Sample records for ethernet field deployment

  1. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-09-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. Scope of Submission The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities To submit to this special issue, follow the normal procedure for submission to JON, indicating "Optical Ethernet feature" in the "Comments" field of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line "Optical Ethernet." Additional information can be found on the JON website: http://www.osa-jon.org/submission/

  2. Gigabit Ethernet: A Technical Assessment.

    ERIC Educational Resources Information Center

    Axner, David

    1997-01-01

    Describes gigabit ethernet for LAN (local area network) technology that will expand ethernet bandwidth. Technical details are discussed, including protocol stacks, optical fiber, deployment strategy for performance improvement, ATM (Asynchronous Transfer Mode), real-time protocol, reserve reservation protocol, and standards. (LRW)

  3. Ethernet direct display: a new dimension for in-vehicle video connectivity solutions

    NASA Astrophysics Data System (ADS)

    Rowley, Vincent

    2009-05-01

    To improve the local situational awareness (LSA) of personnel in light or heavily armored vehicles, most military organizations recognize the need to equip their fleets with high-resolution digital video systems. Several related upgrade programs are already in progress and, almost invariably, COTS IP/Ethernet is specified as the underlying transport mechanism. The high bandwidths, long reach, networking flexibility, scalability, and affordability of IP/Ethernet make it an attractive choice. There are significant technical challenges, however, in achieving high-performance, real-time video connectivity over the IP/Ethernet platform. As an early pioneer in performance-oriented video systems based on IP/Ethernet, Pleora Technologies has developed core expertise in meeting these challenges and applied a singular focus to innovating within the required framework. The company's field-proven iPORTTM Video Connectivity Solution is deployed successfully in thousands of real-world applications for medical, military, and manufacturing operations. Pleora's latest innovation is eDisplayTM, a smallfootprint, low-power, highly efficient IP engine that acquires video from an Ethernet connection and sends it directly to a standard HDMI/DVI monitor for real-time viewing. More costly PCs are not required. This paper describes Pleora's eDisplay IP Engine in more detail. It demonstrates how - in concert with other elements of the end-to-end iPORT Video Connectivity Solution - the engine can be used to build standards-based, in-vehicle video systems that increase the safety and effectiveness of military personnel while fully leveraging the advantages of the lowcost COTS IP/Ethernet platform.

  4. An economic analysis on optical Ethernet in the access network

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hwi; Nam, Dohyun; Yoo, Gunil; Kim, WoonHa

    2004-04-01

    Nowadays, Broadband service subscribers have increased exponentially and have almost saturated in Korea. Several types of solutions for broadband service applied to the field. Among several types of broadband services, most of subscribers provided xDSL service like ADSL or VDSL. Usually, they who live in an apartment provided Internet service by Ntopia network as FTTC structure that is a dormant network in economical view at KT. Under competitive telecom environment for new services like video, we faced with needing to expand or rebuild portions of our access networks, are looking for ways to provide any service that competitors might offer presently or in the near future. In order to look for new business model like FTTH service, we consider deploying optical access network. In spite of numerous benefits of PON until now, we cannot believe that PON is the best solution in Korea. Because we already deployed optical access network of ring type feeder cable and have densely population of subscribers that mainly distributed inside 6km from central office. So we try to utilize an existing Ntopia network for FTTH service under optical access environment. Despite of such situations, we try to deploy PON solution in the field as FTTC or FTTH architecture. Therefore we analyze PON structure in comparison with AON structure in order to look for optimized structure in Korea. At first, we describe the existing optical access networks and network architecture briefly. Secondly we investigate the cost of building optical access networks by modeling cost functions on AON and PON structure which based on Ethernet protocol, and analyze two different network architectures according to different deployment scenarios: Urban, small town, rural. Finally we suggest the economic and best solution with PON structure to optimize to optical access environment of KT.

  5. Calculating distance by wireless ethernet signal strength for global positioning method

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yong; Kim, Jeehong; Lee, Chang-goo

    2005-12-01

    This paper investigated mobile robot localization by using wireless Ethernet for global localization and INS for relative localization. For relative localization, the low-cost INS features self-contained was adopted. Low-cost MEMS-based INS has a short-period response and acceptable performance. Generally, variety sensor was used for mobile robot localization. In spite of precise modeling of the sensor, it leads inevitably to the accumulation of errors. The IEEE802.11b wireless Ethernet standard has been deployed in office building, museums, hospitals, shopping centers and other indoor environments. Many mobile robots already make use of wireless networking for communication. So location sensing with wireless Ethernet might be very useful for a low-cost robot. This research used wireless Ethernet card for compensation the accumulation of errors. So the mobile robot can use that for global localization through the installed many IEEE802.11b wireless Ethernets in indoor environments. The chief difficulty in localization with wireless Ethernet is predicting signal strength. As a sensor, RF signal strength measured indoors is non-linear with distance. So, there made the profiles of signal strength for points and used that. We wrote using function between signal strength profile and distance from the wireless Ethernet point.

  6. Study of multi-LLID technology to support multi-services carring in EPONS

    NASA Astrophysics Data System (ADS)

    Li, Wang; Yi, Benshun; Cheng, Chuanqing

    2006-09-01

    The Ethernet Passive Optical Network (EPON) has recently attracted more and more research attentions since it could be a perfect candidate for next generation access networks. EPON utilizes pon structure to carry ethernet data, having the both advantages of pon and ethernet devices. From traditional view, EPON is considered to only be a Ethernet services access platform and wake in supporting multi-services especially real-time service. It is obvious that if epon designed only to aim to carrying data service, it is difficult for epon devices to fulfill service provider's command of taking EPON as a integrated service access platform. So discussing the multi-services carrying technology in EPONs is a significative task. This paper deploy a novel method of multi-llid to support multi-services carrying in EPONs.

  7. Ethernet access network based on free-space optic deployment technology

    NASA Astrophysics Data System (ADS)

    Gebhart, Michael; Leitgeb, Erich; Birnbacher, Ulla; Schrotter, Peter

    2004-06-01

    The satisfaction of all communication needs from single households and business companies over a single access infrastructure is probably the most challenging topic in communications technology today. But even though the so-called "Last Mile Access Bottleneck" is well known since more than ten years and many distribution technologies have been tried out, the optimal solution has not yet been found and paying commercial access networks offering all service classes are still rare today. Conventional services like telephone, radio and TV, as well as new and emerging services like email, web browsing, online-gaming, video conferences, business data transfer or external data storage can all be transmitted over the well known and cost effective Ethernet networking protocol standard. Key requirements for the deployment technology driven by the different services are high data rates to the single customer, security, moderate deployment costs and good scalability to number and density of users, quick and flexible deployment without legal impediments and high availability, referring to the properties of optical and wireless communication. We demonstrate all elements of an Ethernet Access Network based on Free Space Optic distribution technology. Main physical parts are Central Office, Distribution Network and Customer Equipment. Transmission of different services, as well as configuration, service upgrades and remote control of the network are handled by networking features over one FSO connection. All parts of the network are proven, the latest commercially available technology. The set up is flexible and can be adapted to any more specific need if required.

  8. FPGA-Based Networked Phasemeter for a Heterodyne Interferometer

    NASA Technical Reports Server (NTRS)

    Rao, Shanti

    2009-01-01

    A document discusses a component of a laser metrology system designed to measure displacements along the line of sight with precision on the order of a tenth the diameter of an atom. This component, the phasemeter, measures the relative phase of two electrical signals and transfers that information to a computer. Because the metrology system measures the differences between two optical paths, the phasemeter has two inputs, called measure and reference. The reference signal is nominally a perfect square wave with a 50- percent duty cycle (though only rising edges are used). As the metrology system detects motion, the difference between the reference and measure signal phases is proportional to the displacement of the motion. The phasemeter, therefore, counts the elapsed time between rising edges in the two signals, and converts the time into an estimate of phase delay. The hardware consists of a circuit board that plugs into a COTS (commercial, off-the- shelf) Spartan-III FPGA (field-programmable gate array) evaluation board. It has two BNC inputs, (reference and measure), a CMOS logic chip to buffer the inputs, and an Ethernet jack for transmitting reduced-data to a PC. Two extra BNC connectors can be attached for future expandability, such as external synchronization. Each phasemeter handles one metrology channel. A bank of six phasemeters (and two zero-crossing detector cards) with an Ethernet switch can monitor the rigid body motion of an object. This device is smaller and cheaper than existing zero-crossing phasemeters. Also, because it uses Ethernet for communication with a computer, instead of a VME bridge, it is much easier to use. The phasemeter is a key part of the Precision Deployable Apertures and Structures strategic R&D effort to design large, deployable, segmented space telescopes.

  9. The research and application of Ethernet over RPR technology

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-11-01

    With service competitions of carriers aggravating and client's higher service experience requirement, it urges the MAN technology develops forward. When the Core Layer and Distribution Layer technology are mature, all kinds of reliability technologies of MAN access Layer are proposed. EoRPR is one of reliability technologies for MAN access network service protection. This paper elaborates Ethernet over RPR technology's many advantages through analyzing basic principle, address learning and key technologies of Ethernet over RPR. EpRPR has quicker replacing speed, plug and play, stronger QoS ability, convenient service deployment, band fairly sharing, and so on. At the same time the paper proposed solution of Ethernet over RPR in MAN, NGN network and enterprise Private network. So, among many technologies of MAN access network, EoRPR technology has higher reliability and manageable and highly effectiveness and lower costive of Ethernet. It is not only suitable for enterprise interconnection, BTV and NGN access services and so on, but also can meet the requirement of carriers' reducing CAPEX and OPEX's and increase the rate of investment.

  10. Comparison of High Performance Network Options: EDR InfiniBand vs.100Gb RDMA Capable Ethernet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachelmeier, Luke Anthony; Van Wig, Faith Virginia; Erickson, Kari Natania

    These are the slides for a presentation at the HPC Mini Showcase. This is a comparison of two different high performance network options: EDR InfiniBand and 100Gb RDMA capable ethernet. The conclusion of this comparison is the following: there is good potential, as shown with the direct results; 100Gb technology is too new and not standardized, thus deployment effort is complex for both options; different companies are not necessarily compatible; if you want 100Gb/s, you must get it all from one place.

  11. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    NASA Technical Reports Server (NTRS)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  12. Modeling and testing of ethernet transformers

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2011-12-01

    Twisted-pair Ethernet is now the standard home and office last-mile network technology. For decades, the IEEE standard that defines Ethernet has required electrical isolation between the twisted pair cable and the Ethernet device. So, for decades, every Ethernet interface has used magnetic core Ethernet transformers to isolate Ethernet devices and keep users safe in the event of a potentially dangerous fault on the network media. The current state-of-the-art Ethernet transformers are miniature (<5mm diameter) ferrite-core toroids wrapped with approximately 10 to 30 turns of wire. As small as current Ethernet transformers are, they still limit further Ethernet device miniaturization and require a separate bulky package or jack housing. New coupler designs must be explored which are capable of exceptional miniaturization or on-chip fabrication. This dissertation thoroughly explores the performance of the current commercial Ethernet transformers to both increase understanding of the device's behavior and outline performance parameters for replacement devices. Lumped element and distributed circuit models are derived; testing schemes are developed and used to extract model parameters from commercial Ethernet devices. Transfer relation measurements of the commercial Ethernet transformers are compared against the model's behavior and it is found that the tuned, distributed models produce the best transfer relation match to the measured data. Process descriptions and testing results on fabricated thin-film dielectric-core toroid transformers are presented. The best results were found for a 32-turn transformer loaded with 100Ω, the impedance of twisted pair cable. This transformer gave a flat response from about 10MHz to 40MHz with a height of approximately 0.45. For the fabricated transformer structures, theoretical methods to determine resistance, capacitance and inductance are presented. A special analytical and numerical analysis of the fabricated transformer inductance is presented. Planar cuts of magnetic slope fields around the dielectric-core toroid are shown that describe the effect of core height and winding density on flux uniformity without a magnetic core.

  13. Monitoring complex detectors: the uSOP approach in the Belle II experiment

    NASA Astrophysics Data System (ADS)

    Di Capua, F.; Aloisio, A.; Ameli, F.; Anastasio, A.; Branchini, P.; Giordano, R.; Izzo, V.; Tortone, G.

    2017-08-01

    uSOP is a general purpose single board computer designed for deep embedded applications in control and monitoring of detectors, sensors and complex laboratory equipments. It is based on the AM3358 (1 GHz ARM Cortex A8 processor), equipped with USB and Ethernet interfaces. On-board RAM and solid state storage allows hosting a full LINUX distribution. In this paper we discuss the main aspects of the hardware and software design and the expandable peripheral architecture built around field busses. We report on several applications of uSOP system in the Belle II experiment, presently under construction at KEK (Tsukuba, Japan). In particular we will report the deployment of uSOP in the monitoring system framework of the endcap electromagnetic calorimeter.

  14. ShareSync: A Solution for Deterministic Data Sharing over Ethernet

    NASA Technical Reports Server (NTRS)

    Dunn, Daniel J., II; Koons, William A.; Kennedy, Richard D.; Davis, Philip A.

    2007-01-01

    As part of upgrading the Contact Dynamics Simulation Laboratory (CDSL) at the NASA Marshall Space Flight Center (MSFC), a simple, cost effective method was needed to communicate data among the networked simulation machines and I/O controllers used to run the facility. To fill this need and similar applicable situations, a generic protocol was developed, called ShareSync. ShareSync is a lightweight, real-time, publish-subscribe Ethernet protocol for simple and deterministic data sharing across diverse machines and operating systems. ShareSync provides a simple Application Programming Interface (API) for simulation programmers to incorporate into their code. The protocol is compatible with virtually all Ethernet-capable machines, is flexible enough to support a variety of applications, is fast enough to provide soft real-time determinism, and is a low-cost resource for distributed simulation development, deployment, and maintenance. The first design cycle iteration of ShareSync has been completed, and the protocol has undergone several testing procedures including endurance and benchmarking tests and approaches the 2001ts data synchronization design goal for the CDSL.

  15. 202 km repeaterless transmission of 2 × 10 GE plus 2 × 1 GE channels over standard single mode fibre

    NASA Astrophysics Data System (ADS)

    Karásek, M.; Peterka, P.; Radil, Jan

    2004-05-01

    In this article, we present experimental results on transmission of two 10 gigabit ethernet channels (10 GE) plus two 1 gigabit ethernet channels (1 GE) over 202 km of standard single mode fibre (SSMF, ITU-T Recommendation G.652) without deployment of in-line amplifiers. Standard Cisco Catalyst 6503 line-cards with one 10 GE port and one 1 GE port in the 1550 nm, high power booster erbium-doped fibre amplifiers (EDFA) and low noise EDFA have been used in the experimental set-up. All the active components were placed either at the transmitter, or at the receiver side of the link. Group velocity dispersion (GVD) of the SSMF has been compensated by dispersion compensating fibre (DCF).

  16. A Systematic Scheme for Multiple Access in Ethernet Passive Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Ma, Maode; Zhu, Yongqing; Hiang Cheng, Tee

    2005-11-01

    While backbone networks have experienced substantial changes in the last decade, access networks have not changed much. Recently, passive optical networks (PONs) seem to be ready for commercial deployment as access networks, due to the maturity of a number of enabling technologies. Among the PON technologies, Ethernet PON (EPON) standardized by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force is the most attractive one because of its high speed, low cost, familiarity, interoperability, and low overhead. In this paper, we consider the issue of upstream channel sharing in the EPONs. We propose a novel multiple-access control scheme to provide bandwidth-guaranteed service for high-demand customers, while providing best effort service to low-demand customers according to the service level agreement (SLA). The analytical and simulation results prove that the proposed scheme performs best in what it is designed to do compared to another well-known scheme that has not considered providing differentiated services. With business customers preferring premium services with guaranteed bandwidth and residential users preferring low-cost best effort services, our scheme could benefit both groups of subscribers, as well as the operators.

  17. A Realization of Theoretical Maximum Performance in IPSec on Gigabit Ethernet

    NASA Astrophysics Data System (ADS)

    Onuki, Atsushi; Takeuchi, Kiyofumi; Inada, Toru; Tokiniwa, Yasuhisa; Ushirozawa, Shinobu

    This paper describes “IPSec(IP Security) VPN system" and how it attains a theoretical maximum performance on Gigabit Ethernet. The Conventional System is implemented by software. However, the system has several bottlenecks which must be overcome to realize a theoretical maximum performance on Gigabit Ethernet. Thus, we newly propose IPSec VPN System with the FPGA(Field Programmable Gate Array) based hardware architecture, which transmits a packet by the pipe-lined flow processing and has 6 parallel structure of encryption and authentication engines. We show that our system attains the theoretical maximum performance in the short packet which is difficult to realize until now.

  18. Fast BPM data distribution for global orbit feedback using commercial gigabit ethernet technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulsart, R.; Cerniglia, P.; Michnoff, R.

    2011-03-28

    In order to correct beam perturbations in RHIC around 10Hz, a new fast data distribution network was required to deliver BPM position data at rates several orders of magnitude above the capability of the existing system. The urgency of the project limited the amount of custom hardware that could be developed, which dictated the use of as much commercially available equipment as possible. The selected architecture uses a custom hardware interface to the existing RHIC BPM electronics together with commercially available Gigabit Ethernet switches to distribute position data to devices located around the collider ring. Using the minimum Ethernet packetmore » size and a field programmable gate array (FPGA) based state machine logic instead of a software based driver, real-time and deterministic data delivery is possible using Ethernet. The method of adapting this protocol for low latency data delivery, bench testing of Ethernet hardware, and the logic to construct Ethernet packets using FPGA hardware will be discussed. A robust communications system using almost all commercial off-the-shelf equipment was developed in under a year which enabled retrofitting of the existing RHIC BPM system to provide 10 KHz data delivery for a global orbit feedback scheme using 72 BPMs. Total latencies from data acquisition at the BPMs to delivery at the controller modules, including very long transmission distances, were kept under 100 {micro}s, which provide very little phase error in correcting the 10 Hz oscillations. Leveraging off of the speed of Gigabit Ethernet and wide availability of Ethernet products enabled this solution to be fully implemented in a much shorter time and at lower cost than if a similar network was developed using a proprietary method.« less

  19. Broadband Optical Access Technologies to Converge towards a Broadband Society in Europe

    NASA Astrophysics Data System (ADS)

    Coudreuse, Jean-Pierre; Pautonnier, Sophie; Lavillonnière, Eric; Didierjean, Sylvain; Hilt, Benoît; Kida, Toshimichi; Oshima, Kazuyoshi

    This paper provides insights on the status of broadband optical access market and technologies in Europe and on the expected trends for the next generation optical access networks. The final target for most operators, cities or any other player is of course FTTH (Fibre To The Home) deployment although we can expect intermediate steps with copper or wireless technologies. Among the two candidate architectures for FTTH, PON (Passive Optical Network) is by far the most attractive and cost effective solution. We also demonstrate that Ethernet based optical access network is very adequate to all-IP networks without any incidence on the level of quality of service. Finally, we provide feedback from a FTTH pilot network in Colmar (France) based on Gigabit Ethernet PON technology. The interest of this pilot lies on the level of functionality required for broadband optical access networks but also on the development of new home network configurations.

  20. SCaN Transportable Communication Platform (STCP)

    NASA Technical Reports Server (NTRS)

    Haddad, George; Tanger, Thomas; Pleva, David; Schoenholz, Bryan; Nam, Connor

    2017-01-01

    NASA Glenn Research Center required a satellite communication trailer that served dual purposes; 24/7 Emergency Communication Services (ECS) in the event of a natural or manmade disaster that disrupted conventional communications, and a Ka Band NASA TDRS capability providing a research capability for over the air evaluations/characterizations. The trailer was to be field deployable, environmentally controlled and self-contained providing local area networks (LANs) and Wide Area Networks (WAN's) with user access both wired (Ethernet) and wireless (802.11) supporting VoIP, Internet Web access and Email. The TDRSS terminal included a 200W TWT amplifier mounted on the feed boom, individual up and down converters, and custom integrated waveguide and a supporting feed system. Other features such as a mast, generator, electrical, lighting, surveillance, and storage capabilities were also required. The Trailer was developed and demonstrated these original requested capabilities. New Requirements are defined and the trailer is now being evolved and upgraded to be a backup for the Near- Earth Network (NEN) Stations at KSC that will support the launch phase of EM-1. This paper presents the current and future capabilities of the trailer and additional options that will make it a valuable deployable asset to support remote operations from any launch from location.

  1. System Aware Cybersecurity: A Multi-Sentinel Scheme to Protect a Weapons Research Lab

    DTIC Science & Technology

    2015-12-07

    In the simplified deployment scenario, some sensors report their output over a wireless link and other sensors are connected via CAT 5 (Ethernet...cable to reduce the chance of a wireless ‘jamming’ event impacting ALL sensors . In addition to this first sensor suite ( Sensor Suite “A”), the team...generating wind turbines , and video reconnaissance systems on unmanned aerial vehicles (UAVs). The most basic decision problem in designing a systems

  2. Energy-Efficient Next-Generation Passive Optical Networks Based on Sleep Mode and Heuristic Optimization

    NASA Astrophysics Data System (ADS)

    Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik

    2015-05-01

    In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.

  3. A new IPQAM modulator with high integrated degree for digital TV

    NASA Astrophysics Data System (ADS)

    He, Yejun; Liu, Deming; Zhu, Guangxi; Jiang, Tao; Sun, Gongxian

    2008-12-01

    As video on demand (VOD) services are deployed, cable operators will experience a fundamental shift in their business, moving from broadcast to unicast content delivery. Another significant change is the introduction of Gigabit Ethernet into their network, which is providing an unprecedented opportunity to turn the cable operator's infrastructure into a sustainable competitive advantage. However, Gigabit Ethernet is more than just transport; it's the foundation of the Next-Generation Digital Video Network. IPQAM modulator, which is a main equipment, aren't made in China so far. It is the first time that we did design IPQAM modulator and will apply it to interactive TV based on DWDM (dense wavelength-division multiplexing). This paper introduces the principle of IPQAM modulator and transmission approach. The differences between IPQAM and conventional QAM are analysed. Some key techniques such as scrambling, statistical multiplexing, Data over Cable Service Interface Specification (DOCSIS) 3.0, software defined radio as well as DVB simulcrypt are also studied.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Autonomic Intelligent Cyber Sensor (AICS) provides cyber security and industrial network state awareness for Ethernet based control network implementations. The AICS utilizes collaborative mechanisms based on Autonomic Research and a Service Oriented Architecture (SOA) to: 1) identify anomalous network traffic; 2) discover network entity information; 3) deploy deceptive virtual hosts; and 4) implement self-configuring modules. AICS achieves these goals by dynamically reacting to the industrial human-digital ecosystem in which it resides. Information is transported internally and externally on a standards based, flexible two-level communication structure.

  5. Development of an EtherCAT enabled digital servo controller for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Whiteis, Peter G.; Mello, Melinda J.

    2012-09-01

    EtherCAT (Ethernet for Control Automation Technology) is gaining wide spread popularity in the automation industry as a real time field bus based on low cost, Ethernet hardware. EtherCAT maximizes use of 100Mbps Ethernet hardware by using a collision free ring topology, efficient Ethernet frame utilization (> 95%), and data exchange "on the fly". These characteristics enable EtherCAT to achieve Master to Slave node data exchange rates of > 1000 Hz. The Green Bank Telescope, commissioned in 2000, utilizes an analog control system for motion control of 8 elevation and 16 azimuth motors. This architecture, while sufficient for observations at frequencies up to 50GHz, has significant limitations for the current scientific goals of observing at 115GHz. Accordingly, the Green Bank staff has embarked on a servo upgrade project to develop a digital servo system which accommodates development and implementation of advanced control algorithms. This paper describes how the new control system requirements, use of existing infrastructure and budget constraints led us to define a distributed motion control architecture where EtherCAT real-time Ethernet was selected as the communication bus. Finally, design details are provided that describe how NRAO developed a custom EtherCAT-enabled motor controller interface for the GBT's legacy motor drives in order to provide technical benefits and flexibility not available in commercial products.

  6. Design and FPGA implementation for MAC layer of Ethernet PON

    NASA Astrophysics Data System (ADS)

    Zhu, Zengxi; Lin, Rujian; Chen, Jian; Ye, Jiajun; Chen, Xinqiao

    2004-04-01

    Ethernet passive optical network (EPON), which represents the convergence of low-cost, high-bandwidth and supporting multiple services, appears to be one of the best candidates for the next-generation access network. The work of standardizing EPON as a solution for access network is still underway in the IEEE802.3ah Ethernet in the first mile (EFM) task force. The final release is expected in 2004. Up to now, there has been no standard application specific integrated circuit (ASIC) chip available which fulfills the functions of media access control (MAC) layer of EPON. The MAC layer in EPON system has many functions, such as point-to-point emulation (P2PE), Ethernet MAC functionality, multi-point control protocol (MPCP), network operation, administration and maintenance (OAM) and link security. To implement those functions mentioned above, an embedded real-time operating system (RTOS) and a flexible programmable logic device (PLD) with an embedded processor are used. The software and hardware functions in MAC layer are realized through programming embedded microprocessor and field programmable gate array(FPGA). Finally, some experimental results are given in this paper. The method stated here can provide a valuable reference for developing EPON MAC layer ASIC.

  7. Using a Commercial Ethernet PHY Device in a Radiation Environment

    NASA Technical Reports Server (NTRS)

    Parks, Jeremy; Arani, Michael; Arroyo, Roberto

    2014-01-01

    This work involved placing a commercial Ethernet PHY on its own power boundary, with limited current supply, and providing detection methods to determine when the device is not operating and when it needs either a reset or power-cycle. The device must be radiation-tested and free of destructive latchup errors. The commercial Ethernet PHY's own power boundary must be supplied by a current-limited power regulator that must have an enable (for power cycling), and its maximum power output must not exceed the PHY's input requirements, thus preventing damage to the device. A regulator with configurable output limits and short-circuit protection (such as the RHFL4913, rad hard positive voltage regulator family) is ideal. This will prevent a catastrophic failure due to radiation (such as a short between the commercial device's power and ground) from taking down the board's main power. Logic provided on the board will detect errors in the PHY. An FPGA (field-programmable gate array) with embedded Ethernet MAC (Media Access Control) will work well. The error detection includes monitoring the PHY's interrupt line, and the status of the Ethernet's switched power. When the PHY is determined to be non-functional, the logic device resets the PHY, which will often clear radiation induced errors. If this doesn't work, the logic device power-cycles the FPGA by toggling the regulator's enable input. This should clear almost all radiation induced errors provided the device is not latched up.

  8. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station

    NASA Technical Reports Server (NTRS)

    De La Cruz, Melinda; Henderson, Steve

    2016-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.

  9. Low-energy, low-budget sensor web enablement of an amateur weather station

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Herrnkind, S.; Klump, J.

