challenges through two important engineering problems, where roughness play a critical role---flow over airfoils with accrued ice and flow and heat transfer over turbine blade surfaces roughened by erosion and/or deposition. CFD simulations of iced airfoils face two major challenges. The first is how to generate high-quality single- and multi-block structured grids for highly convoluted convex and concave surface geometries with multiple scales. In this study, two methods were developed for the generation of high-quality grids for such geometries. The method developed for single-block grids involves generating a grid about the clean airfoil, carving out a portion of that grid about the airfoil, replacing that portion with a grid that accounts for the accrued ice geometry, and performing elliptic smoothing. The method developed for multi-block grids involves a transition-layer grid to ensure jaggedness in the ice geometry does not propagate into the domain. It also involves a "thick" wrap-around grid about the ice to ensure grid lines clustered next to solid surfaces do not propagate as streaks of tightly packed grid lines into the domain along block boundaries. For multi-block grids, this study also developed blocking topologies that ensure solutions to multi-block grids converge to steady state as quickly as single-block grids. The second major challenge in CFD simulations of iced airfoils is not knowing when it will predict reliably because of uncertainties in the turbulence modeling. In this study, the effects of turbulence models in predicting lift, drag, and moment coefficients were examined for airfoils with rime ice (i.e., ice with jaggedness only) and with glaze ice (i.e., ice with multiple protruding horns and surface jaggedness) as a function of angle of attack. In this examination, three different CFD codes---WIND, FLUENT, and PowerFLOW were used to examine a variety of turbulence models, including Spalart-Allmaras, RNG k-epsilon, shear-stress transport, v2-f, and differential Reynolds stress with and without non-equilibrium wall functions. The accuracy of the CFD predictions was evaluated by comparing grid-independent solutions with measured experimental data. Results obtained show CFD with WIND and FLUENT to predict the aerodynamics of airfoils with rime ice reliably up to near stall for all turbulence models investigated. (Abstract shortened by UMI.)
Design, fabrication and evaluation of intelligent sulfone-selective polybenzimidazole nanofibers.
Ogunlaja, Adeniyi S; du Sautoy, Carol; Torto, Nelson; Tshentu, Zenixole R
2014-08-01
Molecularly imprinted polybenzimidazole nanofibers fabricated for the adsorption of oxidized organosulfur compounds are presented. The imprinted polymers exhibited better selectivity for their target model sulfone-containing compounds with adsorption capacities of 28.5±0.4mg g(-1), 29.8±2.2mg g(-1) and 20.1±1.4mg g(-1) observed for benzothiophene sulfone (BTO2), dibenzothiophene sulfone (DBTO2) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) respectively. Molecular modeling based upon the density functional theory (DFT) indicated that hydrogen bond interactions may take place between sulfone oxygen groups with NH groups of the PBI. Further DFT also confirmed the feasibility of π-π interactions between the benzimidazole rings and the aromatic sulfone compounds. The adsorption mode followed the Freundlich (multi-layered) adsorption isotherm which indicated possible sulfone-sulfone interactions. A home-made pressurized hot water extraction (PHWE) system was employed for the extraction/desorption of sulfone compounds within imprinted nanofibers at 1mL min(-1), 150°C and 30 bar. PHWE used a green solvent (water) and achieved better extraction yields compared to the Soxhlet extraction process. The application of molecularly imprinted polybenzimidazole (PBI) nanofibers displayed excellent sulfur removal, with sulfur in fuel after adsorption falling below the determined limit of detection (LOD), which is 2.4mg L(-1)S, and with a sulfur adsorption capacity of 5.3±0.4mg g(-1) observed for application in the fuel matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...
40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... derivatives, sulfonated, po-tas-sium salts. 721.1225 Section 721.1225 Protection of Environment ENVIRONMENTAL... derivatives, sulfonated, po-tas-sium salts. (a) Chemical substances and significant new uses subject to..., sulfonated, potassium salts (PMN P-89-711) is subject to reporting under this section for the significant new...
40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of a substituted sulfonated aryl... New Uses for Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo... substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094) is...
40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... derivatives, sulfonated, po-tas-sium salts. 721.1225 Section 721.1225 Protection of Environment ENVIRONMENTAL... derivatives, sulfonated, po-tas-sium salts. (a) Chemical substances and significant new uses subject to..., sulfonated, potassium salts (PMN P-89-711) is subject to reporting under this section for the significant new...
40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of a substituted sulfonated aryl... New Uses for Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo... substance identified generically as salt of a substituted sulfonated aryl azo compound (PMN P-00-0094) is...
Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility
Jeffrey Luo; Nikolay Semenikhin; Huibin Chang; Robert J. Moon; Satish Kumar
2018-01-01
Cellulose nanofibrils (CNF) were sulfonated and the dispersion quality was compared to unfunctionalized and 2,2,6,6-tetramethylpiperdine-1-oxyl radical (TEMPO) post-oxidation treatment of existing CNF (mechanically fibrillated pulp). A post-sulfonation treatment on existing CNF in chlorosulfonic acid and dimethylformamide (DMF) resulted in sulfonated CNF that retained...
40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...
40 CFR 721.6220 - Aryl sulfonate of a fatty acid mixture, polyamine condensate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aryl sulfonate of a fatty acid mixture... Specific Chemical Substances § 721.6220 Aryl sulfonate of a fatty acid mixture, polyamine condensate. (a... generically as an aryl sulfonate of a fatty acid mixture, polyamine condensate (PMN P-91-584) is subject to...
40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...
Sulfonates: A novel class of organic sulfur compounds in marine sediments
NASA Astrophysics Data System (ADS)
Vairavamurthy, Appathurai; Zhou, Weiqing; Eglinton, Timothy; Manowitz, Bernard
1994-11-01
X-ray absorption near-edge structure spectroscopy (XANES) used to measure sulfur speciation in a variety of organic-rich marine sediments has established sulfonates as a novel and major component of sedimentary organic sulfur. The origins of sulfonates in sediments are not clear, although both biological and geochemical mechanisms are possible. The accumulation of oxidized sulfonate sulfur in reducing marine sediments was not known previously; hence, a new perspective in sulfur geochemistry is established. The biogeochemical implications of the presence of sulfonates in marine sediments are discussed.
Mendes, Simone Ferreira; dos Santos, Osvaldo; Barbosa, Aneli M; Vasconcelos, Ana Flora D; Aranda-Selverio, Gabriel; Monteiro, Nilson K; Dekker, Robert F H; Sá Pereira, Mariana; Tovar, Ana Maria F; Mourão, Paulo A de Souza; da Silva, Maria de Lourdes Corradi
2009-10-01
Botryosphaeran (EPS(FRU)), an exopolysaccharide of the beta-(1-->3,1-->6)-d-glucan type with 31% branching at C-6, is produced by the fungus Botryosphaeria rhodina MAMB-05 when grown on fructose as carbon source. Botryosphaeran was derivatized by sulfonation to induce anticoagulant activity. The effectiveness of the sulfonation reaction by chlorosulfonic acid in pyridine was monitored by the degree of substitution and FT-IR analysis of the sulfonated EPS(FRU) (once sulfonated, EPS(FRUSULF); and re-sulfonated, EPS(FRURESULF)). Activated partial thromboplastin time (APTT) and thrombin time (TT) tests of EPS(FRURESULF) indicated significant in vitro anticoagulant activity that was dose-dependent. EPS(FRU) did not inhibit any of the coagulation tests.
Sodium polystyrene sulfonate is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by ...
NASA Astrophysics Data System (ADS)
Kahraman, R.; Kahn, K. A.; Ali, S. A.; Hamid, S. H.; Sahin, A. Z.
1998-12-01
Thermal, morphological, and mechanical properties of composites of a liquid crystalline copolymer (LCP) poly(terephthaloyl chloride)-co-(p,p’-dihydroxydiphenyl sulfone) with polystyrene (PS) and sulfonated polystyrene (SPS) are presented and discussed. Sulfonation of polystyrene was expected to improve the interfacial adhesion by introducing hydrogen bonding in the LCP/PS system. The degree of sulfonation was 11 %. The incompatibility (lack of proper interfacial adhesion) of the LCP/PS system resulted in sharp decrease in the composite tensile strength with LCP addition. The performance of the system did not change when processed at a higher temperature (270 °C instead of 225 °C). While a composite plate of 25% LCP/PS could not be fabricated, it was possible for LCP/SPS (processed at 215 °C), indicating some improvement in interfacial bonding by sulfonation. Sulfonation of PS resulted in fracture with some degree of plastic deformation for pure SPS matrix and also the LCP/SPS system with the lowest LCP content (1 wt%), whereas plastic deformation was not observed for PS used as received. The strength of the LCP/SPS system also decreased with increase in LCP content, indicating that 11% sulfonation is not sufficient to introduce significant compatibility, but it was not as dramatic as that for LCP/PS. The performance of the LCP/SPS system was not affected significantly by heat treatment at the process temperature.
Sulfonated polystyrene and its characterization as a material of electrolyte polymer
NASA Astrophysics Data System (ADS)
Ngadiwiyana; Ismiyarto; Gunawan; Purbowatiningrum, RS; Prasetya, N. B. A.; Kusworo, T. D.; Susanto, H.
2018-05-01
The research of polystyrene modification from Styrofoam waste and its application as a main material of electrolyte polymer had been done. The sulfonation reaction of polystyrene was conducted using sulfuric acid as sufonation agent and the reactions were done with variation times of 1, 2, 3, 4 and 5 h. The characterization of the sulfonated products covered analysis of functional groups using FT-IR spectrophotometer, sulfonation degree, measurements of ion exchange capacity, conductivity and swelling degree. The sulfonated polystyrene product was white solid as confirmed by the spectra of FT-IR with the presence of wide band absorption of O=S=O at the wavenumber of 1080-1411 cm-1 as indication. The research showed the best sulfonated polystyrene prepared in 4 h as a material of electrolyte polymer, since it had the highest degree of sulfonation, ion exchange capacity, conductivity and swelling degree with the values were 28.52 %, 1.550 meg/g, 15,924.10-6 Ω-1cm-1 and 332.4 %, respectively.
Polymer electrolytes based on sulfonated polysulfone for direct methanol fuel cells
NASA Astrophysics Data System (ADS)
Lufrano, F.; Baglio, V.; Staiti, P.; Arico', A. S.; Antonucci, V.
This paper reports the development and characterization of sulfonated polysulfone (SPSf) polymer electrolytes for direct methanol fuel cells. The synthesis of sulfonated polysulfone was performed by a post sulfonation method using trimethyl silyl chlorosulfonate as a mild sulfonating agent. Bare polysulfone membranes were prepared with two different sulfonation levels (60%, SPSf-60 and 70%, SPSf-70), whereas, a composite membrane of SPSf-60 was prepared with 5 wt% silica filler. These membranes were investigated in direct methanol fuel cells (DMFCs) operating at low (30-40 °C) and high temperatures (100-120 °C). DMFC power densities were about 140 mW cm -2 at 100 °C with the bare SPSf-60 membrane and 180 mW cm -2 at 120 °C with the SPSf-60-SiO2 composite membrane. The best performance achieved at ambient temperature using a membrane with high degree of sulfonation (70%, SPSf-70) was 20 mW cm -2 at atmospheric pressure. This makes the polysulfone-based DMFC suitable for application in portable devices.
In situ reinforced polymers using low molecular weight compounds
NASA Astrophysics Data System (ADS)
Yordem, Onur Sinan
2011-12-01
The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems. Formation of anisotropic reinforcements was evaluated using dimethyl sulfone (DMS) as the crystallizable diluent and diglycidyl ether of bisphenol-A (DGEBA)/m-phenylene diamine (mPDA) material system as the epoxy thermoset. Miscible blends of DMS and DGEBA/mPDA form homogenous mixtures that undergo polymerization induced phase separation, once the DGEBA oligomers react with mPDA. The effect of the competition between the crystallization and phase separation of DMS resulted in nano-wires to micro-scale fiber-like crystals that were generated by adjusting the reaction temperature and DMS concentration.
Resin catalysts and method of preparation
Smith, Jr., Lawrence A.
1986-01-01
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Synthesis and Characterization of Polymers for Fuel Cells Application
NASA Technical Reports Server (NTRS)
Tytko, Stephen F.
2003-01-01
The goal of this summer research is to prepare Polymer Exchange Membranes (PEM s) for fuel cell application. Several high temperature polymers such as polybenzimidazoles and polyether ketones were known to possess good high temperature stability and had been investigated by post-sulfonation to yield sulfonated polymers. The research project will involve two approaches: 1. Synthesis of polybenzimidazoles and then react with alkyl sultonse to attach an aliphatic sulfonic groups. 2. Synthesis of monomers containing sulfonic acid units either on a aromatic ring or on an aliphatic chain and then polymerize the monomers to form high molecular weight sulfonate polymers.
Resin catalysts and method of preparation
Smith, L.A. Jr.
1986-12-16
Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.
Dimzon, Ian Ken D; Morata, Ann Selma; Müller, Janine; Yanela, Roy Kristian; Lebertz, Stephan; Weil, Heike; Perez, Teresita R; Müller, Jutta; Dayrit, Fabian M; Knepper, Thomas P
2018-10-15
More than half of the freshwater lakes in the Philippines are small with surface areas of <2 km 2 . The dynamics in these lakes are different from those in the bigger lakes. This study was conducted to determine the organic pollutants and their sources in three of the seven lakes of San Pablo City in Laguna, Philippines: lakes Palakpakin, Sampaloc, and Pandin. Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS) were used in the targeted and non-targeted analysis of the lake water samples. The three lakes are all volcanic crater lakes but are exposed to different anthropogenic activities, which includes domestic activities, livelihood (farming and aquaculture) and eco-tourism. Due to the presence of rice fields and fruit plantations, chlorpyrifos was detected in the three lakes while other pesticides like cypermethrin, picolinafen and quinoxyfen were additionally found in Lake Sampaloc, which is the biggest of the three lakes and located within the urbanized section of the city. Traces of different surfactants (linear alkylbenzene sulfonates, secondary alkyl sulfonates, alkyl sulfates, alkyl ether sulfates), biocide benzalkonium chloride, insect repellent diethyltoluamide, antibiotics (sulfadiazine and sulfamethoxazole), hypertension drug telmisartan, phosphate-based fire retardants, and artificial sweeteners (acesulfame, cyclamate, saccharin and sucralose) were detected in lakes Sampaloc and Palakpakin. The same surfactants, artificial sweeteners, insect repellant and phosphate-based fire retardants were also found in Lake Pandin, which is mainly used for eco-tourism activities like swimming and boating. The results of this study suggest that the organic pollutants present in the small lakes can be linked to the various human activities in the immediate lake environment. Because small lakes are more prone to environmental stresses, human activities in the said lakes must be regulated to ensure sustainable development. Copyright © 2018 Elsevier B.V. All rights reserved.
Ayres, N.; Holt, D. J.; Jones, C.F.; Corum, L. E.; Grainger, D. W.
2009-01-01
A new polymer brush chemistry containing sulfonated carbohydrate repeat units has been synthesized from silicon substrates using ATRP methods and characterized both in bulk and using surface analysis. The polymer brush was designed to act as a mimic for the naturally occurring sulfonated glycosaminoglycan, heparin, commonly used for modifying blood-contacting surfaces both in vitro and in vivo. Surface analysis showed conversion of brush saccharide precursor chemistry to the desired sulfonated polymer product. The sulfonated polymer brush surface was further analyzed using three conventional in vitro tests for blood compatibility -- plasma recalcification times, complement activation, and thrombin generation. The sulfonated polymer brush films on silicon oxide wafers exhibited better assay performance in these blood component assays than the unsulfonated sugar functionalized polymer brush in all tests performed. PMID:19859552
Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system.
Vidyadhar, A; Hanumantha Rao, K
2007-02-15
The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.
Production and Application of Lignosulfonates and Sulfonated Lignin.
Aro, Thomas; Fatehi, Pedram
2017-05-09
Lignin is the largest reservoir of aromatic compounds on earth and has great potential to be used in many industrial applications. Alternative methods to produce lignosulfonates from spent sulfite pulping liquors and kraft lignin from black liquor of kraft pulping process are critically reviewed herein. Furthermore, options to increase the sulfonate contents of lignin-based products are outlined and the industrial attractiveness of them is evaluated. This evaluation includes sulfonation and sulfomethylation of lignin. To increase the sulfomethylation efficiency of lignin, various scenarios, including hydrolysis, oxidation, and hydroxymethylation, were compared. The application of sulfonated lignin-based products is assessed and the impact of the properties of these products on the characteristics of their end-use application is critically evaluated. Sulfonated lignin-based products have been used as dispersants in cement admixtures and dye solutions more than other applications, and their molecular weight and degree of sulfonation were crucial in determining their efficiency. The use of lignin-based sulfonated products in composites may result in an increase in the hydrophilicity of some composites, but the sulfonated products may need to be desulfonated with an alkali and/or oxygen prior to their use in composites. To be used as a flocculant, sulfonated lignin-based products may need to be cross-linked to increase their molecular weight. The challenges associated with the use of lignin-based products in these applications are comprehensively discussed herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Processes for preparing carbon fibers using gaseous sulfur trioxide
Barton, Bryan E.; Lysenko, Zenon; Bernius, Mark T.; Hukkanen, Eric J.
2016-01-05
Disclosed herein are processes for preparing carbonized polymers, such as carbon fibers, comprising: sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 gas to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of said solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C.
Blood Compatibility of Sulfonated Cladophora Nanocellulose Beads.
