Science.gov

Sample records for ether-maleic anhydride polymer

  1. Anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads-based capture of human influenza A and B virus.

    PubMed

    Sakudo, Akikazu; Baba, Koichi; Tsukamoto, Megumi; Sugimoto, Atsuko; Okada, Takashi; Kobayashi, Takanori; Kawashita, Norihito; Takagi, Tatsuya; Ikuta, Kazuyoshi

    2009-01-15

    An anionic magnetic beads-based method was developed for the capture of human influenza A and B viruses from nasal aspirates, allantoic fluid and culture medium. A polymer, poly(methyl vinyl ether-maleic anhydride) [poly(MVE-MA)], was used to endow magnetic beads with a negative charge and bioadhesive properties. After incubation with samples containing human influenza virus, the beads were separated from supernatants by applying a magnetic field. The adsorption [corrected] of the virus by the beads was confirmed by hemagglutinin assay, immunochromatography, Western blotting, egg infection, and cell infection. Successful capture was proved using 5 H1N1 influenza A viruses, 10 H3N2 influenza A viruses, and 6 influenza B viruses. Furthermore, the infectivity in chicken embryonated eggs and Madin-Darby canine kidney (MDCK) cells of the captured human influenza virus was similar to that of the total viral quantity of starting materials. Therefore, this method of capture using magnetic beads coated with poly(MVE-MA) can be broadly used for the recovery of infectious human influenza viruses.

  2. Use of anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads for capture of respiratory syncytial virus.

    PubMed

    Sakudo, Akikazu; Baba, Koichi; Tsukamoto, Megumi; Ikuta, Kazuyoshi

    2009-08-01

    Respiratory syncytial virus (RSV) is the single most important cause of severe lower respiratory tract infections in infants and young children, and a major public health concern in pediatrics. However, current diagnostic methods for RSV are not sufficiently sensitive. In addition, there is no simple method for enhancing RSV detection. Here, a method for capturing RSV from nasal fluid has been developed using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). The beads were incubated with RSV-infected nasal fluid, then separated from the supernatant by applying a magnet field and washed. The adsorption [corrected] of RSV by the beads was confirmed by immunochromatography, reverse transcription-polymerase chain reaction, Western blotting and an enzyme-linked immunosorbent assay, which indicated the presence of nucleocapsid protein, fusion protein, and the viral genome of RSV on the incubated beads. Therefore, this capture method will contribute to the improvement of RSV detection.

  3. Immobilization of saccharides and peptides on 96-well microtiter plates coated with methyl vinyl ether-maleic anhydride copolymer.

    PubMed

    Satoh, A; Kojima, K; Koyama, T; Ogawa, H; Matsumoto, I

    1998-06-15

    We have previously reported a method to immobilize protein ligands on microtiter plates coated with methyl vinyl ether-maleic anhydride copolymer (MMAC) [Isosaki, K., et al. (1992) J. Chromatogr. 597, 123-128]. In this study, we improved the MMAC method to efficiently immobilize not only small ligands such as peptides and oligosaccharides, which could not be efficiently immobilized previously, but also heparin via its reducing end. Amino and hydrazino groups were introduced to MMAC-coated microtiter plate wells by coupling to acid anhydride groups of MMAC with 1,6-hexamethylenediamine and adipic acid dihydrazide, respectively. The amino groups introduced were allowed to react with peptides by use of divalent cross-linkers. Hydrazino groups were allowed to react with formyl groups of saccharides by reductive amination. Peptides and oligosaccharides were immobilized in a dose-dependent manner by these methods. In the case of the angiotensin peptide thus immobilized, the detection limit by monoclonal antibodies was as low as 0.1-1 fmol peptide per well. Application of 20-200 nmol oligosaccharides to the well was sufficient to immobilize and subsequently detect lectins. Furthermore, heparin immobilized on the hydrazinocoated wells was successfully used for the binding assay of annexin IV. PMID:9648659

  4. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  5. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  6. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic). 721.10038 Section 721.10038... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  7. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  8. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols...

  9. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... alkyl amines, sodium salts, compds. with ethanolamine. (a) Chemical substance and significant new uses... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  10. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  11. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN...

  12. Luteinizing hormone-releasing hormone targeted poly(methyl vinyl ether maleic acid) nanoparticles for doxorubicin delivery to MCF-7 breast cancer cells.

    PubMed

    Varshosaz, Jaleh; Jahanian-Najafabadi, Ali; Ghazzavi, Jila

    2016-08-01

    The purpose of this study was to design a targeted anti-cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross-linking method using Zn(2+) ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1-ethyl-3-(3-dimethylaminopropyl) carboiimid HCl as cross-linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier-transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non-targeted ones were studied on MCF-7 cells which overexpress luteinizing hormone-releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF-7 cells compared to free DOX and non-targeted NPs. PMID:27463791

  13. Imide oligomers endcapped with phenylethynyl phthalic anhydrides and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)

    1996-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  14. Imide Oligomers Endcapped with Phenylethynl Phthalic Anhydrides and Polymers Therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1998-01-01

    Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N.N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or cheznicauy to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydxide(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  15. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated...

  16. The application of Fourier transform Raman spectroscopy to the analysis of poly(anhydride) homo- and co-polymers

    NASA Astrophysics Data System (ADS)

    Tudor, A. M.; Melia, C. D.; Davies, M. C.; Hendra, P. J.; Church, S.; Domb, A. J.; Langer, R.

    Fourier transform Raman spectroscopy was used to characterise a homologous series of aliphatic poly(anhydrides), poly[ bis( p-carboxyphenoxy) alkane anhydrides] and a selection of co-polymers of sebacic/ [bis( p-carboxyphenoxy) propane anhydride] P(SA-CPP). The techniqe is compared to conventional infrared for characterisation work, highlighting the advantage of small sample requirement and minimal sample preparation necessary for acquisition of spectral information. It is possible to differentiate between aromatic and aliphatic anhydride bonding, and in conjunction with other diagnostic bands to monitor the change in individual monomer composition within a co-polymer mixture.

  17. Virus capture using anionic polymer-coated magnetic beads (review).

    PubMed

    Sakudo, Akikazu; Onodera, Takashi

    2012-07-01

    The recent incidence of emerging and re-emerging viruses is a serious health concern worldwide. The development of transportation systems, such as air travel, has increased the risk of a global pandemic caused by emerging viruses. Agents causing novel infections are often zoonotic, crossing from the natural host into the human population. Hence, comprehensive surveillance of virus-infected animals as well as humans is required. However, the number of virus particles in clinical and environmental samples is usually very low. Thus, a method to concentrate the virus is sometimes required in order to enable detection. We recently reported that magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydride) can be used to facilitate the rapid and sensitive detection of viruses. In this review, we describe recent developments for concentrating viruses using anionic magnetic beads.

  18. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin.

    PubMed

    Bien-Aime, Stephan; Yu, Weiling; Uhrich, Kathryn E

    2016-07-01

    Pinosylvin is a natural stilbenoid known to exhibit antibacterial bioactivity against foodborne bacteria. In this work, pinosylvin is chemically incorporated into a poly(anhydride-ester) (PAE) backbone via melt-condensation polymerization, and characterized with respect to its physicochemical and thermal properties. In vitro release studies demonstrate that pinosylvin-based PAEs hydrolytically degrade over 40 d to release pinosylvin. Pseudo-first order kinetic experiments on model compounds, butyric anhydride and 3-butylstilbene ester, indicate that the anhydride linkages hydrolyze first, followed by the ester bonds to ultimately release pinosylvin. An antibacterial assay shows that the released pinosylvin exhibit bioactivity, while in vitro cytocompatibility studies demonstrate that the polymer is noncytotoxic toward fibroblasts. These preliminary findings suggest that the pinosylvin-based PAEs can serve as food preservatives in food packaging materials by safely providing antibacterial bioactivity over extended time periods. PMID:27071713

  19. Biodegradable polymers derived from renewable resources: Highly branched copolymers of itaconic anhydride

    NASA Astrophysics Data System (ADS)

    Wallach, Joshua Andrew

    In an effort to design cyclic anhydride containing polymers that are derived from renewable resources and have biodegradable characteristics, three copolymer systems using itaconic anhydride have been studied. Two of the systems were copolymers with stearate based monomers; vinyl stearate and stearyl methacrylate, while the third was a copolymer with a methacrylate terminated poly (lactic acid) (PLA) macromonomer. For the stearate systems, stearyl methacrylate showed good copolymerization with equal conversions for both monomers. On the other hand vinyl stearate did not show as good results due to its decreased reactivity, which resulted in a copolymer highly enriched in itaconic anhydride with significant amounts of unreacted vinyl stearate under all copolymer compositions. These differing results were confirmed through analysis of reactivity ratios showing a results that are more favorable for copolymerization for the methacrylate system. Copolymers from both systems showed single melting transitions in a precarious range of 45--50°C arising from the stearyl side groups, though after quenching from the melt this shifted to below room temperature. Anhydride retention was confirmed through structural analysis. Similar to the stearyl methacrylate system, methacrylate terminated PLA macromonomers were copolymerized with itaconic anhydride. PLA's acceptance as a biodegradable material derived from renewable resources, make it a viable choice, with which to design anhydride containing copolymers. Good copolymerization was shown for all compositions studied with retention of the anhydride, though at high itaconic anhydride concentrations conversions were reduced significantly. Copolymers showed glass transition temperatures ranging from 32°C for 85 mole % PLA macromonomer to 73°C for 85 mole % itaconic anhydride. An effort to produce PLA macromonomers through a process of chemical recycling commercial PLA was also undertaken. Promising results were obtained showing

  20. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid) Bioadhesive Nanoparticles

    PubMed Central

    Varshosaz, J.; Minaiyan, M.; Forghanian, M.

    2014-01-01

    The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT). Therefore, poly(methyl vinyl ether maleic acid) [P(MVEMA)] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1), iv solution of sCT (5 μg·kg−1), and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA) nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly. PMID:24701588

  1. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkyl amines, sodium salts, compds. with ethanolamine. (a) Chemical substance and significant new uses... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  2. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... anhydride and alkyl alcohols (generic). 721.10316 Section 721.10316 Protection of Environment ENVIRONMENTAL... anhydride and alkyl alcohols (generic). (a) Chemical substance and significant new uses subject to reporting... and alkyl alcohols (PMN P-02-872) is subject to reporting under this section for the significant...

  3. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... anhydride and alkyl alcohols (generic). 721.10316 Section 721.10316 Protection of Environment ENVIRONMENTAL... anhydride and alkyl alcohols (generic). (a) Chemical substance and significant new uses subject to reporting... and alkyl alcohols (PMN P-02-872) is subject to reporting under this section for the significant...

  4. 40 CFR 721.10316 - Dicyclopentadiene polymer with maleic anhydride and alkyl alcohols (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... anhydride and alkyl alcohols (generic). 721.10316 Section 721.10316 Protection of Environment ENVIRONMENTAL... anhydride and alkyl alcohols (generic). (a) Chemical substance and significant new uses subject to reporting... and alkyl alcohols (PMN P-02-872) is subject to reporting under this section for the significant...

  5. Efficient capture of infectious H5 avian influenza virus utilizing magnetic beads coated with anionic polymer.

    PubMed

    Sakudo, Akikazu; Ikuta, Kazuyoshi

    2008-12-01

    The possible emergence of a pandemic influenza virus from the avian influenza virus (AIV) has become a serious threat. The isolation of viruses will be crucial for further virological analysis and the development of vaccines. However, currently, there is no simple method for facilitating the isolation of infectious AIV. Here, we have developed a simple method of capturing AIV using anionic magnetic beads. The method employed the capture of AIV (H5N1, H5N2, and H5N3) from liquid samples such as allantoic fluid (AF) and cell culture medium (CM) using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydride). After their incubation with AIV-containing samples, the magnetic beads were separated from the supernatant by applying a magnetic field. The absorption of AIV on the beads was confirmed by immunochromatography and an enzyme-linked immunosorbent assay, which indicated the presence of hemagglutinin, neuraminidase, and nucleoprotein of AIV. Furthermore, the infectivity in chicken eggs of AIV captured by magnetic beads was similar to that of the starting materials. The capture of AIV using magnetic beads coated with anionic polymers will contribute to the sufficient recovery of infectious AIV and approach for potential pandemic influenza viruses.

  6. Synthesis, characterisation, and evaluation of a cross-linked disulphide amide-anhydride-containing polymer based on cysteine for colonic drug delivery.

    PubMed

    Lim, Vuanghao; Peh, Kok Khiang; Sahudin, Shariza

    2013-12-18

    The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5-1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon.

  7. Maleic anhydride

    Integrated Risk Information System (IRIS)

    Maleic anhydride ; CASRN 108 - 31 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  8. Phthalic anhydride

    Integrated Risk Information System (IRIS)

    Phthalic anhydride ; CASRN 85 - 44 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  9. Rheological Analysis of Polymer Interactions and Ageing of Poly(Methylvinylether-Co-Maleic Anhydride)/Poly(Vinyl Alcohol) Binary Networks and Their Effects on Mucoadhesion.

    PubMed

    Andrews, Gavin P; Laverty, Thomas P; Jones, David S

    2015-12-01

    Polymer blends of poly(vinylalcohol, PVA) and poly(methylvinylether-co-maleic anhydride, PMVE/MA) were formulated and their viscoelastic and mucoadhesive properties characterised. The viscoelastic and mucoadhesive properties were dependent on polymer concentration, molecular weight of PVA and PVA:PMVE/MA ratio. Alteration of these properties allowed platforms to be designed to offer defined rheological and mucoadhesive properties, properties that could not be achieved using monopolymeric platforms. A strong correlation was noted between the modulus of the polymeric blends and mucoadhesion. After storage, the polymeric blends underwent rheological structuring (ageing) with an attendant enhancement of mucoadhesion. In certain blends containing the highest molecular weight of PVA (146-186 kDa), storage ultimately resulted in an increase and then a significant decrease in the rheological and mucoadhesive properties, the latter phenomenon being accredited to polymer recrystallisation. Ageing of the rheological and mucoadhesive properties was modelled using an exponential growth model, allowing predictions of the storage period associated with the maxima in viscoelastic and mucoadhesive properties. These observations highlight the possible implications whenever interactive polymeric blends are employed in drug delivery. Caution is therefore urged whenever a formulation strategy based on interactive polymer blends is employed to ensure that ageing is fully understood and mathematically characterised. PMID:26502109

  10. Photocrosslinked poly(ester anhydride)s for peptide delivery: Effect of oligomer hydrophobicity on PYY3-36 delivery.

    PubMed

    Mönkäre, Juha; Hakala, Risto A; Kovalainen, Miia; Korhonen, Harri; Herzig, Karl-Heinz; Seppälä, Jukka V; Järvinen, Kristiina

    2012-01-01

    The treatment for many diseases can be improved by developing more efficient peptide delivery technologies, for example, biodegradable polymers. In this work, photocrosslinked poly(ester anhydride)s based on functionalized poly(ε-caprolactone) oligomers were investigated for their abilities to achieve controlled peptide delivery. The effect of oligomer hydrophobicity on erosion and peptide release from poly(ester anhydride)s was evaluated by developing a sustained subcutaneous delivery system for an antiobesity drug candidate, peptide YY3-36 (PYY3-36). Oligomer hydrophobicity was modified with alkenylsuccinic anhydrides containing a 12-carbon alkenyl chain. PYY3-36 was mixed as a solid powder with methacrylated poly(ester anhydride) precursors, and this mixture was photocrosslinked at room temperature to form an implant for subcutaneous administration in rats. The oligomer hydrophobicity controlled the polymer erosion and PYY3-36 release as the increased hydrophobicity via the alkenyl chain prolonged polymer erosion in vitro and sustained in vivo release of PYY3-36. In addition, photocrosslinked poly(ester anhydride)s increased the bioavailability of PYY3-36 by up to 20-fold in comparison with subcutaneous administration of solution, evidence of remarkably improved delivery. In conclusion, this work demonstrates the suitability of photocrosslinked poly(ester anhydride)s for use in peptide delivery.

  11. Acetylene-derived polymers and their applications in hair and skin care.

    PubMed

    Petter, P J

    1989-02-01

    Synopsis Since the introduction over 30 years ago of polyvinylpyrrolidone (PVP) as the first synthetic hairspray resin, acetylene-derived polymers have found wide and increasing applications in the cosmetics and toiletries industry. This review covers the two main classes of acetylenic polymers. In the first class, in which the chemistry may be traced back to reaction of acetylene with formaldehyde, are included PVP homopolymers and copolymers of VP with vinyl acetate, dimethylaminoethyl methacrylate, vinylcaprolactam and styrene. In the second class, stemming from reaction of acetylene with methanol, are the poly (vinyl methyl ether/maleic acid) monoester resins.

  12. Acetylene-derived polymers and their applications in hair and skin care.

    PubMed

    Petter, P J

    1989-02-01

    Synopsis Since the introduction over 30 years ago of polyvinylpyrrolidone (PVP) as the first synthetic hairspray resin, acetylene-derived polymers have found wide and increasing applications in the cosmetics and toiletries industry. This review covers the two main classes of acetylenic polymers. In the first class, in which the chemistry may be traced back to reaction of acetylene with formaldehyde, are included PVP homopolymers and copolymers of VP with vinyl acetate, dimethylaminoethyl methacrylate, vinylcaprolactam and styrene. In the second class, stemming from reaction of acetylene with methanol, are the poly (vinyl methyl ether/maleic acid) monoester resins. PMID:19456933

  13. Epoxies from maleic anhydride

    SciTech Connect

    Ahmad, I.; Tumi, S.O.; Bashish, M.; El-Abib, A.R.

    1989-02-01

    The epoxidation of maleic anhydride by hydrogen peroxide in the presence of sodium molybdate catalyst is first order with respect to both maleic anhydride and sodium molybdate concentration. The reaction is zero order with respect to hydrogen peroxide concentration. The calculated rates are reported and a reaction mechanism is proposed.

  14. Phenylethynyl Phthalic Anhydride

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Controlled molecular weight PhenylEthynyl Terminated Imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with PhenylEthynyl Phthalic Anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2pyrrolidinone or N N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  15. Photocrosslinkable polyesters and poly(ester anhydride)s for biomedical applications.

    PubMed

    Seppälä, Jukka; Korhonen, Harri; Hakala, Risto; Malin, Minna

    2011-12-01

    Crosslinking is a feasible way to prepare biodegradable polymers with potential in biomedical applications such as controlled release of active agents and tissue engineering. A synthesis route in which functional telechelic aliphatic polyester oligomers are used as precursors for the preparation of crosslinked polyesters and poly(ester anhydride)s is described. Mechanical properties, degradation characteristics and rate, and bioactivity can be modified widely by controlling the chemical composition and architecture of the crosslinkable oligomers. In tissue engineering, photocrosslinking allows to use crosslinkable oligomers in advanced manufacturing techniques like micromolding in capillaries, stereolithography and two-photon polymerization. PMID:22052651

  16. Isomeric oxydiphthalic anhydride polyimides

    NASA Technical Reports Server (NTRS)

    Gerber, Margaret K.; Pratt, J. Richard; Stclair, Terry L.

    1988-01-01

    Much of the polyimide research at Langley Research Center has focused on isomeric modification of the diamine component; polyimides having considerably improved processability and adhesion have resulted. The present structure-property study was designed to investigate how isomeric attachment of the three oxydiphthalic anhydride (ODPA) polyimides affects their properties. Each dianhydride, 3,4,3',4'-oxydiphthalic anhydride (4,4'-OPDA,I), 2,3,2',3'-oxydiphthalic anhydride (3,3'-ODPA,II), and 2,3,3',4'-oxydiphthalic anhydride (3,4'-OPDA,III), was reacted with p-phenylenediamine, 4,4'-oxydianiline, 3,3'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, and 4,4'-bis(3-aminophenoxy)benzophenone in DMAc. The inherent viscosities of the resulting poly(amic acids) were determined. Thermally imidized films were studied for their creasability and solubility, as well as by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide angle X-ray scattering (WAXS). A comparison of these properties will be made.

  17. Alternating Poly(ester-anhydride) by Insertion Polycondensation.

    PubMed

    Haim-Zada, Moran; Basu, Arijit; Hagigit, Tal; Schlinger, Ron; Grishko, Michael; Kraminsky, Alexander; Hanuka, Ezra; Domb, Abraham J

    2016-06-13

    We report on a synthetic method where polyanhydride is used as starting material and the ester monomers are inserted through complete esterification, leading to an alternating ester-anhydride copolymer. The molar ratio of ricinoleic acid (RA) and sebacic acid (SA) was optimized until polysebacic acid is completely converted to carboxylic acid-terminated RA-SA and RA-SA-RA ester-dicarboxylic acids. These dimers and trimers were activated with acetic anhydride, polymerized under heat and vacuum to yield alternating RA-SA copolymer. The resulting alternating poly(ester-anhydride) have the RA at regular intervals. The regular occurrences of RA side chains prevent anhydride interchange, enhancing hydrolytic stability, which allows storage of the polymer at room temperature. PMID:27198864

  18. Succinic anhydrides from epoxides

    SciTech Connect

    Coates, Geoffrey W.; Rowley, John M.

    2013-07-09

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  19. Succinic anhydrides from epoxides

    SciTech Connect

    Coates, Geoffrey W; Rowley, John M

    2014-12-30

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  20. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated...

  1. Capture of dengue virus type 3 using anionic polymer-coated magnetic beads.

    PubMed

    Sakudo, Akikazu; Masrinoul, Promsin; Tanaka, Yasuharu; Ikuta, Kazuyoshi

    2011-10-01

    Dengue virus (DENV) is a mosquito-borne virus and can be transmitted to humans by mosquito vectors. Although surveillance of dengue virus-infected mosquitoes is the most effective way of controlling DENV infections, detection of DENVs in mosquitoes is limited by the low sensitivity of available detection methods. We here report a method for capturing DENV type 3 (DENV-3) from mosquito cells using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). The beads were incubated with cell culture medium of DENV-3-infected mosquito cells, then separated from the supernatant by applying a magnetic field and washed. Adsorption of DENV-3 on the beads was confirmed by reverse transcription-polymerase chain reaction, which detected the presence of DENV-3 genomic RNA on the beads, and Western blotting, which determined the major DENV-3 envelope protein on the beads. Therefore, this capture method may enable an improvement in DENV-3 detection.

  2. Capture of infectious borna disease virus using anionic polymer-coated magnetic beads.

    PubMed

    Sakudo, Akikazu; Tanaka, Yasuharu; Ikuta, Kazuyoshi

    2011-05-01

    Borna disease virus (BDV) is a noncytolytic, neurotrophic virus that infects a range of vertebrates, including all warm-blooded animals and possibly humans. Although BDV infections are thought to cause neurological disorders, evidence of the presence of the virus in tissues or blood of psychiatric patients is limited, possibly due to the low sensitivity of detection methods. Here, a simple method for capturing BDV has been developed using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). The beads were incubated with lysate from BDV-infected cells, then separated from the supernatant by applying a magnet field and washed. The adsorption of BDV by the beads was confirmed by reverse transcription-polymerase chain reaction and Western blotting, which indicated the presence of the phosphoprotein (P), nucleoprotein (N), and viral genome of BDV on the incubated beads. This method of capture may contribute to the improved detection of BDV.

  3. Maleic anhydride from normal butane

    SciTech Connect

    Cooley, S.D.; Doshi, B.

    1987-01-01

    Worldwide about one billion pounds of maleic anhydride is used annually in the manufacture of a number of commercially valuable products, including unsaturated polyester resins, agricultural chemicals, and lubricating oil additives. Maleic anhydride is not found in nature. It was first prepared in 1834 by heating malic acid (hydroxy-succinic acid, a compound found in apples and many other fruits). Maleic anhydride was not available commercially until ca. 1930 when the catalytic air oxidation of benzene was begun by National Aniline and Chemical on an industrial scale. The estimated worldwide production in 1985 was 1023 million pounds coming from more than 35 plants varying in capacity from 6 million pounds to 170 million pounds annually.

  4. Poly(butylene succinate-co-butylene adipate)/cellulose nanocrystal composites modified with phthalic anhydride.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2015-12-10

    As a kind of biomass nanofiller for polymers, cellulose nanocrystal (CNC) has good mechanical properties and reinforcing capability. To improve the compatibility of poly(butylene succinate-co-butylene adipate) (PBSA)/CNC composites, phthalic anhydride was used as a compatilizer during melt mixing, leading to the significant improvement of the mechanical properties and thermal stability of the composites, which is related to the better dispersion of CNC in the composites. The addition of phthalic anhydride could accelerate the crystallization of PBSA component as evidenced by the curves of isothermal crystallization of the composites, but had little effect on the crystalline polymorphs of PBSA component. The addition of phthalic anhydride could strongly improve the hydrophobicity of the composites. The good mechanical properties, fast crystallization and improved hydrophobicity of PBSA/CNC composites with phthalic anhydride are favor to their practical commercial utilization.

  5. Process for the production of phthalic anhydride

    SciTech Connect

    Miserlis, C. D.

    1984-03-06

    A system for producing phthalic anhydride by the catalytic oxidation of nathphalene, wherein without creating a significant pressure drop in the system substantially aff of the catalyst particles are removed from the product stream before the product stream is sent to a battery of switch condensers for recovery of the phthalic anhydride.

  6. A preliminary study on the dynamic-mechanical behaviour of compression moulded polypropylene/carbon fiber composites interfacially modified by a succinic anhydride grafted atactic polypropylene from polymer wastes

    NASA Astrophysics Data System (ADS)

    García-Martínez, Jesús María; Areso, Susana; Collar, Emilia P.

    2016-05-01

    Present communication is devoted to the study of the effect of a novel interfacial agent in polypropylene/carbon fibre composites. The interfacial agent used is a succinic anhydride grafted atactic polypropylene containing both succinic bridges and side grafts (aPP-SASA) and with 5.6% (5.6.10-4g/mol) of grafting content obtained at the GIP labs. The study considers the study dynamic-mechanical behaviour with temperature at a frequency of 1 hz to ascertain the differences in the interfacial activity. The samples were compression molded in order to isolate as far as possible the effect of the solely aPP-SASA in absence of those synergetic effects due to the preferential orientation of the fibres.

  7. Collagen functionalized with unsaturated cyclic anhydrides-interactions in solution and solid state.

    PubMed

    Potorac, S; Popa, M; Picton, L; Dulong, V; Verestiuc, L; Le Cerf, D

    2014-03-01

    Maleic anhydride (CMA) and itaconic anhydride modified collagen (CITA) were prepared as precursors for production of interpenetrated polymer networks (IPN). Calculated values for Huggins coefficient in aqueous diluted and semi-diluted solutions of modified collagen indicated a slightly tendency of aggregation for itaconic anhydride-modified collagen. In semi-diluted solution collagen (Coll) and CMA present slightly differences in the thixotropic behavior, while CITA has a pronounced thixotropic behavior. Flow and oscillatory measurements revealed an elastic behavior of the collagen solutions, pure and modified with MA or ITA, as the storage modulus (G') has always a superior value compared with the loss modulus (G″). The denaturation temperature (Td) of unmodified collagen increased from 34°C to 40°C for CMA and to 39°C for CITA respectively, by formation of covalent bonds that stabilize the triple helix. PMID:23784667

  8. A new approach to reducing the flammability of layered double hydroxide (LDH)-based polymer composites: preparation and characterization of dye structure-intercalated LDH and its effect on the flammability of polypropylene-grafted maleic anhydride/d-LDH composites.

    PubMed

    Kang, Nian-Jun; Wang, De-Yi; Kutlu, Burak; Zhao, Peng-Cheng; Leuteritz, Andreas; Wagenknecht, Udo; Heinrich, Gert

    2013-09-25

    Dye structure-intercalated layered double hydroxide (d-LDH) was synthesized using a one-step method, and its intercalated behaviors have been characterized by Fourier transform infrared spectroscopy (FTIR), wide angle X-ray scattering (WAXS), scanning electron microscopy, thermogravimetric analysis (TGA), etc. As a novel functional potential fire-retarding nanofiller, it was used to prepare a polypropylene-grafted maleic anhydride (PP-g-MA)/d-LDH composite by refluxing the mixture of d-LDH and PP-g-MA in xylene, aiming to investigate its effect on the flammability of the PP-g-MA composite. The morphological properties, thermal stability, and flame retardant properties of the PP-g-MA/d-LDH composite were determined by FTIR, WAXS, transmission electron microscopy, TGA, and microscale combustion calorimetry. Compared with NO3-LDH (unmodified LDH) and LDH intercalated by sodium dodecylbenzenesulfonate (conventional organo-modified LDH), d-LDH can significantly decrease the heat release rate and the total heat release of the PP-g-MA composite, offering a new approach to imparting low flammability to LDH-based polymer composites.

  9. Preparation of hydrophilic styrene maleic anhydride copolymer fibers for use in papermaking

    DOEpatents

    Rave, Terence W.

    1979-01-01

    Hydrophilic fibers may be prepared by discharging a heated and pressurized dispersion of a styrene-maleic anhydride copolymer into a zone of reduced temperature and pressure, and then modifying the fibers so produced by treatment with an aqueous admixture of selected cationic and anionic water-soluble, nitrogen-containing polymers. Blends of the hydrophilic fibers with wood pulp provide paper products having improved physical properties.

  10. Isolation of infectious chikungunya virus and dengue virus using anionic polymer-coated magnetic beads.

    PubMed

    Patramool, Sirilaksana; Bernard, Eric; Hamel, Rodolphe; Natthanej, Luplertlop; Chazal, Nathalie; Surasombatpattana, Pornapat; Ekchariyawat, Peeraya; Daoust, Simon; Thongrungkiat, Supatra; Thomas, Frédéric; Briant, Laurence; Missé, Dorothée

    2013-10-01

    Mosquitoes-borne viruses are a major threat for human populations. Among them, chikungunya virus (CHIKV) and dengue virus (DENV) cause thousands of cases worldwide. The recent propagation of mosquito vectors competent to transmit these viruses to temperate areas increases their potential impact on susceptible human populations. The development of sensitive methods allowing the detection and isolation of infectious viruses is of crucial interest for determination of virus contamination in humans and in competent mosquito vectors. However, simple and rapid method allowing the capture of infectious CHIKV and DENV from samples with low viral titers useful for further genetic and functional characterization of circulating strains is lacking. The present study reports a fast and sensitive isolation technique based on viral particles adsorption on magnetic beads coated with anionic polymer, poly(methyl vinyl ether-maleic anhydrate) and suitable for isolation of infectious CHIKV and DENV from the four serotypes. Starting from quite reduced biological material, this method was accurate to combine with conventional detection techniques, including qRT-PCR and immunoblotting and allowed isolation of infectious particles without resorting to a step of cultivation. The use of polymer-coated magnetic beads is therefore of high interest for rapid detection and isolation of CHIKV and DENV from samples with reduced viral loads and represents an accurate approach for the surveillance of mosquito vector in area at risk for arbovirus outbreaks.

  11. Improved zein articles using polyethylenemaleic anhydride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing corn protein (zein) articles with improved physical properties and solvent resistance will have a beneficial impact on companies that use corn. The effect of using the crosslinking reagent polyethylenemaleic anhydride (PEMA) on the properties and solubility of zein articles were studied. ...

  12. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers.

  13. Preparation of poly(glycidylmethacrylate-divinylbenzene) weak acid cation exchange stationary phases with succinic anhydride, phthalic anhydride, and maleic anhydride for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-08-01

    In this work, poly(glycidylmethacrylate-divinylbenzene) microspheres were prepared and applied for the preparation of weak acid cation exchange stationary phases. Succinic anhydride, phthalic anhydride, and maleic anhydride were selected as carboxylation reagents to prepare three weak acid cation exchangers by direct chemical derivatization reaction without solvent or catalyst. The diameters and dispersity of the microspheres were characterized by scanning electron microscopy; the amount of accessible epoxy groups and mechanical stability were also measured. The weak acid cation exchangers were characterized by Fourier transform infrared spectroscopy; the content of carboxyl groups was measured by traditional acid base titration method. The chromatographic properties were characterized and compared by separating alkali, alkaline earth metal ions and ammonium and polar amines. The separation properties enhanced in the order of succinic anhydride, phthalic anhydride, and maleic anhydride modified poly(glycidylmethacrylate-divinylbenzene) cation exchangers. PMID:27288092

  14. Poly(anhydride-esters) Comprised Exclusively of Naturally Occurring Antimicrobials and EDTA: Antioxidant and Antibacterial Activities

    PubMed Central

    2015-01-01

    Carvacrol, thymol, and eugenol are naturally occurring phenolic compounds known to possess antimicrobial activity against a range of bacteria, as well as antioxidant activity. Biodegradable poly(anhydride-esters) composed of an ethylenediaminetetraacetic acid (EDTA) backbone and antimicrobial pendant groups (i.e., carvacrol, thymol, or eugenol) were synthesized via solution polymerization. The resulting polymers were characterized to confirm their chemical composition and understand their thermal properties and molecular weight. In vitro release studies demonstrated that polymer hydrolytic degradation was complete after 16 days, resulting in the release of free antimicrobials and EDTA. Antioxidant and antibacterial assays determined that polymer release media exhibited bioactivity similar to that of free compound, demonstrating that polymer incorporation and subsequent release had no effect on activity. These polymers completely degrade into components that are biologically relevant and have the capability to promote preservation of consumer products in the food and personal care industries via antimicrobial and antioxidant pathways. PMID:24702678

  15. Synthesis and characterization of antiseptic-based poly(anhydride-esters)

    PubMed Central

    Schmeltzer, Robert C.

    2013-01-01

    Poly(anhydride-esters) were prepared from catechol, fenticlor and hexachlorophene. The molecular weights (Mw) of the polymers were typically > 10,000 Da with glass transition temperatures (Tg) ranging from 23 to 84 °C. The thermal characteristics of the polymers paralleled the melting temperatures of the chemically incorporated antiseptic molecules. The in vitro release of the chemically incorporated antiseptic molecules were monitored over a 12 week period. For comparison, the in vitro release of physically admixed antiseptic molecules were also observed. After 12 weeks, the polymers were not completely degraded with drug release ranging from less than 1 to 55 %. Sessile-drop contact angles indicated that the polymers were relatively hydrophobic, contributing to the slow polymer degradation rates. PMID:24039323

  16. Dicarboxylic acid anhydride condensation with compounds containing active methylene groups. 4: Some 4-nitrophthalic anhydride condensation reactions

    NASA Technical Reports Server (NTRS)

    Oskaja, V.; Rotberg, J.

    1985-01-01

    By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.

  17. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 19: Condensation of phthalic and substituted phthalic anhydrides with benzoylacetic ester

    NASA Technical Reports Server (NTRS)

    Rotberg, Y. T.; Oshkaya, V. P.

    1985-01-01

    Phthalylbenzoylacetic ester and its nitro and halogen derivatives were prepared through condensation of phthalic anhydride, nitrophthalic anhydride, and phthalic halide anhydride with benzoylacetic ester in a solution of acetic anhydride and triethylamine. The condensation of hemipinic acid anhydride proceeds similarly, but under more drastic conditions. Derivatives of indan-1,3-dione are also formed, with a small yield, in the reaction of nitrophthalic anhydrides with benzoylacetic ester in the presence of increased quantities of triethylamine.

  18. Chemicals from coal - The Eastman experience. [Anhydride

    SciTech Connect

    Larkins, T.H.

    1986-03-01

    Tennessee Eastman Company is a major producer of chemicals, fibers and plastics. It is located in Kingsport, Tennessee, headquarters for the Eastman Chemicals Division of Eastman Kodak Company. Eastman Companies employ a total of 12,250 people in Kingsport. Other domestic Eastman Chemicals Division plants are located in Texas, South Carolina, Arkansas and New York. The authors began to witness a flow of products from one of the most highly technical and sophisticated chemical processes in operation in the world. The Eastman ''Chemicals-from-Coal'' facility is not a sunfuel plant. To be sure, we are producing syngas from coal, but the syngas is used to produce acetic anhydride. Acetic anhydride is very important to Eastman. This chemical intermediate eventually finds its way into such diverse products as aspirin, cigarette filters, tool handles, and photographic film. It also is used to make other chemical intermediates such as cellulose esters, anhydrides, triacetin, and acetate ester solvents, all of which have a variety of end uses. The chemicals-from-coal project had its inception in the late 1960's when Eastman stepped up its program of energy conservation and began a search for lower cost chemical feedstocks. Our concern started before the national concern caused by a ten-fold increase in petroleum prices during the past decade.

  19. Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid.

    PubMed

    Peng, Xin-Wen; Ren, Jun-Li; Sun, Run-Cang

    2010-12-13

    Generation of bioenergy, new functional polymers, or chemicals and biomaterials from hemicelluloses are important uses for biomass. In this paper, a novel functional biopolymer with carbon-carbon double bond and carboxyl groups was prepared by a homogeneous esterification of xylan-rich hemicelluloses (XH) with maleic anhydride in 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid using LiOH as catalyst. The biopolymers with degrees of substitution (DS) between 0.095 and 0.75 were accessible in a completely homogeneous system by changing reaction temperature, reaction time, the dosage of catalyst, and the molar ratio of maleic anhydride to anhydroxylose unit in XH. Results obtained from FT-IR and (13)C NMR spectroscopies confirmed the structure of hemicellulosic derivatives with carbon-carbon double bond and carboxyl groups, implying an efficient method to prepare a novel and important functional biopolymer for biomaterials.

  20. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  1. Stability of a salicylate-based poly(anhydride-ester) to electron beam and gamma radiation

    PubMed Central

    Rosario-Meléndez, Roselin; Lavelle, Linda; Bodnar, Stanko; Halperin, Frederick; Harper, Ike; Griffin, Jeremy; Uhrich, Kathryn E.

    2011-01-01

    The effect of electron beam and gamma radiation on the physicochemical properties of a salicylate-based poly(anhydride-ester) was studied by exposing polymers to 0 (control), 25 and 50 kGy. After radiation exposure, salicylic acid release in vitro was monitored to assess any changes in drug release profiles. Molecular weight, glass transition temperature and decomposition temperature were evaluated for polymer chain scission and/or crosslinking as well as changes in thermal properties. Proton nuclear magnetic resonance and infrared spectroscopies were also used to determine polymer degradation and/or chain scission. In vitro cell studies were performed to identify cytocompatibility following radiation exposure. These studies demonstrate that the physicochemical properties of the polymer are not substantially affected by exposure to electron beam and gamma radiation. PMID:21909173

  2. Alternating copolymerization of propylene oxide with biorenewable terpene-based cyclic anhydrides: a sustainable route to aliphatic polyesters with high glass transition temperatures.

    PubMed

    Van Zee, Nathan J; Coates, Geoffrey W

    2015-02-23

    The alternating copolymerization of propylene oxide with terpene-based cyclic anhydrides catalyzed by chromium, cobalt, and aluminum salen complexes is reported. The use of the Diels-Alder adduct of α-terpinene and maleic anhydride as the cyclic anhydride comonomer results in amorphous polyesters that exhibit glass transition temperatures (Tg ) of up to 109 °C. The polymerization conditions and choice of catalyst have a dramatic impact on the molecular weight distribution, the relative stereochemistry of the diester units along the polymer chain, and ultimately the Tg of the resulting polymer. The aluminum salen complex exhibits exceptional selectivity for copolymerization without transesterification or epimerization side reactions. The resulting polyesters are highly alternating and have high molecular weights and narrow polydispersities.

  3. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  4. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  5. Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.

    1998-01-20

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  6. Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides

    DOEpatents

    Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.

  7. A Demonstration of Polymer Crosslinking and Gel Formation Without Heating

    ERIC Educational Resources Information Center

    Ross, Joseph H.

    1977-01-01

    Describes an undergraduate experiment in which Gantrez AN polymer chains are crosslinked at the anhydride groups by the addition of the hydroxyl groups of triethanolamine, which also acts as a basic catalyst. (MLH)

  8. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-06-16

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  9. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  10. Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides

    SciTech Connect

    Ishihara, K.; Kubota, M.; Kurihara, H.; Yamamoto, H.

    1996-07-12

    Scandium triflate catalyzes the acylation of alcohols with acid anhydrides or the esterification of alcohols by carboxylic acids in the presence of p-nitrobenzoic anhydrides. The catalytic activity of the scandium triflates is found to be quite high allowing the acylation of secondary and tertiary alcohols.

  11. Concurrent release of admixed antimicrobials and salicylic acid from salicylate-based poly(anhydride-esters).

    PubMed

    Johnson, Michelle L; Uhrich, Kathryn E

    2009-12-01

    A polymer blend consisting of antimicrobials (chlorhexidine, clindamycin, and minocycline) physically admixed at 10% by weight into a salicylic acid-based poly (anhydride-ester) (SA-based PAE) was developed as an adjunct treatment for periodontal disease. The SA-based PAE/antimicrobial blends were characterized by multiple methods, including contact angle measurements and differential scanning calorimetry. Static contact angle measurements showed no significant differences in hydrophobicity between the polymer and antimicrobial matrix surfaces. Notable decreases in the polymer glass transition temperature (T(g)) and the antimicrobials' melting points (T(m)) were observed indicating that the antimicrobials act as plasticizers within the polymer matrix. In vitro drug release of salicylic acid from the polymer matrix and for each physically admixed antimicrobial was concurrently monitored by high pressure liquid chromatography during the course of polymer degradation and erosion. Although the polymer/antimicrobial blends were immiscible, the initial 24 h of drug release correlated to the erosion profiles. The SA-based PAE/antimicrobial blends are being investigated as an improvement on current localized drug therapies used to treat periodontal disease.

  12. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  13. Process for the production of maleic anhydride

    SciTech Connect

    Click, G.T.; Barone, B.J.

    1986-06-24

    A process is described for the vapor phase oxidation of hydrocarbons having 4 carbon atoms to produce maleic anhydride comprising contacting the hydrocarbons with a fixed bed vanadium-phosphorus-oxygen catalyst, containing P:V in an atomic ration of 1/2 to 3:1 whereby the catalyst gradually decreases in selectivity, wherein the improvement comprises contacting the catalyst with phosphorus compound of phosphorus halide, phosphorus oxyhalide, organic phospines, organic phosphites, organic phosphates or mixtures thereof at a temperature in the range of about 0/sup 0/ to 600/sup 0/C and thereafter contacting the catalyst with a flow of stream at a temperature in the range of 300/sup 0/ to 600/sup 0/C in an amount and for a sufficient duration whereby the catalyst is regenerated.

  14. A technique for capturing broad subtypes and circulating recombinant forms of HIV-1 based on anionic polymer-coated magnetic beads.

    PubMed

    Sakudo, Akikazu; Ikuta, Kazuyoshi

    2012-08-01

    Magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate) [poly(MVE-MA)], were used in a method to capture human immunodeficiency virus type-1 (HIV-1). The beads were incubated with either HIV-1-infected cell culture medium or plasma from HIV-1 infected individuals and separated from the supernatant by applying a magnetic field. After thorough washing, adsorption of HIV-1 by the beads was confirmed by reverse transcription (RT)-polymerase chain reaction (PCR), real-time PCR, enzyme-linked immunosorbent assay and western blotting. The results confirmed the presence of envelope, polymerase, Nef and the viral genome of HIV-1. Furthermore, various subtypes and circulating recombinant forms (CRFs) of HIV-1 including subtype B, C and CRF01_AE and the immature form of subtype B HIV-1 could be captured. Preincubation with neutralizing antibody against HIV-1 envelope gp41 decreased the capture efficiently, suggesting that poly(MVE-MA) binds HIV-1 via gp41. We believe that this capture procedure will be a valuable tool for detecting various types of HIV-1 in both clinical and experimental samples.

  15. Process for the continuous separation of maleic anhydride from process gases

    SciTech Connect

    Ceisel, S.C.; Conrad, J.F.; Lestan, E.M.; Nelson, A.P.

    1990-07-17

    This patent describes a process for recovery of maleic anhydride from a gaseous mixture of a reactor effluent gas stream containing maleic anhydride. It comprises: contacting the mixture with maleic anhydride in a gas phase wherein the maleic anhydride is injected into a gas stream effluent from an oxidation reactor. The gas stream effluent is at a temperature of from about 200{degrees}F. to about 350{degrees}F., and maleic anhydride is recovered in a condenser.

  16. Health and Environmental Effects Profile for maleic anhydride

    SciTech Connect

    Not Available

    1986-07-01

    The Health and Environmental Effects Profile for maleic anhydride was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response to support listings of hazardous constituents of a wide range of waste streams under Section 3001 of the Resource Conservation and Recovery Act (RCRA) and to provide health-related limits for emergency actions under Section 101 of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency program office files were evaluated as they pertained to potential human-health, aquatic-life, and environmental effects of hazardous-waste constituents. Maleic anhydride has been determined to be a systemic toxicant. An Acceptable Daily Intake (ADI), for maleic anhydride is 0.10 mg/kg/day for oral exposure. The Reportable Quantity (RQ) value for maleic anhydride is 100.

  17. Metal phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Metal 4, 4', 4", 4"'=tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  18. Poly(anhydride-ester) and poly(N-vinyl-2-pyrrolidone) blends: salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation.

    PubMed

    Ouimet, Michelle A; Fogaça, Renata; Snyder, Sabrina S; Sathaye, Sameer; Catalani, Luiz H; Pochan, Darrin J; Uhrich, Kathryn E

    2015-03-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3-4 d in contrast to 3 h, and that blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly the inflammatory cytokine, TNF-α, in vitro without negative effects. PMID:25333420

  19. Grafting of poly (lactic acid) with maleic anhydride using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S.

    2015-07-01

    The aim of this work was to modify poly lactic acid (PLA) via free radical grafting with maleic anhydride (MA) by using supercritical carbon dioxide (SCCO2). Benzoyl peroxide (BPO) was used as an initiator. The solubility of MA in SCCO2 was first determined to estimate the suitable grafting conditions and equilibrium. From the solubility study of MA in SCCO2, it was found that the solubility of MA in SCCO2 increased with the increasing pressure and dissolution time. PLA films were first prepared by compression molding. The ratio of MA to BPO was 2:1. The reaction temperature and pressure were 70°C and 100 bar respectively. The grafting reaction and the degree of grafting were characterized by nuclear magnetic resonance (NMR) spectroscopy and titration, respectively. Scanning electron microscope (SEM) technique and contact angle were used to confirm the changes in physical properties of PLA film grafted MA. NMR spectrum indicated that the grafting of MA onto PLA was successively achieved. Degree of grafting by using SCCO2 was as high as 0.98%. This provided rather high grafting degree compared with other processes. SEM pictures showed the rough surface structure on modified PLA film. In addition, contact angle results showed an improvement of the hydrophilicity by maleic anhydride grafting onto polymers.