    2008-12-01

    Sensor Web Enablement (OGC SWE) has developed in into a powerful concept with many potential applications in environmental monitoring and in other fields. This has spurred development of software applications for Sensor Observation Services (SOS), while the development of client applications still lags behind. Furthermore, the deployment of sensors in the field often places tight constraints on energy and bandwidth available for data capture and transmission. As a "proof of concept" we equipped an amateur weather station with low-budget, standard components to read the data from its base station and feed it into a sensor observation service using its standard web- service interface. We chose the weather station as an example because of its simple measured phenomena and its low data volume. As sensor observation service we chose the open source software package offered by the 52North consortium. Power consumption can be problematic when deploying a sensor platform in the field. Instead of a common PC we used a Network Storage Link Unit (NSLU2) with a Linux operating system, a configuration also known as "Debian SLUG". The power consumption of a "SLUG" is of the order of 2 to 5 Watt, compared to 40W in a small PC. The "SLUG" provides one ethernet and two USB ports, one used by its external USB hard-drive. This modular setup is open to modifications, for example the addition of a GSM modem for data transmission over a cellular telephone network. The simple setup, low price, low power consumption, and the low technological entry-level allow many potential uses of a "SLUG" in environmental sensor networks in research, education and citizen science. The use of a mature sensor observation service software allows an easy integration of monitoring networks with other web services.

  10. Vehicle fault diagnostics and management system

    NASA Astrophysics Data System (ADS)

    Gopal, Jagadeesh; Gowthamsachin

    2017-11-01

    This project is a kind of advanced automatic identification technology, and is more and more widely used in the fields of transportation and logistics. It looks over the main functions with like Vehicle management, Vehicle Speed limit and Control. This system starts with authentication process to keep itself secure. Here we connect sensors to the STM32 board which in turn is connected to the car through Ethernet cable, as Ethernet in capable of sending large amounts of data at high speeds. This technology involved clearly shows how a careful combination of software and hardware can produce an extremely cost-effective solution to a problem.

  11. A Reconfigurable Design and Architecture of the Ethernet and HomePNA3.0 MAC

    NASA Astrophysics Data System (ADS)

    Khalilydermany, M.; Hosseinghadiry, M.

    In this paper a reconfigurable architecture for Ethernet and HomePNA MAC is presented. By using this new architecture, Ethernet and HomePNA reconfigurable network card can be produced. This architecture has been implemented using VHDL language and after that synthesized on a chip. The differences between HomePNA (synchronized and unsynchronized mode) and Ethernet in collision detection mechanism and priority access to media have caused the need to separate architectures for Ethernet and HomePNA, but by using similarities of them, both the Ethernet and the HomePNA can be implemented in a single chip with a little extra hardware. The number of logical elements of the proposed architecture is increased by 19% in compare to when only an Ethernet MAC is implemented

  12. BPTAP: A New Approach to IP over DTN

    NASA Technical Reports Server (NTRS)

    Tsao, Philip; Nguyen, Sam

    2012-01-01

    Traditional Internet protocols have been widely deployed for a variety of applications. However such protocols generally perform poorly in situations in which, round trip delays are very large (interplanetary distances) or . persistent connectivity is not always available (widely dispersed MANET). Delay/Disruption Tolerant Network (DTN) technology was invented to address these issues: (1) . Relay nodes "take custody" of blocks of network traffic on a hop-by -hop basis and retransmit them in cases of expected or unexpected link outage (2) Bundle lifetime may be configured for long round trip light times. BPTAP is novel by encapsulating Ethernet frames in BP

  13. Implementing Ethernet Services on the Payload Executive Processor (PEP)

    NASA Technical Reports Server (NTRS)

    Pruett, David; Guyette, Greg

    2016-01-01

    The Ethernet interface is more common and easier interface to implement for payload developers already familiar with Ethernet protocol in their labs. The Ethernet interface allows for a more distributed payload architecture. Connections can be placed in locations not serviced by the PEP 1553 bus. The Ethernet interface provides a new access port into the PEP so as to use the already existing services. Initial capability will include a subset of services with a plan to expand services later.

  14. All-IP-Ethernet architecture for real-time sensor-fusion processing

    NASA Astrophysics Data System (ADS)

    Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya

    2016-03-01

    Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.

  15. Local area networking in a radio quiet environment

    NASA Astrophysics Data System (ADS)

    Childers, Edwin L.; Hunt, Gareth; Brandt, Joseph J.

    2002-11-01

    The Green Bank facility of the National Radio Astronomy Observatory is spread out over 2,700 acres in the Allegheny Mountains of West Virginia. Good communication has always been needed between the radio telescopes and the control buildings. The National Radio Quiet Zone helps protect the Green Bank site from radio transmissions that interfere with the astronomical signals. Due to stringent Radio Frequency Interference (RFI) requirements, a fiber optic communication system was used for Ethernet transmissions on the site and coaxial cable within the buildings. With the need for higher speed communications, the entire network has been upgraded to use optical fiber with modern Ethernet switches. As with most modern equipment, the implementation of the control of the newly deployed Green Bank Telescope (GBT) depends heavily on TCP/IP. In order to protect the GBT from the commodity Internet, the GBT uses a non-routable network. Communication between the control building Local Area Network (LAN) and the GBT is implemented using a Virtual LAN (VLAN). This configuration will be extended to achieve isolation between trusted local user systems, the GBT, and other Internet users. Legitimate access to the site, for example by remote observers, is likely to be implemented using a virtual private network (VPN).

  16. Energy efficiency evaluation of tree-topology 10 gigabit ethernet passive optical network and ring-topology time- and wavelength-division-multiplexed passive optical network

    NASA Astrophysics Data System (ADS)

    Song, Jingjing; Yang, Chuanchuan; Zhang, Qingxiang; Ma, Zhuang; Huang, Xingang; Geng, Dan; Wang, Ziyu

    2015-09-01

    Higher capacity and larger scales have always been the top targets for the evolution of optical access networks, driven by the ever-increasing demand from the end users. One thing that started to attract wide attention not long ago, but with at least equal importance as capacity and scale, is energy efficiency, a metric essential nowadays as human beings are confronted with severe environmental issues like global warming, air pollution, and so on. Here, different from the conventional energy consumption analysis of tree-topology networks, we propose an effective energy consumption calculation method to compare the energy efficiency of the tree-topology 10 gigabit ethernet passive optical network (10G-EPON) and ring-topology time- and wavelength-division-multiplexed passive optical network (TWDM-PON), two experimental networks deployed in China. Numerical results show that the ring-topology TWDM-PON networks with 2, 4, 8, and 16 wavelengths are more energy efficient than the tree-topology 10G-EPON, although 10G-EPON consumes less energy. Also, TWDM-PON with four wavelengths is the most energy-efficient network candidate and saves 58.7% more energy than 10G-EPON when fully loaded.

  17. Development of EPA Protocol Information Enquiry Service System Based on Embedded ARM Linux

    NASA Astrophysics Data System (ADS)

    Peng, Daogang; Zhang, Hao; Weng, Jiannian; Li, Hui; Xia, Fei

    Industrial Ethernet is a new technology for industrial network communications developed in recent years. In the field of industrial automation in China, EPA is the first standard accepted and published by ISO, and has been included in the fourth edition IEC61158 Fieldbus of NO.14 type. According to EPA standard, Field devices such as industrial field controller, actuator and other instruments are all able to realize communication based on the Ethernet standard. The Atmel AT91RM9200 embedded development board and open source embedded Linux are used to develop an information inquiry service system of EPA protocol based on embedded ARM Linux in this paper. The system is capable of designing an EPA Server program for EPA data acquisition procedures, the EPA information inquiry service is available for programs in local or remote host through Socket interface. The EPA client can access data and information of other EPA equipments on the EPA network when it establishes connection with the monitoring port of the server.

  18. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup--The hardware, firmware, and software implementation.

    PubMed

    Antony, Joby; Mathuria, D S; Datta, T S; Maity, Tanmoy

    2015-12-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW(®). This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.

  19. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    NASA Astrophysics Data System (ADS)

    Antony, Joby; Mathuria, D. S.; Datta, T. S.; Maity, Tanmoy

    2015-12-01

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similar control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as "CADS," which stands for "Complete Automation of Distribution System." CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW®. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.

  20. Development of intelligent instruments with embedded HTTP servers for control and data acquisition in a cryogenic setup—The hardware, firmware, and software implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antony, Joby; Mathuria, D. S.; Datta, T. S.

    The power of Ethernet for control and automation technology is being largely understood by the automation industry in recent times. Ethernet with HTTP (Hypertext Transfer Protocol) is one of the most widely accepted communication standards today. Ethernet is best known for being able to control through internet from anywhere in the globe. The Ethernet interface with built-in on-chip embedded servers ensures global connections for crate-less model of control and data acquisition systems which have several advantages over traditional crate-based control architectures for slow applications. This architecture will completely eliminate the use of any extra PLC (Programmable Logic Controller) or similarmore » control hardware in any automation network as the control functions are firmware coded inside intelligent meters itself. Here, we describe the indigenously built project of a cryogenic control system built for linear accelerator at Inter University Accelerator Centre, known as “CADS,” which stands for “Complete Automation of Distribution System.” CADS deals with complete hardware, firmware, and software implementation of the automated linac cryogenic distribution system using many Ethernet based embedded cryogenic instruments developed in-house. Each instrument works as an intelligent meter called device-server which has the control functions and control loops built inside the firmware itself. Dedicated meters with built-in servers were designed out of ARM (Acorn RISC (Reduced Instruction Set Computer) Machine) and ATMEL processors and COTS (Commercially Off-the-Shelf) SMD (Surface Mount Devices) components, with analog sensor front-end and a digital back-end web server implementing remote procedure call over HTTP for digital control and readout functions. At present, 24 instruments which run 58 embedded servers inside, each specific to a particular type of sensor-actuator combination for closed loop operations, are now deployed and distributed across control LAN (Local Area Network). A group of six categories of such instruments have been identified for all cryogenic applications required for linac operation which were designed to build this medium-scale cryogenic automation setup. These devices have special features like remote rebooters, daughter boards for PIDs (Proportional Integral Derivative), etc., to operate them remotely in radiation areas and also have emergency switches by which each device can be taken to emergency mode temporarily. Finally, all the data are monitored, logged, controlled, and analyzed online at a central control room which has a user-friendly control interface developed using LabVIEW{sup ®}. This paper discusses the overall hardware, firmware, software design, and implementation for the cryogenics setup.« less

  1. A Front-End Electronics Prototype Based on Gigabit Ethernet for the ATLAS Small-Strip Thin Gap Chamber

    NASA Astrophysics Data System (ADS)

    Hu, Kun; Lu, Houbing; Wang, Xu; Li, Feng; Wang, Xinxin; Geng, Tianru; Yang, Hang; Liu, Shengquan; Han, Liang; Jin, Ge

    2017-06-01

    A front-end electronics prototype for the ATLAS small-strip Thin Gap Chamber (sTGC) based on gigabit Ethernet has been developed. The prototype is designed to read out signals of pads, wires, and strips of the sTGC detector. The prototype includes two VMM2 chips developed to read out the signals of the sTGC, a Xilinx Kintex-7 field-programmable gate array (FPGA) used for the VMM2 configuration and the events storage, and a gigabit Ethernet transceiver PHY chip for interfacing with a computer. The VMM2 chip is designed for the readout of the Micromegas detector and sTGC detector, which is composed of 64 linear front-end channels. Each channel integrates a charge-sensitive amplifier, a shaper, several analog-to-digital converters, and other digital functions. For a bunch-crossing interval of 25 ns, events are continuously read out by the FPGA and forwarded to the computer. The interface between the computer and the prototype has been measured to reach an error-free rate of 900 Mb/s, therefore making a very effective use of the available bandwidth. Additionally, the computer can control several prototypes of this kind simultaneously via the Ethernet interface. At present, the prototype will be used for the sTGC performance test. The features of the prototype are described in detail.

  2. Enabling Diverse Software Stacks on Supercomputers using High Performance Virtual Clusters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younge, Andrew J.; Pedretti, Kevin; Grant, Ryan

    While large-scale simulations have been the hallmark of the High Performance Computing (HPC) community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention within the scientific community not only as a processing component to large HPC simulations, but also as standalone scientific tools for knowledge discovery. With the path towards Exascale, new HPC runtime systems are also emerging in a way that differs from classical distributed com- puting models. However, system software for such capabilities on the latest extreme-scale DOE supercomputing needs to be enhanced to more appropriately support these types of emerging soft- ware ecosystems. In thismore » paper, we propose the use of Virtual Clusters on advanced supercomputing resources to enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi- cally, we have deployed the KVM hypervisor within Cray's Compute Node Linux on a XC-series supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a 32-node virtual cluster. Overall, we find single node performance of our solution using KVM on a Cray is very efficient with near-native performance. However overhead increases by up to 20% as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network. Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef- fectively demonstrating how diverse software ecosystems can be supported by High Performance Virtual Clusters.« less

  3. DUSTER: demonstration of an integrated LWIR-VNIR-SAR imaging system

    NASA Astrophysics Data System (ADS)

    Wilson, Michael L.; Linne von Berg, Dale; Kruer, Melvin; Holt, Niel; Anderson, Scott A.; Long, David G.; Margulis, Yuly

    2008-04-01

    The Naval Research Laboratory (NRL) and Space Dynamics Laboratory (SDL) are executing a joint effort, DUSTER (Deployable Unmanned System for Targeting, Exploitation, and Reconnaissance), to develop and test a new tactical sensor system specifically designed for Tier II UAVs. The system is composed of two coupled near-real-time sensors: EyePod (VNIR/LWIR ball gimbal) and NuSAR (L-band synthetic aperture radar). EyePod consists of a jitter-stabilized LWIR sensor coupled with a dual focal-length optical system and a bore-sighted high-resolution VNIR sensor. The dual focal-length design coupled with precision pointing an step-stare capabilities enable EyePod to conduct wide-area survey and high resolution inspection missions from a single flight pass. NuSAR is being developed with partners Brigham Young University (BYU) and Artemis, Inc and consists of a wideband L-band SAR capable of large area survey and embedded real-time image formation. Both sensors employ standard Ethernet interfaces and provide geo-registered NITFS output imagery. In the fall of 2007, field tests were conducted with both sensors, results of which will be presented.

  4. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  5. SANs and Large Scale Data Migration at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    Salmon, Ellen M.

    2004-01-01

    Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.

  6. Burst mode PCS of EPON

    NASA Astrophysics Data System (ADS)

    Du, Xiao

    2005-02-01

    Normal GIGA ETHERNET continuously transmits or receives 8B/10B codes including data codes, idle codes or configuration information. In ETHERNET network, one computer links one port of switch through CAT5 and that is OK. But for EPON, it is different. All ONUs share one fiber in upstream, if we inherit the GIGA ETHERNET PHY, then collision will occur. All ONUs always transmit 8B/10B codes, and the optical signal will overlay. The OLT will receive the fault information. So we need a novel EPON PHY instead of ETHERNET PHY. But its major function is compatible with ETHERNET"s. In this article, first, the function of PCS sub layer is discussed and a novel PCS module is given that can be used in not only EPON system but also in GIGA ETHERNET system. The design of PCS is based on 1000BASE-X PCS technology. And the function of 1000BASE-X PCS should be accomplished first. Next we modify the design in order to meet the requirements of EPON system. In the new design, the auto negotiation and synchronization is the same to the 1000 BASE-X technology.

  7. Sensor web enablement in a network of low-energy, low-budget amateur weather stations

    NASA Astrophysics Data System (ADS)

    Herrnkind, S.; Klump, J.; Schmidt, G.

    2009-04-01

    Sensor Web Enablement (OGC SWE) has developed in into a powerful concept with many potential applications in environmental monitoring and in other fields. This has spurred development of software applications for Sensor Observation Services (SOS), while the development of client applications still lags behind. Furthermore, the deployment of sensors in the field often places tight constraints on energy and bandwidth available for data capture and transmission. As a „proof of concept" we equipped amateur weather stations with low-budget, standard components to read the data from its base station and feed the weather observation data into the sensor observation service using its standard web-service interface. We chose amateur weather station as an example because of the simplicity of measured phenomena and low data volume. As sensor observation service we chose the open source software package offered by the 52°North consortium. Furthermore, we investigated registry services for sensors and measured phenomena. When deploying a sensor platform in the field, power consumption can be an issue. Instead of common PCs we used Network Storage Link Units (NSLU2) with a Linux operating system, also known as "Debian SLUG". The power consumption of a "SLUG" is of the order of 1W, compared to 40W in a small PC. The "SLUG" provides one ethernet and two USB ports, one used by its external USB hard-drive. This modular set-up is open to modifications, for example the addition of a GSM modem for data transmission over a cellular telephone network. The simple set-up, low price, low power consumption, and the low technological entry-level allow many potential uses of a "SLUG" in environmental sensor networks in research, education and citizen science. The use of a mature sensor observation service software allows an easy integration of monitoring networks with other web services.

  8. Commercialization and Field Distribution of Smart Pedestrian Call Signals

    DOT National Transportation Integrated Search

    2010-06-01

    The research on this project resulted in a new design for an accessible pedestrian system (APS) that uses Ethernet communications to implement a distributed control system. Present APS designs represent a safety risk factor by APS systems having unde...

  9. Ethernet for Aerospace Applications - Ethernet Heads for the Skies

    NASA Technical Reports Server (NTRS)

    Grams, Paul R.

    2015-01-01

    One of the goals of aerospace applications is to reduce the cost and complexity of avionic systems. Ethernet is a highly scalable, flexible, and popular protocol. The aerospace market is large, with a forecasted production of over 50,000 turbine-powered aircraft valued at $1.7 trillion between 2012 and 2022. Boeing estimates demand for commercial aircraft by 2033 to total over 36,000 with a value of over $5 trillion. In 2014 US airlines served over 750 million passengers and this is growing over 2% yearly. Electronic fly-by-wire is now used for all airliners and high performance aircraft. Although Ethernet has been widely used for four decades, its use in aerospace applications is just beginning to become common. Ethernet is the universal solution in commercial networks because of its high bandwidths, lower cost, openness, reliability, maintainability, flexibility, and interoperability. However, when Ethernet was designed applications with time-critical, safety relevant and deterministic requirements were not given much consideration. Many aerospace applications use a variety of communication architectures that add cost and complexity. Some of them are SpaceWire, MIL-STD-1553, Avionics Full Duplex Switched Ethernet (AFDX), and Time-Triggered Ethernet (TTE). Aerospace network designers desire to decrease the number of networks to reduce cost and effort while improving scalability, flexibility, openness, maintainability, and reliability. AFDX and TTE are being considered more for critical aerospace systems because they provide redundancy, failover protection, guaranteed timing, and frame priority and are based on Ethernet IEEE 802.3. This paper explores the use of AFDX and TTE for aerospace applications.

  10. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high accuracy, high speed, real time monitoring.

  11. Ethernet ring protection with managed FDB using APS payload

    NASA Astrophysics Data System (ADS)

    Im, Jinsung; Ryoo, Jeong-dong; Joo, Bheom Soon; Rhee, J.-K. Kevin

    2007-11-01

    Ethernet ring protection (ERP) is a new technology based on OAM (operations, administration, and maintenance) being standardized by the ITU-T G.8032 working group. In this paper, we present the recent development of Ethernet ring protection which is called FDB (filtering database) flush scheme and propose a new Ethernet ring protection technique introducing a managed FDB using APS to deliver information how to fix FDB selectively. We discuss the current development of the ERP technology at ITU-T and performance comparisons between different proposals.

  12. Ethernet-Based Services for Next Generation Networks

    NASA Astrophysics Data System (ADS)

    Hernandez-Valencia, Enrique

    Over the last few years, Ethernet technology and services have emerged as an indispensable component of the broadband networking and telecommunications infrastructure, both for network operators and service providers. As an example, Worldwide Enterprise customer demand for Ethernet services by itself is expected to hit the 30B US mark by year 2012. Use of Ethernet technology in the feeder networks that support residential applications, such as "triple play" voice, data, and video services, is equally on the rise. As the synergies between packet-aware transport and service oriented equipment continue to be exploited in the path toward transport convergence. Ethernet technology is expected to play a critical part in the evolution toward converged Optical/Packet Transport networks. Here we discuss the main business motivations, services, and technologies driving the specifications of so-called carrier Ethernet and highlight challenges associated with delivering the expectations for low implementation complexity, easy of use, provisioning and management of networks and network elements embracing this technology.

  13. Hardware Realization of an Ethernet Packet Analyzer Search Engine

    DTIC Science & Technology

    2000-06-30

    specific for the home automation industry. This analyzer will be at the gateway of a network and analyze Ethernet packets as they go by. It will keep... home automation and not the computer network. This system is a stand-alone real-time network analyzer capable of decoding Ethernet protocols. The

  14. SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Primiani, Rurik A.; Young, Kenneth H.; Young, André; Patel, Nimesh; Wilson, Robert W.; Vertatschitsch, Laura; Chitwood, Billie B.; Srinivasan, Ranjani; MacMahon, David; Weintroub, Jonathan

    2016-03-01

    A 32GHz bandwidth VLBI capable correlator and phased array has been designed and deployeda at the Smithsonian Astrophysical Observatory’s Submillimeter Array (SMA). The SMA Wideband Astronomical ROACH2 Machine (SWARM) integrates two instruments: a correlator with 140kHz spectral resolution across its full 32GHz band, used for connected interferometric observations, and a phased array summer used when the SMA participates as a station in the Event Horizon Telescope (EHT) very long baseline interferometry (VLBI) array. For each SWARM quadrant, Reconfigurable Open Architecture Computing Hardware (ROACH2) units shared under open-source from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) are equipped with a pair of ultra-fast analog-to-digital converters (ADCs), a field programmable gate array (FPGA) processor, and eight 10 Gigabit Ethernet (GbE) ports. A VLBI data recorder interface designated the SWARM digital back end, or SDBE, is implemented with a ninth ROACH2 per quadrant, feeding four Mark6 VLBI recorders with an aggregate recording rate of 64 Gbps. This paper describes the design and implementation of SWARM, as well as its deployment at SMA with reference to verification and science data.

  15. Interfacing the Controllogics PLC over Ethernet/IP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasemir, K. U.; Dalesio, L. R.

    2001-01-01

    The Allen-Bradley ControlLogix [1] line of programmable logic controllers (PLCs) offers several interfaces: Ethernet, ControlNet, DeviceNet, RS-232 and others. The ControlLogix Ethernet interface module 1756-ENET uses EtherNet/IP, the ControlNet protocol [2], encapsulated in Ethernet packages, with specific service codes [3]. A driver for the Experimental Physics and Industrial Control System (EPICS) has been developed that utilizes this EtherNet/IP protocol for controllers running the vxWorks RTOS as well as a Win32 and Unix/Linux test program. Features, performance and limitations of this interface are presented.

  16. On-demand virtual optical network access using 100 Gb/s Ethernet.

    PubMed

    Ishida, Osamu; Takamichi, Toru; Arai, Sachine; Kawate, Ryusuke; Toyoda, Hidehiro; Morita, Itsuro; Araki, Soichiro; Ichikawa, Toshiyuki; Hoshida, Takeshi; Murai, Hitoshi

    2011-12-12

    Our Terabit LAN initiatives attempt to enhance the scalability and utilization of lambda resources. This paper describes bandwidth-on-demand virtualized 100GE access to WDM networks on a field fiber test-bed using multi-domain optical-path provisioning. © 2011 Optical Society of America

  17. SDN Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Rhett

    The SDN Project completed on time and on budget and successfully accomplished 100% of the scope of work outlined in the original Statement of Project Objective (SOPO). The SDN Project formed an alliance between Ameren Corporation, University of Illinois Urbana- Champaign (UIUC), Pacific Northwest National Laboratories (PNNL), and Schweitzer Engineering Laboratories, Inc. (SEL). The objective of the SDN Project is to address Topic Area of Interest 2: Sustain critical energy delivery functions while responding to a cyber-intrusion under Funding Opportunity Announcement DE-FOA-0000797. The goal of the project is to design and commercially release technology that provides a method to sustainmore » critical energy delivery functions during a cyber intrusion and to do this control system operators need the ability to quickly identify and isolate the affected network areas, and re-route critical information and control flows around. The objective of the SDN Project is to develop a Flow Controller that monitors, configures, and maintains the safe, reliable network traffic flows of all the local area networks (LANs) on a control system in the Energy sector. The SDN team identified the core attributes of a control system and produced an SDN flow controller that has the same core attributes enabling networks to be designed, configured and deployed that maximize the whitelisted, deny-bydefault and purpose built networks. This project researched, developed and commercially released technology that: Enables all field networks be to configured and monitored as if they are a single asset to be protected; Enables greatly improved and even precalculated response actions to reliability and cyber events; Supports pre-configured localized response actions tailored to provide resilience against failures and centralized response to cyber-attacks that improve network reliability and availability; Architecturally enables the right subject matter experts, who are usually the information technology and operational technology engineers, to be the ones centrally administering the technology and responding to events; Simplifies network configuration, improving deterministic Ethernet transport times, and providing instant visualization on where the communication circuits are and how all circuits are impacted when changes (e.g., configuration changes, failures or intrusions) happen, allowing operators to minimize downtime; and Improves the ability to identify deviations in network behavior resulting in detection and analysis of potential cyber intrusions and faster response times Results: This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted while the team maintained Ethernet interoperability avoiding any legacy concerns. The team commercially released technology that accomplished all the cybersecurity goals outlined in the SOPO and completed it by executing the project management plan approved in the initial contract. The resulting Energy sector SDN flow controller model number is SEL-5056 and can be freely downloaded from the www.SELinc.com website. This technology not only improves the cybersecurity of control systems but has measured results that it improves the performance and reliability of the control system as well. This means the system owners can confidently apply it to their systems knowing that it will, “first do no harm” but actually improve the system as well. Success of the project is best measured by the sales and deployment of the technology. System owners in industrial, electric, defense, and oil and gas only months after commercial release have approved plans for deployment.« less

  18. Ethernet-Enabled Power and Communication Module for Embedded Processors

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Oostdyk, Rebecca

    2010-01-01

    The power and communications module is a printed circuit board (PCB) that has the capability of providing power to an embedded processor and converting Ethernet packets into serial data to transfer to the processor. The purpose of the new design is to address the shortcomings of previous designs, including limited bandwidth and program memory, lack of control over packet processing, and lack of support for timing synchronization. The new design of the module creates a robust serial-to-Ethernet conversion that is powered using the existing Ethernet cable. This innovation has a small form factor that allows it to power processors and transducers with minimal space requirements.

  19. Design and Deployment of a General Purpose, Open Source LoRa to Wi-Fi Hub and Data Logger

    NASA Astrophysics Data System (ADS)

    DeBell, T. C.; Udell, C.; Kwon, M.; Selker, J. S.; Lopez Alcala, J. M.