Rocha, Igor; Lindh, Jonas; Hong, Jaan; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia
2018-03-07
Sulfonated cellulose beads were prepared by oxidation of Cladophora nanocellulose to 2,3-dialdehyde cellulose followed by sulfonation using bisulfite. The physicochemical properties of the sulfonated beads, i.e., high surface area, high degree of oxidation, spherical shape, and the possibility of tailoring the porosity, make them interesting candidates for the development of immunosorbent platforms, including their application in extracorporeal blood treatments. A desired property for materials used in such applications is blood compatibility; therefore in the present work, we investigate the hemocompatibility of the sulfonated cellulose beads using an in vitro whole blood model. Complement system activation (C3a and sC5b-9 levels), coagulation activation (thrombin-antithrombin (TAT) levels) and hemolysis were evaluated after whole blood contact with the sulfonated beads and the results were compared with the values obtained with the unmodified Cladophora nanocellulose. Results showed that neither of the cellulosic materials presented hemolytic activity. A marked decrease in TAT levels was observed after blood contact with the sulfonated beads, compared with Cladophora nanocellulose. However, the chemical modification did not promote an improvement in Cladophora nanocellulose hemocompatibility in terms of complement system activation. Even though the sulfonated beads presented a significant reduction in pro-coagulant activity compared with the unmodified material, further modification strategies need to be investigated to control the complement activation by the cellulosic materials.
40 CFR Table 6 to Subpart Jj of... - VHAP of Potential Concern
Code of Federal Regulations, 2011 CFR
2011-07-01
... glycol butyl ether, ethylene glycol ethyl ether (2-ethoxy ethanol), ethylene glycol hexyl ether, ethylene..., ethylene glycol mono-2-ethylhexyl ether, diethylene glycol butyl ether, diethylene glycol ethyl ether... glycol propyl ether, triethylene glycol butyl ether, triethylene glycol ethyl ether, triethylene glycol...
Soft hydrogel materials from elastomeric gluten-mimetic proteins
NASA Astrophysics Data System (ADS)
Bagheri, Mehran; Scott, Shane; Wan, Fan; Dick, Scott; Harden, James; Biomolecular Assemblies Team
2014-03-01
Elastomeric proteins are ubiquitous in both animal and plant tissues, where they are responsible for the elastic response and mechanical resilience of tissues. In addition to fundamental interest in the molecular origins of their elastic behaviour, this class of proteins has great potential for use in biomaterial applications. The structural and elastomeric properties of these proteins are thought to be controlled by a subtle balance between hydrophobic interactions and entropic effects, and in many cases their characteristic properties can be recapitulated by multi-block protein polymers formed from repeats of short, characteristic polypeptide motifs. We have developed biomimetic multi-block protein polymers based on variants of several elastomeric gluten consensus sequences. These proteins include constituents designed to maximize their solubility in aqueous solution and minimize the formation of extended secondary structure. Thus, they are examples of elastic intrinsically disordered proteins. In addition, the proteins have distributed tyrosine residues which allow for inter-molecular crosslinking to form hydrogel networks. In this talk, we present experimental and simulation studies of the molecular and materials properties of these proteins and their assemblies.
Loudiyi, M; Rutledge, D N; Aït-Kaddour, A
2018-10-30
Common Dimension (ComDim) chemometrics method for multi-block data analysis was employed to evaluate the impact of different added salts and ripening times on physicochemical, color, dynamic low amplitude oscillatory rheology, texture profile, and molecular structure (fluorescence and MIR spectroscopies) of five Cantal-type cheeses. Firstly, Independent Components Analysis (ICA) was applied separately on fluorescence and MIR spectra in order to extract the relevant signal source and the associated proportions related to molecular structure characteristics. ComDim was then applied on the 31 data tables corresponding to the proportion of ICA signals obtained for spectral methods and the global analysis of cheeses by the other techniques. The ComDim results indicated that generally cheeses made with 50% NaCl or with 75:25% NaCl/KCl exhibit the equivalent characteristics in structural, textural, meltability and color properties. The proposed methodology demonstrates the applicability of ComDim for the characterization of samples when different techniques describe the same samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
1998-01-01
A multiblock Navier-Stokes analysis code for turbomachinery has been modified to allow analysis of multistage turbomachines. A steady averaging-plane approach was used to pass information between blade rows. Characteristic boundary conditions written in terms of perturbations about the mean flow from the neighboring blade row were used to allow close spacing between the blade rows without forcing the flow to be axisymmetric. In this report the multiblock code is described briefly and the characteristic boundary conditions and the averaging-plane implementation are described in detail. Two approaches for averaging the flow properties are also described. A two-dimensional turbine stator case was used to compare the characteristic boundary conditions with standard axisymmetric boundary conditions. Differences were apparent but small in this low-speed case. The two-stage fuel turbine used on the space shuttle main engines was then analyzed using a three-dimensional averaging-plane approach. Computed surface pressure distributions on the stator blades and endwalls and computed distributions of blade surface heat transfer coefficient on three blades showed very good agreement with experimental data from two tests.
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-01-01
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved. PMID:28241475
NASA Technical Reports Server (NTRS)
Agrawal, Gagan; Sussman, Alan; Saltz, Joel
1993-01-01
Scientific and engineering applications often involve structured meshes. These meshes may be nested (for multigrid codes) and/or irregularly coupled (called multiblock or irregularly coupled regular mesh problems). A combined runtime and compile-time approach for parallelizing these applications on distributed memory parallel machines in an efficient and machine-independent fashion was described. A runtime library which can be used to port these applications on distributed memory machines was designed and implemented. The library is currently implemented on several different systems. To further ease the task of application programmers, methods were developed for integrating this runtime library with compilers for HPK-like parallel programming languages. How this runtime library was integrated with the Fortran 90D compiler being developed at Syracuse University is discussed. Experimental results to demonstrate the efficacy of our approach are presented. A multiblock Navier-Stokes solver template and a multigrid code were experimented with. Our experimental results show that our primitives have low runtime communication overheads. Further, the compiler parallelized codes perform within 20 percent of the code parallelized by manually inserting calls to the runtime library.
Two-Equation Turbulence Models for Prediction of Heat Transfer on a Transonic Turbine Blade
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Ameri, Ali A.; Gaugler, R. E. (Technical Monitor)
2001-01-01
Two versions of the two-equation k-omega model and a shear stress transport (SST) model are used in a three-dimensional, multi-block, Navier-Stokes code to compare the detailed heat transfer measurements on a transonic turbine blade. It is found that the SST model resolves the passage vortex better on the suction side of the blade, thus yielding a better comparison with the experimental data than either of the k-w models. However, the comparison is still deficient on the suction side of the blade. Use of the SST model does require the computation of distance from a wall, which for a multiblock grid, such as in the present case, can be complicated. However, a relatively easy fix for this problem was devised. Also addressed are issues such as (1) computation of the production term in the turbulence equations for aerodynamic applications, and (2) the relation between the computational and experimental values for the turbulence length scale, and its influence on the passage vortex on the suction side of the turbine blade.
Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Rigby, David L.
1998-01-01
A multi-block, three-dimensional Navier-Stokes code has been used to study the within-hole and near-hole physics in relation to heat transfer on a film-cooled blade. The flow domain consists of the coolant flow through the plenum and hole-pipes for the three staggered rows of shower-head holes on the VK1 rotor, and the main flow over the blade. A multi-block grid is generated that is nearly orthogonal to the various surfaces. It may be noted that for the VK1 rotor the shower-head holes are inclined at 30 deg. to the spanwise direction, and are normal to the streamwise direction on the blade. Wilcox's k-omega turbulence model is used. The present study provides a much better comparison for the heat transfer coefficient at the blade mid-span with the experimental data than an earlier analysis wherein coolant velocity and temperature distributions were specified at the hole exits rather than extending the computational domain into the hole-pipe and plenum. Details of the distributions of coolant velocity, temperature, k and omega at the hole exits are also presented.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)
2001-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.
LeRC-HT: NASA Lewis Research Center General Multiblock Navier-Stokes Heat Transfer Code Developed
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Gaugler, Raymond E.
1999-01-01
For the last several years, LeRC-HT, a three-dimensional computational fluid dynamics (CFD) computer code for analyzing gas turbine flow and convective heat transfer, has been evolving at the NASA Lewis Research Center. The code is unique in its ability to give a highly detailed representation of the flow field very close to solid surfaces. This is necessary for an accurate representation of fluid heat transfer and viscous shear stresses. The code has been used extensively for both internal cooling passage flows and hot gas path flows--including detailed film cooling calculations, complex tip-clearance gap flows, and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool (at least 35 technical papers have been published relative to the code and its application), but it should be useful for detailed design analysis. We now plan to make this code available to selected users for further evaluation.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugfer, Raymond E.
2002-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
2002-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid beat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.
Effective Visual Tracking Using Multi-Block and Scale Space Based on Kernelized Correlation Filters.
Jeong, Soowoong; Kim, Guisik; Lee, Sangkeun
2017-02-23
Accurate scale estimation and occlusion handling is a challenging problem in visual tracking. Recently, correlation filter-based trackers have shown impressive results in terms of accuracy, robustness, and speed. However, the model is not robust to scale variation and occlusion. In this paper, we address the problems associated with scale variation and occlusion by employing a scale space filter and multi-block scheme based on a kernelized correlation filter (KCF) tracker. Furthermore, we develop a more robust algorithm using an appearance update model that approximates the change of state of occlusion and deformation. In particular, an adaptive update scheme is presented to make each process robust. The experimental results demonstrate that the proposed method outperformed 29 state-of-the-art trackers on 100 challenging sequences. Specifically, the results obtained with the proposed scheme were improved by 8% and 18% compared to those of the KCF tracker for 49 occlusion and 64 scale variation sequences, respectively. Therefore, the proposed tracker can be a robust and useful tool for object tracking when occlusion and scale variation are involved.
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M.-S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Fatigue Life Estimation under Cumulative Cyclic Loading Conditions
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; McGaw, Michael A; Halford, Gary R.
1999-01-01
The cumulative fatigue behavior of a cobalt-base superalloy, Haynes 188 was investigated at 760 C in air. Initially strain-controlled tests were conducted on solid cylindrical gauge section specimens of Haynes 188 under fully-reversed, tensile and compressive mean strain-controlled fatigue tests. Fatigue data from these tests were used to establish the baseline fatigue behavior of the alloy with 1) a total strain range type fatigue life relation and 2) the Smith-Wastson-Topper (SWT) parameter. Subsequently, two load-level multi-block fatigue tests were conducted on similar specimens of Haynes 188 at the same temperature. Fatigue lives of the multi-block tests were estimated with 1) the Linear Damage Rule (LDR) and 2) the nonlinear Damage Curve Approach (DCA) both with and without the consideration of mean stresses generated during the cumulative fatigue tests. Fatigue life predictions by the nonlinear DCA were much closer to the experimentally observed lives than those obtained by the LDR. In the presence of mean stresses, the SWT parameter estimated the fatigue lives more accurately under tensile conditions than under compressive conditions.
2017-01-01
We report the preparation and structural and mechanical characterization of a tough supramolecular hydrogel, based exclusively on hydrophobic association. The system consists of a multiblock, segmented copolymer of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dimer fatty acid (DFA) building blocks. A series of copolymers containing 2K, 4K, and 8K PEG were prepared. Upon swelling in water, a network is formed by self-assembly of hydrophobic DFA units in micellar domains, which act as stable physical cross-link points. The resulting hydrogels are noneroding and contain 75–92 wt % of water at swelling equilibrium. Small-angle neutron scattering (SANS) measurements showed that the aggregation number of micelles ranges from 2 × 102 to 6 × 102 DFA units, increasing with PEG molecular weight. Mechanical characterization indicated that the hydrogel containing PEG 2000 is mechanically very stable and tough, possessing a tensile toughness of 4.12 MJ/m3. The high toughness, processability, and ease of preparation make these hydrogels very attractive for applications where mechanical stability and load bearing features of soft materials are required. PMID:28469284
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.
1992-01-01
About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2005-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated pi-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of sulfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
Aerodynamic simulation on massively parallel systems
NASA Technical Reports Server (NTRS)
Haeuser, Jochem; Simon, Horst D.
1992-01-01
This paper briefly addresses the computational requirements for the analysis of complete configurations of aircraft and spacecraft currently under design to be used for advanced transportation in commercial applications as well as in space flight. The discussion clearly shows that massively parallel systems are the only alternative which is both cost effective and on the other hand can provide the necessary TeraFlops, needed to satisfy the narrow design margins of modern vehicles. It is assumed that the solution of the governing physical equations, i.e., the Navier-Stokes equations which may be complemented by chemistry and turbulence models, is done on multiblock grids. This technique is situated between the fully structured approach of classical boundary fitted grids and the fully unstructured tetrahedra grids. A fully structured grid best represents the flow physics, while the unstructured grid gives best geometrical flexibility. The multiblock grid employed is structured within a block, but completely unstructured on the block level. While a completely unstructured grid is not straightforward to parallelize, the above mentioned multiblock grid is inherently parallel, in particular for multiple instruction multiple datastream (MIMD) machines. In this paper guidelines are provided for setting up or modifying an existing sequential code so that a direct parallelization on a massively parallel system is possible. Results are presented for three parallel systems, namely the Intel hypercube, the Ncube hypercube, and the FPS 500 system. Some preliminary results for an 8K CM2 machine will also be mentioned. The code run is the two dimensional grid generation module of Grid, which is a general two dimensional and three dimensional grid generation code for complex geometries. A system of nonlinear Poisson equations is solved. This code is also a good testcase for complex fluid dynamics codes, since the same datastructures are used. All systems provided good speedups, but message passing MIMD systems seem to be best suited for large miltiblock applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathaway, M.D.; Wood, J.R.
1997-10-01
CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certainmore » features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.« less
Li, Manqing; Feng, Yingnan; Wang, Kaiyu; Yong, Wai Fen; Yu, Liya; Chung, Tai-Shung
2017-09-05
Severe air pollution has become a global concern, and there is a pressing need to develop effective and efficient air filters for removing airborne particulate matters (PMs). In this work, a highly permeable poly(ether sulfone) (PES) based hollow fiber membrane was developed via a one-step dry-jet wet spinning. For the first time, a hollow fiber membrane was used in removing the ultrafine particles (PMs with aerodynamic equivalent diameters of less than 100 nm) in PM 2.5 . The novel air filter was designed to possess the synergistic advantages of porous filters and fibrous filters with a sievelike outer surface and a fibrouslike porous substrate. A filtration efficiency of higher than 99.995% could be easily achieved when the self-support hollow fiber was challenged with less than 300 nm particulates. Without losses of the structural advantages, we have demonstrated that the permeation properties of the hollow fiber membrane can be facilely tailored via manipulation of the dope and bore fluid formulations. Various cleaning strategies were explored to regenerate the membrane performance after fouling. Both water rinse and backwash showed effectiveness to restore the membrane permeance for repetitive usage.
Carlsson, Pernilla; Crosse, John D; Halsall, Crispin; Evenset, Anita; Heimstad, Eldbjørg S; Harju, Mikael
2016-04-15
Halibut (Hippoglossus hippoglossus) and shrimps (Pandalus borealis) are regular foodstuffs for communities in northern Norway and important species for the coastal fishing industry. This is the first study to present a comprehensive overview of the contaminant status of these species, with emphasis on unregulated perfluoroalkylated substances (PFAS). The contaminant concentrations were low and within tolerable levels for human dietary exposure. Median Σpolychlorinated biphenyls (PCB) were 4.9 and 2.5ng/g ww for halibut and unpeeled shrimps, respectively. Concentrations of perfluorooctane sulfonate (PFOS) - the most abundant PFASs - were 0.9 and 2.7ng/g ww in halibut and shrimp, respectively. The halibut fillets were dominated by PCBs, which contributed to 50% of the total POPs load, followed by ΣDDTs; 26% and PFASs (18%), whereas shrimps were dominated by PFASs (74%). ΣPBDEs (polybrominated diphenyl ethers) contributed to 1-4% of the total POP load. Local sources are not contributing significantly to the contaminant burden in these species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Immunoprecipitation of PDE2 phosphorylated and inactivated by an associated protein kinase.
Bentley, J Kelley
2005-01-01
A PDE2A2-associated protein kinase phosphorylates PDE2A2 in vivo and in vitro to inhibit its catalytic activity. Rat brain PDE2A2 may be solubilized using nona (ethylene glycol) mono dodecyl ether (Lubrol 12A9). PDE2A2 exists in a complex with a protein kinase regulating its activity in an adenosine triphosphate-dependent manner. When native or recombinant PDE2 is immunoprecipitated from PC12 cells using an antibody to the amino terminus in a buffer containing Lubrol 12A9, protease inhibitors, and phosphatase inhibitors, a coimmunoprecipitating nerve growth factor-stimulated protein kinase acts to phosphorylate it. PDE2A2 phosphoryla-tion occurs optimally at pH 6.5 in a sodium 2-(4-morpholino)-ethane sulfonate buffer with 5 mM MgCl2 and 1 mM Na3VO4. I describe protocols for producing an antibody to an amino-terminal bacterial fusion protein encoding amino acids 1-251 of PDE2A2 as well as the use of this antibody in immunoprecipitating a PDE2: tyrosine protein-kinase complex from rat brain or PC12 cells.
Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua
Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less
Antioxidant and antimutagenic potential of Psidium guajava leaf extracts.