  20. Method for epoxy foam production using a liquid anhydride

    DOEpatents

    Celina, Mathias

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  1. Thermochemistry of diphenic anhydride. A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Agostinha, M.; Matos, R.; Miranda, Margarida S.; Pinto, Natália A. B.; Morais, Victor M. F.; Dhananjaya, N.; Liebman, Joel F.

    The standard (p° = 0.1 MPa) molar enthalpy of formation for solid and gaseous diphenic anhydride (2,2'-biphenyldicarboxylic anhydride, dibenz[c,e]oxepin-5,7-dione) was derived from the standard molar enthalpy of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry, and the standard molar enthalpy of sublimation, at T = 298.15 K, measured by Calvet microcalorimetry: -(258.4 ± 4.9) kJ mol-1. In addition, ab initio and density functional theory calculations have been performed at a variety of levels. The degree of aromaticity of diphenic anhydride is discussed in the context of other oxygen-containing (ring and keto) heterocycles and related carbocycles: this species is surprisingly destabilized.

  2. Gamma-irradiation stability of saturated and unsaturated aliphatic polyanhydrides--ricinoleic acid based polymers.

    PubMed

    Teomim, D; Mäder, K; Bentolila, A; Magora, A; Domb, A J

    2001-01-01

    The effect of terminal sterilization by gamma-irradiation on several ricinoleic acid based polyanhydrides was investigated. The following polymers were used: poly(ricinoleic acid maleate) [P(RAM)], poly(ricinoleic acid succinate) [P(RAS)], poly(hydroxy stearic acid succinate) [P(HSAS)], poly(hydroxy stearic acid maleate) [P(HSAM)], and their copolymers with sebacic acid. The polymers were irradiated with an absorbed dose of 2.5 or 10 Mrad by means of a 60Co source under dry ice or at room temperature. No differences were found between samples irradiated under dry ice and at room temperature. Polymers prepared from monomers containing maleate residues, which contain double bonds adjusted to the anhydride linkage along the polymer chain, decreased in molecular weight, became insoluble, and showed fast hydrolytic degradation. For example, p(RAM), p(HSAM), and their copolymers with sebacic acid decreased in Mw from about 10,000 to about 2000, and from about 30,000 to about 5000, respectively, while polymers based on RAS and HSAS remained stable. This phenomenon was explained by an anhydride interchange-self-depolymerization process of the unsaturated anhydride bonds induced by gamma-irradiation. This explanation was supported by the depolymerization of another class of polymers having an anhydride bond between two double bonds, fumaric acid anhydride polymers. The anhydride bond that lies between two double bonds was found to be more sensitive to gamma-irradiation. This anhydride bond may be cleaved to form two radicals that further react with aliphatic anhydride bonds along the polymer chain to form inter- and/or intracyclization products. PMID:11710004

  3. Formulation of salicylate-based poly(anhydride-ester) microspheres for short- and long-term salicylic acid delivery

    PubMed Central

    Rosario-Meléndez, Roselin; Ouimet, Michelle A.; Uhrich, Kathryn E.

    2013-01-01

    The formulation of salicylate-based poly(anhydride-ester) (PAE) microspheres was optimized by altering polymer concentration and homogenization speed to improve the overall morphology. The microspheres were prepared using three salicylate-based PAEs with different chemical compositions comprised of either a heteroatomic, linear aliphatic, or branched aliphatic moiety. These PAEs broadened the range of complete salicylic acid release to now include days, weeks and months. The molecular weight (Mw), polydispersity index (PDI) and glass transition temperature (Tg) of the formulated polymers were compared to the unformulated polymers. In general, the Mw and PDI exhibited decreased and increased values, respectively, after formulation, whereas the Tg changes did not follow a specific trend. Microsphere size and morphology were determined using scanning electron microscopy. These microspheres exhibited smooth surfaces, no aggregation, and size distributions ranging from 2-34 m in diameter. In vitro release studies of the chemically incorporated salicylic acid displayed widely tunable release profiles. PMID:23420391

  4. Preparation and Characterization of Octenyl Succinic Anhydride Modified Taro Starch Nanoparticles.

    PubMed

    Jiang, Suisui; Dai, Lei; Qin, Yang; Xiong, Liu; Sun, Qingjie

    2016-01-01

    The polar surface and hydrophilicity of starch nanoparticles (SNPs) result in their poor dispersibility in nonpolar solvent and poor compatibility with hydrophobic polymers, which limited the application in hydrophobic system. To improve their hydrophobicity, SNPs prepared through self-assembly of short chain amylose debranched from cooked taro starch, were modified by octenyl succinic anhydride (OSA). Size via dynamic light scattering of OSA-SNPs increased compared with SNPs. Fourier transform infrared spectroscopy data indicated the OSA-SNPs had a new absorption peak at 1727 cm-1, which was the characteristic peak of carbonyl, indicating the formation of the ester bond. The dispersibility of the modified SNPs in the mixture of water with nonpolar solvent increased with increasing of degree of substitution (DS). OSA-SNPs appear to be a potential agent to stabilize the oil-water systems.

  5. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    SciTech Connect

    Ramprasad, Dorai; Waller, Francis Joseph

    1999-01-01

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  6. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    SciTech Connect

    Ramprasad, D.; Waller, F.J.

    1999-04-06

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  7. Preparation and Characterization of Octenyl Succinic Anhydride Modified Taro Starch Nanoparticles

    PubMed Central

    Jiang, Suisui; Dai, Lei; Qin, Yang; Xiong, Liu; Sun, Qingjie

    2016-01-01

    The polar surface and hydrophilicity of starch nanoparticles (SNPs) result in their poor dispersibility in nonpolar solvent and poor compatibility with hydrophobic polymers, which limited the application in hydrophobic system. To improve their hydrophobicity, SNPs prepared through self-assembly of short chain amylose debranched from cooked taro starch, were modified by octenyl succinic anhydride (OSA). Size via dynamic light scattering of OSA-SNPs increased compared with SNPs. Fourier transform infrared spectroscopy data indicated the OSA-SNPs had a new absorption peak at 1727 cm-1, which was the characteristic peak of carbonyl, indicating the formation of the ester bond. The dispersibility of the modified SNPs in the mixture of water with nonpolar solvent increased with increasing of degree of substitution (DS). OSA-SNPs appear to be a potential agent to stabilize the oil-water systems. PMID:26918568

  8. Preparation and Characterization of Octenyl Succinic Anhydride Modified Taro Starch Nanoparticles.

    PubMed

    Jiang, Suisui; Dai, Lei; Qin, Yang; Xiong, Liu; Sun, Qingjie

    2016-01-01

    The polar surface and hydrophilicity of starch nanoparticles (SNPs) result in their poor dispersibility in nonpolar solvent and poor compatibility with hydrophobic polymers, which limited the application in hydrophobic system. To improve their hydrophobicity, SNPs prepared through self-assembly of short chain amylose debranched from cooked taro starch, were modified by octenyl succinic anhydride (OSA). Size via dynamic light scattering of OSA-SNPs increased compared with SNPs. Fourier transform infrared spectroscopy data indicated the OSA-SNPs had a new absorption peak at 1727 cm-1, which was the characteristic peak of carbonyl, indicating the formation of the ester bond. The dispersibility of the modified SNPs in the mixture of water with nonpolar solvent increased with increasing of degree of substitution (DS). OSA-SNPs appear to be a potential agent to stabilize the oil-water systems. PMID:26918568

  9. Quick don-doff electrode pastes

    NASA Technical Reports Server (NTRS)

    Mosier, B.

    1969-01-01

    Evaluation of electrode pastes for use in electrocardiographs and electroencephalographs found that the one having the desired don-doff properties had to be water soluble or a water dispersible base. Poly /methyl vinyl ether/maleic anhydride/ or starch gels of the gum drop variety are two such bases.

  10. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... articles that contact food of Types I, II, III, IV-A, IV-B, V, VI-B (except carbonated beverages), VII-A... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  11. Rheological studies on the reaction of zein with polyethylenemaleic anhydride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There continues to be interest in developing solvent-resistant articles from biobased renewable materials to successfully complete with petro-chemical products. It was previously shown that reaction of zein with polyethylenemaleic anhydride (PEMA) provides articles that are solvent-resistant. The ge...

  12. IDENTIFYING AIRWAY SENSITIZERS: MRNA CYTOKINE PROFILES INDUCED BY VARIOUS ANHYDRIDES

    EPA Science Inventory

    Abstract:
    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hyp...

  13. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    NASA Technical Reports Server (NTRS)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  14. Tailoring polymer properties with layered silicates

    NASA Astrophysics Data System (ADS)

    Xu, Liang

    Polymer layered silicate nanocomposites have found widespread applications in areas such as plastics, oil and gas production, biomedical, automotive and information storage, but their successful commercialization critically depends on consistent control over issues such as complete dispersion of layered silicate into the host polymer and optimal interaction between the layered silicates and the polymers. Polypropylene is a commercially important polymer but usually forms intercalated structures with organically modified layered silicate upon mixing, even it is pre-treated with compatibilizing agent such as maleic anhydride. In this work, layered silicate is well dispersed in ammonium modified polypropylene but does not provide sufficient reinforcement to the host polymer due to poor interactions. On the other hand, interactions between maleic anhydride modified polypropylene and layered silicate are fine tuned by using a small amount of maleic anhydride and mechanical strength of the resultant nanocomposites are significantly enhanced. In particular, the melt rheological properties of layered silicate nanocomposites with maleic anhydride functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the maleic anhydride treated polypropylene based nanocomposites exhibit solid-like linear dynamic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized polypropylene based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interaction in maleic anhydride functionalized nanocomposites, which facilitates formation of a long-lived silicate network mediated by physisorbed polymer chains. Further, the transient shear stress of the maleic anhydride functionalized nanocomposites in start-up of steady shear is a function of the shear

  15. Synthesis and surface properties of aqueous dispersions of poly(ester-imide) prepared from anhydride terminated polyester prepolymer and diisocyanate.

    PubMed

    Banu, P; Sundar, S; Dhathathreyan, A; Radhakrishnan, G

    2004-09-15

    Aqueous dispersions of poly(ester-imide)s [P(E-I)s] have been prepared by dispersing the P(E-I)s in water without any external solubilizing agents. P(E-I)s were prepared from anhydride-terminated polyester prepolymer and diisocyanate. The -COOH groups in the polymer were then neutralized using triethylamine and the P(E-I)s were subsequently dispersed in water. The influence of the degree of ionization of polymers on the particle size and viscosity of the dispersion has been studied. The dispersions were crosslinked using polyaziridine. The crosslinked dispersion cast films were characterized for dynamic mechanical properties. As the ionic content increased the particle size decreased and the viscosity increased. When the amount of crosslinker added was varied, for a fixed percentage of ionization, the glass transition temperature Tg shifted to higher values. Critical surface tension (CST) measurements indicated reorganization of hydrophobic groups on the surface after crosslinking. PMID:15341840

  16. Interactions of poly (anhydride) nanoparticles with macrophages in light of their vaccine adjuvant properties.

    PubMed

    Gamazo, C; Bussmann, H; Giemsa, S; Camacho, A I; Unsihuay, Daisy; Martín-Arbella, N; Irache, J M

    2015-12-30

    Understanding how nanoparticles are formed and how those processes ultimately determine the nanoparticles' properties and their impact on their capture by immune cells is key in vaccination studies. Accordingly, we wanted to evaluate how the previously described poly (anhydride)-based nanoparticles of the copolymer of methyl vinyl ether and maleic anhydride (NP) interact with macrophages, and how this process depends on the physicochemical properties derived from the method of preparation. First, we studied the influence of the desolvation and drying processes used to obtain the nanoparticles. NP prepared by the desolvation of the polymers in acetone with a mixture of ethanol and water yielded higher mean diameters than those obtained in the presence of water (250nm vs. 180nm). In addition, nanoparticles dried by lyophilization presented higher negative zeta potentials than those dried by spray-drying (-47mV vs. -35mV). Second, the influence of the NP formulation on the phagocytosis by J774 murine macrophage-like cell line was investigated. The data indicated that NPs prepared in the presence of water were at least three-times more efficiently internalized by cells than NPs prepared with the mixture of ethanol and water. Besides, lyophilized nanoparticles appeared to be more efficiently taken up by J744 cells than those dried by spray-drying. To further understand the specific mechanisms involved in the cellular internalization of NPs, different pharmacological inhibitors were used to interfere with specific uptake pathways. Results suggest that the NP formulations, particularly, nanoparticles prepared by the addition of ethanol:water, are internalized by the clathrin-mediated endocytosis, rather than caveolae-mediated mechanisms, supporting their previously described vaccine adjuvant properties.

  17. Soy protein polymers: Enhancing the water stability property

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gowrishankar

    Soy protein based plastics have been processed in the past by researchers for various short-term applications; however a common issue is the high water sensitivity of these plastics. This work concentrates on resolving this water sensitivity issue of soy protein polymers by employing chemical and mechanical interaction at the molecular level during extrusion. The primary chemical interactions employed were anhydride chemistries such as maleic anhydride (MA), phthalic anhydride (PTA), and butylated hydroxyanisole (BHA). These were respectively used in conjunction with glycerol as a plasticizer to produce relatively water stable soy protein based plastics. Formulations with varying additive levels of the chemistries were extruded and injection molded to form the samples for characterization. The additive levels of anhydrides were varied between 3-10% tw/tw (total mass). Results indicated that phthalic anhydride formulations resulted in highest water stability. Plastic formulations with concentration up to 10% phthalic anhydride were observed to have water absorption as low as 21.5% after 24 hrs of exposure to water with respect to 250% for the control formulation. Fourier transform infrared spectroscopy (FTIR) was utilized to characterize and confirm the fundamental mechanisms of water stability achieved by phthalic and maleic anhydride chemistries. In addition, the anhydride formulations were modified by inclusion of cotton fibers and pretreated cotton powder in order to improve mechanical properties. The incorporation of cotton fibers improved the dry strength by 18%, but did not significantly improve the wet state strength of the plastics. It was also observed that the butylated-hydroxy anisole (BHA) formulation exhibited high extension values in the dry state and had inferior water absorption properties in comparison with anhydride formulations.

  18. Maleic anhydride catalysts and process for their manufacture

    SciTech Connect

    Haddad, M.S.; Meyers, B.L.; Eryman, W.S.

    1990-06-12

    This patent describes a catalyst for the production of maleic anhydride by the oxidation of a member of the group consisting of benzene, butane, butene and butadiene. It comprises a phosphorus-vanadium-mixed oxide and exists in the form of geometric shapes, the shapes having been heated in an inert atmosphere at a temperature of about 650{degrees} to about 1300{degrees} F. prior to being exposed to an oxygen-containing gas at an elevated temperature.

  19. Use fluid bed reactor for maleic anhydride from butane

    SciTech Connect

    Arnold, S.C.; Neri, A.; Suciu, G.D.; Verde, L.

    1985-09-01

    A new process is described that incorporates three major improvements over the conventional air oxidation of benzene in a fixed-bed reactor system. The new ALMA Process was developed jointly by Alusuisse Italia and Lummus Crest. It includes the following process improvements: n-Butane feedstock, fluidized-bed reactor system, and a continuous maleic anhydride recovery system using an organic solvent. A summary of the process is given, as well as the steps in its development and its economic advantages.

  20. Linear, Mannitol-Based Poly(anhydride-esters) with High Ibuprofen Loading and Anti-Inflammatory Activity.

    PubMed

    Stebbins, Nicholas D; Yu, Weiling; Uhrich, Kathryn E

    2015-11-01

    Sugar alcohols, such as mannitol and xylitol, are biocompatible polyols that have been used to make highly cross-linked polyester elastomers and dendrimers for tissue engineering and drug delivery. However, research that utilizes the secondary hydroxyl groups as sites for pendant bioactive attachment and subsequent polymerization is limited. This work is the first report of a linear, completely biodegradable polymer with a sugar alcohol backbone and chemically incorporated pendant bioactives that exhibits sustained bioactive release and high bioactive loading (∼70%). With four pendant esters per repeat unit, this poly(anhydride-ester) has high loading and biodegrades into three biocompatible products: bioactive, sugar alcohol, and alkyl-based diacid. Ibuprofen serves as a representative bioactive, whereas mannitol is a representative polyol. Polymerization was achieved through reaction with (trimethylsilyl)ethoxyacetylene. Drug release via polymer degradation was quantified by high performance liquid chromatography. Additionally, a cytocompatibility study with fibroblast cells was performed to elucidate the polymer's suitability for in vivo use and a cyclooxygenase-2 (COX-2) assay was performed on the degradation media to ensure that released ibuprofen retained its anti-inflammatory activity. This work enables the future development of novel, biodegradable polymers exhibiting two key features: (i) polymer backbones with easily modified pendant groups, such as targeting moieties, and (ii) high drug loading using a multitude of bioactive classes.

  1. Biosynthetic Study on Antihypercholesterolemic Agent Phomoidride: General Biogenesis of Fungal Dimeric Anhydrides.

    PubMed

    Fujii, Ryuya; Matsu, Yusuke; Minami, Atsushi; Nagamine, Shota; Takeuchi, Ichiro; Gomi, Katsuya; Oikawa, Hideaki

    2015-11-20

    To elucidate the general biosynthetic pathway of fungal dimeric anhydrides, a gene cluster for the biosynthesis of the antihy-percholesterolemic agent phomoidride was identified by heterologous expression of candidate genes encoding the highly reducing polyketide synthase, alkylcitrate synthase (ACS), and alkylcitrate dehydratase (ACDH). An in vitro analysis of ACS and ACDH revealed that they give rise to anhydride monomers. Based on the established monomer biosynthesis, we propose a general biogenesis of dimeric anhydrides involving a single donor unit and four acceptor units.

  2. Synthesis and characterization of CdS nanoparticle based multiwall carbon nanotube-maleic anhydride-1-octene nanocomposites

    NASA Astrophysics Data System (ADS)

    Malikov, E. Y.; Altay, M. C.; Muradov, M. B.; Akperov, O. H.; Eyvazova, G. M.; Puskás, R.; Madarász, D.; Kukovecz, Á.; Kónya, Z.

    2015-05-01

    CdS nanoparticles were synthesized by sonication from cadmium chloride and thiourea using a multiwall carbon nanotube (MWCNT)-maleic anhydride (MA)-1-octene system as the matrix. The matrix was obtained by the "grafting from" approach from oxidized carbon nanotubes and maleic anhydride-1-octene. Multiwall carbon nanotubes used for reinforcing the matrix were synthesized by Catalytic Chemical Vapor Deposition using Fe-Co/Al2O3 as the catalyst. The obtained nanostructures were characterized by FTIR, XRD, Raman spectroscopy, TEM, SEM and UV-vis spectroscopy. The average CdS particle diameter was 7.9 nm as confirmed independently by TEM and XRD. UV-vis spectroscopy revealed that the obtained nanostructure is an appropriate base material for making optical devices. The novelty of this work is the use of the MWCNT-MA-1-octene matrix obtained via the "grafting from" approach for the synthesis of uniformly dispersed CdS nanocrystals by ultrasonic cavitation to obtain a polymer nanocomposite.

  3. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  4. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  5. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  6. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  7. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN...

  8. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA. J F Regal, ME Mohrman, E Boykin and D Sailstad. Dept. of Pharmacology, University of Minnesota, Duluth, MN, USA and NHEERL, ORD, US EPA, RTP, NC, USA.
    Trimellitic anhydride (TMA) is a small m...

  9. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  10. Poly(anhydride-ester) and Poly(N-vinyl-2-pyrrolidone) Blends: Salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation

    PubMed Central

    Ouimet, Michelle A.; Fogaça, Renata; Snyder, Sabrina S.; Sathaye, Sameer; Catalani, Luiz H.; Pochan, Darrin J.

    2015-01-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, the release of physically admixed therapeutics from hydrogels has been evaluated, but with limited control over drug release profiles. To overcome these limitations, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3–4 days in contrast to 3 hours, as observed with diffusion-controlled hydrogels. Generally, blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly reduce the inflammatory cytokine, TNF-α, in vitro without cytotoxic or anti-proliferative effects, further demonstrating their potential as a wound dressing with enhanced healing and decreased scar tissue formation. PMID:25333420

  11. Immunogenicity of peanut proteins containing poly(anhydride) nanoparticles.

    PubMed

    De S Rebouças, Juliana; Irache, Juan M; Camacho, Ana I; Gastaminza, Gabriel; Sanz, María L; Ferrer, Marta; Gamazo, Carlos

    2014-08-01

    In the last decade, peanut allergy has increased substantially. Significant differences in the prevalence among different countries are attributed to the type of thermal processing. In spite of the high prevalence and the severe reaction induced by peanuts, there is no immunotherapy available. The aim of this work was to evaluate the potential application of poly(anhydride) nanoparticles (NPs) as immunoadjuvants for peanut oral immunotherapy. NPs loaded with raw or roasted peanut proteins were prepared by a solvent displacement method and dried by either lyophilization or spray-drying. After physicochemical characterization, their adjuvant capacity was evaluated after oral immunization of C57BL/6 mice. All nanoparticle formulations induced a balanced T(H)1 and T(H)2 antibody response, accompanied by low specific IgE induction. In addition, oral immunization with spray-dried NPs loaded with peanut proteins was associated with a significant decrease in splenic T(H)2 cytokines (interleukin 4 [IL-4], IL-5, and IL-6) and enhancement of both T(H)1 (gamma interferon [IFN-γ]) and regulatory (IL-10) cytokines. In conclusion, oral immunization with poly(anhydride) NPs, particularly spray-dried formulations, led to a pro-T(H)1 immune response.

  12. Immunogenicity of Peanut Proteins Containing Poly(Anhydride) Nanoparticles

    PubMed Central

    De S. Rebouças, Juliana; Irache, Juan M.; Camacho, Ana I.; Gastaminza, Gabriel; Sanz, María L.

    2014-01-01

    In the last decade, peanut allergy has increased substantially. Significant differences in the prevalence among different countries are attributed to the type of thermal processing. In spite of the high prevalence and the severe reaction induced by peanuts, there is no immunotherapy available. The aim of this work was to evaluate the potential application of poly(anhydride) nanoparticles (NPs) as immunoadjuvants for peanut oral immunotherapy. NPs loaded with raw or roasted peanut proteins were prepared by a solvent displacement method and dried by either lyophilization or spray-drying. After physicochemical characterization, their adjuvant capacity was evaluated after oral immunization of C57BL/6 mice. All nanoparticle formulations induced a balanced TH1 and TH2 antibody response, accompanied by low specific IgE induction. In addition, oral immunization with spray-dried NPs loaded with peanut proteins was associated with a significant decrease in splenic TH2 cytokines (interleukin 4 [IL-4], IL-5, and IL-6) and enhancement of both TH1 (gamma interferon [IFN-γ]) and regulatory (IL-10) cytokines. In conclusion, oral immunization with poly(anhydride) NPs, particularly spray-dried formulations, led to a pro-TH1 immune response. PMID:24899075

  13. Dinuclear Zinc Salen Catalysts for the Ring Opening Copolymerization of Epoxides and Carbon Dioxide or Anhydrides.

    PubMed

    Thevenon, Arnaud; Garden, Jennifer A; White, Andrew J P; Williams, Charlotte K

    2015-12-21

    A series of four dizinc complexes coordinated by salen or salan ligands, derived from ortho-vanillin and bearing (±)-trans-1,2-diaminocyclohexane (L1) or 2,2-dimethyl-1,3-propanediamine (L2) backbones, is reported. The complexes are characterized using a combination of X-ray crystallography, multinuclear NMR, DOSY, and MALDI-TOF spectroscopies, and elemental analysis. The stability of the dinuclear complexes depends on the ligand structure, with the most stable complexes having imine substituents. The complexes are tested as catalysts for the ring-opening copolymerization (ROCOP) of CO2/cyclohexene oxide (CHO) and phthalic anhydride (PA)/CHO. All complexes are active, and the structure/activity relationships reveal that the complex having both L2 and imine substituents displays the highest activity. In the ROCOP of CO2/CHO its activity is equivalent to other metal salen catalysts (TOF = 44 h(-1) at a catalyst loading of 0.1 mol %, 30 bar of CO2, and 80 °C), while for the ROCOP of PA/CHO, its activity is slightly higher than other metal salen catalysts (TOF = 198 h(-1) at a catalyst loading of 1 mol % and 100 °C). Poly(ester-block-carbonate) polymers are also afforded using the most active catalyst by the one-pot terpolymerization of PA/CHO/CO2. PMID:26605983

  14. Reactive blending of thermoplastic starch and polyethylene-graft-maleic anhydride with chitosan as compatibilizer.

    PubMed

    Jantanasakulwong, Kittisak; Leksawasdi, Noppol; Seesuriyachan, Phisit; Wongsuriyasak, Somchai; Techapun, Charin; Ougizawa, Toshiaki

    2016-11-20

    Cassava starch was melt-blended with glycerol (70/30wt%/wt%) at 140°C to prepare thermoplastic starch (TPS). Chitosan (CTS) was premixed with starch and glycerol, in acidified water (lactic acid 2wt%), at 1, 5 and 10wt%/wt%. TPS/CTS was then melt-blended (160°C) with polyethylene-graft-maleic anhydride (PE-MAH). Phase determination and scanning electron microscopy indicated TPS/PE-MAH/CTS had a co-continuous morphology and CTS-induced phase inversion to give dispersed PE-MAH particles in a TPS matrix. Tensile strength at break and elongation, melt viscosity, fracture toughness and water contact angle of TPS/PE-MAH were improved by CTS incorporation. TPS/PE-MAH/CTS blends decreased the melting temperature of TPS and PE-MAH compared to the neat polymers. FTIR confirmed a reaction had occurred between amino groups (NH2) of CTS and the MAH groups of PE-MAH. This reaction and the enhanced miscibility between TPS and CTS improved the mechanical properties of the TPS/PE-MAH/CTS blend, particularly at 5wt%/wt% CTS. PMID:27561475

  15. Thermodynamic and kinetic evaluation of the polymerization process of epoxidized biodiesel with dicarboxylic anhydride

    NASA Astrophysics Data System (ADS)

    da Roza, Miriam B.; Nicolau, Aline; Angeloni, Luiz M.; Sidou, Pedro N.; Samios, Dimitrios

    2012-06-01

    This paper reports on a polymerization study of the epoxidized methyl esters (EME) obtained from soybean oil, with phthalic anhydride (PA) and 2-methyl-imidazole in the presence of soybean oil biodiesel (BD) as solvent. The gelation region for the system EME/PA/2MI without BD was determined using the Flory's theory occurring between X EME = 0.33 to 0.54. The evaluation of the polymerization enthalpy (ΔH) indicates that the experimental stoichiometric composition of the system EME/PA/2MI without solvent is near to X EME = X PA = 0.5. ΔH values higher than 76 J/g were observed for samples located in the theoretical gelation region. Different polymers were produced using the stoichiometric composition and varying only the amount of BD. Kinetics and thermodynamics of the polymerization reaction, using solvent, were evaluated by DSC technique. The results show that BD acts as solvent in the polymerization reaction and a compensation effect between activation energy and logarithm of pre-exponential factor was observed. Thermogravimetric analysis indicated that the degradations of the products include two well-defined processes. The compensation effect was observed in the thermal degradation kinetics too.

  16. Locally delivered salicylic acid from a poly(anhydride-ester): impact on diabetic bone regeneration.

    PubMed

    Wada, Keisuke; Yu, Weiling; Elazizi, Mohamad; Barakat, Sandrine; Ouimet, Michelle A; Rosario-Meléndez, Roselin; Fiorellini, Joseph P; Graves, Dana T; Uhrich, Kathryn E

    2013-10-10

    Diabetes mellitus (DM) involves metabolic changes that can impair bone repair, including a prolonged inflammatory response. A salicylic acid-based poly(anhydride-ester) (SA-PAE) provides controlled and sustained release of salicylic acid (SA) that locally resolves inflammation. This study investigates the effect of polymer-controlled SA release on bone regeneration in diabetic rats where enhanced inflammation is expected. Fifty-six Sprague-Dawley rats were randomly assigned to two groups: diabetic group induced by streptozotocin (STZ) injection or normoglycemic controls injected with citrate buffer alone. Three weeks after hyperglycemia development or vehicle injection, 5mm critical sized defects were created at the rat mandibular angle and treated with SA-PAE/bone graft mixture or bone graft alone. Rats were euthanized 4 and 12weeks after surgery, then bone fill percentage in the defect region was assessed by micro-computed tomography (CT) and histomorphometry. It was observed that bone fill increased significantly at 4 and 12weeks in SA-PAE/bone graft-treated diabetic rats compared to diabetic rats receiving bone graft alone. Accelerated bone formation in normoglycemic rats caused by SA-PAE/bone graft treatment was observed at 4weeks but not at 12weeks. This study shows that treatment with SA-PAE enhances bone regeneration in diabetic rats and accelerates bone regeneration in normoglycemic animals.

  17. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    PubMed

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  18. Low Viscosity Imides Based on Asymmetric Oxydiphthalic Anhydride

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Criss, Jim M., Jr.; Mintz, Eric A.; Scheiman, Daniel A.; Nguyen, Baochau N.; McCorkle, Linda S.

    2008-01-01

    A series of low-melt viscosity imide resins were prepared from asymmetric oxydiphthalic dianhydride (a-ODPA) and 4-phenylethynylphthalic anhydride as the endcap, along with 3,4' - oxydianiline (3,4' -ODA), 3,4' -methylenedianiline (3,4' -MDA), 3,3' -methylenedianiline (3,3' - MDA) and 3,3'-diaminobenzophenone (3,3'-DABP), using a solvent-free melt process. These imide oligomers displays low-melt viscosities (2-15 poise) at 260-280 C, which made them amenable to low-cost resin transfer molding (RTM) process. The a-ODPA based RTM resins exhibits glass transition temperatures (Tg's) in the range of 265-330 C after postcure at 343 C. The mechanical properties of these polyimide/carbon fiber composites fabricated by RTM will be discussed.

  19. Perylenetetracarboxylic anhydride as a precursor of fluorescent carbon nanoonion rings

    NASA Astrophysics Data System (ADS)

    Baldoví, Herme G.; Herance, José Raul; Manuel Víctor, Víctor; Alvaro, Mercedes; Garcia, Hermenegildo

    2015-07-01

    Thermal annealing at 400 °C of perylenetetracarboxylic anhydride in low molecular mass PEG gives rise to the formation of well defined nanoobjects of 2.5 nm height and size distribution from 10 to 65 nm (average 40 nm) after purification of the raw mixture with silicagel chromatography. TEM reveals that the flat nanoobjects are constituted of concentric graphenic rings (0.34 nm interlayer distance). The morphology of the nanoparticles resembles onion rings of nanometric dimensions (nanoonion rings C-NOR). C-NOR particles have an excitation dependent emission with λem from 430 to 570 nm and a maximum emission quantum yield of 0.49. C-NOR particles can be internalized into Hep3B human hepatoma cells as determined by confocal fluorescence microscopy and are remarkably biocompatible affecting slightly cell viability according to the MTT test.

  20. Development of ALMA process: Advances maleic anhydride production technology

    SciTech Connect

    Arnoia, S.C.; Komeya, M.; Pedretti, D.; Stanecki, J.W.

    1987-01-01

    Shin-Daikyowa Petrochemical Co. (SDPC) has initiated a project to build a 15,000 MTA maleic anhydride plant at Yokkaichi, Japan. For technology, SDPC evaluated many alternatives and elected to utilize the ALMA Process in what will be the first full-scale plant for this new process. Startup is scheduled for late 1988. This paper describes the economic advantages of the ALMA Process and their technical bases which have led to its selection by SDPC. The advantages are in variable costs (primarily feed and energy) for any size plant, and in initial capital as well for plants larger than 10,000 MTA. They are derived from the use of n-butane feed, a fluidized-bed reactor system, and a non-aqueous recovery system.

  1. Acetylation of barnyardgrass starch with acetic anhydride under iodine catalysis.

    PubMed

    Bartz, Josiane; Goebel, Jorge Tiago; Giovanaz, Marcos Antônio; Zavareze, Elessandra da Rosa; Schirmer, Manoel Artigas; Dias, Alvaro Renato Guerra

    2015-07-01

    Barnyardgrass (Echinochloa crus-galli) is an invasive plant that is difficult to control and is found in abundance as part of the waste of the paddy industry. In this study, barnyardgrass starch was extracted and studied to obtain a novel starch with potential food and non-food applications. We report some of the physicochemical, functional and morphological properties as well as the effect of modifying this starch with acetic anhydride by catalysis with 1, 5 or 10mM of iodine. The extent of the introduction of acetyl groups increased with increasing iodine levels as catalyst. The shape of the granules remained unaltered, but there were low levels of surface corrosion and the overall relative crystallinity decreased. The pasting temperature, enthalpy and other gelatinisation temperatures were reduced by the modification. There was an increase in the viscosity of the pastes, except for the peak viscosity, which was strongly reduced in 10mM iodine.

  2. Carboxy terminated rubber based on natural rubber grafted with acid anhydrides and its adhesion properties

    NASA Astrophysics Data System (ADS)

    Klinpituksa, P.; Kongkalai, P.; Kaesaman, A.

    2014-08-01

    The chemical modification of natural rubber by grafting of various polar functional molecules is an essential method, improving the versatility of rubber in applications. This research investigated the preparation of natural rubber-graft-citraconic anhydride (NR-g-CCA), natural rubber-graft-itaconic anhydride (NR-g-ICA), and natural rubber-graft-maleic anhydride (NR-g-MA), with the anhydrides grafted to natural rubber in toluene using benzoyl peroxide as an initiator. Variations of monomer content, initiator content, temperature and reaction time of the grafting copolymerization were investigated. The maximum degrees of grafting were 1.06% for NR-g-CCA, 4.66% for NR-g-ICA, and 5.03% for NR-g-MA, reached using 10 phr citraconic anhydride, 10 phr of itaconic anhydride, or 8 phr of maleic anhydride, 3 phr benzoyl peroxide, at 85, 80 and 80°C for 2, 2 and 3 hrs, respectively. Solvent-based wood adhesives were formulated from these copolymers with various contents of wood resin in the range 10-40 phr. The maximal 289 N/in cleavage peel and 245.7 KPa shear strength for NR-g-MA (5.03% grafting) were obtained at 40 phr wood resin.

  3. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl...

  4. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl...

  5. 40 CFR 721.10381 - Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cyclic carboxylic acid, polymer with dihydroxy dialkyl ether, hydroxy substituted alkane and carboxylic acid anhydride, methacrylate terminated... Specific Chemical Substances § 721.10381 Cyclic carboxylic acid, polymer with dihydroxy dialkyl...

  6. Method of Preparing Polymers with Low Melt Viscosity

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2001-01-01

    This invention is an improvement in standard polymerizations procedures, i.e., addition-type and step-growth type polymerizations, wherein monomers are reacted to form a growing polymer chain. The improvement includes employing an effective amount of a trifunctional monomer (such as a trifunctional amine anhydride, or phenol) in the polymerization procedure to form a mixture of polymeric materials consisting of branced polymers, star-shaped polymers, and linear polymers. This mixture of polymeric materials has a lower melt temperature and a lower melt viscosity than corresponding linear polymeric materials of equivalent molecular weight.

  7. Fire and heat resistant laminating resins based on maleimido substituted aromatic cyclotriphosphazene polymer

    NASA Technical Reports Server (NTRS)

    Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1987-01-01

    4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy trisphenoxy cyclotriphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.

  8. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification... adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer,...

  9. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  10. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  11. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  12. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  13. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  14. Atmospheric chemistry of toxic contaminants. 3. Unsaturated aliphatics: Acrolein, acrylonitrile, maleic anhydride

    SciTech Connect

    Grosjean, D. )

    1990-12-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the unsaturated aliphatic contaminants acrolein, acrylonitrile, and maleic anhydride. In-situ formation of small amounts of acrolein and maleic anhydride may involve the reaction of OH (and O{sub 3}) with 1,3-dienes and the reaction of OH with aromatic hydrocarbons, respectively. There is no known pathway for in-situ formation of acrylonitrile. Rapid removal of acrolein (half-life = less than one day) and of maleic anhydride (half-life = several hours) is expected from their rapid reactions with OH (major), O{sub 3}, and NO{sub 3}. These reactions lead to formaldehyde and glyoxal from acrolein and to dicarbonyls from maleic anhydride. Acrylonitrile is removed at a slower rate (half-life = 2-7 days) by reaction with OH, leading to formaldehyde and formyl cyanide.

  15. Differential labeling of the subunits of respiratory complex III with (3H)succinic anhydride, (14C)succinic anhydride, and p-diazobenzene-(35S)sulfonate

    SciTech Connect

    Ho, S.H.; Rieske, J.S.

    1985-12-01

    Exposure of antimycin-treated Complex III (ubiquinol-cytochrome c reductase) purified from bovine heart mitochondria to (3H)succinic anhydride plus (35S)p-diazobenzenesulfonate (DABS) resulted in somewhat uniform relative labeling of the eight measured subunits of the complex by (3H)succinic anhydride. In contrast, relative labeling by (35S)DABS was similar to (3H)succinic anhydride for the subunits of high molecular mass, i.e., core proteins, cytochromes, and the iron-sulfur protein, but greatly reduced for the polypeptides of molecular mass below 15 kDa. With Complex II depleted in the iron-sulfur protein the relative labeling of core protein I by exposure of the complex to (3H)succinic anhydride was significantly enhanced, whereas labeling of the polypeptides represented by SDS-PAGE bands 7 and 8 was significantly inhibited. Dual labeling of the subunits of Complex III by 14C- and 3H-labeled succinic anhydride before and after dissociation of the complex by sodium dodecyl sulfate, respectively, was measured with the complex in its oxidized, reduced, and antimycin-inhibited states. Subunits observed to be most accessible or reactive to succinic anhydride were core protein II, the iron-sulfur protein, and polypeptides of SDS-PAGE bands 7,8, and 9. Two additional polypeptides of molecular masses 23 and 12kDa, not normally resolved by gel-electrophoresis, were detected. Reduction of the complex resulted in a significant change of 14C/3H labeling ratio of core protein only, whereas treatment of the complex with antimycin resulted in decreases in 14C/3H labeling ratios of core proteins I and II, cytochrome c1, and a polypeptide of molecular mass 13kDa identified as an antimycin-binding protein.

  16. Determination of the Preferred Structure, Dynamics, and Planarity of Substituted Anhydrides by Cp-Ftmw

    NASA Astrophysics Data System (ADS)

    McMahon, Timothy J.; Bailey, Josiah R.; Bird, Ryan G.; Pratt, David

    2016-06-01

    The planarity of five-membered rings is derived from a competition between ring-angle strain and stability of the torsional angles. The planar form maximizes the already stressed, smaller-than-normal, C-C bond angles, while puckering reduces the unfavorable eclipsed interactions. The structure, dynamics, and planarity of three anhydrides, succinic, methylsuccinic, and methylene (itaconic) anhydride, were studied and compared using chirped-pulse Fourier transform microwave spectroscopy.

  17. Room temperature (nπ∗) phosphorescence of indanetrione (anhydrous ninhydrine) in phthalic anhydride matrix

    NASA Astrophysics Data System (ADS)

    Roy, J.; Bhattacharya, S.; Mondal, S.; Ghosh, Sanjib

    1997-02-01

    Indanetrione, a cis vicinal cyclic triketone, is found to exhibit room temperature (nπ∗) phosphorescence (RTP) in a phthalic anhydride matrix in addition to (nπ∗) fluorescence. The compound does not show RTP in benzophenone mixed crystals or in any other solvent studied. A rigid binding of the cyclic triketone in the phthalic anhydride matrix, lowering the T 1 → S 0 nonradiative rate, has been proposed as the explanation for RTP.

  18. Organocatalytic kinetic resolution of racemic secondary nitroallylic alcohols combined with simultaneous desymmetrization of prochiral cyclic anhydrides.

    PubMed

    Roy, Suparna; Chen, Kan-Fu; Gurubrahamam, Ramani; Chen, Kwunmin

    2014-10-01

    This study describes an organocatalytic kinetic resolution of racemic secondary nitroallylic alcohols (2) combined with simultaneous desymmetrization of prochiral cyclic anhydrides (1). The experimental results revealed that enantioselective alcoholysis of 3-substituted glutaric anhydrides afforded hemiesters (3) with high levels of enantioselectivities (up to 99% ee) in the presence of cinchonidine-derived thiourea catalyst (IV). The highly optical enrichment (up to 95% ee) of (S)-nitroallylic alcohols (2) was recovered.

  19. Low molecular weight chemicals, hypersensitivity, and direct toxicity: the acid anhydrides.

    PubMed Central

    Venables, K M

    1989-01-01

    The acid anhydrides are a group of reactive chemicals used widely in alkyd and epoxy resins. The major hazards to health are mucosal and skin irritation and sensitisation of the respiratory tract. Most occupational asthma caused by acid anhydrides appears to be immunologically mediated. Immunological mechanisms have been proposed to explain an influenza-like syndrome and pulmonary haemorrhage, but direct toxicity may also be important in the aetiology of these conditions. PMID:2653411

  20. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ku, Jun-Hwan; Hwang, Seung-Sik; Ham, Dong-Jin; Song, Min-Sang; Shon, Jeong-Kuk; Ji, Sang-Min; Choi, Jae-Man; Doo, Seok-Gwang

    2015-08-01

    Anode materials including graphite are known to be thermodynamically unstable toward organic solvents and salts and become covered by a passivating film (Solid electrolyte interphase, SEI) which retards the kinetics because of the high electronic resistivity. To achieve high performance in lithium ion batteries (LIBs), the SEIs are required to be mechanically stable during repeated cycling and possess highly ion-conductive. In this work, we have investigated an artificial pre-SEI on graphite electrode using a polymer binder containing lithium (i.e., a Li-copolymer of isobutylene and maleic anhydride, Li-PIMA) and its effect on the anode performances. During charging, the polymer binder with the functional group (-COOLi) acts as a SEI component, reducing the electrolyte decomposition and providing a stable passivating layer for the favorable penetration of lithium ions. Hence, by using the binder containing lithium, we have been able to obtain the first Coulombic efficiency of 84.2% (compared to 77.2% obtained using polyvinylidene fluoride as the binder) and a capacity retention of 99% after 100 cycles. The results of our study demonstrate that binder containing lithium we have used is a favorable candidate for the development of high-performance LIBs.

  1. Convergence of biological nitration and nitrosation via symmetrical nitrous anhydride.

    PubMed

    Vitturi, Dario A; Minarrieta, Lucia; Salvatore, Sonia R; Postlethwait, Edward M; Fazzari, Marco; Ferrer-Sueta, Gerardo; Lancaster, Jack R; Freeman, Bruce A; Schopfer, Francisco J

    2015-07-01

    The current perspective holds that the generation of secondary signaling mediators from nitrite (NO2(-)) requires acidification to nitrous acid (HNO2) or metal catalysis. Herein, the use of stable isotope-labeled NO2(-) and LC-MS/MS analysis of products reveals that NO2(-) also participates in fatty acid nitration and thiol S-nitrosation at neutral pH. These reactions occur in the absence of metal centers and are stimulated by autoxidation of nitric oxide ((•)NO) via the formation of symmetrical dinitrogen trioxide (nitrous anhydride, symN2O3). Although theoretical models have predicted physiological symN2O3 formation, its generation is now demonstrated in aqueous reaction systems, cell models and in vivo, with the concerted reactions of (•)NO and NO2(-) shown to be critical for symN2O3 formation. These results reveal new mechanisms underlying the NO2(-) propagation of (•)NO signaling and the regulation of both biomolecule function and signaling network activity via NO2(-)-dependent nitrosation and nitration reactions.

  2. Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride

    NASA Technical Reports Server (NTRS)

    Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.

    1985-01-01

    The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.

  3. Sulfonate-cosurfactant mixtures for use in hard brines during oil recovery operations

    SciTech Connect

    Meister, J. J.

    1981-05-12

    Alkyl vinyl ether-maleic anhydride copolymers, alone or in combination with ethoxylated acids and/or ethoxylated amides and, optionally, together with polyalkoxylated carboxylic acids, polyalkoxylated amides and sulfated derivatives thereof, ethoxylated alkyl phenols, ethoxylated alcohols and the corresponding sulfated derivatives, sulfated aliphatic alcohols and alkylene oxide block copolymers, are useful to stabilize sulfonate surfactants, E.G., petroleum sulfonates, E.G., for use in tertiary oil recovery.

  4. Allergy to methyltetrahydrophthalic anhydride in epoxy resin workers.

    PubMed

    Nielsen, J; Welinder, H; Horstmann, V; Skerfving, S

    1992-11-01

    One hundred and forty four current and 26 former workers in a plant producing barrels for rocket guns from an epoxy resin containing methyltetrahydrophthalic anhydride (MTHPA; time weighted average air concentration up to 150 micrograms/m3) were studied. They showed higher frequencies of work related symptoms from the eyes (31 v 0%; p < 0.001), nose (53 v 9%; p < 0.001), pharynx (26 v 6%; p < 0.01), and asthma (11 v 0%; p < 0.05) than 33 controls. Also they had higher rates of positive skin prick test to a conjugate of MTHPA and human serum albumin (16 v 0%; p < 0.01), and more had specific IgE and IgG serum antibodies (18 v 0%; p < 0.01 and 12 v 0%; p < 0.05 respectively). There were statistically significant exposure-response relations between exposure and symptoms from eyes and upper airways, dry cough, positive skin prick test, and specific IgE and IgG antibodies. There was a non-significant difference in reaction to metacholine between exposed workers and non-smoking controls. In workers with and without specific IgE antibodies, differences existed in frequency of nasal secretion (54 v 23%; p < 0.05) and dry cough (38 v 12%; p < 0.05). Workers with specific IgG had more dry cough (38 v 12%; p < 0.05), but less symptoms of non-specific bronchial hyperreactivity (0 v 26%; p < 0.05). Atopic workers sneezed more than non-atopic workers (65 v 30%; p < 0.01). In a prospective study five sensitised workers who left the factory became less reactive to metacholine, and became symptom free. In 41 workers who stayed, there was no improvement, despite a 10-fold reduction in exposure. The results show the extreme sensitising properties of MTHPA.

  5. Degradation of Terfenol-D particle epoxy composites under low frequency cyclic magneto-mechanical loading: comparisons of matrix polymer

    NASA Astrophysics Data System (ADS)

    Armstrong, William D.; Shanmugham, Manikantan

    2005-05-01

    Magnetostrictive Terfenol-D particle actuated epoxy polymer matrix composites were prepared with polyamine and anhydride cured epoxy polymer matrices. The different matrix epoxies exhibited large differences in glass transition and creep behavior. The differences in matrix thermal-mechanical properties resulted in important differences in temperature dependant damage behavior and magneto-elastic strain output in the Terfenol-D particle actuated epoxy polymer matrix composites.