    2017-12-01

    Methods and technologies facilitating internet connectivity and near-real-time status updates for in site environmental sensor data are of increasing interest in Earth Science. However, Open Source, Do-It-Yourself technologies that enable plug and play functionality for web-connected sensors and devices remain largely inaccessible for typical researchers in our community. The Openly Published Environmental Sensing Lab at Oregon State University (OPEnS Lab) constructed an Open Source 900 MHz Long Range Radio (LoRa) receiver hub with SD card data logger, Ethernet and Wi-Fi shield, and 3D printed enclosure that dynamically uploads transmissions from multiple wirelessly-connected environmental sensing devices. Data transmissions may be received from devices up to 20km away. The hub time-stamps, saves to SD card, and uploads all transmissions to a Google Drive spreadsheet to be accessed in near-real-time by researchers and GeoVisualization applications (such as Arc GIS) for access, visualization, and analysis. This research expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting edge technology. This poster details our methods and evaluates the application of using 3D printing, Arduino Integrated Development Environment (IDE), Adafruit's Open-Hardware Feather development boards, and the WIZNET5500 Ethernet shield for designing this open-source, general purpose LoRa to Wi-Fi data logger.

  20. Ethernet-based smart networked elements (sensors and actuators)

    NASA Astrophysics Data System (ADS)

    Mata, Carlos T.; Perotti, José M.; Oostdyk, Rebecca L.; Lucena, Angel

    2006-05-01

    This paper outlines the present design approach for the Ethernet-Based Smart Networked Elements (SNE) being developed by NASA's Instrumentation Branch and the Advanced Electronics and Technology Development Laboratory of ASRC Aerospace Corporation at Kennedy Space Center (KSC). The SNEs are being developed as part of the Integrated Intelligent Health Management System (IIHMS), jointly developed by Stennis Space Center (SSC), KSC, and Marshall Space Flight Center (MSFC). SNEs are sensors/actuators with embedded intelligence, capable of networking among themselves and with higher-level systems (external processors and controllers) to provide not only instrumentation data but also associated data validity qualifiers. NASA KSC has successfully developed and preliminarily demonstrated this new generation of SNEs. SNEs that collect pressure, strain, and temperature measurements (including cryogenic temperature ranges) have been developed and tested in the laboratory and are ready for demonstration in the field.

  1. Converged photonic data storage and switch platform for exascale disaggregated data centers

    NASA Astrophysics Data System (ADS)

    Pitwon, R.; Wang, K.; Worrall, A.

    2017-02-01

    We report on a converged optically enabled Ethernet storage, switch and compute platform, which could support future disaggregated data center architectures. The platform includes optically enabled Ethernet switch controllers, an advanced electro-optical midplane and optically interchangeable generic end node devices. We demonstrate system level performance using optically enabled Ethernet disk drives and micro-servers across optical links of varied lengths.

  2. Fault discovery protocol for passive optical networks

    NASA Astrophysics Data System (ADS)

    Hajduczenia, Marek; Fonseca, Daniel; da Silva, Henrique J. A.; Monteiro, Paulo P.

    2007-06-01

    All existing flavors of passive optical networks (PONs) provide an attractive alternative to legacy copper-based access lines deployed between a central office (CO) of the service provider (SP) and a customer site. One of the most challenging tasks for PON network planners is the reduction of the overall cost of employing protection schemes for the optical fiber plant while maintaining a reasonable level of survivability and reducing the downtime, thus ensuring acceptable levels of quality of service (QoS) for end subscribers. The recently growing volume of Ethernet PONs deployment [Kramer, IEEE 802.3, CFI (2006)], connected with low-cost electronic and optical components used in the optical network unit (ONU) modules, results in the situation where remote detection of faulty/active subscriber modules becomes indispensable for proper operation of an EPON system. The problem of the remote detection of faulty ONUs in the system is addressed where the upstream channel is flooded with the cw transmission from one or more damaged ONUs and standard communication is severed, providing a solution that is applicable in any type of PON network, regardless of the operating protocol, physical structure, and data rate.

  3. Architectural and engineering issues for building an optical Internet

    NASA Astrophysics Data System (ADS)

    St. Arnaud, Bill

    1998-10-01

    Recent developments in high density Wave Division Multiplexing fiber systems allows for the deployment of a dedicated optical Internet network for large volume backbone pipes that does not require an underlying multi-service SONET/SDH and ATM transport protocol. Some intrinsic characteristics of Internet traffic such as its self similar nature, server bound congestion, routing and data asymmetry allow for highly optimized traffic engineered networks using individual wavelengths. By transmitting GigaBit Ethernet or SONET/SDH frames natively over WDM wavelengths that directly interconnect high performance routers the original concept of the Internet as an intrinsically survivable datagram network is possible. Traffic engineering, restoral, protection and bandwidth management of the network must now be carried out at the IP layer and so new routing or switching protocols such as MPLS that allow for uni- directional paths with fast restoral and protection at the IP layer become essential for a reliable production network. The deployment of high density WDM municipal and campus networks also gives carriers and ISPs the flexibility to offer customers as integrated and seamless set of optical Internet services.

  4. On Applications of Disruption Tolerant Networking to Optical Networking in Space

    NASA Technical Reports Server (NTRS)

    Hylton, Alan Guy; Raible, Daniel E.; Juergens, Jeffrey; Iannicca, Dennis

    2012-01-01

    The integration of optical communication links into space networks via Disruption Tolerant Networking (DTN) is a largely unexplored area of research. Building on successful foundational work accomplished at JPL, we discuss a multi-hop multi-path network featuring optical links. The experimental test bed is constructed at the NASA Glenn Research Center featuring multiple Ethernet-to-fiber converters coupled with free space optical (FSO) communication channels. The test bed architecture models communication paths from deployed Mars assets to the deep space network (DSN) and finally to the mission operations center (MOC). Reliable versus unreliable communication methods are investigated and discussed; including reliable transport protocols, custody transfer, and fragmentation. Potential commercial applications may include an optical communications infrastructure deployment to support developing nations and remote areas, which are unburdened with supporting an existing heritage means of telecommunications. Narrow laser beam widths and control of polarization states offer inherent physical layer security benefits with optical communications over RF solutions. This paper explores whether or not DTN is appropriate for space-based optical networks, optimal payload sizes, reliability, and a discussion on security.

  5. 10 Gigabit Ethernet Performance on SGI Altix and Origin Systems

    NASA Technical Reports Server (NTRS)

    Meyer, Andy

    2005-01-01

    As the state of high performance computing continues to advance, the size of datasets continue to grow, driving a need for high bandwidth data networks. family of networks. 10 Gigabit Ethernet is the latest step in the popular Ethernet We have evaluated the S2io Xframe 10 Gigabit Ethernet adapter on 512p SGI Altix systems running ProPack 3, and Origin systems running Irix 6.5.24 and 6.5.26 in our production supercomputing environment. We encountered a number of performance and stability issues, which were promptly dealt with by SGI and S2io. Using nttcp we tested TCP performance for single and multiple streams, and we tested file transfer using NFS and bbftp. We will present the results of our testing, including the effects of various tuning options on throughput and CPU utilization, and offer suggestions for configuring and tuning S2io 10 Gigabit Ethernet cards in an Altix/Linux or Origin/Irix environment.

  6. FPGA Based "Intelligent Tap" Device for Real-Time Ethernet Network Monitoring

    NASA Astrophysics Data System (ADS)

    Cupek, Rafał; Piękoś, Piotr; Poczobutt, Marcin; Ziębiński, Adam

    This paper describes an "Intelligent Tap" - hardware device dedicated to support real-time Ethernet networks monitoring. Presented solution was created as a student project realized in Institute of Informatics, Silesian University of Technology with support from Softing A.G company. Authors provide description of realized FPGA based "Intelligent Tap" architecture dedicated for Real-Time Ethernet network monitoring systems. The practical device realization and feasibility study conclusions are presented also.

  7. The Central Logic Board for the KM3NeT detector: Design and production

    NASA Astrophysics Data System (ADS)

    Musico, P.; KM3NeT Collaboration

    2016-07-01

    The KM3NeT deep sea neutrino observatory will include a very large number of multi-Photomultiplier (PMT) optical modules (DOM) to detect the Cherenkov light generated by secondary particles produced in neutrino interactions. The Central Logic Board (CLB) has been developed to acquire timing and amplitude information from the PMT signals, implementing time-to-digital conversion (TDC) with time over threshold (TOT) technique. The board is also used to configure all the DOM subsystems, to assist in the DOM position and orientation, calibration and to monitor temperature and humidity in the DOM itself. All the collected data are transmitted to shore using a wide-bandwidth optical network. Moreover, through the optical network, all the DOMs are kept synchronized in time within 1 ns precision using the White Rabbit (WR) Precision Time Protocol (PTP) over an Ethernet connection. A large Field Programmable Gate Array (FPGA) has been adopted to implement all the specifications witht the requested performances. The CLB will be also used in the base container of the detection unit (DU) to set-up and monitor all the requested functionalities: in this scenario a dedicated firmware and software will be deployed on board. The design has been started in early 2013 and several prototypes have been developed. After deep test carried on in different EU laboratories, the final mass production batch of 600 boards has been ordered and built: all the CLB are now ready for integration in the DOMs and base containers. The first two KM3NeT DU will be deployed in summer 2015 and all other units are in advanced stage of integration.

  8. Efficient Data Transfer Rate and Speed of Secured Ethernet Interface System.

    PubMed

    Ghanti, Shaila; Naik, G M

    2016-01-01

    Embedded systems are extensively used in home automation systems, small office systems, vehicle communication systems, and health service systems. The services provided by these systems are available on the Internet and these services need to be protected. Security features like IP filtering, UDP protection, or TCP protection need to be implemented depending on the specific application used by the device. Every device on the Internet must have network interface. This paper proposes the design of the embedded Secured Ethernet Interface System to protect the service available on the Internet against the SYN flood attack. In this experimental study, Secured Ethernet Interface System is customized to protect the web service against the SYN flood attack. Secured Ethernet Interface System is implemented on ALTERA Stratix IV FPGA as a system on chip and uses the modified SYN flood attack protection method. The experimental results using Secured Ethernet Interface System indicate increase in number of genuine clients getting service from the server, considerable improvement in the data transfer rate, and better response time during the SYN flood attack.

  9. The difference of delay time in monitoring system of facial acupressure learning media using bluetooth, wireless and ethernet

    NASA Astrophysics Data System (ADS)

    Agustin, Eny Widhia; Hangga, Arimaz; Fahrian, Muhammad Iqbal; Azhari, Anis Fikri

    2018-03-01

    The implementation of monitoring system in the facial acupressure learning media could increase the students' proficiency. However the common learning media still has not implemented a monitoring system in their learning process. This research was conducted to implement monitoring system in the mannequin head prototype as a learning media of facial acupressure using Bluetooth, wireless and Ethernet. The results of the implementation of monitoring system in the prototype showed that there were differences in the delay time between Bluetooth and wireless or Ethernet. The results data showed no difference in the average delay time between the use of Bluetooth with wireless and the use of Bluetooth with Ethernet in monitoring system of facial acupressure learning media. From all the facial acupressure points, the forehead facial acupressure point has the longest delay time of 11.93 seconds. The average delay time in all 3 class rooms was 1.96 seconds therefore the use of Bluetooth, wireless and Ethernet is highly recommended in the monitoring system of facial acupressure.

  10. Efficient Data Transfer Rate and Speed of Secured Ethernet Interface System

    PubMed Central

    Ghanti, Shaila

    2016-01-01

    Embedded systems are extensively used in home automation systems, small office systems, vehicle communication systems, and health service systems. The services provided by these systems are available on the Internet and these services need to be protected. Security features like IP filtering, UDP protection, or TCP protection need to be implemented depending on the specific application used by the device. Every device on the Internet must have network interface. This paper proposes the design of the embedded Secured Ethernet Interface System to protect the service available on the Internet against the SYN flood attack. In this experimental study, Secured Ethernet Interface System is customized to protect the web service against the SYN flood attack. Secured Ethernet Interface System is implemented on ALTERA Stratix IV FPGA as a system on chip and uses the modified SYN flood attack protection method. The experimental results using Secured Ethernet Interface System indicate increase in number of genuine clients getting service from the server, considerable improvement in the data transfer rate, and better response time during the SYN flood attack. PMID:28116350

  11. Analysis of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Pedretti, Kevin T.; Kutler, Paul (Technical Monitor)

    1997-01-01

    We evaluate the performance of a Fast Ethernet network configured with a single large switch, a single hub, and a 4x4 2D torus topology in a testbed cluster of "commodity" Pentium Pro PCs. We also evaluated a mixed network composed of ethernet hubs and switches. An MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2) show that the torus network performs best for all sizes that we were able to test (up to 16 nodes). For larger networks the ethernet switch outperforms the hub, though its performance is far less than peak. The hub/switch combination tests indicate that the NAS parallel benchmarks are relatively insensitive to hub densities of less than 7 nodes per hub.

  12. Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control

    PubMed Central

    Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi

    2017-01-01

    Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at −700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m. PMID:28475168

  13. Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control.

    PubMed

    Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi

    2017-05-05

    Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at -700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m.

  14. An ethernet/IP security review with intrusion detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughter, S. A.; Williams, R. D.

    2006-07-01

    Supervisory Control and Data Acquisition (SCADA) and automation networks, used throughout utility and manufacturing applications, have their own specific set of operational and security requirements when compared to corporate networks. The modern climate of heightened national security and awareness of terrorist threats has made the security of these systems of prime concern. There is a need to understand the vulnerabilities of these systems and how to monitor and protect them. Ethernet/IP is a member of a family of protocols based on the Control and Information Protocol (CIP). Ethernet/IP allows automation systems to be utilized on and integrated with traditional TCP/IPmore » networks, facilitating integration of these networks with corporate systems and even the Internet. A review of the CIP protocol and the additions Ethernet/IP makes to it has been done to reveal the kind of attacks made possible through the protocol. A set of rules for the SNORT Intrusion Detection software is developed based on the results of the security review. These can be used to monitor, and possibly actively protect, a SCADA or automation network that utilizes Ethernet/IP in its infrastructure. (authors)« less

  15. Call for papers: Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Lam, Cedric F.; Tsang, Danny H. K.

    2002-03-01

    The editors of the Journal of Optical Networking are soliciting papers for a special issue on "Optical Ethernet in a Carrier-Type Environment." Submissions are due March 15, 2002.

    Deadline extended to May 1!

  16. A computer tool to support in design of industrial Ethernet.

    PubMed

    Lugli, Alexandre Baratella; Santos, Max Mauro Dias; Franco, Lucia Regina Horta Rodrigues

    2009-04-01

    This paper presents a computer tool to support in the project and development of an industrial Ethernet network, verifying the physical layer (cables-resistance and capacitance, scan time, network power supply-POE's concept "Power Over Ethernet" and wireless), and occupation rate (amount of information transmitted to the network versus the controller network scan time). These functions are accomplished without a single physical element installed in the network, using only simulation. The computer tool has a software that presents a detailed vision of the network to the user, besides showing some possible problems in the network, and having an extremely friendly environment.

  17. Switch configuration for migration to optical fiber network

    NASA Technical Reports Server (NTRS)

    Zobrist, George W.

    1993-01-01

    The purpose is to investigate the migration of an Ethernet LAN segment to fiber optics. At the present time it is proposed to support a Fiber Distributed Data Interface (FDDI) backbone and to upgrade the VAX cluster to fiber optic interface. Possibly some workstations will have an FDDI interface. The remaining stations on the Ethernet LAN will be segmented. The rationale for migrating from the present Ethernet configuration to a fiber optic backbone is due to the increase in the number of workstations and the movement of applications to a windowing environment, extensive document transfers, and compute intensive applications.

  18. Spacelab system analysis: The modified free access protocol: An access protocol for communication systems with periodic and Poisson traffic

    NASA Technical Reports Server (NTRS)

    Ingels, Frank; Owens, John; Daniel, Steven

    1989-01-01

    The protocol definition and terminal hardware for the modified free access protocol, a communications protocol similar to Ethernet, are developed. A MFA protocol simulator and a CSMA/CD math model are also developed. The protocol is tailored to communication systems where the total traffic may be divided into scheduled traffic and Poisson traffic. The scheduled traffic should occur on a periodic basis but may occur after a given event such as a request for data from a large number of stations. The Poisson traffic will include alarms and other random traffic. The purpose of the protocol is to guarantee that scheduled packets will be delivered without collision. This is required in many control and data collection systems. The protocol uses standard Ethernet hardware and software requiring minimum modifications to an existing system. The modification to the protocol only affects the Ethernet transmission privileges and does not effect the Ethernet receiver.

  19. Inductance optimization of miniature Broadband transformers with racetrack shaped ferrite cores for Ethernet applications

    NASA Astrophysics Data System (ADS)

    Bowen, David; Krafft, Charles; Mayergoyz, Isaak D.

    2017-05-01

    There is strong commercial interest in the ability to fabricate the windings of traditional miniature wire-wound inductive circuit components, such as Ethernet transformers, lithographically. For greater inductance devices, thick cores are required, making the process of embedding the ferrite material within circuit board one of few options for lithographic winding fabrication. In this paper, a non-traditional core shape, suitable for embedding in circuit board, is examined analytically and experimentally; the racetrack shape is two halves of a toroid connected by straight legs. With regard to the high inductance requirements for Ethernet applications (350μH), the racetrack transformer inductance is analytically optimized, determining the optimal physical dimensions. Two sizes of racetrack-core transformers were fabricated and measured. The measured inductance was in reasonable agreement with the analytical prediction, though large variations in material permeability are expected from the mechanical processing of the ferrite. Some of the experimental transformers were observed to satisfy the Ethernet inductance requirement.

  20. Bidirectional and simultaneous FTTX/Ethernet services using RSOA based remodulation and polarization multiplexing technique

    NASA Astrophysics Data System (ADS)

    Das, Anindya S.; Patra, Ardhendu S.

    2015-08-01

    A bidirectional and simultaneous transmission of Ethernet, FTTX services through single optical carrier wavelength employing polarization multiplexing technique in the transmitter end and the user end. 10 Gbps and 2.5 Gbps datarates are transmitted over 50 km single mode fiber employing POLMUX technique at OLT and ONU to provide Ethernet and FTTX services concurrently to the user. Reflective semiconductor optical amplifier is used to reuse and remodulate the downlink signal to uplink transmission. The upstream and the downstream transmission performances are observed by the bit error rate values and the eye diagrams obtained by the BER analyzer.

  1. Katherine: Ethernet Embedded Readout Interface for Timepix3

    NASA Astrophysics Data System (ADS)

    Burian, P.; Broulím, P.; Jára, M.; Georgiev, V.; Bergmann, B.

    2017-11-01

    The Timepix3—the latest generation of hybrid particle pixel detectors of Medipix family—yields a lot of new possibilities, i.e. a high hit-rate, a time resolution of 1.56 ns, event data-driven readout mode, and the capability of measuring the Time-over-Threshold (ToT - energy) and the Time-of-Arrival (ToA) simultaneously. This paper introduces a newly developed readout device for the Timepix3, called "Katherine", featuring a Gigabit Ethernet interface. The primary benefit of the Katherine is the operation of Timepix3 at long distance (up to 100 m) from computer or server, which is advantageous for the installation at beam lines, where the access is difficult or where radiation levels are too high for human interventions. The maximal hit-rate is limited by the bandwidth of the Ethernet connection (peer-to-peer connection; up to 16 Mhit/s). Since the Katherine interface is equipped with a processor of high computational power (ARM Cortex-A9 dual-core processor), it permits the use as a stand-alone (autonomous) radiation detector. The key features of the device are described in detail. These are the implemented high voltage power supply offering both polarities of bias voltage (up to ± 300 V), the automatic data sending to a sever via SSH, the automatic compensation of ToA values from columns with shifted matrix clock, etc. A dedicated control software was developed, which can be used for the detector preparation (sensor equalization, the DACs dependency scan, and the THL scan) and measurement control. Measured energy spectra from photon fields are shown.

  2. Radiated emissions comparison of seven-stage modal filter constructions for Ethernet 100Base-T network protection

    NASA Astrophysics Data System (ADS)

    Khazhibekov, R. R.; Zabolotsky, A. M.

    2018-05-01

    The authors consider Ethernet protection devices based on modal filtering. Radiated emission measurement results for three modal filter constructions are presented. It is shown that the improved construction of a non-resistive filter has lower emission levels than the original one.

  3. An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks

    PubMed Central

    Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling

    2015-01-01

    A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918

  4. The ASP Sensor Network: Infrastructure for the Next Generation of NASA Airborne Science

    NASA Astrophysics Data System (ADS)

    Myers, J. S.; Sorenson, C. E.; Van Gilst, D. P.; Duley, A.

    2012-12-01

    A state-of-the-art real-time data communications network is being implemented across the NASA Airborne Science Program core platforms. Utilizing onboard Ethernet networks and satellite communications systems, it is intended to maximize the science return from both single-platform missions and complex multi-aircraft Earth science campaigns. It also provides an open platform for data visualization and synthesis software tools, for use by the science instrument community. This paper will describe the prototype implementations currently deployed on the NASA DC-8 and Global Hawk aircraft, and the ongoing effort to expand the capability to other science platforms. Emphasis will be on the basic network architecture, the enabling hardware, and new standardized instrument interfaces. The new Mission Tools Suite, which provides an web-based user interface, will be also described; together with several example use-cases of this evolving technology.

  5. The Design of Passive Optical Networking+Ethernet over Coaxial Cable Access Networking and Video-on-Demand Services Carrying

    NASA Astrophysics Data System (ADS)

    Ji, Wei

    2013-07-01

    Video on demand is a very attractive service used for entertainment, education, and other purposes. The design of passive optical networking+Ethernet over coaxial cable accessing and a home gateway system is proposed. The network integrates the passive optical networking and Ethernet over coaxial cable to provide high dedicated bandwidth for the metropolitan video-on-demand services. Using digital video broadcasting, IP television protocol, unicasting, and broadcasting mechanisms maximizes the system throughput. The home gateway finishes radio frequency signal receiving and provides three kinds of interfaces for high-definition video, voice, and data, which achieves triple-play and wire/wireless access synchronously.

  6. Impact of the Shodan Computer Search Engine on Internet-facing Industrial Control System Devices

    DTIC Science & Technology

    2014-03-27

    bridge implementation. The transparent bridge is designed using a Raspberry Pi configured with Linux IPtables and bridge-utils to bridge the on board...Ethernet card and a second USB Ethernet adapter. A Raspberry Pi is a credit-card-sized single-board computer running a version of Debian Linux. There

  7. 76 FR 62431 - Notice of Issuance of Final Determination Concerning Certain Ethernet Switches

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... importing 7 Series Ethernet switches assembled in China. The switches are designed to interconnect servers... country of origin of Arista's 7048, 7050, 7100, 7124, and 7500 series (``7 Series'') local area network..., packaged, and prepared for shipping. Arista's EOS TM (Extensible Operating System) software is designed to...

  8. SARA South Observatory: A Fully Automated Boller & Chivens 0.6-m Telescope at C.T.I.O.

    NASA Astrophysics Data System (ADS)

    Mack, Peter; KanniahPadmanaban, S. Y.; Kaitchuck, R.; Borstad, A.; Luzier, N.

    2010-05-01

    The SARA South Observatory is the re-birth of the Lowell 24-inch telescope located on the south-east ridge of Cerro Tololo, Chile. Installed in 1968 this Boller & Chivens telescope fell into disuse for almost 20 years. The telescope and observatory have undergone a major restoration. A new dome with a wide slit has been fully automated with an ACE SmartDome controller featuring autonomous closure. The telescope was completely gutted, repainted, and virtually every electronic component and wire replaced. Modern infrastructure, such as USB, Ethernet and video ports have been incorporated into the telescope tube saddle boxes. Absolute encoders have been placed on the Hour Angle and declination axes with a resolution of less than 0.7 arc seconds. The secondary mirror is also equipped with an absolute encoder and temperature sensor to allow for fully automated focus. New mirror coatings, automated mirror covers, a new 150mm refractor, and new instrumentation have been deployed. An integrated X-stage guider and dual filter wheel containing 18 filters is used for direct imaging. The guider camera can be easily removed and a standard 2-inch eyepiece used for occasional viewing by VIP's at C.T.I.O. A 12 megapixel all-sky camera produces color images every 30 seconds showing details in the Milky Way and Magellanic Clouds. Two low light level cameras are deployed; one on the finder and one at the top of the telescope showing a 30° field. Other auxiliary equipment, including daytime color video cameras, weather station and remotely controllable power outlets permit complete control and servicing of the system. The SARA Consortium (www.saraobservatory.org), a collection of ten eastern universities, also operates a 0.9-m telescope at the Kitt Peak National Observatory using an almost identical set of instruments with the same ACE control system. This project was funded by the SARA Consortium.

  9. A data acquisition and control system for high-speed gamma-ray tomography

    NASA Astrophysics Data System (ADS)

    Hjertaker, B. T.; Maad, R.; Schuster, E.; Almås, O. A.; Johansen, G. A.

    2008-09-01

    A data acquisition and control system (DACS) for high-speed gamma-ray tomography based on the USB (Universal Serial Bus) and Ethernet communication protocols has been designed and implemented. The high-speed gamma-ray tomograph comprises five 500 mCi 241Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors. The DACS design is based on Microchip's PIC18F4550 and PIC18F4620 microcontrollers, which facilitates an USB 2.0 interface protocol and an Ethernet (IEEE 802.3) interface protocol, respectively. By implementing the USB- and Ethernet-based DACS, a sufficiently high data acquisition rate is obtained and no dedicated hardware installation is required for the data acquisition computer, assuming that it is already equipped with a standard USB and/or Ethernet port. The API (Application Programming Interface) for the DACS is founded on the National Instrument's LabVIEW® graphical development tool, which provides a simple and robust foundation for further application software developments for the tomograph. The data acquisition interval, i.e. the integration time, of the high-speed gamma-ray tomograph is user selectable and is a function of the statistical measurement accuracy required for the specific application. The bandwidth of the DACS is 85 kBytes s-1 for the USB communication protocol and 28 kBytes s-1 for the Ethernet protocol. When using the iterative least square technique reconstruction algorithm with a 1 ms integration time, the USB-based DACS provides an online image update rate of 38 Hz, i.e. 38 frames per second, whereas 31 Hz for the Ethernet-based DACS. The off-line image update rate (storage to disk) for the USB-based DACS is 278 Hz using a 1 ms integration time. Initial characterization of the high-speed gamma-ray tomograph using the DACS on polypropylene phantoms is presented in the paper.

  10. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxun Yan; Daniel Sexton; Steven Moore

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less

  11. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network

    NASA Astrophysics Data System (ADS)

    Glamočanin, D.

    2017-05-01

    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  12. An Ethernet Java Applet for a Course for Non-Majors.