Zahin, Maryam; Ahmad, Iqbal; Aqil, Farrukh
2017-04-01
Fruits, vegetables and medicinal herbs rich in phenolics antioxidants contribute toward reduced risk of age-related diseases and cancer. In this study, Psidium guajava leaf extract was fractionated in various organic solvents viz. petroleum ether, benzene, ethyl acetate, ethanl and methanol and tested for their antioxidant and antimutagenic properties. Methanolic fraction showed maximum antioxidant activity comparable to ascorbic acid and butylated hydroxyl toluene (BHT) as tested by DPPH free radical scavenging, phosphomolybdenum, FRAP (Fe3 + reducing power) and CUPRAC (cupric ions (Cu 2+ ) reducing ability) assays. The fraction was analyzed for antimutagenic activities against sodium azide (NaN 3 ), methylmethane sulfonate (MMS), 2-aminofluorene (2AF) and benzo(a)pyrene (BP) in Ames Salmonella tester strains. The methanol extracted fraction at 80 μg/ml concentration inhibited above 70% mutagenicity. Further, phytochemical analysis of methanol fraction that was found to be most active revealed the presence of nine major compounds by gas chromatography-mass spectrometry (GC-MS). This data suggests that guava contains high amount of phenolics responsible for broad-spectrum antimutagenic and antioxidant properties in vitro and could be potential candidates to be explored as modern phytomedicine.
Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings
Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua; ...
2018-04-24
Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less
2018-01-01
Transition-metal-catalyzed chlorosulfonylation of 5-ethynylpyrimidine nucleosides provided (E)-5-(β-chlorovinyl)sulfones A, which undergo nucleophilic substitution with amines or thiols affording B. The treatment of vinyl sulfones A with ammonia followed by acid-catalyzed hydrolysis of the intermediary β-sulfonylvinylamines gave 5-(β-keto)sulfones C. The latter reacts with electrophiles, yielding α-carbon-alkylated or -sulfanylated analogues D. The 5′-triphosphates of A and C were incorporated into double-stranded DNA, using open and one-nucleotide gap substrates, by human or Escherichia coli DNA-polymerase-catalyzed reactions. PMID:29732453
Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood.
Campelo, Clayton S; Chevallier, Pascale; Vaz, Juliana M; Vieira, Rodrigo S; Mantovani, Diego
2017-03-01
Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material. Copyright © 2016. Published by Elsevier B.V.
MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT
MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE IN THE RAT.
C. Lau and J.M. Rogers, Reproductive Toxicology Division, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA
Perfluorooctane sulfonate (PFOS), an environmentally persistent compound used ...
Two-step sulfonation process for the conversion of polymer fibers to carbon fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.
Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.
Processes for preparing carbon fibers using sulfur trioxide in a halogenated solvent
Patton, Jasson T.; Barton, Bryan E.; Bernius, Mark T.; Chen, Xiaoyun; Hukkanen, Eric J.; Rhoton, Christina A.; Lysenko, Zenon
2015-12-29
Disclosed here are processes for preparing carbonized polymers (preferably carbon fibers), comprising sulfonating a polymer with a sulfonating agent that comprises SO.sub.3 dissolved in a solvent to form a sulfonated polymer; treating the sulfonated polymer with a heated solvent, wherein the temperature of the solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 500-3000.degree. C. Carbon fibers made according to these methods are also disclosed herein.
Adas, Gokhan; Arikan, Soykan; Kemik, Ozgur; Oner, Ali; Sahip, Nilgun; Karatepe, Oguzhan
2009-01-01
AIM: To establish which scolicidal agents are superior and more suitable for regular use. METHODS: Echinococcus granulosus protoscoleces were obtained from 25 patients with liver hydatid cysts. Various concentrations of albendazole sulfone, albendazole sulfoxide, and albendazole sulfone and albendazole sulfoxide mixed together in concentrations of 50 μg/mL, and H2O2 in a concentration of 4%, NaCl 20%, and 1.5% cetrimide-0.15% chlorhexidine (10% Savlon-Turkey) were used to determine the scolicidal effects. Albendazole (ABZ) derivatives and other scolicidal agents were applied to a minimum of 100 scoleces for 5 and 10 min. The degree of viability was calculated according to the number of living scolices per field from a total of 100 scolices observed under the microscope. RESULTS: After 5 min, ABZ sulfone was 97.3% effective, ABZ sulfoxide was 98.4% effective, and the combined solution was 98.6% effective. When sulfone, sulfoxide and the combined solutions were compared, the combined solution seemed more effective than sulfone. However, there was no difference when the combined solution was compared with sulfoxide. After 10 min, hypertonic salt water, sulfone, sulfoxide, and the combined solution compared to other solutions looked more effective and this was statistically significant on an advanced level. When sulfone, sulfoxide, and the combined solutions were compared with each other, the combined solution appeared more effective than sulfone. When the combined solution was compared with sulfoxide, there was no difference. CONCLUSION: Despite being active, ABZ metabolites did not provide a marked advantage over 20% hypertonic saline. According to these results, we think creating a newly improved and more active preparation is necessary for hydatid cyst treatment. PMID:19115476
ERIC Educational Resources Information Center
Williams, Lynne J.; Abdi, Herve; French, Rebecca; Orange, Joseph B.
2010-01-01
Purpose: In communication disorders research, clinical groups are frequently described based on patterns of performance, but researchers often study only a few participants described by many quantitative and qualitative variables. These data are difficult to handle with standard inferential tools (e.g., analysis of variance or factor analysis)…
Formation and Fate of Bacterial Sulfonates
1989-01-05
sulfonates under phototrophic, anaerobic conditions’ Three cyanobacteria--a strain each of Synechococcus, Anabena, and Nostoc --have been examined for...their ability to utilize the sulfonate taurine as sole source of S for their oxygenic phototrophic growth; only Anabena and Nostoc were able to do so, and
21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.824 Sodium mono- and dimethyl naphthalene sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD
2012-09-05
The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supportedmore » poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.« less
Pandey, Anil K.; Naduthambi, Devan; Thomas, Krista M.; Zondlo, Neal J.
2013-01-01
Functionalized proline residues have diverse applications. Herein we describe a practical approach, proline editing, for the synthesis of peptides with stereospecifically modified proline residues. Peptides are synthesized by standard solid-phase-peptide-synthesis to incorporate Fmoc-Hydroxyproline (4R-Hyp). In an automated manner, the Hyp hydroxyl is protected and the remainder of the peptide synthesized. After peptide synthesis, the Hyp protecting group is orthogonally removed and Hyp selectively modified to generate substituted proline amino acids, with the peptide main chain functioning to “protect” the proline amino and carboxyl groups. In a model tetrapeptide (Ac-TYPN-NH2), 4R-Hyp was stereospecifically converted to 122 different 4-substituted prolyl amino acids, with 4R or 4S stereochemistry, via Mitsunobu, oxidation, reduction, acylation, and substitution reactions. 4-Substituted prolines synthesized via proline editing include incorporated structured amino acid mimetics (Cys, Asp/Glu, Phe, Lys, Arg, pSer/pThr), recognition motifs (biotin, RGD), electron-withdrawing groups to induce stereoelectronic effects (fluoro, nitrobenzoate), handles for heteronuclear NMR (19F:fluoro; pentafluorophenyl or perfluoro-tert-butyl ether; 4,4-difluoro; 77SePh) and other spectroscopies (fluorescence, IR: cyanophenyl ether), leaving groups (sulfonate, halide, NHS, bromoacetate), and other reactive handles (amine, thiol, thioester, ketone, hydroxylamine, maleimide, acrylate, azide, alkene, alkyne, aryl halide, tetrazine, 1,2-aminothiol). Proline editing provides access to these proline derivatives with no solution phase synthesis. All peptides were analyzed by NMR to identify stereoelectronic and steric effects on conformation. Proline derivatives were synthesized to permit bioorthogonal conjugation reactions, including azide-alkyne, tetrazinetrans-cyclooctene, oxime, reductive amination, native chemical ligation, Suzuki, Sonogashira, cross-metathesis, and Diels-Alder reactions. These proline derivatives allowed three parallel bioorthogonal reactions to be conducted in one solution. PMID:23402492
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...
21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as...
21 CFR 74.1710 - D&C Yellow No. 10.
Code of Federal Regulations, 2010 CFR
2010-04-01
... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color... water and chloroform, not more than 0.2 percent. Total sulfonated quinaldines, sodium salts, not more than 0.2 percent. Total sulfonated phthalic acids, sodium salts, not more than 0.2 percent. 2-(2...
21 CFR 74.1710 - D&C Yellow No. 10.
Code of Federal Regulations, 2011 CFR
2011-04-01
... with phthalic anhydride to give the unsulfonated dye, which is then sulfonated with oleum. (2) Color... water and chloroform, not more than 0.2 percent. Total sulfonated quinaldines, sodium salts, not more than 0.2 percent. Total sulfonated phthalic acids, sodium salts, not more than 0.2 percent. 2-(2...
Code of Federal Regulations, 2014 CFR
2014-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2010 CFR
2010-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Code of Federal Regulations, 2012 CFR
2012-07-01
... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...
Spectral study and protein labeling of inclusion complex between dye and calixarene sulfonate.
Fei, Xuening; Zhang, Yong; Zhu, Sen; Liu, Lijuan; Yu, Lu
2013-05-01
The host-guest inclusion complex of calix[6]arene sulfonate (SCA6) with thiazole orange (TO) formed in aqueous solution was studied. Absorption and fluorescence techniques were used for the analysis of this inclusion complex. The addition of calixarene sulfonate leads to a decrease in both absorption and fluorescence intensity of the dye, indicating that the inclusion complex was formed. Simultaneously, the inclusion phenomenon of another cyanine dye, Cy3, with calixarene sulfonate was investigated. The stability constant of the two complexes was determined, and the results were compared. The water solubility of TO dye was increased in the presence of calixarene sulfonate, and further protein labeling experiments suggested that this TO-SCA6 complex can act as a fluorescent probe for labeling of biomolecules.
Tumor Uptake And Photodynamic Activity Of Sulfonated Metallo Phthalocyanines
NASA Astrophysics Data System (ADS)
van Lier, Johan E.; Rousseau, Jacques; Paquette, Benoit; Brasseur, N.; Langlois, Rejean; Ali, Hasrat
1989-06-01
Sulfonated metallo phthalocyanines (M-SPC) are extensively studied as sensitizers for photodynamic therapy of cancer. They strongly absorb clinically useful red light with absorption maxima between 670-680 nm. Their photodynamic properties depend on the nature of the central metal ion as well as the degree of substitution on the macrocycle. The zinc, aluminum and gallium complexes are efficient photo-generators of singlet oxygen, the species most likely responsible for their phototoxicity and tumoricidal action. Tissue distribution pattern, cell penetration and dye aggregation are strongly affected by the degree of sulfonation of the dyes. Mono- and disulfonated M-SPC have the highest tendency to form photo-inactive aggregates. However, these lower sulfonated dyes more readily cross cell membranes resulting, in vitro, in enhanced phototoxicity. In vivo, the highly sulfonated hydrophilic M-SPC show the best tumor localization properties but the lower sulfonated dyes still exhibit the best photo-activity. Variations in activities between the differently sulfonated M-SPC are far less pronounced in vivo as compared to in vitro conditions. Such discrepancies are explained by the combined action of numerous vectors including interaction of M-SPC with plasma proteins, vascular versus cellular photo-damage, tumor retention, cell penetration as well as the degree of aggregation of the dye.
Poly(arylene ether)s containing pendent ethynyl groups
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)
1996-01-01
Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350.degree. C. to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.
Poly(arylene ether)s containing pendent ethynyl groups
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Jensen, Brian J. (Inventor)
1994-01-01
Poly(arylene ether)s containing pendent ethynyl and substituted ethynyl groups and poly(arylene ether) copolymers containing pendent ethynyl and substituted ethynyl groups are readily prepared from bisphenols containing ethynyl and substituted ethynyl groups. The resulting polymers are cured up to 350 C to provide crosslinked poly(arylene ether)s with good solvent resistance, high strength and modulus.
78 FR 18526 - Significant New Use Rules on Certain Chemical Substances; Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... aromatic sulfonic acid amino azo dye salts (PMN P-12-276) a typographical error has been identified. This... significant new uses for aromatic sulfonic acid amino azo dye salts, EPA inadvertently listed the respirator... include this requirement when promulgating the significant new uses for aromatic sulfonic acid amino azo...
A finite element approach to self-consistent field theory calculations of multiblock polymers
NASA Astrophysics Data System (ADS)
Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.; Ganapathysubramanian, Baskar
2017-02-01
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibrium polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.
A finite element approach to self-consistent field theory calculations of multiblock polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, David M.; Delaney, Kris; Fredrickson, Glenn H.
Self-consistent field theory (SCFT) has proven to be a powerful tool for modeling equilibrium microstructures of soft materials, particularly for multiblock polymers. A very successful approach to numerically solving the SCFT set of equations is based on using a spectral approach. While widely successful, this approach has limitations especially in the context of current technologically relevant applications. These limitations include non-trivial approaches for modeling complex geometries, difficulties in extending to non-periodic domains, as well as non-trivial extensions for spatial adaptivity. As a viable alternative to spectral schemes, we develop a finite element formulation of the SCFT paradigm for calculating equilibriummore » polymer morphologies. We discuss the formulation and address implementation challenges that ensure accuracy and efficiency. We explore higher order chain contour steppers that are efficiently implemented with Richardson Extrapolation. This approach is highly scalable and suitable for systems with arbitrary shapes. We show spatial and temporal convergence and illustrate scaling on up to 2048 cores. Finally, we illustrate confinement effects for selected complex geometries. This has implications for materials design for nanoscale applications where dimensions are such that equilibrium morphologies dramatically differ from the bulk phases.« less
NASA Astrophysics Data System (ADS)
Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui
2014-06-01
A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.
NASA Astrophysics Data System (ADS)
Mosa, J.; Durán, A.; Aparicio, M.
An important research area in proton exchange membrane fuel cells (PEMFC) is devoted to the development of low cost membranes able to work at temperatures higher than 100 °C. In this work, homogeneous, transparent and crack-free hybrid membranes have been synthesized using tetraethyl orthosilicate (TEOS), 3-glycidoxipropyl trimethoxysilane (GPTMS) and 2-allylphenol (AP) as precursors. The synthesis of proton conducting membranes was performed by a post-sulfonation method using trimethylsilyl chlorosulfonate as a mild sulfonating agent. The water retention properties provided by sulfonate and hydroxyl groups and the high porosity leads to relatively high proton conductivity (maximum values around 1.3 × 10 -3 S cm -1 at 140 °C and 100% RH) for membranes treated at 180 °C and sulfonated for 2 h.
Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use.
Manual Kollareth, Denny Joseph; Chang, Chuchun L; Hansen, Inge H; Deckelbaum, Richard J
2018-03-01
Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [ 3 H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [ 3 H]cholesteryl oleoyl ether and [ 3 H]cholesteryl hexadecyl ether from different suppliers, employing in vitro , in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro , in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.
Tang, Weijuan; Sheng, Huaming; Kong, John Y; Yerabolu, Ravikiran; Zhu, Hanyu; Max, Joann; Zhang, Minli; Kenttämaa, Hilkka I
2016-06-30
The oxidation of sulfur atoms is an important biotransformation pathway for many sulfur-containing drugs. In order to rapidly identify the sulfone functionality in drug metabolites, a tandem mass spectrometric method based on ion-molecule reactions was developed. A phosphorus-containing reagent, trimethyl phosphite (TMP), was allowed to react with protonated analytes with various functionalities in a linear quadrupole ion trap mass spectrometer. The reaction products and reaction efficiencies were measured. Only protonated sulfone model compounds were found to react with TMP to form a characteristic [TMP adduct-MeOH] product ion. All other protonated compounds investigated, with functionalities such as sulfoxide, N-oxide, hydroxylamino, keto, carboxylic acid, and aliphatic and aromatic amino, only react with TMP via proton transfer and/or addition. The specificity of the reaction was further demonstrated by using a sulfoxide-containing anti-inflammatory drug, sulindac, as well as its metabolite sulindac sulfone. A method based on functional group-selective ion-molecule reactions in a linear quadrupole ion trap mass spectrometer has been demonstrated for the identification of the sulfone functionality in protonated analytes. A characteristic [TMP adduct-MeOH] product ion was only formed for the protonated sulfone analytes. The applicability of the TMP reagent in identifying sulfone functionalities in drug metabolites was also demonstrated. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1,2-Propanediol, 3-(2-propenyloxy)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1,2-Propanediol, 3-(2-propenyloxy)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...
Lepage, Laurence; Dufour, Anne-Claude; Doiron, Jessica; Handfield, Katia; Desforges, Katherine; Bell, Robert; Vallée, Michel; Savoie, Michel; Perreault, Sylvie; Laurin, Louis-Philippe; Pichette, Vincent; Lafrance, Jean-Philippe
2015-12-07
Hyperkalemia affects up to 10% of patients with CKD. Sodium polystyrene sulfonate has long been prescribed for this condition, although evidence is lacking on its efficacy for the treatment of mild hyperkalemia over several days. This study aimed to evaluate the efficacy of sodium polystyrene sulfonate in the treatment of mild hyperkalemia. In total, 33 outpatients with CKD and mild hyperkalemia (5.0-5.9 mEq/L) in a single teaching hospital were included in this double-blind randomized clinical trial. We randomly assigned these patients to receive either placebo or sodium polystyrene sulfonate of 30 g orally one time per day for 7 days. The primary outcome was the comparison between study groups of the mean difference of serum potassium levels between the day after the last dose of treatment and baseline. The mean duration of treatment was 6.9 days. Sodium polystyrene sulfonate was superior to placebo in the reduction of serum potassium levels (mean difference between groups, -1.04 mEq/L; 95% confidence interval, -1.37 to -0.71). A higher proportion of patients in the sodium polystyrene sulfonate group attained normokalemia at the end of their treatment compared with those in the placebo group, but the difference did not reach statistical significance (73% versus 38%; P=0.07). There was a trend toward higher rates of electrolytic disturbances and an increase in gastrointestinal side effects in the group receiving sodium polystyrene sulfonate. Sodium polystyrene sulfonate was superior to placebo in reducing serum potassium over 7 days in patients with mild hyperkalemia and CKD. Copyright © 2015 by the American Society of Nephrology.