  6. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... September 12, 2013 (78 FR 56185) (FRL- 9399-7), EPA issued a document pursuant to FFDCA section 408, 21 U.S... review under Executive Order 12866, entitled ``Regulatory Planning and Review'' (58 FR 51735, October 4... Significantly Affect Energy Supply, Distribution, or Use'' (66 FR 28355, May 22, 2001) or Executive Order...

  7. Comparison of acid anhydrides with carboxylic acids in enantioselective enzymatic esterification of racemic menthol.

    PubMed

    Xu, J; Zhu, J; Kawamoto, T; Atsuo, T; Hu, Y

    1997-01-01

    Optical resolution of racemic menthol has been efficiently achieved by lipase-catalyzed enantioselective esterification in an organic solvent. The performance of the reaction using an acid anhydride as an acyl donor was compared with that using its corresponding free acid. The reactivities of acid anhydrides were found to be higher than their corresponding free acids, but acid anhydrides were also found to be easily hydrolyzed into free acids under the catalysis of the same enzyme. The existence of a too-high concentration of an acid anhydride in a micro-aqueous reaction system will cause dehydration and thus deactivation of the enzyme, and will enhance non-selective esterification of a chiral alcohol, which will reduce the optical purity of the product. All these drawbacks, however, could be effectively overcome in a semi-batch reaction system into which propionic anhydride was continuously fed. This system showed some advantages over a batch reaction system using free propionic acid: the reaction time of dl-menthol was shortened by half, the stability of the enzyme was much enhanced, and the optical purity of the product (l-menthyl ester) was kept at a similarly high level (> 98% ee). PMID:9631262

  8. Synthesis and testing of catalysts for the production of maleic anhydride from a fermentation feedstock

    SciTech Connect

    Yedur, S.K.; Berglund, K.A.; Dulebohn, J.; Werpy, T.

    1996-03-01

    It is necessary to develop alternate pathways for the production of chemicals that are traditionally produced from fossil fuels to reduce dependency on nonrenewable energy sources. In this paper, an alternate technology is presented for producing maleic anhydride from a fermentation feedstock. The process involves the catalytic oxydehydrogenation of fermentation-derived succinic anhydride to produce maleic anhydride. Various catalysts have been synthesized and tested for the oxydehydrogenation reaction. Iron phosphate based catalysts are found to be the best on the basis of high conversions and selectivities obtained. The effects of temperature, oxygen concentration, contact time, and the total time on stream on the performance of the catalyst are investigated, and an optimum set of conditions for the operation of the bench-scale reactor is presented. The bulk and surface compositions, the surface areas, and the bulk crystallographic structure of the catalysts are also reported.

  9. UNIFAC parameters for maleic anhydride and 2-methyl furan in p-dioxane system

    SciTech Connect

    Daumn, K.J.

    1983-01-01

    The purpose of this work was to develop a method for calculating equilibrium concentrations for reversible liquid phase reactions from a minimum of experimental data. The example reaction studied was the Diels Alder reaction between 2-methyl furan and maleic anhydride. Specifically, interaction parameters of the UNIFAC model for groups in the compounds 2-methyl furan, maleic anhydride and the solvent, p-dioxane, were determined. The activity coefficient of each substance was then predicted by the UNIFAC method. Equilibrium constants at 45/sup 0/C for the Diels Alder reaction between 2-methyl furan and maleic anhydride were then calculated from these activity coefficients and two previously determined sets of equilibrium concentrations at 45/sup 0/C. These two equilibrium constants were within 12% of each other, which demonstrated the validity of the method.

  10. Photothermal and morphological characterization of PLA/PCL polymer blends

    NASA Astrophysics Data System (ADS)

    Correa-Pacheco, Z. N.; Jiménez-Pérez, J. L.; Sabino, M. A.; Cruz-Orea, A.; Loaiza, M.

    2015-09-01

    Nowadays, some synthetic polymers have been replaced by biodegradable polymers in order to avoid environmental contamination. Among these biodegradables polymers, aliphatic polyesters such as polylactic acid (PLA) and polycaprolactone (PCL) have been widely used. In the present study, solvent-casting films of PLA, PCL and polymer blends with and without compatibilizer (PLA grafted with maleic anhydride) were prepared. The thermal diffusivity ( α) of each sample was obtained by using the open photoacoustic cell technique. Morphology and thermal properties were determined by using scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry (DSC), respectively. The blends showed lower thermal diffusivity compared to pure polymers. However, when the compatibilizer was used, the highest value of thermal diffusivity was obtained. Also, cold crystallization with the highest value of enthalpy of fusion was observed for the compatibilized sample, which was revealed by DSC. To our knowledge, this is the first time that the thermal diffusivity of these biodegradable polymer blends is reported.

  11. Metal phthalocyanine intermediates for the preparation of polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A.

    1985-01-01

    Metal 4, 4', 4"",-tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  12. In vitro release of clomipramine HCl and buprenorphine HCl from poly adipic anhydride (PAA) and poly trimethylene carbonate (PTMC) blends.

    PubMed

    Dinarvand, Rassoul; Alimorad, Mohammed Massoud; Amanlou, Massoud; Akbari, Hamid

    2005-10-01

    Controlled drug-delivery technology is concerned with the systematic release of a pharmaceutical agent to maintain a therapeutic level of the drug in the body for modulated and/or prolonged periods of time. This may be achieved by incorporating the therapeutic agent into a degradable polymer vehicle, which releases the agent continuously as the matrix erodes. In this study, poly trimethylene carbonate (PTMC), an aliphatic polycarbonate, and poly adipic anhydride (PAA), an aliphatic polyanhydride, were synthesized via melt condensation and ring-opening polymerization of trimethylene carbonate and adipic acid, respectively. The release of clomipramine HCl and buprenorphine HCl from discs prepared with the use of PTMC-PAA blends in phosphate buffer (pH 7.4) are also described. Clomipramine HCl and buprenorphine HCl were both used as hydrophilic drug models. Theoretical treatment of the data with the Peppas model revealed that release of clomipramine HCl (5%) in devices containing 70% PTMC or more followed a Fickian diffusion model. However, the releases of buprenorphine HCl (5%) in the same devices were anomalous. For devices containing 50% and more PAA, surface erosion may play a significant role in the release of both molecules.

  13. Effect of temperature and duration of post-cure on in vitro wear and quantity of remaining double bonds of resins containing carboxylic anhydride.

    PubMed

    Peutzfeldt, A

    1995-08-01

    The present study determined the effect of post-cure temperature and duration on in vitro wear resistance and quantity of remaining double bonds of anhydride-containing resins. Temperatures were varied between 37 degrees C and 225 degrees C, and durations were varied between 0 and 24 h. The quantity of remaining double bonds could not be established for post-cure temperatures of 200 degrees C or more due to melting of the polymer. A temperature of approximately 120 degrees C had optimal effect on wear resistance. Quantity of remaining double bonds and wear were found to decrease with increasing duration of post-cure. Low quantities of remaining double bonds were generally associated with low in vitro wear.

  14. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride.

    PubMed

    Siyamak, Samira; Ibrahim, Nor Azowa; Abdolmohammadi, Sanaz; Yunus, Wan Md Zin Bin Wan; Rahman, Mohamad Zaki Ab

    2012-01-01

    In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex™), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite. PMID:22343368

  15. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride.

    PubMed

    Siyamak, Samira; Ibrahim, Nor Azowa; Abdolmohammadi, Sanaz; Yunus, Wan Md Zin Bin Wan; Rahman, Mohamad Zaki Ab

    2012-02-16

    In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex™), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.

  16. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  17. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  18. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILLA IN A MOUSE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    Trimellitic anhydride (TMA) is a low molecular weight chemical known to cause occupational asthma. The present study was designed to determine if TMA could elicit eosinophil infiltration into the lung of a sensitized mouse similarly to previous studies with the protein allergen ...

  19. TRIMELLITIC ANHYDRIDE (TMA) HYPERSENSITIVITY IN MICE AFTER DERMAL AND INTRATRACHAEL (IT) EXPOSURES

    EPA Science Inventory

    ABSTRACT for 2001 DMS213

    TRIMELLITIC ANHYDRIDE (TMA) HYPERSENSITIVITY IN
    MICE AFTER DERMAL AND INTRATRACHEAL (IT) EXPOSURES. E Boykin, M Ward, MJ Selgrade, and D Sailstad. NHEERL, ORD, US EPA, RTP, NC, USA.
    TMA causes respiratory hypersensitivity (RH) responses. W...

  20. A firefly inspired one-pot chemiluminescence system using n-propylphosphonic anhydride (T3P).

    PubMed

    Kato, Dai-ichiro; Shirakawa, Daiki; Polz, Robin; Maenaka, Mika; Takeo, Masahiro; Negoro, Seiji; Niwa, Kazuki

    2014-12-01

    A simple reaction procedure for chemiluminescence of firefly luciferin (D-luc) using n-propylphosphonic anhydride (T3P) is reported. A luminescent photon is produced as a result of one-pot reaction, only requiring mixing with the substrate carboxylic acid and T3P in the presence of a mild organic base. PMID:25350893

  1. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate Coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil (RBO), and incorporated into an aqueous OSA-ST solution. High pressure homogenization (HPH) of the mixture was conducted at 170 MPa for 5-6 cycles. The resulting ...

  2. Formation and stability of Vitamin E enriched nanoemulsions stabilized by Octenyl Succinic Anhydride modified starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...

  3. SELECTIVE HYDROGENATION OF ANHYDRIDES TO LACTONES UNDER SUPERCRITICAL CARBON DIOXIDE MEDIUM

    EPA Science Inventory

    Selective Hydrogenation of Anhydrides to Lactones Under Supercritical Carbon Dioxide Medium

    Endalkachew Sahle-Demessie Unnikrishnan R Pillai
    U.S. EPA , 26 W. Martin Luther King Dr. Cincinnati, OH 45268 Phone: 513-569-7739
    Fax: 513-569-7677
    Abstract:
    Hydrogenat...

  4. A firefly inspired one-pot chemiluminescence system using n-propylphosphonic anhydride (T3P).

    PubMed

    Kato, Dai-ichiro; Shirakawa, Daiki; Polz, Robin; Maenaka, Mika; Takeo, Masahiro; Negoro, Seiji; Niwa, Kazuki

    2014-12-01

    A simple reaction procedure for chemiluminescence of firefly luciferin (D-luc) using n-propylphosphonic anhydride (T3P) is reported. A luminescent photon is produced as a result of one-pot reaction, only requiring mixing with the substrate carboxylic acid and T3P in the presence of a mild organic base.

  5. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octenylsuccinic anhydride (OSA)-modified starches with degree of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H) were prepared from granular native waxy maize starch in an aqueous slurry system. The substitution distribution of OS groups was investigated by enzyme hydrolysis followed by chromatogr...

  6. Conjugated polymers in an arene sandwich.

    PubMed

    McNeil, Anne J; Müller, Peter; Whitten, James E; Swager, Timothy M

    2006-09-27

    A series of poly(p-arylene butadiynylene)s containing zero, one, and two co-facial pi-pi interactions per repeat unit were synthesized and characterized. A surprisingly selective and high-yielding Diels-Alder cycloaddition of anthracene and nonsymmetric, sterically hindered anhydrides proved essential to generating the cofacial arene-containing monomers. Single-crystal X-ray structures display nearly parallel cofacial arenes that are within the van der Waals contact distances. The precursor molecules with cofacial arenes undergo reversible one- and two-electron oxidations to the radical cation and dication in CH2Cl2. The anhydrides were converted to N-alkyl imides to increase the solubility. High-molecular weight poly(p-arylene butadiynylene)s were prepared via Pd/Cu(I)/benzoquinone oxidative coupling of the diacetylene monomers. The resulting polymers are highly emissive in solution and thin films. The ionization potentials were measured using ultraviolet photoelectron spectroscopy with thin films. Last, fluorescence measurements of polymer thin films during continuous irradiation indicate that the most hindered polymer is more resistant to photobleaching.

  7. Adsorption and reaction of maleic anhydride on Mo(110), monolayer Pd(111)/Mo(110), and multilayer Pd(111)/Mo(110)

    SciTech Connect

    Xu, C.; Goodman, D.W.

    1996-04-03

    The adsorption and reaction of maleic anhydride and deuterated maleic anhydride on Mo(110), monolayer Pd/Mo(110), and multilayer Pd(111)/Mo(110) surfaces have been studied using temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). Maleic anhydride adsorbs irreversibly on the Mo(110) surface at 100 K. Heating to 1200 K yields adsorbed carbon (C{sub ads}) and gas-phase CO and H{sub 2}. In contrast, the adsorption of maleic anhydride on monolayer Pd(111)/Mo(110) and multilayer Pd(111)/Mo(110) surfaces is largely reversible with the chemisorbed maleic anhydride desorbing at 365 and 375 K, respectively. Approximately 15% of the chemisorbed maleic anhydride decomposes upon heating to 400K, forming CO, CO{sub 2} and C{sub 2}H{sub 2}; C{sub 2}H{sub 2} further dehydrogenates upon heating to C{sub ads} and gas-phase H{sub 2}. The HREELS measurements indicate that maleic anhydride is bonded to multilayer Pd(111)/Mo(110) through the olefin bond in a di-{sigma} configuration, while on monolayer Pd(111)/Mo(110), the maleic anhydride is bonded to the surface through the olefin via a {pi}-bond. On the Mo(110) surface, maleic anhydride is bonded to the surface through the ring oxygen with the molecular plane perpendicular to the surface. As a result of this modified adsorption geometry, the carbonyl stretching mode is red-shifted nearly 150 cm{sup -1} on the monolayer Pd(111)/Mo(110) surface, unshifted on the multilayer Pd(111)/Mo(110) surface, and blue-shifted by nearly 100 cm{sup -1} on the Mo(110) surface. 31 refs., 14 figs., 3 tabs.

  8. Thermal stability of sulfonated polymers

    SciTech Connect

    Audibert, A.; Argillier, J.F.

    1995-11-01

    Polyacrylamides which are used in oil applications i.e. polymer flooding and water based muds, are hydrolyzed versus time and temperature. This leads to a lack of tolerance towards electrolyte contamination and to a rapid degradation inducing a loss of their properties. Modifications of polyacrylamide structure have been proposed to postpone their thermal stability to higher temperatures. Monomers such as acrylamido methylpropane sulfonate (AMPS) or sulfonated styrene/maleic anhydride can be used to prevent acrylamide comonomer from hydrolysis. The aim of this work is to study under controlled conditions, i.e. anaerobic atmosphere, neutral pH, the stability of sulfonated polymers in order to distinguish between hydrolysis and radical degradation reactions. It has been observed that up to 100 C, the AMPS group is stable and protects the acrylamide function from hydrolysis up to 80%. At higher temperature, even the hydrolysis of the AMPS group occurs, giving acrylate and {beta},{beta} dimethyl taurine, with a kinetics that depends on temperature and time. Degradation in terms of molecular weight then occurs indicating that it follows a radical decarboxylation reaction. It can be limited either by the use of free radical scavenger or when the polymer is in the presence of a mineral phase such as bentonite. These results provide valuable data for the determination of the limits of use of sulfonated copolymers and guidelines for optimizing chemical structure of sulfonated polymers used in water based formulation, in particular to enhance their thermal stability.

  9. PLA branching with anhydrides and tri-functional aziridine

    NASA Astrophysics Data System (ADS)

    Gu, Liangliang; Xu, Yuewen; Naredla, Rajasekhar; Hoye, Thomas; Macosko, Christopher

    Branched PLA was prepared by melt blending with tri-functional aziridine (T-Az) and pyromellitic dianhydride (PMDA). 1HNMR, gel permeation chromatography (GPC) and rheology were used to characterize the topological structures of branched PLA. Fast reaction between PLA carboxyl end group and T-Az resulted in 3-arm stars and increased the molecular weight. However, the 3-arm stars did not show strain hardening behavior under extensional flow. After modifying PLA hydroxyl end group with PMDA, PLA can react with T-Az on both chain ends and form long chain branched structure, which showed strain hardening in extension. It was found that that only 10% of the PLA hydroxyl end groups reacted with PMDA. This work is supported by Center for Sustainable Polymers.

  10. Physical insights into salicylic acid release from poly(anhydrides).

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2016-01-21

    Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers.

  11. Contributions of polymers to bentonite and saponite fluids

    SciTech Connect

    Guven, N.; Carney, L.L.; Panfil, D.J. . Dept. of Geosciences)

    1991-02-01

    Polymers have been used in drilling fluids for many years. However, the confusion surrounding the use of polymers in the oil field has severely limited their effectiveness. Many oilfield workers simply put all polymers in the same category without regard to the many differences that exist among them. Homopolymers and copolymers of acrylic acid and a copolymer of styrene and maleic anhydride are found to have profound effects on the rheological and filtration properties of clay-based fluids up to 300{degrees}F. These contributions of the polymers are greatly diminished when the clay/polymer fluids were autoclaved at 400{degrees}F. Thus, the effects of these polymers are expected to be negligible at and above 400{degrees}F. Homo- and co-polymers of acrylic acid with molecular weights below 5000 almost eliminate the anomalous viscosity rise of the bentonite fluids at temperatures between 250--450{degrees}F. A homopolymer of acrylic acid with a molecular weight of 60,000 and a co-polymer of styrene and maleic anhydride with very high molecular weight further enhances the anomalous viscosity rise of the bentonite fluid. The original viscosity profile of the saponite fluid is characterized with a high initial viscosity up to 200{degrees}F which is followed by a steep thinning at higher temperatures. The addition of homo- and co-polymer of acrylic acid causes a complete reversal in the fluid viscosity. They become thin at lower temperatures (up to 250{degrees}F) and experience a sudden viscosity rise at higher temperatures. All the above polymers greatly improve the filtration losses of the fluids at room temperatures as indicated by the API test. The filtration tests at high pressure and high temperatures were inconclusive due to the frequent blow-outs that occur during the tests.

  12. Wheat Gluten Blends with Maleic Anhydride-Functionalized Polyacrylate Cross-Linkers for Improved Properties.

    PubMed

    Diao, Cheng; Xia, Hongwei; Parnas, Richard S

    2015-10-14

    A family of polyacrylate-based cross-linkers was synthesized to maximize the toughness of high Tg, high modulus wheat gluten blends in the glassy state. Mechanical testing and damping measurements were conducted to provide an example where the work of fracture and strength of the blend substantially exceeds polystyrene while maintaining flexure stiffness in excess of 3 GPa. The new rubbery cross-linkers, polymethyl acrylate-co-maleic anhydride and polyethyl acrylate-co-maleic anhydride, improve WG mechanical properties and reduce water absorption simultaneously. MDSC, FTIR, HPLC, and NMR data confirmed the cross-linking reaction with wheat gluten. Flexural, DMA, and water absorption testing were carried out to characterize the property improvements. DMA was conducted to investigate the relationship between energy damping and mechanical property improvement. If the cross-linker damping temperature is close to the testing temperature, the entire sample exhibits high damping, toughness, and strength.

  13. Electron paramagnetic resonance and FT-IR spectroscopic studies of glycine anhydride and betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Halim Başkan, M.; Kartal, Zeki; Aydın, Murat

    2015-12-01

    Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).

  14. Oil additive and telomer applications of 4-esters of trimellitic anhydride

    SciTech Connect

    Puskas, I.; Fields, E.K.; Piasek, E.J.

    1981-08-01

    Three methods for the selective 4-esterification of trimellitic anhydride (TMA) briefly reviewed are: (1) reaction of the acid chloride derivative of TMA with alcohols or phenols in the presence of stoichiometric quantities of a tertiary nitrogen base, (2) reaction between the carboxyl group of TMA and an ester of a low-boiling organic acid via a trans-acidolysis mechanism, and (3) thermal reaction of TMA with alcohols. A large number of esters prepared by these methods were evaluated as potential rust inhibitors in lubricating oils, and some differences in rust prevention were noted for esters resulting from the different modes of preparation. However, the data were in agreement that rust-preventing properties increase with increasing chain length in the ester moiety, and esters with more than 20 carbons in the chain performed excellently. The synthesis and applications of 4-tert-butyl pertrimellitate anhydride are described. The structure of the compound was also documented. (BLM)

  15. Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide.

    PubMed

    Leman, Luke J; Orgel, Leslie E; Ghadiri, M Reza

    2006-01-11

    Carbonyl sulfide (COS), a component of volcanic gas emissions and interstellar gas clouds, is shown to be an efficient condensing agent in the context of phosphate chemistry in aqueous solutions. We report that high-energy aminoacyl-phosphate anhydrides and aminoacyl adenylates are generated in solutions containing amino acids, COS, and the corresponding phosphate molecule. We further show that the mixed anhydrides of amino acids and inorganic phosphate are phosphorylating agents, producing pyrophosphate in better than 30% yield in the presence of Ca2+ precipitates. The amino acid dependent activations of phosphate reported here, which occur in parallel with the production of peptides, suggest that these two reactions may have shared a common intermediate on the prebiotic Earth.

  16. Preparation of chitin nanofibers by surface esterification of chitin with maleic anhydride and mechanical treatment.

    PubMed

    Aklog, Yihun Fantahun; Nagae, Tomone; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-11-20

    Esterification with maleic anhydride significantly improved the mechanical disintegration of chitin into uniform 10-nm nanofibers. Nanofibers with 0.25° of esterification were homogeneously dispersed in basic water due to the carboxylate salt on the surface. Esterification proceeded on the surface and did not affect the relative crystallinity. A cast film of the esterified chitin nanofibers was highly transparent, since the film was free from light scattering. PMID:27561471

  17. Synthesis and Characterization of Organic Impurities in Bortezomib Anhydride Produced by a Convergent Technology

    PubMed Central

    Ivanov, Andrey S.; Shishkov, Sergey V.; Zhalnina, Anna A.

    2012-01-01

    A profile of impurities in bortezomib anhydride, produced by a recently developed convergent technology, has been characterized. HPLC-MS analysis of the drug essence revealed three impurities: an epimer of bortezomib, resulting from partial racemization of l-phenylalanine’s stereogenic center during the chemical synthesis, and two epimeric products of oxidative degradation of bortezomib, in which boron is replaced by the OH group. The impurities were obtained by chemical synthesis and characterized by physical methods. PMID:22396904

  18. Covalent modification of graphite oxide with acetic anhydride to enhance dispersibility in organic solvents

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Yang, Anwei; Zhang, Chen; Zhang, Lei; Sun, Feifei; Ma, Ning

    2016-05-01

    Graphite oxide (GO) was modified by acetic anhydride via a catalyzed ring-opening reaction of the attached epoxy groups at very mild condition. The dispersion of the modified GO is thus largely imporved in many organic solvents and the highest GO concentration reaches 2.0mg/mL in alkyl(aryl) chlorides, ethers, alcohols and cyclohexane, which is amongst the highest value for GO in organics.

  19. Transparent lithiated polymer films for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew N.; Auxier, John D.; Urffer, Matthew J.; Penumadu, Dayakar; Schweitzer, George K.; Miller, Laurence F.

    2013-09-01

    Novel water-soluble 6Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using 6Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum 6Li loading obtained that resulted in a transparent film was 4.36% by mass (6Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of 6Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein.

  20. Biodegradation of poly(anhydride-esters) into non-steroidal anti-inflammatory drugs and their effect on Pseudomonas aeruginosa biofilms in vitro and on the foreign-body response in vivo.

    PubMed

    Bryers, James D; Jarvis, Rebecca A; Lebo, Jason; Prudencio, Almudena; Kyriakides, Themis R; Uhrich, Kathryn

    2006-10-01

    The ability of poly(anhydride-esters) composed of non-steroidal anti-inflammatory drugs that biodegrade to salicylic acid (SA) and adipic acid to prevent colonization by Pseudomonas aeruginosa and their effects on the foreign-body response were studied in vitro and in vivo, respectively. Soluble SA in bacterial medium at concentrations up to 300 mg/L did not affect the growth rate or viability of P. aeruginosa, indicating that SA does not exhibit a direct toxicity effect on the bacterium. Batch degradation rates of the salicylate-based polymer in the presence of an actively growing bacterial culture only marginally (14%) increased relative to polymer degradation rates in sterile medium. Short-term (3h) bacterial adhesion studies in agitated batch systems indicated a 47% reduction in the rate of P. aeruginosa adhesion relative to a control polymer that does not release SA upon biodegradation. Long-term (3-day) biofilm accumulation studies indicated a dramatic reduction in biofilm formation on salicylate-based polymer versus controls. A recombinant P. aeruginosa pMHLAS, containing a fluorescent reporter gene prior to the las regulon, was employed to determine whether salicylate-based polymer prevents biofilm formation by the released SA inhibiting quorum sensing pathways. Long-term biofilm accumulation studies with P. aeruginosa pMHLAS insinuate that salicylate-based polymer prevents biofilm accumulation by inhibiting the las quorum sensing system. Furthermore, unlike control polymer, salicylate-based polymer implanted subcutaneously for a period of 4 weeks-resisted cell-mediated degradation and remained intact. Histological and immunohistochemical analysis indicated a reduction in overall encapsulation and paucity of macrophages in the area of the salicylate-based polymer implant.

  1. Novel synthetic method for the preparation of amphiphilic hyaluronan by means of aliphatic aromatic anhydrides.

    PubMed

    Huerta-Angeles, Gloria; Bobek, Martin; Příkopová, Eva; Šmejkalová, Daniela; Velebný, Vladimír

    2014-10-13

    The present work describes a novel and efficient method of synthesis of amphiphilic hyaluronan (HA) by esterification with alkyl fatty acids. These derivatives were synthesized under mild aqueous and well controlled conditions using mixed aliphatic aromatic anhydrides. These anhydrides characterized by the general formula RCOOCOC6H2Cl3 can be easily prepared by the reaction of the corresponding fatty acid (R) with 2,4,6-trichlorobenzoyl chloride (TCBC) in the presence of triethylamine. The aliphatic aromatic anhydrides RCOOCOC6H2Cl3 then react with the polysaccharide and enable the synthesis of aliphatic acid esters of HA in good yields. No hydrolytic degradation of hyaluronic acid could be observed. Parameters controlling the degree of esterification were systematically studied. Fatty acids with different chain lengths can be introduced applying this methodology. The degree of substitution was decreasing with increasing length of hydrophobic chain. The reaction products were fully characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), SEC-MALLS and chromatographic analyses. Although the esterified HA products exhibited aggregation in solution as demonstrated by NMR, microscopy and rheology, they were still water-soluble.

  2. Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.

    PubMed

    Yang, Fuming; Oyeyinka, Samson A; Ma, Ying

    2016-07-01

    Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. PMID:27240315

  3. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid.

    PubMed

    Shang, Wenting; Sheng, Zhanwu; Shen, Yixiao; Ai, Binling; Zheng, Lili; Yang, Jingsong; Xu, Zhimin

    2016-05-01

    Banana cellulose contained number of hydrophilic hydroxyl groups which were succinylated to be hydrophobic groups with high oil affinity. Succinic anhydride was used to modify banana cellulose in 1-allyl-3-methylimidazolium chloride ionic liquid in this study. The modified banana cellulose had a high oil absorption capacity. The effects of reaction time, temperature, and molar ratio of succinic anhydride to anhydroglucose on the degree of substitution of modified banana cellulose were evaluated. The optimal reaction condition was at a ratio of succinic anhydride and anhydroglucose 6:1 (m:m), reaction time 60min and temperature 90°C. The maximum degree of acylation reaction reached to 0.37. The characterization analysis of the modified banana cellulose was performed using X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscopy and thermogravimetry. The oil absorption capacity and kinetics of the modified banana cellulose were evaluated at the modified cellulose dose (0.025-0.3g), initial oil amount (5-30g), and temperature (15-35°C) conditions. The maximum oil absorption capacity was 32.12g/g at the condition of the cellulose dose (0.05g), initial oil amount (25g) and temperature (15°C). The kinetics of oil absorption of the cellulose followed a pseudo-second-order model. The results of this study demonstrated that the modified banana cellulose could be used as an efficient bio-sorbent for oil adsorption. PMID:26877005

  4. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  5. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  6. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies.

  7. Exposure to methylhexahydrophthalic anhydride (MHHPA) in two workplaces of the electric industry.

    PubMed

    Pfäffli, Pirkko; Hämeilä, Mervi; Riala, Riitta; Tornaeus, Jarkko; Wirmoila, Ritva

    2004-04-01

    Methylhexahydrophthalic anhydride (MHHPA) is a hardener for hot-cured epoxy resins employed as insulators in the electric industry. MHHPA has only been measured as an ingredient with other alicyclic anhydrides, albeit there are also large processes which use only MHHPA. We collected MHHPA vapour in a set of devices: Teflon filter, glass spiral, TenaxTA tube connected consecutively together. Elution was performed with a solvent mixture of methyl-tert-butyl ether (70%), acetonitrile (30%), and acetic anhydride (0.5%). By capillary GC-ECD, the regression was linear (0.9994) in the practical low concentration range of 0.04-1 microg ml(-1) being equal to 0.001-0.035 mg m(-3) in 30 l of air. The exposure was measured in two factories manufacturing electric appliances. The assembled objects were first impregnated with a liquid epoxy/hardener mixture, and then the resin hardened at elevated temperature. In condenser manufacturing, the operators' 8 h exposure ranged from 0.068 to 0.118 mg m(-3), and the short-term exposure was during operation at ovens mean 1.90 mg m(-3). The impregnation of coiled resistors and transfer of them to ovens caused the worst exposures, short-term mean 3.846 mg m(-3) and long-term mean 2.191 mg m(-3). During the 'baking', the ovens were closed and evacuated, but when the hot objects were moved out of the ovens, they continued during chilling to emit MHHPA, mean 0.366 mg m(-3). In the adjacent areas, assembling, control rooms, offices, the exposure was still significant, 0.017-0.043 mg m(3), due to leaks from the high exposure areas. Mechanical general ventilation and local exhausts were functioning. Respirators were available for short supervising of the hot equipment.

  8. Exposure to methylhexahydrophthalic anhydride (MHHPA) in two workplaces of the electric industry.

    PubMed

    Pfäffli, Pirkko; Hämeilä, Mervi; Riala, Riitta; Tornaeus, Jarkko; Wirmoila, Ritva

    2004-04-01

    Methylhexahydrophthalic anhydride (MHHPA) is a hardener for hot-cured epoxy resins employed as insulators in the electric industry. MHHPA has only been measured as an ingredient with other alicyclic anhydrides, albeit there are also large processes which use only MHHPA. We collected MHHPA vapour in a set of devices: Teflon filter, glass spiral, TenaxTA tube connected consecutively together. Elution was performed with a solvent mixture of methyl-tert-butyl ether (70%), acetonitrile (30%), and acetic anhydride (0.5%). By capillary GC-ECD, the regression was linear (0.9994) in the practical low concentration range of 0.04-1 microg ml(-1) being equal to 0.001-0.035 mg m(-3) in 30 l of air. The exposure was measured in two factories manufacturing electric appliances. The assembled objects were first impregnated with a liquid epoxy/hardener mixture, and then the resin hardened at elevated temperature. In condenser manufacturing, the operators' 8 h exposure ranged from 0.068 to 0.118 mg m(-3), and the short-term exposure was during operation at ovens mean 1.90 mg m(-3). The impregnation of coiled resistors and transfer of them to ovens caused the worst exposures, short-term mean 3.846 mg m(-3) and long-term mean 2.191 mg m(-3). During the 'baking', the ovens were closed and evacuated, but when the hot objects were moved out of the ovens, they continued during chilling to emit MHHPA, mean 0.366 mg m(-3). In the adjacent areas, assembling, control rooms, offices, the exposure was still significant, 0.017-0.043 mg m(3), due to leaks from the high exposure areas. Mechanical general ventilation and local exhausts were functioning. Respirators were available for short supervising of the hot equipment. PMID:15054537

  9. Bimetallic complexes of spiro-azacrown ligands as catalysts of phosphoester and phosphoric anhydride cleavage.

    PubMed

    Wang, Qi; Mikkola, Satu; Lönnberg, Harri

    2004-09-01

    The ability of bimetallic homo- and heteronuclear complexes of two spiro-linked ligands, viz. a biazacrown (i.e., 2,6,10,14,18,22-hexaazaspiro[11.11]tricosane (1)) and an azacrown-crown ether (i.e., 14,17,20,23,26-pentaoxa-2,6,10-triaza-spiro[11.15]heptacosane (2)), to promote the cleavage of the phosphoester linkage of dinucleoside 3',5'-phosphates and the phosphoric anhydride bridge of dinucleoside 5',5'-triphosphates was studied. In both reactions, the bimetallic homonuclear Cu2+ and Zn2+ complexes were better catalysts than their monometallic counterparts. The acceleration was two- to five-fold with the phosphoester cleavage and 3- to 20-fold with the phosphoric anhydride cleavage. Interestingly, the most-efficient catalyst of the phosphoester cleavage was the heterodinuclear Ni2+,Zn2+ complex of 1, the catalytic activity of which was up to 5- and 100-fold that of the homodinuclear Zn2+ and Ni2+ complexes, respectively. Moreover, this cooperative acceleration was observed to depend on the identity of the 5'-linked nucleoside: 3',5'-UpU and 3',5'-ApU were cleaved much faster than 3',5'-UpA, and no cooperative acceleration was observed with 3',5'-ApA. The reaction was second-order in hydroxide ion concentration, suggesting that a double deprotonation took place on going from the initial to the transition state. Evidently, in addition to deprotonation of the attacking 2'-OH group, N(3)H of the 5'-linked uridine was displaced by one of the metal ions of the cleaving agent. With the phosphoric anhydride cleavage, no similar cooperativity of two different metal ions was observed, but the greatest rate-acceleration was achieved with the homodinuclear Cu2+ complexes.

  10. Bimetallic complexes of spiro-azacrown ligands as catalysts of phosphoester and phosphoric anhydride cleavage.

    PubMed

    Wang, Qi; Mikkola, Satu; Lönnberg, Harri

    2004-09-01

    The ability of bimetallic homo- and heteronuclear complexes of two spiro-linked ligands, viz. a biazacrown (i.e., 2,6,10,14,18,22-hexaazaspiro[11.11]tricosane (1)) and an azacrown-crown ether (i.e., 14,17,20,23,26-pentaoxa-2,6,10-triaza-spiro[11.15]heptacosane (2)), to promote the cleavage of the phosphoester linkage of dinucleoside 3',5'-phosphates and the phosphoric anhydride bridge of dinucleoside 5',5'-triphosphates was studied. In both reactions, the bimetallic homonuclear Cu2+ and Zn2+ complexes were better catalysts than their monometallic counterparts. The acceleration was two- to five-fold with the phosphoester cleavage and 3- to 20-fold with the phosphoric anhydride cleavage. Interestingly, the most-efficient catalyst of the phosphoester cleavage was the heterodinuclear Ni2+,Zn2+ complex of 1, the catalytic activity of which was up to 5- and 100-fold that of the homodinuclear Zn2+ and Ni2+ complexes, respectively. Moreover, this cooperative acceleration was observed to depend on the identity of the 5'-linked nucleoside: 3',5'-UpU and 3',5'-ApU were cleaved much faster than 3',5'-UpA, and no cooperative acceleration was observed with 3',5'-ApA. The reaction was second-order in hydroxide ion concentration, suggesting that a double deprotonation took place on going from the initial to the transition state. Evidently, in addition to deprotonation of the attacking 2'-OH group, N(3)H of the 5'-linked uridine was displaced by one of the metal ions of the cleaving agent. With the phosphoric anhydride cleavage, no similar cooperativity of two different metal ions was observed, but the greatest rate-acceleration was achieved with the homodinuclear Cu2+ complexes. PMID:17191909

  11. A sulfonic anhydride derivative from dibenzyl trisulphide with agro-chemical activities.

    PubMed

    Williams, L A D; Vasquez, E; Klaiber, I; Kraus, W; Rosner, H

    2003-06-01

    In the present study, the biologically active natural product dibenzyl trisulphide (DTS) which was previously isolated from the sub-tropical shrub Petiveria alliacea was transformed to methyl benzyl sulphonic anhydride (MBSA) using a "one pot" transformation method. The anhydride was evaluated for anti-microbial activities on the bacteria, Bacillus subtilis and Pseudomonas fluorescens and found to be 2.5 fold more effective than the commercial agents isoniazid and ampicillin in inhibiting the growth of B. subtilis, while on P. fluorescens it was 2.5, 5.0 and 10.0 fold more inhibitory than isoniazid, ampicillin and dibenzyl trisulphide, respectively. DTS was inactive on B. subtillis. The MIC value (microgram/spot) found for DTS on the plant pathogenic fungus, Cladosporium cucumerinum was 5.0 microgram/spot, while MBSA gave a value of 0.1 microgram/spot, compared with 1.25 and 0.16 microgram/spot for the commercial agents ketoconazole and nystatin, respectively. On the larval nematode (Meloidogyne incognita) MBSA inflicted 97.72% and 57.47% Abbotts nematicidal activities at 125.0 and 62.5 ppm, respectively, while DTS had no effect at 125.0 ppm. Nematodes which were immobilized by the low concentrations of MBSA were unable to re-activate when exposed to 10.0 ppm picrotoxin, thus suggesting that the anhydride nematicidal activity is independent of the GABA-ergic neurophysiological pathway.MBSA demonstrated a strong dose dependent radicular suppression effect (r=0.984), on the radicles of Latuca sativa germinating seeds. DTS was weakly active.

  12. A sulfonic anhydride derivative from dibenzyl trisulphide with agro-chemical activities.

    PubMed

    Williams, L A D; Vasquez, E; Klaiber, I; Kraus, W; Rosner, H

    2003-06-01

    In the present study, the biologically active natural product dibenzyl trisulphide (DTS) which was previously isolated from the sub-tropical shrub Petiveria alliacea was transformed to methyl benzyl sulphonic anhydride (MBSA) using a "one pot" transformation method. The anhydride was evaluated for anti-microbial activities on the bacteria, Bacillus subtilis and Pseudomonas fluorescens and found to be 2.5 fold more effective than the commercial agents isoniazid and ampicillin in inhibiting the growth of B. subtilis, while on P. fluorescens it was 2.5, 5.0 and 10.0 fold more inhibitory than isoniazid, ampicillin and dibenzyl trisulphide, respectively. DTS was inactive on B. subtillis. The MIC value (microgram/spot) found for DTS on the plant pathogenic fungus, Cladosporium cucumerinum was 5.0 microgram/spot, while MBSA gave a value of 0.1 microgram/spot, compared with 1.25 and 0.16 microgram/spot for the commercial agents ketoconazole and nystatin, respectively. On the larval nematode (Meloidogyne incognita) MBSA inflicted 97.72% and 57.47% Abbotts nematicidal activities at 125.0 and 62.5 ppm, respectively, while DTS had no effect at 125.0 ppm. Nematodes which were immobilized by the low concentrations of MBSA were unable to re-activate when exposed to 10.0 ppm picrotoxin, thus suggesting that the anhydride nematicidal activity is independent of the GABA-ergic neurophysiological pathway.MBSA demonstrated a strong dose dependent radicular suppression effect (r=0.984), on the radicles of Latuca sativa germinating seeds. DTS was weakly active. PMID:12668029

  13. Adsorption of alkenyl succinic anhydride from solutions in carbon tetrachloride on a fine magnetite surface

    NASA Astrophysics Data System (ADS)

    Balmasova, O. V.; Ramazanova, A. G.; Korolev, V. V.

    2016-06-01

    The adsorption of alkenyl succinic anhydride from a solution in carbon tetrachloride on a fine magnetite surface at a temperature of 298.15 K is studied using fine magnetite, which forms the basis of magnetic fluids, as the adsorbent. An adsorption isotherm is recorded and interpreted in terms of the theory of the volume filling of micropores (TVFM). Adsorption process parameters are calculated on the basis of the isotherm. It is shown that at low equilibrium concentrations, the experimental adsorption isotherm is linear in the TVFM equation coordinates.

  14. Kinetics and fixed-bed reactor modeling of butane oxidation to maleic anhydride

    SciTech Connect

    Sharma, R.K.; Cresswell, D.L. ); Newson, E.J. )

    1991-01-01

    This paper reports on selective oxidation kinetics of n-butane to maleic anhydride in air studied over a commercial, fixed-bed vanadium-phosphor oxide catalyst. The temperature range was 573-653 K with butane concentrations up to 3 mol % in the feed, which is within flammability limits but below ignition temperatures. The rate data were modeled using power law kinetics with product inhibition and included total oxidation and decomposition reactions. Kinetic parameters were estimated using a multiresponse, nonlinear regression algorithm showing intercorrelation effects. The kinetics were combined with independent measurements of catalyst diffusivity and reactor heat transfer using a one- dimensional heterogeneous reactor model.

  15. Selective oxidation of n-butane to maleic anhydride; 4. Recycle reactor studies

    SciTech Connect

    Bej, S.K.; Rao, M.S. )

    1992-09-01

    This paper reports on the selective oxidation of n-butane to aleic anhydride which has been modeled using recycle reactor data. Two different types of models have been tested based on the concept that V[sup 5+] is the selective site and V[sup 4+] is the nonselective site and vice versa. Recycle reactor data support the model which assumes V[sup 5+] as the selective site as the selective site and V[sup 4+] as the nonselective site. The model has been used to predict the performance of an integral reactor and tested with experimental integral reactor data.

  16. Maleic anhydride-polyether-polyamine reaction product and motor fuel composition containing same

    SciTech Connect

    Sung, R.L.

    1987-04-21

    A material is described having a use as a motor fuel additive for controlling engine octane requirement increase (ORI), controlling and reducing hydrocarbon and carbon monoxide engine emissions, and having carburetor detergency properties. The material is the reaction product of maleic anhydride, a polyether polyamine, preferably a polyether diamine, and a hydrocarbyl polyamine, preferably an n-alkyl-alkylene diamine. A concentrate comprising the prescribed reaction product dissolved in a hydrocarbon solvent is also described. Motor fuels containing the reaction product additive of the instant invention show improved ORI control and carburetor detergency in comparison with motor fuels without the reaction product additive.

  17. Perfluoroalkylation of Unactivated Alkenes with Acid Anhydrides as the Perfluoroalkyl Source.

    PubMed

    Kawamura, Shintaro; Sodeoka, Mikiko

    2016-07-18

    An efficient perfluoroalkylation of unactivated alkenes with perfluoro acid anhydrides was developed. Copper salts play a crucial role as a catalyst to achieve allylic perfluoroalkylation with the in situ generated bis(perfluoroacyl) peroxides. Furthermore, carboperfluoroalkylation of alkene bearing an aromatic ring at an appropriate position on the carbon side chain was found to proceed under metal-free conditions to afford carbocycles or heterocycles bearing a perfluoroalkyl group. This method, which makes use of readily available perfluoroalkyl sources, offers a convenient and powerful tool for introducing a perfluoroalkyl group onto an sp(3) carbon to construct synthetically useful skeletons. PMID:27254318

  18. Synthesis of polymer-bound 4-acetoxy-3-phenylbenzaldehyde derivatives: applications in solid-phase organic synthesis.

    PubMed

    Kumar, Anil; Ye, Guofeng; Ahmadibeni, Yousef; Parang, Keykavous

    2006-09-29

    Aminomethyl polystyrene resin was reacted with 4-(5'-formyl-2'-hydroxyphenyl)benzoic acid and 4-(5'-formyl-2'-hydroxyphenyl)phenyl propionic acid, respectively, in the presence of 1-hydroxybenzotriazole and 1,3-diisopropylcarbodiimide to yield polymer-bound benzaldehydes. The phenolic group in resins was acetylated with acetic anhydride to afford two polymer-bound 4-acetoxybenzaldehydes. The reductive amination of polymer-bound linkers by amines and sodium triacetoxyborohydride, followed by sulfonylation with arylsulfonyl chloride derivatives in the presence of pyridine and the cleavage with TFA/DCM/H2O, produced pure sulfonamides. PMID:16995713

  19. SELECTIVE HYDROGENATION OF MALEIC ANHYDRIDE TO Y-BUTYROLACTONE OVER PD/AL(2)O(3) CATALYST USING SUPERCRITICAL CO(2) AS SOLVENT

    EPA Science Inventory

    A selective hydrogenation of maleic anhydride to either y-butyrolactone or succinic anhydride over simple Pd/Al(2)O(3) catalyst under supercritical CO(2) medium is described for the first time which has considerable promise for obht lab-scale as well as industrial selective hydro...

  20. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...): Do not release into the environment in quantities that allow surface water concentrations to exceed 6...-propanediol, phosphate, anhydride with silicic acid (H4SiO4). 721.3635 Section 721.3635 Protection of..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance...

  1. Kinetic resolution of racemic α-hydroxyphosphonates by asymmetric esterification using achiral carboxylic acids with pivalic anhydride and a chiral acyl-transfer catalyst.

    PubMed

    Shiina, Isamu; Ono, Keisuke; Nakahara, Takayoshi

    2013-11-25

    A practical protocol is developed to directly provide chiral α-acyloxyphosphonates and α-hydroxyphosphonates from (±)-α-hydroxyphosphonates utilizing the transacylation process to generate the mixed anhydrides from acid components and pivalic anhydride in the presence of organocatalysts (s-value = 33-518).

  2. Soluble Synthetic Analogs of Malaria Pigment: Structure of Mesohematin Anhydride [FeIII(MP-IX)]2 and Solution Interaction with Chloroquine

    SciTech Connect

    D Bohle; E Dodd; A Kosar; L Sharma; P Stephens; L Suarez; D Tazoo

    2011-12-31

    Changing the vinyl groups of hematin anhydride to either ethyl or hydrogen groups results in increased solubility (Por=porphyrin). Determination of the weak binding constants of the antimalarial drug chloroquine to dimers of these hematin anhydride analogues suggests that solution-phase heme/drug interactions alone are unlikely to be the origin of the action of the drug.