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    1997-01-01

    Details the topics of a new course that introduces computing and communication technology to students not majoring in computer science. Discusses the process of developing a Java applet (a program that can be invoked through a World Wide Web browser) that illustrates the protocol used by ethernet local area networks to determine which computer can…

  13. Physical Layer Ethernet Clock Synchronization

    DTIC Science & Technology

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  14. Integrated Formal Analysis of Timed-Triggered Ethernet

    NASA Technical Reports Server (NTRS)

    Dutertre, Bruno; Shankar, Nstarajan; Owre, Sam

    2012-01-01

    We present new results related to the verification of the Timed-Triggered Ethernet (TTE) clock synchronization protocol. This work extends previous verification of TTE based on model checking. We identify a suboptimal design choice in a compression function used in clock synchronization, and propose an improvement. We compare the original design and the improved definition using the SAL model checker.

  15. Hopkins installs wire harnesses

    NASA Image and Video Library

    2013-11-24

    ISS038-E-008291 (24 Nov. 2013) --- NASA astronaut Michael Hopkins, Expedition 38 flight engineer, installs wire harnesses in the International Space Station?s Harmony node to support the installation of Ethernet video cables for the station?s local area network. These new cables will provide Ethernet connectivity to the visiting vehicles that dock to Harmony?s Earth-facing port.

  16. An Assessment of Gigabit Ethernet Technology and Its Applications at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Bakes, Catherine Murphy; Kim, Chan M.; Ramos, Calvin T.

    2000-01-01

    This paper describes Gigabit Ethernet and its role in supporting R&D programs at NASA Glenn. These programs require an advanced high-speed network capable of transporting multimedia traffic, including real-time visualization, high- resolution graphics, and scientific data. GigE is a 1 Gbps extension to 10 and 100 Mbps Ethernet. The IEEE 802.3z and 802.3ab standards define the MAC layer and 1000BASE-X and 1000BASE-T physical layer specifications for GigE. GigE switches and buffered distributors support IEEE 802.3x flow control. The paper also compares GigE with ATM in terms of quality of service, data rate, throughput, scalability, interoperability, network management, and cost of ownership.

  17. Experience with PACS in an ATM/Ethernet switched network environment.

    PubMed

    Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U

    1998-03-01

    Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.

  18. Impact Analysis of Flow Shaping in Ethernet-AVB/TSN and AFDX from Network Calculus and Simulation Perspective

    PubMed Central

    He, Feng; Zhao, Lin; Li, Ershuai

    2017-01-01

    Ethernet-AVB/TSN (Audio Video Bridging/Time-Sensitive Networking) and AFDX (Avionics Full DupleX switched Ethernet) are switched Ethernet technologies, which are both candidates for real-time communication in the context of transportation systems. AFDX implements a fixed priority scheduling strategy with two priority levels. Ethernet-AVB/TSN supports a similar fixed priority scheduling with an additional Credit-Based Shaper (CBS) mechanism. Besides, TSN can support time-triggered scheduling strategy. One direct effect of CBS mechanism is to increase the delay of its flows while decreasing the delay of other priority ones. The former effect can be seen as the shaping restriction and the latter effect can be seen as the shaping benefit from CBS. The goal of this paper is to investigate the impact of CBS on different priority flows, especially on the intermediate priority ones, as well as the effect of CBS bandwidth allocation. It is based on a performance comparison of AVB/TSN and AFDX by simulation in an automotive case study. Furthermore, the shaping benefit is modeled based on integral operation from network calculus perspective. Combing with the analysis of shaping restriction and shaping benefit, some configuration suggestions on the setting of CBS bandwidth are given. Results show that the effect of CBS depends on flow loads and CBS configurations. A larger load of high priority flows in AVB tends to a better performance for the intermediate priority flows when compared with AFDX. Shaping benefit can be explained and calculated according to the changing from the permitted maximum burst. PMID:28531158

  19. 78 FR 14152 - Notice of Intent To Grant Buy America Waiver to Illinois Department of Transportation To Use...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... included in IDOT's waiver request are: (1) An ethernet cable; (2) an omni directional antenna; and (3) a... cables, routers, air filtration system, power supplies, radios, antennae, displays, and sensors, which... from INET-II Radio to Ethernet Switch; (2) a 900 MHz Omni- directional antenna; and (3) a RuggedComm RX...

  20. Analysis and solutions of security issues in Ethernet PON

    NASA Astrophysics Data System (ADS)

    Meng, Yu; Jiang, Tao; Xiao, Dingzhong

    2005-02-01

    Ethernet Passive Optical Network (EPON), which combines the low cost Ethernet equipment and economic fiber infrastructure, is being considered as a promising solution for Fiber-To-The-Home (FTTH). However, since EPON is an optical shared medium network, some unique features make it more vulnerable to security attacks. In this paper, the key security threats of EPON are firstly analyzed. And then, considering some specific properties which might be utilized for security, such as the safety of transmissions in upstream direction, some novel methods are presented to solve security problems. Firstly, based on some modification about registration, the mechanism of access control is achieved. Secondly, we implement an AES-128 symmetrical encryption and decryption in the EPON system. The AES-128 algorithm can process data blocks of 128 bits, but the length of Ethernet frame is variable. How to deal with the last block, which is not up to 128 bits, is discussed in detail. Finally, key update is accomplished through a vendor specific OAM frame in order to enhance the level of security. The proposed mechanism will remain in conformance with P2MP specification defined by 802.3ah TF, and can supply a complete security solution for EPON.

  1. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver

    NASA Astrophysics Data System (ADS)

    Ou, Yanni; Davis, Matthew; Aguado, Alejandro; Meng, Fanchao; Nejabati, Reza; Simeonidou, Dimitra

    2018-05-01

    We introduce the real-time multi-technology transport layer monitoring to facilitate the coordinated virtualisation of optical and Ethernet networks supported by optical virtualise-able transceivers (V-BVT). A monitoring and network resource configuration scheme is proposed to include the hardware monitoring in both Ethernet and Optical layers. The scheme depicts the data and control interactions among multiple network layers under the software defined network (SDN) background, as well as the application that analyses the monitored data obtained from the database. We also present a re-configuration algorithm to adaptively modify the composition of virtual optical networks based on two criteria. The proposed monitoring scheme is experimentally demonstrated with OpenFlow (OF) extensions for a holistic (re-)configuration across both layers in Ethernet switches and V-BVTs.

  2. Performance Evaluation of a Field Programmable Gate Array-Based System for Detecting and Tracking Peer-to-Peer Protocols on a Gigabit Ethernet Network

    DTIC Science & Technology

    2010-06-01

    Ron’s Code 4 . . . . . . . . . . . . . . . . . . . 18 2.3.3 Virtual Private Network and Secure Shell Tunnels 19 2.3.4 Darknets ...created using Iodine. 2.2 Analyzing and Classifying Network Traffic Before the advent of Darknets and anonymizers like Tor (see Section 2.3), ana... darknets , and the Tor network. 2.3.1 Byte Padding. Byte padding is the most primitive obfuscation method used to hide payloads in network traffic. When byte

  3. Field Deployments of DWEL, A Dual-Wavelength Echidna Lidar

    NASA Astrophysics Data System (ADS)

    Howe, G.; Hewawasam, K.; Strahler, A. H.; Douglas, E. S.; Martel, J.; Cook, T.; Chakrabarti, S.; Li, Z.; Schaaf, C.; Paynter, I.; Saenz, E.; Wang, Z.; Yang, X.; Erb, A.

    2013-12-01

    We describe the construction and operation of a terrestrial scanning lidar used for automated retrieval of forest structure. The Dual Wavelength Echidna Lidar (DWEL) distinguishes between leaf hits and those of trunks and branches by using simultaneous, co-axial laser pulses at 1548 nm, where leaf water content produces strong absorption, and at 1064 nm where leaves and trunks have similar reflectances. The DWEL instrument obtains three-dimensional locations and characteristics of scattering events by using an altitudinal scan mirror on an azimuthal rotating mount along with full waveform digitization. The instrument has seen two successful field deployments: to the Sierra National Forest, California in June of 2013 and to both the Karawatha Forest Park and Brisbane Forest Park near Brisbane, Australia in July/August 2013 as part of the Terrestrial Laser Scanner International Interest Group (TLSIIG) conference. Measurements of tree leaves, branches, and trunks were successfully made. Panels of known reflectance were used to calibrate and characterize the back scattered waveforms in the field. Preliminary maximum range measurements were shown to be over 75 meters for both wavelengths. To obtain accurate waveform data, the two lasers are triggered simultaneously and each has a full-width-half-max length of less than 10 meters. The light is then collimated and expanded to a diameter of 6 mm before diverging in user-selectable optics with divergences of either 1.25- or 2.5-mrad enabling scan resolutions of 1- and 2-mrad. The durations of complete scans are approximately 164 and 41 minutes, respectively. Mirrors and dichroic filters co-align the two NIR wavelength laser beams along with a continuous-wave green marker laser. The outgoing beams are directed by a rotating 10 cm scan mirror with effective field of view of ×110 degrees attitudinally while the instrument itself rotates for an effective azimuthal field of view of 360 degrees. Optical encoders in both planes provide at least 15-bit precision per rotation. The back-scattered return signal arriving at the scan mirror enters a 10-cm Newtonian-Nasmyth telescope and is split using a dichroic beamsplitter and narrow band pass filters. InGaAs photodiodes measure the return signals at each wavelength which are sampled at 2 gigasamples per second with 10-bit precision. Waveform and housekeeping data are first collected by an on-board compactPCI single-board computer before being transmitted live via Ethernet to a separate field PC. The required 115 W of power is supplied by high-density lithium ion batteries which together with the instrument bring the total weight to around 21 kg. The instrument has been designed to be eye-safe. In this presentation we will describe the features of the instrument along with data collected from the field campaigns. This work was made possible by the US National Science Foundation under grant MRI-0923389.

  4. ZEUS hardware control system

    NASA Astrophysics Data System (ADS)

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-12-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users.

  5. Advanced Shutter Control for a Molecular Beam Epitaxy Reactor

    DTIC Science & Technology

    An open-source hardware and software-based shutter controller solution was developed that communicates over Ethernet with our original equipment...manufacturer (OEM) molecular beam epitaxy (MBE) reactor control software. An Arduino Mega microcontroller is the used for the brain of the shutter... controller , while a custom-designed circuit board distributes 24-V power to each of the 16 shutter solenoids available on the MBE. Using Ethernet

  6. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  7. Designing A Robust Command, Communications and Data Acquisition System For Autonomous Sensor Platforms Using The Data Transport Network

    NASA Astrophysics Data System (ADS)

    Valentic, T. A.

    2012-12-01

    The Data Transport Network is designed for the delivery of data from scientific instruments located at remote field sites with limited or unreliable communications. Originally deployed at the Sondrestrom Research Facility in Greenland over a decade ago, the system supports the real-time collection and processing of data from large instruments such as incoherent scatter radars and lidars. In recent years, the Data Transport Network has been adapted to small, low-power embedded systems controlling remote instrumentation platforms deployed throughout the Arctic. These projects include multiple buoys from the O-Buoy, IceLander and IceGoat programs, renewable energy monitoring at the Imnavait Creek and Ivotuk field sites in Alaska and remote weather observation stations in Alaska and Greenland. This presentation will discuss the common communications controller developed for these projects. Although varied in their application, each of these systems share a number of common features. Multiple instruments are attached, each of which needs to be power controlled, data sampled and files transmitted offsite. In addition, the power usage of the overall system must be minimized to handle the limited energy available from sources such as solar, wind and fuel cells. The communications links are satellite based. The buoys and weather stations utilize Iridium, necessitating the need to handle the common drop outs and high-latency, low-bandwidth nature of the link. The communications controller is an off-the-shelf, low-power, single board computer running a customized version of the Linux operating system. The Data Transport Network provides a Python-based software framework for writing individual data collection programs and supplies a number of common services for configuration, scheduling, logging, data transmission and resource management. Adding a new instrument involves writing only the necessary code for interfacing to the hardware. Individual programs communicate with the system services using XML-RPC. The scheduling algorithms have access the current position and power levels, allowing for instruments such as cameras to only be run during daylight hours or when sufficient power is available. The resource manager monitors the use of common devices such as the USB bus or Ethernet ports, and can power them down when they are not being used. This management lets us drop the power consumption from an average of 1W to 250mW.

  8. Inexpensive semi-autonomous ground vehicles for defusing IEDs

    NASA Astrophysics Data System (ADS)

    Davenport, Chris; Lodmell, James; Womble, Phillip C.; Barzilov, Alexander; Paschal, Jon; Hernandez, Robert; Moss, Kyle T.; Hopper, Lindsay

    2008-04-01

    Improvised explosive devices (IEDs) are an important concern to coalition forces during the conflicts in the Middle East. These devices are responsible for many casualties to American armed forces in the Middle East. These explosives are particularly dangerous because they are improvised with materials readily available to the designer, and there is no systematic way of explosive ordinance disposal. IEDs can be made from things such as standard military ammunition and can be detonated with common electronic devices such as cell phones and garage door openers. There is a great need for a low cost solution to neutralize these IEDs. At the Applied Physics Institute we are building a single function disrupter robot whose sole purpose is to neutralize these IEDs. We are modifying a toy remote control car to control it either wirelessly using WI-FI (IEEE 802.11) or wired by tethering the vehicle with an Ethernet cable (IEEE 802.3). The robot will be equipped with a high velocity fuze disrupter to neutralize the IED as well as a video camera for inspection and aiming purposes. This robot utilizes commercial-off-the-shelf (COTS) components which keeps the cost relatively low. Currently, similar robot systems have been deployed in Iraq and elsewhere but their method of operation is such that it is impractical to use in non-combat situations. We will discuss our design and possible deployment scenarios.

  9. Ethernet-based test stand for a CAN network

    NASA Astrophysics Data System (ADS)

    Ziebinski, Adam; Cupek, Rafal; Drewniak, Marek

    2017-11-01

    This paper presents a test stand for the CAN-based systems that are used in automotive systems. The authors propose applying an Ethernet-based test system that supports the virtualisation of a CAN network. The proposed solution has many advantages compared to classical test beds that are based on dedicated CAN-PC interfaces: it allows the physical constraints associated with the number of interfaces that can be simultaneously connected to a tested system to be avoided, which enables the test time for parallel tests to be shortened; the high speed of Ethernet transmission allows for more frequent sampling of the messages that are transmitted by a CAN network (as the authors show in the experiment results section) and the cost of the proposed solution is much lower than the traditional lab-based dedicated CAN interfaces for PCs.

  10. Handheld hyperspectral imager system for chemical/biological and environmental applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Piatek, Bob

    2004-08-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  11. Hand-held hyperspectral imager for chemical/biological and environmental applications

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Piatek, Bob

    2004-03-01

    A small, hand held, battery operated imaging infrared spectrometer, Sherlock, has been developed by Pacific Advanced Technology and was field tested in early 2003. The Sherlock spectral imaging camera has been designed for remote gas leak detection, however, the architecture of the camera is versatile enough that it can be applied to numerous other applications such as homeland security, chemical/biological agent detection, medical and pharmaceutical applications as well as standard research and development. This paper describes the Sherlock camera, theory of operations, shows current applications and touches on potential future applications for the camera. The Sherlock has an embedded Power PC and performs real-time-image processing function in an embedded FPGA. The camera has a built in LCD display as well as output to a standard monitor, or NTSC display. It has several I/O ports, ethernet, firewire, RS232 and thus can be easily controlled from a remote location. In addition, software upgrades can be performed over the ethernet eliminating the need to send the camera back to the factory for a retrofit. Using the USB port a mouse and key board can be connected and the camera can be used in a laboratory environment as a stand alone imaging spectrometer.

  12. Unattended Multiplicity Shift Register

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, Matt; Jones, David C.

    2017-01-16

    The Unattended Multiplicity Shift Register (UMSR) is a specialized pulse counter used primarily to count neutron events originating in neutron detection instruments. While the counter can be used to count any TTL input pulses, its unique ability to record time correlated events and the multiplicity distributions of these events makes it an ideal instrument for counting neutron events in the nuclear fields of material safeguards, waste assay and process monitoring and control. The UMSR combines the Los Alamos National Laboratory (LANL) simple and robust shift register design with a Commercial-Off-The-Shelf (COTS) processor and Ethernet communications. The UMSR is fully compatiblemore » with existing International Atomic Energy Agency (IAEA) neutron data acquisition instruments such as the Advance Multiplicity Shift Register (AMSR) and JSR-15. The UMSR has three input channels: a multiplicity shift register input and two auxiliary inputs. The UMSR provides 0V to 2kV of programmable High Voltage (HV) bias and both a 12V and a 5V detector power supply output. A serial over USB communication line to the UMSR allows the use of existing versions of INCC or MIC software while the Ethernet port is compatible with the new IAEA RAINSTORM communication protocol.« less

  13. CHEETAH: circuit-switched high-speed end-to-end transport architecture

    NASA Astrophysics Data System (ADS)

    Veeraraghavan, Malathi; Zheng, Xuan; Lee, Hyuk; Gardner, M.; Feng, Wuchun

    2003-10-01

    Leveraging the dominance of Ethernet in LANs and SONET/SDH in MANs and WANs, we propose a service called CHEETAH (Circuit-switched High-speed End-to-End Transport ArcHitecture). The service concept is to provide end hosts with high-speed, end-to-end circuit connectivity on a call-by-call shared basis, where a "circuit" consists of Ethernet segments at the ends that are mapped into Ethernet-over-SONET long-distance circuits. This paper focuses on the file-transfer application for such circuits. For this application, the CHEETAH service is proposed as an add-on to the primary Internet access service already in place for enterprise hosts. This allows an end host that is sending a file to first attempt setting up an end-to-end Ethernet/EoS circuit, and if rejected, fall back to the TCP/IP path. If the circuit setup is successful, the end host will enjoy a much shorter file-transfer delay than on the TCP/IP path. To determine the conditions under which an end host with access to the CHEETAH service should attempt circuit setup, we analyze mean file-transfer delays as a function of call blocking probability in the circuit-switched network, probability of packet loss in the IP network, round-trip times, link rates, and so on.

  14. Experimental demonstration of the real-time online fault monitoring technique for chaos-based passive optical networks

    NASA Astrophysics Data System (ADS)

    Dou, Xinyu; Yin, Hongxi; Yue, Hehe; Jin, Yu; Shen, Jing; Li, Lin

    2015-09-01

    In this paper, a real-time online fault monitoring technique for chaos-based passive optical networks (PONs) is proposed and experimentally demonstrated. The fault monitoring is performed by the chaotic communication signal. The proof-of-concept experiments are demonstrated for two PON structures, i.e., wavelength-division-multiplexing (WDM) PON and Ethernet PON (EPON), respectively. For WDM PON, two monitoring approaches are investigated, one deploying a chaotic optical time domain reflectometry (OTDR) for each transmitter, and the other using only one tunable chaotic OTDR. The experimental results show that the faults at beyond 20 km from the OLT can be detected and located. The spatial resolution of the tunable chaotic OTDR is an order of magnitude of centimeter. Meanwhile, the monitoring process can operate in parallel with the chaotic optical secure communications. The proposed technique has benefits of real-time, online, precise fault location, and simple realization, which will significantly reduce the cost of operation, administration and maintenance (OAM) of PON.

  15. Planar polymer and glass graded index waveguides for data center applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex

    2016-03-01

    Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.

  16. Management Requirements of the 3COM Ethernet Local Area Network

    DTIC Science & Technology

    1988-09-01

    Management Information System . With the introduction of new technology comes the requirement to administer the network. This paper describes LAN services available on the network, management philosophies for the LAN services, and areas of LAN administration considered important to the successful operation and maintenance of a LAN. LAN administration problems identified by users are also addressed. Keywords included; Local area network (LAN); Lan management; Lan administration; 3COM ETHERNET LAN.

  17. Web surveillance system using platform-based design

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Yo; Tsai, Tsung-Han

    2004-04-01

    A revolutionary methodology of SOPC platform-based design environment for multimedia communications will be developed. We embed a softcore processor to perform the image compression in FPGA. Then, we plug-in an Ethernet daughter board in the SOPC development platform system. Afterward, a web surveillance platform system is presented. The web surveillance system consists of three parts: image capture, web server and JPEG compression. In this architecture, user can control the surveillance system by remote. By the IP address configures to Ethernet daughter board, the user can access the surveillance system via browser. When user access the surveillance system, the CMOS sensor presently capture the remote image. After that, it will feed the captured image with the embedded processor. The embedded processor immediately performs the JPEG compression. Afterward, the user receives the compressed data via Ethernet. To sum up of the above mentioned, the all system will be implemented on APEX20K200E484-2X device.

  18. Smart Microgrid Energy Management Controls for Improved Energy Efficiency and Renewables Integration at DoD Installations

    DTIC Science & Technology

    2013-05-01

    flare gas, wind , solar) and can reduce overall energy price volatility; • Renewable DER such as wind and solar PV cells provide emissions-free energy...infrastructure which uses both Ethernet and Wireless media. Ethernet is easily extendable and supports multiple protocols, accommodating a broad range of...by faults or switching events. Remote resources are also integrated into the microgrid network using wireless network currently existing in the Base

  19. TTEthernet for Integrated Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network determinism required by real-time spacecraft applications. Even with modern advancements, the uncoordinated (i.e. event-driven) nature of Ethernet communication unavoidably leads to message contention within network switches. The arbitration process used to resolve such conflicts introduces variation in the time it takes for messages to be forwarded. TTEthernet1 introduces decentralized clock synchronization to switched Ethernet, enabling message transmission according to a time-triggered (TT) paradigm. A network planning tool is used to allocate each device a finite amount of time in which it may transmit a frame. Each time slot is repeated sequentially to form a periodic communication schedule that is then loaded onto each TTEthernet device (e.g. switches and end systems). Each network participant references the synchronized time in order to dispatch messages at predetermined instances. This schedule guarantees that no contention exists between time-triggered Ethernet frames in the network switches, therefore eliminating the need for arbitration (and the timing variation it causes). Besides time-triggered messaging, TTEthernet networks may provide two additional traffic classes to support communication of different criticality levels. In the rate-constrained (RC) traffic class, the frame payload size and rate of transmission along each communication channel are limited to predetermined maximums. The network switches can therefore be configured to accommodate the known worst-case traffic pattern, and buffer overflows can be eliminated. The best-effort (BE) traffic class behaves akin to classical Ethernet. No guarantees are provided regarding transmission latency or successful message delivery. TTEthernet coordinates transmission of all three traffic classes over the same physical connections, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. Common computing platforms (e.g. LRUs) can share networking resources in such a way that failures in non-critical systems (using BE or RC communication modes) cannot impact flight-critical functions (using TT communication). Furthermore, TTEthernet hardware (e.g. switches, cabling) can be shared by both TTEthernet and classical Ethernet traffic.

  20. Ethernet for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Webb, Evan; Day, John H. (Technical Monitor)

    2002-01-01

    NASA's Goddard Space Flight Center (GSFC) is adapting current data networking technologies to fly on future spaceflight missions. The benefits of using commercially based networking standards and protocols have been widely discussed and are expected to include reduction in overall mission cost, shortened integration and test (I&T) schedules, increased operations flexibility, and hardware and software upgradeability/scalability with developments ongoing in the commercial world. The networking effort is a comprehensive one encompassing missions ranging from small University Explorer (UNEX) class spacecraft to large observatories such as the Next Generation Space Telescope (NGST). Mission aspects such as flight hardware and software, ground station hardware and software, operations, RF communications, and security (physical and electronic) are all being addressed to ensure a complete end-to-end system solution. One of the current networking development efforts at GSFC is the SpaceLAN (Spacecraft Local Area Network) project, development of a space-qualifiable Ethernet network. To this end we have purchased an IEEE 802.3-compatible 10/100/1000 Media Access Control (MAC) layer Intellectual Property (IP) core and are designing a network node interface (NNI) and associated network components such as a switch. These systems will ultimately allow the replacement of the typical MIL-STD-1553/1773 and custom interfaces that inhabit most spacecraft. In this paper we will describe our current Ethernet NNI development along with a novel new space qualified physical layer that will be used in place of the standard interfaces. We will outline our plans for development of space qualified network components that will allow future spacecraft to operate in significant radiation environments while using a single onboard network for reliable commanding and data transfer. There will be a brief discussion of some issues surrounding system implications of a flight Ethernet. Finally, we will show an onboard network architecture for a proposed new mission using Ethernet for science data transport.

  1. Enhancing Network Communication in NPSNET-V Virtual Environments Using XML-Described Dynamic Behavior (DBP) Protocols

    DTIC Science & Technology

    2001-09-01

    testing is performed between two machines connected by either a 100 Mbps Ethernet connection or a 56K modem connection. This testing is performed...and defined as follows: • The available bandwidth is set at two different levels (Ethernet 100 Mbps and 56K modem ). 32 • The packet size is set... modem connection. These two connections represent the target 100 Mbps high end and 56k bps low end of anticipated client connections in web-based

  2. Interfacing the VAX 11/780 Using Berkeley Unix 4.2.BSD and Ethernet Based Xerox Network Systems. Volume 1.

    DTIC Science & Technology

    1984-12-01

    3Com Corporation ....... A-18 Ethernet Controller Support . . . . . . A-19 Host Systems Support . . . . . . . . . A-20 Personal Computers Support...A-23 VAX EtherSeries Software 0 * A-23 Network Research Corporation . o o o . o A-24 File Transfer Service . . . . o A-25 Virtual Terminal Service 0...Control office is planning to acquire a Digital Equipment Corporation VAX 11/780 mainframe computer with the Unix Berkeley 4.2BSD operating system. They

  3. Reliable Wide-Area Wavelength Division Multiplexing Passive Optical Network Accommodating Gigabit Ethernet and 10-Gb Ethernet Services

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi

    2006-05-01

    This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.

  4. Systems and technologies for high-speed inter-office/datacenter interface

    NASA Astrophysics Data System (ADS)

    Sone, Y.; Nishizawa, H.; Yamamoto, S.; Fukutoku, M.; Yoshimatsu, T.

    2017-01-01

    Emerging requirements for inter-office/inter-datacenter short reach links for data center interconnects (DCI) and metro transport networks have led to various inter-office and inter-datacenter optical interface technologies. These technologies are bringing significant changes to systems and network architectures. In this paper, we present a system and ZR optical interface technologies for DCI and metro transport networks, then introduce the latest challenges facing the system framework. There are two trends in reach extension; one is to use Ethernet and the other is to use digital coherent technologies. The first approach achieves reach extension while using as many existing Ethernet components as possible. It offers low costs as reuses the cost-effective components created for the large Ethernet market. The second approach adopts low-cost and low power coherent DSPs that implement the minimal set long haul transmission functions. This paper introduces an architecture that integrates both trends. The architecture satisfies both datacom and telecom needs with a common control and management interface and automated configuration.

  5. On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Loveless, Andrew

    2015-01-01

    There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program.