Lepage, Laurence; Dufour, Anne-Claude; Doiron, Jessica; Handfield, Katia; Desforges, Katherine; Bell, Robert; Vallée, Michel; Savoie, Michel; Perreault, Sylvie; Laurin, Louis-Philippe; Pichette, Vincent
2015-01-01
Background and objectives Hyperkalemia affects up to 10% of patients with CKD. Sodium polystyrene sulfonate has long been prescribed for this condition, although evidence is lacking on its efficacy for the treatment of mild hyperkalemia over several days. This study aimed to evaluate the efficacy of sodium polystyrene sulfonate in the treatment of mild hyperkalemia. Design, setting, participants, & measurements In total, 33 outpatients with CKD and mild hyperkalemia (5.0–5.9 mEq/L) in a single teaching hospital were included in this double–blind randomized clinical trial. We randomly assigned these patients to receive either placebo or sodium polystyrene sulfonate of 30 g orally one time per day for 7 days. The primary outcome was the comparison between study groups of the mean difference of serum potassium levels between the day after the last dose of treatment and baseline. Results The mean duration of treatment was 6.9 days. Sodium polystyrene sulfonate was superior to placebo in the reduction of serum potassium levels (mean difference between groups, −1.04 mEq/L; 95% confidence interval, −1.37 to −0.71). A higher proportion of patients in the sodium polystyrene sulfonate group attained normokalemia at the end of their treatment compared with those in the placebo group, but the difference did not reach statistical significance (73% versus 38%; P=0.07). There was a trend toward higher rates of electrolytic disturbances and an increase in gastrointestinal side effects in the group receiving sodium polystyrene sulfonate. Conclusions Sodium polystyrene sulfonate was superior to placebo in reducing serum potassium over 7 days in patients with mild hyperkalemia and CKD. PMID:26576619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misichronis, Konstantinos; Wang, Weiyu; Cheng, Shiwang
2018-01-29
Multigraft copolymer superelastomers consisting of a poly(n-butyl acrylate) backbone and polystyrene side chains were synthesized and the viscoelastic properties of the non-sulfonated and sulfonated final materials were investigated using extensional rheology (SER3). The non-linear viscoelastic experiments revealed significantly increased true stresses (up to 10 times higher) after sulfonating only 2–3% of the copolymer while the materials maintained high elongation (<700%). The linear viscoelastic experiments showed that the storage and loss modulus are increased by sulfonation and that the copolymers can be readily tuned and further improved by increasing the number of branching points and the molecular weight of the backbone.more » Here, in this way, we show that by tuning not only the molecular characteristics of the multigraft copolymers but also their architecture and chemical interaction, we can acquire thermoplastic superelastomer materials with desired viscoelastic properties.« less
Cyclic Tetrapyrrole Sulfonation, Metals, and Oligomerization in Antiprion Activity▿
Caughey, Winslow S.; Priola, Suzette A.; Kocisko, David A.; Raymond, Lynne D.; Ward, Anne; Caughey, Byron
2007-01-01
Cyclic tetrapyrroles are among the most potent compounds with activity against transmissible spongiform encephalopathies (TSEs; or prion diseases). Here the effects of differential sulfonation and metal binding to cyclic tetrapyrroles were investigated. Their potencies in inhibiting disease-associated protease-resistant prion protein were compared in several types of TSE-infected cell cultures. In addition, prophylactic antiscrapie activities were determined in scrapie-infected mice. The activity of phthalocyanine was relatively insensitive to the number of peripheral sulfonate groups but varied with the type of metal bound at the center of the molecule. The tendency of the various phthalocyanine sulfonates to oligomerize (i.e., stack) correlated with anti-TSE activity. Notably, aluminum(III) phthalocyanine tetrasulfonate was both the poorest anti-TSE compound and the least prone to oligomerization in aqueous media. Similar comparisons of iron- and manganese-bound porphyrin sulfonates confirmed that stacking ability correlates with anti-TSE activity among cyclic tetrapyrroles. PMID:17709470
Brandi, Jamile; Oliveira, Éder C; Monteiro, Nilson; Vasconcelos, Ana Flora D; Dekker, Robert F H; Barbosa, Aneli M; Silveira, Joana L M; Mourão, Paulo A S; Corradi da Silva, Maria de Lourdes
2011-10-01
The exopolysaccharide botryosphaeran (EPS(GLC); a (1--> 3)(1-->6)-β-D-glucan from Botryosphaeria rhodina MAMB- 05) was sulfonated to produce a water-soluble fraction (EPS(GLC)-S) using pyridine and chlorosulfonic acid in formamid. This procedure was then repeated twice to produce another fraction (EPSGLC-RS) with a higher degree of substitution (DS, 1.64). The purity of each botryosphaeran sample (unsulfonated and sulfonated) was assessed by gel filtration chromatography (Sepharose CL-4B), where each polysaccharide was eluted as a single symmetrical peak. The structures of the sulfonated and re-sulfonated botryosphaerans were investigated using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FT-IR), and (13)C nuclear magnetic resonance ((13)C NMR) spectroscopies. EPS(GLC) and EPS(GLC)-RS were also assayed for anticoagulation activity, and EPS(GLC)-RS was identified as an anticoagulant.
40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Monomethyl Ether *Dimer Acids Dioxane Ethane Ethylene Glycol Monophenyl Ether *Ethoxylates, Misc. Ethylene Glycol Dimethyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monoethyl Ether Ethylene Glycol...
Molecular Design of Sulfonated Triblock Copolymer Permselective Membranes
2008-07-03
factors governing sorption and permeability ofphosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower olefins by means...membrane morphology at environmental conditions, and the membrane sorption and transport properties with respect to water and nerve gas simulant...and chemical factors governing sorption and permeability of phosphoorganic agents in PEM made of sulfonated triblock copolymers of styrene and lower
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy...,2′-[oxybis(2,1-ethanediyloxy)]bis-, bis(4-methylbenzene-sulfonate) (PMN P-93-1195, CAS no. 19249-03...
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy... sulfonate); and ethanol, 2-[1-[[2-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy] ethoxy]methyl]-2-(2-propenyloxy...,2′-[oxybis(2,1-ethanediyloxy)]bis-, bis(4-methylbenzene-sulfonate) (PMN P-93-1195, CAS no. 19249-03...
Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite
NASA Technical Reports Server (NTRS)
Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.
1992-01-01
Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.
Synthesis and effectiveness of overbased magnesium and calcium petroleum sulfonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fialkovskii, R.V.; Romanyutina, L.V.; Korbut, L.F.
Overbased sulfonate additives are widely used to improve the service properties of motor oils. This paper describes the preparation of an overbased magnesium sulfonate additive from MSG-8 oil and an investigation of its functional properties. In experiments, the solution of ammonium sulfate, fat diluted with I-20A oil to a 38% concentration, was heated and stirred continuously in the presence of water and excess magnesium oxide for a period of 4 h at 80-120/degree/C while stripping out the liberated ammonia with nitrogen. The resulting oil solution of magnesium sulfonate was dissolved in toluene. The toluene solution after cleanup was held undermore » vacuum to remove the solvent; the residue was an oil solution of overbased magnesium sulfonate. Their properties are tabulated. Comparative data are shown in Table 1 for a calcium sulfonate additive synthesized from the same intermediate (ammonium sulfate), using calcium hydroxide as the base. Test results on M-11 oil containing 5% of the magnesium or calcium additive are listed. It is shown that the magnesium additive gave better results from the calcium additive at the same concentration in terms of oxidation stability, corrosion properties, detergency, and dispersancy. 9 refs.« less
Well-posed and stable transmission problems
NASA Astrophysics Data System (ADS)
Nordström, Jan; Linders, Viktor
2018-07-01
We introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability are analysed for continuous and discrete problems using both strong and weak formulations, and a general transmission condition is obtained. The theory is applied to the coupling of fluid-acoustic models, multi-grid implementations, adaptive mesh refinements, multi-block formulations and numerical filtering.
Bioinspired Transparent Laminated Composite Film for Flexible Green Optoelectronics.
Lee, Daewon; Lim, Young-Woo; Im, Hyeon-Gyun; Jeong, Seonju; Ji, Sangyoon; Kim, Yong Ho; Choi, Gwang-Mun; Park, Jang-Ung; Lee, Jung-Yong; Jin, Jungho; Bae, Byeong-Soo
2017-07-19
Herein, we report a new version of a bioinspired chitin nanofiber (ChNF) transparent laminated composite film (HCLaminate) made of siloxane hybrid materials (hybrimers) reinforced with ChNFs, which mimics the nanofiber-matrix structure of hierarchical biocomposites. Our HCLaminate is produced via vacuum bag compressing and subsequent UV-curing of the matrix resin-impregnated ChNF transparent paper (ChNF paper). It is worthwhile to note that this new type of ChNF-based transparent substrate film retains the strengths of the original ChNF paper and compensates for ChNF paper's drawbacks as a flexible transparent substrate. As a result, compared with high-performance synthetic plastic films, such as poly(ethylene terephthalate), poly(ether sulfone), poly(ethylene naphthalate), and polyimide, our HCLaminate is characterized to exhibit extremely smooth surface topography, outstanding optical clarity, high elastic modulus, high dimensional stability, etc. To prove our HCLaminate as a substrate film, we use it to fabricate flexible perovskite solar cells and a touch-screen panel. As far as we know, this work is the first to demonstrate flexible optoelectronics, such as flexible perovskite solar cells and a touch-screen panel, actually fabricated on a composite film made of ChNF. Given its desirable macroscopic properties, we envision our HCLaminate being utilized as a transparent substrate film for flexible green optoelectronics.
Review: Micro-organic contaminants in groundwater in China
NASA Astrophysics Data System (ADS)
Dong, Weihong; Xie, Wei; Su, Xiaosi; Wen, Chuanlei; Cao, Zhipeng; Wan, Yuyu
2018-03-01
Micro-organic contaminants (MOs) in groundwater, which may have adverse effects on human health and ecosystems worldwide, are gaining increased attention in China. A great deal of research has been conducted to investigate their sources, occurrences and behavior in aquifers. This paper reviews the main sources, distribution, concentrations and behavior of a wide range of MOs in groundwater in China. These MOs include well-established persistent organic pollutants—polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), endocrine disrupting chemicals (poly brominated diphenyl ethers (PBDEs), phthalic acid esters (PAEs), bisphenol A (BPA)—and some contaminants of emerging concern such as pharmaceutical and personal care products (antibiotics, caffeine, shampoos) and perfluorinated compounds (PFCs). The results reveal that the main MOs in groundwater are PAHs, organochlorine pesticides (OCPs), PBDEs, PAEs, and antibiotics. Moreover, some PFCs such as perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) have only recently been observed in groundwater as emerging organic contaminants. Additionally, most MOs are distributed in populated and industrialized areas such as the southeast coast of China. Finally, industrial emissions, wastewater treatment plant effluents and agricultural wastewater are found to be dominant sources of MOs in groundwater. Based on the existing pollution levels, regulation and amelioration of MOs are warranted.
Rigol, A; Latorre, A; Lacorte, S; Barceló, D
2002-07-19
Three analytical methods were developed for the determination of toxic compounds in recirculating waters of a paper-recycling industry. Three main groups of compounds were considered: (i) wood extractives originated from the raw material; (ii) biocides added during the production process and (iii) surfactants and other adjuvants present in the formulates of these biocides. Wood extractives considered in this study included fatty and resin acids. They were analysed by liquid-liquid extraction using methyl tert.-butyl ether, followed by gas chromatography-mass spectrometry for previous formation of the respective trimethylsilyl esters. Water samples were also extracted with Oasis HLB (copolymer [poly(divinylbenzene-co-N-vinylpyrrolidone]) solid-phase extraction cartridges of 60 mg and analysed by liquid chromatography-electrospray mass spectrometry for the determination of additives and biocides. Using these two approaches levels up to 15 mg/l for total resin and fatty acids, 5 mg/l for alkylbenzene sulfonates and 2-(thiocyanomethylthio)benzotiazol, 100 microg/l for bisphenol A and 2,2-dibromo-3-nitrilepropionamide, and 300 microg/l for nonylphenol ethoxycarboxylate were detected in process waters at different production treatment stages. These levels are of relevance since poor water quality affects the paper-recycling process, the primary water treatment process and eventually, the environmental water quality.
Addo Ntim, Susana; Thomas, Treye A; Begley, Timothy H; Noonan, Gregory O
2015-01-01
The potential for consumer exposure to nano-components in food contact materials (FCMs) is dependent on the migration of nanomaterials into food. Therefore, characterising the physico-chemical properties and potential for migration of constituents is an important step in assessing the safety of FCMs. A number of commercially available food storage products, purchased domestically within the United States and internationally, that claim to contain nanosilver were evaluated. The products were made of polyethylene, polypropylene and polyphenylene ether sulfone and all contained silver (0.001-36 mg kg(-1) of polymer). Silver migration was measured under various conditions, including using 3% acetic acid and water as food simulants. Low concentrations (sub-ppb levels) of silver were detected in the migration studies generally following a trend characterised by a surface desorption phenomenon, where the majority of the silver migration occurred in the first of three consecutive exposures. Silver nanoparticles were not detected in food simulants, suggesting that the silver migration may be due solely to ionic silver released into solution from oxidation of the silver nanoparticle surface. The absence of detectable silver nanoparticles was consistent with expectations from a physico-chemical view point. For the products tested, current USFDA guidance for evaluating migration from FCMs was applicable.
Rauert, Cassandra; Harner, Tom; Schuster, Jasmin K; Eng, Anita; Fillmann, Gilberto; Castillo, Luisa Eugenia; Fentanes, Oscar; Villa Ibarra, Martín; Miglioranza, Karina S B; Moreno Rivadeneira, Isabel; Pozo, Karla; Aristizábal Zuluaga, Beatriz Helena
2018-06-15
A special initiative was run by the Global Atmospheric Passive Sampling (GAPS) Network to provide atmospheric data on a range of emerging chemicals of concern and candidate and new persistent organic pollutants in the Group of Latin America and Caribbean (GRULAC) region. Regional-scale data for a range of flame retardants (FRs) including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and a range of alternative FRs (novel FRs) are reported over 2 years of sampling with low detection frequencies of the novel FRs. Atmospheric concentrations of the OPEs were an order of magnitude higher than all other FRs, with similar profiles at all sites. Regional-scale background concentrations of the poly- and perfluoroalkyl substances (PFAS), including the neutral PFAS (n-PFAS) and perfluoroalkyl acids (PFAAs), and the volatile methyl siloxanes (VMS) are also reported. Ethyl perfluorooctane sulfonamide (EtFOSA) was detected at highly elevated concentrations in Brazil and Colombia, in line with the use of the pesticide sulfluramid in this region. Similar concentrations of the perfluoroalkyl sulfonates (PFAS) were detected throughout the GRULAC region regardless of location type, and the VMS concentrations in air increased with the population density of sampling locations. This is the first report of atmospheric concentrations of the PFAAs and VMS from this region.
Electrical and Environmental Studies of Conduction Polymers.
1986-01-17
Carbonate), 0.25M Tetrabutylammonium hexafluorophosphate (Bu4 NPF 6 )/THF, and 0.25M Lithium Trifluoromethyl sulfonate (LiCF3 SO 3)frHF. Lithium ...processible polymeric component Other anions commonly used in synthesizing polypyrrole, namely, tetrafluoroborate, hexafluorophosphate rifluoromethyl...are perchlorate (CI0 4 "), tetrafluoroborate (BF 4 "), trifluoromethyl sulfonate (CF3 SO"), hexafluorophosphate (PF6 ") and p-toluene sulfonate (PTS
Molecular structure impacts on secondary organic aerosol formation from glycol ethers
NASA Astrophysics Data System (ADS)
Li, Lijie; Cocker, David R.
2018-05-01
Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA formation.
Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design*
Kerr, Iain D.; Lee, Ji H.; Farady, Christopher J.; Marion, Rachael; Rickert, Mathias; Sajid, Mohammed; Pandey, Kailash C.; Caffrey, Conor R.; Legac, Jennifer; Hansell, Elizabeth; McKerrow, James H.; Craik, Charles S.; Rosenthal, Philip J.; Brinen, Linda S.
2009-01-01
Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs. PMID:19620707
Hydrophilic modification of polyethersulfone and its membrane characteristics
NASA Astrophysics Data System (ADS)
Liu, Haiju; Huangfu, Feng-yun; Bai, Yundong; Kong, Yuanyuan
2010-07-01
In order to enhance the hydrophilicity of PES, A series of sulfonated polyethersulfone (SPES) were readily prepared via a reaction of sulphonation which used chlorosulfonic as sulfonating agent and concentrated sulfuric acid as solvent. Sulfonation was confirmed by Fourier transform infrared spectroscopy and Thermo gravimetric analyzer. We studied forming film characteristic of SPES by phase diagram. The sulfonated PES materials were then utilized as a hydrophilic modifier for fabrication of SPES membranes. The solvent was NMP and PEG-6000 was pore-forming agent. The characteristics of membranes were studied. It was found that the surface hydrophilicity of the modified PES membranes was remarkably enhanced by contact angle. Water flux was obvious increased and antifouling performance was also improved.