  3. One-pot odourless synthesis of thioesters via in situ generation of thiobenzoic acids using benzoic anhydrides and thiourea

    PubMed Central

    Khalifeh, Reza

    2015-01-01

    Summary An efficient and odourless procedure for a one-pot synthesis of thioesters by the reaction of benzoic anhydrides, thiourea and various organic halides (primary, allylic, and benzylic) or structurally diverse, electron-deficient alkenes (ketones, esters, and nitriles) in the presence of Et3N has been developed. In this method, thiobenzoic acids were in situ generated from the reaction of thiourea with benzoic anhydrides, which were subjected to conjugate addition with electron-deficient alkenes or a nucleophilic displacement reaction with alkyl halides. PMID:26425185

  4. Flexible Polyimide Aerogel Cross-linked by Poly(maleic Anhydride-alt-alkylene)

    NASA Technical Reports Server (NTRS)

    Guo, Haiquan; Meador, Mary Ann B.; Wilkewitz, Brittany Marie

    2014-01-01

    Aerogels are potential materials for aerospace applications due to their lower thermal conductivity, lighter weight, and low dielectric constant. However, silica aerogels are restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extreme aerospace environments. In order to fit the needs of aerospace applications, developing new thermal insulation materials that are flexible, and moisture resistant is needed. To this end, we fabricated a series of polyimide aerogels crosslinked with different poly(maleic anhydride-alt-alkylene)s as seen in Scheme 1. The polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA), and different diamines or diamine combinations. The resulting aerogels have low density (0.06 gcm3 to 0.16 gcm3) and high surface area (240-440 m2g). The effect of the different backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed. These novel polyalkylene-imide aerogels may be potential candidates for applications such as space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Scheme 1. Network of polyimide aerogels crosslinked with deifferent poly(maleic anhydride).

  5. Gelatin-based biomaterial engineering with anhydride-containing oligomeric cross-linkers.

    PubMed

    Loth, Tina; Hötzel, Rudi; Kascholke, Christian; Anderegg, Ulf; Schulz-Siegmund, Michaela; Hacker, Michael C

    2014-06-01

    Chemically cross-linked gelatin hydrogels are versatile cell-adhesive hydrogel materials that have been established for a variety of biomedical applications. The most prominent cross-linker is glutaraldehyde, which, however, has been described to cause compatibility problems and loss of microscopic but relevant structural features. A recently developed oligomeric cross-linker that contains anhydride functionalities was evaluated as cross-linker for the fabrication of gelatin-based hydrogels and microparticles. In a fast curing reaction, hydrogels composed of gelatin and oligomeric cross-linker were fabricated with good conversion over a wide concentration range of constituents and with cross-linkers of different anhydride contents. Hydrogel properties, such as dry weight and mechanics, could be controlled by hydrogel composition and rheological properties correlated to elastic moduli from 1 to 10 kPa. The gels were shown to be cytocompatible and promoted cell adhesion. In soft formulations, cells migrated into the hydrogel bulk. Gelatin microparticles prepared by a standard water-in-oil emulsion technique were also treated with the novel oligomers, and cross-linking degrees matching those obtained with glutaraldehyde were obtained. At the same time, fewer interparticular cross-links were observed. Fluorescein-derivatized cross-linkers yielded labeled microparticles in a concentration-dependent manner. The oligomeric cross-linkers are presented as an efficient and possibly more functional and compatible alternative to glutaraldehyde. The engineered hydrogel materials hold potential for various biomedical applications.

  6. Preparation, characterization and antibacterial activity of octenyl succinic anhydride modified inulin.

    PubMed

    Zhang, Xiaoyun; Zhang, Ye-Wang; Zhang, Hongyin; Yang, Qiya; Wang, Haiying; Zhang, Guochao

    2015-01-01

    Octenyl succinic anhydride modified inulin (In-OSA) was synthesized via chemical modification of inulin with octenyl succinic anhydride (OSA). The esterification of inulin with OSA was confirmed by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and degree of substitution (DS) calculation. Antibacterial activity of In-OSA against Staphylococcus aureus and Escherichia coli was investigated by minimum inhibitory concentration (MIC) and inhibition rate determination. The results showed that inhibition rates against both E.coli and S. aureus increased with the increase of the In-OSA concentration. And the MICs against E. coli and S. aureus were 1% and 0.5% (w/v), respectively. The antibacterial mechanism was analyzed with the results of the proteins and nucleic acids leakage, SEM and negative staining transmission electron microscopy (TEM). Both the leakages of proteins and nucleic acids increased with the increase of the In-OSA concentration. The leakage occurred mainly in the early stage which indicated that cell membrane and wall were destroyed by In-OSA quickly. The images of SEM and negative staining TEM suggested that the cell membranes and cell walls of S. aureus were damaged more severely and even destroyed completely; but only pores appeared on the surface of E. coli.

  7. Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution.

    PubMed

    Chai, Wenbo; Liu, Xiaoyan; Zou, Junchen; Zhang, Xinying; Li, Beibei; Yin, Tiantian

    2015-11-01

    Pomelo peel (PP), as one of the well-known agricultural wastes, is cost-effective and environmentally friendly. Based on PP, two new kinds of oil sorbents were prepared by using acetic anhydride and styrene. The structures of raw pomelo peel (RP), acetic anhydride-treated pomelo peel (AP) and styrene-treated pomelo peel (SP) were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), contact-angle (CA) measurements. The optimum reaction conditions for preparation of AP and SP were also investigated. The resulting products exhibited better oil sorption capacity than that of RP for diesel and lubricating oil, also SP had better oil sorption capacity than AP, while the oil sorption capacities of SP for diesel and lubricating oil reached 18.91 and 26.36 g/g, respectively. Adsorption kinetics was well described by the pseudo-second-order model. The results indicated that AP and SP, especially SP could be used as the substitute for non-biodegradable oil sorption materials.

  8. Effect of reagent access on the reactivity of coals. Final report. [Maleic anhydride; dialkylmaleates

    SciTech Connect

    Larsen, J.W.

    1983-04-01

    The objective of this work is to determine the extent to which the mass transport of reagents into solid coals limits the reactivity of those coals. The purpose of task one is to determine the effect of reagent access on the acid catalyzed depolymerization of coals using phenols and/or alkyl phenyl ethers. For task two, the purpose is to determine the effect of coal swelling on its rate of reaction with a dienophile. Work on depolymerization of coals in hot, acidic phenol has been completed. The conclusion is that due to incomplete depolymerization, the complications of competing Friedel-Crafts alkylation, and the condensation reactions of the solvent, the depolymerization of coals in hot, acidic phenol is not a useful technique for solubilizing coals for structural investigations. In task two, the rate of the Diels-Alder reaction between bituminous coals and maleic anhydride was found to be diffusion controlled. The observations of simple Fickian diffusion and reaction rate constants much slower than the Diels-Alder reaction of maleic anhydride and anthracene have no other reasonable explanation than rate limiting mass transport. The diffusion rates were found to be independent of the degree of solvent swelling of the coal. In addition, the dependence of the observed rates on temperature and the size of the dienophile were measured. Results obtained using a series of dialkylmaleates are presented. Size was found to play only a small role as long as the reagent is planar. 2 tables.

  9. Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution.

    PubMed

    Chai, Wenbo; Liu, Xiaoyan; Zou, Junchen; Zhang, Xinying; Li, Beibei; Yin, Tiantian

    2015-11-01

    Pomelo peel (PP), as one of the well-known agricultural wastes, is cost-effective and environmentally friendly. Based on PP, two new kinds of oil sorbents were prepared by using acetic anhydride and styrene. The structures of raw pomelo peel (RP), acetic anhydride-treated pomelo peel (AP) and styrene-treated pomelo peel (SP) were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), contact-angle (CA) measurements. The optimum reaction conditions for preparation of AP and SP were also investigated. The resulting products exhibited better oil sorption capacity than that of RP for diesel and lubricating oil, also SP had better oil sorption capacity than AP, while the oil sorption capacities of SP for diesel and lubricating oil reached 18.91 and 26.36 g/g, respectively. Adsorption kinetics was well described by the pseudo-second-order model. The results indicated that AP and SP, especially SP could be used as the substitute for non-biodegradable oil sorption materials. PMID:26256347

  10. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes

    NASA Astrophysics Data System (ADS)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-01-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.

  11. Lysine adducts between methyltetrahydrophthalic anhydride and collagen in guinea pig lung.

    PubMed

    Jönsson, B A; Wishnok, J S; Skipper, P L; Stillwell, W G; Tannenbaum, S R

    1995-11-01

    The formation of adducts between methyltetrahydrophthalic anhydride (MTHPA), an important industrial chemical and potent allergen, and collagen from guinea pig lung tissue was investigated. Collagen peptides were obtained from the lung tissue by homogenization, defatting, washing, and digestion with collagenase. In experiments in vitro, lung tissue was exposed to 8.4 mumol (50 microCi) of 14C MTHPA. The amount of adducts was 97 nmol MTHPA/g of wet tissue as determined from the bound radioactivity. In a study in vivo, four guinea pigs were injected intratracheally with 8.4 mumol of 14C MTHPA each. The amount of adducts was 0-1.2 nmol MTHPA/g of wet tissue (determined by bound radioactivity). N epsilon-methyltetrahydrophthaloyl-L-lysine (MTHPL) was synthesized and characterized by NMR, UV, and mass spectrometry (MS). A method to analyze MTHPL, after derivatization with methanol and pentafluorobenzoyl chloride, using gas chromatography-MS was developed. Analysis of Pronase-digested MTHPA-exposed lung tissue showed a concentration of 19 nmol MTHPL/g wet lung in vitro and between 0 and 0.15 nmol MTHPL/g wet lung in vivo. Thus, 20% in vitro and 12-15% in vivo of the bound radioactivity was found as adducts with lysine. These results are a first step toward studies of allergenic epitopes in proteins and methods for biological monitoring of exposure to acid anhydrides.

  12. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  13. Preparation and characterization of mucoadhesive nanoparticles of poly (methyl vinyl ether-co-maleic anhydride) containing glycyrrhizic acid intended for vaginal administration.

    PubMed

    Aguilar-Rosas, Irene; Alcalá-Alcalá, Sergio; Llera-Rojas, Viridiana; Ganem-Rondero, Adriana

    2015-01-01

    Traditional vaginal preparations reside in the vaginal cavity for relatively a short period of time, requiring multiple doses in order to attain the desired therapeutic effect. Therefore, mucoadhesive systems appear to be appropriate to prolong the residence time in the vaginal cavity. In the current study, mucoadhesive nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) intended for vaginal delivery of glycyrrhizic acid (GA) (a drug with well-known antiviral properties) were prepared and characterized. Nanoparticles were generated by a solvent displacement method. Incorporation of GA was performed during nanoprecipitation, followed by adsorption of drug once nanoparticles were formed. The prepared nanoparticles were characterized in terms of size, Z-potential, morphology, drug loading, interaction of GA with PVM/MA (by differential scanning calorimetry) and the in vitro interaction of nanoparticles with pig mucin (at two pH values, 3.6 and 5; with and without GA adsorbed). The preparation method led to nanoparticles of a mean diameter of 198.5 ± 24.3 nm, zeta potential of -44.8 ± 2.8 mV and drug loading of 15.07 ± 0.86 µg/mg polymer. The highest mucin interaction resulted at pH 3.6 for nanoparticles without GA adsorbed. The data obtained suggest the promise of using mucoadhesive nanoparticles of PVM/MA for intravaginal delivery of GA.

  14. Preparation and characterization of poly(methyl methacrylate) and poly(maleic anhydride-co-diallyl phthalate) grafted carbon black through γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Bo, Yang; Cui, Jiayang; Cai, Yangben; Xu, Shiai

    2016-02-01

    In this study, the grafting polymerization of methyl methacrylate (MMA) monomer and maleic anhydride/diallyl phthalate (MAH/DAP) co-monomer onto the surface of carbon black (CB) were carried out at room temperature and normal pressure by γ-ray irradiation. The surface chemistry of grafted CBs were characterized by infrared spectroscopy (IR), thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The results show that there are some remanent polymers on the surface of modified CBs after extract for 48 h, indicating that poly(methyl methacrylate) (PMMA) and poly(MAH-co-DAP) have been successfully grafted onto the surface of CB without using initiator due to the high energy of γ-ray irradiation. Dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that the grafted CBs have smaller average aggregate size and better dispersibility than that of CB in absolute ethanol. In addition, it was found that the amount of oxygen groups and the irradiation doses/dose rates have little effect on the grafting degree of CB.

  15. Releasable Conjugation of Polymers to Proteins.

    PubMed

    Gong, Yuhui; Leroux, Jean-Christophe; Gauthier, Marc A

    2015-07-15

    Many synthetic strategies are available for preparing well-defined conjugates of peptides/proteins and polymers. Most reports on this topic involve coupling methoxy poly(ethylene glycol) to therapeutic proteins, a process referred to as PEGylation, to increase their circulation lifetime and reduce their immunogenicity. Unfortunately, the major dissuading dogma of PEGylation is that, in many cases, polymer modification leads to significant (or total) loss of activity/function. One approach that is gaining momentum to address this challenge is to release the native protein from the polymer with time in the body (releasable PEGylation). This contribution will present the state-of-the-art of this rapidly evolving field, with emphasis on the chemistry behind the release of the peptide/protein and the means for altering the rate of release in biological fluids. Linkers discussed include those based on the following: substituted maleic anhydride and succinates, disulfides, 1,6-benzyl-elimination, host-guest interactions, bicin, β-elimination, biodegradable polymers, E1cb elimination, β-alanine, photoimmolation, coordination chemistry, zymogen activation, proteolysis, and thioesters.

  16. Photoaddressable Polymers

    NASA Astrophysics Data System (ADS)

    Bieringer, T.

    Polymers are the perfect materials for a variety of applications in almost every field of technical as well as human life. Because of their macromolecular architecture there are a lot of degrees of freedom in the synthesis of polymers. Owing to the change of their functional composition, they can be tailored even for quite difficult demands. Since a whole industry deals with the processing of polymers, cheap production lines have been developed for almost every polymer. This is the reason why not only the molecular composition but even the price of polymers has been optimized. Therefore these materials can be considered as encouraging components even in highly sophisticated areas of applications.

  17. Silver-containing polymer composition used in spacecraft and semiconductor optoelectronics control systems

    SciTech Connect

    Ivanov, A. A. Tuev, V. I.

    2015-10-27

    The copolymer of the vinyl chloride-maleic anhydride and silver nano- and microparticle (70 wt %) composition is offered as a conductive adhesive for fixing various chips on the dielectric substrate. The wiring volume resistivity is up to 3.1×10{sup −8} Ohm×m. The adhesive strength of the silver-containing polymer composition (70% of Ag) applied under a shear on the dielectric substrate is 106 N/mm{sup 2}. Adhesive layers obtained from these substances have a high thermal conductivity up to λ = 199.93 W/m×K that depends on the amount of Ag in the polymer composition.

  18. Silver-containing polymer composition used in spacecraft and semiconductor optoelectronics control systems

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Tuev, V. I.

    2015-10-01

    The copolymer of the vinyl chloride-maleic anhydride and silver nano- and microparticle (70 wt %) composition is offered as a conductive adhesive for fixing various chips on the dielectric substrate. The wiring volume resistivity is up to 3.1×10-8 Ohm×m. The adhesive strength of the silver-containing polymer composition (70% of Ag) applied under a shear on the dielectric substrate is 106 N/mm2. Adhesive layers obtained from these substances have a high thermal conductivity up to λ = 199.93 W/m×K that depends on the amount of Ag in the polymer composition.

  19. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts

    PubMed Central

    Jeon, Jong Yeob; Eo, Seong Chan; Varghese, Jobi Kodiyan

    2014-01-01

    Summary The (salen)Co(III) complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA) copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalate)s were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalate)s because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1) and the number of chain-growing sites per 1 [anions in 1 (5) + water (present as impurity) + ethanol (deliberately fed)], and the molecular weight distributions were narrow (M w/M n, 1.05–1.5). Because of the extremely high activity of 1, high-molecular-weight polymers were generated (M n up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively). The terpolymers bearing a substantial number of PA units (f PA, 0.23) showed a higher glass-transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C). PMID:25161738

  20. Selective conversion of furfural to maleic anhydride and furan with VO(x)/Al(2)O(3) catalysts.

    PubMed

    Alonso-Fagúndez, Noelia; Granados, Manuel López; Mariscal, Rafael; Ojeda, Manuel

    2012-10-01

    Furfural can be converted into maleic anhydride (73 % yield) through selective gas phase oxidation at 593 K with O(2) by using VO(x)/Al(2)O(3) (10 at(V) nm(-2)) as solid catalysts. The use of lower temperatures and/or O(2) pressures result in the additional formation of furan (maximum 9 % yield). Mechanistically, furfural (C(5)H(4)O(2)) is oxidized stepwise to furan (C(4)H(4)O), 2-furanone (C(4)H(4)O(2)), and finally, maleic anhydride (C(4)H(2)O(3)). The specific structure of the supported vanadium oxides and reaction conditions (temperature and reactants pressures) all influence furfural oxidation catalysis. We have found that Al(2)O(3)-supported polyvanadates are intrinsically more active (2.70 mmol h(-1) g-at V(-1)) than monovanadates (VO(4)) and V(2)O(5) crystals (0.89 and 0.70 mmol h(-1) g-at V(-1), respectively) in maleic anhydride and furan formation rates (553 K, 1.6 kPa furfural, 2.5 kPa O(2)). Our alternative approach enables the use of biomass instead of petroleum to synthesize maleic anhydride and furan from furfural. The potential variety of industrial applications is of enormous interest for the development of future biorefineries.

  1. Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides.

    PubMed

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-11

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  2. Tetrahydrophthalic Anhydrides as Addition Curing Polyimide End Caps: Thermal Isomerization of Methylendianiline 3,6-Diphenyltetrahydrophthalic Bisimides

    NASA Technical Reports Server (NTRS)

    Frimer, Aryeh A.; Gilinsky-Sharon, Pessia; Gottlieb, Hugo E.; Meador, Mary Ann B.; Johnston, J. Christopher

    2005-01-01

    In depth NMR studies confirm that heating a 1:2 mixture of cis, cis, cis 3,6-diphenyltetrahydrophthalic anhydride (end cap 9c) with methylenedianiline at 316 C initially yields the corresponding highly congested cis, cis, cis 3,6-diphenyltetrahydrophthalic bisimide 11, which is converted at this temperature to the observed product, the less hindered trans, cis, trans isomer 12.

  3. Selective conversion of furfural to maleic anhydride and furan with VO(x)/Al(2)O(3) catalysts.

    PubMed

    Alonso-Fagúndez, Noelia; Granados, Manuel López; Mariscal, Rafael; Ojeda, Manuel

    2012-10-01

    Furfural can be converted into maleic anhydride (73 % yield) through selective gas phase oxidation at 593 K with O(2) by using VO(x)/Al(2)O(3) (10 at(V) nm(-2)) as solid catalysts. The use of lower temperatures and/or O(2) pressures result in the additional formation of furan (maximum 9 % yield). Mechanistically, furfural (C(5)H(4)O(2)) is oxidized stepwise to furan (C(4)H(4)O), 2-furanone (C(4)H(4)O(2)), and finally, maleic anhydride (C(4)H(2)O(3)). The specific structure of the supported vanadium oxides and reaction conditions (temperature and reactants pressures) all influence furfural oxidation catalysis. We have found that Al(2)O(3)-supported polyvanadates are intrinsically more active (2.70 mmol h(-1) g-at V(-1)) than monovanadates (VO(4)) and V(2)O(5) crystals (0.89 and 0.70 mmol h(-1) g-at V(-1), respectively) in maleic anhydride and furan formation rates (553 K, 1.6 kPa furfural, 2.5 kPa O(2)). Our alternative approach enables the use of biomass instead of petroleum to synthesize maleic anhydride and furan from furfural. The potential variety of industrial applications is of enormous interest for the development of future biorefineries. PMID:22847991

  4. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    PubMed Central

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-01-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide–phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation. PMID:25501391

  5. Kinetics of Hydrolysis of Acetic Anhydride by In-Situ FTIR Spectroscopy: An Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Haji, Shaker; Erkey, Can

    2005-01-01

    A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…

  6. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  7. Aggregate structure and effect of phthalic anhydride modified soy protein on the mechanical properties of styrene-butadiene copolymer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aggregate structure of phthalic anhydride (PA) modified soy protein isolate (SPI) was investigated by estimating its fractal dimension from the equilibrated dynamic strain sweep experiments. The estimated fractal dimensions of the filler aggregates were less than 2, indicating that these partic...

  8. Vanadium-phosphorus-oxygen industrial catalysts for C/sub 4/ hydrocarbon selective oxidation to maleic anhydride

    SciTech Connect

    Wenig, R.W.

    1987-06-01

    The selective oxidation of n-butane to maleic anhydride by vanadium-phosphorus-oxygen (V-P-O) industrial catalysts varying in P-to-V ratio has been studied in a fixed bed integral reactor system. Catalyst characterization studies including x-ray diffraction, laser Raman spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, x-ray energy dispersive spectroscopy, and BET surface area measurements were used. A strong effect of P-to-V synthesis ratio on catalyst structure, catalyst morphology, vanadium oxidation state, and reactivity in n-butane selective oxidation was observed. A slight ''excess'' of catalyst phosphorus (P/V = 1.1 catalyst) was found to stabilize an active and selective (VO)/sub 2/P/sub 2/O/sub 7/ phase. The mechanism of n-butane selective oxidation to maleic anhydride was studied by in situ infrared spectroscopy using n-butane, 1-butene, 1,3-butadiene, crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride feeds. During paraffin selective oxidation, highly reactive olefin species and maleic acid were observed on the surfaces of V-P-O catalysts. Further evidence in support of conjugated or possibly strained olefin and maleic acid reaction intermediates in n-butane and 1-butene partial oxidation to maleic anhydride was gathered.

  9. Perfluorosulfonic acid membrane catalysts for optical sensing of anhydrides in the gas phase.

    PubMed

    Ayyadurai, Subasri M; Worrall, Adam D; Bernstein, Jonathan A; Angelopoulos, Anastasios P

    2010-07-15

    Continuous, on-site monitoring of personal exposure levels to occupational chemical hazards in ambient air is a long-standing analytical challenge. Such monitoring is required to institute appropriate health measures but is often limited by the time delays associated with batch air sampling and the need for off-site instrumental analyses. In this work, we report on the first attempt to use the catalytic properties of perfluorosulfonic acid (PSA) membranes to obtain a rapid, selective, and highly sensitive optical response to trimellitic anhydride (TMA) in the gas phase for portable sensor device application. TMA is used as starting material for various organic products and is recognized to be an extremely toxic agent by the National Institute for Occupational Safety and Health (NIOSH). Resorcinol dye is shown to become immobilized in PSA membranes and diffusionally constrain an orange brown product that results from acid-catalyzed reaction with more rapidly diffusing TMA molecules. FTIR, UV/vis, reaction selectivity to TMA versus trimellitic acid (TMLA), and homogeneous synthesis are used to infer 5,7- dihydroxyanthraquinone-2-carboxylic acid as the acylation product of the reaction. The color response has a sensitivity to at least 3 parts per billion (ppb) TMA exposure and, in addition to TMLA, excludes maleic anhydride (MA) and phthalic anhydride (PA). Solvent extraction at long times is used to determine that the resorcinol extinction coefficient in 1100 EW PSA membrane has a value of 1210 m(2)/g at 271.01 nm versus a value of 2010 m(2)/g at 275.22 nm in 50 vol% ethanol/water solution. The hypsochromic wavelength shift and reduced extinction coefficient suggest that the polar perfluorosulfonic acid groups in the membrane provide the thermodynamic driving force for diffusion and immobilization. At a resorcinol concentration of 0.376 g/L in the membrane, a partition coefficient of nearly unity is obtained between the membrane and solution concentrations and a

  10. Reaction pathway in vapour phase hydrogenation of maleic anhydride and its esters to {gamma}-butyrolactone

    SciTech Connect

    Messori, M.; Vaccari, A.

    1994-11-01

    The catalytic reactivity of maleic anhydride (MA), succinic anhydride (SA) and their dimethyl esters (dimethyl maleate and dimethyl succinate) in the vapour phase hydrogenation to {gamma}-butyrolacetone (GBL) was investigated. In order to obtain general data, both a multicomponent catalyst (CAT 1: Cu/Zn/Mg/Cr = 40:5:5:50, atomic ratio %), obtained by reduction of a nonstoichiometric spinel-type precursor, and a commercial catalyst (CAT 2: Cu/Mn/Ba/Cr = 44:8:1:47, atomic ratio %) were used. The MA/GBL solution exhibited the highest GBL production, while the SA/GBL solution was converted only partially due to a competitive adsorption of GBL on the active sites, as evidenced by the similar reactivities observed with pure anhydrides. The best carbon balances were observed with the esters, probably the result of lowest light hydrocarbon synthesis and tar formation. With all the feedstocks, the activity of CAT 2 is higher than that of CAT 1, which, however, gives the best yield in GBL due its lower activity in the overhydrogenation and hydrogenolysis reaction. It was found that n-butanol (BuOH) and butyric acid (BuA) derived mainly from GBL. On this basis, the reactivities of the main products observed were investigated separately, confirming the stability of tetrahydrofuran (THF), which reacted only at high temperature with low conversions to ethanol. On the other hand, GBL gave rise to overhydrogenation and/or hydrogenolysis, with high conversion (mainly with CAT 2), confirming its key role in both reactions. Furthermore, the formation in the catalytic tests with BuA and BuOH of n-butanal, notwithstanding the high H{sub 2}/organic ratio, implies that it is the main intermediate in the hydrogenolysis reactions. A new reaction scheme is proposed, pointing out the key role of GBL as the {open_quotes}intersection{close_quotes} of two possible reaction pathways, giving rise to THF or overhydrogenation and hydrogenolysis products, respectively. 44 refs., 4 figs., 6 tabs.

  11. Studies of phthalocyanine-containing polymers

    NASA Astrophysics Data System (ADS)

    Lee, Pui Sze Priscilla

    This thesis reports the synthesis, spectroscopic and photophysical properties, and in vitro photodynamic activities of several series of phthalocyanine-containing polymers including poly(norbornene), poly(anhydride), and poly(epsilon-caprolactone). Chapter 1 gives a general overview of phthalocyanines including their synthesis and applications. Special emphasis has been placed on hydrophilic and non-aggregated phthalocyanines and their use in photodynamic therapy. In addition, different classes of phthalocyanine-containing polymers will also be mentioned. Chapter 2 discusses the synthesis, characterization, and photophysical properties of a series of poly(norbornene)s with zinc(II) phthalocyanine and amino acid moieties. The copolymers were prepared by copolymerization of 2-(2-norbornenylmethoxy)phthalocyaninatozinc(II) with 5-norbornenes substituted with phenylalanine and tyrosine. As shown by absorption and fluorescence spectroscopy, phthalocyanines in this series of polymer exhibit a rather strong aggregation tendency. Chapter 3 presents the synthesis, characterization, photophysical properties, and in vitro photodynamic activities of a related series of amino acid- and sugar-containing poly(norbornene)s connected axially to a silicon(IV) phthalocyanine core. These polymers exhibit a good solubility in common organic solvents. Due to the axial polymeric substituents, these compounds are free from aggregation and give a high singlet oxygen quantum yield. These polymers in Cremophor EL emulsions also show a high photodynamic activity against HepG2 cells, in particular the polymer with protected galactose moieties. Chapter 4 reports a series of silicon(IV) phthalocyanines substituted with two poly(sebacic anhydride) chains as the axial ligands. The polymers form nanoparticles in water in the presence of surfactants cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulphate (SDS). The degradation of the nanoparticles was carried out in alkaline media and was

  12. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate.

  13. Asymmetric Alternating Copolymerization of Meso-epoxides and Cyclic Anhydrides: Efficient Access to Enantiopure Polyesters.

    PubMed

    Li, Jie; Liu, Ye; Ren, Wei-Min; Lu, Xiao-Bing

    2016-09-14

    Synthesis of stereoregular polyesters with main-chain chirality was achieved for the first time by the asymmetric copolymerization of meso-epoxides and cyclic anhydrides using catalyst systems based on enantiopure bimetallic complexes. The combination of the biphenol-linked dinuclear aluminum complex with tert-butyl groups in the phenolate ortho-positions and a nucleophilic co-catalyst was found to be more efficient in catalyzing this asymmetric copolymerization, affording enantiomerically enriched polyesters (up to 91% ee) with completely alternating structure and narrow molecular weight distribution. It was discovered that the isotactic-enriched poly(cyclopentene phthalate) is a typical semicrystalline material with a melting endothermic peak at 221 °C. This study is expected to provide a promising route to prepare various stereoregular polyesters having a wide variety of physical properties and degradability. PMID:27562940

  14. Process for the production of 1:4 butanediol from maleic anhydride via ester hydrogenation

    SciTech Connect

    Towers, R.G.; Harris, N.; McKee, D.

    1986-01-01

    A process has been developed for the production of 1:4 butanediol (1:4 BDO from maleic anhydride (MA). The three process steps are:- a) Esterifiction of MA to produce a dialkyl maleate ester based on a modification of commercially proven esterification technology; b) Hydrogenation of the ester, at moderate temperatures and pressures, to 1:4 BD using novel low pressure ester hydrogenation technology. Gamma-Butyrolactone (gamma-BL) and tetrahydrofuran (THF) are produced as co-products. The 1:4 BD/Gamma-BL product ratio can be adjusted to respond to market requirements by recycle of the less desirable product, and THF productivity controlled over wide limits by variation of process parameters; c) Product separation by distillation.

  15. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity.

  16. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    PubMed

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight.

  17. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity. PMID:27451793

  18. Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Hu, Jun; Dang, Bin; He, Jinliang

    2016-10-01

    This paper reports excellent electrical properties in polypropylene grafted with maleic anhydride (PP-g-MAH) and a related mechanism of the enhanced electrical properties. The chemical structure of PP-g-MAH was analyzed and its effect on space charge accumulation, electrical breakdown strength and DC conductivity was studied. Compared with pure PP, the PP-g-MAH exhibits remarkably suppressed space charge accumulation, enhanced electrical breakdown strength and reduced conduction current. The mechanism enhancing the electrical properties was studied by measuring the trap level distribution. It can be explained that abundant deep traps are introduced in PP-g-MAH with the introduction of polar groups in MAH, which reduces the charge mobility and raises the charge injection barrier so as to suppress space charge accumulation. This investigation would contribute to propose a new material modification strategy for designing high-voltage direct current insulation material in addition to the inclusion of nanoparticles.

  19. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    PubMed

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions. PMID:25542168

  20. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    PubMed

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions.

  1. Substituted Phthalic Anhydrides from Biobased Furanics: A New Approach to Renewable Aromatics.

    PubMed

    Thiyagarajan, Shanmugam; Genuino, Homer C; Śliwa, Michał; van der Waal, Jan C; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M; Bruijnincx, Pieter C A; van Es, Daan S

    2015-09-21

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general issue of the reversible nature of the intermediate DA addition step. The new sequence involves DA addition, followed by a mild hydrogenation step to obtain a stable oxanorbornane intermediate in high yield and purity. Subsequent one-pot, liquid-phase dehydration and dehydrogenation of the hydrogenated adduct using a physical mixture of acidic zeolites or resins in combination with metal on a carbon support then allows aromatization with yields as high as 84 % of total aromatics under relatively mild conditions. The mechanism of the final aromatization reaction step unexpectedly involves a lactone as primary intermediate. PMID:26235971

  2. Process for the manufacture of catalysts for the production of maleic anhydride

    SciTech Connect

    Edwards, R.C.

    1987-10-13

    A process is described for the manufacture of a phosphorus-vanadium oxide catalyst suitable for use in the manufacture of maleic anhydride from butane. The process comprises reacting at a temperature of about 0/sup 0/C to about 200/sup 0/C a vanadium compound in an organic ether solvent having from about 2 to about 10 carbon atoms, with a phosphoryl halide in the presence of water or an aliphatic alcohol having from about 1 to about 8 carbon atoms, eliminating the solvent and activating the catalyst by the addition of butane, benzene or another C/sub 4/ hydrocarbon feedstock and water and a phosphorus compound at a temperature of about 300/sup 0/C to about 500/sup 0/C wherein the amount of water added is about 1000 parts per million to about 40,000 parts per million by weight of the reactor feed gas stream.

  3. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    PubMed

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. PMID:25563938

  4. Functionalization of poly(dimethylsiloxane) surfaces with maleic anhydride copolymer films.

    PubMed

    Cordeiro, Ana L; Zschoche, Stefan; Janke, Andreas; Nitschke, Mirko; Werner, Carsten

    2009-02-01

    Combining advantageous bulk properties of polymeric materials with surface-selective chemical conversions is required in numerous advanced technologies. For that aim, we investigate strategies to graft maleic anhydride (MA) copolymer films onto poly(dimethylsiloxane) (PDMS) precoatings. Amino groups allowing the covalent attachment of the MA copolymer films to the PDMS (Sylgard 184) surface were introduced either by low-pressure ammonia plasma treatment, or by attachment of 3-aminopropyltriethoxysilane (APTES) onto air plasma-treated PDMS. The resultant coatings were extensively characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle measurements, and atomic force microscopy (AFM). The results show that the impact of the plasma treatment on the physical properties on the topmost surface of the PDMS is critically important for the characteristics of the layered coatings.

  5. Polymer adsorption

    NASA Astrophysics Data System (ADS)

    Joanny, Jean-Francois

    2008-03-01

    The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.

  6. New polymer systems: Chain extension by dianhydrides

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.

    1974-01-01

    Three anhydrides provide effective chain extension of hydroxy-terminated polyalkylene oxides and polybutadienes. Novel feature of these anhydride reactants is that they are difunctional as anhydrides, but they are tetrafunctional if conditions are selected that lead to total esterification or reaction of all carboxyl groups.

  7. Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase

    PubMed Central

    Knoot, Cory J.; Purpero, Vincent M.; Lipscomb, John D.

    2015-01-01

    Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe3+ to activate O2 and catecholic substrates for reaction. The inability of Fe3+ to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated here using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surrounding solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe3+ species, and the anhydride-Fe3+ intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe2+-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe2+ intermediate that could bind O2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage. PMID:25548185

  8. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  9. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  10. Stable antimony compositions for the passivation of metal contaminated cracking catalysts

    SciTech Connect

    Johnson, M.M.; Tabler, D.C.

    1990-06-12

    This patent describes a stable aqueous metals passivating agent. It comprises: about 10 to about 97 weight percent water, about 1 to about 50 weight percent particulate antimony oxide, and a stabilizing amount of vinyl copolymer in the range of about 0.2 to about 3 weight percent. The weight percentages are based on the total weight of the aqueous metals passivating agent and the vinyl copolymer being the ammonium alt prepared by adding ammonium hydroxide to the hydrolyzed acid form of a poly(methylvinyl ether/maleic anhydride) consisting essentially of repeating units of the formula.

  11. Pd(II)-catalyzed regio-, enantio-, and diastereoselective 1,4-addition of azlactones formed in situ from racemic unprotected amino acids and acetic anhydride.

    PubMed

    Weber, Manuel; Peters, René

    2012-12-01

    A multicomponent reaction is reported generating highly enantioenriched and diastereomerically pure quaternary amino acid derivatives via 1,4-addition of azlactones to enones. The azlactone intermediates are generated in situ from unprotected α-amino acids and acetic anhydride. Previous attempts using bis-palladacycle catalysts required the use of a large excess of benzoic anhydride (which is very difficult to remove from the products), since acetic anhydride provided regioisomeric product mixtures. Key for the high regioselectivity is a pentaphenylferrocene monopalladacycle catalyst. PMID:23193999

  12. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  13. Effects of shear flow on reactive coupling of polymer chains at melt interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbin; Lodge, Timothy; Macosko, Christopher

    2006-03-01

    The coupling reaction of functional polymers at static polymer-polymer interfaces is typically much slower than that at interfaces formed during mixing (see, for example, Reference 1). We have demonstrated that the imposed simple shear can accelerate coupling reactions at flat interfaces. For amine-terminal polystyrene (PS-NH2)/anhydride terminal poly(methyl methacrylate) (PMMA-anh), the PMMA-anh conversion under dynamic oscillation even at strain amplitude as small as 1% is seven times that under static conditions. Reaction time and temperature and the total interfacial area were maintained the same. Similar behavior was found for both bilayer and multilayer samples. Under steady simple shear, the reaction conversion and the rate of interfacial area generation are comparable to that of batch mixing. *Macosko, C. W.; Jeon. H. K.; Hoye, T. R. Prog. Polym. Sci. 2005, 30, 939.

  14. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  15. Electro-optical and pyroelectrical thermal analysis of novel nonlinear optical side-chain polymers with high thermal stability

    NASA Astrophysics Data System (ADS)

    Gerhard-Multhaupt, Reimund; Bauer, Stefan; Molzow, Wolf-Dietrich; Ren, W.; Wirges, Werner; Yilmaz, S.; Oertel, U.; Haenel, B.; Haeussler, L.; Komber, H.; Lunkwitz, K.

    1994-01-01

    Polymers containing nonlinear optical moieties were prepared on the basis of maleic anhydride copolymers. Azo dyes such as Disperse Red 1 (DR 1) were attached to the polymer backbones via esterification, amidization, or imidization. Optimal poling conditions for the side-chain polymers were determined by means of thermal analysis. After electrode poling with a bias voltage of 200 V at a temperature of 185 degree(s)C, the spin-coated samples were slowly cooled down to room temperature with the poling field still applied. The thermal stabilities of the poled polymer films were measured by means of electro-optical (EOTA) and pyro- electrical (PTA) thermal analysis and compared to the respective responses of DR 1/polymethylmethacrylate (PMMA) guest/host polymer samples. Both experimental techniques (EOTA and PTA) are discussed in some detail together with the experimental results.

  16. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  17. Kinetics of the reactions of the acid anhydrides with aromatic amines in aprotic solvents. M.S. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Sugg, E.; Mason, J. G.

    1983-01-01

    Work has revealed that diamine derivatives of diphenylmethane (IV), diphenyl ether (V), benzophenone (IV), fluorene (VII), and fluorenone (VIII) polymerizations with pyromellitic dianhydride in DMA were dependent on the basicity of the amine compound. The correlation between the basicity of the amine and its reactivity with phthalic anhydride was determined. Basicity measurements were made by potentiometric titration of each amine in an acetonitrile-water solvent system, from which the pKa of the amine could be determined. Reactivity was defined in terms of the second order rate constant derived form spectrophotometric examination of the reaction between each amine and phthalic anhydride in DMA. This reaction was expected to proceed in either one (for a monoamine) or two (for a diamine) stages.

  18. In situ FTIR study of n-butane selective oxidation to maleic anhydride on V-P-O catalysts

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1986-11-20

    The selective oxidation of n-butane to maleic anhydride on vanadium-phosphorus-oxygen (V-P-O) catalysts having P to V ratios of 0.9, 1.0, and 1.1 was studied by transmission infrared spectroscopy. Catalysts were exposed to mixtures of 1.5% n-butane in air at temperatures from 100 to 500/sup 0/C. Adsorbed n-butane, maleic anhydride, and carbon oxide species were observed on the catalyst surfaces. In addition, adsorbed maleic acid and highly reactive olefinic species could be detected. The nature of the adsorbed species present on the catalyst surface was dependent on the catalyst phosphorus loading, the reaction temperature, and the time of exposure under reaction conditions.

  19. PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation

    PubMed Central

    Prencipe, Giuseppe; Tabakman, Scott M.; Welsher, Kevin; Liu, Zhuang; Goodwin, Andrew P.; Zhang, Li; Henry, Joy; Dai, Hongjie

    2010-01-01

    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NPs), and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly(γ-glutamic acid) (γPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of γPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on γPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs, and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pH values, at elevated temperatures, and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 = 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultralong blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery. PMID:19173646

  20. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation.

    PubMed

    Prencipe, Giuseppe; Tabakman, Scott M; Welsher, Kevin; Liu, Zhuang; Goodwin, Andrew P; Zhang, Li; Henry, Joy; Dai, Hongjie

    2009-04-01

    Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NPs), and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly(gamma-glutamic acid) (gammaPGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of gammaPGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on gammaPGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs, and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pH values, at elevated temperatures, and in serum. Moreover, the polymer-coated SWNTs exhibit remarkably long blood circulation (t(1/2) = 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultralong blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery.

  1. Short communication: Difructose anhydride III promotes calcium absorption from the duodenum in cattle.

    PubMed

    Teramura, M; Nakai, T; Itoh, M; Sato, T; Ohtani, M; Kawashima, C; Hanada, M

    2015-04-01

    Difructose anhydride (DFA) III promotes the intestinal absorption of calcium via a paracellular pathway in rats. In dairy cows, DFA III reaches the duodenum without being degraded by ruminal bacteria and hence could be used to control hypocalcemia. The aims of the present study were to investigate the percentage of DFA III that appears in the duodenum of cows and to determine the effect of DFA III on calcium absorption from duodenal fluid. The first experiment was performed in 3 ruminally and duodenally cannulated dry Holstein cows in a 3 × 3 Latin square design. Each experimental period lasted 7 d. On the first day, the cows were ruminally fed one of the following treatments: 0 (DFA0), 50 (DFA50), or 100 (DFA100) g/d of DFA III, using cobalt-EDTA as a liquid phase marker. Difructose anhydride III was detected in duodenal fluid 1 h after feeding, and its concentration peaked 4 h after feeding, in a dose-dependent manner. The percentages of DFA III that appeared in the duodenum after the DFA50 and DFA100 treatments were 69.1 ± 7.0% and 67.9 ± 5.6%, respectively. The second experiment used the everted duodenal sacs of cattle (n = 7 in each group). Sacs were incubated in artificial mucosal fluid containing 1 mM DFA III or no DFA III (control) for 60 min with 100% O2 in a water bath at 37 °C. After incubation, the calcium concentration of the artificial serosal fluid in the everted sacs was measured. Calcium absorption was higher in the DFA III-treated group than in the control group (803 ± 161 and 456 ± 74 nmol/cm of sac, respectively). The above results demonstrate that approximately 70% of administered DFA III reached the duodenum of cows intact. Moreover, similar to its effects on calcium absorption in rats, DFA III promoted calcium absorption via a paracellular pathway in the duodenum of cows. PMID:25648815

  2. Polymer-organoclay nanocomposites by melt processing

    NASA Astrophysics Data System (ADS)

    Cui, Lili

    2009-12-01

    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  3. Polymer nanolithography

    NASA Astrophysics Data System (ADS)

    Vance, Jennifer M.

    Nanolithography involves making patterns of materials with at least one dimension less than 100 nanometers. Surprisingly, writable CDs can provide polymer nanostructures for pennies a piece. Building on work previously done in the Drain lab, with an inherited home-built oven press, this research will explore the relationships between polymer chemical reactivity, polymer printing, and material surface energies. In addition, a relatively inexpensive entry point into high school and undergraduate education in nanolithography is presented. The ability to pattern cheaply at the nanoscale and microscale is necessary and attractive for many technologies towards biosensors, organic light emitting diodes, identification tags, layered devices, and transistors.

  4. Preparation and in vitro evaluation of novel poly(anhydride-ester)-based amphiphilic copolymer curcumin-loaded micelles.

    PubMed

    Lv, Li; Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Min; Guo, Shengrong; Huang, Shengtang

    2014-02-01

    Novel poly(anhydride-ester)-b-poly(ethylene glycol) copolymers (PAE-b-PEGs) were synthesized by esterization of methyl poly(ethylene glycol) and poly(anhydride-ester), which were obtained by the melt polycondensation of alpha,omega-acetic anhydride-terminated poly(L-lactic acid), and characterized by 1H-NMR and gel permeation chromatography. The two poly(anhydride-ester)-b-poly(ethylene glycols) (denoted as PAE-b-PEG2k and PAE-b-PEG5k) thus obtained can self-assemble in water to form micelles with hydrodynamic diameters of 92.5 and 97.5 nm above their critical micelle concentrations of 3.78 and 2.36 microg/mL, respectively. The curcumin-loaded PAE-b-PEG2k and PAE-b-PEG5k micelles were prepared by the solid dispersion method, and they could encapsulate approximately 7% (w/w) curcumin. The diameters of the micelles were stable for 5 days. Curcumin is released faster from the micelles at pH 5.0 than at pH 7.4. Curcumin is released from the micelles at a fast rate during the initial 12 h, followed by a zero-order release during the subsequent 200 h, both at pH 5.0 and 7.4. The IC50 values of the curcumin-loaded PAE-b-PEG2k and PAE-b-PEG5k micelles against HeLa cells are 12.41 and 15.31 microg/mL, respectively, which is lower than that of free curcumin (25.90 microg/mL). The PAE-b-PEG2k micelles are taken up faster than the PAE-b-PEG5k micelles by HeLa cells. Curcumin-loaded micelles can induce G2/M phase cell cycle arrest and apoptosis of HeLa cells.

  5. Polyol-acid anhydride-n-alkyl-alkylene diamine reaction product and motor fuel composition containing same

    SciTech Connect

    Sung, R.L.; Jenkins, R.H. Jr.

    1987-02-17

    A fuel composition for an internal combustion engine comprising: (a) a major portion of a liquid hydrocarbon fuel and (b) a minor amount, as a deposit inhibitor additive, of a reaction product of a process comprising: (i) reacting a dibasic acid anhydride with a polyol, thereby forming an ester of maleic acid; (ii) reacting the ester of maleic acid with an N-alkyl-alkylene diamine, thereby forming the reaction product; and (iii) recovering the reaction product.

  6. Organic linkers on oxide surfaces: Adsorption and chemical bonding of phthalic anhydride on MgO(100)

    NASA Astrophysics Data System (ADS)

    Mohr, Susanne; Doepper, Tibor; Xu, Tao; Tariq, Quratulain; Lytken, Ole; Laurin, Mathias; Steinrueck, Hans-Peter; Goerling, Andreas; Libuda, Joerg

    2016-04-01

    To elucidate the adsorption behavior and interaction mechanisms of organic linker units on oxide surfaces, we have performed a model study under ultrahigh vacuum (UHV) conditions. We apply infrared reflection absorption spectroscopy (IRAS) in combination with density-functional theory (DFT), temperature programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). Phthalic anhydride (PAA) was deposited at temperatures between 100 and 300 K by physical vapor deposition (PVD) onto an ordered MgO(100) film grown on Ag(100). At 100 K, the first monolayer adsorbs molecularly with the molecular plane aligned parallel to the surface. Subsequent growth of a multilayer film at low temperature also occurs with preferential molecular alignment parallel to the surface. At 240 K, the multilayer desorbs without decomposition. At 300 K, a mixed monolayer of chemically modified ring-opened and intact phthalic anhydride exists on the surface. The chemically modified species binds in a strongly tilted geometry via opening of the anhydride ring to form a bis-carboxylate species. This species additionally stabilizes the coadsorbed molecular PAA via intermolecular interactions. Finally, surface defects and hydroxyl groups are found to increase the amount of surface bis-carboxylate at 300 K, whereas the relative amount of coadsorbed molecular PAA decreases.