  6. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    DTIC Science & Technology

    2011-04-01

    two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the...Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to... coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall

  7. Safety management of Ethernet broadband access based on VLAN aggregation

    NASA Astrophysics Data System (ADS)

    Wang, Li

    2004-04-01

    With broadband access network development, the Ethernet technology is more and more applied access network now. It is different from the private network -LAN. The differences lie in four points: customer management, safety management, service management and count-fee management. This paper mainly discusses the safety management related questions. Safety management means that the access network must secure the customer data safety, isolate the broad message which brings the customer private information, such as ARP, DHCP, and protect key equipment from attack. Virtue LAN (VLAN) technology can restrict network broadcast flow. We can config each customer port with a VLAN, so each customer is isolated with others. The IP address bound with VLAN ID can be routed rightly. But this technology brings another question: IP address shortage. VLAN aggregation technology can solve this problem well. Such a mechanism provides several advantages over traditional IPv4 addressing architectures employed in large switched LANs today. With VLAN aggregation technology, we introduce the notion of sub-VLANs and super-VLANs, a much more optimal approach to IP addressing can be realized. This paper will expatiate the VLAN aggregation model and its implementation in Ethernet access network. It is obvious that the customers in different sub-VLANs can not communication to each other because the ARP packet is isolated. Proxy ARP can enable the communication among them. This paper will also expatiate the proxy ARP model and its implementation in Ethernet access network.

  8. Gigabit ATM: another technical mistake?

    NASA Astrophysics Data System (ADS)

    Christ, Paul

    1998-09-01

    Once upon a time, or more precisely during February 1988 at the CCITT Seoul plenary, and definitely arriving as a revolution, ATM hit the hard-core B-ISDN circuit-switching gang. Initiated by the Telecoms' camp, but, surprisingly, soon to be pushed by computer minded people, ATM's generic technological history is somewhat richer than single-sided stories. Here are two classical elements of that history: Firstly, together with X.25, ATM suffers from the connection versus datagram dichotomy, well known for more than twenty years. Secondly, and lesser known, ATM's use of cells in support of the 'I' of B-ISDN was questioned from the very beginning by the packet switching camp. Furthermore, in this context, there are two other essential elements to be considered: Firstly, the exponential growth of the Internet and later intranets, using Internet technology, sparked by the success of the Web and the WINTEL alliance, resulted in a corresponding demand for both aggregate and end-system network bandwidth. Secondly, servers, historically restricted to the exclusive club of HIPPI-equipped supercomputers, suddenly become ordinary high-end PCs with 64-bit wide PCI busses -- definitely aiming at the Gigabit. Here, if your aim is for Gigabit ATM with 5000-transactions per second classical supercomputers, a 65K ATM MTU -- as implemented by Cray -- might be okay. Following Clark and others, another part of the story is the adoption and redefinition, by the IETF, of the Telecoms' notion of 'Integrated Services' and QoS mechanisms. The quest for low-delay IP packet forwarding, perhaps possible over ATM cut-throughs, has resulted in the switching versus/or integrated-with-routing movement. However, a blow for ATM may be the recent results concerning fast routing table lookup algorithms. This, by making Gigabit routing possible using ordinary Pentium processors may eventually render the much prophesized ATM switching performance unnecessary. Recently, with the rise of Gigabit Ethernet, many of the elements mentioned above are now being presented by standard 'Gigabit Ethernet and Gigabit ATM -- friends or foes' conferences. In- depth analyses are given concerning the canonical elements of such a setting: legacy, new use requirements, manageability, security LAN-WAN, architectures, standards, technologies and products, complexity, evolution-transition strategies, manufacturers, player organizations etc. Often in such conferences, Fiber Channel, being one of Gigabit Ethernet's physical media, is presented as the only other Gigabit LAN technology. In an attempt to sum up: Given the present state of ATM deployment measured in terms of functionalities and sophistication, after ten years of CCCITT/ITU and almost as many years of ATM Forum effort, does the question still being asked now represent the answer -- ATM is or was a mistake there some elements still missing? Here's a technical and a political example:

  9. A Robot for Coastal Marine Studies Under Hostile Conditions

    NASA Astrophysics Data System (ADS)

    Consi, T. R.

    2012-12-01

    Robots have long been used for scientific exploration of extremely remote environments such as planetary surfaces and the deep ocean. In addition to these physically remote places, there are many environments that are transiently remote in the sense that they are inaccessible to humans for a period of time. Coastal marine environments fall into this category. While quite accessible (and enjoyable) during good weather, the coast can become as remote as the moon when it is impacted by severe storms or hurricanes. For near shore and shallow water marine science unmanned underwater ground vehicles (UUGVs) are the robots of choice for reliable access under a variety of conditions. Ground vehicles are inherently amphibious being able to operate in complex coastal environments that can range from the completely dry beach, through the transiently wet swash zone, into the surf zone and beyond. During storms, UUGVs provide stable sensor platforms resistant to waves and currents by virtue of being locked to the substrate. In such situations free-swimming robots would be swept away. Mobility during storms enables a UUGV to orient itself to optimally resist forces that would dislodge fixed, moored platforms. Mobility can also enable a UUGV to either avoid burial, or unbury itself after a storm. Finally, the ability to submerge provides a great advantage over buoys and surface vehicles which would be smashed by heavy wave action. We have developed a prototype UUGV to enable new science in the surf zone and other shallow water environments. Named LMAR for Lake Michigan Amphibious Robot, it is designed to be deployed from the dry beach, enter the water to perform a near-shore survey, and return to the deployment point for recovery. The body of the robot is a heavy flattened box (base dimensions: 1.07 m X 1.10 m X .393 m, dry weight: ~127 kg, displacement: ~ 45 kg) with a low center of gravity for stability and robust construction to withstand waves and currents. It is topped by a 1.5 m surface penetrating mast which currently limits the operational depth, although the core vehicle can be deployed to depths in excess of 10 m. Propulsion is accomplished with two DC brushless motors driving six wide heavy tread pneumatic wheels, three on each side. Power is provided by NiMH batteries. An onboard computer controls propulsion, navigation and communications. Guidance and navigation utilize inertial sensors, an electronic compass and a GPS unit mounted on the mast. A scientist onshore can monitor data from the scientific payload as well as command the robot through a mast-mounted radio Ethernet bridge. Standard, off the shelf oceanographic sensors such as sondes and ADCPs can easily be integrated onto the robot making it a versatile sensing platform. We have successfully deployed the vehicle off a sandy beach in Lake Michigan where it has performed lawn-mower surveys in the surf zone. LMAR's design and field test results will be presented along with a discussion of how to further harden the vehicle for deployment in storms.

  10. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Calvert, John; Freas, George, II

    2017-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD 1553B, Ethernet and TAXI) and is designed to facilitate rapid testing and deployment of payload experiments to the ISS. The ISS Program's goal is to reduce the amount of time it takes a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface. Additionally, the Analog and Discrete (A&D) signals of the following payload types may be tested with RAPTR: (1) EXPRESS Sub Rack Payloads; (2) ELC payloads; (3) External Columbus payloads; (4) External Japanese Experiment Module (JEM) payloads. The automated payload configuration setup and payload data inspection infrastructure is found nowhere else in ISS payload test systems. Testing can be done with minimal human intervention and setup, as the RAPTR automatically monitors parameters in the data headers that are sent to, and come from the experiment under test.

  11. netPICOmag: from Design to Network Implementation

    NASA Astrophysics Data System (ADS)

    Schofield, I.; Connors, M.; Russell, C.

    2009-05-01

    netPICOmag is the successful conclusion of a design effort involving networking based on Rabbit microcontrollers, PIC microcontrollers, and pulsed magnetometer sensors. GPS timing allows both timestamping of data and the precision counting of the number of pulses produced by the sensor heads in one second. Power over Ethernet, use of DHCP, and broadcast of UDP packets mean a very simple local installation, with one wire leading to a relatively small integrated sensor package which is vertically placed in the ground. Although we continue to make improvements, including through investigating new sensor types, we regard the design as mature and well tested. Here we focus on the need for yet denser magnetometer networks, technological applications which become practical using sensitive yet inexpensive magnetometers, and deployment methods for large numbers of sensors. With careful calibration, netPICOmags overlap with research grade magnetometers. Without it, they still sensitively detect magnetic variations and can be used for an education or outreach program. Due to their low cost, such an application allows many students to be directly involved in gathering data that can be very relevant to them personally when they witness auroras.

  12. A Novel Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-14-2-0195 TITLE: A Novel Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis PRINCIPAL INVESTIGATOR...Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Month % completion Aim 1: To use simulated field conditions to optimize and produce the established RPA lateral flow diagnostic test for POC

  13. Ref Tek Ultra-low Power Seismic Recorder With Low-cost High Speed Internet Telemetry U An Advanced Real-time Seismological Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Passmore, P.; Zimakov, L.; Rozhkov, M.

    The 3rd Generation Seismic Recorder, Model 130-01, has been designed to be easier to use - more compact, lighter in weight, lower power, and requires less maintenance than other recorders. Not only is the hardware optimized for field deployments, soft- ware tools as well have been specially developed to support both field and base station operation. The 130's case is a clamshell design, inherently waterproof, with easy access to all user features on the top of the unit. The 130 has 6 input/output connectors, an LCD display, and a removable lid on top of the case. There are two Channel input connectors on a 6-channel unit (only one on a 3-channel unit), a Terminal connector for setup and control, a Net connector combining Ethernet and Serial PPP for network access, a 12 VDC Power connector, and a GPS receiver connector. The LCD display allows the user to monitor the status of various sub systems within the 130 without having a terminal device attached. For storing large amounts of data the IBM MicrodriveTM is offered. User setup, control and status monitoring is done either with a Personal Digital Assistant (PDA) (Palm OS compatible) using our Palm Field Controller (PFC) software or from a PC/workstation using our REF TEK Network Controller (RNC) GUI interface. StarBand VSAT is the premier two-way, always-on, high-speed satellite Internet ser- vice. StarBand means high-speed Internet without the constraints and congestion of land-based cable or telephone networks. StarBand uses a single satellite dish antenna for receiving and for sending dataUno telephone connection is needed. The hardware ° cost is much less than standard VSAT equipment with double or single hop transmis- sion. REF TEK protocol (RTP) provides end-to-end error-correcting data transmission and command/control. StarBandSs low cost VSAT provides two-way, always-on, high speed satellite Internet data availability. REF TEK and StarBand create the most ad- vanced real-time seismological data acquisition system. 1 Results of data transmission and availability is discussed. 2

  14. Persistent Identifiers for Field Deployments: A Missing Link in the Provenance Chain

    NASA Astrophysics Data System (ADS)

    Arko, R. A.; Ji, P.; Fils, D.; Shepherd, A.; Chandler, C. L.; Lehnert, K.

    2016-12-01

    Research in the geosciences is characterized by a wide range of complex and costly field deployments including oceanographic cruises, submersible dives, drilling expeditions, seismic networks, geodetic campaigns, moored arrays, aircraft flights, and satellite missions. Each deployment typically produces a mix of sensor and sample data, spanning a period from hours to decades, that ultimately yields a long tail of post-field products and publications. Publishing persistent, citable identifiers for field deployments will facilitate 1) preservation and reuse of the original field data, 2) reproducibility of the resulting publications, and 3) recognition for both the facilities that operate the platforms and the investigators who secure funding for the experiments. In the ocean domain, sharing unique identifiers for field deployments is a familiar practice. For example, the Biological and Chemical Oceanography Data Management Office (BCO-DMO) routinely links datasets to cruise identifiers published by the Rolling Deck to Repository (R2R) program. In recent years, facilities have started to publish formal/persistent identifiers, typically Digital Object Identifiers (DOIs), for field deployments including seismic networks, oceanographic cruises, and moored arrays. For example, the EarthChem Library (ECL) publishes a DOI for each dataset which, if it derived from an oceanographic research cruise on a US vessel, is linked to a DOI for the cruise published by R2R. Work is underway to create similar links for the IODP JOIDES Resolution Science Operator (JRSO) and the Continental Scientific Drilling Coordination Office (CSDCO). We present results and lessons learned including a draft schema for publishing field deployments as DataCite DOI records; current practice for linking these DOIs with related identifiers such as Open Researcher and Contributor IDs (ORCIDs), Open Funder Registry (OFR) codes, and International Geo Sample Numbers (IGSNs); and consideration of other identifier types for field deployments such as UUIDs and Handles.

  15. Multi-board kernel communication using socket programming for embedded applications

    NASA Astrophysics Data System (ADS)

    Mishra, Ashish; Girdhar, Neha; Krishnia, Nikita

    2016-03-01

    It is often seen in large application projects, there is a need to communicate between two different processors or two different kernels. The aim of this paper is to communicate between two different kernels and use efficient method to do so. The TCP/IP protocol is implemented to communicate between two boards via the Ethernet port and use lwIP (lightweight IP) stack, which is a smaller independent implementation of the TCP/IP stack suitable for use in embedded systems. While retaining TCP/IP functionality, lwIP stack reduces the use of memory and even size of the code. In this process of communication we made Raspberry pi as an active client and Field programmable gate array(FPGA) board as a passive server and they are allowed to communicate via Ethernet. Three applications based on TCP/IP client-server network communication have been implemented. The Echo server application is used to communicate between two different kernels of two different boards. Socket programming is used as it is independent of platform and programming language used. TCP transmit and receive throughput test applications are used to measure maximum throughput of the transmission of data. These applications are based on communication to an open source tool called iperf. It is used to measure the throughput transmission rate by sending or receiving some constant piece of data to the client or server according to the test application.

  16. Parallelization of Rocket Engine System Software (Press)

    NASA Technical Reports Server (NTRS)

    Cezzar, Ruknet

    1996-01-01

    The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.

  17. A data transmission method for particle physics experiments based on Ethernet physical layer

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun

    2015-11-01

    Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)

  18. Implementation of the beamline controls at the Florence accelerator laboratory

    NASA Astrophysics Data System (ADS)

    Carraresi, L.; Mirto, F. A.

    2008-05-01

    The new Tandetron accelerator in Florence, with many different beamlines, has required a new organization of all the control signals of the used equipment (slow control). We present our solution, which allows us the control of all the employed instruments simultaneously from a number of different workplaces. All of our equipment has been designed to be Ethernet based and this is the key to accomplish two very important requirements: simultaneous remote control from many computers and electrical isolation to achieve a lower noise level. The control of the instruments requires only one Ethernet network and no particular interfaces or drivers on the computers.

  19. High-frequency field-deployable isotope analyzer for hydrological applications

    Treesearch

    Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell

    2009-01-01

    A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...

  20. Deploying a Route Optimization EFB Application for Commercial Airline Operational Trials

    NASA Technical Reports Server (NTRS)

    Roscoe, David A.; Vivona, Robert A.; Woods, Sharon E.; Karr, David A.; Wing, David J.

    2016-01-01

    The Traffic Aware Planner (TAP), developed for NASA Langley Research Center to support the Traffic Aware Strategic Aircrew Requests (TASAR) project, is a flight-efficiency software application developed for an Electronic Flight Bag (EFB). Tested in two flight trials and planned for operational testing by two commercial airlines, TAP is a real-time trajectory optimization application that leverages connectivity with onboard avionics and broadband Internet sources to compute and recommend route modifications to flight crews to improve fuel and time performance. The application utilizes a wide range of data, including Automatic Dependent Surveillance Broadcast (ADS-B) traffic, Flight Management System (FMS) guidance and intent, on-board sensors, published winds and weather, and Special Use Airspace (SUA) schedules. This paper discusses the challenges of developing and deploying TAP to various EFB platforms, our solutions to some of these challenges, and lessons learned, to assist commercial software developers and hardware manufacturers in their efforts to implement and extend TAP functionality in their environments. EFB applications (such as TAP) typically access avionics data via an ARINC 834 Simple Text Avionics Protocol (STAP) server hosted by an Aircraft Interface Device (AID) or other installed hardware. While the protocol is standardized, the data sources, content, and transmission rates can vary from aircraft to aircraft. Additionally, the method of communicating with the AID may vary depending on EFB hardware and/or the availability of onboard networking services, such as Ethernet, WIFI, Bluetooth, or other mechanisms. EFBs with portable and installed components can be implemented using a variety of operating systems, and cockpits are increasingly incorporating tablet-based technologies, further expanding the number of platforms the application may need to support. Supporting multiple EFB platforms, AIDs, avionics datasets, and user interfaces presents a challenge for software developers and the management of their code baselines. Maintaining multiple baselines to support all deployment targets can be extremely cumbersome and expensive. Certification also needs to be considered when developing the application. Regardless of whether the software is itself destined to be certified, data requirements in support of the application and user interface elements may introduce certification requirements for EFB manufacturers and the airlines. The example of TAP, the challenges faced, solutions implemented, and lessons learned will give EFB application and hardware developers insight into future potential requirements in deploying TAP or similar flight-deck EFB applications.

  1. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    NASA Astrophysics Data System (ADS)

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  2. Electromagnetic panel deployment and retraction using the geomagnetic field in LEO satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Sugawara, Yoshiki; Satou, Yasutaka

    2015-12-01

    Increasingly, spacecraft are installed with large-area structures that are extended and deployed post-launch. These extensible structures have been applied in several missions for power generation, thermal radiation, and solar propulsion. Here, we propose a deployment and retraction method using the electromagnetic force generated when the geomagnetic field interacts with electric current flowing on extensible panels. The panels are installed on a satellite in low Earth orbit. Specifically, electrical wires placed on the extensible panels generate magnetic moments, which interfere with the geomagnetic field. The resulting repulsive and retraction forces enable panel deployment and retraction. In the proposed method, a satellite realizes structural deployment using simple electrical wires. Furthermore, the satellite can achieve not only deployment but also retraction for avoiding damage from space debris and for agile attitude maneuvers. Moreover, because the proposed method realizes quasi-static deployment and the retraction of panels by electromagnetic forces, low impulsive force is exerted on fragile panels. The electrical wires can also be used to detect the panel deployment and retraction and generate a large magnetic moment for attitude control. The proposed method was assessed in numerical simulations based on multibody dynamics. Simulation results shows that a small cubic satellite with a wire current of 25 AT deployed 4 panels (20 cm × 20 cm) in 500 s and retracted 4 panels in 100 s.

  3. The High Definition Earth Viewing (HDEV) Payload

    NASA Technical Reports Server (NTRS)

    Muri, Paul; Runco, Susan; Fontanot, Carlos; Getteau, Chris

    2017-01-01

    The High Definition Earth Viewing (HDEV) payload enables long-term experimentation of four, commercial-of-the-shelf (COTS) high definition video, cameras mounted on the exterior of the International Space Station. The payload enables testing of cameras in the space environment. The HDEV cameras transmit imagery continuously to an encoder that then sends the video signal via Ethernet through the space station for downlink. The encoder, cameras, and other electronics are enclosed in a box pressurized to approximately one atmosphere, containing dry nitrogen, to provide a level of protection to the electronics from the space environment. The encoded video format supports streaming live video of Earth for viewing online. Camera sensor types include charge-coupled device and complementary metal-oxide semiconductor. Received imagery data is analyzed on the ground to evaluate camera sensor performance. Since payload deployment, minimal degradation to imagery quality has been observed. The HDEV payload continues to operate by live streaming and analyzing imagery. Results from the experiment reduce risk in the selection of cameras that could be considered for future use on the International Space Station and other spacecraft. This paper discusses the payload development, end-to- end architecture, experiment operation, resulting image analysis, and future work.

  4. Microprocessor-controlled, wide-range streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy E. Lewis, Craig Hollabaugh

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storagemore » using flash-based storage media. The camera’s user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.« less

  5. Microprocessor-controlled wide-range streak camera

    NASA Astrophysics Data System (ADS)

    Lewis, Amy E.; Hollabaugh, Craig

    2006-08-01

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera's user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.

  6. System analysis for the Huntsville Operation Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1986-01-01

    A simulation model of the NASA Huntsville Operational Support Center (HOSC) was developed. This simulation model emulates the HYPERchannel Local Area Network (LAN) that ties together the various computers of HOSC. The HOSC system is a large installation of mainframe computers such as the Perkin Elmer 3200 series and the Dec VAX series. A series of six simulation exercises of the HOSC model is described using data sets provided by NASA. The analytical analysis of the ETHERNET LAN and the video terminals (VTs) distribution system are presented. An interface analysis of the smart terminal network model which allows the data flow requirements due to VTs on the ETHERNET LAN to be estimated, is presented.

  7. Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard; Marquart, Jane; Lin, Michael

    2003-01-01

    Advancements in fright semiconductor technology have opened the door for IP-based networking in spacecraft architectures. The GSFC believes the same signlJicant cost savings gained using MIL-STD-1553/1773 as a standard low rate interface for spacecraft busses cun be realized for highspeed network interfaces. To that end, GSFC is developing hardware and software to support a seamless, space mission IP network based on Ethernet and MIL-STD-1553. The Ethernet network shall connect all fright computers and communications systems using interface standards defined by the CCSDS Standard Onboard InterFace (SOIF) Panel. This paper shall discuss the prototyping effort underway at GSFC and expected results.

  8. The Measurement of Spectral Characteristics and Composition of Radiation in Atlas with MEDIPIX2-USB Devices

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-06-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  9. Readout electronics for CBM-TOF super module quality evaluation based on 10 Gbps ethernet

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Cao, P.; Huang, X.; Zheng, J.; Wang, Q.; Li, B.; Li, J.; Liu, S.; An, Q.

    2017-07-01

    The Compressed Baryonic Matter-Time of Flight (CBM-TOF) wall uses high performance of Multi-gap Resistive Plate Chambers (MRPC) assembled in super modules to identify charged particles with high channel density and high measurement precision at high event rate. Electronics meet the challenge for reading data out from a super module at high speed of about 6 Gbps in real time. In this paper, the readout electronics for CBM-TOF super module quality evaluation is proposed based on 10 Gigabit Ethernet. The digitized TOF data from one super module will be concentrated at the front-end electronics residing on the side of the super module and transmitted to an extreme speed readout module (XSRM) housed in the backend crate through the PCI Express (PCIe) protocol via optic channels. Eventually, the XSRM transmits data to the data acquisition (DAQ) system through four 10 Gbps Ethernet ports in real time. This readout structure has advantages of high performance and expansibility. Furthermore, it is easy to operate. Test results on the prototype show that the overall data readout performance for each XSRM can reach up to 28.8 Gbps, which means XSRM can meet the requirement of reading data out from 4 super modules with 1280 channels in real time.

  10. Development of Protection and Control Unit for Distribution Substation

    NASA Astrophysics Data System (ADS)

    Iguchi, Fumiaki; Hayashi, Hideyuki; Takeuchi, Motohiro; Kido, Mitsuyasu; Kobayashi, Takashi; Yanaoka, Atsushi

    The Recently, electronics and IT technologies have been rapidly innovated and have been introduced to power system protection & control system to achieve high reliability, maintainability and more functionality. Concerning the distribution substation application, digital relays have been applied for more than 10 years. Because of a number of electronic devices used for it, product cost becomes higher. Also, products installed during the past high-growth period will be at the end of lifetime and will be replaced. Therefore, replacing market is expected to grow and the reduction of cost is demanded. Considering above mentioned background, second generation digital protection and control unit as a successor is designed to have following concepts. Functional integration based on advanced digital technologies, Ethernet LAN based indoor communication network, cost reduction and downsizing. Pondering above concepts, integration of protection and control function is adopted in contrary to the functional segregation applied to the previous system in order to achieve one-unit concept. Also the adoption of Ethernet LAN for inter-unit communication is objective. This report shows the development of second-generation digital relay for distribution substation, which is equipped with control function and Ethernet LAN by reducing the size of auxiliary transformer unit and the same size as previous product is realized.

  11. A new control system hardware architecture for the Hobby-Eberly Telescope prime focus instrument package

    NASA Astrophysics Data System (ADS)

    Ramiller, Chuck; Taylor, Trey; Rafferty, Tom H.; Cornell, Mark E.; Rafal, Marc; Savage, Richard

    2010-07-01

    The Hobby-Eberly Telescope (HET) will be undergoing a major upgrade as a precursor to the HET Dark Energy Experiment (HETDEX‡). As part of this upgrade, the Prime Focus Instrument Package (PFIP) will be replaced with a new design that supports the HETDEX requirements along with the existing suite of instruments and anticipated future additions. This paper describes the new PFIP control system hardware plus the physical constraints and other considerations driving its design. Because of its location at the top end of the telescope, the new PFIP is essentially a stand-alone remote automation island containing over a dozen subsystems. Within the PFIP, motion controllers and modular IO systems are interconnected using a local Controller Area Network (CAN) bus and the CANOpen messaging protocol. CCD cameras that are equipped only with USB 2.0 interfaces are connected to a local Ethernet network via small microcontroller boards running embedded Linux. Links to ground-level systems pass through a 100 m cable bundle and use Ethernet over fiber optic cable exclusively; communications are either direct or through Ethernet/CAN gateways that pass CANOpen messages transparently. All of the control system hardware components are commercially available, designed for rugged industrial applications, and rated for extended temperature operation down to -10 °C.

  12. 25 Gbps 850 nm photodiode for emerging 100 Gb ethernet applications

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay; Rue, Jim; Becker, Don; Datta, Shubhashish; McFaul, Will

    2011-06-01

    The IEEE Std 802.3ba-2010 for 40 Gb and 100 Gb Ethernet was released in July, 2010. This standard will continue to evolve over the next several years. Two of the challenging transmit/receive architectures contained in this standard are the 100GBASE-LR4 (<10 km range) and 100GBASE-ER4 (<40 km range). Although presently envisioned for 1310 nm optical wavelengths, both of these 4 lane, 25.78 GBaud formats may be adopted for the impending 850 nm short reach optical backplane market, whose range is below 150 m. Driven by major computer server companies, such as IBM, HP and Oracle, the 850 nm Active Optical Cable (AOC) market is presently undergoing an increase of serial rates up to 25 Gbaud to enhance backplane interconnectivity. With AOCs up to 16 channels, the potential for up to 400 Gbps backhaul composite data rates will soon be possible. We report a 25 Gbps photodiode with quantum efficiency ~ 0.6 at 850 nm. This InGaAs/InP device was optimized for high quantum efficiency at 850 nm. When pigtailed with multimode fiber and integrated with an application-specific RF amplifier, the resultant photoreceiver will provide multiple functionalities for these 100 Gb Ethernet markets.

  13. A simple method for verifying the deployment of the TOMS-EP solar arrays

    NASA Technical Reports Server (NTRS)

    Koppersmith, James R.; Ketchum, Eleanor

    1995-01-01

    The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) mission relies upon a successful deployment of the spacecraft's solar arrays. Several methods of verification are being employed to ascertain the solar array deployment status, with each requiring differing amounts of data. This paper describes a robust attitude-independent verification method that utilizes telemetry from the coarse Sun sensors (CSS's) and the three-axis magnetometers (TAM's) to determine the solar array deployment status - and it can do so with only a few, not necessarily contiguous, points of data. The method developed assumes that the solar arrays are deployed. Telemetry data from the CSS and TAM are converted to the Sun and magnetic field vectors in spacecraft body coordinates, and the angle between them is calculated. Deployment is indicated if this angle is within a certain error tolerance of the angle between the reference Sun and magnetic field vectors. Although several other methods can indicate a non-deployed state, with this method there is a 70% confidence level in confirming deployment as well as a nearly 100% certainty in confirming a non-deployed state. In addition, the spacecraft attitude (which is not known during the first orbit after launch) is not needed for this algorithm because the angle between the Sun and magnetic field vectors is independent of the spacecraft attitude. This technique can be applied to any spacecraft with a TAM and with CSS's mounted on the solar array(s).