Matsumiya, Y; Murata, N; Tanabe, E; Kubota, K; Kubo, M
2010-06-01
To degrade ether-type polyurethane (ether-PUR), ether-PUR-degrading micro-organism was isolated. Moreover, ether-PUR-degrading mechanisms were analysed using model compounds of ether-PUR. A fungus designated as strain PURDK2, capable of changing the configuration of ether-PUR, has been isolated. This isolated fungus was identified as Alternaria sp. Using a scanning electron microscope, the grid structure of ether-PUR was shown to be melted and disrupted by the fungus. The degradation of ether-PUR by the fungus was analysed, and the ether-PUR was degraded by the fungus by about 27.5%. To analyse the urethane-bond degradation by the fungus, a degraded product of ethylphenylcarbamate was analysed using GC/MS. Aniline and ethanol were detected by degradation with the supernatant, indicating that the fungus secreted urethane-bond-degrading enzyme(s). PURDK2 also degraded urea bonds when diphenylmethane-4,4'-dibutylurea was used as a substrate. The enzyme(s) from PURDK2 degraded urethane and urea bonds to convert the high molecular weight structure of ether-PUR to small molecules; and then the fungus seems to use the small molecules as an energy source. Ether-PUR-degrading fungus, strain PURDK2, was isolated, and the urethane- and urea-bonds-degrading enzymes from strain PURDK2 could contribute to the material recycling of ether-PUR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Phillips Petroleum Co. is poised to license its high conversion process to produce fuel ethers for blending in reformulated gasolines. The technology has been proven in a Phillips semiworks at Bartlesville, Okla. The process can produce methyl tertiary butyl ether, ethyl tertiary butyl ether, tertiary amyl methyl ether, or tertiary amyl ethyl ether with typical refinery process equipment and techniques. Phillips said it can achieve conversion levels of 92-99%, depending on the ether. The ether produced is determined by which hydrocarbon fraction is used for feedstock and which alcohol is chosen for reaction. The process is described.
NASA Astrophysics Data System (ADS)
Hong, K.; Zhang, X.
2005-03-01
Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.
Improvement of neutral oil quality in the production of sulfonate additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhurba, A.S.; Bludilin, V.M.; Antonov, V.N.
This paper is concerned with improvement of neutral oil used as materials for sulfonation to produce additives for lubricating oils. In this article the authors analyze the basic reasons for the unsatisfactory quality of the neutral oil and attempt to define the ways in which the process technology can be improved so as to produce neutral oil with the required composition, at the same time raising the efficiency of utilization of the MSG-8 oil used as a feedstock for this process. Experimental results are presented which demonstrate the feasibility of sulfonating neutral oil in the high-speed mixer under near-optimal conditions.more » The yield of sulfonic acid approaches the theoretical yield. With the lowest contents of aromatic hydrocarbons in the original neutral oil, the aromatic hydrocarbons are almost completely converted to sulfonic acids. The yield of neutral oil is sufficiently high, and the residual content of aromatic hydrocarbons in the oil is no greater than 3%.« less
NASA Astrophysics Data System (ADS)
Rostam, Abbas Babaei; Peyravi, Majid; Ghorbani, Mohsen; Jahanshahi, Mohsen
2018-01-01
In this study, sulfonated-polyethersulfone/polyrhodanine (SPES/PRh) membranes with antibacterial behavior were fabricated. Polyethersulfone (PES) sulfonation was performed to enhance its hydrophilicity and next polyrhodanine nanoparticles (PRhNPs) were synthesized along with the sulfonated PES (SPES) by polyrhodanine (PRh) in situ polymerization. The sulfonation step also helps making composite membrane due to development of probable bondings and polymers engagements. The constructed membranes characterization was performed by FTIR, FESEM, contact angle, 1H NMR, TGA and EDS analyses. SPES/PRh membrane had enhanced hydrophilicity and consequently better fluxes for aqueous solutions. The composite SPES/PRh membrane flux was improved to 139/78 L/m2 h comparing 58.21 L/m2 h for SPES one. Membrane operational performances, antibacterial and antibiofouling tests showed improved flux, better rejection and appropriate antibacterial and antibiofouling properties for SPES/PRh membrane. The 100% bacteria mortality for specified concentrations and appropriate inhibition zones up to 9 mm have been achieved. It is generally a suitable membrane to provide proper performance beside antibacterial and antibiofouling behavior.
Molecular and morphological characterization of midblock-sulfonated styrenic triblock copolymers
Mineart, Kenneth P.; Ryan, Justin J.; Lee, Byeongdu; ...
2017-01-11
Midblock-sulfonated triblock copolymers afford a desirable opportunity to generate network-forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel-cell, water-desalination, ion-exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly( p- tert-butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly( p- tert-butylstyrene- b-styrene- b- p- tert- butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development ofmore » charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross-linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent-vapor annealing to promote nanostructural refinement. Furthermore, the effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored.« less
Color reduction of sulfonated eucalyptus kraft lignin.
Zhang, Hui; Bai, Youcan; Zhou, Wanpeng; Chen, Fangeng
2017-04-01
Several eucalyptus lignins named as HSL, SML and BSL were prepared by high temperature sulfonation, sulfomethylation, butane sultone sulfonation respectively. The color properties of samples were investigated. Under optimized conditions the sulfonic group (SO 3 H) content of HSL, SML and BSL reached 1.52, 1.60 and 1.58mmol/g, respectively. Samples were characterized by UV-vis spectroscopy, FTIR spectroscopy, 1 H NMR spectroscopy, GPC and brightness test, respectively. The results revealed that BSL performed a higher molecular weight and lighter color due to the phenolic hydroxyl blocking by 1,4-butane sultone (1,4-BS). The color reduction of sodium borohydride treated BSL (labeled as SBSL) was further enhanced and the brightness value was improved by 76.1% compared with the darkest HSL. SBSL process was much better than HSL and SML process. Hydroxyl blocking effect of 1,4-BS and reducibility of sodium borohydride played important roles in the color reduction of sulfonated eucalyptus kraft lignin. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Chelsea; Wong, David; Beers, Keith; Balsara, Nitash
2013-03-01
In an effort to understand the fundamentals of proton transport in polymer electrolyte membranes (PEMs), we have developed a series of poly(styrene-b-ethylene-b-styrene) (SES) membranes. The SES membranes were subsequently sulfonated to yield proton conducting S-SES membranes. We examine the effects of sulfonation level, temperature and thermal history on the morphology of S-SES membranes in both dry and hydrated states. The effects of these parameters on water uptake and proton transport characteristics of the membranes are also examined. Furthermore, building upon the strategy we deployed in sulfonating the SES membranes, we fabricated mesoporous S-SES membranes, with pores lined up with the proton conducting channels. These membranes have three distinct phases: structural block, proton-conducting block, and void. We examine the effects of pore size, domain structure and sulfonation level on water uptake and proton conductivity of the mesoporous PEMs at different temperatures. This work is funded by Department of Energy.
... Dimethyl Sulfone MSM, DMSO2, Methyl Sulfone, Methyl Sulfonyl Methane, Methyl Sulphonyl Methane, Méthyle Sulfonyle Méthane, Méthyle Sulphonyle Méthane, Méthylsulfonylméthane, Metilsulfonilmentano, ...
A new route to synthesize aryl acetates from carbonylation of aryl methyl ethers
Yang, Youdi; Li, Shaopeng; Han, Buxing
2018-01-01
Ether bond activation is very interesting because the synthesis of many valuable compounds involves conversion of ethers. Moreover, C–O bond cleavage is also very important for the transformation of biomass, especially lignin, which abundantly contains ether bonds. Developing efficient methods to activate aromatic ether bonds has attracted much attention. However, this is a challenge because of the inertness of aryl ether bonds. We proposed a new route to activate aryl methyl ether bonds and synthesize aryl acetates by carbonylation of aryl methyl ethers. The reaction could proceed over RhCl3 in the presence of LiI and LiBF4, and moderate to high yields of aryl acetates could be obtained from transformation of various aryl methyl ethers with different substituents. It was found that LiBF4 could assist LiI to cleave aryl methyl ether bonds effectively. The reaction mechanism was proposed by a combination of experimental and theoretical studies. PMID:29795781
Pyrolytic carbon black composite and method of making the same
Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe
2016-09-13
A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.
NASA Astrophysics Data System (ADS)
Lufrano, F.; Baglio, V.; Staiti, P.; Stassi, A.; Aricò, A. S.; Antonucci, V.
This paper reports on the development of polymer electrolyte membranes (PEMs) based on sulfonated polysulfone for application in a DMFC mini-stack operating at room temperature in passive mode. The sulfonated polysulfone (SPSf) with two degrees of sulfonation (57 and 66%) was synthesized by a well-known sulfonation process. SPSf membranes with different thicknesses were prepared and investigated. These membranes were characterized in terms of methanol/water uptake, proton conductivity, and fuel cell performance in a DMFC single cell and mini-stack operating at room temperature. The study addressed (a) control of the synthesis of sulfonated polysulfone, (b) optimization of the assembling procedure, (c) a short lifetime investigation and (d) a comparison of DMFC performance in active-mode operation vs. passive-mode operation. The best passive DMFC performance was 220 mW (average cell power density of about 19 mW cm -2), obtained with a thin SPSf membrane (70 μm) at room temperature, whereas the performance of the same membrane-based DMFC in active mode was 38 mW cm -2. The conductivity of this membrane, SPSf (IEC = 1.34 mequiv. g -1) was 2.8 × 10 -2 S cm -1. A preliminary short-term test (200 min) showed good stability during chrono-amperometry measurements.
Kim, Patrick J; Fontecha, Harif D; Kim, Kyungho; Pol, Vilas G
2018-05-02
Lithium-sulfur batteries were intensively explored during the last few decades as next-generation batteries owing to their high energy density (2600 Wh kg -1 ) and effective cost benefit. However, systemic challenges, mainly associated with polysulfide shuttling effect and low Coulombic efficiency, plague the practical utilization of sulfur cathode electrodes in the battery market. To address the aforementioned issues, many approaches have been investigated by tailoring the surface characteristics and porosities of carbon scaffold. In this study, we first present an effective strategy of preparing porous sulfonated carbon (PSC) from low-density polyethylene (LDPE) plastic via microwave-promoted sulfonation. Microwave process not only boosts the sulfonation reaction of LDPE but also induces huge amounts of pores within the sulfonated LDPE plastic. When a PSC layer was utilized as an interlayer in lithium-sulfur batteries, the sulfur cathode delivered an improved capacity of 776 mAh g -1 at 0.5C and an excellent cycle retention of 79% over 200 cycles. These are mainly attributed to two materialistic benefits of PSC: (a) porous structure with high surface area and (b) negatively charged conductive scaffold. These two characteristics not only facilitate the improved electrochemical kinetics but also effectively block the diffusion of polysulfides via Coulomb interaction.
Differential fipronil susceptibility and metabolism in two rice stem borers from China.
Fang, Qi; Huang, Cheng-Hua; Ye, Gong-Yin; Yao, Hong-Wei; Cheng, Jia-An; Akhtar, Zunnu-Raen
2008-08-01
The susceptibilities of larvae of two rice stem borers, namely, Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Sesamia inferens (Walker) (Lepidoptera: Nocutidae) to fipronil and its metabolites were investigated, and then the activities of microsomal O-demethylase, and glutathione transferase (GST) in two species were measured. The metabolism of fipronil in both stem borers was determined in vivo and in vitro. The LD50 value of fipronil to S. inferens was 118.5-fold higher than that of C. suppressalis. The bioassay results offipronil metabolites showed that the toxicities of sulfone and sulfide were higher than fipronil for both species, and the differential toxicity between sulfone and fipronil was remarkable. Alternatively, the activities of microsomal O-demethylase and GST of C. suppressalis were 1.35- and 2.06-fold higher than S. inferens, respectively. The in vivo and in vitro studies on metabolism of fipronil showed that all of fipronil, sulfone, and sulfide were detected and the content of sulfone was higher than sulfide in both stem borers. The residue of sulfone in C. suppressalis was significantly higher than that in S. inferens. These results suggest that the higher activity of mixed function oxidases may cause the higher capacity of C. suppressalis to produce fipronil-sulfone, which is more toxic than fipronil leading to the higher susceptibility of this species.
Wang, Xiaowen; Hu, Huawen; Wang, Wenyi; Lee, Ka I; Gao, Chang; He, Liang; Wang, Yuanfeng; Lai, Chuilin; Fei, Bin; Xin, John H
2016-07-01
Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers. Copyright © 2016 Elsevier B.V. All rights reserved.
Inactivation of a class A and a class C β-lactamase by 6β-(hydroxymethyl)penicillanic acid sulfone
Papp-Wallace, Krisztina M.; Bethel, Christopher R.; Gootz, Thomas D.; Shang, Wenchi; Stroh, Justin; Lau, William; McLeod, Dale; Price, Loren; Marfat, Anthony; Distler, Anne; Drawz, Sarah M.; Chen, Hansong; Harry, Emily; Nottingham, Micheal; Carey, Paul R.; Buynak, John D.; Bonomo, Robert A.
2012-01-01
β-Lactamase inhibitors (clavulanic acid, sulbactam, and tazobactam) contribute significantly to the longevity of the β-lactam antibiotics used to treat serious infections. In the quest to design more potent compounds and to understand the mechanism of action of known inhibitors, 6β-(hydroxymethyl)penicillanic acid sulfone (6β-HM-sulfone) was tested against isolates expressing the class A TEM-1 β-lactamase and a clinically important variant of the AmpC cephalosporinase of Pseudomonas aeruginosa, PDC-3. The addition of the 6β-HM-sulfone inhibitor to ampicillin was highly effective. 6β-HM-sulfone inhibited TEM-1 with an IC50 of 12 ± 2 nM and PDC-3 with an IC50 of 180 ± 36 nM, and displayed lower partition ratios than commercial inhibitors, with partition ratios (kcat/kinact) equal to 174 for TEM-1 and 4 for PDC-3. Measured for 20 h, 6β-HM-sulfone demonstrated rapid, first-order inactivation kinetics with the extent of inactivation being related to the concentration of inhibitor for both TEM-1 and PDC-3. Using mass spectrometry to gain insight into the intermediates of inactivation of this inhibitor, 6β-HM-sulfone was found to form a major adduct of +247 ± 5 Da with TEM-1 and +245 ± 5 Da with PDC-3, suggesting that the covalently bound, hydrolytically stabilized acyl-enzyme has lost a molecule of water (H–O–H). Minor adducts of +88 ± 5 Da with TEM-1 and +85 ± 5 Da with PDC-3 revealed that fragmentation of the covalent adduct can result but appeared to occur slowly with both enzymes. 6β-HM-sulfone is an effective and versatile β-lactamase inhibitor of representative class A and C enzymes. PMID:22155308
Catalytic oxidation of dimethyl ether
Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing
2016-05-10
A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.
Unstructured grids for sonic-boom analysis
NASA Technical Reports Server (NTRS)
Fouladi, Kamran
1993-01-01
A fast and efficient unstructured grid scheme is evaluated for sonic-boom applications. The scheme is used to predict the near-field pressure signatures of a body of revolution at several body lengths below the configuration, and those results are compared with experimental data. The introduction of the 'sonic-boom grid topology' to this scheme make it well suited for sonic-boom applications, thus providing an alternative to conventional multiblock structured grid schemes.
Rapid Prediction of Unsteady Three-Dimensional Viscous Flows in Turbopump Geometries
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.
1998-01-01
A program is underway to improve the efficiency of a three-dimensional Navier-Stokes code and generalize it for nozzle and turbopump geometries. Code modifications have included the implementation of parallel processing software, incorporation of new physical models and generalization of the multiblock capability. The final report contains details of code modifications, numerical results for several nozzle and turbopump geometries, and the implementation of the parallelization software.
Duct flow nonuniformities: Effect of struts in SSME HGM II(+)
NASA Technical Reports Server (NTRS)
Burke, Roger
1988-01-01
A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.
An Efficient Multiblock Method for Aerodynamic Analysis and Design on Distributed Memory Systems
NASA Technical Reports Server (NTRS)
Reuther, James; Alonso, Juan Jose; Vassberg, John C.; Jameson, Antony; Martinelli, Luigi
1997-01-01
The work presented in this paper describes the application of a multiblock gridding strategy to the solution of aerodynamic design optimization problems involving complex configurations. The design process is parallelized using the MPI (Message Passing Interface) Standard such that it can be efficiently run on a variety of distributed memory systems ranging from traditional parallel computers to networks of workstations. Substantial improvements to the parallel performance of the baseline method are presented, with particular attention to their impact on the scalability of the program as a function of the mesh size. Drag minimization calculations at a fixed coefficient of lift are presented for a business jet configuration that includes the wing, body, pylon, aft-mounted nacelle, and vertical and horizontal tails. An aerodynamic design optimization is performed with both the Euler and Reynolds Averaged Navier-Stokes (RANS) equations governing the flow solution and the results are compared. These sample calculations establish the feasibility of efficient aerodynamic optimization of complete aircraft configurations using the RANS equations as the flow model. There still exists, however, the need for detailed studies of the importance of a true viscous adjoint method which holds the promise of tackling the minimization of not only the wave and induced components of drag, but also the viscous drag.
Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.; Gokcen, Tahir
2010-01-01
The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases.
NASA Technical Reports Server (NTRS)
Houston, Johnny L.
1990-01-01
Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.
Palladium-Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Meng; Gutiérrez, Oliver Y.; Camaioni, Donald M.
Pd/C catalyzes C-O bond cleavage of aryl ethers (diphenyl ether and cyclohexyl phenyl ether) by methanol in H2. The aromatic C-O bond is cleaved by reductive methanolysis, which is initiated by Pd-catalyzed partial hydrogenation of one phenyl ring to form an enol ether. The enol ether reacts rapidly with methanol to form a ketal, which generates methoxycyclohexene by eliminating phenol or an alkanol. Subsequent hydrogenation leads to methoxycyclohexane.