  7. Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides

    PubMed Central

    Liu, Ziwei; Rigger, Lukas; Rossi, Jean-Christophe; Sutherland, John D.; Pascal, Robert

    2016-01-01

    5(4H)-Oxazolones can be formed through the activation of acylated α-amino acids or of peptide C termini. They constitute potentially activated intermediates in the abiotic chemistry of peptides that preceded the origin of life or early stages of biology and are capable of yielding mixed carboxylic-phosphoric anhydrides upon reaction with phosphate esters and nucleotides. Here, we present the results of a study aimed at investigating the chemistry that can be built through this interaction. As a matter of fact, the formation of mixed anhydrides with mononucleotides and nucleic acid models is shown to take place at positions involving a mono-substituted phosphate group at the 3’- or 5’-terminus but not at the internal phosphodiester linkages. In addition to the formation of mixed anhydrides, the subsequent intramolecular acyl or phosphoryl transfers taking place at the 3’-terminus are considered to be particularly relevant to the common prebiotic chemistry of α-amino acids and nucleotides. PMID:27534830

  8. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  9. Separation of maleic anhydride grafted polypropylene using multidimensional high-temperature liquid chromatography.

    PubMed

    Prabhu, K N; Macko, T; Brüll, R; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2016-04-01

    Functionalization addresses a property gap of polyolefins and opens new perspectives due to improved surface properties in applications like composites (e.g., glass fiber reinforced polypropylene) and anti-corrosive coatings for metals. Various techniques have been developed to characterize functionalized polyolefins, yet no analytical approach addressing their chemical heterogeneity exists. Using High Temperature Size Exclusion Chromatography (HT-SEC) coupled to infrared spectroscopy we could show for two model samples of polypropylene grafted maleic anhydride (PP-g-MA), differing in their nominal MA content, that the grafting density increases with decreasing molar mass. Crystallization Analysis Fractionation (CRYSTAF) does not enable to separate these samples according to their composition to the extent required. Yet, when using High Temperature High Performance Liquid Chromatography (HT-HPLC), with either silica gel or Mica as stationary phase and a gradient mobile phase, a deformulation into a grafted and a non-grafted fraction could be achieved. This was confirmed by analyzing the eluted fractions by infrared spectroscopy. Hyphenating the separation according to composition with a separation according to molar mass (HT-HPLC x HT-SEC) enabled for the first time to reveal the bivariate distribution of PP-g-MA with regard to the molar mass and composition. Using on-line infrared detection quantitative information on the compositional and molar mass parameters of the individual fractions could be obtained. PMID:26961914

  10. Granular size of potato starch affects structural properties, octenylsuccinic anhydride modification and flowability.

    PubMed

    Wang, Chan; Tang, Chuan-He; Fu, Xiong; Huang, Qiang; Zhang, Bin

    2016-12-01

    Native potato starch (PS) granules were separated into three size fractions: larger than 30μm (P-L), 15-30μm (P-M), and smaller than 15μm (P-S). The morphological and crystalline structure of fractionated potato starches were investigated by light and scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The P-L fraction showed ellipsoidal shape and B-type X-ray pattern, whereas the P-S fraction had spherical shape and A-type pattern. The fluorophore-assisted capillary electrophoresis data showed that the P-L fraction had more B2 chains and less short A and B1 chains than the P-S counterparts. Smaller granules with larger specific surface area had higher degree of substitution when reacted with octenylsuccinic anhydride (OSA), and showed more uniform distribution of octenylsuccinate substituents. Both OSA modified and unmodified P-S samples showed higher flowability compared with the P-L counterparts. PMID:27374555

  11. The use of maleic anhydride for the reversible blocking of amino groups on polypeptide chains

    PubMed Central

    Butler, P. J. G.; Harris, J. I.; Hartley, B. S.; Leberman, R.

    1969-01-01

    1. Maleic anhydride was shown to react rapidly and specifically with amino groups of proteins and peptides. Complete substitution of chymotrypsinogen was achieved under mild conditions and the extent of reaction could be readily determined from the spectrum of the maleyl-protein. 2. Maleyl-proteins are generally soluble and disaggregated at neutral pH. Trypsin splits the blocked proteins only at arginine residues and there is frequently selectivity in this cleavage, e.g. in yeast alcohol dehydrogenase and pig glyceraldehyde 3-phosphate dehydrogenase. 3. The group is removed by intramolecular catalysis at acid pH. The half-time was 11–12hr. at 37° at pH3·5 in ∈-maleyl-lysine or in maleyl-chymotrypsinogen. 4. The unblocking reaction can be used as the basis for a `diagonal'-electrophoretic separation of lysine peptides and N-terminal peptides, as shown by studies with β-melanocyte-stimulating hormone. PMID:5821728

  12. Cantharidin and Its Anhydride-Modified Derivatives: Relation of Structure to Insecticidal Activity

    PubMed Central

    Sun, Wenbo; Liu, Zhongyi; Zhang, Yalin

    2013-01-01

    Cantharidin is a natural compound of novel structure with ideal insecticidal activity. However, the relationship of structure to insecticidal activity of cantharidin and its derivatives has not been ever clarified. To explore what determines the insecticidal activity structurally of cantharidin-related compounds, two series target compounds 6 and 7 were synthesized by replacing the anhydride ring of norcantharidin with an aromatic amine or fatty amine with different electron density, respectively. The structures of these compounds were characterized by 1H NMR, 13C NMR and HRMS-ESI. A bioassay showed that compounds 6 (a–m) lacked any larvicidal activity against Plutella xylostella; whereas their ring-opened partners 7 (a–m) provided a variety of larvicidal activities against P. xylostella, and compound 7f indicated the highest larvicidal activity with LC50 value of 0.43 mM. The present work demonstrated that the form of the compound (cyclic or ring-opened) or their ability to hydrolyze facilely was the key to determine whether it exhibits larvicidal activity. Moreover, it revealed that the improvement of insecticidal activity required a reasonable combination of both aliphatic amide and aromatic amide moieties, and the type of substituent Y on the aniline ring was critical. PMID:23344017

  13. Highly carbonylated cellulose nanofibrous membranes utilizing maleic anhydride grafting for efficient lysozyme adsorption.

    PubMed

    Ma, Juncheng; Wang, Xueqin; Fu, Qiuxia; Si, Yang; Yu, Jianyong; Ding, Bin

    2015-07-22

    Construction of adsorptive materials for simple, efficient, and high-throughput adsorption of proteins is critical to meet the great demands of highly purified proteins in biotechnological and biopharmaceutical industry; however, it has proven extremely challenging. Here, we report a cost-effective strategy to create carbonyl groups surface-functionalized nanofibrous membranes under mild conditions for positively charged protein adsorption. Our approach allows maleic anhydride to in situ graft on cellulose nanofibrous membranes (CMA) to construct adsorptive membranes with large surface area and tortuous porous structure. Thereby, the resultant CMA membranes exhibited high adsorption capacity of 160 mg g(-1), fast equilibrium within 12 h, and good reversibility to lysozyme. Moreover, the dynamic adsorption was performed under low pressure-drops (750 Pa), with a relatively high saturation adsorption amount of 118 mg g(-1), which matched well with the requirements for proteins purification. Considering the excellent adsorption performance of the as-prepared adsorptive membranes, this simple and intriguing approach may pave a way for the design and development of robust and cost-effective adsorption membranes to meet the great demands for fast and efficient adsorption of positively charged proteins.

  14. Anhydrous formic acid and acetic anhydride as solvent or additive in nonaqueous titrations.

    PubMed

    Buvári-Barcza, A; Tóth, I; Barcza, L

    2005-09-01

    The use and importance of formic acid and acetic anhydride (Ac2O) is increasing in nonaqueous acid-base titrations, but their interaction with the solutes is poorly understood. This paper attempts to clarify the effect of the solvents; NMR and spectrophotometric investigations were done to reveal the interactions between some bases and the mentioned solvents. Anhydrous formic acid is a typical protogenic solvent but both the relative permittivity and acidity are higher than those of acetic acid (mostly used in assays of bases). These differences originate from the different chemical structures: liquid acetic acid contains basically cyclic dimers while formic acid forms linear associates. Ac2O is obviously not an acidic but an aprotic (very slightly protophilic) solvent, which supposedly dissociates slightly into acetyl (CH3CO+) and acetate (AcO-) ions. In fact, some bases react with Ac2O forming an associate: the Ac+ group is bound to the delta- charged atom of the reactant while AcO- is associated with the delta+ group at appropriate distance.

  15. Molecular and crystal structure of n-hexyloxybenzoic anhydride at low and room temperatures

    SciTech Connect

    Konstantinov, I. I.; Churakov, A. V.; Kuz'mina, L. G.

    2010-09-15

    The crystal and molecular structures of n-hexyloxybenzoic anhydride, C{sub 6}H{sub 13}-O-C{sub 6}H{sub 4}-C(O)-O-C(O)-C{sub 6}H{sub 4}-C{sub 6}H{sub 13}, at low (120 K) and room (296 K) temperatures have been investigated. The molecule has an asymmetric bent structure. The dihedral angle between the benzene ring planes is 48.5 deg. The aliphatic chain on one side of the molecule has a transoid orientation with respect to the 'internal' C4 atom of the closest benzene ring, whereas the aliphatic chain on the other side has a cissoid orientation with respect to the analogous C(4A) atom. The crystal packing does not exhibit any pronounced separation of the crystal space into closely packed aromatic or loosely packed aliphatic regions. No weak directional interactions are observed in the packing; this fact explains the absence of liquid-crystal properties for this compound.

  16. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability.

    PubMed

    Bello-Pérez, Luis A; Bello-Flores, Christopher A; Nuñez-Santiago, María del Carmen; Coronel-Aguilera, Claudia P; Alvarez-Ramirez, J

    2015-11-01

    Banana starch was esterified with octenylsuccinic anhydride (OSA) at different degree substitution (DS) and used to stabilize emulsions. Morphology, emulsion stability, emulsification index, rheological properties and particle size distribution of the emulsions were tested. Emulsions dyed with Solvent Red 26 showed affinity for the oil phase. Backscattering light showed three regions in the emulsion where the emulsified region was present. Starch concentration had higher effect in the emulsification index (EI) than the DS used in the study because similar values were found with OSA-banana and native starches. However, OSA-banana presented greater stability of the emulsified region. Rheological tests in emulsions with OSA-banana showed G'>G" values and low dependence of G' with the frequency, indicating a dominant elastic response to shear. When emulsions were prepared under high-pressure conditions, the emulsions with OSA-banana starch with different DS showed a bimodal distribution of particle size. The emulsion with OSA-banana starch and the low DS showed similar mean droplet diameter than its native counterpart. In contrast, the highest DS led to the highest mean droplet diameter. It is concluded that OSA-banana starch with DS can be used to stabilize specific emulsion types.

  17. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride.

    PubMed

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-10-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen.

  18. Catalyst optimization strategy: selective oxidation of o-xylene to phthalic anhydride.

    PubMed

    Wöelk, Hans-Jörg; Mestl, Gerhard

    2012-02-01

    The oxidation of o-xylene and/or naphthalene to phthalic anhydride is one of the important industrial processes based on catalytic selective oxidation reactions. Vanadia--titania catalysts have been used in the industrial phthalic anyhdride process for the last 50 years. The operation parameters like the temperature range of operation, reactor inlet pressures, contact times, o-xylene loadings, etc. were constantly improved during this period of continuous process optimization so as to optimize catalyst performance and increase its life time. However, a fundamental understanding of the mutual interaction of the rather complex reaction network and the catalyst formulation is still missing. Recently, a detailed study of by-product formation as function of process conditions allowed us to develop a novel, improved reaction scheme for the catalytic oxidation of o-xylene. Based on this understanding, a detailed investigation was conducted for the first time of the by-product formation under varying operation conditions and as a function of the active mass variation exploiting high-throughput, as well as bench scales reactors. This high-throughput testing allowed us to relate reaction kinetics to novel catalyst formulations.

  19. Reaction of octenylsuccinic anhydride with a mixture of granular starch and soluble maltodextrin.

    PubMed

    Bai, Yanjie; Shi, Yong-Cheng

    2013-11-01

    The reaction of octenylsuccinic anhydride (OSA) with a mixture of granular waxy maize starch and soluble maltodextrin was investigated. OSA was reacted with a 1:1 (w/w) mixture of the granular starch and maltodextrin at OSA levels of 1.5, 3, 9, and 15% (wt% based on starch weight). After the first 0.5h of the reaction, degree of substitution (DS) on maltodextrin reached 0.021, 0.030, 0.080, and 0.10 for 1.5, 3, 9, and 15% OSA, respectively, whereas DS for granular starch was only 0.0020, 0.0087, 0.014, and 0.016. At 2h of the reaction, the bound OS ratio of maltodextrin to granular starch was 10.8 when OSA concentration was 1.5% and the ratio decreased to ca. 5 at higher OSA concentrations. OSA preferred to react with maltodextrin than semi-crystalline granular starch when both existed in the system. OSA reacted with maltodextrin at a much faster rate and to a greater extent than with granular starch, but a significant amount of OSA reacted with granular starch at 3-15% OSA concentrations.

  20. Development of emulsifying property in Persian gum using octenyl succinic anhydride (OSA).

    PubMed

    Mohammadi, S; Abbasi, S; Scanlon, M G

    2016-08-01

    In the present study, the influence of octenyle succinic anhydride (OSA),gum concentration, pH, temperature and reaction time on esterification of Persian gum (PG), and its soluble (SFPG) and insoluble (IFPG) fractions, were investigated by response surface methodology (RSM) in order to optimize the reaction conditions based on the degree of substitution (DS). The individual effect of all independent variables as well as the interactive effects of temperature-OSA concentration, and OSA-PG concentrations on DS was significant. However, the latter interactive effect (OSA-SFPG) was not significant in case of SFPG. The IFPG did not have any esterification reaction with OSA. The highest DS for PG and SFPG were 0.0285 and 0.0303 at the optimal conditions, respectively. The FTIR spectrums also confirmed the carbonyl group attachment in OSA-PG and OSA-SFPG. The enhancement of emulsifying capability was also confirmed by ECI and EAI values, microscopic images as well as rheological measurements. PMID:27138859

  1. Analysis of octenylsuccinate rice and tapioca starches: Distribution of octenylsuccinic anhydride groups in starch granules.

    PubMed

    Whitney, Kristin; Reuhs, Bradley L; Ovando Martinez, Maribel; Simsek, Senay

    2016-11-15

    Characterization of the fine structure of octenylsuccinic anhydride (OSA) starch would lead to a better understanding of functional properties. OSA rice and tapioca starches were analyzed using microscopy, liquid chromatography and nuclear magnetic resonance. Chain length distribution of amylopectin changed significantly (P<0.05) after OSA esterification. Weight averaged degree of polymerization (DPw) decreased significantly (P<0.05) from 16.47 to 13.29 and from 14.87 to 12.47 in native and OSA rice and tapioca starches, respectively. The chain length distribution of pure amylopectin fractions suggested that OSA groups were not present in the amylopectin portion of the starch. (1)H NMR analysis of pure amylose and amylopectin fractions indicated that OSA substitution was present only in amylose fractions of rice and tapioca starches. Esterification with 3% OSA results in starch that has OSA substituted mainly on amylose chains or possibly on amylopectin chains that have been hydrolyzed from the amylopectin molecules during esterification. PMID:27283674

  2. Microwave measurements of the spectra and molecular structure for phthalic anhydride

    NASA Astrophysics Data System (ADS)

    Pejlovas, Aaron M.; Sun, Ming; Kukolich, Stephen G.

    2014-05-01

    The microwave rotational spectrum for phthalic anhydride (PhA) has been measured in the 4-14 GHz microwave region using a pulsed-beam Fourier transform (PBFT) Flygare-Balle type microwave spectrometer. Initially, the molecular structure was calculated using Gaussian 09 suite with mp2/6-311++G** basis and the calculations were used in predicting spectra for the measured isotopologues. The experimental rotational transition frequencies were measured and used to calculate the rotational and centrifugal distortion constants. The rotational constants for the normal isotopologue, four unique 13C substituted isotopologues and two 18O isotologues, were used in a least squares fit to determine nearly all structural parameters for this molecule. Since no substitutions were made at hydrogen sites, the calculated positions of the hydrogen atoms relative to the bonded carbon atoms were used in the structure determination. The rotational constants for the parent isotopologue were determined to be A = 1801.7622(9) MHz, B = 1191.71816(26) MHz, C = 717.44614(28) MHz. Small values for the centrifugal distortion constants were obtained; DJ = 0.0127 kHz, DJK = 0.0652 kHz, and DK = -0.099 kHz, indicating a fairly rigid structure. The structure of PhA is planar with a negative inertial defect of Δ = -0.154 amu Å2. Structural parameters from the mp2 and DFT calculations are in quite good agreement with measured parameters.

  3. Radiation grafting of maleic anhydride onto polypropylene in solid state via ultrafine blend

    NASA Astrophysics Data System (ADS)

    Tan, Xiumin

    2014-05-01

    A novel method to prepare maleic anhydride grafting onto poly (propylene) (PP-g-MAH) was described. It was performed by γ-irradiation in solid state via ultrafine blend in the absence of any initiator and the grafting mechanism was proposed based on the experimental results. First, ultrafine blend of MAH and PP was prepared through ultrasonic initiation in melt state and then cooled rapidly. Second, the blend was radiated by γ-irradiation in the circumstance of atmosphere. Effects of irradiation dose and MAH concentration on the amount of grafted MAH were investigated. Compared with the conventional solid-state radiation grafting method, PP-g-MAH obtained via this method shows a higher graft rate of MAH. This novel method also has the advantages of solventless, energy efficient, low cost and simple operation. Furthermore, it is very easy to get purified products. The molecular structures of grafted copolymer were characterized by Fourier-transform infrared spectroscopy. Differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscope were used to determine the degree of crystallinity and crystalline structure.

  4. Dodecenylsuccinic anhydride derivatives of gum karaya (Sterculia urens): preparation, characterization, and their antibacterial properties.

    PubMed

    Padil, Vinod Vellora Thekkae; Senan, Chandra; Černík, Miroslav

    2015-04-15

    Esterifications of the tree-based gum, gum karaya (GK), using dodecenylsuccinic anhydride (DDSA) were carried out in aqueous solutions. GK was deacetylated using alkali treatment to obtain deacetylated gum karaya (DGK). The DGK and its DDSA derivative were characterized using gel permeation chromatography/multiangle laser light scattering (GPC/MALLS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), proton nuclear magnetic resonance spectroscopy ((1)H NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) analysis, and rheological studies. The degree of substitution was found to be 10.25% for DGK using (1)H NMR spectroscopy. The critical aggregation concentration of DDSA-DGK was determined using dye solubilization and surface tension methods. The antibacterial activity of the DDSA-DGK derivative was then investigated against Gram-negative Escherichia coli and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. The DDSA-DGK derivative has the potential for use as a stabilizing agent in food and nonfood applications. It can also be developed as an antibacterial agent. PMID:25797306

  5. Position of modifying groups on starch chains of octenylsuccinic anhydride-modified waxy maize starch.

    PubMed

    Bai, Yanjie; Kaufman, Rhett C; Wilson, Jeff D; Shi, Yong-Cheng

    2014-06-15

    Octenylsuccinic anhydride (OSA)-modified starches with a low (0.018) and high (0.092) degree of substitution (DS) were prepared from granular native waxy maize starch in aqueous slurry. The position of OS substituents along the starch chains was investigated by enzyme hydrolysis followed by chromatographic analysis. Native starch and two OS starches with a low and high DS had β-limit values of 55.9%, 52.8%, and 34.4%, respectively. The weight-average molecular weight of the β-limit dextrin from the OS starch with a low DS was close to that of the β-limit dextrin from native starch but lower than that of the β-limit dextrin from the OS starch with a high DS. Debranching of OS starches was incomplete compared with native starch. OS groups in the OS starch with a low DS were located on the repeat units near the branching points, whereas the OS substituents in the OS starch with a high DS occurred both near the branching points and the non-reducing ends.

  6. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch.

    PubMed

    Cheuk, Sherwin Y; Shih, Frederick F; Champagne, Elaine T; Daigle, Kim W; Patindol, James A; Mattison, Christopher P; Boue, Stephen M

    2015-05-01

    Octenyl succinic anhydride modified starch (OSA-ST) was used to encapsulate coenzyme Q10 (CoQ10). CoQ10 was dissolved in rice bran oil and incorporated into an aqueous OSA-ST solution. High pressure homogenisation of the mixture was conducted at 170 MPa for 56 cycles. The resulting emulsion had a particle size range of 200-300 nm and the absolute zeta potential varied between 8.4 and 10.6 mV. CoQ10 retention of the emulsion and freeze dried products, determined by a hexane rinse, was 98.2%. Reconstitution of the freeze dried product in Mcllvaine citrate-phosphate buffers with pH values of 3-5 and temperatures at 4 and 25 °C had very little effect on the range and distribution of the nanoparticles' size. The inflection point of the zeta potential and pH plot occurred at the first pKa of succinic acid (pH 4.2), indicating succinate as the main influence over zeta potential.

  7. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability.

    PubMed

    Bello-Pérez, Luis A; Bello-Flores, Christopher A; Nuñez-Santiago, María del Carmen; Coronel-Aguilera, Claudia P; Alvarez-Ramirez, J

    2015-11-01

    Banana starch was esterified with octenylsuccinic anhydride (OSA) at different degree substitution (DS) and used to stabilize emulsions. Morphology, emulsion stability, emulsification index, rheological properties and particle size distribution of the emulsions were tested. Emulsions dyed with Solvent Red 26 showed affinity for the oil phase. Backscattering light showed three regions in the emulsion where the emulsified region was present. Starch concentration had higher effect in the emulsification index (EI) than the DS used in the study because similar values were found with OSA-banana and native starches. However, OSA-banana presented greater stability of the emulsified region. Rheological tests in emulsions with OSA-banana showed G'>G" values and low dependence of G' with the frequency, indicating a dominant elastic response to shear. When emulsions were prepared under high-pressure conditions, the emulsions with OSA-banana starch with different DS showed a bimodal distribution of particle size. The emulsion with OSA-banana starch and the low DS showed similar mean droplet diameter than its native counterpart. In contrast, the highest DS led to the highest mean droplet diameter. It is concluded that OSA-banana starch with DS can be used to stabilize specific emulsion types. PMID:26256319

  8. Synthesis and characterization of new VPO catalysts for partial n-butane oxidation to maleic anhydride

    SciTech Connect

    Batis, N.H.; Batis, H. ); Ghorbell, A.; Vedrine, J.C.; Volta, J.C. )

    1991-03-01

    In order to try to control the V{sup 4+}/V{sup 5+} ratio of VPO catalysts for butane oxidation to maleic anhydride, a new method of preparation of these catalysts has been developed: it consists of the reaction of VC1{sub 3} (V{sup 3+}) with V{sub 2}O{sub 5} (V{sup 5+}) for the preparation of the precursor. Two series of catalysts have been prepared in aqueous and organic media. The V{sup 3+}/V{sup 5+} ratio has been varied and its influence on the physicochemical features and on the catalytic properties of the catalysts has been studied. The best catalysts in both preparation media correspond to V{sup 3+}/V{sup 5+} = 1 in the starting material. Catalysts have been characterized using X-ray diffraction, infrared spectroscopy, UV diffuse reflectance, Raman spectroscopy, {sup 31}P MAS NMR, and XPS techniques. The combination of all these techniques let the authors to conclude that the best catalyst consisted of an oxidized surface ({gamma}-VOPO{sub 4}) (V{sup 5+}) in interaction with reduced matrix ((VO){sub 2}P{sub 2}O{sub 7}) (V{sup 4+}).

  9. Separation of maleic anhydride grafted polypropylene using multidimensional high-temperature liquid chromatography.

    PubMed

    Prabhu, K N; Macko, T; Brüll, R; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2016-04-01

    Functionalization addresses a property gap of polyolefins and opens new perspectives due to improved surface properties in applications like composites (e.g., glass fiber reinforced polypropylene) and anti-corrosive coatings for metals. Various techniques have been developed to characterize functionalized polyolefins, yet no analytical approach addressing their chemical heterogeneity exists. Using High Temperature Size Exclusion Chromatography (HT-SEC) coupled to infrared spectroscopy we could show for two model samples of polypropylene grafted maleic anhydride (PP-g-MA), differing in their nominal MA content, that the grafting density increases with decreasing molar mass. Crystallization Analysis Fractionation (CRYSTAF) does not enable to separate these samples according to their composition to the extent required. Yet, when using High Temperature High Performance Liquid Chromatography (HT-HPLC), with either silica gel or Mica as stationary phase and a gradient mobile phase, a deformulation into a grafted and a non-grafted fraction could be achieved. This was confirmed by analyzing the eluted fractions by infrared spectroscopy. Hyphenating the separation according to composition with a separation according to molar mass (HT-HPLC x HT-SEC) enabled for the first time to reveal the bivariate distribution of PP-g-MA with regard to the molar mass and composition. Using on-line infrared detection quantitative information on the compositional and molar mass parameters of the individual fractions could be obtained.

  10. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  11. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    PubMed

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  12. Role of mast cell in the late phase of contact hypersensitivity induced by trimellitic anhydride

    PubMed Central

    Chai, Ok Hee

    2015-01-01

    Mast cells are known as effector cells of IgE-mediated allergic responses, but role of mast cells in contact hypersensitivity (CHS) has been considered controversial. In this study, we investigated role of mast cell in trimellitic anhydride (TMA)-induced CHS. The mice were sensitized to TMA on the back and repeatedly challenged with TMA on the left ear at 1-week intervals. The ear after challenge showed biphasic responses. The repetition of TMA challenge shifted in time course of ear response and enlarged the extent of early and late phase reactions in proportion to the frequency of TMA challenges in C57BL/6 mice. In late phase reaction, peak of ear response by single challenge showed at 24 hours after challenge, but the peak by repeat challenges at 8 hours after the last challenge. Number of mast cells and eosinophils per unit area increased in proportion to frequency of TMA challenges. However, mast cell-deficient WBB6F1/J-KitW/KitW-v mice developed the late phase reaction without the early phase reaction. The repetition of TMA challenge shifted in time course of ear response and enlarged the extent of ear response and the infiltration of eosinophils. The magnitude of these responses observed according to the frequency of the TMA challenge in mast cell-deficient WBB6F1/J-KitW/KitW-v mice was significantly lower than that in C57BL/6 mice. Also TMA elicited mast cell degranulation and histamine release from rat peritoneal mast cells in a concentration-dependent manner. Conclusively, TMA induces the early and late phase reactions in CHS, and mast cells may be required for TMA-induced CHS. PMID:26770872

  13. Evaporative Derivatization of Phenols with 2-Sulfobenzoic Anhydride for Detection by MALDI-MS

    PubMed Central

    Yao, Yuanyuan; Wang, Poguang; Giese, Roger

    2014-01-01

    RATIONALE Phenols are an important class of analytes, for example as bioactive environmental contaminants. Towards a goal of improving their detection by MALDI-TOF-MS or MALDI-TOF/TOF-MS, we studied their derivatization with 2-sulfobenzoic anhydride (SBA). We chose SBA for this purpose since it is commercially available, inexpensive, and forms an anionic derivative. METHODS In selected conditions developed here for phenols, a reaction mixture of one or more of such compounds in acetonitrile containing SBA and 4-dimethylaminopyridine (DMAP) is evaporated to a solid, heated at 60°C for 1 h, redissolved in 50% acetonitrile containing matrix, spotted onto a MALDI target, and subjected to negative ion MALDI-TOF/TOF-MS. RESULTS While conventional (solution-phase) reaction of 4-phenylphenol (model analyte) with SBA and DMAP only gave a 47% yield of SBA-tagged 4-phenylphenol, evaporative derivatization as above gave a 96% yield, and 25 pmol (4.3 ng) of 4-phenylphenol could be detected in this way by MALDI-TOF/TOF-MS at S/N = 260, whereas even 1 nmol of the nonderivatized phenol was not detected in the absence of derivatization. A wide range of responses was observed when a mixture of 15 phenols was derivatized, with the higher responses coming from phenols with a pKa value above 9. Without derivatization, phenols with pKa values below 5 were the most readily detected. CONCLUSION Evaporative derivatization with SBA (a convenient reagent) can improve the detection of phenols with relatively high pKa values (above 9) by negative ion MALDI-TOF-MS, and accomplish this in the absence of post-derivatization reaction cleanup. PMID:24519828

  14. Therapeutic effect of ethyl acetate extract from Asparagus cochinchinensis on phthalic anhydride-induced skin inflammation.

    PubMed

    Sung, Ji-Eun; Lee, Hyun-Ah; Kim, Ji-Eun; Go, Jun; Seo, Eun-Ji; Yun, Woo-Bin; Kim, Dong-Seob; Son, Hong-Joo; Lee, Chung-Yeoul; Lee, Hee-Seob; Hwang, Dae-Youn

    2016-03-01

    Asparagus cochinchinensis has been used to treat various diseases including fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease, while IL-4 cytokine has been considered as key regulator on the skin homeostasis and the predisposition toward allergic skin inflammation. However, few studies have investigated its effects and IL-4 correlation on skin inflammation to date. To quantitatively evaluate the suppressive effects of ethyl acetate extracts of A. cochinchinensis (EaEAC) on phthalic anhydride (PA)-induced skin inflammation and investigate the role of IL-4 during their action mechanism, alterations in general phenotype biomarkers and luciferase-derived signals were measured in IL-4/Luc/CNS-1 transgenic (Tg) mice with PA-induced skin inflammation after treatment with EaEAC for 2 weeks. Key phenotype markers including lymph node weight, immunoglobulin E (IgE) concentration, epidermis thickness and number of infiltrated mast cells were significantly decreased in the PA+EaEAC treated group compared with the PA+Vehicle treated group. In addition, expression of IL-1β and TNF-α was also decreased in the PA+EaEAC cotreated group, compared to PA+Vehicle treated group. Furthermore, a significant decrease in the luciferase signal derived from IL-4 promoter was detected in the abdominal region, submandibular lymph node and mesenteric lymph node of the PA+EaEAC treated group, compared to PA+Vehicle treated group. Taken together, these results suggest that EaEAC treatment could successfully improve PA-induced skin inflammation of IL-4/Luc/CNS-1 Tg mice, and that IL-4 cytokine plays a key role in the therapeutic process of EaEAC. PMID:27051441

  15. Impact of dual-enzyme treatment on the octenylsuccinic anhydride esterification of soluble starch nanoparticle.

    PubMed

    Lu, Keyu; Miao, Ming; Ye, Fan; Cui, Steve W; Li, Xingfeng; Jiang, Bo

    2016-08-20

    The hypothesis of improving the esterification of sugary maize soluble starch through dual-enzyme pretreatment was investigated. Native starch nanoparticle (NSP) was enzymatically pretreated using β-amylase and transglucosidase (ESP) and then esterified with octenylsuccinic anhydride (OSA). The degree of substitution (DS), reaction efficiency (RE), molecular weight (Mw), molecular density (ρ) and in vitro digestibility were determined. Fourier transform infrared spectroscopy and confocal laser scanning microscopy were used to analyze starch particle and its OS derivatives. The emulsification properties of OS-NSP and OS-ESP were also compared. The results showed that dual-enzyme modification increased the DS and RE of OSA modified starch particle compared with the control. Enzymatic modification had a thinning effect at the surface of starch particle, resulting in lower Mw. The extent of reduction in ρ of OS-ESP was greater than that of OS-NSP. At equivalent DS, OSA modification of EPS was more effective than that of NPS in reducing digestibility. Also, there was brighter fluorescence spheres of OS-ESP in comparison to OS-NSP at equivalent DS, suggesting more OS groups were substituted on the chains near the branch points at less density areas. OS-ESP with higher DS (0.0197) had lower zeta-potential and average particle size for superior emulsion stabilization properties with high stability. The results revealed the OS-starch prepared under dual-enzyme pretreatment was a Pickering particle stabilizer for potential application in encapsulation and delivery of bioactive components. PMID:27178945

  16. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride

    PubMed Central

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-01-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products. PMID:24804025

  17. Elucidation of substituted ester group position in octenylsuccinic anhydride modified sugary maize soluble starch.

    PubMed

    Ye, Fan; Miao, Ming; Huang, Chao; Lu, Keyu; Jiang, Bo; Zhang, Tao

    2014-12-01

    The octenylsuccinic groups in esterification-modified sugary maize soluble starches with a low (0.0191) or high (0.0504) degree of substitution (DS) were investigated by amyloglucosidase hydrolysis followed by a combination of chemical and physical analysis. The results showed the zeta-potential remained at approximately the same value regardless of excessive hydrolysis. The weight-average molecular weight decreased rapidly and reached 1.22 × 10(7) and 1.60 × 10(7) g/mol after 120 min for low-DS and high-DS octenylsuccinic anhydride (OSA) modified starch, respectively. The pattern of z-average radius of gyration as well as particle size change was similar to that of Mw, and z-average radius of gyration decreased much more slowly, especially for high-DS OSA starch. Compared to native starch, two characteristic absorption peaks at 1726.76 and 1571.83 cm(-1) were observed in FT-IR spectra, and the intensity of absorption peaks increased with increasing DS. The NMR results showed that OSA starch had several additional peaks at 0.8-3.0 ppm and a shoulder at 5.56 ppm for OSA substituents, which were grafted at O-2 and O-3 positions in soluble starch. The even distribution of OSA groups in the center area of soluble starch particle has been directly shown under CLSM. Most substitutions were located near branching points of soluble starch particles for a low-DS modified starch, whereas the substituted ester groups were located near branching points as well as at the nonreducing ends in OSA starch with a high DS.

  18. Therapeutic effect of ethyl acetate extract from Asparagus cochinchinensis on phthalic anhydride-induced skin inflammation

    PubMed Central

    Sung, Ji-Eun; Lee, Hyun-Ah; Kim, Ji-Eun; Go, Jun; Seo, Eun-Ji; Yun, Woo-Bin; Kim, Dong-Seob; Son, Hong-Joo; Lee, Chung-Yeoul; Lee, Hee-Seob

    2016-01-01

    Asparagus cochinchinensis has been used to treat various diseases including fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease, while IL-4 cytokine has been considered as key regulator on the skin homeostasis and the predisposition toward allergic skin inflammation. However, few studies have investigated its effects and IL-4 correlation on skin inflammation to date. To quantitatively evaluate the suppressive effects of ethyl acetate extracts of A. cochinchinensis (EaEAC) on phthalic anhydride (PA)-induced skin inflammation and investigate the role of IL-4 during their action mechanism, alterations in general phenotype biomarkers and luciferase-derived signals were measured in IL-4/Luc/CNS-1 transgenic (Tg) mice with PA-induced skin inflammation after treatment with EaEAC for 2 weeks. Key phenotype markers including lymph node weight, immunoglobulin E (IgE) concentration, epidermis thickness and number of infiltrated mast cells were significantly decreased in the PA+EaEAC treated group compared with the PA+Vehicle treated group. In addition, expression of IL-1β and TNF-α was also decreased in the PA+EaEAC cotreated group, compared to PA+Vehicle treated group. Furthermore, a significant decrease in the luciferase signal derived from IL-4 promoter was detected in the abdominal region, submandibular lymph node and mesenteric lymph node of the PA+EaEAC treated group, compared to PA+Vehicle treated group. Taken together, these results suggest that EaEAC treatment could successfully improve PA-induced skin inflammation of IL-4/Luc/CNS-1 Tg mice, and that IL-4 cytokine plays a key role in the therapeutic process of EaEAC. PMID:27051441

  19. S-nitrosothiol tethered polymer hexagons: synthesis, characterisation and antibacterial effect.

    PubMed

    Priya, S; Nithya, R; Berchmans, Sheela

    2014-01-01

    In this work, we portray a new controlled nitric oxide (NO) delivery platform by grafting S-nitrosothiol derived from cysteine into the polymeric backbone of poly(vinyl methyl ether-co-maleic anhydride). Nitrosothiols (RSNO's) are linked to the polymeric backbone through solvent displacement method. By adjusting solvent polarity, materials of different shapes and sizes varying between μm and nm are prepared. More often our method of preparation resulted in hexagonally shaped polymeric materials. The structure and RSNO conjugation analysis was investigated using scanning electron microscopy (SEM), FT-IR, UV-Vis spectroscopy and thermogravimetric analysis (TGA). Bactericidal efficacy of nitric oxide releasing polymer hexagons, a novel antibacterial agent is demonstrated against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Confocal microscopic studies revealed the enhanced bactericidal effect of polymer hexagons via membrane destruction. Results suggest that this biocompatible NO releasing RSNO conjugated polymer hexagons could be potentially useful for antimicrobial applications.

  20. Design and synthesis of digitally encoded polymers that can be decoded and erased

    PubMed Central

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-01-01

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution. PMID:26006165

  1. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter

    NASA Astrophysics Data System (ADS)

    Bastarrachea, Luis J.; Goddard, Julie M.

    2016-08-01

    A method to prepare a self-healing, antimicrobial polymer coating that retains efficacy against Escherichia coli O157:H7 in the presence of organic matter is reported. A coating composed of branched polyethyleneimine (PEI) and styrene maleic anhydride copolymer (SMA) was applied to a maleic anhydride functionalized polypropylene support. The chemistry of the polymer coating was designed to impart hydrophobicity due to the styrene subunits, intrinsic antimicrobial character (>99.9% reduction) from the cationic primary amine groups, and enhanced antimicrobial character (> 99.99% reduction) after chlorination of N-halamine forming groups. Antimicrobial effectiveness was demonstrated under conditions of increasing organic load. Up to 500 ppm horse serum, chlorinated coatings retained full antimicrobial character (>99.99% reduction). Even at 50,000 ppm of horse serum, the coating provided ∼90% reduction as prepared, and between ∼75% and ∼80% reduction in the form of N-halamines. Microscopy confirmed no evidence of bacterial adhesion on the coating surface. Finally, the coating exhibited self-healing properties after exposure to acid and alkaline solutions and restoration by heat, as confirmed through spectroscopy from the rebuilding of characteristic chemical bonds. Such robust antimicrobial polymer coatings with efficacy under conditions of increasing organic load may support reducing microbial cross-contamination in food and biomedical industries.

  2. Design and synthesis of digitally encoded polymers that can be decoded and erased

    NASA Astrophysics Data System (ADS)

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-05-01

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.

  3. Effect of polymer properties and adherend surfaces on adhesion. [titanium, aluminum

    NASA Technical Reports Server (NTRS)

    Dwight, D. W.; Counts, M. E.; Wightman, J. P.

    1975-01-01

    The surface properties associated with good adhesive joints were evaluated in terms of application of adhesive bonding in aerospace technology. The physical and chemical nature was determined of Ti and Al adherend surfaces after various surface treatments, and the effects on fracture surfaces of high temperature aging, and variations in amide, anhydride, and solvent during polymer synthesis. The effects were characterized of (1) high temperature during shear strength testing, (2) fiber-reinforced composites as adherends, (3) acid/base nature of adherends, (4) aluminum powder adhesive filler, and (5) bonding pressure.

  4. Acrylic coatings compositions containing polymer-bound hindered amine light stabilizers

    SciTech Connect

    Callais, P.A.

    1993-12-31

    Unique acrylic coatings resins with attached hindered amine light stabilizer (HALS) groups have been developed. They are readily prepared by reacting a hydrazide functionalized HALS with an acrylic polyol resin containing anhydride and/or epoxy groups or with a peroxide functionalized HALS as the polymerization initiator. As a result, the HALS moiety is rendered nonvolatile and nonextractable. Acrylic melamine and acrylic urethane coatings prepared from the polymer-bound light stabilizer resins exhibit outstanding weatherability and durability in both accelerated and outdoor weathering.

  5. Sensitivity of Neurospora crassa to a Marine-Derived Aspergillus tubingensis Anhydride Exhibiting Antifungal Activity That Is Mediated by the MAS1 Protein

    PubMed Central

    Koch, Liat; Lodin, Anat; Herold, Inbal; Ilan, Micha; Carmeli, Shmuel; Yarden, Oded

    2014-01-01

    The fungus Aspergillus tubingensis (strain OY907) was isolated from the Mediterranean marine sponge Ircinia variabilis. Extracellular extracts produced by this strain were found to inhibit the growth of several fungi. Among the secreted extract components, a novel anhydride metabolite, tubingenoic anhydride A (1) as well as the known 2-carboxymethyl-3-hexylmaleic acid anhydride, asperic acid, and campyrone A and C were purified and their structure elucidated. Compound 1 and 2-carboxymethyl-3-hexylmaleic acid anhydride inhibited Neurospora crassa growth (MIC = 330 and 207 μM, respectively) and affected hyphal morphology. We produced a N. crassa mutant exhibiting tolerance to 1 and found that a yet-uncharacterized gene, designated mas-1, whose product is a cytosolic protein, confers sensitivity to this compound. The ∆mas-1 strain showed increased tolerance to sublethal concentrations of the chitin synthase inhibitor polyoxin D, when compared to the wild type. In addition, the expression of chitin synthase genes was highly elevated in the ∆mas-1 strain, suggesting the gene product is involved in cell wall biosynthesis and the novel anhydride interferes with its function. PMID:25257783

  6. An Examination of the Chemistry of Peroxycarboxylic Nitric Anhydrides and Related Volatile Organic Compounds During Texas Air Quality Study 2000 Using Ground-Based Measurements

    SciTech Connect

    Roberts, James M.; Jobson, B Tom T.; Kuster, W. C.; Goldan, P. D.; Murphy, Paul; Williams, Eric; Frost, G. J.; Riemer, D.; Apel, Eric; Stroud, C.; Wiedinmyer, Christine; Fehsenfeld, Fred C.

    2003-08-19

    Measurements of peroxycarboxylic nitric anhydrides (PANs) along with related volatile organic compounds (VOCs) were made at the La Porte super site during the TexAQS 2000 Houston study. The PAN mixing ratios ranged up to 6.5 ppbv and were broadly correlated with O3, characteristic of a highly polluted urban environment. The anthropogenic PAN homologue concentrations were generally consistent with those found in other urban environments; peroxypropionic nitric anhydride (PPN) averaged 15%, and peroxyisobutyric nitric anhydride (PiBN) averaged 3% of PAN,. Some periods were noted where local petrochemical sources resulted in anomalous PANs chemistry. This effect was especially noticeable in the case of peroxyacrylic nitric anhydride (APAN) where local sources of 1,3-butadiene and acrolein resulted in APAN as high as 30% of PAN. Peroxymethacrylic nitric anhydride (MPAN) was a fairly minor constituent of the PANs except for two periods on 4 and 5 September when air masses from high biogenic hydrocarbons (BHC) areas were observed. BHC chemistry was not a factor in the highest ozone pollution episodes in Houston but may have an impact on daily average ozone levels in some circumstances.

  7. A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol.

    PubMed

    Pavarelli, Giulia; Velasquez Ochoa, Juliana; Caldarelli, Aurora; Puzzo, Francesco; Cavani, Fabrizio; Dubois, Jean-Luc

    2015-07-01

    We investigated the synthesis of maleic anhydride by oxidehydration of a bio-alcohol, 1-butanol, as a possible alternative to the classical process of n-butane oxidation. A vanadyl pyrophosphate catalyst was used to explore the one-pot reaction, which involved two sequential steps: 1) 1-butanol dehydration to 1-butene, catalysed by acid sites, and 2) the oxidation of butenes to maleic anhydride, catalysed by redox sites. A non-negligible amount of phthalic anhydride was also formed. The effect of different experimental parameters was investigated with chemically sourced 1-butanol, and the results were then confirmed by using genuinely bio-sourced 1-butanol. In the case of bio-1-butanol, however, the purity of the product remarkably affected the yield of maleic anhydride. It was found that the reaction mechanism includes the oxidation of butenes to crotonaldehyde and the oxidation of the latter to either furan or maleic acid, both of which are transformed to produce maleic anhydride.

  8. A New Process for Maleic Anhydride Synthesis from a Renewable Building Block: The Gas-Phase Oxidehydration of Bio-1-butanol.

    PubMed

    Pavarelli, Giulia; Velasquez Ochoa, Juliana; Caldarelli, Aurora; Puzzo, Francesco; Cavani, Fabrizio; Dubois, Jean-Luc

    2015-07-01

    We investigated the synthesis of maleic anhydride by oxidehydration of a bio-alcohol, 1-butanol, as a possible alternative to the classical process of n-butane oxidation. A vanadyl pyrophosphate catalyst was used to explore the one-pot reaction, which involved two sequential steps: 1) 1-butanol dehydration to 1-butene, catalysed by acid sites, and 2) the oxidation of butenes to maleic anhydride, catalysed by redox sites. A non-negligible amount of phthalic anhydride was also formed. The effect of different experimental parameters was investigated with chemically sourced 1-butanol, and the results were then confirmed by using genuinely bio-sourced 1-butanol. In the case of bio-1-butanol, however, the purity of the product remarkably affected the yield of maleic anhydride. It was found that the reaction mechanism includes the oxidation of butenes to crotonaldehyde and the oxidation of the latter to either furan or maleic acid, both of which are transformed to produce maleic anhydride. PMID:26073302

  9. Polymer Science.

    ERIC Educational Resources Information Center

    Frank, Curtis W.

    1979-01-01

    Described is a series of four graduate level courses in polymer science, offered or currently in preparation, at Stanford University. Course descriptions and a list of required and recommended texts are included. Detailed course outlines for two of the courses are presented. (BT)

  10. Functional polymers

    SciTech Connect

    Wegner, G.

    2000-01-01

    Improving the existing polymer materials and the designing of model polymers need fundamental insights into the structure and dynamics over a large range of length and time scales. Consequently, a host of quite different methods needs to be applied to gain insights into the molecular and supramolecular structures and interactions that determine the performance of these materials. Supramolecular structures derived from shape persistent (stiff) macromolecules are used as examples to demonstrate the correlation between chemical structure, order phenomena and performance in applications concerning advanced or developing technologies: organic light emitting diodes (OLEDs) and separator membranes in lithium based batteries and fuel cells. Polymers are also important as additives in the manufacture and the processing of other materials. The design of block copolymers to control the nucleation and growth of inorganic particles precipitating from aqueous solutions (mineralization) is discussed as well as the use of block copolymers to optimize the processing of ceramic pieces and objects. Finally, the modification of surfaces by polymers including aspects of biocompatibility is discussed. Some remarks concerning the importance of recent developments and advances in synthesis of macromolecular materials are also given.

  11. Polymer solutions

    DOEpatents

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  12. Ab initio study of chemical bond interactions between covalently functionalized carbon nanotubes via amide, ester and anhydride linkages

    NASA Astrophysics Data System (ADS)

    Ben Doudou, Bessem; Chen, Jun; Vivet, Alexandre; Poilâne, Christophe

    2016-03-01

    In this paper, we have investigated the chemical bond interactions between covalently functionalized zigzag (5,0) and (8,0) SWCNT-SWCNT via various covalent linkages. Side-to-side junctions connected via amide, ester and anhydride linkages were particularly studied. The geometries and energy of the forming reaction were investigated using first-principles density functional theory. Furthermore, the band structures and the total density of states (DOS) of the junctions have also been analyzed. Our results show that several promising structures could be obtained by using chemical connection strategy and particularly the junctions formed by coupling amino functionalized SWCNT and carboxylic acid functionalized SWCNT was more favorable.