  14. Gigabit Ethernet Asynchronous Clock Compensation FIFO

    NASA Technical Reports Server (NTRS)

    Duhachek, Jeff

    2012-01-01

    Clock compensation for Gigabit Ethernet is necessary because the clock recovered from the 1.25 Gb/s serial data stream has the potential to be 200 ppm slower or faster than the system clock. The serial data is converted to 10-bit parallel data at a 125 MHz rate on a clock recovered from the serial data stream. This recovered data needs to be processed by a system clock that is also running at a nominal rate of 125 MHz, but not synchronous to the recovered clock. To cross clock domains, an asynchronous FIFO (first-in-first-out) is used, with the write pointer (wprt) in the recovered clock domain and the read pointer (rptr) in the system clock domain. Because the clocks are generated from separate sources, there is potential for FIFO overflow or underflow. Clock compensation in Gigabit Ethernet is possible by taking advantage of the protocol data stream features. There are two distinct data streams that occur in Gigabit Ethernet where identical data is transmitted for a period of time. The first is configuration, which happens during auto-negotiation. The second is idle, which occurs at the end of auto-negotiation and between every packet. The identical data in the FIFO can be repeated by decrementing the read pointer, thus compensating for a FIFO that is draining too fast. The identical data in the FIFO can also be skipped by incrementing the read pointer, which compensates for a FIFO draining too slowly. The unique and novel features of this FIFO are that it works in both the idle stream and the configuration streams. The increment or decrement of the read pointer is different in the idle and compensation streams to preserve disparity. Another unique feature is that the read pointer to write pointer difference range changes between compensation and idle to minimize FIFO latency during packet transmission.

  15. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    NASA Technical Reports Server (NTRS)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  16. Computer-aided dispatch--traffic management center field operational test final detailed test plan : WSDOT deployment

    DOT National Transportation Integrated Search

    2003-10-01

    The purpose of this document is to expand upon the evaluation components presented in "Computer-aided dispatch--traffic management center field operational test final evaluation plan : WSDOT deployment". This document defines the objective, approach,...

  17. OFDM and PAM comparison using a high baudrate low resolution IM/DD interface for 400G Ethernet access.

    PubMed

    André, Nuno Sequeira; Louchet, Hadrien; Filsinger, Volker; Hansen, Erik; Richter, André

    2016-05-30

    We compare OFDM and PAM for 400G Ethernet based on a 3-bit high baudrate IM/DD interface at 1550nm. We demonstrate 27Gb/s and 32Gb/s transmission over 10km SSMF using OFDM and PAM respectively. We show that capacity can be improved through adaptation/equalization to achieve 42Gb/s and 64Gb/s for OFDM and PAM respectively. Experimental results are used to create realistic simulations to extrapolate the performance of both modulation formats under varied conditions. For the considered interface we found that PAM has the best performance, OFDM is impaired by quantization noise. When the resolution limitation is relaxed, OFDM shows better performance.

  18. Design and evaluation of FDDI fiber optics networkfor Ethernets, VAX's and Ingraph work stations

    NASA Technical Reports Server (NTRS)

    Wernicki, M. Chris

    1992-01-01

    The purpose of this project is to design and evaluate the FDDI Fiber Optics Network for Ethernets, VAX's, and Ingraph work stations. From the KSC Headquarters communication requirement, it would be necessary to develop the FDDI network based on IEEE Standards outlined in the ANSI X3T9.5, Standard 802.3 and 802.5 topology - direct link via intermediate concentrator and bridge/router access. This analysis should examine the major factors that influence the operating conditions of the Headquarters Fiber plant. These factors would include, but are not limited to the interconnecting devices such as repeaters, bridges, routers and many other relevant or significant FDDI characteristics. This analysis is needed to gain a better understanding of overall FDDI performance.

  19. Ethernet based data logger for gaseous detectors

    NASA Astrophysics Data System (ADS)

    Swain, S.; Sahu, P. K.; Sahu, S. K.

    2018-05-01

    A data logger is designed to monitor and record ambient parameters such as temperature, pressure and relative humidity along with gas flow rate as a function of time. These parameters are required for understanding the characteristics of gas-filled detectors such as Gas Electron Multiplier (GEM) and Multi-Wire Proportional Counter (MWPC). The data logger has different microcontrollers and has been interfaced to an ethernet port with a local LCD unit for displaying all measured parameters. In this article, the explanation of the data logger design, hardware, and software description of the master microcontroller and the DAQ system along with LabVIEW interface client program have been presented. We have implemented this device with GEM detector and displayed few preliminary results as a function of above parameters.

  20. Remote monitoring and fault recovery for FPGA-based field controllers of telescope and instruments

    NASA Astrophysics Data System (ADS)

    Zhu, Yuhua; Zhu, Dan; Wang, Jianing

    2012-09-01

    As the increasing size and more and more functions, modern telescopes have widely used the control architecture, i.e. central control unit plus field controller. FPGA-based field controller has the advantages of field programmable, which provide a great convenience for modifying software and hardware of control system. It also gives a good platform for implementation of the new control scheme. Because of multi-controlled nodes and poor working environment in scattered locations, reliability and stability of the field controller should be fully concerned. This paper mainly describes how we use the FPGA-based field controller and Ethernet remote to construct monitoring system with multi-nodes. When failure appearing, the new FPGA chip does self-recovery first in accordance with prerecovery strategies. In case of accident, remote reconstruction for the field controller can be done through network intervention if the chip is not being restored. This paper also introduces the network remote reconstruction solutions of controller, the system structure and transport protocol as well as the implementation methods. The idea of hardware and software design is given based on the FPGA. After actual operation on the large telescopes, desired results have been achieved. The improvement increases system reliability and reduces workload of maintenance, showing good application and popularization.

  1. Analysis of 2D Torus and Hub Topologies of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    NASA Technical Reports Server (NTRS)

    Pedretti, Kevin T.; Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    A variety of different network technologies and topologies are currently being evaluated as part of the Whitney Project. This paper reports on the implementation and performance of a Fast Ethernet network configured in a 4x4 2D torus topology in a testbed cluster of 'commodity' Pentium Pro PCs. Several benchmarks were used for performance evaluation: an MPI point to point message passing benchmark, an MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2). Our results show that for point to point communication on an unloaded network, the hub and 1 hop routes on the torus have about the same bandwidth and latency. However, the bandwidth decreases and the latency increases on the torus for each additional route hop. Collective communication benchmarks show that the torus provides roughly four times more aggregate bandwidth and eight times faster MPI barrier synchronizations than a hub based network for 16 processor systems. Finally, the SOAPBOX benchmarks, which simulate real-world CFD applications, generally demonstrated substantially better performance on the torus than on the hub. In the few cases the hub was faster, the difference was negligible. In total, our experimental results lead to the conclusion that for Fast Ethernet networks, the torus topology has better performance and scales better than a hub based network.

  2. Safeguards Technology Factsheet - Unattended Dual Current Monitor (UDCM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, Matthew R.

    2016-04-13

    The UDCM is a low-current measurement device designed to record sub-nano-amp to micro-amp currents from radiation detectors. The UDCM is a two-channel device that incorporates a Commercial-Off-The-Shelf (COTS) processor enabling both serial over USB as well as Ethernet communications. The instrument includes microSD and USB flash memory for data storage as well as a programmable High Voltage (HV) power supply for detector bias. The UDCM is packaged in the same enclosure, employs the same processor and has a similar user interface as the UMSR. A serial over USB communication line to the UDCM allows the use of existing versions ofmore » MIC software, while the Ethernet port is compatible with the new IAEA RAINSTORM communication protocol.« less

  3. Fronthaul evolution: From CPRI to Ethernet

    NASA Astrophysics Data System (ADS)

    Gomes, Nathan J.; Chanclou, Philippe; Turnbull, Peter; Magee, Anthony; Jungnickel, Volker

    2015-12-01

    It is proposed that using Ethernet in the fronthaul, between base station baseband unit (BBU) pools and remote radio heads (RRHs), can bring a number of advantages, from use of lower-cost equipment, shared use of infrastructure with fixed access networks, to obtaining statistical multiplexing and optimised performance through probe-based monitoring and software-defined networking. However, a number of challenges exist: ultra-high-bit-rate requirements from the transport of increased bandwidth radio streams for multiple antennas in future mobile networks, and low latency and jitter to meet delay requirements and the demands of joint processing. A new fronthaul functional division is proposed which can alleviate the most demanding bit-rate requirements by transport of baseband signals instead of sampled radio waveforms, and enable statistical multiplexing gains. Delay and synchronisation issues remain to be solved.

  4. Multi-partitioning for ADI-schemes on message passing architectures

    NASA Technical Reports Server (NTRS)

    Vanderwijngaart, Rob F.

    1994-01-01

    A kind of discrete-operator splitting called Alternating Direction Implicit (ADI) has been found to be useful in simulating fluid flow problems. In particular, it is being used to study the effects of hot exhaust jets from high performance aircraft on landing surfaces. Decomposition techniques that minimize load imbalance and message-passing frequency are described. Three strategies that are investigated for implementing the NAS Scalar Penta-diagonal Parallel Benchmark (SP) are transposition, pipelined Gaussian elimination, and multipartitioning. The multipartitioning strategy, which was used on Ethernet, was found to be the most efficient, although it was considered only a moderate success because of Ethernet's limited communication properties. The efficiency derived largely from the coarse granularity of the strategy, which reduced latencies and allowed overlap of communication and computation.

  5. A Study of the Ethernet Troughput Performance of the Embedded System

    NASA Astrophysics Data System (ADS)

    Duan, Zhi-Yu; Zhao, Zhao-Wang

    2007-09-01

    An ethernet acceleration solution developed for the NIOS II Embedded System in astronomical applications - Mason Express is introduced in this paper. By manually constructing the proper network protocol headers and directly driving the hardware, Mason Express goes around the performance bottleneck of the Light Weighted IP stack (LWIP), and achieves up to 90Mb/s unidirectional data troughput rate from the embedded system board to the data collecting computer. With the LWIP stack, the maximum data rate is about 10.57Mb/s. Mason Express is a total software solution and no hardware changes required, neither does it affect the uCOS II operating system nor the LWIP stack, and can be implemented with or without any embedded operating system. It maximally protects the intelligence investment of the users.

  6. Design of Mechanisms for Deployable, Optical Instruments: Guidelines for Reducing Hysteresis

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    This paper is intended to facilitate the development of deployable, optical instruments by providing a rational approach for the design, testing, and qualification of high-precision (i.e., low-hysteresis) deployment mechanisms for these instruments. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are, therefore, neither newly developed guidelines, nor are they uniquely applicable to the design of high-precision deployment mechanisms. This paper is to be regarded as a guide to design and not a set of NASA requirements, except as may be defined in formal project specifications. Furthermore, due to the rapid pace of advancement in the field of precision deployment, this paper should be regarded as a preliminary set of guidelines. However, it is expected that this paper, with revisions as experience may indicate to be desirable, might eventually form the basis for a set of uniform design requirements for high-precision deployment mechanisms on future NASA space-based science instruments.

  7. A flexible solution for the next generation EPON with hybrid bidirectional 1Gbps and 10Gbps

    NASA Astrophysics Data System (ADS)

    Zhang, Weixun; Qiao, Yaojun; Li, Hui; Ji, Yuefeng

    2007-11-01

    Ethernet PON (EPON) has been proved to be a successful technology among all the standardized PON systems [1, 2], in terms of its cost-effective and large bandwidth virtue. And EPON has become a network of a choice for subscriber oriented digital service delivery, taking over the market previously dominated by DSL. However, with the development of advanced video services, the bandwidth capacity of current EPON seems to be not well suited for the future large deployment of triple-play services. Many researches are now taken about the Next Generation EPON; and the recent 10G EPON system standardization effort in the IEEE [3] results a lot of interest in the evolution of current PON systems towards high data rate system capable of providing a future-proof platform for delivery of personalized triple-play services. In this paper, a novel architecture of TDM-based 10GE-PON system is proposed. It combines the GE-PON and 10GE-PON systems, and provides symmetric 1Gbps/10Gbps or asymmetric access simultaneously. According to the results of the simulation on the system throughput and latency performance, the system is verified to be one solution and an important step from 1Gbit/s to 10Gbit/s for the Next Generation EPON.

  8. Performance characteristics of a low-cost, field-deployable miniature CCD spectrometer

    PubMed Central

    Coles, Simon; Nimmo, Malcolm; Worsfold, Paul J.

    2000-01-01

    Miniature spectrometers incorporating array detectors are becoming a viable, low-cost option for field and process deployments. The performance characteristics of one such instrument are reported and compared with those of a conventional benchtop instrument. The parameters investigated were wavelength repeatability, photometric linearity, instrumental noise (photometric precision) and instrumental drift. PMID:18924863

  9. Using SPMDs To Assess Natural Recovery Of PCB-Contaminated Sediments In Lake Hartwell, SC: I. A Field Test Of New In-Situ Deployment Methods

    EPA Science Inventory

    Results from the field testing of some innovative sampling methods developed to evaluate risk management strategies for polychlorinated biphenyl (PCB) contaminated sediments are presented. Semipermeable membrane devices (SPMDs) were combined with novel deployment methods to quan...

  10. Development of field-deployable instrumentation based on “antigen–antibody” reactions for detection of hemorrhagic disease in ruminants

    USDA-ARS?s Scientific Manuscript database

    Development of field-deployable methodology utilizing antigen–antibody reactions and the surface Plasmon resonance (SPR) effect to provide a rapid diagnostic test for recognition of the blue tongue virus (BTV) and epizootic hemorrhage disease virus (EHDV) in wild and domestic ruminants is reported. ...

  11. Microspacecraft and Earth observation: Electrical field (ELF) measurement project

    NASA Technical Reports Server (NTRS)

    Olsen, Tanya; Elkington, Scot; Parker, Scott; Smith, Grover; Shumway, Andrew; Christensen, Craig; Parsa, Mehrdad; Larsen, Layne; Martinez, Ranae; Powell, George

    1990-01-01

    The Utah State University space system design project for 1989 to 1990 focuses on the design of a global electrical field sensing system to be deployed in a constellation of microspacecraft. The design includes the selection of the sensor and the design of the spacecraft, the sensor support subsystems, the launch vehicle interface structure, on board data storage and communications subsystems, and associated ground receiving stations. Optimization of satellite orbits and spacecraft attitude are critical to the overall mapping of the electrical field and, thus, are also included in the project. The spacecraft design incorporates a deployable sensor array (5 m booms) into a spinning oblate platform. Data is taken every 0.1 seconds by the electrical field sensors and stored on-board. An omni-directional antenna communicates with a ground station twice per day to down link the stored data. Wrap-around solar cells cover the exterior of the spacecraft to generate power. Nine Pegasus launches may be used to deploy fifty such satellites to orbits with inclinations greater than 45 deg. Piggyback deployment from other launch vehicles such as the DELTA 2 is also examined.

  12. SPIDR, a general-purpose readout system for pixel ASICs

    NASA Astrophysics Data System (ADS)

    van der Heijden, B.; Visser, J.; van Beuzekom, M.; Boterenbrood, H.; Kulis, S.; Munneke, B.; Schreuder, F.

    2017-02-01

    The SPIDR (Speedy PIxel Detector Readout) system is a flexible general-purpose readout platform that can be easily adapted to test and characterize new and existing detector readout ASICs. It is originally designed for the readout of pixel ASICs from the Medipix/Timepix family, but other types of ASICs or front-end circuits can be read out as well. The SPIDR system consists of an FPGA board with memory and various communication interfaces, FPGA firmware, CPU subsystem and an API library on the PC . The FPGA firmware can be adapted to read out other ASICs by re-using IP blocks. The available IP blocks include a UDP packet builder, 1 and 10 Gigabit Ethernet MAC's and a "soft core" CPU . Currently the firmware is targeted at the Xilinx VC707 development board and at a custom board called Compact-SPIDR . The firmware can easily be ported to other Xilinx 7 series and ultra scale FPGAs. The gap between an ASIC and the data acquisition back-end is bridged by the SPIDR system. Using the high pin count VITA 57 FPGA Mezzanine Card (FMC) connector only a simple chip carrier PCB is required. A 1 and a 10 Gigabit Ethernet interface handle the connection to the back-end. These can be used simultaneously for high-speed data and configuration over separate channels. In addition to the FMC connector, configurable inputs and outputs are available for synchronization with other detectors. A high resolution (≈ 27 ps bin size) Time to Digital converter is provided for time stamping events in the detector. The SPIDR system is frequently used as readout for the Medipix3 and Timepix3 ASICs. Using the 10 Gigabit Ethernet interface it is possible to read out a single chip at full bandwidth or up to 12 chips at a reduced rate. Another recent application is the test-bed for the VeloPix ASIC, which is developed for the Vertex Detector of the LHCb experiment. In this case the SPIDR system processes the 20 Gbps scrambled data stream from the VeloPix and distributes it over four 10 Gigabit Ethernet links, and in addition provides the slow and fast control for the chip.

  13. A new acquisition and imaging system for environmental measurements: an experience on the Italian cultural heritage.

    PubMed

    Leccese, Fabio; Cagnetti, Marco; Calogero, Andrea; Trinca, Daniele; di Pasquale, Stefano; Giarnetti, Sabino; Cozzella, Lorenzo

    2014-05-23

    A new acquisition system for remote control of wall paintings has been realized and tested in the field. The system measures temperature and atmospheric pressure in an archeological site where a fresco has been put under control. The measuring chain has been designed to be used in unfavorable environments where neither electric power nor telecommunication infrastructures are available. The environmental parameters obtained from the local monitoring are then transferred remotely allowing an easier management by experts in the field of conservation of cultural heritage. The local acquisition system uses an electronic card based on microcontrollers and sends the data to a central unit realized with a Raspberry-Pi. The latter manages a high quality camera to pick up pictures of the fresco. Finally, to realize the remote control at a site not reached by internet signals, a WiMAX connection based on different communication technologies such as WiMAX, Ethernet, GPRS and Satellite, has been set up.

  14. A New Acquisition and Imaging System for Environmental Measurements: An Experience on the Italian Cultural Heritage

    PubMed Central

    Leccese, Fabio; Cagnetti, Marco; Calogero, Andrea; Trinca, Daniele; di Pasquale, Stefano; Giarnetti, Sabino; Cozzella, Lorenzo

    2014-01-01

    A new acquisition system for remote control of wall paintings has been realized and tested in the field. The system measures temperature and atmospheric pressure in an archeological site where a fresco has been put under control. The measuring chain has been designed to be used in unfavorable environments where neither electric power nor telecommunication infrastructures are available. The environmental parameters obtained from the local monitoring are then transferred remotely allowing an easier management by experts in the field of conservation of cultural heritage. The local acquisition system uses an electronic card based on microcontrollers and sends the data to a central unit realized with a Raspberry-Pi. The latter manages a high quality camera to pick up pictures of the fresco. Finally, to realize the remote control at a site not reached by internet signals, a WiMAX connection based on different communication technologies such as WiMAX, Ethernet, GPRS and Satellite, has been set up. PMID:24859030

  15. Integrated Incident Management System (IIMS) web client application development, deployment and evaluation Staten Island (SI) demonstration project : final report.

    DOT National Transportation Integrated Search

    2015-09-27

    This evaluation report provides background on the development and findings. The aim of the UTRC project was to develop and : deploy Portable IIMS based on Smartphone web applications. Previously, traditional IIMS was deployed in the field vehicles : ...

  16. TECHNICAL DESIGN NOTE: Digital proportional-integral-derivative velocity controller of a Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Pechousek, J.; Prochazka, R.; Mashlan, M.; Jancik, D.; Frydrych, J.

    2009-01-01

    The digital proportional-integral-derivative (PID) velocity controller used in the Mössbauer spectrometer implemented in field programmable gate array (FPGA) is based on the National Instruments CompactRIO embedded system and LabVIEW graphical programming tools. The system works as a remote system accessible via the Ethernet. The digital controller operates in real-time conditions, and the maximum sampling frequency is approximately 227 kS s-1. The system was tested with standard sample measurements of α-Fe and α-57Fe2O3 on two different electromechanical velocity transducers. The nonlinearities of the velocity scales in the relative form are better than 0.2%. The replacement of the standard analog PID controller by the new system brings the possibility of optimizing the control process more precisely.

  17. Data transmission optical link for RF-GUN project

    NASA Astrophysics Data System (ADS)

    Olowski, Krzysztof; Zielinski, Jerzy; Jalmuzna, Wojciech; Pozniak, Krzysztof; Romaniuk, Ryszard

    2005-09-01

    Today, the fast optical data transmission is one of the fundamentals of modern distributed control systems. The fibers are widely use as multi-gigabit data stream medium. For a short range transmission, the multimode fibers are in common use. The data rate for this kind of transmission exceeds 10 Gbps for 10 Gigabit Ethernet and 10G Fibre Channel protocols. The Field Programmable Gate Arrays are one of the opportunities of managing the optical transmission. This article is concerning a synchronous optical transmission system via a multimode fiber. The transmission is controlled by the FPGA of two manufacturers: Xilinx and Altera. This paper contains the newest technology overview and market device parameters. It also describes a board for the optical transmission, technical details of the transmission and optical transmission results.

  18. Optical wireless communications to OC-768 and beyond

    NASA Astrophysics Data System (ADS)

    Medved, David B.; Davidovich, Leonid

    2001-10-01

    Laser and LED-based wireless communication systems are currently providing license-free interconnection for broadband voice, data and video transport. These systems allow for the immediate, reliable and low-cost extension of copper and fiber-based networks to any end user, providing efficient First Mile bypass access to high data rate backbone networks at speeds ranging from T-1 voice to full throughput ATM at 155 Mbps and up to Gigabit Ethernet. These wireless optical beams constitute a Virtual Fiber in the air, providing the capabilities of fiber in situations where wired connectivity is unavailable, impractical, expensive or slow-to-implement, while achieving a combination of low cost, speed and reliability that cannot be matched by microwave, mm wave, spread spectrum or other competing (actually complementary) wireless technologies. The carrier frequency of the optical beam is about 10,000 times higher than the highest frequencies used by the millimeter wave technology. By means of Wavelength Division Multiplexing more than 1000 independent data channels can be projected into the air on a single beam thus providing a potential bandwidth ten million times that of any RF solution. The twin barriers of physics and regulatory bureaucracy to this essentially infinite wireless bandwidth are thus eliminated by this Virtual Fiber. As user density and individual bandwidth needs escalate, the optical wireless will be the preferred medium of choice in both network and cellular interconnection. A mesh topology which integrates our optical wireless systems with the latest Optical Access switches and routing equipment will be described using case study examples from Japan to South America. As the Bandwidth Blowout continues to push the limits of electronics and especially in the case of DWDM (Dense Wavelength Division Multiples), the conventional optical wireless solutions are no longer feasible. Instead of using f.o. transceivers to convert photons to electrons and thence back to photons we have designed a series of airlinks whose transmitters and receivers operate without electronics. At the PATX (Photonic Airlink Transmitter), instead of demodulating the fiber optic input signals from a Network Interface Unit (NIU) we project the light from the polished terminated fiber end into the air using appropriate optics. Any signal being carried by the fiber from the NIU is now airborne without any intermediate processing electronics thus realizing the full potential of the optical carrier. At the receiver end (PARX - Photonic Airlink Receiver), the weak optical signals are collected by the appropriate optics (including combiners using large area MMF) and guided to the NIU (switch, PABX, etc.) by compatible fiber. It is necessary to maintain a large field-of-view at the receiver to ensure reliability, stability and ease of alignment. This is achieved by use of high N.A. fiber. In this paper we discuss the design trade off's, construction and field test results of several systems implementing the all- photonic wireless concept including: Transmission of WDM signals through the air at distances up to 1 km. Results with wireless transmission of Gigabit Ethernet using the Optiswitch modules as the NIU. Providing high speed wireless (Fast Ethernet and beyond) to the home at a cost of less than $250 per node. The paper will conclude with a discussion on the role of the all-photonic wireless technology in the emerging field of Passive Optical Networking.

  19. NEAR-REAL TIME, HIGHLY SENSITIVE AND SELECTIVE FIELD DEPLOYABLE BIOSENSOR FOR CYANOTOXINS AND CYANOBACTERIA USING BOTH ANTIBODIES AND DNA-SIGNATURES

    EPA Science Inventory

    The overall goal of the proposed research is to develop piezoelectric-excited millimeter-sized cantilever sensors (PEMC) for cyanotoxins in source, finished and system waters that measures in a field-deployable format and rapidly in 15 minutes so that cyanotoxin(s) hazard a...

  20. MDA-image: an environment of networked desktop computers for teleradiology/pathology.

    PubMed

    Moffitt, M E; Richli, W R; Carrasco, C H; Wallace, S; Zimmerman, S O; Ayala, A G; Benjamin, R S; Chee, S; Wood, P; Daniels, P

    1991-04-01

    MDA-Image, a project of The University of Texas M. D. Anderson Cancer Center, is an environment of networked desktop computers for teleradiology/pathology. Radiographic film is digitized with a film scanner and histopathologic slides are digitized using a red, green, and blue (RGB) video camera connected to a microscope. Digitized images are stored on a data server connected to the institution's computer communication network (Ethernet) and can be displayed from authorized desktop computers connected to Ethernet. Images are digitized for cases presented at the Bone Tumor Management Conference, a multidisciplinary conference in which treatment options are discussed among clinicians, surgeons, radiologists, pathologists, radiotherapists, and medical oncologists. These radiographic and histologic images are shown on a large screen computer monitor during the conference. They are available for later review for follow-up or representation.

  1. A Lossless Network for Data Acquisition

    NASA Astrophysics Data System (ADS)

    Jereczek, Grzegorz; Lehmann Miotto, Giovanna; Malone, David; Walukiewicz, Miroslaw

    2017-06-01

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. We expand the study of lossless switching in software running on commercial off-the-shelf servers, using the ATLAS experiment as a case study. In this paper, we extend the popular software switch, Open vSwitch, with a dedicated, throughput-oriented buffering mechanism for data acquisition. We compare the performance under heavy congestion on typical Ethernet switches to a commodity server acting as a switch. Our results indicate that software switches with large buffers perform significantly better. Next, we evaluate the scalability of the system when building a larger topology of interconnected software switches, exploiting the integration with software-defined networking technologies. We build an IP-only leaf-spine network consisting of eight software switches running on distinct physical servers as a demonstrator.