Su, Chi -Cheung; He, Meinan; Redfern, Paul C.; ...
2017-03-16
New fluorinated sulfones were synthesized and evaluated in high voltage lithium-ion batteries using LiNi 0.5Mn 1.5O 4 (LNMO) cathode. Fluorinated sulfones with an α-trifluoromethyl group exhibit enhanced oxidation stability, reduced viscosity and superior separator wettability as compared to their non-fluorinated counterparts. Finally, the improved performance in high voltage cells makes it a promising high voltage electrolyte for 5-V lithium-ion chemistry.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2007-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated .pi.-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
NASA Technical Reports Server (NTRS)
Viswanathan, Tito (Inventor)
2007-01-01
The invention provides coatings useful for preventing corrosion of metals. The coatings comprise a film-forming resin and conductive polymers comprising linearly conjugated x-systems and residues of sulfonated lignin or a sulfonated polyflavonoid or derivatives of solfonated lignin or a sulfonated polyflavonoid. The invention also provides a latex formulation of the coatings, and articles of manufacture comprising a metal substrate and a coating in contact with the metal substrate.
Polyarylether composition and membrane
Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony
2010-11-09
A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.
Toxicity of pyrolysis gases from synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Soriano, J. A.; Kosola, K. L.; Kourtides, D. A.; Parker, J. A.
1977-01-01
The screening test method was used to investigate toxicity in polyethylene, polystyrene, polymethyl methacrylate, polyaryl sulfone, polyether sulfone, polyphenyl sulfone, and polyphenylene sulfide. Changing from a rising temperature program to a fixed temperature program resulted on shorter times to animal responses. This effect was attributed in part to more rapid generation of toxicants. The toxicants from the sulfur containing polymers appeared to act more rapidly than the toxicants from the other polymers. It was not known whether this effect was due primarily to difference in concentration or in the nature of the toxicants. The carbon monoxide concentration found did not account for the results observed with the sulfur containing polymers. Polyphenyl sulfone appeared to exhibit the least toxicity among the sulfur containing polymers evaluated under these test conditions.
Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.
Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming
2014-03-01
Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.
Using relative rate methods, rate constants for the gas-phase reactions of OH radicals and Cl atoms with di-n-propyl ether, di-n-propyl ether-d14, di-n-butyl ether and di-n-butyl ether-d18 have been measured at 296 ? 2 K and atmos...
Copolymers of fluorinated polydienes and sulfonated polystyrene
Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN
2009-11-17
Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.
Reactions of Phenolphthalein at Various pH Values.
ERIC Educational Resources Information Center
Wittke, Georg
1983-01-01
Reactions of phenolphthalein with sodium hydroxide and sulfuric are discussed. Also discusses the sulfonation of phenolphthalein, listing experimental results related to the sulfonation reaction. (JN)
NIOSH Manual of Analytical Methods (third edition). Fourth supplement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-08-15
The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.
Drechsler, Robin; Chen, Shaw-Wen; Dancy, Blair C. R.; Mehrabkhani, Lena
2016-01-01
Despite the fact that the discovery of ether-linked phospholipids occurred nearly a century ago, many unanswered questions remain concerning these unique lipids. Here, we characterize the ether-linked lipids of the nematode with HPLC-MS/MS and find that more than half of the phosphoethanolamine-containing lipids are ether-linked, a distribution similar to that found in mammalian membranes. To explore the biological role of ether lipids in vivo, we target fatty acyl-CoA reductase (fard-1), an essential enzyme in ether lipid synthesis, with two distinct RNAi strategies. First, when fard-1 RNAi is initiated at the start of development, the treated animals have severely reduced ether lipid abundance, resulting in a shift in the phosphatidylethanolamine lipid population to include more saturated fatty acid chains. Thus, the absence of ether lipids during development drives a significant remodeling of the membrane landscape. A later initiation of fard-1 RNAi in adulthood results in a dramatic reduction of new ether lipid synthesis as quantified with 15N-tracers; however, there is only a slight decrease in total ether lipid abundance with this adult-only fard-1 RNAi. The two RNAi strategies permit the examination of synthesis and ether lipid abundance to reveal a relationship between the amount of ether lipids and stress survival. We tested whether these species function as sacrificial antioxidants by directly examining the phospholipid population with HPLC-MS/MS after oxidative stress treatment. While there are significant changes in other phospholipids, including polyunsaturated fatty acid-containing species, we did not find any change in ether-linked lipids, suggesting that the role of ether lipids in stress resistance is not through their general consumption as free radical sinks. Our work shows that the nematode will be a useful model for future interrogation of ether lipid biosynthesis and the characterization of phospholipid changes in various stress conditions. PMID:27893806
Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan
2000-01-01
The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.
Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi
2017-06-15
Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m 3 ). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2017 Elsevier B.V. All rights reserved.
Acid monolayer functionalized iron oxide nanoparticle catalysts
NASA Astrophysics Data System (ADS)
Ikenberry, Myles
Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide nanoparticle syntheses and functionalizations for biomedical and catalytic applications, affecting understandings of surface charge and other material properties.
NASA Astrophysics Data System (ADS)
Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus
2018-01-01
The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.
Peters, Byron K; Zhou, Taigang; Rujirawanich, Janjira; Cadu, Alban; Singh, Thishana; Rabten, Wangchuk; Kerdphon, Sutthichat; Andersson, Pher G
2014-11-26
Several chiral sulfonyl compounds were prepared using the iridium catalyzed asymmetric hydrogenation reaction. Vinylic, allylic and homoallylic sulfone substitutions were investigated, and high enantioselectivity is maintained regardless of the location of the olefin with respect to the sulfone. Impressive stereoselectivity was obtained for dialkyl substitutions, which typically are challenging substrates in the hydrogenation. As expected, the more bulky Z-substrates were hydrogenated slower than the corresponding E isomers, and in slightly lower enantioselectivity.
Crystal structure of zwitterionic bisimidazolium sulfonates
NASA Astrophysics Data System (ADS)
Kohmoto, Shigeo; Okuyama, Shinpei; Yokota, Nobuyuki; Takahashi, Masahiro; Kishikawa, Keiki; Masu, Hyuma; Azumaya, Isao
2012-05-01
Crystal structures of three zwitterionic bisimidazolium salts 1-3 in which imidazolium sulfonate moieties were connected with aromatic linkers, p-xylylene, 4,4'-dimethylenebiphenyl, and phenylene, respectively, were examined. The latter two were obtained as hydrates. An S-shaped molecular structure in which the sulfonate moiety was placed on the imidazolium ring was observed for 1. A helical array of hydrated water molecules was obtained for 2 while a linear array of hydrated water molecules was observed for 3.
Zhao, Mengjing; Wang, Shuai; Li, Feng; Dong, Dong; Wu, Baojian
2016-09-01
Elucidating the intricate relationships between metabolic and transport pathways contributes to improved predictions of in vivo drug disposition and drug-drug interactions. Here we reported that inhibited excretion of conjugative metabolites [i.e., hesperetin 3'-O-sulfate (H3'S) and hesperetin 7-O-sulfate (H7S)] by MK-571 led to reduced metabolism of hesperetin (a maximal 78% reduction) in human embryonic kidney 293 cells overexpressing sulfotransferase 1A3 (named SULT293 cells). The strong dependence of cellular sulfonation on the efflux transport of generated sulfated metabolites revealed an interplay of sulfonation metabolism with efflux transport (or sulfonation-transport interplay). Polymerase chain reaction (PCR) and Western blot analyses demonstrated that SULT293 cells expressed multiple sulfatases such as arylsulfatase A (ARSA), ARSB, and ARSC. Of these three desulfonation enzymes, only ARSB showed significant activities toward hesperetin sulfates. The intrinsic clearance values for the hydrolysis of H3'S and H7S were estimated at 0.6 and 0.5 μl/h/mg, respectively. Furthermore, knockdown of ARSB attenuated the regulatory effect of efflux transporter on cellular sulfonation, whereas overexpression of ABSB enhanced the transporter effect. Taken together, the results indicated that ARSB mediated the sulfonation-transport interplay in SULT293 cells. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Castor oil, sulfonated, sodium salt Cellulose acetate butyrate Cellulose acetate propionate Cetyl alcohol... trimethylenediamine (alkyl C16 to C18) Oleic acid, sulfonated, sodium salt Oleyl palmitamide N,N′-Oleoyl...
Condensed Tannin Reacts with SO2 during Wine Aging, Yielding Flavan-3-ol Sulfonates.
Ma, Lingjun; Watrelot, Aude A; Addison, Bennett; Waterhouse, Andrew L
2018-06-08
Numerous monomeric and oligomeric flavanol sulfonation products were observed in 10 wines. Levels of 0.85-20.06 and 0-14.72 mg/L were quantified for two monomeric sulfonated flavan-3-ols and, surprisingly, were generally higher than the well-known native flavan-3-ol monomers. Increasing SO 2 levels during wine aging increased the sulfonate-modified flavan-3-ol monomers and dimers along with higher concentrations of native monomers. The results indicate that >10% of SO 2 is reacting with the C-4 carbocation, formed from acid cleavage of the interflavan bond, perhaps by a bimolecular S N 2-type reaction, and as a reducing agent. In addition, the high SO 2 wine had the lowest protein-binding tannin levels, tannin activity, and mean degree of polymerization (mDP), and acidic SO 2 treatment of condensed tannin abolishes protein binding. Thus, SO 2 changes tannin composition during wine aging, and the substantial formation of sulfonate-modified flavan-3-ols may provide an additional explanation for the reduction in astringency of aged red wines.
Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater.
Trautmann, A M; Schell, H; Schmidt, K R; Mangold, K-M; Tiehm, A
2015-01-01
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) represent hazardous pollutants and are frequently detected in the environment, e.g. in contaminated groundwater. PFASs are persistent to biodegradation and conventional oxidation processes such as ozonation. In this study electrochemical degradation of PFASs on boron-doped diamond (BDD) electrodes is demonstrated. Experiments were performed with model solutions and contaminated groundwater with a dissolved organic carbon (DOC) content of 13 mg/L. The perfluorinated carboxylic acids (PFCAs) perfluorobutanoate, perfluoropentanoate, perfluorohexanoate, perfluoroheptanoate and perfluorooctanoate, and the perfluorinated sulfonic acids (PFSAs) perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctane sulfonate and 6:2 fluorotelomer sulfonate were detected in the groundwater samples. At PFAS concentrations ranging from 0.26 to 34 mg/L (0.7 to 79 μM), the degradation of PFASs was achieved despite of the high DOC background. Pseudo first-order kinetic constants of PFSA degradation increased with the increase of carbon chain length. Fluoride formation as well as the generation of PFCAs with shortened chain lengths was observed. Inorganic byproducts such as perchlorate were also formed and have to be considered in further process optimization.
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.; Snyder, C. E., Jr.
1979-01-01
Boundary lubricating characteristics, thermal stability, and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter, and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether trizine greater than polyphenyl ether greater than C-ether greater than fluorinated polyether.
Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi
2018-02-16
A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sinterable Ceramic Powders from Laser-Heated Gases.
1988-02-01
ether . carboxylic acid. and aldehyde clases: water is also included.Acrigto William and Goodman.’ a single crystalline sili- The single-crstalline...represent commonly available organic families, Including aliphatic and aromatic hydrocarbons, chlorides, ethers , ketones , esters, alcohols, aldehydes...Hydrocarbons Ketone Amine Chlorides Low-alcohols 8f . Ether Ester - _Aldehyde Ether Ketones High-alcohols 04 Carboxylic Ester I acid Ether o . Nitrile
Three Dimensional Grid Generation for Complex Configurations - Recent Progress
1988-03-01
Navier/Stokes finite difference calculations currently of interest. It has been amply demonstrated that the viability of a numerical solution depends...such as advanced fighters or logistic transports, where a multiblock mesh, for example, is necessary. There exist numerous reports and books on the...MESHES I 3.10 ADAPTIVE GRID SCHEMES 10 3.11 REFERENCES 12 4. CONTRIBUTIONS 13 4.1 SOLICITATION AND OVERVIEW 13 4.2 LESSONS LEARNED IN THE MESH
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2011 CFR
2011-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
21 CFR 176.210 - Defoaming agents used in the manufacture of paper and paperboard.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (soaps). Sorbitol (esters). Sulfuric acid (sulfated and sulfonated compounds). Triethanolamine (amides... sulfate. Sodium lignin sulfonate. Sodium 2-mercaptobenzothiazole. Sodium naphthalenesulfonic acid (3 mols...
Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates
Baillod, Charles R.; Boyle, W. C.
1968-01-01
The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474
1976-06-01
ecological hazards of benzene, toluene, xylenes,* and p-chlorophenyl methyl sulfide, sulfoxide, and sulfone at Rocky Mountain Arsenal (RMA). That assessment...recently reviewed the occupational hazard associated with the use of benzene, toluene, and xylene and has recomiended the folcwln !.ImitS In workroom air...Toxicology and Ecological Hazards of "Venzene; Toluene; Xylenes; and p-Chlorophenyl Methyl Sulfide, Sulfoxide, and Sulfone at Rocky tc-cntain Arsenal
Antioxidant and Nephroprotective Activities of the Extract and Fractions of Homonoia riparia Lour.
Xavier, Seena Kanniparambil; Haneefa, Shoja Muhammed; Anand, Devkar Raviraj; Polo, Picheswara Rao; Maheshwari, Rajalekshmi; Shreedhara, Chandrashekara Shastry; Setty, Manganahalli Manjunath
2017-01-01
Homonoia riparia is a plant, which is widely used in the indigenous system of medicine for the treatment of urolithiasis, renal disorders and inflammatory conditions. This is the first report on the antioxidant and nephroprotective activities of whole plant of H. riparia . The present study aims at investigating the in vitro antioxidant and nephroprotective activity of the methanol extract and its different fractions of H. riparia . Petroleum ether (HRPE), Ethyl acetate (HREA), Butanol (HRBU), aqueous fractions (HRAQ) were prepared from the crude methanol extract of H. riparia (HRM) using liquid partitioning. Total phenolic content, flavonoid content and antioxidant activity assay were performed according to suitable methods. Nephroprotective activities were evaluated by MTT assay using Human Embryonic Kidney cells against cisplatin induced toxicity. Quantification of gallic acid was performed using validated HPTLC method. The studies showed that extract and fractions possess significant nephroprotective activity against cisplatin induced renal toxicity. All the extracts/fractions of whole plant of Homonoia riparia was found to be significantly reducing cisplatin induced toxicity (< 0.05). The highest activity was observed with HRBU and HRAQ with a percentage viability of 293.09 ± 4.3 and 345.07 ± 3.2 at a concentration of 200 µg/ml. Gallic acid was detected in the HRM/fractions using HPTLC. Cisplatin (8 μg/ml) exhibited 50 % inhibition in cell viability in HEK 293 cellsButanol and aqueous fractions of Homonoia riparia showed significant nephroprotective activity against cisplatin induced cell damage in HEK cells.Gallic acid was detected and quantified in the extract and fractions of whole plant of Homonoia riparia Abbreviations used: HPTLC: High Performance Thin Layer Chromatography, DPPH: 1,1-diphenyl-2-picrylhydrazyl, ABTS: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, MTT: 3-(4,5-dimethylthiazolyl-2-yl)-2,5- diphenyl tetrazolium bromide, GAE: Gallic acid equivalents, QE: Quercetin equivalents, HEK: Human Embryonic Kidney, HRM: Methanol extract of H. riparia, HRPE: Petroleum ether fraction of H. riparia, HREA: ethyl acetate fraction of H. riparia, HRBU: Butanol fraction of H. riparia, HRAQ: Aqueous fraction of H. riparia, DMEM: Dulbecco's minimum essential medium, FBS: Foetal bovine serum, DMSO: Dimethyl sulfoxide, ANOVA: One way analysis of variance.
Pyrolysis Pathways of Sulfonated Polyethylene, an Alternative Carbon Fiber Precursor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younker, Jarod M; Saito, Tomonori; Hunt, Marcus A
2013-01-01
Sulfonated polyethylene is an emerging precursor for the production of carbon fibers. Pyrolysis of sulfonated polyethylene was characterized by thermogravimetric analysis (TGA). n-heptane-4-sulfonic acid (H4S) was selected as a model compound for the study of sulfonated polyethylene. Density functional theory and conventional transition state theory were used to determine the rate constants of pyrolysis for H4S from 300-1000 K. Multiple reaction channels from two different mechanisms were explored: 1) internal five-centered elimination (Ei 5) and 2) radical chain reaction. The pyrolysis of H4S was simulated with kinetic Monte Carlo (kMC) to obtain TGA plots that compared favorably to experiment. Wemore » observed that at tem- peratures < 550 K, the radical mechanism was dominant and yielded the trans-alkene, whereas cis-alkene was formed at higher temperatures from the internal elimination. The maximum rates of % mass loss became independent of initial OH radical concentration at 440-480 K. Experimentally, the maximum % mass loss occurred from 440-460 K (heating rate dependent). Activation energies derived from the kMC-simulated TGAs of H4S (26-29 kcal/mol) agreed with experiment for sulfonated polyethylene ( 31 kcal/mol). The simulations revealed that in this region, decomposition of radical HOSO2 became competitive to H abstraction by HOSO2, making OH the carrying radical for the reaction chain. The maximum rate of % mass loss for internal elimination was observed at temperatures > 600 K. Low-scale carbonization utilizes temperatures < 620 K; thus, internal elimination will not be competitive. Ei5 elimination has been studied for sulfoxides and sulfones, but this represents the first study of internal elimination in sulfonic acids. Nonlinear Arrhenius plots were found for all bimolecular reactions. The most significant nonlinear behavior was observed for reactions where the barrier was small. For reactions with low activation barriers, nonlinearity was traced to conflicting trends between the exponential temperature dependence of the energetic term and the temperature dependence of the vibrational partition function of the transitional modes.« less
New approach for assessing human perfluoroalkyl exposure via hair.