  13. Model vanadium-phosphorus-oxygen catalysts for the selective oxidation of C/sub 4/ hydrocarbons to maleic anhydride

    SciTech Connect

    Moser, T.P.

    1987-06-01

    Two model vanadium-phosphorus-oxygen catalysts, ..beta..-VOPO/sub 4/ and (VO)/sub 2/P/sub 2/O/sub 7/, were investigated for the selective oxidation of C/sub 4/ hydrocarbons to maleic anhydride. In situ laser Raman spectroscopy was used. Complementary techniques including x-ray powder diffraction and x-ray photoelectron spectroscopy were used for characterization of the fresh and used catalytic materials. The direct observation of phase stability and the participation of lattice oxygen during catalysis was possible using the in situ Raman technique. In particular, ..beta..-VOPO/sub 4/ and (VO)/sub 2/P/sub 2/O/sub 7/ demonstrated bulk structural integrity during n-butane oxidation. The relatively greater reducing capacity of 1-butene induced the ..beta..-VOPO/sub 4/ to (VO)/sub 2/P/sub 2/O/sub 7/ phase transformation. Direct structural identification of catalytically active centers for paraffin and olefin oxidation were investigated using an /sup 18/O-enriched ..beta..-VOPO/sub 4/ phase catalyst. Active sites responsible for complete combustion (Site I) and selective oxidation (Site II) were identified. The selective route for 1-butene oxidation involved predominantly Site II centers, while Site I centers were associated with complete combustion. In contrast, n-butane oxidation required the highly active Site I centers for initial activation and for the formation of an intermediate containing two oxygen atoms. Raman band assignments indicated these oxygen sites were associated with PO/sub 4/ units in the ..beta..-VOPO/sub 4/ lattice. Maleic anhydride conversion was particularly sensitive to the catalytic phase present. Significant combustion activity was observed when maleic anhydride was fed directly to an integral flow reactor charged with model catalysts. The combustion activity was least for (VO)/sub 2/P/sub 2/O/sub 7/, nominally a V(IV) phase. The ..beta..-VOPO/sub 4/ catalyst, nominally a V(V) phase, resulted in increased conversions of maleic anhydride.

  14. 1,8-Naphthalic anhydride antidote enhances the toxic effects of captan and thiram fungicides on Azospirillum brasilense cells.

    PubMed

    Gallori, E; Casalone, E; Colella, C M; Daly, S; Polsinelli, M

    1991-01-01

    The effects of ten fungicides, six herbicides and four insecticides on the nitrogen-fixing bacterium Azospirillum brasilense were examined. The fungicides captan and thiram were the most toxic among the compounds tested. Cell growth and nitrogenase activity of the bacterium were markedly inhibited by low concentrations of the two fungicides. Antidote 1,8-naphthalic anhydride increased by a factor of 2 the cellular level of glutathione. The addition of the antidote in the presence of captan or thiram caused a similar increase in the glutathione content, but at the same time enhanced the toxicity of the two fungicides.

  15. Diclofenac sodium (DS) loaded bioerodible polymer based constructs

    NASA Astrophysics Data System (ADS)

    Piras, M.; Chiellini, F.; Nikkola, L.; Ashammakhi, N.; Chiellini, E.

    2008-02-01

    Pain is a prevalent problem that can raise morbidity of patients. Pain killer releasing biodegradable materials have been developed by using different techniques and biomaterials. The objective of the current study is to evaluate the use of a new bioerodible polymer for release of diclofenac sodium (DS). 1-butanol hemiester poly(maleic anhydride-alt-2-methoxyethyl vinyl ether) (PAM14) was prepared in the university of Pisa and selected as polymer of choice for the study. Polymer solutions of 5-10% (in ethanol or in acetic acid) were prepared, half of them containing 2% DS. The solutions were then electrospun to produce nanomats that were subsequently characterized using SEM. Fiber diameter was 160 nm 1 μm. Increasing polymer concentration increased the size of the fibers but reduced the number of beads (with or without DS). In the specimens obtained from acetic acid solution, the addition of DS resulted in a reduction in fiber diameter and an increase in the inter-bead distance. Corresponding ethanol solutions gave more homogeneous specimens than did acetic acid, having a lower number of beads. With the addition of DS a reduction in fiber diameter was observed for the acetic acid specimens. However, in ethanol, adding DS resulted in increased fiber diameter. Accordingly, it can be concluded that it is feasible to develop electrospun diclofenac releasing bioerodible nanostructures that have potential use in pain management. Their further evaluation is however, needed both in vitro and in vivo.

  16. Influence of polymer hydrolysis on adjuvant effect of Gantrez®AN nanoparticles: implications for oral vaccination.

    PubMed

    Vandamme, Katrien; Melkebeek, Vesna; Cox, Eric; Adriaensens, Peter; Van Vlierberghe, Sandra; Dubruel, Peter; Vervaet, Chris; Remon, Jean Paul

    2011-10-01

    The adjuvant effect of methylvinylether-co-maleic anhydride (Gantrez®AN) nanoparticles was investigated during oral vaccination of mice with F4 adhesins of F4-positive Escherichia coli. To differentiate whether the adjuvant effect originated from a nanoparticle effect or a polymer effect, 20 μg F4 was administered as slightly crosslinked F4-containing nanoparticles (g(F4)(0.01)) or as F4 mixed with slightly crosslinked pure nanoparticles (F4+g(0.01)). The F4-specific immune response was reduced using F4-containing nanoparticles due to complete shielding of F4, whereas oral administration of F4+g(0.01) increased the level of F4-specific antibody-secreting cells (ASC) in the spleen. When repeating the vaccination study after 6months using freshly prepared nanoparticles, the adjuvant effect of F4+g(0.01) was lost due to an altered polymer reactivity caused by partial hydrolysis of anhydride groups of Gantrez®AN. Combining F4 with nanoparticles stabilised with a higher crosslinker amount during nanoparticle synthesis (F4+g(0.22)) could overcome the effect of partial polymer hydrolysis, as higher levels of ASC were detected. Hence, an in-depth characterisation of the Gantrez®AN polymer is required as stability issues can alter its biological effect during oral vaccination.

  17. A new fluorescence reaction in protein cytochemistry: formation of naphthalimide fluorophores from primary amino groups and 1,8-naphthalic anhydride derivatives.

    PubMed

    Stockert, J C; Trigoso, C I; Braña, M F

    1994-01-01

    In this work we describe the formation of fluorescent naphthalimide derivatives as a new cytochemical method for revealing protein amino groups. The reaction is based on the condensation of 1,8-naphthalic anhydrides in organic solvents with primary aliphatic amines. Under optimal violet-blue (436 nm) excitation, a strong yellow-green emission is observed in specific cell components from blood smears treated with 3-amino-1,8-naphthalic anhydride in N,N-dimethylformamide, which were the most suitable reagent and solvent for microscopic studies. Cytoplasmic granules of mammalian eosinophils and avian heterophils showed the highest fluorescence reaction, which was abolished by blocking procedures for amino groups. Spectrofluorometric analysis confirmed the emission characteristics of the naphthalimides produced from n-butylamine and gelatin. Taking into account the chemical reactivity of 1,8-naphthalic anhydrides and present results, the reaction can be considered selective for lysine and arginine residues of proteins.

  18. In situ fourier transform infrared study of crotyl alcohol, maleic acid, crotonic acid, and maleic anhydride oxidation on a V-P-O industrial catalyst

    SciTech Connect

    Wenig, R.W.; Schrader, G.L.

    1987-10-22

    Crotyl alcohol, maleic acid, crotonic (2-butenoic) acid, and maleic anhydride were fed to an in situ infrared cell at 300/sup 0/C containing a P/V = 1.1 vanadium-phosphorous-oxide (V-P-O) catalyst used for the selective oxidation of n-butane. Crotyl alcohol was used as a mechanistic probe for the formation of reactive olefin species observed during previous n-butane and 1-butene studies. Crotonic acid, maleic acid, and maleic anhydride were fed as probes for the existence of other possible adsorbed intermediates. Olefin species and maleic acid are proposed as possible reaction intermediates in n-butane selective oxidation to maleic anhydride. The involvement of peroxide species in the oxidation of butadiene to maleic acid is also discussed.

  19. Catalytic effect of gallium chloride in the diels-alder reaction between maleic anhydride and its derivatives and unsubstituted and substituted anthracenes

    SciTech Connect

    Kiselev, V.D.; Konovalov, A.I.; Shakirov, I.M.

    1985-11-10

    The stability of n, v complexes between gallium chloride and unsubstituted and substituted maleic anhydrides was determined in benzene by a thermochemical method; it was shown that the stability of the complexes decreases in the transition from maleic anhydrides with electron-donating substituents to maleic anhydrides with electron-withdrawing substituents. The reactivity of these dienophiles in the uncatalyzed Diels-Alder reactions with unsubstituted and substituted anthracenes in benzene and in the reactions catalyzed by gallium chloride was studied. The reactivity of the dienophiles varies similarly in the reactions with the investigated dienes, and this rules out treatment of steric hindrances as the reason for the reduced reactivity of the substituted dienophiles. A decrease in the catalytic effect was observed for the unreactive diene-dienophile pairs.

  20. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    NASA Astrophysics Data System (ADS)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  1. Autoimmune response in MRL+/+ mice following treatment with dichloroacetyl chloride or dichloroacetic anhydride

    SciTech Connect

    Cai Ping; Koenig, Rolf; Khan, M. Firoze; Qiu, Suimin; Kaphalia, Bhupendra S.; Ansari, G.A.S. . E-mail: sansari@utmb.edu

    2006-10-15

    Dichloroacetyl chloride (DCAC) is formed from trichloroethene (TCE), which is implicated in inducing/accelerating autoimmune response. Due to its potent acylating activity, DCAC may convert proteins to neo-antigens and thus could induce autoimmune responses. Dichloroacetic anhydride (DCAA), which is a similar acylating agent, might also induce autoimmune responses. To evaluate if chloroacylation plays a role in the induction of autoimmunity, we have measured the autoimmune responses following treatment with DCAC or DCAA in autoimmune-prone MRL+/+ mice. Five-week-old female mice were injected intraperitoneally (twice weekly) with 0.2 mmol/kg of DCAC or DCAA in corn oil for 6 weeks. Total serum IgG, IgG1, and IgE levels were significantly increased in DCAC-treated mice as compared to controls. These increases corresponded with increases in DCAC-specific IgG and IgG1 levels. Total serum IgM was decreased in both DCAC- and DCAA-treated mice. Antinuclear antibodies, measured as an indication of systemic autoimmune responses, were increased in both DCAC- and DCAA-treated mice. Of eight Th1/Th2 cytokines measured in the serum, only IL-5 was significantly decreased in both treatment groups. The cytokine secretion patterns of splenic lymphocytes after stimulation with antibodies against CD3 (T cell receptor-mediated signal) and CD28 (costimulatory signal) differed between treatment and control groups. Levels of IL-1, IL-3, IL-6, IFN-{gamma}, G-CSF, and KC were higher in cultures of stimulated splenocytes from either DCAC- or DCAA-treated mice than from controls. The level of IL-17 was only increased in cultures from DCAC-treated mice. Increased lymphocytic populations were found in the red pulp of spleens following treatment with either DCAC or DCAA. In addition, thickening of the alveolar septa in the lungs of DCAC- or DCAA-treated mice was observed. The lung histopathology in exposed mice was consistent with the symptomology observed in welders exposed to DCAC

  2. Phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    A method of forming 4,4',4'',4''' -tetraamino phthalocyanines involves reducing 4,4',4'',4''' -tetranitro phthalocyanines, polymerizing the metal tetraamino phthalocyanines with a tetracarboxylic dianhydride (preferably aromatic) or copolymerizing with a tetracarboxylic dianhydride and a diamine (preferably also aromatic) to produce amic acids which are then dehydrocyclized to imides. Thermally and oxidatively stable polymers result which form tough, flexible films, varnishes, adhesives, and fibers.

  3. Characterization of the Tautomycetin Biosynthetic Gene Cluster from Streptomyces griseochromogenes Provides New Insight into Dialkylmaleic Anhydride Biosynthesis#

    PubMed Central

    Li, Wenli; Luo, Yinggang; Ju, Jianhua; Rajski, Scott R.; Osada, Hiroyuki; Shen, Ben

    2010-01-01

    Tautomycetin (TTN) is a highly potent and specific protein phosphatase inhibitor isolated from Streptomyces griseochromogenes. The biological activity of TTN makes it an important lead for drug discovery, whereas its rare dialkylmaleic anhydride moiety and structural similarity to tautomycin (TTM), another potent phosphatase inhibitor with tremendous medicinal potential, draws attention to novel biosynthetic chemistries responsible for its production. To elucidate the biosynthetic machinery associated with TTN production, the ttn biosynthetic gene cluster from S. griseochromogenes was isolated and characterized, and its involvement in TTN biosynthesis confirmed by gene inactivation and complementation experiments. The ttn cluster was localized to a 79 kb DNA region, consisting of 19 open reading frames that encode two modular type I polyketide synthases (TtnAB), one type II thioesterase (TtnH), eight proteins for dialkylmaleic anhydride biosynthesis (TtnKLMNOPRS), four tailoring enzymes (TtnCDFI), two regulatory proteins (TtnGQ), and one resistance protein (TtnJ). A model for TTN biosynthesis is proposed on the basis of functional assignments from sequence analysis, which agrees well with previous feeding experiments, has been supported by in vivo gene inactivation experiments, and is supported by analogy to the recently reported ttm cluster. These findings set the stage to fully investigate TTN biosynthesis and to biosynthetically engineer new TTN analogues. PMID:19191560

  4. Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.

    PubMed

    Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver

    2015-09-01

    Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. PMID:26239967

  5. Periodic Polymers

    NASA Astrophysics Data System (ADS)

    Thomas, Edwin

    2013-03-01

    Periodic polymers can be made by self assembly, directed self assembly and by photolithography. Such materials provide a versatile platform for 1, 2 and 3D periodic nano-micro scale composites with either dielectric or impedance contrast or both, and these can serve for example, as photonic and or phononic crystals for electromagnetic and elastic waves as well as mechanical frames/trusses. Compared to electromagnetic waves, elastic waves are both less complex (longitudinal modes in fluids) and more complex (longitudinal, transverse in-plane and transverse out-of-plane modes in solids). Engineering of the dispersion relation between wave frequency w and wave vector, k enables the opening of band gaps in the density of modes and detailed shaping of w(k). Band gaps can be opened by Bragg scattering, anti-crossing of bands and discrete shape resonances. Current interest is in our group focuses using design - modeling, fabrication and measurement of polymer-based periodic materials for applications as tunable optics and control of phonon flow. Several examples will be described including the design of structures for multispectral band gaps for elastic waves to alter the phonon density of states, the creation of block polymer and bicontinuous metal-carbon nanoframes for structures that are robust against ballistic projectiles and quasi-crystalline solid/fluid structures that can steer shock waves.

  6. Conductive Polymers

    SciTech Connect

    Bohnert, G.W.

    2002-11-22

    Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

  7. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    NASA Astrophysics Data System (ADS)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  8. Polymer Electronics: Power from Polymers

    SciTech Connect

    Venkataraman, D.; Russell, Thomas P.

    2012-06-19

    We review polymer-based electronics and photovoltaics to provide the reader with a sense of how the field has developed, where we stand at present, and what possibilities are looming in the future. Expertise in areas ranging from synthesis to morphology to device design was sought to achieve this end. While these reviews cannot be exhaustive, they do provide a snapshot of the field at present and give some sense of where the key impediments are.

  9. Ultrathin, flexible, and transparent polymer multilayer composites for the protection of silver surfaces.

    PubMed

    Langecker, Jens; Ritter, Helene; Fichini, Audrey; Rupper, Patrick; Faller, Markus; Hanselmann, Barbara

    2012-02-01

    Silver coatings at the nanoscale became of high interest for the integration of electronic functionalities on all kinds of objects for daily use. In these thin coatings, corrosion is a big problem as it destroys these thin layers and leads to a loss of conductivity due to missing bulk material. For protection of thin silver coatings against H(2)S induced corrosion, we developed nanocoatings based on the covalent layer-by-layer technique. We prepared composites by subsequent deposition of polyamines like polyethylenimine (PEI) or polyallylamine (PAAm) and polyanhydrides like poly(maleic anhydride-alt-methyl vinyl ether) (Gantrez) or poly(styrene-co-maleic anhydride) (PSMA). For the tuning of the hydrophobicity, the layers were terminated by reaction with palmitoylic acid derivatives. Reflectivity measurements, contact angle measurements, and AFM measurements were made to investigate how the coatings affect the surface properties. All coatings show a lower reflectivity below 450 nm compared to pure silver, depending on the number of layers deposited. The addition of a palmitoylic derivative to the surface increases the hydrophobicity, but only in case of the Gantrez-PVAm-composite, this approach leads to real hydrophobicity, reaching contact angles above 90°. AFM measurements show a decrease of the roughness of the polymer coated surfaces compared to the pure metal surfaces. Corrosion tests in a H(2)S atmosphere show a good protective effect of the palmitoyl-terminated composites. Martindale abrasion tests on coated textiles reveal a good stability of the prepared polymer composites.

  10. An atom-economic approach to carboxylic acids via Pd-catalyzed direct addition of formic acid to olefins with acetic anhydride as a co-catalyst.

    PubMed

    Wang, Yang; Ren, Wenlong; Shi, Yian

    2015-08-21

    An effective Pd-catalyzed hydrocarboxylation of olefins using formic acid with acetic anhydride as a co-catalyst is described. A variety of carboxylic acids are obtained in good yields with high regioselectivities under mild reaction conditions without the use of toxic CO gas.

  11. Highly water-soluble monoboronic acid probes that show optical sensitivity to glucose based on 4-sulfo-1,8-naphthalic anhydride.

    PubMed

    Cao, Zhi; Nandhikonda, Premchendar; Heagy, Michael D

    2009-05-01

    Two highly water-soluble monoboronic acid probes that display the more desirable off-on fluorescence response were synthesized based on 4-sulfo-1,8-naphthalic anhydride and a remarkable sensitivity for glucose rather than fructose and galactose was also observed.

  12. 40 CFR 721.3635 - Octadecanoic acid, ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Octadecanoic acid, ester with 1,2..., ester with 1,2-propanediol, phosphate, anhydride with silicic acid (H4SiO4). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as octadecanoic acid,...

  13. SELECTIVE HYDROGENATION OF MALEIC ANHYDRIDE TO Y-BUTROLACTONE OVER PD/AL2O3 CATALYST USING SUPERCRITICAL CARBON DIOXIDE MEDIUM

    EPA Science Inventory

    Hydrogenation of maleic anhydride to g-butyrolactone over Pd/Al2O3 catalyst under supercritical carbondioxide medium

    Unnikrishnan R. Pillai and Endalkachew Sahle-Demessie
    National Risk Management Research laboratory (NRMRL), Clean Processes Branch, MS 443, United States...

  14. Efficacy of measures of hygiene in workers sensitised to acid anhydrides and the influence of selection bias on the results

    PubMed Central

    Drexler, H.; Schaller, K. H.; Nielsen, J.; Weber, A.; Weihrauch, M.; Welinder, H.; Skerfving, S.

    1999-01-01

    OBJECTIVES: Organic acid anhydrides are potential sensitisers and cause occupational airway diseases. In an intervention study the efficacy of measures of hygiene at the workplace and possible selection bias were investigated. METHODS: A first investigation with 110 workers exposed to hexahydrophthalic acid anhydride (HHPA) and methyltetrahydrophthalic acid anhydride (MTHPA) was carried out in July 1991. The results (skin prick test, specific serum IgE) showed that 20 people were sensitised, and in a challenge test the clinical relevance of the sensitisation was confirmed in six subjects. In December 1991, the hygiene conditions at the plant were improved. In November 1995 a second investigation of 84 people was performed (anamnesis, skin prick test, specific IgE, spirometry, and ambient and biological monitoring). The 27 people who had left the plant in the meantime were asked their reasons for leaving. RESULTS: The relative risk of people sensitised in 1991 of leaving the plant between 1991 and 1995 was 2.6 (95% confidence interval (95% CI) 1.4 to 4.9) compared with people without any sign of sensitisation. The percentage of people identified as sensitised in 1991, who were still working at the plant and came to the second investigation, was higher than for people without evidence of sensitisation (10/10 v 47/73; p < 0.05). In all the 10 sensitised people in 1991 the findings of the first investigation were confirmed in 1995. The rate of sensitisation in 1995 was 21%. None of the six people employed after 1991 showed evidence of sensitisation. Of the six people with clinically relevant sensitisation confirmed by a challenge test in 1991, five were still at their workplace. From 1991 they were only exposed to MTHPA at a reduced concentration (< 0.5-36 micrograms/m3 in 1995). All of them reported fewer symptoms than in 1991. No signs of bronchial obstruction were detected by spirometry at the workplace. CONCLUSIONS: In cross sectional studies there is a selection

  15. Lymphatic trafficking kinetics and near-infrared imaging using star polymer architectures with controlled anionic character.

    PubMed

    Bagby, Taryn R; Duan, Shaofeng; Cai, Shuang; Yang, Qiuhong; Thati, Sharadvi; Berkland, Cory; Aires, Daniel J; Forrest, M Laird

    2012-08-30

    Targeted lymphatic delivery of nanoparticles for drug delivery and imaging is primarily dependent on size and charge. Prior studies have observed increased lymphatic uptake and retentions of over 48 h for negatively charged particles compared to neutral and positively charged particles. We have developed new polymeric materials that extend retention over a more pharmaceutically relevant 7-day period. We used whole body fluorescence imaging to observe in mice the lymphatic trafficking of a series of anionic star poly-(6-O-methacryloyl-D-galactose) polymer-NIR dye (IR820) conjugates. The anionic charge of polymers was increased by modifying galactose moieties in the star polymers with succinic anhydride. Increasing anionic nature was associated with enhanced lymphatic uptake up to a zeta potential of ca.-40 mV; further negative charge did not affect lymphatic uptake. Compared to the 20% acid-conjugate, the 40-90% acid-star-polymer conjugates exhibited a 2.5- to 3.5-fold increase in lymphatic uptake in both the popliteal and iliac nodes. The polymer conjugates exhibited node half-lives of 2-20 h in the popliteal nodes and 19-114 h in the deeper iliac nodes. These polymer conjugates can deliver drugs or imaging agents with rapid lymphatic uptake and prolonged deep-nodal retention; thus they may provide a useful vehicle for sustained intralymphatic drug delivery with low toxicity.

  16. Biohybrid polymer-antimicrobial peptide medium against Enterococcus faecalis.

    PubMed

    Eckhard, Lea H; Sol, Asaf; Abtew, Ester; Shai, Yechiel; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit

    2014-01-01

    Antimicrobial peptides (AMPs) are conserved evolutionary components of the innate immune system that are being tested as alternatives to antibiotics. Slow release of AMPs using biodegradable polymers can be advantageous in maintaining high peptide levels for topical treatment, especially in the oral environment in which dosage retention is challenged by drug dilution with saliva flow and by drug inactivation by salivary enzymatic activity. Enterococcus faecalis is a multidrug resistant nosocomial pathogen and a persistent pathogen in root canal infections. In this study, four ultra-short lipopeptides (C16-KGGK, C16-KLLK, C16-KAAK and C16-KKK) and an amphipathic α-helical antimicrobial peptide (Amp-1D) were tested against E. faecalis. The antibacterial effect was determined against planktonic bacteria and bacteria grown in biofilm. Of the five tested AMPs, C16-KGGK was the most effective. Next C16-KGGK was formulated with one of two polymers poly (lactic acid co castor oil) (DLLA) or ricinoleic acid-based poly (ester-anhydride) P(SA-RA). Peptide-synthetic polymer conjugates, also referred to as biohybrid mediums were tested for antibacterial activity against E. faecalis grown in suspension and in biofilms. The new formulations exhibited strong and improved anti-E. faecalis activity.

  17. Biohybrid Polymer-Antimicrobial Peptide Medium against Enterococcus faecalis

    PubMed Central

    Eckhard, Lea H.; Sol, Asaf; Abtew, Ester; Shai, Yechiel; Domb, Abraham J.

    2014-01-01

    Antimicrobial peptides (AMPs) are conserved evolutionary components of the innate immune system that are being tested as alternatives to antibiotics. Slow release of AMPs using biodegradable polymers can be advantageous in maintaining high peptide levels for topical treatment, especially in the oral environment in which dosage retention is challenged by drug dilution with saliva flow and by drug inactivation by salivary enzymatic activity. Enterococcus faecalis is a multidrug resistant nosocomial pathogen and a persistent pathogen in root canal infections. In this study, four ultra-short lipopeptides (C16-KGGK, C16-KLLK, C16-KAAK and C16-KKK) and an amphipathic α-helical antimicrobial peptide (Amp-1D) were tested against E. faecalis. The antibacterial effect was determined against planktonic bacteria and bacteria grown in biofilm. Of the five tested AMPs, C16-KGGK was the most effective. Next C16-KGGK was formulated with one of two polymers poly (lactic acid co castor oil) (DLLA) or ricinoleic acid-based poly (ester-anhydride) P(SA-RA). Peptide-synthetic polymer conjugates, also referred to as biohybrid mediums were tested for antibacterial activity against E. faecalis grown in suspension and in biofilms. The new formulations exhibited strong and improved anti- E. faecalis activity. PMID:25279943

  18. Interpretations of Polymer-Polymer Miscibility.

    ERIC Educational Resources Information Center

    Olabisi, Olagoke

    1981-01-01

    Discusses various aspects of polymeric mixtures, mixtures of structurally different homopolymers, copolymers, terpolymers, and the like. Defines concepts of polymer-polymer miscibility from practical and theoretical viewpoints, and ways of predicting such miscibility. (JN)

  19. Mesostructure Control of Polymer-Inorganic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Vaia, R.

    2002-03-01

    Critical to forwarding polymer nanocomposite technology is the development of a detailed understanding of the spatial distribution of the various constituents (inorganic, polymeric and additives), the associated influence on thermodynamic and kinetic (rheological) aspects of the system and techniques to control nano (1-100nm) and meso (100-1000nm) scale morphology. With regard to these issues, in-situ small angle x-ray scattering, associated scattering models, coarse grain simulations, and rheology have been used to examine the phase behavior of organically modified layered silicates (OLS) suspended in pure and binary solvent mixtures. These serve as model systems for examining aspects of morphology development and phase behavior in thermoset and thermoplastic nanocomposites. The phase structure of solvent - OLS system is qualitatively described by Onsager arguments modified to include a crystal-solvate (intercalated phase) and a gelation point. Ternary behavior (binary solvent mixtures) provides evidence for preferential segregation of the polar component to the inorganic surface. The chemical structure of the organic surfactant modifier has a negligible influence on the structure of the intercalated phase, but has a marked effect on the extent and concentration of the dispersed phase. These studies provide insight into the use of polar activators for organosilicate rheolgical control agents and additives to enhance nanocomposite formation (e.g. H20 addition for optimal exfoliated PDMS nanocomposites and incorporation of malic anhydride to produce polypropylene nanocomposites).

  20. Immunologic and functional consequences of chemical (tetrachlorophthalic anhydride)-induced asthma after four years of avoidance of exposure

    SciTech Connect

    Venables, K.M.; Topping, M.D.; Nunn, A.J.; Howe, W.; Newman Taylor, A.J.

    1987-08-01

    Seven patients with occupational asthma caused by a chemical, tetrachlorophthalic anhydride (TCPA), left their work in 1980. They have subsequently avoided TCPA exposure and have been followed until 1985. One patient died in 1981. The six living patients reported continuing symptoms suggestive of asthma, and five who were studied in 1985 demonstrated mild bronchial hyperresponsiveness (histamine concentration provoking a 20% fall in FEV1 range 2.7 to 12.5 mg/ml). Specific IgE antibody to TCPA conjugated with human serum albumin was measured by a radioallergosorbent test and detected in all patients. After avoidance of exposure, specific IgE fell exponentially with a half-life of 1 year. Specific IgE was still detectable in 1985, and throughout the follow-up period, prick tests with the conjugate elicited immediate skin responses. In 1981 four patients had inhalation tests with TCPA, and specific IgE rose afterward and then fell again.

  1. An investigation of active and selective oxygen in vanadium phosphorus oxide catalysts for n-butane conversion to maleic anhydride

    SciTech Connect

    Lashier, M.E.

    1990-01-01

    The role of lattice oxygens in two model catalysts, {beta}-VOPO{sub 4} and (VO){sub 2}P{sub 2}O{sub 7}, was investigated for the selective and nonselective oxidation of C{sub 4} hydrocarbons to maleic anhydride and combustion products. Specific catalytic oxygen sites in each model catalyst were labeled with specific amounts of {sup 18}O. Labeled sites were identified by laser Raman spectroscopy and Fourier transform infrared spectroscopy. The level of {sup 18}O enrichment in each site was estimated from the laser Raman spectra and the stoichiometry of reactions involved in the synthesis of the labeled catalysts. Products of the anaerobic C{sub 4} hydrocarbon oxidation and, in the case of (VO){sub 2}P{sub 2}O{sub 7}, alternating pulses of oxygen with pulses of hydrocarbon, over labeled catalysts were monitored by quadrupole mass spectrometry. 146 refs., 51 figs., 7 tabs.

  2. Energy storage capacity of reversible liquid-phase Diels Alder reaction between maleic anhydride and 2- methyl furan

    SciTech Connect

    Sparks, B.G.; Poling, B.E.

    1983-07-01

    Calorimetry was used to determine the heat of reaction and equilibrium constant at 318 K for the reaction between maleic anhydride (A) and 2-methyl furan (B). The values were-60 kJ/gmol and 614 cm/sup 3//gmol, respectively. The motivation for this work was to find a single phase-reacting system that could be used to store solar energy. Thus, the energy storage capacity was calculated for a mixture of A and B, both initially at 7 kmol/m/sup 3/, in dioxane. The maximum apparent heat capacity of 7.37 J/cm/sup 3/ X K occurred at 334 K. This maximum value is 76% higher than the heat capacity of pure water.

  3. Mechanism for oxidation of n-butane to maleic anhydride on a vanadium-phosphorus oxide catalyst

    SciTech Connect

    Nechiporuk, P.P.; Mishchenko, Yu.A.; Avetisov, A.K.; Dulin, D.A.; Kalinovskii, I.O.; Gel'bshtein, A.I.

    1987-06-01

    The values of the kinetic isotope effect have been determined in reactions where n-butane is converted to partial (maleic anhydride) and complete oxidation products on a vanadium-phosphorus oxide catalyst when hydrogen is replaced by deuterium in different positions of the n-butane molecule. The absence of intra- and intermolecular H-D exchange in butane under conditions of its catalytic oxidation has been established. On the basis of the observed effects it has been concluded that the interaction of n-butane with the surface of the catalyst is irreversible under the conditions of catalysis and that the rate-limiting stage due to cleavage of the C-H bond in a methylene group of butane is common to reactions of partial and complete oxidation of butane.

  4. Synthesis and characterization of CdS nanocrystals in Maleic anhydride-Octene-1-Vinylbutyl Ether terpolymer matrix

    NASA Astrophysics Data System (ADS)

    Akperov, Oktay H.; Muradov, Mustafa B.; Malikov, Elvin Y.; Akperov, Elchin O.; Mammadova, Rasmiyya E.; Eyvazova, Goncha M.; Kukovecz, Ákos; Kónya, Zoltán

    2016-07-01

    A Maleic anhydride-Octene-1-Vinylbutyl Ether terpolymer was synthesized via the radical terpolymerization method in order to prepare a new matrix for CdS nanocrystal synthesis. CdS nanocrystals were synthesized through the reaction of thiourea with cadmium chloride. The synthesized terpolymer/CdS nanocrystal composites were characterized by several methods. Energy Dispersive X-ray analysis, Raman spectroscopy and powder X-ray diffraction methods. The room temperature UV-visible absorption spectra show a shift of the absorption edge towards higher energies. The band gap of the CdS nanocomposite is bigger than that of bulk CdS. Raman spectrum exhibits characteristic peaks of CdS. Images of the nanocomposite obtained with Atomic Force Microscopy and Transmission Electron Microscopy are the evidences of CdS nanocrystal formation in the terpolymer. Thermal investigation shows that the nanocomposite is more thermostable than the terpolymer which could be useful for application in thermo aggressive medium.

  5. Rapid microwaves synthesis of CoSi{sub x}/CNTs as novel catalytic materials for hydrogenation of phthalic anhydride

    SciTech Connect

    Zhang, Liangliang; Chen, Xiao; Jin, Shaohua; Guan, Jingchao; Williams, Christopher T.; Peng, Zhijian; Liang, Changhai

    2014-09-15

    CoSi{sub x}/CNTs catalysts with different CoSi{sub x} phases (CoSi, CoSi{sub 2}) have been rapidly synthesized via a microwave-assisted route and applied for the liquid phase hydrogenation of phthalic anhydride. The synthesized catalysts were analyzed and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy-energy dispersive X-ray spectroscopy, thermogravimetric/derivative thermogravimetric analysis. The reaction progress of cobalt silicides and the ratio of Co:Si were monitored at different microwave irradiation times by XRD, giving insight into the formation mechanism. Compared to the Co/CNTs catalyst, all the prepared CoSi{sub x}/CNTs catalysts exhibited excellent activity and good selectivity to phthalide under mild reaction conditions (180–220 °C and 4.0 MPa H{sub 2}). This novel methodology can be applied to the synthesis of other transition metal silicides such as FeSi, Ni{sub 2}Si, and Cu{sub 4}Si. - Graphical abstract: CoSi{sub x}/CNTs catalysts with different CoSi{sub x} phases (CoSi{sub 2}, CoSi) have been rapidly synthesized via microwave-assisted route, which involves the vaporization of CoCl{sub 2} and subsequent reaction of CoCl{sub 2} with Si. - Highlights: • CoSi{sub x}/CNTs catalysts have been rapid synthesized via microwave-assisted route. • The phases of CoSi{sub x} were controlled by varying microwave time and Co:Si ratio. • FeSi, Ni{sub 2}Si and Cu{sub 4}Si were also synthesized via microwave-assisted route. • CoSi{sub x}/CNTs catalysts can be applied in hydrogenation of phthalic anhydride.

  6. Modification of pineapple peel fibre with succinic anhydride for Cu2+, Cd2+ and Pb2+ removal from aqueous solutions.

    PubMed

    Hu, Xiuyi; Zhao, Mouming; Song, Guosheng; Huang, Huihua

    2011-01-01

    Research on chemical modification of pineapple peel fibre with succinic anhydride was carried out to create a novel adsorbent for Cu2+, Cd2+ and Pb2+ removal from aqueous solution. After pretreatment with iso-propyl alcohol and NaOH, pineapple peel fibre was modified via reaction with succinic anhydride for introduction of carboxylic functional groups. The modified pineapple peel fibre was characterized with Fourier transform infrared (FTIR) spectroscopy and evaluated for its adsorptive ability for Cu2+, Cd2+ and Pb2+ from synthetic metal solutions. The FTIR analysis proved the introduction of carboxylic functional groups in the backbone of the modified pineapple peel fibre. The modified pineapple peel fibre showed higher adsorptive capacity for Cu2+, Cd2+ and Pb2+ compared with raw pineapple peel and pineapple peel fibre pretreated with iso-propyl alcohol. The adsorption of Cu2+, Cd2+ and Pb2+ on the modified pineapple peel fibre depended on solution pH value, adsorption time and initial metal concentration. The maximum adsorption capacities of the modified fibre were observed at pH 5.4 for Cu2+ (27.68 +/- 0.83 mg g(-1) or 0.44 mmol g(-1)), at pH 7.5 for Cd2+ (34.18 +/- 1.02 mg g(-1) or 0.30 mmol g(-1)) and at pH 5.6 for Pb2+ (70.29 +/- 2.11 mg g(-1) or 0.34 mmol g(-1)) respectively. The adsorption followed the pseudo-second-order kinetics model and the experimental data coincided well with the Langmuir model.

  7. From Commodity Polymers to Functional Polymers

    PubMed Central

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-01-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications. PMID:24710333

  8. From Commodity Polymers to Functional Polymers

    NASA Astrophysics Data System (ADS)

    Xiang, Tao; Wang, Ling-Ren; Ma, Lang; Han, Zhi-Yuan; Wang, Rui; Cheng, Chong; Xia, Yi; Qin, Hui; Zhao, Chang-Sheng

    2014-04-01

    Functional polymers bear specified chemical groups, and have specified physical, chemical, biological, pharmacological, or other uses. To adjust the properties while keeping material usage low, a method for direct synthesis of functional polymers is indispensable. Here we show that various functional polymers can be synthesized by in situ cross-linked polymerization/copolymerization. We demonstrate that the polymers synthesized by the facile method using different functional monomers own outstanding pH-sensitivity and pH-reversibility, antifouling property, antibacterial, and anticoagulant property. Our study opens a route for the functionalization of commodity polymers, which lead to important advances in polymeric materials applications.

  9. Poly(2-vinylnaphthalene-alt-maleic acid)-graft polystyrene as a photoactive polymer micelle and stabilizer for polystyrene latexes

    SciTech Connect

    Cao, T.; Yin, W.; Webber, S.E. )

    1994-12-05

    Polymerization of maleic anhydride and 2-vinylnaphthalene produces alternating polymers. Imidization of the polymer with amino-terminated polystyrene yields different loadings of an alternating polymer with polystyrene combs''. Upton rigorous hydrolysis one obtains poly(2-vinylnaphthalene-alt-maleic acid)-graft-polystyrene (P2VNMA-PS), which is a fluorescent polymer with unusual solution properties and with significant surface activity. P2VNMA-PS forms a small micelle structure in solution or can be used as a surfactant for an emulsion polymerization of polystyrene (no cosurfactant is required), producing monodisperse latex particles which are stable for pH > 3.9. Centrifugation shows that >90% of the P2VNMA-PS is associated with the latex particles. Fluorescence quenching studies of the naphthalene excimer with Tl[sup +] indicate that approximately 84% and 77% of the naphthalene groups remain exposed to the aqueous phase when this polymer is micellized or incorporated onto a latex particle, respectively. These data imply that the P2VNMA-PS polymer is permanently associated with the exterior of the latex particle, as one would expect given the amphiphilic nature of this polymer.

  10. Shape memory polymers

    SciTech Connect

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  11. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance.

    PubMed

    Lin, Rijia; Ge, Lei; Hou, Lei; Strounina, Ekaterina; Rudolph, Victor; Zhu, Zhonghua

    2014-04-23

    MOFs-based mixed matrix membranes (MMMs) have attracted extensive attention in recent years due to their potential high separation performance, the low cost, and good mechanical properties. However, it is still very challenging to achieve defect-free interface between micrometer-sized MOFs and a polymer matrix. In this study, [Cd2L(H2O)]2·5H2O (Cd-6F) synthesized using 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) as an organic ligand was introduced into the 6FDA-ODA polyimide matrix to achieve novel MOF MMMs. A specific interfacial interaction between MOF crystals and polymer chains was innovatively targeted and achieved through in situ polymerization procedure. The enhanced adhesion between MOF particles and polymer phase was observed, and the improved interfacial interaction between Cd-6F and the 6FDA-ODA polyimide matrix was confirmed by detailed characterizations including FTIR and NMR. In the meantime, the gas permeance and selectivity of the MMMs are strongly dependent on their morphology. The MMM derived from in situ polymerization presents excellent interfaces between micrometer-sized MOF crystals and the polymer matrix, resulting in increased permeability and selectivity. The strategy shown here can be further utilized to select the MOF/polymer pair, eliminate interfacial voids, and improve membrane separation performance of MOFs-based MMMs.

  12. Multicomponent polymer materials

    SciTech Connect

    Paul, D.R.; Sperling, L.H.

    1986-01-01

    Interpenetrating polymer networks are discussed, taking into account interpenetrating polymer networks based on polybutadiene and polystyrene, polyurethane-polysiloxane simultaneous interpenetrating polymer networks, extraction studies and morphology of physical-chemical interpenetrating polymer networks based on block polymer and polystyrene, twoand three-component interpenetrating polymer networks, and poly(acrylourethane)-polyepoxide semiinterpenetrating networks formed by electron-beam curing. Other topics studied are related to the characterization of polymer blends, the characterization of block copolymers, the mechanical behavior, and rheology and applications. Attention is given to a new silicone flame-retardant system for thermoplastics, recent developments in interpenetrating polymer networks and related materials, miscibility in random copolymer blends, crystallization and melting in compatible polymer blends, and fatigue in rubber-modified epoxies and other polyblends.

  13. Comparison of methods of immobilization to enzyme-linked immunosorbent assay plates for the detection of sugar chains.

    PubMed

    Satoh, A; Fukui, E; Yoshino, S; Shinoda, M; Kojima, K; Matsumoto, I

    1999-11-15

    The immobilization of carbohydrates for solid-phase assays, including enzyme-linked immunosorbent assay (ELISA), is difficult because they are hydrophilic. We developed four new methods for the immobilization of oligosaccharides. ELISA plates were first coated with methyl vinyl ether-maleic anhydride copolymer (MMAC) and an excess of active anhydride groups was introduced. They were subsequently reacted, in four different ways, to bind oligosaccharides. In method 1, the anhydride groups were reacted with hydrazide groups, in the presence of adipic acid dihydrazide, and then coupled to the reducing ends of sugar chains by reductive amination. In method 2, the anhydride groups were reacted with p-aminophenyl glycoside obtained by reduction with p-nitrophenyl glycoside. In method 3, the anhydride groups were reacted with 1, 6-hexamethylenediamine. Aminooxy groups were coupled to the amino groups introduced and then aminooxyacetic acid with carbodiimide and ligated to oligosaccharides by oxime formation. In method 4, stereospecifically aminated oligosaccharides reacted with the anhydride groups. We compared, in solid-phase assays systems, the ability of lectins to detect oligosaccharides immobilized with either one of these four new methods or one of the two methods previously described. Detection of sugars with lectins is useful because, in most cases, they recognize sugars stereospecifically. The immobilization method should therefore be carefully selected to avoid changing the configuration and substitution in C-1. PMID:10552909

  14. Mixed anhydrides (phosphoric-carboxyl) are also formed in the esterification of 5'-amp with n-acetylaminoacyl imidazolides - Implications regarding the origin of protein synthesis

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, Nalinie S. M. D.; Lacey, James C., Jr.

    1992-01-01

    Procedure for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikh et al. (1970) and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2', 3' esters are formed in addition to the monoesters. However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5'-AMP and discuss the relevance of the findings to the origin of protein synthesis.

  15. Adaptive control of a packedbed reactor for the partial oxidation of n-butane to maleic anhydride; I. unsteady-state model and dynamics of the reactor

    SciTech Connect

    Not Available

    1984-01-01

    A nonadiabatic, fixed-bed catalytic reactor is analyzed on the basis of data for the highly exothermic partial oxidation of n-butane to maleic anhydride, in order to study multivariable adaptive control. The nonlinear partial differential equations describing the axial and radial gradients of concentration and temperature are converted into a set of nonlinear, ordinary differential and algebraic equations using orthogonal collocation, preserving the nonlinearity of the reaction term. These equations describe satisfactorily the steady state and dynamic behavior. This two-dimensional model enables the relationship between the time and temperature of reaction, and between the concentration of maleic anhydride and the hot-spot temperature to be expressed adequately by seconddegree, low-order transfer functions. This technique is applicable for any process of reaction in a packed bed.

  16. Peroxycarboxylic Nitric Anhydrides as Markers of Anthropogenic and Biogenic VOC Photo-oxidation in the Alberta Oil Sands

    NASA Astrophysics Data System (ADS)

    Osthoff, H. D.; Huo, J. A.; Tokarek, T. W.; Odame-Ankrah, C. A.; Saowapon, M. T.; Chen, X.

    2014-12-01

    The peroxycarboxylic nitric anhydrides (molecular formula RC(O)O2NO2) are well-known byproducts of the photo-oxidation chemistry between NOx and volatile organic compounds (VOCs) that produces ozone (O3) and photochemical smog. More than 43 different PAN species are known; their relative abundances are chemical markers of the types and quantities of the VOCs involved in the O3-formation process. For example, MPAN (R: CH2=C(CH3)-) is primarily derived from isoprene and thus a marker of biogenic VOC oxidation, whereas PPN (R: C2H5-) is a photo-oxidation byproduct of anthropogenic VOCs. In the summer of 2013 an intensive air quality measurement campaign was conducted to investigate the impacts of emissions from the Alberta oil sands mining operations on the chemical composition of ambient air. As part of this effort, several peroxycarboxylic nitric anhydrides, specifically PAN (R: CH3-), PPN, MPAN, APAN (R: CH2=CH-), and PiBN (R: iC3H7-), were quantified by gas chromatography with electron capture detection at the AMS13 ground site near Fort McKay, Alberta. Furthermore, total peroxyacyl nitrates (ΣPAN) were quantified by thermal dissociation cavity ring-down spectroscopy (TD-CRDS). PAN mixing ratios typically peaked in the mid-afternoon (maximum PAN mixing ratio of 0.85 ppbv), constituting up to 25% of total odd nitrogen (NOy), and were usually below detection limits at night. ΣPAN was generally greater than the amount calculated by summation of individually measured PANs (SPANi) suggesting the presence of PAN species not measured by GC. During times of active photo-oxidation chemistry, the PPN:PAN and MPAN:PAN ratios varied considerably between days, depending on air mass origin and VOC composition. A linear combination model (LCM) was used to assess regional O3 production from the oxidation of biogenic hydrocarbons (via MPAN) relative to that of anthropogenic hydrocarbons (via PPN). The relative contribution of anthropogenic VOCs to regional O3 production varied

  17. Lipid-absorbing Polymers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.; Wallace, C. J.

    1973-01-01

    The removal of bile acids and cholesterol by polymeric absorption is discussed in terms of micelle-polymer interaction. The results obtained with a polymer composed of 75 parts PEO and 25 parts PB plus curing ingredients show an absorption of 305 to 309%, based on original polymer weight. Particle size effects on absorption rate are analyzed. It is concluded that crosslinked polyethylene oxide polymers will absorb water, crosslinked polybutadiene polymers will absorb lipids; neither polymer will absorb appreciable amounts of lipids from micellar solutions of lipids in water.

  18. A versatile strategy for grafting polymers to wood cell walls.

    PubMed

    Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I

    2015-01-01

    The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level.