  2. Programmable on-chip and off-chip network architecture on demand for flexible optical intra-datacenters.

    PubMed

    Rofoee, Bijan Rahimzadeh; Zervas, Georgios; Yan, Yan; Amaya, Norberto; Qin, Yixuan; Simeonidou, Dimitra

    2013-03-11

    The paper presents a novel network architecture on demand approach using on-chip and-off chip implementations, enabling programmable, highly efficient and transparent networking, well suited for intra-datacenter communications. The implemented FPGA-based adaptable line-card with on-chip design along with an architecture on demand (AoD) based off-chip flexible switching node, deliver single chip dual L2-Packet/L1-time shared optical network (TSON) server Network Interface Cards (NIC) interconnected through transparent AoD based switch. It enables hitless adaptation between Ethernet over wavelength switched network (EoWSON), and TSON based sub-wavelength switching, providing flexible bitrates, while meeting strict bandwidth, QoS requirements. The on and off-chip performance results show high throughput (9.86Ethernet, 8.68Gbps TSON), high QoS, as well as hitless switch-over.

  3. Data transmission protocol for Pi-of-the-Sky cameras

    NASA Astrophysics Data System (ADS)

    Uzycki, J.; Kasprowicz, G.; Mankiewicz, M.; Nawrocki, K.; Sitek, P.; Sokolowski, M.; Sulej, R.; Tlaczala, W.

    2006-10-01

    The large amount of data collected by the automatic astronomical cameras has to be transferred to the fast computers in a reliable way. The method chosen should ensure data streaming in both directions but in nonsymmetrical way. The Ethernet interface is very good choice because of its popularity and proven performance. However it requires TCP/IP stack implementation in devices like cameras for full compliance with existing network and operating systems. This paper describes NUDP protocol, which was made as supplement to standard UDP protocol and can be used as a simple-network protocol. The NUDP does not need TCP protocol implementation and makes it possible to run the Ethernet network with simple devices based on microcontroller and/or FPGA chips. The data transmission idea was created especially for the "Pi of the Sky" project.

  4. Parallel ALLSPD-3D: Speeding Up Combustor Analysis Via Parallel Processing

    NASA Technical Reports Server (NTRS)

    Fricker, David M.

    1997-01-01

    The ALLSPD-3D Computational Fluid Dynamics code for reacting flow simulation was run on a set of benchmark test cases to determine its parallel efficiency. These test cases included non-reacting and reacting flow simulations with varying numbers of processors. Also, the tests explored the effects of scaling the simulation with the number of processors in addition to distributing a constant size problem over an increasing number of processors. The test cases were run on a cluster of IBM RS/6000 Model 590 workstations with ethernet and ATM networking plus a shared memory SGI Power Challenge L workstation. The results indicate that the network capabilities significantly influence the parallel efficiency, i.e., a shared memory machine is fastest and ATM networking provides acceptable performance. The limitations of ethernet greatly hamper the rapid calculation of flows using ALLSPD-3D.

  5. A real-time control system for the control of suspended interferometers based on hybrid computing techniques

    NASA Astrophysics Data System (ADS)

    Acernese, Fausto; Barone, Fabrizio; De Rosa, Rosario; Eleuteri, Antonio; Milano, Leopoldo; Pardi, Silvio; Ricciardi, Iolanda; Russo, Guido

    2004-09-01

    One of the main requirements of a digital system for the control of interferometric detectors of gravitational waves is the computing power, that is a direct consequence of the increasing complexity of the digital algorithms necessary for the control signals generation. For this specific task many specialized non standard real-time architectures have been developed, often very expensive and difficult to upgrade. On the other hand, such computing power is generally fully available for off-line applications on standard Pc based systems. Therefore, a possible and obvious solution may be provided by the integration of both the real-time and off-line architecture resulting in a hybrid control system architecture based on standards available components, trying to get both the advantages of the perfect data synchronization provided by the real-time systems and by the large computing power available on Pc based systems. Such integration may be provided by the implementation of the link between the two different architectures through the standard Ethernet network, whose data transfer speed is largely increasing in these years, using the TCP/IP, UDP and raw Ethernet protocols. In this paper we describe the architecture of an hybrid Ethernet based real-time control system prototype we implemented in Napoli, discussing its characteristics and performances. Finally we discuss a possible application to the real-time control of a suspended mass of the mode cleaner of the 3m prototype optical interferometer for gravitational wave detection (IDGW-3P) operational in Napoli.

  6. Dynamic quality of service model for improving performance of multimedia real-time transmission in industrial networks.

    PubMed

    Gopalakrishnan, Ravichandran C; Karunakaran, Manivannan

    2014-01-01

    Nowadays, quality of service (QoS) is very popular in various research areas like distributed systems, multimedia real-time applications and networking. The requirements of these systems are to satisfy reliability, uptime, security constraints and throughput as well as application specific requirements. The real-time multimedia applications are commonly distributed over the network and meet various time constraints across networks without creating any intervention over control flows. In particular, video compressors make variable bit-rate streams that mismatch the constant-bit-rate channels typically provided by classical real-time protocols, severely reducing the efficiency of network utilization. Thus, it is necessary to enlarge the communication bandwidth to transfer the compressed multimedia streams using Flexible Time Triggered- Enhanced Switched Ethernet (FTT-ESE) protocol. FTT-ESE provides automation to calculate the compression level and change the bandwidth of the stream. This paper focuses on low-latency multimedia transmission over Ethernet with dynamic quality-of-service (QoS) management. This proposed framework deals with a dynamic QoS for multimedia transmission over Ethernet with FTT-ESE protocol. This paper also presents distinct QoS metrics based both on the image quality and network features. Some experiments with recorded and live video streams show the advantages of the proposed framework. To validate the solution we have designed and implemented a simulator based on the Matlab/Simulink, which is a tool to evaluate different network architecture using Simulink blocks.

  7. New seismic instrumentation packaged for all terrestrial environments (including the quietest observatories!).

    NASA Astrophysics Data System (ADS)

    Parker, Tim; Devanney, Peter; Bainbridge, Geoff; Townsend, Bruce

    2017-04-01

    The march to make every type of seismometer, weak to strong motion, reliable and economically deployable in any terrestrial environment continues with the availability of three new sensors and seismic systems including ones with over 200dB of dynamic range. Until recently there were probably 100 pier type broadband sensors for every observatory type pier, not the types of deployments geoscientists are needing to advance science and monitoring capability. Deeper boreholes are now the recognized quieter environments for best observatory class instruments and these same instruments can now be deployed in direct burial environments which is unprecedented. The experiences of facilities in large deployments of broadband seismometers in continental scale rolling arrays proves the utility of packaging new sensors in corrosion resistant casings and designing in the robustness needed to work reliably in temporary deployments. Integrating digitizers and other sensors decreases deployment complexity, decreases acquisition and deployment costs, increases reliability and utility. We'll discuss the informed evolution of broadband pier instruments into the modern integrated field tools that enable economic densification of monitoring arrays along with supporting new ways to approach geoscience research in a field environment.

  8. Evaluation of advanced air bag deployment algorithm performance using event data recorders.

    PubMed

    Gabler, Hampton C; Hinch, John

    2008-10-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments.

  9. Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders

    PubMed Central

    Gabler, Hampton C.; Hinch, John

    2008-01-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234

  10. The deployment of information systems and information technology in field hospitals.

    PubMed

    Crowe, Ian R J; Naguib, Raouf N G

    2010-01-01

    Information systems and related technologies continue to develop and have become an integral part of healthcare provision and hospital care in particular. Field hospitals typically operate in the most austere and difficult of conditions and have yet to fully exploit related technologies. This paper addresses those aspects of healthcare informatics, healthcare knowledge management and lean healthcare that can be applied to field hospitals, with a view to improving patient care. The aim is to provide a vision for the deployment of information systems and information technology in field hospitals, using the British Army's field hospital as a representative model.

  11. Training improves reading speed in peripheral vision: is it due to attention?

    PubMed

    Lee, Hye-Won; Kwon, Miyoung; Legge, Gordon E; Gefroh, Joshua J

    2010-06-01

    Previous research has shown that perceptual training in peripheral vision, using a letter-recognition task, increases reading speed and letter recognition (S. T. L. Chung, G. E. Legge, & S. H. Cheung, 2004). We tested the hypothesis that enhanced deployment of spatial attention to peripheral vision explains this training effect. Subjects were pre- and post-tested with 3 tasks at 10° above and below fixation-RSVP reading speed, trigram letter recognition (used to construct visual-span profiles), and deployment of spatial attention (measured as the benefit of a pre-cue for target position in a lexical-decision task). Groups of five normally sighted young adults received 4 days of trigram letter-recognition training in upper or lower visual fields, or central vision. A control group received no training. Our measure of deployment of spatial attention revealed visual-field anisotropies; better deployment of attention in the lower field than the upper, and in the lower-right quadrant compared with the other three quadrants. All subject groups exhibited slight improvement in deployment of spatial attention to peripheral vision in the post-test, but this improvement was not correlated with training-related increases in reading speed and the size of visual-span profiles. Our results indicate that improved deployment of spatial attention to peripheral vision does not account for improved reading speed and letter recognition in peripheral vision.

  12. ICE-Based Custom Full-Mesh Network for the CHIME High Bandwidth Radio Astronomy Correlator

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Cliche, J. F.; Dobbs, M. A.; Gilbert, A. J.; Ittah, D.; Mena Parra, J.; Smecher, G.

    2016-03-01

    New generation radio interferometers encode signals from thousands of antenna feeds across large bandwidth. Channelizing and correlating this data requires networking capabilities that can handle unprecedented data rates with reasonable cost. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) correlator processes 8-bits from N=2,048 digitizer inputs across 400MHz of bandwidth. Measured in N2× bandwidth, it is the largest radio correlator that is currently commissioning. Its digital back-end must exchange and reorganize the 6.6terabit/s produced by its 128 digitizing and channelizing nodes, and feed it to the 256 graphics processing unit (GPU) node spatial correlator in a way that each node obtains data from all digitizer inputs but across a small fraction of the bandwidth (i.e. ‘corner-turn’). In order to maximize performance and reliability of the corner-turn system while minimizing cost, a custom networking solution has been implemented. The system makes use of Field Programmable Gate Array (FPGA) transceivers to implement direct, passive copper, full-mesh, high speed serial connections between sixteen circuit boards in a crate, to exchange data between crates, and to offload the data to a cluster of 256 GPU nodes using standard 10Gbit/s Ethernet links. The GPU nodes complete the corner-turn by combining data from all crates and then computing visibilities. Eye diagrams and frame error counters confirm error-free operation of the corner-turn network in both the currently operating CHIME Pathfinder telescope (a prototype for the full CHIME telescope) and a representative fraction of the full CHIME hardware providing an end-to-end system validation. An analysis of an equivalent corner-turn system built with Ethernet switches instead of custom passive data links is provided.

  13. Cable-catenary large antenna concept

    NASA Technical Reports Server (NTRS)

    Akle, W.

    1985-01-01

    Deployable to very large diameters (over 1000 ft), while still remaining compatible with a complete satellite system launch by STS, the cable-catenary antenna comprises: 8 radial deployable boom masts; a deployable hub and feed support center mast; balanced front and back, radial and circumferential catenary cabling for highly accurate (mm) surface control; no interfering cabling in the antenna field; and an RF reflecting mesh supported on the front catenaries. Illustrations show the antenna-satellite system deployed and stowed configurations; the antenna deployment sequence; the design analysis logic; the sizing analysis output, and typical parametric design data.

  14. Results of investigation at the Miravalles Geothermal Field, Costa Rica: Part 1, Well logging. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica: Parte 1, Registros de pozos (in EN;SP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, B.R.; Lawton, R.G.; Kolar, J.D.

    The well-logging operations performed in the Miravalles Geothermal Field in Costa Rica were conducted during two separate field trips. The Phase I program provided the deployment of a suite of high-temperature borehole instruments, including the temperature/rabbit, fluid sampler, and three-arm caliper in Well PGM-3. These same tools were deployed in Well PGM-10 along with an additional survey run with a combination fluid velocity/temperature/pressure instrument used to measure thermodynamic properties under flowing well conditions. The Phase II program complemented Phase I with the suite of tools deployed in Wells PGM-5, PGM-11, and PGM-12. 4 refs., 25 figs., 1 tab.

  15. Design of EPON far-end equipment based on FTTH

    NASA Astrophysics Data System (ADS)

    Feng, Xiancheng; Yun, Xiang

    2008-12-01

    Now, most favors fiber access is mainly the EPON fiber access system. Inheriting from the low cost of Ethernet, usability and bandwidth of optical network, EPON technology is one of the best technologies in fiber access and is adopted by the carriers all over the world widely. According to the scheme analysis to FTTH fan-end equipment, hardware design of ONU is proposed in this paper. The FTTH far-end equipment software design deference modulation design concept, it divides the software designment into 5 function modules: the module of low-layer driver, the module of system management, the module of master/slave communication, and the module of main/Standby switch and the module of command line. The software flow of the host computer is also analyzed. Finally, test is made for Ethernet service performance of FTTH far-end equipment, E1 service performance and the optical path protection switching, and so on. The results of test indicates that all the items are accordance with technical request of far-end ONU equipment and possess good quality and fully reach the requirement of telecommunication level equipment. The far-end equipment of FTTH divides into several parts based on the function: the control module, the exchange module, the UNI interface module, the ONU module, the EPON interface module, the network management debugging module, the voice processing module, the circuit simulation module, the CATV module. In the downstream direction, under the protect condition, we design 2 optical modules. The system can set one group optical module working and another group optical module closure when it is initialized. When the optical fiber line is cut off, the LOS warning comes out. It will cause MUX to replace another group optical module, simultaneously will reset module 3701/3711 and will make it again test the distance, and will give the plug board MPC850 report through the GPIO port. During normal mode, the downstream optical signal is transformed into the electrical signal by the optical module. In the upstream direction, the upstream Ethernet data is retransmitted through the exchange chip BCM5380 to the GMII/MII in module 3701/3711, and then is transmitted to EPON port. The 2MB data are transformed the Ethernet data packet in the plug board TDM, then it's transmitted to the interface MII of the module 3701/3711. The software design of FTTH far-end equipment compiles with modulation design concept. According to the system realization duty, the software is divided into 5 function modules: low-level driver module, system management module, master/slave communication module, the man/Standby switch module and the command line module. The FTTH far-end equipment test, is mainly the Ethernet service performance test, E1 service performance test and the optical path protection switching test and so on the key specification test.

  16. 78 FR 67400 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ...; Metro Ethernet Forum, Los Angeles, CA; PT Indosat Tbk, Jakarta Pusat, INDONESIA; Iprotel Ltd., Reading..., Kuala Lumpur, MALAYSIA; Millicom International Cellular S.A., Leudelange, LUXEMBOURG; MindTree, Paris...

  17. Time Triggered Ethernet System Testing Means and Method

    NASA Technical Reports Server (NTRS)

    Smithgall, William Todd (Inventor); Hall, Brendan (Inventor); Varadarajan, Srivatsan (Inventor)

    2014-01-01

    Methods and apparatus are provided for evaluating the performance of a Time Triggered Ethernet (TTE) system employing Time Triggered (TT) communication. A real TTE system under test (SUT) having real input elements communicating using TT messages with output elements via one or more first TTE switches during a first time interval schedule established for the SUT. A simulation system is also provided having input simulators that communicate using TT messages via one or more second TTE switches with the same output elements during a second time interval schedule established for the simulation system. The first and second time interval schedules are off-set slightly so that messages from the input simulators, when present, arrive at the output elements prior to messages from the analogous real inputs, thereby having priority over messages from the real inputs and causing the system to operate based on the simulated inputs when present.

  18. ARDOLORES: an Arduino based motors control system for DOLORES

    NASA Astrophysics Data System (ADS)

    Gonzalez, Manuel; Ventura, H.; San Juan, J.; Di Fabrizio, L.

    2014-07-01

    We present ARDOLORES a custom made motor control system for the DOLORES instrument in use at the TNG telescope. ARDOLORES replaced the original PMAC based motor control system at a fraction of the cost. The whole system is composed by one master Arduino ONE with its Ethernet shield, to handle the communications with the external world through an Ethernet socket, and by one Arduino ONE with its custom motor shield for each axis to be controlled. The communication between the master and slaves Arduinos is made possible through the I2C bus. Also a Java web-service has been written to control the motors from an higher level and provides an external API for the scientific GUI. The system has been working since January 2012 handling the DOLORES motors and has demonstrated to be stable, reliable, and with easy maintenance in both the hardware and the software parts.

  19. A Parallel Multigrid Solver for Viscous Flows on Anisotropic Structured Grids

    NASA Technical Reports Server (NTRS)

    Prieto, Manuel; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper presents an efficient parallel multigrid solver for speeding up the computation of a 3-D model that treats the flow of a viscous fluid over a flat plate. The main interest of this simulation lies in exhibiting some basic difficulties that prevent optimal multigrid efficiencies from being achieved. As the computing platform, we have used Coral, a Beowulf-class system based on Intel Pentium processors and equipped with GigaNet cLAN and switched Fast Ethernet networks. Our study not only examines the scalability of the solver but also includes a performance evaluation of Coral where the investigated solver has been used to compare several of its design choices, namely, the interconnection network (GigaNet versus switched Fast-Ethernet) and the node configuration (dual nodes versus single nodes). As a reference, the performance results have been compared with those obtained with the NAS-MG benchmark.

  20. Coping with the challenges of early disaster response: 24 years of field hospital experience after earthquakes.

    PubMed

    Bar-On, Elhanan; Abargel, Avi; Peleg, Kobi; Kreiss, Yitshak

    2013-10-01

    To propose strategies and recommendations for future planning and deployment of field hospitals after earthquakes by comparing the experience of 4 field hospitals deployed by The Israel Defense Forces (IDF) Medical Corps in Armenia, Turkey, India and Haiti. Quantitative data regarding the earthquakes were collected from published sources; data regarding hospital activity were collected from IDF records; and qualitative information was obtained from structured interviews with key figures involved in the missions. The hospitals started operating between 89 and 262 hours after the earthquakes. Their sizes ranged from 25 to 72 beds, and their personnel numbered between 34 and 100. The number of patients treated varied from 1111 to 2400. The proportion of earthquake-related diagnoses ranged from 28% to 67% (P < .001), with hospitalization rates between 3% and 66% (P < .001) and surgical rates from 1% to 24% (P < .001). In spite of characteristic scenarios and injury patterns after earthquakes, patient caseload and treatment requirements varied widely. The variables affecting the patient profile most significantly were time until deployment, total number of injured, availability of adjacent medical facilities, and possibility of evacuation from the disaster area. When deploying a field hospital in the early phase after an earthquake, a wide variability in patient caseload should be anticipated. Customization is difficult due to the paucity of information. Therefore, early deployment necessitates full logistic self-sufficiency and operational versatility. Also, collaboration with local and international medical teams can greatly enhance treatment capabilities.

  1. Instrument development and field application of the in situ pH Calibrator at the Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Tan, C.; Ding, K.; Seyfried, W. E.

    2012-12-01

    A novel, self-calibrating instrument for in-situ measurement of pH in deep sea environments up to 4000 m has recently been developed. The device utilizes a compact fluid delivery system to perform measurement and two-point calibration of the solid state pH sensor array (Ir|IrOx| Ag|AgCl), which is sealed in a flow cell to enhance response time. The fluid delivery system is composed of a metering pump and valves, which periodically deliver seawater samples into the flow cell to perform measurements. Similarly, pH buffer solutions can be delivered into the flow cell to calibrate the electrodes under operational conditions. Sensor signals are acquired and processed by a high resolution (0.25 mV) datalogger circuit with a size of 114 mm×31 mm×25 mm. Eight input channels are available: two high impedance sensor input channels, two low impedance sensor input channel, two thermocouple input channels and two thermistor input channels. These eight channels provide adequate measurement flexibility to enhance applications in deep sea environments. The two high impedance channels of the datalogger are especially designed with the input impedance of 1016 Ω for YSZ (yittria-stabilized zirconia) ceramic electrodes characterized by the extremely low input bias current and high resistance. Field tests have been performed in 2008 by ROV at the depth up to 3200 m. Using the continuous power supply and TCP/IP network capability of the Monterey Accelerated Research System (MARS) ocean observatory, the so-called "pH Calibrator" has the capability of long term operation up to six months. In the observatory mode, the electronics are configured with DC-DC power converter modules and Ethernet to serial module to gain access to the science port of seafloor junction box. The pH Calibrator will be deployed at the ocean observatory in October and the in situ data will be on line on the internet. The pH Calibrator presents real time pH data at high pressures and variable temperatures, while the in situ calibration capability enhances the accuracy of electrochemical measurements of seawater pH, fulfilling the need for long term objectives for marine studies.

  2. How well could existing sensors detect the deployment of a solar radiation management (SRM) geoengineering effort?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, Alan J.

    2016-04-29

    While the stated reason for asking this question is “to understand better our ability to warn policy makers in the unlikely event of an unanticipated SRM geoengineering deployment or large-scale field experiment”, my colleagues and I felt that motives would be important context because the scale of any meaningful SRM deployment would be so large that covert deployment seems impossible. However, several motives emerged that suggest a less-than-global effort might be important.

  3. Communication architecture system for fiber positioning of DESI spectrograph

    NASA Astrophysics Data System (ADS)

    Kaci, Karim; Glez-de-Rivera, Guillermo; Lopez-Colino, Fernando; Martinez-Garcia, M. Sofia; Masa, Jose L.; Garrido, Javier; Sanchez, Justo; Prada, Francisco

    2016-07-01

    This paper presents a design proposal for controlling the five thousand fiber positioners within the focal plate of the DESI instrument. Each of these positioners is a robot which allows positioning its optic fiber with a resolution within the range of few microns. The high number and density of these robots poses a challenge for handling the communication from a central control device to each of these five thousand. Furthermore, an additional restriction applies as the required time to communicate to every robot of its position must be smaller than a second. Additionally. a low energy consumption profile is also desired. Both wireless and wired communication protocols have been evaluated, proposing single-technology-based architectures and hybrid ones (a combination of them). Among the wireless solutions, ZigBee and CyFi have been considered. Using simulation tools these wireless protocols have been discarded as they do not allow an efficient communication. The studied wired protocols comprise I2C, CAN and Ethernet. The best solution found is a hybrid multilayer architecture combining both Ethernet and I2C. A 100 Mbps Ethernet based network is used to communicate the central control unit with ten management boards. Each of these boards is a low-cost, low-power embedded device that manages a thirty six degrees sector of the sensing plate. Each of these boards receives the positioning data for five hundred robots and communicate with each one through a fast mode plus I2C bus. This proposal allows to communicate the positioning information for all five thousand robots in 350 ms total.

  4. Introduction to the Special Issue on Digital Signal Processing in Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Price, D. C.; Kocz, J.; Bailes, M.; Greenhill, L. J.

    2016-03-01

    Advances in astronomy are intimately linked to advances in digital signal processing (DSP). This special issue is focused upon advances in DSP within radio astronomy. The trend within that community is to use off-the-shelf digital hardware where possible and leverage advances in high performance computing. In particular, graphics processing units (GPUs) and field programmable gate arrays (FPGAs) are being used in place of application-specific circuits (ASICs); high-speed Ethernet and Infiniband are being used for interconnect in place of custom backplanes. Further, to lower hurdles in digital engineering, communities have designed and released general-purpose FPGA-based DSP systems, such as the CASPER ROACH board, ASTRON Uniboard, and CSIRO Redback board. In this introductory paper, we give a brief historical overview, a summary of recent trends, and provide an outlook on future directions.

  5. Videoconferencing Comes of Age.

    ERIC Educational Resources Information Center

    Bosak, Steve

    2000-01-01

    Hundreds of districts are using high-speed videoconferencing for distance learning and resource sharing, inservice training, and districtwide meetings. Speed matters. Districts will need either Ethernet or ATM (asynchronous transfer mode) forms of wide-area networks to connect schools and offices. (MLH)

  6. Performance-cost evaluation methodology for ITS equipment deployment

    DOT National Transportation Integrated Search

    2000-09-01

    Although extensive Intelligent Transportation Systems (ITS) technology is being deployed in the field, little analysis is being performed to evaluate the benefits of implementation schemes. Benefit analysis is particularly in need for one popular ITS...

  7. Fault tolerant high-performance PACS network design and implementation

    NASA Astrophysics Data System (ADS)

    Chimiak, William J.; Boehme, Johannes M.

    1998-07-01

    The Wake Forest University School of Medicine and the Wake Forest University/Baptist Medical Center (WFUBMC) are implementing a second generation PACS. The first generation PACS provided helpful information about the functional and temporal requirements of the system. It highlighted the importance of image retrieval speed, system availability, RIS/HIS integration, the ability to rapidly view images on any PACS workstation, network bandwidth, equipment redundancy, and the ability for the system to evolve using standards-based components. This paper deals with the network design and implementation of the PACS. The physical layout of the hospital areas served by the PACS, the choice of network equipment and installation issues encountered are addressed. Efforts to optimize fault tolerance are discussed. The PACS network is a gigabit, mixed-media network based on LAN emulation over ATM (LANE) with a rapid migration from LANE to Multiple Protocols Over ATM (MPOA) planned. Two fault-tolerant backbone ATM switches serve to distribute network accesses with two load-balancing 622 megabit per second (Mbps) OC-12 interconnections. The switch was sized to be upgradable to provide a 2.54 Gbps OC-48 interconnection with an OC-12 interconnection as a load-balancing backup. Modalities connect with legacy network interface cards to a switched-ethernet device. This device has two 155 Mbps OC-3 load-balancing uplinks to each of the backbone ATM switches of the PACS. This provides a fault-tolerant logical connection to the modality servers which pass verified DICOM images to the PACS servers and proper PACS diagnostic workstations. Where fiber pulls were prohibitively expensive, edge ATM switches were installed with an OC-12 uplink to a backbone ATM switches. The PACS and data base servers are fault-tolerant, hot-swappable Sun Enterprise Servers with an OC-12 connection to a backbone ATM switch and a fast-ethernet connection to a back-up network. The workstations come with 10/100 BASET autosense cards. A redundant switched-ethernet network will be installed to provide yet another degree of network fault-tolerance. The switched-ethernet devices are connected to each of the backbone ATM switches with two-load-balancing OC-3 connections to provide fault-tolerant connectivity in the event of a primary network failure.

  8. Case study: design and implementation of training for scientists deploying to Ebola diagnostic field laboratories in Sierra Leone: October 2014 to February 2016

    PubMed Central

    Lewis, Suzanna M.; Lansley, Amber; Fraser, Sara; Shieber, Clare; Shah, Sonal; Semper, Amanda; Bailey, Daniel; Busuttil, Jason; Evans, Liz; Carroll, Miles W.; Silman, Nigel J.; Brooks, Tim; Shallcross, Jane A.