Alves, Andreia; Jacobs, Griet; Vanermen, Guido; Covaci, Adrian; Voorspoels, Stefan
2015-11-01
In the recent years hair has been increasingly used as alternative matrix in human biomonitoring (HBM) of environmental pollutants. Sampling advantages and time integration of exposure assessment seems the most attractive features of hair matrix. In the current study, a novel miniaturized method was developed and validated for measuring 15 perfluoroalkyl substances (PFAS), including perfluoro n-butanoic acid (PFBA), perfluoro n-pentanoic acid (PFPeA), perfluoro n-hexanoic acid (PFHxA), perfluoro n-heptanoic acid (PFHpA), perfluor n-octanoic acid (PFOA), perfluoro n-nonanoic acid (PFNA), perfluoro tetradecanoic acid (PFTeDA), perfluorobutane sulfonic acid (PFBS), perfluoro pentane sulfonic acid (PFPeS), perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), perfluorononane sulfonic acid (PFNS), perfluorodecane sulfonic acid (PFDS) and perfluorododecane sulfonic acid (PFDoS) in human hair by liquid chromatography tandem mass spectrometry (LC-MS/MS). After extraction using ethyl acetate, dispersive ENVI-Carb was used for clean-up. Good intra- and inter-day precision for low (LQ 5 ng/g hair) and high spike (HQ 15n g/g) levels were achieved (in general RSD <10%). The accuracy was assessed using recoveries (%), which ranged between 68-118% (LQ) and 70-121% (HQ). The instrumental limit of detection (LODi) and limit of quantification (LOQi) were between 1-4 pg/g hair and 3-13 pg/g hair, respectively. The method limit of quantification (LOQm) ranged between 6 and 301 pg/g hair. The PFAS levels were measured in 30 human hair samples indicating that the levels are low (14-1534 pg/g hair). Some PFAS were not present in any hair sample (e.g. PFHpA, PFTeDA, PFNA, PFPeS, PFHpS, PFOS and PFNS), while other PFAS were frequently detected (PFBA, PFPeA, PFHxA, PFOA, PFBS, PFHxS, PFOS, PFDS and PFDoS) in human hair. Although levels in general were low, there is evidence of higher human exposure to some analytes, such as PFBA, PFPeA, PFHxA, PFOA, PFBS, PFHxS, and PFDoS. The current study shows that hair is a suitable alternative non-invasive matrix for exposure assessment of PFAS. Copyright © 2015 Elsevier B.V. All rights reserved.
Moreno Horn, Marcus; Garbe, Leif-Alexander; Tressl, Roland; Adrian, Lorenz; Görisch, Helmut
2003-04-01
Rhodococcus sp. strain DTB (DSM 44534) grows on bis(1-chloro-2-propyl) ether (DDE) as sole source of carbon and energy. The non-chlorinated diisopropyl ether and bis(1-hydroxy-2-propyl) ether, however, did not serve as substrates. In ether degradation experiments with dense cell suspensions, 1-chloro-2-propanol and chloroacetone were formed, which indicated that scission of the ether bond is the first step while dehalogenation of the chlorinated C(3)-compounds occurs at a later stage of the degradation pathway. Inhibition of ether scission by methimazole suggested that the first step in degradation is catalyzed by a flavin-dependent enzyme activity. The non-chlorinated compounds 1,2-propanediol, hydroxyacetone, lactate, pyruvate, 1-propanol, propanal, and propionate also supported growth, which suggested that the intermediates 1,2-propanediol and hydroxyacetone are converted to pyruvate or to propionate, which can be channeled into the citric acid cycle by a number of routes. Total release of chloride and growth-yield experiments with DDE and non-chlorinated C(3)-compounds suggested complete biodegradation of the chlorinated ether.
Sulfonated polyphenylene polymers
Cornelius, Christopher J.; Fujimoto, Cy H.; Hickner, Michael A.
2007-11-27
Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.
76 FR 62336 - Notice of Meeting of the National Organic Standards Board
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
..., only until October 21, 2014.'' Lignin sulfonate Relist. Magnesium sulfate Relist. Ethylene gas Relist. Sodium silicate Relist. Lignin sulfonate Relist. Magnesium sulfate Relist. Ethylene gas Relist. Sodium...
Some actions of substituted choline phenyl ethers, particularly of choline 2:6-xylyl ether
Edge, N. D.; Mason, D. F. J.; Wyllie, J. H.
1957-01-01
Marked nicotine-like stimulant properties are possessed by choline phenyl ether and choline o-tolyl ether, and to a decreasing extent by choline 2:6-xylyl ether and choline 2:4:6-mesityl ether. The compounds all show neuromuscular blocking properties, which are of short duration and pass from mainly decamethonium-like to mainly curare-like as more methyl groups are added to the phenyl nucleus. This series of compounds also possesses muscarinic, weak anti-adrenaline and vasodilator properties, as well as long-lasting local anaesthetic effects in the two compounds tested by intradermal injection. PMID:13460236
Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride
Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.
Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride
Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; ...
2016-12-19
Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.
NASA Astrophysics Data System (ADS)
Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu
2016-12-01
Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single-body, the interference effects of the multi-bodies tend to be negligible. The computing practice has confirmed that it is feasible for the present method to compute the aerodynamics and reveal flow mechanism around complex multi-body vehicles covering all flow regimes from the gas-kinetic point of view of solving the unified Boltzmann model velocity distribution function equation.
Lu, Chunliang; Su, Xiaoge; Floreancig, Paul E.
2013-01-01
Vinyl ethers can be protonated to generate oxocarbenium ions that react with Me3SiCN to form cyanohydrin alkyl ethers. Reactions that form racemic products proceed efficiently upon converting the vinyl ether to an α-chloro ether prior to cyanide addition in a pathway that proceeds through Brønsted acid-mediated chloride ionization. Enantiomerically enriched products can be accessed by directly protonating the vinyl ether with a chiral Brønsted acid to form a chiral ion pair. Me3SiCN acts as the nucleophile and PhOH serves as a stoichiometric proton source in a rare example of an asymmetric bimolecular nucleophilic addition reaction into an oxocarbenium ion. Computational studies provide a model for the interaction between the catalyst and the oxocarbenium ion. PMID:23968162
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Borup, Rodney L.
The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.
Structure and Reactivity of Alkyl Ethers Adsorbed on CeO2(111) Model Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
F Calaza; T Chen; D Mullins
2011-12-31
The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO{sub 2}(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tiltmore » away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO{sub 2}) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of {beta}-hydrogen.« less
Structure and Reactivity of Alkyl Ethers Adsorbed on CeO(2)(111) Model Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calaza, Florencia C; Chen, Tsung-Liang; Mullins, David R
2011-01-01
The effect of surface hydroxyls on the adsorption of ether on ceria was explored. Adsorption of dimethyl ether (DME) and diethyl ether (DEE) on oxidized and reduced CeO{sub 2}(111) films was studied and compared with Ru(0001) using RAIRS and sXPS within a UHV environment. On Ru(0001) the ethers adsorb weakly with the molecular plane close to parallel to the surface plane. On the ceria films, the adsorption of the ethers was stronger than on the metal surface, presumably due to stronger interaction of the ether oxygen lone pair electrons with a cerium cation. This interaction causes the ethers to tiltmore » away from the surface plane compared to the Ru(0001) surface. No pronounced differences were found between oxidized (CeO{sub 2}) and reduced (CeOx) films. The adsorption of the ethers was found to be perturbed by the presence of OH groups on hydroxylated CeOx. In the case of DEE, the geometry of adsorption resembles that found on Ru, and in the case of dimethyl ether DME is in between that one found on clean CeOx and the metal surface. Decomposition of the DEE was observed on the OH/CeOx surface following high DEE exposure at 300 K and higher temperatures. Ethoxides and acetates were identified as adsorbed species on the surface by means of RAIRS and ethoxides and formates by s-XPS. No decomposition of dimethyl ether was observed on the OH/CeOx at these higher temperatures, implying that the dissociation of the C-O bond from ethers requires the presence of {beta}-hydrogen.« less
Effect of p-amino-diphenyl ethers on hepatic microsomal cytochrome P450.
Jiang, Huidi; Xuan, Guida
2003-09-01
The present paper aims to investigate whether p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450. Mice were given daily intraperitoneal (ip) injections of p-amino-2',4'-dichlorodiphenyl ether (0.25 mmol/kg) or p-amino-4'-methyldiphenyl ether (0.25 mmol/kg) for 4 days and tested at 24 h and 48 h after the last dose injection. The results showed the mice pentobarbital sleeping time was shorter and the P450 content of hepatic microsome increased significantly in the group pretreated with p-amino-4'-methyldiphenyl ether when compared with the control group, while in mice pretreated with p-amino-2',4'-dichlorodiphenyl ether the hepatic microsome P450 content increased but the pentobarbital sleeping time was extended in clear contrast to the control group. The sleeping time of the phenobarbital group (80 mg/kg daily ip injection for 4 days) was shortened at 24 h after the last injection with increased P450 content of hepatic microsome, but it showed no difference at 48 h. The zoxazolamine-paralysis times of mice treated with p-amino-2',4'-dichlorodiphenyl ether were longer than those of the control mice, while the same dose of zoxazolamine did not lead to paralysis in mice pretreated with BNF. p-Amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether inhibited the activity of 7-ethoxyresorufin O-deethylase from rat hepatic microsome induced by BNF in vitro by 70.0% and 50.1% respectively. These results suggest that p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450.
Winters, C.E.
1957-11-12
A method for the preparation of a diethyl ether solution of uranyl nitrate is described. Previously the preparation of such ether solutions has been difficult and expensive, since crystalline uranyl nitrate hexahydrate dissolves very slowly in ether. An improved method for effecting such dissolution has been found, and it comprises adding molten uranyl nitrate hexahydrate at a temperature of 65 to 105 deg C to the ether while maintaining the temperature of the ether solvent below its boiling point.
Christ, J. M.; Neyerlin, K. C.; Wang, H.; ...
2014-10-30
The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less
Degradation of fipronil in anaerobic sediments and the effect on porewater concentrations.
Brennan, Amanda A; Harwood, Amanda D; You, Jing; Landrum, Peter F; Lydy, Michael J
2009-09-01
The current study measured the degradation of fipronil in laboratory-spiked silt loam sediment under anaerobic conditions at different aging times. The half-life of fipronil in anaerobic sediments spiked at 5.8+/-0.049 and 21+/-1.4microg/kg dry weight (dw) was 21+/-0.22 and 15+/-0.11d, respectively. Fipronil-sulfide was the primary degradation product with fipronil-sulfone detected at lower concentrations. No degradation occurred to fipronil-sulfide and fipronil-sulfone over 200d in separate systems. A concurrent decline in sediment concentrations resulted in a decline of fipronil in sediment porewater with an increase in fipronil-sulfide and fipronil-sulfone measured by matrix-solid phase microextraction (matrix-SPME). Equilibrium among sediment, porewater, and matrix-SPME fiber occurred within 138d for fipronil and fipronil-sulfone; however, fipronil-sulfide did not reach equilibrium during the test, and modeling predicted upwards of 1083d to reach equilibrium. Regardless of the time to reach equilibrium, the rapid degradation of fipronil has little ecological significance given that fipronil-sulfide and fipronil-sulfone have equal or greater toxicity, and exhibit greater environmental stability in both the sediment and porewater, thereby becoming bioavailable.
NASA Astrophysics Data System (ADS)
Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief
2015-12-01
Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.
Affinity labelling enzymes with esters of aromatic sulfonic acids
Wong, Show-Chu; Shaw, Elliott
1977-01-01
Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.
Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride
Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.
2016-01-01
Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. PMID:27991593
Hintzenstern, U v; Schwarz, W
1996-02-01
The era of modern anaesthesia in Germany began on January 24th, 1847. This day, professor in ordinary Johann Ferdinand Heyfelder anaesthetized a patient with sulphuric ether in the clinic of surgery and ophthalmology of the University of Erlangen. By March 17th, 1847, Heyfelder had performed 121 surgical procedures under ether. The operations in majority were teeth-extractions, and a few more complex operations such as the treatment of a harelip or of lip cancer or the resection of the shoulder joint. Heyfelder described in detail 108 of these inhalations in a little book entitled The experiments with sulphuric ether. This monograph published in March, 1847, represents one of the first complete dissertations on sulphuric ether in the German literature. In a special chapter he analyzed the development of various physiological and psychological parameters during etherization. Heyfelder also examined blood and urine of some etherized patients and reported that he did not find any important or specific alterations. In 1847, Heyfelder was probably the first to apply salt-ether in man. After 4 administrations he concluded that salt ether acted more quickly but shorter than sulphuric ether. Advantageous were its application without problems and ease of induction. Disadvantageous were its high volatility, its price and the difficulty of getting it in a pure form. From December, 1847, on Heyfelder started to use chloroform. He was now able to perform more major operations, for example, the total resection of the hip-joint. In his book The experiments with sulphuric ether, salt ether, and chloroform he describes a great number of anaesthetic administrations using these 3 agents. In his summary Heyfelder concluded, that chloroform was undoubtly superior to sulphuric ether mainly because it was a quicker acting and longer lasting agent and leads to deeper narcosis. Moreover its application was much easier for it needed no special apparatus. However, because of its great anaesthetic potency, Heyfelder particularly demanded great caution in the application of chloroform. Explicitely he expected an assistant for chloroformizations, whose only duty was to supervise the inhalations and the patient--a forerunner of the modern specialized anaesthesiologist.
Lanigan, R S
2001-01-01
The Polypropylene Glycol (PPG) Butyl Ethers function as skinand hair-conditioning agents in cosmetics. Intestinal absorption of the PPG Butyl Ethers was inversely proportional to the molecular weight. In general, the toxicity of the PPG Butyl Ethers decreased as the molecular weight increased. In acute studies, moderate intraperitoneal (IP) doses of various PPG Butyl Ethers caused convulsive seizures in mice and anesthetized dogs, and large oral doses caused decreased activity, anuria, renal tubular swelling and necrosis, and hepatic swelling and necrosis. PPG-2 Butyl Ether vapors were nontoxic by the inhalation route. PPG-2 Butyl Ether was nontoxic in short-term feeding and dermal exposure studies in rats. In animal irritation studies, PPG-2 Butyl Ether caused minor, transient erythema and desquamation; in addition, erythema, edema, ecchymosis, necrosis, and other changes were observed during an acute percutaneous study. PPG-2 Butyl Ether also caused minor to moderate conjunctival irritation and minor corneal injury. PPG-2 Butyl Ether when dermally applied was nontoxic to pregnant rats and was nonteratogenic at doses up to 1.0 ml/kg/day. PPG BE800 at concentrations of 0.001% to 0.26% in feed was noncarcinogenic to rats after 2 years of treatment. In clinical studies, PPG BE800 was nonirritating and nonsensitizing to the skin when tested using 200 subjects. PPG-40 Butyl Ether was neither an irritant nor a sensitizer in a repeat-insult patch test using 112 subjects. Although clinical testing did not indicate significant skin irritation is produced by these ingredients, the animal test data did indicate the potential that these ingredients can be irritating. Therefore, it was concluded that the PPG Butyl Ethers can be used safely in cosmetic products if they are formulated to avoid irritation. Data on the component ingredients, Propylene Glycol, PPG, and n-Butyl Alcohol, from previous cosmetic ingredient safety assessments were also considered and found to support the safety of PPG Butyl Ethers.
Level-Set Simulation of Viscous Free Surface Flow Around a Commercial Hull Form
2005-04-15
Abstract The viscous free surface flow around a 3600 TEU KRISO Container Ship is computed using the finite volume based multi-block RANS code, WAVIS...developed at KRISO . The free surface is captured with the Level-set method and the realizable k-ε model is employed for turbulence closure. The...computations are done for a 3600 TEU container ship of Korea Research Institute of Ships & Ocean Engineering, KORDI (hereafter, KRISO ) selected as
Optimal domain decomposition strategies
NASA Technical Reports Server (NTRS)
Yoon, Yonghyun; Soni, Bharat K.
1995-01-01
The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.
Numerical Prediction of Periodic Vortex Shedding in Subsonic and Transonic Turbine Cascade Flows
NASA Astrophysics Data System (ADS)
Mensink, C.
1996-05-01
Periodic vortex shedding at the trailing edge of a turbine cascade has been investigated numerically for a subsonic and a transonic cascade flow. The numerical investigation was carried out by a finite volume multiblock code, solving the 2D compressible Reynolds-averaged Navier-Stokes equations on a set of non-overlapping grid blocks that are connected in a conservative way. Comparisons are made with experimental results previously obtained by Sieverding and Heinemann.
Rapid Prediction of Unsteady Three-Dimensional Viscous Flows in Turbopump Geometries
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.
1998-01-01
A program is underway to improve the efficiency of a three-dimensional Navier-Stokes code and generalize it for nozzle and turbopump geometries. Code modifications will include the implementation of parallel processing software, incorporating new physical models and generalizing the multi-block capability to allow the simultaneous simulation of nozzle and turbopump configurations. The current report contains details of code modifications, numerical results of several flow simulations and the status of the parallelization effort.