  19. Interfacial activity of polymer-coated gold nanoparticles.

    PubMed

    Borrell, Marcos; Leal, L Gary

    2007-12-01

    A systematic study of the interfacial activity of polymer-coated gold nanoparticles was performed with the use of a computer-controlled four-roll mill. The nanoparticle locality within the polymeric domains (bulk or interface) was controlled by means of a mixture of polymeric ligands grafted to the gold nanoparticle core. The bulk polymers were polybutadiene (PBd) and polydimethylsiloxane (PDMS). Monoterminated PDMS and PBd ligands were synthesized on the basis of the esterification of reactive groups (such as hydroxyl or amino groups) with lipoic acid anhydride. The formation of polymer-coated nanoparticles using these lipoic acid-functionalized polymers was confirmed via transmission electron microscopy (TEM), and their interfacial activity was manifested as a reduction of the interfacial tension and in the enhanced stability of thin films (as seen via the inhibition of coalescence). The nanoparticles showed an equal, if not superior, ability to reduce the interfacial tension when compared to previous studies on the effect of insoluble surfactants; however, these particles proved not to be as effective at inhibiting coalescence as their surfactant counterpart. We suggest that this effect may be caused by an increase in the attractive van der Waals forces created by the presence of metal-core nanoparticles. Experimental measurements using the four-roll mill allow us to explore the relationship between nanoparticle concentration at the interface and interfacial tension. In particular, we have found evidence that the interface concentration can be increased relative to the equilibrium value achieved by diffusion alone, and thus the interfacial tension can be systematically reduced if the interfacial area is increased temporarily via drop deformation or breakup followed by recoalescence. PMID:17973410

  20. Vapor-liquid equilibria and excess enthalpies for octane + N-methylacetamide, cyclooctane + N-methylacetamide, and octane + acetic acid anhydride at 125 C

    SciTech Connect

    Haan, A.B. de; Heine, A.; Fischer, K.; Gmehling, J.

    1995-11-01

    Isothermal P-x data and excess enthalpies have been measured at approximately 125 C for the binary mixtures of octane + N-methylacetamide, cyclooctane + N-methylacetamide, and octane + acetic anhydride. For each binary system linear temperature dependent interaction parameters were fitted to experimental data using the NRTL model. Activity coefficients at infinite dilution were derived from the P-x data at low concentrations using a flexible Legendre polynomial.

  1. Desymmetrization of cyclic anhydrides mediated by cinchona alkaloids: synthesis and olfactory properties of new fragrances based on (R)- and (S)-2-ethylhexanol.

    PubMed

    Cisko-Anić, Blazenka; Hamersak, Zdenko

    2009-11-01

    A series of enantiomerically pure new fragrances, derived from 2-ethylhexanol, have been prepared and their olfactory properties evaluated. The key step of the synthesis is cinchona-alkaloid-catalyzed desymmetrization of cyclic meso-anhydrides with (R)- and (S)-2-ethylhexanol and proceeded in good to excellent diastereoselectivities (92:8-98:2 dr). Enantiomerically pure alcohols were prepared by lipase-catalyzed kinetic resolution of 2-ethylhexanol using vinyl laurate as acyl donor.

  2. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  3. Introduction to Polymer Chemistry.

    ERIC Educational Resources Information Center

    Harris, Frank W.

    1981-01-01

    Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)

  4. Polymer composites containing nanotubes

    NASA Technical Reports Server (NTRS)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  5. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  6. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  7. Playing with Polymers.

    ERIC Educational Resources Information Center

    Chemecology, 1997

    1997-01-01

    Presents an activity that enables students to gain a better understanding of the importance of polymers. Students perform an experiment in which polymer chains of polyvinyl acetate form crosslinks. Includes background information and discussion questions. (DDR)

  8. Preparation, characterization and luminescent properties of dense nano-silica hybrids loaded with 1,8-naphthalic anhydride.

    PubMed

    Wang, Jinpeng; Sun, Jihong; Li, Yuzhen; Wang, Feng

    2014-03-01

    Novel luminescent dense nano-silica hybrid materials (DNSS) modified with different amounts of (3-aminopropyl)triethoxysilane (APTES) and 1,8-naphthalic anhydride (NA) were successfully synthesized via two steps combined with post-grafting methods. Powder X-ray diffraction (XRD), N2-sorption analysis, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), photoluminescence (PL) spectroscopy and elemental analysis, as well as time-resolved decays were employed to characterize the resultant hybrid materials. The results revealed that luminescent organic molecules had been successfully loaded onto the amine-modified surface of nano-silica spheres. In addition, their fluorescence intensity and characteristic peak of emission spectra changed with increasing amount of APTES and NA additive. In particular, the characteristic peak showed a red shift from 390 to 450 nm, however, this was inconsistent with results calculated on the basis of the elemental analysis data, most probably because of the dispersion behaviors of NA molecules from the aggregating to the monolayer state. These observations demonstrated the existence of a quantum confinement effectiveness of NA-DNSS samples, and therefore a possible mechanism was put forward.

  9. Evaluation of an immunoaffinity extraction column for enrichment of adducts between human serum albumin and hexahydrophthalic anhydride in plasma.

    PubMed

    Johannesson, Gunvor A; Kristiansson, Monica H; Jönsson, Bo A G; Lindh, Christian H

    2008-03-01

    An immunoaffinity extraction (IAE) column was prepared for extraction of adducts between human serum albumin (HSA) and hexahydrophthalic anhydride (HHPA). HHPA is a strong sensitizer inducing immunoglobulin E antibodies in vivo. Polyclonal antibodies from a rabbit immunized with keyhole limpet hemocyananin-HHPA conjugate were purified using a Protein A Sepharose gel. To obtain antibodies with optimal affinity towards HHPA-protein adducts, HHPA-specific antibodies were selected using an N-hydroxysuccinimide-Sepharose column coupled with albumin-HHPA conjugate. Antibodies eluted from this column at pH 2.2 were selected to prepare the IAE column. The column was evaluated using 2 mL plasma spiked with HSA-HHPA conjugate. The column was eluted with glycine buffer at pH 2.0. The conjugates in the eluate were hydrolyzed to the corresponding HHP acid and quantified by mass spectrometry. The average recovery of HHPA adducts in 11 experiments was 68% with a coefficient of variation (CV) of 7%. The column's capacity to bind protein-HHPA adducts was found to be linear in the range of 0.15-1.2 nmol conjugate. The evaluation showed that the IAE column had adequate affinity towards the HHPA adducts and that the adducts could be extracted with good recovery and precision from a large volume of plasma.

  10. Study of yellow luminescence of binary terbium complexes based on 3,3',4,4'-biphthalic anhydride.

    PubMed

    Lin, Meijuan; Wang, Xiaoping; Tang, Qiang; An, Qi; Zeng, Huijuan; Ling, Qidan

    2014-01-20

    Three novel binary Tb(III) complexes (TbL2, TbL, and Tb2L; L=3,3',4,4'-biphenyl tetracarboxylic ligand) were synthesized by changing the molar ratio of Tb(III) to 3,3',4,4'-biphthalic anhydride (BPDA) (1∶2, 1∶1, and 2∶1, respectively). IR spectra indicate that there are two coordination modes of the carboxylate ligands with Tb3+ ions in the complexes. Most of them are in bridging mode; the others are in chelating mode. These complexes all have good thermal stability. The photophysical properties of these complexes are studied in detail using UV absorption spectra, fluorescence spectra, and transient fluorescence spectra. The results indicate that the photoluminescence properties of the complexes depend strongly on the molar ratio of Tb(III) to BPDA. When the molar ratio of Tb(III) to BPDA is 1∶1, complex TbL exhibits the strongest yellow light emission among the three Tb(III) complexes. However, complex Tb2L exhibits a weaker yellowish-green light emission when the molar ratio of Tb(III) to BPDA is 2∶1. The phenomenon of the yellow emission from terbium complexes is rarely reported.

  11. Diosgenin effectively suppresses skin inflammation induced by phthalic anhydride in IL-4/Luc/CNS-1 transgenic mice.

    PubMed

    Kim, Ji Eun; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Sung, Ji Eun; Lee, Hyun Ah; Kim, Dong Seob; Son, Hong Joo; Lee, Hee Seob; Lee, Chung Yeoul; Hong, Jin Tae; Hwang, Dae Youn

    2016-05-01

    To quantitatively evaluate the therapeutic effects of diosgenin (DG) and investigate the role of IL-4 on skin inflammation, alterations in luciferase-derived signal and general phenotype biomarkers were measured in IL-4/Luc/CNS-1 transgenic mice with phthalic anhydride (PA)-induced skin inflammation after treatment with DG for 4 weeks. High levels of luciferase-derived signal detected in the abdominal region and submandibular lymph node (SL) of the PA treated group was significantly decreased by 67-88% in the PA + DG cotreated group. Furthermore, the weight of the lymph node and spleen, IgE concentration, epidermis thickness, and number of infiltrated mast cells were lower in the PA + DG treated group than the PA + Vehicle treated group. Moreover, expression of IL-6 and vascular endothelial growth factor (VEGF) also decreased in the PA + DG cotreated group. These results suggest that PA-induced skin inflammation could be successfully suppressed by DG treatment in IL-4/Luc/CNS-1 Tg mice through attenuation of IL-4 and IL-6 expression, as well as decreased IgE concentration and mast cells infiltration. PMID:26998565

  12. Olefin-maleic-anhydride copolymer based additives: a novel approach for compatibilizing blends of waste polyethylene and crumb rubber.

    PubMed

    Tóth, Balázs; Varga, Csilla; Bartha, László

    2015-04-01

    In our work processing conditions and mechanical properties of waste polyethylene (PE)/crumb rubber (CR) blends have been improved by new types of compatibilizing additives synthesized from experimental olefin-maleic-anhydride copolymers at our laboratory. Compatibilizing additives have been introduced into the PE/CR blends in 0.2 wt% while CR concentration has been varied between 10 and 50 wt%. For comparison of the effects commercially available MA-g-PO type compatibilizing additives have also been applied. Tensile and Charpy impact tests of the compression moulded samples have been carried out. Several experimental additives have enhanced properties of the PE/CR blends either from the point of view of tensile or Charpy impact strength while commercial additives have had improving effects only on one of the abovementioned mechanical properties but not for both of them simultaneously. Since good mechanical properties could be achieved by our experimental compatibilizers good adhesion in the waste PE/CR samples have been considered and was proven by SEM graphs either.

  13. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation.

    PubMed

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M; Gil, Francisco J; Rodriguez, Daniel

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria-cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties.

  14. Preparation of fenofibrate dry emulsion and dry suspension using octenyl succinic anhydride starch as emulsifying agent and solid carrier.

    PubMed

    Pongsamart, Kasama; Kleinebudde, Peter; Puttipipatkhachorn, Satit

    2016-02-10

    Purpose of this study was to investigate the ability of octenyl succinic anhydride (OSA) starch as emulsifier and solid carrier in dry emulsion (DE) and dry suspension (DS) formulations. Fenofibrate (FF) was loaded at lower and higher than its saturation concentration in oil phase to prepare the DE and DS by spray drying method. The DE and DS were successfully prepared with 36-48% and 46% production yield, respectively. After reconstitution in water, the emulsion with mean droplet size of 1-2 μm was obtained. Solid state characterization revealed the amorphous state of FF and the crystalline state of OSA starch in both DE and DS formulations. Both DE and DS enhanced FF dissolution rate compared to pure material and DS showed the highest dissolution rate. The DE and DS could be compressed to the tablets with acceptable disintegration time and without changeable dissolution profile. Moreover, the dissolution profiles of both DE and DS remained unchanged after 2 months storage at 40 °C.

  15. Interaction of ozone exposure with airway hyperresponsiveness and inflammation induced by trimellitic anhydride in sensitized guinea pigs

    SciTech Connect

    Sun, Jian; Chung, K.Fan

    1997-09-01

    The effect of prior ozone (O{sub 3}) exposure on airway hyperresponsiveness and inflammation induced by trimellitic anhydride (TMA) has been investigated in TMA-sensitized guinea pigs. Airway responsiveness was measured as the concentration of acetylcholine needed to increase baseline lung resistance (RL) by 300% (PC300). Ozone (3 ppm, for 3 h) caused an increase in-log PC300 at 1 h after exposure, with return of -log PC300 to control levels at 8 h. Ozone also increased baseline RL at 8 h. TMA challenge increase -log PC300 in TMA-sensitized guinea pigs at 8 h after challenge from 3.85 {+-} 0.09 to 4.11 {+-} 0.09. Ozone exposure prior to TMA challenge prevented the induction of airway hyperresponsiveness with a mean -log PC300 of 3.51 {+-} 0.20, which was not different from that of control TMA-Sensitized group. Baseline RL was significantly higher in ozone-pretreated animals after TMA challenge when compared to those of either control or challenged with TMA alone. Ozone had no effect on TMA challenge-induced BAL eosinophilia and neutrophilia. We conclude that a single exposure to ozone inhibits the increase in airway responsiveness, but increases the bronchoconstrictor response induced by TMA in TMA-Sensitized guinea pigs; however, the inflammatory airway response to TMA is unchanged by preexposure to ozone. 29 refs., 2 figs., 1 tab.

  16. In Vivo Evaluation of Nerve Guidance Conduits Comprised of a Salicylic Acid-based Poly(anhydride-ester) Blend

    NASA Astrophysics Data System (ADS)

    Lee, Yong Soo

    Unlike the central nervous system, peripheral nervous system can regenerate from injury. However, without surgical intervention, the results are often poor. Autologous nerve grafting is the golden standard for repairing peripheral nerve injury; but limited donor availability and donor site morbidity led researchers to seek alternative methods. Among the many alternative treatment options, synthetic nerve guidance conduits (NGCs) have been most actively developed. The goal of NGCs is to serve as a physical scaffold that aids the axonal regeneration process while preventing scar tissue formation that interferes with regeneration. Biocompatible and biodegradable NGCs would provide additional benefits: minimize foreign body reaction and avoid secondary surgeries to remove NGCs. We developed a unique NGC that incorporated the characteristics described above and can release an anti-inflammatory drug, salicylic acid. In this work, in vivo assays were performed to evaluate NGCs fabricated from a poly(anhydride-ester) blend. To further assist in the regeneration process, bovine native collagen type I hydrogel were inserted into the NGCs lumen which was then implanted in femoral nerve of mice for up to 16 weeks. These studies demonstrated in vivo biodegradability, biocompatibility, and axonal regeneration following an injury to the peripheral nerve. These studies provide greater insights into the importance of designing NGCs and how they aid in regeneration and functional recovery of subjects.

  17. Immunosuppression of the Trimellitic Anhydride-Induced Th2 Response by Novel Nonanatural Products Mixture in Mice

    PubMed Central

    Bae, Min-Jung; Shin, Hee Soon; Shon, Dong-Hwa

    2013-01-01

    Many natural dietary products prevent or cure allergic inflammation; however, the ability of mixtures of these natural medicinals to suppress allergic skin inflammation is unknown. We examined the inhibitory effects of nonanatural products mixture (NPM-9), which provides immunoregulatory activation, on Th2-mediated skin allergic inflammation. Oral administration of NPM-9 in mice reduced ear thickness and specific IgE production in trimellitic anhydride- (TMA-)induced contact hypersensitivity (CHS). NPM-9 also suppressed IL-4 and IL-1β production in splenocytes but prevented only TMA-induced IL-1β production in inflamed ears. To characterize the mechanism of this effect, we examined NPM-9 immunosuppression on an OVA-induced Th2 allergic state. Oral administration of NPM-9 inhibited Th2-mediated serum IgE overproduction. NPM-9 also downregulated the polarized Th2 response, whereas it upregulated Th1 response in splenocytes. These data suggest that NPM-9 may be a useful therapeutic agent for allergic inflammatory diseases through its suppression of the Th2-mediated allergic response. PMID:24348718

  18. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  19. New polymer systems: Chain extension by dianhydrides

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D.

    1972-01-01

    The results are presented for a systematic investigation on the use of anhydrides to prepare stable elastomeric materials for space use, under mild reaction conditions. The three anhydrides investigated were found to provide effective chain extension of hydroxy-terminated poly(alkylene oxides) and poly(butadienes). These were tetrahydrofuran tetracarboxylic dianhydride, pyromellitic dianhydride, and benzophenone tetracarboxylic diahydride. The most effective catalyst investigated was ferric acetylacetonate, which resulted in chain extension at 333 K (60 C). One feature of these anhydride reactants is that they are difunctional as anhydrides, but tetrafunctional if conditions are selected that lead to reaction of all carboxyl groups. Therefore, chain extension can be effected and then followed by crosslinking via the residual carboxyl groups.

  20. Design of a core-shelled polymer cylinder for potential programmable drug delivery.

    PubMed

    Qiu, L Y; Zhu, K J

    2001-05-21

    A cylindrical dosage form comprising a laminated composite polymer core and a hydrophobic polycarbonate coating was proposed for programmable drug delivery. In the core, poly[(ethyl glycinate) (benzyl amino acethydroxamate) phosphazene] was synthesized as drug-loaded layers for its strong pH-sensitive degradation (eroded after 1.5 days at pH 7.4 and more than 20 days at pH 5.0 and 6.0). Poly(sebacic anhydride)-b-polyethylene glycol or poly(sebacic anhydride-co-trimellitylimidoglycine)-b-poly(ethylene glycol) was selected as isolating layers for their good processing properties at room temperature and suitable erosion duration. The in vitro drug release studies of these devices were conducted under physiological conditions (pH 7.4). The results revealed that the model drugs (brilliant blue, FITC-dextran, myoglobin) could be released in typical pulsatile manner. Moreover, the duration time of drug release (24-40 h) and the lag time (18-118 h) could be separately regulated by the mass of polyphosphazene and the type or mass of polyanhydride. In this experiment, the cooperative effect of polyanhydrides and pH-sensitive degradable polyphosphazene was specially demonstrated, which offers a new idea to develop a programmable drug delivery system for single dose vaccine and other related applications.

  1. Fire-safe polymers and polymer composites

    NASA Astrophysics Data System (ADS)

    Zhang, Huiqing

    The intrinsic relationships between polymer structure, composition and fire behavior have been explored to develop new fire-safe polymeric materials. Different experimental techniques, especially three milligram-scale methods---pyrolysis-combustion flow calorimetry (PCFC), simultaneous thermal analysis (STA) and pyrolysis GC/MS---have been combined to fully characterize the thermal decomposition and flammability of polymers and polymer composites. Thermal stability, mass loss rate, char yield and properties of decomposition volatiles were found to be the most important parameters in determining polymer flammability. Most polymers decompose by either an unzipping or a random chain scission mechanism with an endothermic decomposition of 100--900 J/g. Aromatic or heteroaromatic rings, conjugated double or triple bonds and heteroatoms such as halogens, N, O, S, P and Si are the basic structural units for fire-resistant polymers. The flammability of polymers can also be successfully estimated by combining pyrolysis GC/MS results or chemical structures with TGA results. The thermal decomposition and flammability of two groups of inherently fire-resistant polymers---poly(hydroxyamide) (PHA) and its derivatives, and bisphenol C (BPC II) polyarylates---have been systematically studied. PHA and most of its derivatives have extremely low heat release rates and very high char yields upon combustion. PHA and its halogen derivatives can completely cyclize into quasi-polybenzoxazole (PBO) structures at low temperatures. However, the methoxy and phosphate derivatives show a very different behavior during decomposition and combustion. Molecular modeling shows that the formation of an enol intermediate is the rate-determining step in the thermal cyclization of PHA. BPC II-polyarylate is another extremely flame-resistant polymer. It can be used as an efficient flame-retardant agent in copolymers and blends. From PCFC results, the total heat of combustion of these copolymers or blends

  2. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens.

    PubMed

    Eckhard, Lea H; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J; Bachrach, Gilad; Beyth, Nurit

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  3. Europium-complex-grafted polymer dots for amplified quenching and cellular imaging applications.

    PubMed

    Li, Qiong; Zhang, Jianan; Sun, Wei; Yu, Jiangbo; Wu, Changfeng; Qin, Weiping; Chiu, Daniel T

    2014-07-22

    We report on a europium-complex-grafted polymer for preparing stable nanoparticle probes with high luminescence brightness, narrow emission bandwidth, and long luminescence lifetimes. A Eu complex bearing an amino group was used to react with a functional copolymer poly(styrene-co-maleic anhydride) by the spontaneous amidation reaction, producing the polymer grafted with Eu complexes in the side chains. The Eu-complex-grafted polymer was further used to prepare Eu-complex-grafted polymer dots (Pdots) and Eu-complex-blended poly(9-vinylcarbazole) composite Pdots, which showed improved colloidal stability as compared to those directly doped with Eu-complex molecules. Both types of Pdots can be efficiently quenched by a nile blue dye, exhibiting much lower detection limit and higher quenching sensitivity as compared to free Eu-complex molecules. Steady-state spectroscopy and time-resolved decay dynamics suggest the quenching mechanism is via efficient fluorescence resonance energy transfer from the Eu complex inside a Pdot to surface dye molecules. The amplified quenching in Eu-complex Pdots, together with efficient cell uptake and specific cell surface labeling observed in mammalian cells, suggests their potential applications in time-resolved bioassays and cellular imaging.

  4. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens

    PubMed Central

    Eckhard, Lea H.; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J.

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  5. LONG-TERM HUMAN PLURIPOTENT STEM CELL SELF-RENEWAL ON SYNTHETIC POLYMER SURFACES

    PubMed Central

    Brafman, DA; Chang, CW; Fernandez, A; Willert, K; Varghese, S; Chien, S

    2010-01-01

    Realization of the full potential of human pluripotent stem cells (hPSCs) in regenerative medicine requires the development of well-defined culture conditions for their long-term growth and directed differentiation. Current practices for maintaining hPSCs generally utilize empirically determined combinations of feeder cells and other animal-based products, which are expensive, difficult to isolate, subject to batch-to-batch variations, and unsuitable for cell-based therapies. Using a high-throughput screening approach, we identified several polymers that can support self-renewal of hPSCs. While most of these polymers provide support for only a short period of time, we identified a synthetic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-alt-MA) that supported attachment, proliferation and self-renewal of HUES1, HUES9, and iPSCs over five passages. The hPSCs cultured on PMVE-alt-MA maintained their characteristic morphology, expressed high levels of markers of pluripotency, and retained a normal karyotype. Such cost-effective, polymer-based matrices that support long-term self-renewal and proliferation of hPSCs will not only help to accelerate the translational perspectives of hPSCs, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation. PMID:20817292

  6. Nanoporous polymer electrolyte

    DOEpatents

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  7. High performance polymer development

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1991-01-01

    The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.

  8. Alveolar macrophages have a dual role in a rat model for trimellitic anhydride-induced occupational asthma

    SciTech Connect

    Valstar, Dingena L.; Schijf, Marcel A.; Nijkamp, Frans P.; Storm, Gert; Arts, Josje H.E.; Kuper, C. Frieke; Bloksma, Nanne; Henricks, Paul A.J. . E-mail: p.a.j.henricks@pharm.uu.nl

    2006-02-15

    Occupational exposure to low molecular weight chemicals, like trimellitic anhydride (TMA), can result in occupational asthma. Alveolar macrophages (AMs) are among the first cells to encounter inhaled compounds. These cells can produce many different mediators that have a putative role in asthma. In this study, we examined the role of AMs in lung function and airway inflammation of rats exposed to TMA. Female Brown Norway rats were sensitized by dermal application of TMA or received vehicle alone on days 0 and 7. One day before challenge, rats received intratracheally either empty or clodronate-containing liposomes to deplete the lungs of AMs. On day 21, all rats were challenged by inhalation of TMA in air. Lung function parameters were measured before, during, within 1 h after, and 24 h after challenge. IgE levels and parameters of inflammation and tissue damage were assessed 24 h after challenge. Sensitization with TMA led to decreased lung function parameters during and within 1 h after challenge as compared to non-sensitized rats. AM depletion alleviated the TMA-induced drop in lung function parameters and induced a faster recovery compared to sham-depleted TMA-sensitized rats. It also decreased the levels of serum IgE 24 h after challenge, but did not affect the sensitization-dependent increase in lung lavage fluid IL-6 and tissue TNF-{alpha} levels. In contrast, AM depletion augmented the TMA-induced tissue damage and inflammation 24 h after challenge. AMs seem to have a dual role in this model for TMA-induced occupational asthma since they potentiate the immediate TMA-induced decrease in lung function but tended to dampen the TMA-induced inflammatory reaction 24 h later.

  9. Preparation and characterization of new succinic anhydride grafted Posidonia for the removal of organic and inorganic pollutants.

    PubMed

    Chadlia, Aguir; Mohamed, Khalfaoui; Najah, Laribi; Farouk, M'henni Mohamed

    2009-12-30

    The present work describes the preparation of new chelating materials derived from Posidonia for adsorption of heavy metal ions and dye in aqueous solution. The first part of this report deals with the chemical modification of Posidonia with succinic anhydride. Thus, we have obtained materials with various succinyl groups contents (from 29.8 to 39.2%). The obtained materials were characterized by infrared and CP/MAS (13)C-RMN spectroscopy. The rate of succinyl content of the modified Posidonia was determined by saponification. The second part is devoted to the evaluation of the adsorption capacity of metal ions such as Pb(2+) and dye such as direct red 75 (DR75) for raw and modified Posidonia materials. Two possible ways for the adsorption of these pollutants are studied: adsorption of each pollutant alone onto these supports, and cumulative adsorption of both metal ions and dye on the same supports. In the last case, the pollutant is adsorbed successively from two different solutions. The effects of pollutants concentration, support dose, pH, contact time and temperature on adsorption of each pollutant were evaluated. The results showed that the raw and modified Posidonia show a high capacity for Pb(2+) adsorption. The capacity of modified Posidonia saturated with Pb(2+) to adsorb DR75 was found 147.12 mg g(-1). While the adsorption capacity of the nonsaturated modified Posidonia was equal to 81.63 mg g(-1). The pseudo-second-order model was the best to represent adsorption kinetics of DR75. The pseudo-first-order model would be better for fitting the adsorption kinetic process of Pb(2+) onto raw and modified Posidonia. The adsorption isotherms of Pb(2+) could be described by the Jossens equation model. Any of the tested models can describe the adsorption of DR75 onto the studied materials. These results confirm that the adsorption of DR75 from aqueous solution was multilayer.

  10. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    SciTech Connect

    Christiansen, R.L.; Kalbus, J.S.; Howarth, S.M.

    1997-05-01

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties.

  11. Orthogonally Spin-Coated Bilayer Films for Photochemical Immobilization and Patterning of Sub-10-Nanometer Polymer Monolayers.

    PubMed

    Janes, Dustin W; Kim, Chae Bin; Maher, Michael J; Ellison, Christopher J

    2016-07-12

    Versatile and spatiotemporally controlled methods for decorating surfaces with monolayers of attached polymers are broadly impactful to many technological applications. However, current materials are usually designed for very specific polymer/surface chemistries and, as a consequence, are not very broadly applicable and/or do not rapidly respond to high-resolution stimuli such as light. We describe here the use of a polymeric adhesion layer, poly(styrene sulfonyl azide-alt-maleic anhydride) (PSSMA), which is capable of immobilizing a 1-7 nm thick monolayer of preformed, inert polymers via photochemical grafting reactions. Solubility of PSSMA in very polar solvents enables processing alongside hydrophobic polymers or solutions and by extension orthogonal spin-coating deposition strategies. Therefore, these materials and processes are fully compatible with photolithographic tools and can take advantage of the immense manufacturing scalability they afford. For example, the thicknesses of covalently grafted poly(styrene) obtained after seconds of exposure are quantitatively equivalent to those obtained by physical adsorption after hours of thermal equilibration. Sequential polymer grafting steps using photomasks were used to pattern different regions of surface energy on the same substrate. These patterns spatially controlled the self-assembled domain orientation of a block copolymer possessing 21 nm half-periodicity, demonstrating hierarchical synergy with leading-edge nanopatterning approaches.

  12. Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer micelles loading curcumin: preparation, characterization, and in vitro evaluation.

    PubMed

    Lv, Li; Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Mingna; Guo, Shengrong; Huang, Shengtang

    2013-01-01

    A novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer (4-arm PEG-b-PAE) was synthesized by esterization of 4-arm poly(ethylene glycol) and poly(anhydride-esters) which was obtained by melt polycondensation of α -, ω -acetic anhydride terminated poly(L-lactic acid). The obtained 4-arm PEG-b-PAE was characterized by (1)H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL). The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells.

  13. Polymers with pendant ferrocenes.

    PubMed

    Pietschnig, Rudolf

    2016-10-01

    The tailoring of smart material properties is one of the challenges in materials science. The unique features of polymers with pendant ferrocene units, either as ferrocenyl or ferrocenediyl groups, provide electrochemical, electronic, optoelectronic, catalytic, and biological properties with potential for applications as smart materials. The possibility to tune or to switch the properties of such materials relies mostly on the redox activity of the ferrocene/ferricenium couple. By switching the redox state of ferrocenyl units - separately or in a cooperative fashion - charge, polarity, color (UV-vis range) and hydrophilicity of polymers, polymer functionalized surfaces and polymer derived networks (sol-gel) may be controlled. In turn, also the vicinity of such polymers influences the redox behavior of the pendant ferrocenyl units allowing for sensing applications by using polymer bound enzymes as triggering units. In this review the focus is set mainly on the literature of the past five years.

  14. CO2 -Responsive polymers.

    PubMed

    Lin, Shaojian; Theato, Patrick

    2013-07-25

    This Review focuses on the recent progress in the area of CO2 -responsive polymers and provides detailed descriptions of these existing examples. CO2 -responsive polymers can be categorized into three types based on their CO2 -responsive groups: amidine, amine, and carboxyl groups. Compared with traditional temperature, pH, or light stimuli-responsive polymers, CO2 -responsive polymers provide the advantage to use CO2 as a "green" trigger as well as to capture CO2 directly from air. In addition, the current challenges of CO2 -responsive polymers are discussed and the different solution methods are compared. Noteworthy, CO2 -responsive polymers are considered to have a prosperous future in various scientific areas.

  15. High Performance Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2003-01-01

    This report summarizes results from research on high performance polymers. The research areas proposed in this report include: 1) Effort to improve the synthesis and to understand and replicate the dielectric behavior of 6HC17-PEK; 2) Continue preparation and evaluation of flexible, low dielectric silicon- and fluorine- containing polymers with improved toughness; and 3) Synthesis and characterization of high performance polymers containing the spirodilactam moiety.

  16. Thermally conductive polymers

    NASA Technical Reports Server (NTRS)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  17. Interfacial coupling between immiscible polymers: Flow accelerates reaction and improves adhesion

    NASA Astrophysics Data System (ADS)

    Song, Jie

    As the workhorses of the plastics industry, polyolefins are consumed in the largest volume of all types of polymers. Despite their wide use, polyolefins suffer from poor adhesion and compatibility with other polar polymers due to their intrinsic low polarity and lack of functional groups. The first goal of this study is to enhance interfacial adhesion between polyolefins with other polymers through coupling reaction of functional polymers. We have used functional polyethylenes with maleic anhydride, hydroxyl, primary and secondary amino groups grafted through reactive extrusion. Functional polyolefins dramatically improved the performance of polyolefins, including adhesion, compatibility, hardness and scratch resistance, and greatly expand their applications. The second goal is to understand the factors affecting adhesion. We systematically investigated two categories of parameters. One is molecular: the type and incorporation level of functional groups. The other is processing condition: die design in extruders, reaction time and temperature. The interfacial adhesion was measured with the asymmetric dual cantilever beam test and T-peel test. The extent of reaction was quantified through measuring anchored copolymers via X-ray photoelectron spectroscopy. A quantitative correlation between adhesion and coupling reaction was developed. A coextruded bilayer system with coupling reaction at interfaces was created to clarify processing effects on the kinetics of coupling reactions. For the reaction between maleic anhydride modified polyethylene and nylon 6, the reaction rate during coextrusion through a fishtail die with compressive/extensional flow was strikingly almost two orders of magnitude larger than that through a constant thickness die without compressive flow. The latter reaction rate was close to that of quiescent lamination. We attribute the reaction acceleration through the fishtail die to the large deformation rate under the compressive/extensional flow

  18. Kinetic resolution of racemic 2-hydroxy-γ-butyrolactones by asymmetric esterification using diphenylacetic acid with pivalic anhydride and a chiral acyl-transfer catalyst.

    PubMed

    Nakata, Kenya; Gotoh, Kouya; Ono, Keisuke; Futami, Kengo; Shiina, Isamu

    2013-03-15

    Various optically active 2-hydroxy-γ-butyrolactone derivatives are produced via the kinetic resolution of racemic 2-hydroxy-γ-butyrolactones with diphenylacetic acid using pivalic anhydride and (R)-benzotetramisole ((R)-BTM), a chiral acyl-transfer catalyst. Importantly, the substrate scope of this novel protocol is fairly broad (12 examples, s-value; up to over 1000). In addition, we succeeded in disclosing the reaction mechanism to afford high enantioselectivity using theoretical calculations and expounded on the substituent effects at the C-3 positions in 2-hydroxylactones.

  19. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1989-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen, and switching means such as a photoelectric switch for turning off the heater during dark periods.

  20. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1990-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen and switching means such as a photoelectric switch for turning off the heater during dark periods.

  1. Polymers for engineering applications

    SciTech Connect

    Seymour, R.B.

    1987-01-01

    This book provides an introduction to the world of engineering plastics. It discusses the polymers, their properties strengths and limitations. There are 11 chapters, organized so that each chapter builds on the knowledge of the previous material. Coverage includes important polymer concepts, such as molecular structure, bonding, morphology and molecular weight, and polymer properties, such as thermal expansion, thermal transition, electrical properties and viscoelasticity. Details are provided on methods of processing fabrication and on specific families of polymers. The general-purpose polymers are discussed, such as natural and synthetic rubbers, rayon, acrylic and alkyd coatings, polyethylene, polystyrene and polyvinyl chloride (PVC). There's information on high-performance polymers - fibers, elastomers, and coatings. A thorough explanation of the characteristics and qualities of nylons, polyesters, polyimides, neoprene, silicones, polyurethanes and other polymers is given in the same section. Functional polymers with special properties, such as photoconductivity, electric conductivity, piezoelectricity, light sensitivity, and ion exchange; and polymers that are superior to general-purpose plastics, such as ABS, filled polypropylene, and glass-reinforced plastics, are also covered.

  2. Effect of O sub 2 concentration on selective and complete oxidation of 1,3-butadiene, furan, and maleic anhydride over MnMoO sub 4 /MoO sub 3 catalysts

    SciTech Connect

    Ozkan, U.S.; Smith, M.R.; Driscoll, S.A. )

    1990-05-01

    Oxidation experiments of 1,3-butadiene, furan, and maleic anhydride have been performed over MnMoO{sub 4}/MoO{sub 3} catalysts and their pure-phase constituents. The effect of oxygen concentration on catalytic activity and selectivity of these catalyst has been investigated. MoO{sub 3} catalysts containing MnMoO{sub 4} as a coexisting phase have been found to be active and selective for maleic anhydride formation for all feed materials and over a wide range of oxygen concentrations. The activity of the molybdenum trioxide catalyst has been found to be least affected by the concentration of gas-phase oxygen. Partial conversion of maleic anhydride to CO{sub 2} has been observed over all three catalysts with MnMoO{sub 4} showing the highest activity for complete oxidation. 20 refs.

  3. Binary Polymer Brushes of Strongly Immiscible Polymers.

    PubMed

    Chu, Elza; Babar, Tashnia; Bruist, Michael F; Sidorenko, Alexander

    2015-06-17

    The phenomenon of microphase separation is an example of self-assembly in soft matter and has been observed in block copolymers (BCPs) and similar materials (i.e., supramolecular assemblies (SMAs) and homo/block copolymer blends (HBCs)). In this study, we use microphase separation to construct responsive polymer brushes that collapse to generate periodic surfaces. This is achieved by a chemical reaction between the minor block (10%, poly(4-vinylpyridine)) of the block copolymer and a substrate. The major block of polystyrene (PS) forms mosaic-like arrays of grafted patches that are 10-20 nm in size. Depending on the nature of the assembly (SMA, HBC, or neat BCP) and annealing method (exposure to vapors of different solvents or heating above the glass transition temperature), a range of "mosaic" brushes with different parameters can be obtained. Successive grafting of a secondary polymer (polyacrylamide, PAAm) results in the fabrication of binary polymer brushes (BPBs). Upon being exposed to specific selective solvents, BPBs may adopt different conformations. The surface tension and adhesion of the binary brush are governed by the polymer occupying the top stratum. The "mosaic" brush approach allows for a combination of strongly immiscible polymers in one brush. This facilitates substantial contrast in the surface properties upon switching, previously only possible for substrates composed of predetermined nanostructures. We also demonstrate a possible application of such PS/PAAm brushes in a tunable bioadhesion-bioadhesive (PS on top) or nonbioadhesive (PAAm on top) surface as revealed by Escherichia coli bacterial seeding.

  4. Triclosan antimicrobial polymers

    PubMed Central

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  5. Supplementation with difructose anhydride III promotes passive calcium absorption in the small intestine immediately after calving in dairy cows.

    PubMed

    Teramura, M; Wynn, S; Reshalaitihan, M; Kyuno, W; Sato, T; Ohtani, M; Kawashima, C; Hanada, M

    2015-12-01

    The incidence of hypocalcemia increases in high-parity dairy cows because resorption of bone Ca is delayed in these animals, and they appear to have a reduced ability to absorb Ca from the intestine during the early postpartum period. Difructose anhydride (DFA) III has been shown to promote the absorption of intestinal Ca via a paracellular pathway. However, past studies have not reported this effect in peripartum dairy cows. Therefore, we investigated the effect of DFA III supplementation on Ca metabolism during the peripartum period to determine whether DFA III promotes intestinal Ca absorption via this route. Seventy-four multiparous Holstein cows were separated into DFA and control groups based on their parity and body weight. The feed of the DFA group was supplemented with 40g/d of DFA III from -14 to 6d relative to calving. The control group did not receive DFA III. At calving (0h relative to calving), serum Ca declined below 9mg/dL in both groups. However, serum Ca concentrations were greater in the DFA group than in the control group at 6, 12, 24, and 48h relative to calving, and the time required for serum Ca to recover to 9mg/dL during the postpartum period was shorter in the high-parity cows in the DFA group than in those in the control group. Parathyroid hormone concentrations increased immediately after calving in both groups and were greater in the control group than in the DFA group at 12 and 24h relative to calving. Serum 1,25-dihydroxyvitamin D concentrations increased at 0 and 12h relative to calving in both groups and were higher in the control group than in the DFA group at 72h relative to calving. Serum concentrations of the bone-resorption marker cross-linked N-telopeptide of type I collagen (NTX) were not different between the groups during peripartum period, and serum NTX in all cows was lower at 0, 6, 12, 24, 48, and 72h relative to calving than at -21, 4, and 5d relative to calving. Thus, DFA treatment induced faster recovery of serum Ca

  6. Direct characterization of polymer encapsulated CdSe/CdS/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Zorn, Gilad; Dave, Shivang R.; Weidner, Tobias; Gao, Xiaohu; Castner, David G.

    2016-06-01

    Surface engineering advances of semiconductor quantum dots (QDs) have enabled their application to molecular labeling, disease diagnostics and tumor imaging. For biological applications, hydrophobic core/shell QDs are transferred into aqueous solutions through the incorporation of water-solubility imparting moieties, typically achieved via direct exchange of the native surface passivating ligands or indirectly through the adsorption of polymers. Although polymeric encapsulation has gained wide acceptance, there are few reports addressing the characterization of the adsorbed polymers and existing theoretical analyses are typically based on simple geometric models. In this work, we experimentally characterize and quantify water-soluble QDs prepared by adsorption of amphiphilic poly(maleic anhydride-alt-1-tetradecene) (PMAT, MW ~ 9000) onto commercially available CdSe/CdS/ZnS (CdSe/CdS/ZnS-PMAT). Using X-ray photoelectron spectroscopy (XPS) we determined that ~ 15 PMAT molecules are adsorbed onto each QD and sum frequency generation (SFG) vibrational spectra were utilized to investigate the mechanism of interaction between PMAT molecules and the QD surface. Importantly, when employed together, these techniques constitute a platform with which to investigate any polymer-nanoparticle complex in general.

  7. Polymers that Conduct Electricity.

    ERIC Educational Resources Information Center

    Edelson, Edward

    1983-01-01

    Although polymers are regarded as electrical insulators, it was discovered that they can be made to conduct electricity. This discovery has opened vast new practical and theoretical areas for exploration by physicists and chemists. Research studies with these conducting polymers and charge-transfer salts as well as possible applications are…

  8. Polymers Are Everywhere.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1988-01-01

    Describes the history of the human understanding of polymers from alchemy to modern times. Discusses renaissance chemistry, polymers in the nineteenth century, synthetic elastomers, thermoplastic elastomers, fibers, coatings, adhesives, derivatives of natural rubber, thermosets, step-reaction, and chain polymerization. (CW)

  9. Melons are Branched Polymers

    NASA Astrophysics Data System (ADS)

    Gurau, Razvan; Ryan, James P.

    2014-11-01

    Melonic graphs constitute the family of graphs arising at leading order in the 1/N expansion of tensor models. They were shown to lead to a continuum phase, reminiscent of branched polymers. We show here that they are in fact precisely branched polymers, that is, they possess Hausdorff dimension 2 and spectral dimension 4/3.

  10. Polymer based tunneling sensor

    NASA Technical Reports Server (NTRS)

    Cui, Tianhong (Inventor); Wang, Jing (Inventor); Zhao, Yongjun (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  11. Physical Properties of Polymers

    NASA Astrophysics Data System (ADS)

    Mark, James; Ngai, Kia; Graessley, William; Mandelkern, Leo; Samulski, Edward; Koenig, Jack; Wignall, George

    2004-04-01

    This thoroughly revised and updated third edition is written by seven well-known authorities in the polymer science community. Each author contributes a chapter which reflects his own interests and expertise in the physical states and associated properties of polymers. Second Edition published by the American Chemical Society Hb (1993): 0-841-22505-2

  12. MoO sub 3 catalysts promoted by MnMoO sub 4 I. Synthesis, characterization, and selectivity in oxidation of 1-butene and 1,3-butadiene to maleic anhydride

    SciTech Connect

    Ozkan, U.; Gill, R.C.; Smith, M.R. )

    1989-03-01

    MoO{sub 3} catalysts impregnated with MnMoO{sub 4} are active for the selective oxidation of C{sub 4} hydrocarbons to maleic anhydride. Presence of MnMoO{sub 4} creates a significant promoter effect in catalytic behavior of MoO{sub 3}. The pure phases and the impregnated catalysts have been characterized during various stages of their life history using characterization techniques such as X-ray diffraction, laser Raman spectroscopy, scanning electron microscopy, and BET surface area measurements, and their catalytic activity and selectivity in selective oxidation of 1-butene and 1,3-butadiene to maleic anhydride have been studied.

  13. Synthesis of densely phosphorylated bis-1,5-diphospho-myo-inositol tetrakisphosphate and its enantiomer by bidirectional P-anhydride formation.

    PubMed

    Capolicchio, Samanta; Wang, Huanchen; Thakor, Divyeshsinh T; Shears, Stephen B; Jessen, Henning J

    2014-09-01

    The ubiquitous mammalian signaling molecule bis-diphosphoinositol tetrakisphosphate (1,5-(PP)2 -myo-InsP4 , or InsP8 ) displays the most congested three-dimensional array of phosphate groups found in nature. The high charge density, the accumulation of unstable P-anhydrides and P-esters, the lack of UV absorbance, and low levels of optical rotation constitute severe obstacles to its synthesis, characterization, and purification. Herein, we describe the first procedure for the synthesis of enantiopure 1,5-(PP)2 -myo-InsP4 and 3,5-(PP)2 -myo-InsP4 utilizing a C2 -symmetric P-amidite for desymmetrization and concomitant phosphitylation followed by a one-pot bidirectional P-anhydride-forming reaction that combines sixteen chemical transformations with high efficiency. The configuration of these materials is unambiguously shown by subsequent X-ray analyses of both enantiomers after being individually soaked into crystals of the kinase domain of human diphosphoinositol pentakisphosphate kinase 2.

  14. A new approach to quantification of DTPA incorporation into monoclonal antibodies (MoAbs) labeled by the cyclic anhydride DTPA method

    SciTech Connect

    Wang, T.S.T.; Ng, A.K.; Fawwaz, R.A.; Alsedairy, S.; Alderson, P.O.

    1985-05-01

    A method for determining the ratio of DTPA molecules attached per molecule of Ab was developed and used to examine the immunoreactivity of different Abs as a function of the amount of incorporated DTPA. The bicyclic anhydride of DTPA(2-C-14)acetic acid (BADTPA-C-14) was synthesized by reacting DTPA(2-C-14)acetic acid (1mCi/mmo1) and acetic anhydride. BADTPA-C-14 then was reacted with a MoAb to a melanoma associated antigen (MA) and to a MoAb to human HLA class II antigen (HLA) at 2mg/m1 of MoAb concentration, at MoAb to BADTPA-C-14 ratios (mmo1/mmo1) of l:1, 1:10, 1:00, l:200. The conjugate was dialyzed exhaustively against HEPES at pH 7.0. The MoAb concentration was measured at 280mm of uv; the DTPA/MoAb ratio was calculated based on the specific activity of BADTPA-C-14, and the immunoreactivity was assessed by direct cell-binding to melanoma, the HLA antigen and control (lymphoma) cells. Percent binding to the lymphoid cell line was less than 3%. The authors' results demonstrated a method for directly determining the number of DTPA molecules attached to a MOAb, and demonstrated variations in immunoreactivity as the number of DTPA groups per MoAb is altered.

  15. Determination of the energy storage capacity of the Diels-Alder reaction between methylfuran and maleic anhydride as applied to storing solar energy

    SciTech Connect

    Sparks, B.G.

    1981-01-01

    The heat storage capacity of the Diels-Alder reaction between 2-methylfuran and maleic anhydride is calculated using reaction parameters obtained from solution calorimetry. An equilibrium constant of .614 1/mol and a heat of reaction of 14.33 kcal/mole were obtained from experiments at 45/sup 0/C. A reaction ..delta..C/sub p/ of -21.8 cal/mole was calculated from heat capacity information at 25/sup 0/C. From these parameters, a solution initially seven molar in methylfuran and maleic anhydride was found to have a maximum apparent volumetric heat capacity of about 1.85 times that of water. This maximum occurs at about 335/sup 0/K. Typical active solar energy schemes operate between 300 and 400/sup 0/K. When cycled between these temperatures, this system has an overall apparent heat capacity about 1.5 times that of water. The apparent heat capacity increases as the temperature range is narrowed.