ETR, TRA642. ON GROUND FLOOR. THE 60TON ETR REACTOR VESSEL ...
ETR, TRA-642. ON GROUND FLOOR. THE 60-TON ETR REACTOR VESSEL IS DROPPED INTO PLACE OVER PIT. KAISER USED TWO MULTI-BLOCK DRUM PULLEYS WITH A COMBINED CAPACITY OF 100 TONS AND A 100-TON DRUM HOIST. THE VESSEL WAS 35 1/2 FEET LONG. INL NEGATIVE NO. 56-4149. R.G. Larsen, Photographer, 12/18/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
de la Llave Plata, M.; Couaillier, V.; Le Pape, M.-C.; Marmignon, C.; Gazaix, M.
2013-03-01
This paper reports recent work on the extension of the multiblock structured solver elsA to deal with hybrid grids. The new hybrid-grid solver is called elsA-H (elsA-Hybrid), is based on the investigation of a new unstructured-grid module has been built within the original elsA CFD (computational fluid dynamics) system. The implementation benefits from the flexibility of the object-oriented design. The aim of elsA-H is to take advantage of the full potential of structured solvers and unstructured mesh generation by allowing any type of grid to be used within the same simulation process. The main challenge lies in the numerical treatment of the hybrid-grid interfaces where blocks of different type meet. In particular, one must pay attention to the transfer of information across these boundaries, so that the accuracy of the numerical scheme is preserved and flux conservation is guaranteed. In this paper, the numerical approach allowing to achieve this is presented. A comparison between the hybrid and the structured-grid methods is also carried out by considering a fully hexahedral multiblock mesh for which a few blocks have been transformed into unstructured. The performance of elsA-H for the simulation of internal flows will be demonstrated on a number of turbomachinery configurations.
Multi-blocking strategies for the INS3D incompressible Navier-Stokes code
NASA Technical Reports Server (NTRS)
Gatlin, Boyd
1990-01-01
With the continuing development of bigger and faster supercomputers, computational fluid dynamics (CFD) has become a useful tool for real-world engineering design and analysis. However, the number of grid points necessary to resolve realistic flow fields numerically can easily exceed the memory capacity of available computers. In addition, geometric shapes of flow fields, such as those in the Space Shuttle Main Engine (SSME) power head, may be impossible to fill with continuous grids upon which to obtain numerical solutions to the equations of fluid motion. The solution to this dilemma is simply to decompose the computational domain into subblocks of manageable size. Computer codes that are single-block by construction can be modified to handle multiple blocks, but ad-hoc changes in the FORTRAN have to be made for each geometry treated. For engineering design and analysis, what is needed is generalization so that the blocking arrangement can be specified by the user. INS3D is a computer program for the solution of steady, incompressible flow problems. It is used frequently to solve engineering problems in the CFD Branch at Marshall Space Flight Center. INS3D uses an implicit solution algorithm and the concept of artificial compressibility to provide the necessary coupling between the pressure field and the velocity field. The development of generalized multi-block capability in INS3D is described.
NASA Astrophysics Data System (ADS)
Nouri-Borujerdi, Ali; Moazezi, Arash
2018-01-01
The current study investigates the conjugate heat transfer characteristics for laminar flow in backward facing step channel. All of the channel walls are insulated except the lower thick wall under a constant temperature. The upper wall includes a insulated obstacle perpendicular to flow direction. The effect of obstacle height and location on the fluid flow and heat transfer are numerically explored for the Reynolds number in the range of 10 ≤ Re ≤ 300. Incompressible Navier-Stokes and thermal energy equations are solved simultaneously in fluid region by the upwind compact finite difference scheme based on flux-difference splitting in conjunction with artificial compressibility method. In the thick wall, the energy equation is obtained by Laplace equation. A multi-block approach is used to perform parallel computing to reduce the CPU time. Each block is modeled separately by sharing boundary conditions with neighbors. The developed program for modeling was written in FORTRAN language with OpenMP API. The obtained results showed that using of the multi-block parallel computing method is a simple robust scheme with high performance and high-order accurate. Moreover, the obtained results demonstrated that the increment of Reynolds number and obstacle height as well as decrement of horizontal distance between the obstacle and the step improve the heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, V.; Chawla, G.; Kumar, V.
1987-04-01
Pathomorphological changes in the skin was noticed under the scanning electron microscope in fish fingerlings (Cirrhina mrigala) exposed to 0.005 ppm (25% of the LC50) concentration to linear alkyl benzene sulfonate. The epithelial cells present in the epidermis of the skin were found to secrete more mucus with linear alkyl benzene sulfonate (LAS) than did controls. The presence or deposition of mucus on the surface of skin indicated likely molecular interaction between constituents of mucus and LAS.
Karakuş, Hamza; Dürüst, Yaşar
2017-02-01
The reaction of C-(4-substituted-phenyl)-N-(benzoyl)-N-methylglycines with benzo[b]thiophene 1,1-dioxide unexpectedly gave benzothiophene-fused pyrrole derivatives in toluene under microwave irradiation via a cycloaddition and metal-free Pummerer-type sulfone deoxygenation path. In order to obtain the desired sulfone derivatives, the sulfide group underwent oxidation with m-CPBA to afford sulfones. The structures of all the new products were elucidated by spectroscopic/physical methods and, in two cases, by X-ray diffraction.
Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V
2016-03-02
A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C.
Synthesis of Amphoteric Sulfonic Ionic Liquid Surfactant and Measurement of Its Surface Properties
NASA Astrophysics Data System (ADS)
Zhao, Xiuli; Zhang, Changbao; Liu, Da; Liu, Haiyan
2018-03-01
Three kinds of amphoteric sulfonic ionic liquid surfactants were synthesized in this paper. Their functional group structures were characterized by infrared spectrometer. The surface properties of them were studied. The results show that the functional group structures of all three products conform to the structure characteristics of amphoteric sulfonic ionic liquid surfactants. The shorter the long chain alkyl carbon chain is, the closer the arrangement of surfactant on the gas-liquid surface will be, and the higher the efficiency in reducing the surface tension..
Garcia, L S; Shimizu, R
1981-01-01
One hundred fecal specimens preserved in polyvinyl alcohol fixative were examined by the Formalin-ether sedimentation technique with ethyl acetate substituted for diethyl ether. Technical performance of the procedures, appearance and amount of sediment obtained, and organism morphology were comparable. Also, ethyl acetate is less flammable and, therefore, less dangerous to use than diethyl ether. Results of parasite recovery when diethyl ether or ethyl acetate was used revealed few clinical relevant differences, most of which could also have been attributed to other variables inherent in this type of diagnostic testing. PMID:7229014
Propenyl ether monomers for photopolymerization
Crivello, J.V.
1996-10-22
Propenyl ether monomers of formula A(OCH{double_bond}CHCH{sub 3}){sub n} wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of the above formula together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.
Propenyl ether monomers for photopolymerization
Crivello, James V.
1996-01-01
Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.
Process for making propenyl ethers and photopolymerizable compositions containing them
Crivello, James V.
1996-01-01
Propenyl ether monomers of formula V A(OCH.dbd.CHCH.sub.3).sub.n wherein n is an integer from one to six and A is selected from cyclic ethers, polyether and alkanes are disclosed. The monomers are readily polymerized in the presence of cationic photoinitiators, when exposed to actinic radiation, to form poly(propenyl ethers) that are useful for coatings, sealants, varnishes and adhesives. Compositions for preparing polymeric coatings comprising the compounds of formula V together with particular cationic photoinitiators are also disclosed, as are processes for making the monomers from allyl halides and readily available alcohols. The process involves rearranging the resulting allyl ethers to propenyl ethers.
Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jiayue; Zhao, Chen; Mei, Donghai
2014-01-01
A novel route for cleaving the C-O aryl ether bonds of p-substituted H-, CH 3-, and OH- diphenyl ethers has been explored over Ni/SiO 2 catalysts at very mild conditions. The C-O bond of diphenyl ether is cleaved by parallel hydrogenolysis and hydrolysis (hydrogenolysis combined with HO* addition) on Ni. The rates as a function of H 2 pressure from 0 to 10 MPa indicate that the rate-determining step is the C-O bond cleavage on Ni. H* atoms compete with the organic reactant for adsorption leading to a maximum in the rate with increasing H 2 pressure. In contrast tomore » diphenyl ether, hydrogenolysis is the exclusive route for cleaving an ether C-O bond of di-p-tolyl ether to form p-cresol and toluene. 4,4'-dihydroxydiphenyl ether undergoes sequential surface hydrogenolysis, first to phenol and HOC 6H 4O* (adsorbed), which is then cleaved to phenol (C 6H 5O* with added H*) and H 2O (O* with two added H*) in a second step. Density function theory supports the operation of this pathway. Notably, addition of H* to HOC 6H 4O* is less favorable than a further hydrogenolytic C-O bond cleavage. The TOFs of three aryl ethers with Ni/SiO 2 in water followed the order 4,4'-dihydroxydiphenyl ether (69 h -1) > diphenyl ether (26 h -1) > di-p-tolyl ether (1.3 h -1), in line with the increasing apparent activation energies, ranging from 93 kJ∙mol -1 (4,4'-dihydroxydiphenyl ether) < diphenyl ether (98 kJ∙mol -1) to di-p-tolyl ether (105 kJ∙mol -1). D.M. thanks the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals.
Gebbink, Wouter A; Bossi, Rossana; Rigét, Frank F; Rosing-Asvid, Aqqalu; Sonne, Christian; Dietz, Rune
2016-02-01
The present pilot study examined emerging per- and polyfluoroalkyl substances (PFASs), i.e., a suite of short chain perfluoroalkyl acids (PFAAs), PFAA precursors and replacement chemicals, and legacy PFASs (long chain length PFAAs) in livers from ringed seals, polar bears and, for the first time, killer whales from East Greenland collected in 2012-2013. Among the emerging PFASs, perfluorobutanesulfonic acid (PFBS) and F-53B (a chlorinated polyfluorinated ether sulfonic acid) were detected in Arctic wildlife, albeit at concentrations approximately four orders of magnitude lower compared to perfluorooctanesulfonic acid (PFOS). PFOS was positively correlated with F-53B, but not PFBS in all three species. A total of 17 PFASs were detected in killer whales, including in a mother-fetus pair, demonstrating maternal transfer. ∑PFAS concentrations in killer whales (269 ± 90 ng/g) were comparable to concentrations found in ringed seals (138 ± 7 ng/g), however, an order of magnitude lower compared to concentrations found in polar bear livers (2336 ± 263 ng/g). Patterns of long chain PFAAs in killer whales differed from the pattern in ringed seals and polar bears. Of the monitored PFAA precursors, only perfluorooctanesulfonamide (FOSA) was detected in all three species, and FOSA/PFOS ratios and isomer patterns indicated that killer whales have a potential lower metabolic capacity to degrade FOSA compared to polar bears and ringed seals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zuo, Jian; Shi, Gui Min; Wei, Shawn; Chung, Tai-Shung
2014-08-27
Novel composite membranes comprising sulfonated styrenic Nexar pentablock copolymers were developed by dip-coating on poly(ether imide) hollow fibers for pervaporation dehydration of C2-C4 alcohols. The advantages of using block copolymers as the selective layer are (1) their effectiveness to synergize the physicochemical properties of different chemical and structural moieties and (2) tunable nanoscale morphology and nanostructure via molecular engineering. To achieve high-performance composite membranes, the effects of coating time, ion exchange capacity (IEC) of the copolymer, and solvent systems for coating were investigated. It is revealed that a minimum coating time of 30 s is needed for the formation of a continuous and less-defective top layer. A higher IEC value results in a membrane with a higher flux and lower separation factor because of enhanced hydrophilicity and stretched chain conformation. Moreover, the composite membranes prepared from hexane/ethanol mixtures show higher separation factors and lower fluxes than those from the hexane solvent owing to microdomain segregation induced by ethanol and a smooth and dense top selective layer. These hypotheses were verified by atomic force microscopy and positron annihilation spectroscopy. The newly developed composite membranes demonstrate impressive separation performance with fluxes exceeding 2 kg/m(2) h and separation factors more than 200 for isopropyl alcohol and n-butanol dehydration from 85/15 wt % alcohol/water feed mixtures at 50 °C.
Damar Huner, Irem; Gulec, Haci Ali
2017-12-01
The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.
He, Xueyi; He, Guangwei; Zhao, Anqi; Wang, Fei; Mao, Xunli; Yin, Yongheng; Cao, Li; Zhang, Bei; Wu, Hong; Jiang, Zhongyi
2017-08-23
Nafion, as a state-of-the-art solid electrolyte for proton exchange membrane fuel cells (PEMFCs), suffers from drastic decline in proton conductivity with decreasing humidity, which significantly restricts the efficient and stable operation of the fuel cell system. In this study, the proton conductivity of Nafion at low relative humidity (RH) was remarkably enhanced by incorporating multifunctional graphene oxide (GO) nanosheets as multifunctional fillers. Through surface-initiated atom transfer radical polymerization of sulfopropyl methacrylate (SPM) and poly(ethylene glycol) methyl ether methacrylate, the copolymer-grafted GO was synthesized and incorporated into the Nafion matrix, generating efficient paths at the Nafion-GO interface for proton conduction. The Lewis basic oxygen atoms of ethylene oxide (EO) units and sulfonated acid groups of SPM monomers served as additional proton binding and release sites to facilitate the proton hopping through the membrane. Meanwhile, the hygroscopic EO units enhanced the water retention property of the composite membrane, conferring a dramatic increase in proton conductivity under low humidity. With 1 wt % filler loading, the composite membrane displayed the highest proton conductivity of 2.98 × 10 -2 S cm -1 at 80 °C and 40% RH, which was 10 times higher than that of recast Nafion. Meanwhile, the Nafion composite exhibited a 135.5% increase in peak power density at 60 °C and 50% RH, indicating its great application potential in PEMFCs.
Effect of extrusion rate on morphology of Kaolin/PolyEtherSulfone (PESf) membrane precursor
NASA Astrophysics Data System (ADS)
Misaran, M. S.; Sarbatly, R.; Bono, A.; Rahman, M. M.
2016-11-01
This study aims to investigate the influence of apparent viscosity induced by spinneret geometry and extrusion rate on morphology of Kaolin/PESf hollow fiber membranes. Different extrusion rates at two different rheology properties were introduced on a straight and conical spinneret resulting in various shear rates. The hollow fiber membrane precursors were spun using the wet spinning method to decouple the effect of shear and elongation stress due to gravity stretched drawing. The morphology of the spun hollow fiber was observed under Scanning Electron Microscope (SEM) and the overall porosity were measured using mercury intrusion porosimeter. Shear rate and apparent viscosity at the tip of the spinneret annulus were simulated using a computational fluid dynamics package; solidworks floworks. Simulation data shows that extrusion rate increment increases the shear rate at the spinneret wall which in turn reduce the apparent viscosity; consistent with a non Newtonian shear thinning fluid behavior. Thus, the outer finger-like region grows as the shear rate increases. Also, overall porosity of hollow fiber membrane decreases with extrusion rate increment which is caused by better molecular orientation; resulting in denser hollow fiber membrane. Thin outer finger-like region is achieved at low shear experience of 109.55 s-1 via a straight spinneret. Increasing the extrusion rate; thus shear rate will cause outer finger-like region growth which is not desirable in a separation process.
Mai, Zhensheng; Zhang, Huamin; Zhang, Hongzhang; Xu, Wanxing; Wei, Wenping; Na, Hui; Li, Xianfeng
2013-02-01
Anion exchange membranes prepared from quaternized poly(tetramethyl diphenyl ether sulfone) (QAPES) were first investigated in the context of vanadium flow battery (VFB) applications. The membranes showed an impressive suppression effect on vanadium ions. The recorded vanadium permeability was 0.02×10(-7)-0.09×10(-7) cm(2) min(-1), which was two orders of magnitude lower than that of Nafion 115. The self-discharge duration of a VFB single cell with a QAPES membrane is four times longer than that of Nafion 115. The morphological difference in hydrophilic domains between QAPES and Nafion was confirmed by TEM. After soaking the membranes in VO(2)(+) solution, adsorbed vanadium ions can barely be found in QAPES, whereas the hydrophilic domains of Nafion were stained. In the ex situ chemical stability test, QAPES showed a high tolerance to VO(2)(+) and remained intact after immersion in VO(2)(+) solution for over 250 h. The performance of a VFB single cell assembled with QAPES membranes is equal to or even better than that of Nafion 115 and remains stable in a long-term cycle test. These results indicate that QAPES membranes can be an ideal option in the fabrication of high-performance VFBs with low electric capacity loss. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...
40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...
40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...
40 CFR 721.3438 - Chlorohydroxyalkyl butyl ether (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chlorohydroxyalkyl butyl ether... Specific Chemical Substances § 721.3438 Chlorohydroxyalkyl butyl ether (generic). (a) Chemical substance... chlorohydroxyalkyl butyl ether (PMN P-99-1295) is subject to reporting under this section for the significant new use...
40 CFR 721.3438 - Chlorohydroxyalkyl butyl ether (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chlorohydroxyalkyl butyl ether... Specific Chemical Substances § 721.3438 Chlorohydroxyalkyl butyl ether (generic). (a) Chemical substance... chlorohydroxyalkyl butyl ether (PMN P-99-1295) is subject to reporting under this section for the significant new use...
40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...
40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...
40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...
40 CFR 721.1580 - Disubstituted benzene ether, polymer with substituted phenol (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted benzene ether, polymer... Significant New Uses for Specific Chemical Substances § 721.1580 Disubstituted benzene ether, polymer with... chemical substance generically identified as disubstituted benzene ether, polymer with substituted phenol...