  16. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride.

    PubMed

    Moriguchi, K; Mitamura, Y; Iwami, J; Hasegawa, Y; Higuchi, N; Murakami, Y; Maeda, H; Yoshimura, F; Nakamura, H; Ohno, N

    2012-11-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3'-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface.

  17. Rapid Polymer Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor (Inventor); Brock, Mathew W. (Inventor)

    2011-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal or transverse direction at the tip, a polymer sequence is passed through the tip, and a change in an electrical current signal is measured as each polymer component passes through the tip. Each measured change in electrical current signals is compared with a database of reference signals, with each reference signal identified with a polymer component, to identify the unknown polymer component. The tip preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  18. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  19. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  20. Modeling semiflexible polymer networks

    NASA Astrophysics Data System (ADS)

    Broedersz, C. P.; MacKintosh, F. C.

    2014-07-01

    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, cross-linked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks of such biopolymers have emerged as a new class of biological soft matter systems with remarkable material properties, which have spurred many of the theoretical developments discussed here. Starting from the mechanics and dynamics of individual semiflexible polymers, the physics of semiflexible bundles, entangled solutions, and disordered cross-linked networks are reviewed. Finally, recent developments on marginally stable fibrous networks, which exhibit critical behavior similar to other marginal systems such as jammed soft matter, are discussed.

  1. Electroactive polymers for sensing.

    PubMed

    Wang, Tiesheng; Farajollahi, Meisam; Choi, Yeon Sik; Lin, I-Ting; Marshall, Jean E; Thompson, Noel M; Kar-Narayan, Sohini; Madden, John D W; Smoukov, Stoyan K

    2016-08-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer-metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  2. Butanediol via maleic anhydride

    SciTech Connect

    Harris, N.; Tuck, M.W. )

    1990-05-01

    A new butanediol process offers the opportunity for new producers to enter a growth market previously dominated by a very few major companies. Butanediol (BDO) and its derivatives compete with alternative products on a cost basis in their end use applications. The ability of the new route to produce BDO at a lower cost than established technology will lead to further market penetration and an expansion of the uses for the product. The feedstock, n-butane, is widely available and likely to fall in cost relative to the cost of the feedstocks used by competing processes. The process is environmentally acceptable and less hazardous than competing technologies.

  3. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rahul

    maximum average matrix ligament thickness was 114 nm for a toughened polylactide nanoblend and correlated well with the theoretical prediction of the matrix ligament thickness. Fourier transform infrared spectroscopy and dynamic mechanical thermal analysis proved the crosslinking of the HBP phase in the PLA matrix. The crosslinked HBP was effective at hydroxyl (-OH) to anhydride molar ratios of: 2:1, 1:1 or 1:2. The glass transition temperature values of the crosslinked HBP phase at these molar ratios were observed to deviate from the predictions made by the Fox equation. The hydrophilic nature of the hyperbranched polymer was altered to hydrophobic by incorporation of polyanhydride crosslinker, as demonstrated by the increase in the contact angle with water. Rheological studies showed that there was a network formation in the PLA matrix after in-situ crosslinking of HBP. The HBP was found to reduce the melt viscosity of PLA dramatically and this effect was maintained even after its in-situ crosslinking in the PLA matrix. Finally, the current research unwraps the new opportunities provided by the unique physical and chemical properties of highly functional hyperbranched polymers in generating new nanostructured multiphase polymer systems with enhanced properties.

  4. Ion implantation in polymers

    NASA Astrophysics Data System (ADS)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  5. Polymer Science Pilot Program

    NASA Astrophysics Data System (ADS)

    Maier, Mary L.

    1996-07-01

    Natural polymers such as cellulose, proteins, and DNA have been part of earth's store of chemicals long before chemists existed. However, polymers synthesized by chemists first appeared on this planet only sixty years ago. A veritable explosion of materials first known as plastics, later polymers, followed. Today polymers, natural and synthetic, are everywhere, and it is appropriate to include an introduction to polymers in the education of future scientists. The Polymer Science Pilot Program consists of a sequence of experiences with polymers, designed to focus upon the ways in which these materials resemble and/or compare with nonpolymers in physical properties, versatility, and function. The modular format makes it possible for educators to select specific sections of the program for integration into other college chemistry courses. The team learning aspect of he program can also be recommended to educators who select a specific module. When this program was presented at a Middle Atlantic Regional Meeting of the American Chemical Society, some attendees were concerned about the limited number of participants as compared with the seemingly large number of college instructors. It was explained that the concentrated format of the four day program necessitates this instructor-to-student ratio; one class consisting of eighteen participants was tried and it was found that some aspects of the program, especially the research paper preparation, were not as thoroughly moderated.

  6. Polymers pushing Polymers: Polymer Mixtures in Thermodynamic Equilibrium with a Pore.

    PubMed

    Podgornik, R; Hopkins, J; Parsegian, V A; Muthukumar, M

    2012-11-13

    We investigate polymer partitioning from polymer mixtures into nanometer size cavities by formulating an equation of state for a binary polymer mixture assuming that only one (smaller) of the two polymer components can penetrate the cavity. Deriving the partitioning equilibrium equations and solving them numerically allows us to introduce the concept of "polymers-pushing-polymers" for the action of non-penetrating polymers on the partitioning of the penetrating polymers. Polymer partitioning into a pore even within a very simple model of a binary polymer mixture is shown to depend in a complicated way on the composition of the polymer mixture and/or the pore-penetration penalty. This can lead to enhanced as well as diminished partitioning, due to two separate energy scales that we analyse in detail.

  7. Low Dielectric Polymers

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E.

    2002-01-01

    This report summarizes results obtained through our current research effort entitled 'Low Dielectric Polymers'. Results are reported in four areas: (1) Development of an alkyne containing a crosslinking agent for 12F-PEK and its analogues; (2) Preparation and evaluation of new silicon- and/or fluorine-containing polymers for low temperature applications; (3) Polymers derived from a new highly fluorinated monomer; and (4) Continued evaluation of the scale-up of the preparation of 6FC11- and 6FC17-PEKs.

  8. Low Dielectric Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2002-01-01

    This report summarizes results obtained from research funded through Research Cooperative Agreement No. NCC-1-01033-"Low Dielectric Polymers" (from 5/10/01 through 5/09/02). Results are reported in three of the proposed research areas (Tasks 1-3 in the original proposal): (1) Repeat and confirm the preparation and properties of the new alkyl-substituted PEK, 6HC17-PEK, (2) Prepare and evaluate polymers derived from a highly fluorinated monomer, and (3) Prepare and evaluate new silicon and/or fluorine-containing polymers expected to retain useful properties at low temperature.

  9. Soluble porphyrin polymers

    SciTech Connect

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  10. Piezoelectric and pyroelectric polymers

    SciTech Connect

    Davis, G.T.

    1995-12-01

    Many polar polymers can be made to exhibit piezoelectric and pyroelectric properties by permanently aligning their dipoles in an electric field. The largest response is found in semi-crystalline polymers which exhibit a polar crystal phase which is amenable to reorientation in an applied electric field. The properties of poly(vinylidenefluoride), copolymers of vinyl idenefluoride and trifluoroethylene, nylon 7 and nylon 11 are compared. Polarization distribution across the thickness of such polymer films are discussed and novel techniques for the construction of piezoelectric bimorphs from the above copolymers are presented.

  11. Enzymatic synthesis and modification of polymers and nanomaterials

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Yun

    Biocatalysis perform chemical reactions in mild reaction environments with high catalytic rates to transform a particular set of substrates to specific reaction products. The broad substrate specificity and exquisite selectivity of enzymes have made them applicable in diverse applications. This thesis work explores biocatalysis in varied modes of synthesis, discovery, and also functional application as nanomaterial immobilized catalysts. First, biocatalysis is explored as a synthesis tool to generate carbohydrate-based polymers with regioselective acylation of the disaccharides sucrose and trehalose with diester derivatives. Sugar-based polymers are difficult to synthesize chemically due to the presence of multiple hydroxyl moieties and a selective catalytic route enhances the systematic incorporation of sugars into the polymer to rationally alter physicochemical properties. The sugar esters (containing reactive end groups) are polymerized with a variety of diols and enzymes in diverse reaction solvent conditions. Biocatalysis is well suited to becoming a discovery tool for new materials. Enzyme-catalyzed reactions are performed in 96-well microtiter plates to implement a combinatorial methodology to polymer synthesis. Two libraries are generated: the first is synthesized with bifunctional monomers under varying solvent conditions and multiple enzymes to identify optimal reaction conditions. The second library includes diverse polyols (sugars, nucleic acids, and steroids) to demonstrate the positional selectivity and broad reactivity of enzyme-mediated polymerization. The last part of this work incorporates enzymes onto nanoscale materials for functional material synthesis and modification. Silicon nanopillars are used as three-dimensional supports for high-density enzyme immobilization. Maleic anhydride coupling chemistries are explored for attachment and enzyme kinetic measurements are compared to enzyme immobilized on flat supports with equal projected surface

  12. Electroactive polymers for sensing

    PubMed Central

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  13. Sulfonated polyphenylene polymers

    DOEpatents

    Cornelius, Christopher J.; Fujimoto, Cy H.; Hickner, Michael A.

    2007-11-27

    Improved sulfonated polyphenylene compositions, improved polymer electrolyte membranes and nanocomposites formed there from for use in fuel cells are described herein. The improved compositions, membranes and nanocomposites formed there from overcome limitations of Nafion.RTM. membranes.

  14. Dendritic Polymers for Theranostics

    PubMed Central

    Ma, Yuan; Mou, Quanbing; Wang, Dali; Zhu, Xinyuan; Yan, Deyue

    2016-01-01

    Dendritic polymers are highly branched polymers with controllable structures, which possess a large population of terminal functional groups, low solution or melt viscosity, and good solubility. Their size, degree of branching and functionality can be adjusted and controlled through the synthetic procedures. These tunable structures correspond to application-related properties, such as biodegradability, biocompatibility, stimuli-responsiveness and self-assembly ability, which are the key points for theranostic applications, including chemotherapeutic theranostics, biotherapeutic theranostics, phototherapeutic theranostics, radiotherapeutic theranostics and combined therapeutic theranostics. Up to now, significant progress has been made for the dendritic polymers in solving some of the fundamental and technical questions toward their theranostic applications. In this review, we briefly summarize how to control the structures of dendritic polymers, the theranostics-related properties derived from their structures and their theranostics-related applications. PMID:27217829

  15. Functional Supramolecular Polymers*

    PubMed Central

    Aida, T.; Meijer, E.W.; Stupp, S.I.

    2012-01-01

    Supramolecular polymers can be random and entangled coils with the mechanical properties of plastics and elastomers, but with great capacity for processability, recycling, and self-healing due to their reversible monomer-to-polymer transitions. At the other extreme, supramolecular polymers can be formed by self-assembly among designed subunits to yield shape-persistent and highly ordered filaments. The use of strong and directional interactions among molecular subunits can achieve not only rich dynamic behavior but also high degrees of internal order that are not known in ordinary polymers. They can resemble, for example, the ordered and dynamic one-dimensional supramolecular assemblies of the cell cytoskeleton, and possess useful biological and electronic functions. PMID:22344437

  16. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  17. Polymer optical motherboard technology

    NASA Astrophysics Data System (ADS)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  18. Amine terminated bisaspartimide polymer

    NASA Technical Reports Server (NTRS)

    Kumar, D. (Inventor); Fohlen, G. M. (Inventor); Parker, J. A. (Inventor)

    1986-01-01

    Novel amine terminated bisaspartimides are prepared by a Michael-type reaction of an aromatic bismalteimide and an aromatic diamine in an aprotic solvent. These bisaspartimides are thermally polymerized to yield tough, resinous polymers cross-lined through -NH- groups. Such polymers are useful in applications requiring materials with resistance to change at elevated temperatures, e.g., as lightweight laminates with graphite cloth, molding material prepregs, adhesives and insulating material.

  19. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  20. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  1. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    NASA Astrophysics Data System (ADS)

    Yoon, Joonsung

    phthalic anhydride. A simple method to prepare composite surfaces that can change the wettability in response to the temperature change was proposed and evaluated. Composite surfaces prepared by nanoporous alumina templates filled with polymers showed surface morphology and wettability that depend on temperature. This effect is attributed to the significant difference in thermal conductivity and the thermal expansion coefficient between the alumina and the polymers. The reversibility in thermal response depends on the properties of the polymers.

  2. Shape-memory polymers.

    PubMed

    Lendlein, Andreas; Kelch, Steffen

    2002-06-17

    Material scientists predict a prominent role in the future for self-repairing and intelligent materials. Throughout the last few years, this concept has found growing interest as a result of the rise of a new class of polymers. These so-called shape-memory polymers by far surpass well-known metallic shape-memory alloys in their shape-memory properties. As a consequence of the relatively easy manufacture and programming of shape-memory polymers, these materials represent a cheap and efficient alternative to well-established shape-memory alloys. In shape-memory polymers, the consequences of an intended or accidental deformation caused by an external force can be ironed out by heating the material above a defined transition temperature. This effect can be achieved because of the given flexibility of the polymer chains. When the importance of polymeric materials in our daily life is taken into consideration, we find a very broad, additional spectrum of possible applications for intelligent polymers that covers an area from minimally invasive surgery, through high-performance textiles, up to self-repairing plastic components in every kind of transportation vehicles.

  3. Rapid Polymer Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  4. Design of polymer nanocomposites in solution by polymer functionalization

    NASA Astrophysics Data System (ADS)

    Anderson, J. A.; Sknepnek, R.; Travesset, A.

    2010-08-01

    Polymer nanocomposites, materials combining polymers and inorganic components such as nanosized crystallites or nanoparticles have attracted significant attention in recent years. A successful strategy for designing polymer nanocomposites is polymer functionalization via attaching functional groups with specific affinity for the inorganic component. In this paper, a systematic investigation by molecular dynamics of polymer functionalization for design of composites combining nanosize crystallites with multiblock polymers in solution is presented. It is shown that functionalization is an example of active self-assembly, where the resulting polymer nanocomposite exhibits a different type of order than the original pure polymer system (without inorganic components). Optimal polymer architectures and concentrations are identified appropriate for different applications, alongside an in-depth analysis on the origin and stability of the resulting phases as well as its experimental implications.

  5. Microwave-assisted synthesis and biological evaluation of 3,4-diaryl maleic anhydride/N-substituted maleimide derivatives as combretastatin A-4 analogues.

    PubMed

    Guan, Qi; Zuo, Daiying; Jiang, Nan; Qi, Huan; Zhai, Yanpeng; Bai, Zhaoshi; Feng, Dongjie; Yang, Lei; Jiang, Mingyang; Bao, Kai; Li, Chang; Wu, Yingliang; Zhang, Weige

    2015-02-01

    A series of new CA-4 analogues bearing maleic anhydride/N-substituted maleimide moiety were synthesized via a microwave-assisted process. They were evaluated for the anti-proliferative activities against three tumor cell lines (SGC-7901, HT-1080 and KB). Most compounds showed moderate potencies in micromolar range, with the most promising analogue 6f showing active at submicromolar concentration against HT-1080 cancer cells which was selected to investigate the antitumor mechanisms. In addition, molecular docking studies within the colchicine binding site of tubulin were also in good agreement with the tubulin polymerization inhibitory data and provided a basis for further structure-guided design of novel CA-4 analogues. PMID:25529737

  6. Effect of pre-irradiation PPO-grafted maleic anhydride on structure and properties of PPO-g-MAH/PA66 blends

    NASA Astrophysics Data System (ADS)

    Li, Wenfei; Yao, Zhanhai; Yao, Ruixiang; Li, Xuan; Liu, Shumei

    2014-04-01

    The pre-irradiation polyphenylene oxide (PPO)-graft-maleic anhydride (PPO-g-MAH) was carried out by reactive extrusion. The chemical structure of PPO-g-MAH was characterized by means of Fourier-transform infrared spectroscopy. The wettability of PPO-g-MAH was characterized by the contact angle method. The blends of PPO-g-MAH/polyamide 66 (PA66) were prepared. Compared with the PPO/PA66 blends, mechanical properties of PPO-g-MAH/PA66 blends were distinctly improved. Smaller dispersed particle sizes with narrower distribution were found in PPO-g-MAH/PA66 blends, via field-emitted scanning electron microscopy. Rheological properties of PPO-g-MAH/PA66 blends were studied with a rotational rheometer.

  7. Microwave-assisted synthesis and biological evaluation of 3,4-diaryl maleic anhydride/N-substituted maleimide derivatives as combretastatin A-4 analogues.

    PubMed

    Guan, Qi; Zuo, Daiying; Jiang, Nan; Qi, Huan; Zhai, Yanpeng; Bai, Zhaoshi; Feng, Dongjie; Yang, Lei; Jiang, Mingyang; Bao, Kai; Li, Chang; Wu, Yingliang; Zhang, Weige

    2015-02-01

    A series of new CA-4 analogues bearing maleic anhydride/N-substituted maleimide moiety were synthesized via a microwave-assisted process. They were evaluated for the anti-proliferative activities against three tumor cell lines (SGC-7901, HT-1080 and KB). Most compounds showed moderate potencies in micromolar range, with the most promising analogue 6f showing active at submicromolar concentration against HT-1080 cancer cells which was selected to investigate the antitumor mechanisms. In addition, molecular docking studies within the colchicine binding site of tubulin were also in good agreement with the tubulin polymerization inhibitory data and provided a basis for further structure-guided design of novel CA-4 analogues.

  8. Characterization of the alcoholic fraction of vegetable oils by derivatization with diphenic anhydride followed by high-performance liquid chromatography with spectrophotometric and mass spectrometric detection.

    PubMed

    Lerma-García, M J; Ramis-Ramos, G; Herrero-Martínez, J M; Gimeno-Adelantado, J V; Simó-Alfonso, E F

    2009-01-01

    Aliphatic and triterpene alcohols present in vegetable oils have been identified and determined by HPLC using UV-vis and MS detection after previous derivatization with diphenic anhydride. The alcoholic fraction was obtained by saponification, extraction and TLC (according to the European Union official procedure). Derivatization was performed in tetrahydrofuran in the presence of suspended grinded urea, which increases the reaction rate and yield. Derivatized extracts were chromatographed on a C8 column using gradient elution with acetonitrile/water mixtures containing 0.1% acetic acid, with UV-vis followed by negative-ion mode MS detection. Using linear discriminant analysis of the HPLC-MS data (extracted ion chromatograms), oil samples belonging to seven botanical origins (hazelnut, sunflower, corn, extra virgin olive, soybean, peanut and grapeseed) were correctly classified with excellent resolution among all the categories.

  9. Process for improving phosphorus-vanadium oxide and phosphorus vanadium-co-metal oxide catalysts in the oxidation of -butane to maleic anhydride

    SciTech Connect

    Edwards, R.C.

    1989-03-07

    This patent describes a process for the manufacture of maleic anhydride in which a feedstock comprising butane and a gas containing molecular oxygen are contacted with a phosphorus-vanadium-oxygen catalyst on a catalyst bed having a portion thereof containing an initial exotherm of reaction. The improvement comprises: treating the catalyst by adding to the gaseous feed stream water and a phosphorus compound in an amount sufficient to (a) initiate deactivation of the portion of the catalyst bed containing the initial exotherm, and (b) initiate formation of a new exotherm downstream in the catalyst bed from the initial exotherm, and thereafter reducing or discontinuing application of the phosphorus compound at a point in time when the initial exotherm portion of the catalyst is still undergoing deactivation, thereby allowing the partially deactivated exotherm portion to reactivate producing a more isothermal catalyst bed.

  10. Characterization of the alcoholic fraction of vegetable oils by derivatization with diphenic anhydride followed by high-performance liquid chromatography with spectrophotometric and mass spectrometric detection.

    PubMed

    Lerma-García, M J; Ramis-Ramos, G; Herrero-Martínez, J M; Gimeno-Adelantado, J V; Simó-Alfonso, E F

    2009-01-01

    Aliphatic and triterpene alcohols present in vegetable oils have been identified and determined by HPLC using UV-vis and MS detection after previous derivatization with diphenic anhydride. The alcoholic fraction was obtained by saponification, extraction and TLC (according to the European Union official procedure). Derivatization was performed in tetrahydrofuran in the presence of suspended grinded urea, which increases the reaction rate and yield. Derivatized extracts were chromatographed on a C8 column using gradient elution with acetonitrile/water mixtures containing 0.1% acetic acid, with UV-vis followed by negative-ion mode MS detection. Using linear discriminant analysis of the HPLC-MS data (extracted ion chromatograms), oil samples belonging to seven botanical origins (hazelnut, sunflower, corn, extra virgin olive, soybean, peanut and grapeseed) were correctly classified with excellent resolution among all the categories. PMID:19081103

  11. Simulations of Polymer Translocation

    NASA Astrophysics Data System (ADS)

    Vocks, H.

    2008-07-01

    Transport of molecules across membranes is an essential mechanism for life processes. These molecules are often long, and the pores in the membranes are too narrow for the molecules to pass through as a single unit. In such circumstances, the molecules have to squeeze -- i.e., translocate -- themselves through the pores. DNA, RNA and proteins are such naturally occuring long molecules in a variety of biological processes. Understandably, the process of translocation has been an active topic of current research: not only because it is a cornerstone of many biological processes, but also due to its relevance for practical applications. Translocation is a complicated process in living organisms -- the presence of chaperone molecules, pH, chemical potential gradients, and assisting molecular motors strongly influence its dynamics. Consequently, the translocation process has been empirically studied in great variety in biological literature. Study of translocation as a biophysical process is more recent. Herein, the polymer is simplified to a sequentially connected string of N monomers as it passes through a narrow pore on a membrane. The quantities of interest are the typical time scale for the polymer to leave a confining cell (the ``escape of a polymer from a vesicle'' time scale), and the typical time scale the polymer spends in the pore (the ``dwell'' time scale) as a function of N and other parameters like membrane thickness, membrane adsorption, electrochemical potential gradient, etc. Our research is focused on computer simulations of translocation. Since our main interest is in the scaling properties, we use a highly simplified description of the translocation process. The polymer is described as a self-avoiding walk on a lattice, and its dynamics consists of single-monomer jumps from one lattice site to another neighboring one. Since we have a very efficient program to simulate such polymer dynamics, which we decribe in Chapter 2, we can perform long

  12. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  13. Amide side chain amphiphilic polymers disrupt surface established bacterial bio-films and protect mice from chronic Acinetobacter baumannii infection.

    PubMed

    Uppu, Divakara S S M; Samaddar, Sandip; Ghosh, Chandradhish; Paramanandham, Krishnamoorthy; Shome, Bibek R; Haldar, Jayanta

    2016-01-01

    Bacterial biofilms represent the root-cause of chronic or persistent infections in humans. Gram-negative bacterial infections due to nosocomial and opportunistic pathogens such as Acinetobacter baumannii are more difficult to treat because of their inherent and rapidly acquiring resistance to antibiotics. Due to biofilm formation, A. baumannii has been noted for its apparent ability to survive on artificial surfaces for an extended period of time, therefore allowing it to persist in the hospital environment. Here we report, maleic anhydride based novel cationic polymers appended with amide side chains that disrupt surface established multi-drug resistant A. baumannii biofilms. More importantly, these polymers significantly (p < 0.0001) decrease the bacterial burden in mice with chronic A. baumannii burn wound infection. The polymers also show potent antibacterial efficacy against methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococci (VRE) and multi-drug resistant clinical isolates of A. baumannii with minimal toxicity to mammalian cells. We observe that optimal hydrophobicity dependent on the side chain chemical structure of these polymers dictate the selective toxicity to bacteria. Polymers interact with the bacterial cell membranes by causing membrane depolarization, permeabilization and energy depletion. Bacteria develop rapid resistance to erythromycin and colistin whereas no detectable development of resistance occurs against these polymers even after several passages. These results suggest the potential use of these polymeric biomaterials in disinfecting biomedical device surfaces after the infection has become established and also for the topical treatment of chronic bacterial infections.

  14. Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers

    SciTech Connect

    Kim, Byoung Chan; Nair, Sujith; Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.; Kim, Seong H.; Gu, Man Bock

    2005-04-01

    We have developed a unique approach for the fabrication of enzyme coating on the surface of electrospun polymer nanofibers. This approach employs covalent attachment of seed enzymes onto nanofibers, followed by the glutaraldehyde treatment that crosslinks additional enzymes onto the seed enzyme molecules. These crosslinked enzyme aggregates, covalently attached to the nanofibers via seed enzyme linker, would improve not only the enzyme activity due to increased enzyme loading, but also the enzyme stability. To demonstrate the principle of concept, we fabricated the coating of alpha-chymotrypsin (CT) on the nanofibers electrospun from a mixture of polystyrene and poly(styrene-co-maleic anhydride). The addition of poly(styrene-co-maleic anhydride) makes it much easier to attach the seed enzyme molecules onto electrospun nanofibers without any rigorous functionalization of nanofibers for the attachment of enzymes. The initial activity of final CT coating was 17 and 9 times higher than those of simply-adsorbed CT and covalently-attached CT, respectively. While adsorbed and covalently-attached CT resulted in a serious enzyme leaching during initial incubation in a shaking condition, the CT coating did not show any leaching from the beginning of incubation in the same condition. As a result, the enzyme stability of CT coating was impressively improved with a half-life of 686 days under rigorous shaking while the half-life of covalently-attached CT was only 21 hours. This new approach of enzyme coating with high stability and activity will make a great impact in various applications of enzymes such as bioconversion, bioremediation, and biosensors.

  15. Role of surface functionality on the formation of raspberry-like polymer/silica composite particles: Weak acid-base interaction and steric effect

    NASA Astrophysics Data System (ADS)

    Wang, Lan; Song, LinYong; Chao, ZhiYin; Chen, PengPeng; Nie, WangYan; Zhou, YiFeng

    2015-07-01

    The surface functionality of polymer microspheres is the crucial factor to determine the nucleation and growth of silica particles and to construct the organic/inorganic hierarchical structures. The objective of this work was to evaluate the surface functionality and hierarchical morphology relationship via in situ sol-gel reaction. Carboxylic-functionalized poly (styrene-co-maleic anhydride) [P(S-co-MA)], poly(ethylene glycol)-functionalized poly(styrene-co-poly(ethylene glycol) methacrylate) [P(S-co-PEGMA)], and hybrid functionalized poly(styrene-co-maleic anhydride-co-poly(ethylene glycol) methacrylate) [P(S-co-MA-co-PEGMA)] microspheres were synthesized by emulsifier-free polymerization and used as templates. The morphologies of the composite particles were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results showed that core-shell structure was obtained with P(S-co-MA) as templates; raspberry-like structure was observed by using P(S-co-MA-co-PEGMA) as templates; and no silica particles were attached onto the surface of P(S-co-PEGMA) microspheres. These results indicated that the carboxylic groups on the surface formed by hydrolysis of anhydride groups were the determinate factor to control the nucleation of silica nanoparticles, and the PEG chains on the surface can affect the growth of silica particles. In addition, the particulate films were constructed by assembling these composite particles on glass substrates and modified with dodecyltrichlorosilane, the contact angles of water on the dual-sized structured surface were up to 160°.

  16. Modelling polymer draft gears

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Yang, Xiangjian; Cole, Colin; Luo, Shihui

    2016-09-01

    This paper developed a new and simple approach to model polymer draft gears. Two types of polymer draft gears were modelled and compared with experimental data. Impact characteristics, in-train characteristics and frequency responses of these polymer draft gears were studied and compared with those of a friction draft gear. The impact simulations show that polymer draft gears can withstand higher impact speeds than the friction draft gear. Longitudinal train dynamics simulations show that polymer draft gears have significantly longer deflections than friction draft gears in normal train operations. The maximum draft gear working velocities are lower than 0.2 m/s, which are significantly lower than the impact velocities during shunting operations. Draft gears' in-train characteristics are similar to their static characteristics but are very different from their impact characteristics; this conclusion has also been reached from frequency response simulations. An analysis of gangway bridge plate failures was also conducted and it was found that they were caused by coupler angling behaviour and long draft gear deflections.

  17. Treatment of Osteomyelitis in Rats by Injection of Degradable Polymer Releasing Gentamicin

    PubMed Central

    Brin, Yaron S.; Golenser, Jacob; Mizrahi, Boaz; Maoz, Guy; Domb, Abraham J.; Peddada, Shyamal; Tuvia, Shmuel; Nyska, Abraham; Nyska, Meir

    2009-01-01

    We evaluated the potential of an injectable degradable polymer-Poly(sebacic-co-ricinoleic-ester-anhydride) containing gentamicin for the treatment of osteomyelitis. Osteomyelitis of both tibiae was induced in 13 female Fischer rats by injecting a suspension containing approximately 105 (CFU)/ml of S. Aureus into the tibial medullar canal. Three weeks later both tibiae were X rayed, drilled down the medullar canal, washed with 50µl gentamicin solution (80mg/2ml) and then injected with 50µl P(SARA) + gentamycin 20% w/v to the right tibia and 50µl P(SA-RA) without gentamicin to the left tibia. After an additional 3 weeks, the rats were sacrificed, and radiographs of the tibiae were taken. Histopathological evaluation of the tibiae was done in a blinded manner. X ray radiographs showed that all tibiae developed changes compatible with osteomyelitis in 3 weeks. Histological evaluation revealed significant differences between right and left tibiae in 10 rats. In the left tibia moderate intramedullary abscess formation occurred. In most treated tibiae typical changes included the absence (or minimal grade only) of abscesses. The treated group developed significantly less intramedullary abscesses; the p-value was 0.028. Locally injected degradable polymer releasing gentamicin proved to be efficient histologically in the treatment of osteomyelitis PMID:18692531

  18. An electronic nose for amine detection based on polymer/SWNT-COOH nanocomposite.

    PubMed

    Lorwongtragooll, Panida; Wisitsoraat, Anurat; Kerdcharoen, Teerakiat

    2011-12-01

    An electronic nose (e-nose) system based on polymer/carboxylic-functionalized single-walled carbon nanotubes (SWNT-COOH) was developed for sensing various volatile amines. The SWNT-COOH dispersed in the matrix of different polymers; namely, polyvinyl chloride (PVC), cumene terminated polystyrene-co-maleic anhydride (cumene-PSMA), poly(styrenecomaleic acid) partial isobutyl/methyl mixed ester (PSE), and polyvinylpyrrolidon (PVP), were deposited on interdigitated gold electrodes to make the gas sensors. The response of these sensors to volatile amines was studied by both static and dynamic flow measurements. It was found that all sensors exhibited behaviors corresponding to Plateau-Bretano-Stevens law (R2 = 0.81 to 0.99) as the response to volatile amines. Real-world application was demonstrated by applying this e-nose to monitor the odor of sun-dried snakeskin gourami that was pre-processed by salting-preservation. This electronic nose can discriminate sun-dried fish odors with different stored days using a simple pattern recognition based on the principal component analysis (PCA).

  19. Flame spraying of polymers

    SciTech Connect

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-08-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs.

  20. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1992-01-01

    Progress was made in several areas on the preparation of carbon fiber composites using advanced polymer resins. Polymer infiltration studies dealt with ways of preparing composite materials from advanced polymer resins and carbon fibers. This effort is comprised of an integrated approach to the process of composite part fabrication. The goal is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft. The object is achieved through investigations at the NASA Langley Research Center and by stimulating technology transfer between contract researchers and the aircraft industry. Covered here are literature reviews, a status report on individual projects, current and planned research, publications, and scheduled technical presentations.

  1. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  2. Inorganic polymer engineering materials

    SciTech Connect

    Stone, M.L.

    1993-06-01

    Phosphazene-based, inorganic-polymer composites have been produced and evaluated as potential engineering materials. The thermal, chemical, and mechanical properties of several different composites made from one polymer formulation have been measured. Measured properties are very good, and the composites show excellent promise for structural applications in harsh environments. Chopped fiberglass, mineral, cellulose, and woodflour filled composites were tested. Chopped fiberglass filled composites showed the best overall properties. The phosphazene composites are very hard and rigid. They have low dielectric constants and typical linear thermal expansion coefficients for polymers. In most cases, the phosphazene materials performed as well or better than analogous, commercially available, filled phenolic composites. After 3 to 5 weeks of exposure, both the phosphazene and phenolics were degraded to aqueous bases and acids. The glass filled phosphazene samples were least affected.

  3. Liquid crystalline polymers

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The remarkable mechanical properties and thermal stability of fibers fabricated from liquid crystalline polymers (LCPs) have led to the use of these materials in structural applications where weight savings are critical. Advances in processing of LCPs could permit the incorporation of these polymers into other than uniaxial designs and extend their utility into new areas such as nonlinear optical devices. However, the unique feature of LCPs (intrinsic orientation order) is itself problematic, and current understanding of processing with control of orientation falls short of allowing manipulation of macroscopic orientation (except for the case of uniaxial fibers). The current and desirable characteristics of LCPs are reviewed and specific problems are identified along with issues that must be addressed so that advances in the use of these unique polymers can be expedited.

  4. Antithrombogenic Polymer Coating.

    DOEpatents

    Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2003-01-21

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  5. Polymer containing functional end groups is base for new polymers

    NASA Technical Reports Server (NTRS)

    Hirshfield, S. M.

    1971-01-01

    Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.

  6. Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates.

    PubMed

    Santos, R M; Vilaverde, C; Cunha, E; Paiva, M C; Covas, J A

    2016-01-01

    A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity. PMID:26439171

  7. Facile transition from hydrophilicity to superhydrophilicity and superhydrophobicity on aluminum alloy surface by simple acid etching and polymer coating

    NASA Astrophysics Data System (ADS)

    Liu, Wenyong; Sun, Linyu; Luo, Yuting; Wu, Ruomei; Jiang, Haiyun; Chen, Yi; Zeng, Guangsheng; Liu, Yuejun

    2013-09-01

    The transition from the hydrophilic surface to the superhydrophilic and superhydrophobic surface on aluminum alloy via hydrochloric acid etching and polymer coating was investigated by contact angle (CA) measurements and scanning electron microscope (SEM). The effects of etching and polymer coating on the surface were discussed. The results showed that a superhydrophilic surface was facilely obtained after acid etching for 20 min and a superhydrophobic surface was readily fabricated by polypropylene (PP) coating after acid etching. When the etching time was 30 min, the CA was up to 157̊. By contrast, two other polymers of polystyrene (PS) and polypropylene grafting maleic anhydride (PP-g-MAH) were used to coat the aluminum alloy surface after acid etching. The results showed that the CA was up to 159̊ by coating PP-g-MAH, while the CA was only 141̊ by coating PS. By modifying the surface with the silane coupling agent before PP coating, the durability and solvent resistance performance of the superhydrophobic surface was further improved. The micro-nano concave-convex structures of the superhydrophilic surface and the superhydrophobic surface were further confirmed by scanning electron microscope (SEM). Combined with the natural hydrophilicity of aluminum alloy, the rough micro-nano structures of the surface led to the superhydrophilicity of the aluminum alloy surface, while the rough surface structures led to the superhydrophobicity of the aluminum alloy surface by combination with the material of PP with the low surface free energy.

  8. Nanoparticles from renewable polymers

    PubMed Central

    Wurm, Frederik R.; Weiss, Clemens K.

    2014-01-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications. PMID:25101259

  9. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1991-01-01

    Progress was made on the preparation of carbon fiber composites using advanced polymer resins. Processes reported include powder towpreg process, weaving towpreg made from dry powder prepreg, composite from powder coated towpreg, and toughening of polyimide resin (PMR) composites by semi-interpenetrating networks. Several important areas of polymer infiltration into fiber bundles will be researched. Preparation to towpreg for textile preform weaving and braiding and for automated tow placement is a major goal, as are the continued development of prepregging technology and the various aspects of composite part fabrication.

  10. Nanoparticles from Renewable Polymers

    NASA Astrophysics Data System (ADS)

    Wurm, Frederik; Weiss, Clemens

    2014-07-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  11. Nanoparticles from renewable polymers.

    PubMed

    Wurm, Frederik R; Weiss, Clemens K

    2014-01-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications. PMID:25101259

  12. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1995-01-01

    Polymer infiltration investigations were directed toward development of methods by which to produce advanced composite material for automated part fabrication utilizing textile and robotic technology in the manufacture of subsonic and supersonic aircraft. Significant progress was made during the project on the preparation of carbon fiber composites using advanced polymer resins. The findings and results of the project are summarized in the attached paper entitled 'Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composite.' Also attached to this report is the second of two patent applications submitted as a result of these studies.

  13. Antibacterial polymer coatings.

    SciTech Connect

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  14. Shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  15. Trifluoromethyl-substituted polymers

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E.

    1990-01-01

    The synthesis of polymers is discussed. It includes: (1) the synthesis of fluorine-containing crosslinked poly(ether ketones); (2) the synthesis and characterization of poly(imide amides) and their N-methylated analogues; (3) the synthesis of fluorine-containing aromatic polyethers; (4) the synthesis of novel fluorine-containing aromatic polysiloxanes; and (5) the conversion of 6F-containing polythioethers to polysulfones. It is hoped that these polymers will find use as low dielectric materials in electronic applications, function as thermal control coatings, or be suitable elastomeric sealants for extreme service conditions.

  16. Nanoparticles from renewable polymers.

    PubMed

    Wurm, Frederik R; Weiss, Clemens K

    2014-01-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  17. Computer modeling of polymers

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1988-01-01

    A Polymer Molecular Analysis Display System (p-MADS) was developed for computer modeling of polymers. This method of modeling allows for the theoretical calculation of molecular properties such as equilibrium geometries, conformational energies, heats of formations, crystal packing arrangements, and other properties. Furthermore, p-MADS has the following capabilities: constructing molecules from internal coordinates (bonds length, angles, and dihedral angles), Cartesian coordinates (such as X-ray structures), or from stick drawings; manipulating molecules using graphics and making hard copy representation of the molecules on a graphics printer; and performing geometry optimization calculations on molecules using the methods of molecular mechanics or molecular orbital theory.

  18. An overview of degradable polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials...

  19. An overview of degradable polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many degradable polymers are being investigated for research purpose or for possible commercial use. This overview provides a listing of the more important degradable polymers and their mechanisms of action. Some application areas, particularly in packaging, housewares, personal care, biomaterials, ...

  20. Synthetic Metal-Containing Polymers

    NASA Astrophysics Data System (ADS)

    Manners, Ian

    2004-04-01

    The development of the field of synthetic metal-containing polymers - where metal atoms form an integral part of the main chain or side group structure of a polymer - aims to create new materials which combine the processability of organic polymers with the physical or chemical characteristics associated with the metallic element or complex. This book covers the major developments in the synthesis, properties, and applications of synthetic metal-containing macromolecules, and includes chapters on the preparation and characterization of metal-containing polymers, metallocene-based polymers, rigid-rod organometallic polymers, coordination polymers, polymers containing main group metals, and also covers dendritic and supramolecular systems. The book describes both polymeric materials with metals in the main chain or side group structure and covers the literature up to the end of 2002.

  1. A Course in Polymer Processing.

    ERIC Educational Resources Information Center

    Soong, David S.

    1985-01-01

    A special-topics course in polymer processing has acquired regular course status. Course goals, content (including such new topics as polymer applications in microelectronics), and selected term projects are described. (JN)

  2. Composite solid polymer electrolyte membranes

    DOEpatents

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  3. Classroom Demonstrations of Polymer Principles.

    ERIC Educational Resources Information Center

    Rodriguez, F.

    1990-01-01

    Classroom demonstrations of selected mechanical properties of polymers are described that can be used to make quantitative measurements. Stiffness, strength, and extensibility are mechanical properties used to distinguish one polymer from another. (KR)

  4. Stimuli-responsive polymer films.

    PubMed

    Zhai, Lei

    2013-09-01

    Stimuli-responsive polymer films undergo interesting structural and property changes upon external stimuli. Their applications have extended from smart coatings to controlled drug release, smart windows, self-repair and other fields. This tutorial review summarizes non-covalent bonding, reversible reactions and responsive molecules that have played important roles in creating stimuli-responsive systems, and presents the recent development of three types of responsive polymer systems: layer-by-layer polymer multilayer films, polymer brushes, and self-repairing polymer films, with a discussion of their response mechanism. Future research efforts include comprehensive understanding of the response mechanism, producing polymer systems with controlled response properties regarding single or multiple external signals, combining polymer film fabrication with nanotechnology, improving the stability of polymer films on substrates, and evaluating the toxicity of the degradation products. PMID:23749141

  5. Shape memory polymer medical device

    DOEpatents

    Maitland, Duncan; Benett, William J.; Bearinger, Jane P.; Wilson, Thomas S.; Small, IV, Ward; Schumann, Daniel L.; Jensen, Wayne A.; Ortega, Jason M.; Marion, III, John E.; Loge, Jeffrey M.

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  6. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  7. New polymers for phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1981-01-01

    The synthesizing of several polyethylene glycols having crown ethers attached is reported. This work led to the identification of three new polymer types which promise to be more effective at selectively binding specific cell types. Work was completed on identification of chemical properties of the new polymer crowns and on development of new techniques for determination of polymer-phase composition.

  8. Semi-Interpenetrating Polymer Networks

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Egli, A. O.

    1987-01-01

    Desirable qualities achieved by "networking" aromatic and addition polyimides. Novel semi-interpenetrating network (semi-ipn) prepared from two types of polyimides. Semi-ipn results when linear polymer synthesized in presence of cross-linked polymer or vice-versa. Semi-ipn attains certain properties better than those of either polymer alone.

  9. Synthesis of thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Butler, G. B.

    1978-01-01

    The reaction of bis triazo linediones with divinyl esters and substituted styrenes was investigated. Twenty new polymers were derived via reaction of two previously synthesized bis triazol linediones and four new bis atriazol linediones with eight styrenes. The structure and polymer properties of these thermally stable polymers was examined. The reaction of triazo linediones with enol esters was also considered.

  10. Mesoporous carbons and polymers

    DOEpatents

    Bell, William; Dietz, Steven

    2001-01-01

    A mesoporous material prepared by polymerizing a resorcinol/formaldehyde system from an aqueous solution containing resorcinol, formaldehyde and a surfactant and optionally pyrolyzing the polymer to form a primarily carbonaceous solid. The material has an average pore size between 4 and 75 nm and is suitable for use in liquid-phase surface limited applications, including sorbent, catalytic, and electrical applications.

  11. Cyclic polymers from alkynes

    NASA Astrophysics Data System (ADS)

    Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

  12. Solid polymer electrolyte compositions

    DOEpatents

    Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  13. Self-sterilizing polymers

    NASA Technical Reports Server (NTRS)

    Tulis, J. J.; Daley, D. J.; Phillips, G. B.

    1973-01-01

    Addition of approximately 1% paraformaldehyde to room-temperature-vulcanizing potting polymer results in effective, controllable germicide. When heated above ambient temperatures, paraformaldehyde releases dry formaldehyde, which can penetrate enclosed areas and packages, will not damage material, and leaves no permanent residue.

  14. Polymer infiltration studies

    NASA Technical Reports Server (NTRS)

    Marchello, Joseph M.

    1992-01-01

    The preparation is reported of carbon fiber composites using advanced polymer resins. Current and ongoing research activities include: powder towpreg process; weaving, braiding and stitching dry powder prepreg; advanced tow placement; and customized ATP towpreg. The goal of these studies is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft.

  15. Sedimentation of knotted polymers

    NASA Astrophysics Data System (ADS)

    Piili, J.; Marenduzzo, D.; Kaski, K.; Linna, R. P.

    2013-01-01

    We investigate the sedimentation of knotted polymers by means of stochastic rotation dynamics, a molecular dynamics algorithm that takes hydrodynamics fully into account. We show that the sedimentation coefficient s, related to the terminal velocity of the knotted polymers, increases linearly with the average crossing number nc of the corresponding ideal knot. This provides direct computational confirmation of this relation, postulated on the basis of sedimentation experiments by Rybenkov [J. Mol. Biol.10.1006/jmbi.1996.0876 267, 299 (1997)]. Such a relation was previously shown to hold with simulations for knot electrophoresis. We also show that there is an accurate linear dependence of s on the inverse of the radius of gyration Rg-1, more specifically with the inverse of the Rg component that is perpendicular to the direction along which the polymer sediments. When the polymer sediments in a slab, the walls affect the results appreciably. However, Rg-1 remains to a good precision linearly dependent on nc. Therefore, Rg-1 is a good measure of a knot's complexity.

  16. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  17. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  18. Overview on energetic polymers

    SciTech Connect

    Boileau, J.

    1996-07-01

    Energetic materials for missiles, gun munitions or pyrotechnic devices often are mixtures in a biphasic form, with a filler and a binder. To satisfy the user needs, an analysis of functional requirements together with constraints (safety, vulnerability, aging, environment, disposal, price) is useful to choose a convenient binder. From this point of view numerous synthetic energetic polymers proposed or developed as binders are reviewed with regard to their syntheses, processing, properties and possible uses. These polymers contain explosophore groups: C-NO{sub 2} aliphatic or aromatic, ONO{sub 2}, NNO{sub 2}, NF{sub 2} and N{sub 3}. Some research projects are suggested. Among them in the list of published polymers, following a NIMIC (NATO) suggestion, note the reason of a development interruption. Some dinitropolystyrene-polyvinyl nitrate mixtures or copolymers could exhibit interesting properties. For unknown reasons, some mixtures of crystalline filler with polymer binder, generally in a biphasic form, may also be monophasic for a same composition. What properties are modified between both forms (e.g. combustion mechanisms, erosion, ideal character of the detonation)? It is also interesting to pursue a newly open route to thermo-plastic elastomers. 50 refs., 1 tab.

  19. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  20. Metal-Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nicolais, Luigi; Carotenuto, Gianfranco

    2004-09-01

    A unique guide to an essential area of nanoscience Interest in nano-sized metals has increased greatly due to their special characteristics and suitability for a number of advanced applications. As technology becomes more refined-including the ability to effectively manipulate and stabilize metals at the nanoscale-these materials present ever-more workable solutions to a growing range of problems. Metal-Polymer Nanocomposites provides the first guide solely devoted to the unique properties and applications of this essential area of nanoscience. It offers a truly multidisciplinary approach, making the text accessible to readers in physical, chemical, and materials science as well as areas such as engineering and topology. The thorough coverage includes: * The chemical and physical properties of nano-sized metals * Different approaches to the synthesis of metal-polymer nanocomposites (MPN) * Advanced characterization techniques and methods for study of MPN * Real-world applications, including color filters, polarizers, optical sensors, nonlinear optical devices, and more * An extensive list of references on the topics covered A unique, cutting-edge resource for a vital area of nanoscience development, Metal-Polymer Nanocomposites is an invaluable text for students and practitioners of materials science, engineering, polymer science, chemical engineering, electrical engineering, and optics.