    2017-01-01

    As part of the UK response to the 2013–2016 Ebola virus disease (EVD) epidemic in West Africa, Public Health England (PHE) were tasked with establishing three field Ebola virus (EBOV) diagnostic laboratories in Sierra Leone by the UK Department for International Development (DFID). These provided diagnostic support to the Ebola Treatment Centre (ETC) facilities located in Kerry Town, Makeni and Port Loko. The Novel and Dangerous Pathogens (NADP) Training group at PHE, Porton Down, designed and implemented a pre-deployment Ebola diagnostic laboratory training programme for UK volunteer scientists being deployed to the PHE EVD laboratories. Here, we describe the training, workflow and capabilities of these field laboratories for use in response to disease epidemics and in epidemiological surveillance. We discuss the training outcomes, the laboratory outputs, lessons learned and the legacy value of the support provided. We hope this information will assist in the recruitment and training of staff for future responses and in the design and implementation of rapid deployment diagnostic field laboratories for future outbreaks of high consequence pathogens. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396470

  9. A very low-cost and adaptable DIY seismic station

    NASA Astrophysics Data System (ADS)

    Mendez Chazara, Nahum; Castiñeiras, Pedro

    2016-04-01

    With the advent of prototyping platforms and low-cost computers, geological do-it-yourself components and sensors can be quickly and inexpensively built. The design of the prototype can also be improved over several iterations, from high-resolution magnetometers to vertical electrical sounding instruments, opening new opportunities to gather data in the field or in the lab. One of the possibilities in the field of DIY geology is seismological research, because the availability and diversity of the parts used can come in handy when developing an instrument. Also, they are really easy to build without a very deep electronics background. Although the range in low-cost seismometers is usually restricted to local seismology, induced seismology or human activities, our approach is able to record data with sampling rates up to 500 Hz. It can record and analyze data with a resolution of 16-bit, but it can be regulated to reach 24-bit if needed. Data transfer can operate all-day with low power consumption, using around 1-Amp per hour, or even less, depending on the final setup chosen. Our first seismograph (<100€) consists of a vertical geophone with a natural frequency of 10 Hz, an Arduino or similar board, a 16-bit ADC capable of amplify and convert the output signal of the geophone. The latter, connected to a Raspberry Pi, gathers the data from the geophone using a Python script, slices it in 1-hour intervals and draws waveform and frequency spectrum graph for quick analysis with Matplotlib, a common graphing library in Python. The data can be gathered using several methods: If a Wi-Fi network is available, the instrument can be directly connected to the Internet and the data uploaded in real time. If there is no such connection available, a GSM shield can be used to upload the data, and in the worst-case scenario, the data can be accessed directly on the field via Wi-Fi or Ethernet connection if the location of the sensor make unable to connect via WiFi or GSM. Obviously, there can be also different configurations to fit different needs: From horizontal geophones, to the use of accelerometers to substitute the geophone and miniaturize even less the size of the seismic station. Also, the data can be gathered only by an Arduino board, but then it needs a card reader/writer and a real-time clock (RTC) circuit in order to correctly timestamp the data. In the first semester of 2016, we plan to build several units and deploy them in the field over the Bajo Segura Fault (Spain) and test them over different conditions to better assess the quality of the data.

  10. Novel elastic protection against DDF failures in an enhanced software-defined SIEPON

    NASA Astrophysics Data System (ADS)

    Pakpahan, Andrew Fernando; Hwang, I.-Shyan; Yu, Yu-Ming; Hsu, Wu-Hsiao; Liem, Andrew Tanny; Nikoukar, AliAkbar

    2017-07-01

    Ever-increasing bandwidth demands on passive optical networks (PONs) are pushing the utilization of every fiber strand to its limit. This is mandating comprehensive protection until the end of the distribution drop fiber (DDF). Hence, it is important to provide refined protection with an advanced fault-protection architecture and recovery mechanism that is able to cope with various DDF failures. We propose a novel elastic protection against DDF failures that incorporates a software-defined networking (SDN) capability and a bus protection line to enhance the resiliency of the existing Service Interoperability in Ethernet Passive Optical Networks (SIEPON) system. We propose the addition of an integrated SDN controller and flow tables to the optical line terminal and optical network units (ONUs) in order to deliver various DDF protection scenarios. The proposed architecture enables flexible assignment of backup ONU(s) in pre/post-fault conditions depending on the PON traffic load. A transient backup ONU and multiple backup ONUs can be deployed in the pre-fault and post-fault scenarios, respectively. Our extensively discussed simulation results show that our proposed architecture provides better overall throughput and drop probability compared to the architecture with a fixed DDF protection mechanism. It does so while still maintaining overall QoS performance in terms of packet delay, mean jitter, packet loss, and throughput under various fault conditions.

  11. Microcosm to Cosmos: The Growth of a Divisional Computer Network

    PubMed Central

    Johannes, R.S.; Kahane, Stephen N.

    1987-01-01

    In 1982, we reported the deployment of a network of microcomputers in the Division of Gastroenterology[1]. This network was based upon Corvus Systems Omninet®. Corvus was one of the very first firms to offer networking products for PC's. This PC development occurred coincident with the planning phase of the Johns Hopkins Hospital's multisegment ethernet project. A rich communications infra-structure is now in place at the Johns Hopkins Medical Institutions[2,3]. Shortly after the hospital development under the direction of the Operational and Clinical Systems Division (OCS) development began, the Johns Hopkins School of Medicine began an Integrated Academic Information Management Systems (IAIMS) planning effort. We now present a model that uses aspects of all three planning efforts (PC networks, Hospital Information Systems & IAIMS) to build a divisional computing facility. This facility is viewed as a terminal leaf on then institutional network diagram. Nevertheless, it is noteworthy that this leaf, the divisional resource in the Division of Gastroenterology (GASNET), has a rich substructure and functionality of its own, perhaps revealing the recursive nature of network architecture. The current status, design and function of the GASNET computational facility is discussed. Among the major positive aspects of this design are the sharing and centralization of MS-DOS software, the high-speed DOS/Unix link that makes available most of the our institution's computing resources.

  12. The Common Data Acquisition Platform in the Helmholtz Association

    NASA Astrophysics Data System (ADS)

    Kaever, P.; Balzer, M.; Kopmann, A.; Zimmer, M.; Rongen, H.

    2017-04-01

    Various centres of the German Helmholtz Association (HGF) started in 2012 to develop a modular data acquisition (DAQ) platform, covering the entire range from detector readout to data transfer into parallel computing environments. This platform integrates generic hardware components like the multi-purpose HGF-Advanced Mezzanine Card or a smart scientific camera framework, adding user value with Linux drivers and board support packages. Technically the scope comprises the DAQ-chain from FPGA-modules to computing servers, notably frontend-electronics-interfaces, microcontrollers and GPUs with their software plus high-performance data transmission links. The core idea is a generic and component-based approach, enabling the implementation of specific experiment requirements with low effort. This so called DTS-platform will support standards like MTCA.4 in hard- and software to ensure compatibility with commercial components. Its capability to deploy on other crate standards or FPGA-boards with PCI express or Ethernet interfaces remains an essential feature. Competences of the participating centres are coordinated in order to provide a solid technological basis for both research topics in the Helmholtz Programme ``Matter and Technology'': ``Detector Technology and Systems'' and ``Accelerator Research and Development''. The DTS-platform aims at reducing costs and development time and will ensure access to latest technologies for the collaboration. Due to its flexible approach, it has the potential to be applied in other scientific programs.

  13. Deska: Tool for Central Administration of a Grid Site

    NASA Astrophysics Data System (ADS)

    Kundrát, Jan; Krejčová, Martina; Hubík, Tomáš; Kerpl, Lukáš

    2011-12-01

    Running a typical Tier-2 site requires mastering quite a few tools for fabric management. Keeping an inventory of installed HW machines, their roles and detailed information, from IP addresses to rack locations, is typically done using various in-house applications ranging from simple spreadsheets to web applications. Such solutions, whose documentation usually leaves much to be desired, typically do not prevent a significant duplication of information, and therefore the data therein quickly become obsolete. After having deployed Cfengine as one of a few sites in the WLCG environment, the Prague Tier-2 site set forth to further automate the fabric management, developing the Deska project. The aim of the system is to provide a central place to perform changes, from adding new machines or moving them between racks to changing their assigned service roles and additional metadata. The database provides an authoritative source of information from which all other systems and services (like DHCP servers, Ethernet switches or the Cfengine system) pull their data, using newly developed configuration adaptors. An easy-to-use command line interface modelled after the Cisco IOS-based switches was developed, enabling the data center administrators to easily change any information in an intuitive way. We provide an overview of the current status of the implementation and describe our design choices aimed at further reducing the system engineers' workload.

  14. NASA Tech Briefs, January 2014

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Topics include: Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity; Software Suite to Support In-Flight Characterization of Remote Sensing Systems; Visual Image Sensor Organ Replacement; Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna; Centering a DDR Strobe in the Middle of a Data Packet; Using a Commercial Ethernet PHY Device in a Radiation Environment; Submerged AUV Charging Station; Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat; Origami-Inspired Folding of Thick, Rigid Panels; A Novel Protocol for Decoating and Permeabilizing Bacterial Spores for Epifluorescent Microscopy; Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples; Enabling Microliquid Chromatography by Microbead Packing of Microchannels; On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF; Deployable Fresnel Rings; Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics; Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software; Cross Support Transfer Service (CSTS) Framework Library; Arbitrary Shape Deformation in CFD Design; Range Safety Flight Elevation Limit Calculation Software; Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors; Calculation of Operations Efficiency Factors for Mars Surface Missions; GPU Lossless Hyperspectral Data Compression System; Robust, Optimal Subsonic Airfoil Shapes; Protograph-Based Raptor-Like Codes; Fuzzy Neuron: Method and Hardware Realization; Kalman Filter Input Processor for Boresight Calibration; Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression; and Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption.

  15. Mechanism Design Principle for Optical-Precision, Deployable Instruments

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    The present paper is intended to be a guide for the design of 'microdynamically quiet' deployment mechanisms for optical-precision structures, such as deployable telescope mirrors and optical benches. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are neither newly developed guidelines nor are they uniquely applicable to high-precision deployment mechanisms. However, the application of these guidelines to the design of deployment mechanisms is a rather new practice, so efforts are made herein to illustrate the process through the discussion of specific examples. The present paper summarizes a more extensive set of design guidelines for optical-precision mechanisms that are under development.

  16. Space lab system analysis

    NASA Technical Reports Server (NTRS)

    Rives, T. B.; Ingels, F. M.

    1988-01-01

    An analysis of the Automated Booster Assembly Checkout System (ABACS) has been conducted. A computer simulation of the ETHERNET LAN has been written. The simulation allows one to investigate different structures of the ABACS system. The simulation code is in PASCAL and is VAX compatible.

  17. Rapidly deployable emergency communication system

    DOEpatents

    Gladden, Charles A.; Parelman, Martin H.

    1979-01-01

    A highly versatile, highly portable emergency communication system which permits deployment in a very short time to cover both wide areas and distant isolated areas depending upon mission requirements. The system employs a plurality of lightweight, fully self-contained repeaters which are deployed within the mission area to provide communication between field teams, and between each field team and a mobile communication control center. Each repeater contains a microcomputer controller, the program for which may be changed from the control center by the transmission of digital data within the audible range (300-3,000 Hz). Repeaters are accessed by portable/mobile transceivers, other repeaters, and the control center through the transmission and recognition of digital data code words in the subaudible range.

  18. Venomous adversaries: a reference to snake identification, field safety, and bite-victim first aid for disaster-response personnel deploying into the hurricane-prone regions of North America.

    PubMed

    Wozniak, Edward J; Wisser, John; Schwartz, Michael

    2006-01-01

    Each hurricane season, emergency-preparedness deployment teams including but not limited to the Office of Force Readiness and Deployment of the US Public Health Service, Federal Emergency Management Agency, Deployment Medical Assistance Teams, Veterinary Medical Assistance Teams, and the US Army and Air Force National Guard are at risk for deploying into hurricane-stricken areas that harbor indigenous hazards, including those posed by venomous snakes. North America is home to 2 distinct families of venomous snakes: 1) Viperidae, which includes the rattlesnakes, copperheads, and cottonmouths; and 2) Elapidae, in which the only native species are the coral snakes. Although some of these snakes are easily identified, some are not, and many rank among the most feared and misunderstood animals. This article specifically addresses all the native species of venomous snakes that inhabit the hurricane-prone regions of North America and is intended to serve as a reference to snake identification, basic field safety procedures, and the currently recommended first-aid measures for snakebite casualties.

  19. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR.

    PubMed

    Lee, W R; Kim, H S; Park, M K; Lee, J H; Kim, K H

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  20. Design, Observing and Data Systems, and Final Installation of the NEPTUNE Canada Regional Cabled Ocean Observatory

    NASA Astrophysics Data System (ADS)

    Barnes, C. R.; Best, M. M.; Johnson, F. R.; Phibbs, P.; Pirenne, B.

    2009-05-01

    NEPTUNE Canada (NC; www.neptunecanada.ca) will complete most of the installation of the world's first regional cabled ocean observatory in late 2009 off Canada's west coast. It will comprise five main observatory nodes (100-2700m water depths) linked by an 800km backbone cable delivering 10kVDC power and 10Gbps communications bandwidth to hundreds of sensors, with a 25-year design life. Infrastructure (100M) and initial operational funding (20M) is secured. University of Victoria (UVic) leads a consortium of 12 Canadian universities, hosts the coastal VENUS cabled observatory, with Ocean Networks Canada (ONC) providing management oversight. Observatory architecture has a trunk and branch topology. Installed in late 2007, the backbone cable loops from/to UVic's Port Alberni shore station. The wet plant's design, manufacture and installation was contracted to Alcatel-Lucent. Each node provides six interface ports for connection of science instrument arrays or extensions. Each port provides dual optical Ethernet links and up to 9kW of electrical power at 400VDC. Junction boxes, designed and built by OceanWorks support up to 10 instruments each and can be daisy- chained. They accommodate both serial and 10/100 Ethernet instruments, and provide a variety of voltages (400V, 48V, 24V, 15V). Backbone equipment has all been qualified and installed; shore station re-equipping is complete; junction boxes are manufactured. A major marine program will deploy nodes and instruments in July-September 2009; instruments to one node will probably be deferred until 2010. Observatory instruments will be deployed in subsurface (boreholes), on seabed, and buoyed through the water column. Over 130 instruments (over 40 different types) will host several hundred sensors; mobile assets include a tethered crawler and a 400m vertical profiler. Experiments will address: earthquake dynamics and tsunami hazards; fluid fluxes in both ocean crust and sediments, including gas hydrates; ocean/climate dynamics, including acidification and nutrient fluxes; deep-sea ecosystems dynamics; and engineering and computer science research. NC's software system interfaces between users and cabled observatory and responds to a three-fold mandate: acquire data from various instruments/sensors underwater; provide lifetime storage and redistribution capabilities for all data; and allow authorized users to remotely and interactively control experiments. Data Management and Archiving System (DMAS) is being developed in-house, with adoption of Service-Oriented Architecture (SOA) and using Web Services to expose the functionality of DMAS' various components. An internal messaging bus allows various functional components to interact through the publish and subscribe paradigm, using Java programming language. DMAS is developing a modern environment for users: data access, data processing and experimentation control within a Web 2.0 environment. This will allow users, on top of data and instrumentation access, to perform data visualization and analysis on-line with either default or custom processing code, as well as simultaneously interacting with each other. These social networking aspects will be within NC's new Oceans 2.0 environment. The observatory is designed to be expandable in its footprint, nodes and instruments and provides a magnificent facility for testing prototypes of new technologies monitored and demonstrated in real-time. NC and ONC invite new scientific and industrial participation, experiments, instrumentation and data services.

  1. Upgrading a CD-ROM Network for Multimedia Applications.

    ERIC Educational Resources Information Center

    Sylvia, Margaret

    1995-01-01

    Addresses issues to consider when upgrading library CD-ROM networks for multimedia applications. Topics includes security issues; workstation requirements such as soundboards and monitors; local area network configurations that avoid bottlenecks: Asynchronous Transfer Mode, Ethernet, and Integrated Services Digital Network; server performance…

  2. Designing Secure Library Networks.

    ERIC Educational Resources Information Center

    Breeding, Michael

    1997-01-01

    Focuses on designing a library network to maximize security. Discusses UNIX and file servers; connectivity to campus, corporate networks and the Internet; separation of staff from public servers; controlling traffic; the threat of network sniffers; hubs that eliminate eavesdropping; dividing the network into subnets; Switched Ethernet;…

  3. Multimedia Networks: Mission Impossible?

    ERIC Educational Resources Information Center

    Weiss, Andrew M.

    1996-01-01

    Running multimedia on a network, often difficult because of the memory and processing power required, is becoming easier thanks to new protocols and products. Those developing network design criteria may wish to consider making use of Fast Ethernet, Asynchronous Transfer Method (ATM), switches, "fat pipes", additional network…

  4. Remotely Accessible Testbed for Software Defined Radio Development

    NASA Technical Reports Server (NTRS)

    Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.

    2012-01-01

    Previous development testbeds have assumed that the developer was physically present in front of the hardware being used. No provision for remote operation of basic functions (power on/off or reset) was made, because the developer/operator was sitting in front of the hardware, and could just push the button manually. In this innovation, a completely remotely accessible testbed has been created, with all diagnostic equipment and tools set up for remote access, and using standardized interfaces so that failed equipment can be quickly replaced. In this testbed, over 95% of the operating hours were used for testing without the developer being physically present. The testbed includes a pair of personal computers, one running Linux and one running Windows. A variety of peripherals is connected via Ethernet and USB (universal serial bus) interfaces. A private internal Ethernet is used to connect to test instruments and other devices, so that the sole connection to the outside world is via the two PCs. An important design consideration was that all of the instruments and interfaces used stable, long-lived industry standards, such as Ethernet, USB, and GPIB (general purpose interface bus). There are no plug-in cards for the two PCs, so there are no problems with finding replacement computers with matching interfaces, device drivers, and installation. The only thing unique to the two PCs is the locally developed software, which is not specific to computer or operating system version. If a device (including one of the computers) were to fail or become unavailable (e.g., a test instrument needed to be recalibrated), replacing it is a straightforward process with a standard, off-the-shelf device.

  5. Seismic-monitoring changes and the remote deployment of seismic stations (seismic spider) at Mount St. Helens, 2004-2005: Chapter 7 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.

  6. Army Logistician. Volume 38, Issue 3, May-June 2006

    DTIC Science & Technology

    2006-06-01

    that are deployed or preparing to deploy and those in the process of transforming to a modular design find it difficult to keep abreast of emerging...The Air Force and the Marine Corps have well-defined and -established career fields in con- tracting for their NCOs. Now the Army is developing ...How will field -grade officers in a BCT be developed as logistics officers? How will CSS company commanders be developed ? Will there be a female

  7. Real-time Integration of Biological, Optical and Physical Oceanographic Data from Multiple Vessels and Nearshore Sites using a Wireless Network

    DTIC Science & Technology

    1997-09-30

    field experiments in Puget Sound . Each research vessel will use multi- sensor profiling instrument packages which obtain high-resolution physical...field deployment of the wireless network is planned for May-July, 1998, at Orcas Island, WA. IMPACT We expect that wireless communication systems will...East Sound project to be a first step toward continental shelf and open ocean deployments with the next generation of wireless and satellite

  8. How to create a very-low cost, very-low-power, credit-card-sized and real-time ready datalogger

    NASA Astrophysics Data System (ADS)

    Bès de Berc, Maxime; Grunberg, Marc; Engels, Fabien

    2014-05-01

    In some cases a field instrumentalist could have to add some extra sensors in a remote station. Additional ADCs (Analogic Digital Converters) are not always implemented on commercial dataloggers, or may already be used. Adding more ADCs often implies an expensive development, or buy a new datalogger. We present here a very simple way to deploy an embedded ARM computer, use its features and embedded ADCs to create datas in a seismological standard format and integrating it within the real-time data stream from the station. In the past few years, because of the market growth of telephony and mobile applications, the ARM processor from ARM Ltd has become very common and available at a reasonable price. This processor has the particularity to be an excellent compromise between its frequency and its power consumption. That's why most of smartphones and tablets feature nowadays that kind of processor. It is also available on the market as Soc (System on Chip) or complete embedded computer. The most known is probably the Raspberry Pi, but many ohers exist like the BeagleBone or BeagleBoard. This kind of computer can be bought between 35€ for Raspberry Pi and several hundred Euro for more industrial products. Each model often embed some ADCs on its chip or some special buses, allowing additional ADCs to be easily used. Our experiment has been made on a BeagleBone platform, available at 78€. We chose it because its a more mature product than Raspberry Pi, it has all connectors and options needed: seven ADCs, an USB port for local backup, an Ethernet port for real-time streams, and some useful things like GPIO and I2C buses. Our goal was to plug temperature and humidity sensors on the ADCs, read datas, record them in mini-SEED format (Standard for the Exchange of the Earthquake Data), and transmit those datas to a central server as a secondary source for a remote station, by using Seedlink, which is a standard for seismology. Seedlink is a real-time data acquisition protocol and a client-server software that implements this protocol. We first discuss on how install a linux Os, and a Seedlink server on this platform. We then explain how we developed a very simple plugin for the Seedlink server, for reading, preparing, sending and recording datas in mini-Seed format, and how we implemented it in the whole data stream. We later evaluate the quality of this low-cost datalogger, with methods we normally use with our commercial seismological dataloggers. We finally talk about how deploy several platform with the same disk image as quickly as possible.

  9. Computer-aided dispatch--traffic management center field operational test final evaluation plan : WSDOT deployment

    DOT National Transportation Integrated Search

    2003-09-22

    This document presents the Evaluation Teams plan for conducting the evaluation of the FOT in Washington State. A companion document exists for the evaluation of the Utah deployment. This plan includes the experimental design for testing hypotheses...

  10. Local Area Networks.

    ERIC Educational Resources Information Center

    Marks, Kenneth E.; Nielsen, Steven

    1991-01-01

    Discusses cabling that is needed in local area networks (LANs). Types of cables that may be selected are described, including twisted pair, coaxial cables (or ethernet), and fiber optics; network topologies, the manner in which the cables are laid out, are considered; and cable installation issues are discussed. (LRW)

  11. 76 FR 78174 - Energy Conservation Program: Test Procedure and Energy Conservation Standard for Set-Top Boxes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ...): The capability to interface with external devices over a high bandwidth network (e.g., IEEE 802.11 (WiFi), MoCA, HPNA). For purposes of this specification, IEEE 802.3 wired Ethernet is not considered a...

  12. 106-17 Telemetry Standards Recorder Data Packet Format Standard Chapter 11

    DTIC Science & Technology

    2017-07-01

    11.2.2 PCM Data Packets ..................................................................................... 11-11 11.2.3 Time Data Packets...11-95 11.2.15 Ethernet Data Packets ................................................................................ 11-97 11.2.16 Time Space...4 Time ............................................................ 11-10 Figure 11-5. Secondary Header IEEE 1588 Time

  13. Multimedia on the Network: Has Its Time Come?

    ERIC Educational Resources Information Center

    Galbreath, Jeremy

    1995-01-01

    Examines the match between multimedia data and local area network (LAN) infrastructures. Highlights include applications for networked multimedia, i.e., asymmetric and symmetric; alternate LAN technology, including stream management software, Ethernet, FDDI (Fiber Distributed Data Interface), and ATM (Asynchronous Transfer Mode); WAN (Wide Area…

  14. Control and communication co-design: analysis and practice on performance improvement in distributed measurement and control system based on fieldbus and Ethernet.

    PubMed

    Liang, Geng

    2015-01-01

    In this paper, improving control performance of a networked control system by reducing DTD in a different perspective was investigated. Two different network architectures for system implementation were presented. Analysis and improvement dealing with DTD for the experimental control system were expounded. Effects of control scheme configuration on DTD in the form of FB were investigated and corresponding improvements by reallocation of FB and re-arrangement of schedule table are proposed. Issues of DTD in hybrid network were investigated and corresponding approaches to improve performance including (1) reducing DTD in PLC or PAC by way of IEC61499 and (2) cascade Smith predictive control with BPNN-based identification were proposed and investigated. Control effects under the proposed methodologies were also given. Experimental and field practices validated these methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Use of the Remote Access Virtual Environment Network (RAVEN) for coordinated IVA-EVA astronaut training and evaluation.

    PubMed

    Cater, J P; Huffman, S D

    1995-01-01

    This paper presents a unique virtual reality training and assessment tool developed under a NASA grant, "Research in Human Factors Aspects of Enhanced Virtual Environments for Extravehicular Activity (EVA) Training and Simulation." The Remote Access Virtual Environment Network (RAVEN) was created to train and evaluate the verbal, mental and physical coordination required between the intravehicular (IVA) astronaut operating the Remote Manipulator System (RMS) arm and the EVA astronaut standing in foot restraints on the end of the RMS. The RAVEN system currently allows the EVA astronaut to approach the Hubble Space Telescope (HST) under control of the IVA astronaut and grasp, remove, and replace the Wide Field Planetary Camera drawer from its location in the HST. Two viewpoints, one stereoscopic and one monoscopic, were created all linked by Ethernet, that provided the two trainees with the appropriate training environments.

  16. NectarCAM, a camera for the medium sized telescopes of the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Glicenstein, J.-F.; Shayduk, M.

    2017-01-01

    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of 100 GeV to 30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The expected performance of the camera are discussed. Prototypes of NectarCAM components have been built to validate the design. Preliminary results of a 19-module mini-camera are presented, as well as future plans for building and testing a full size camera.

  17. How can wireless, mobile data acquisition be used for taking part of the lab to the sample, and how can it join the internet of things?

    NASA Astrophysics Data System (ADS)

    Trzcinski, Peter; Karanassios, Vassili

    2016-05-01

    During the last several years, the world has moved from wired communications (e.g., a wired ethernet, wired telephone) to wireless communications (e.g., cell phones, smart phones, tablets). However, data acquisition has lagged behind and for the most part, data in laboratory settings are still acquired using wired communications (or even plug in boards). In this paper, approaches that can be used for wireless data acquisition are briefly discussed using a conceptual model of a future, mobile, portable micro-instrument as an example. In addition, past, present and near-future generations of communications are discussed; processors, operating systems and benchmarks are reviewed; networks that may be used for data acquisition in the field are examined; and, the possibility of connecting sensor or micro-instrument networks to the internet of things is postulated.

  18. Home Area Networks and the Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Samuel L.; Carroll, Thomas E.; Hadley, Mark D.

    2011-04-01

    With the wide array of home area network (HAN) options being presented as solutions to smart grid challenges for the home, it is time to compare and contrast their strengths and weaknesses. This white paper examines leading and emerging HAN technologies. The emergence of the smart grid is bringing more networking players into the field. The need for low consistent bandwidth usage differs enough from the traditional information technology world to open the door to new technologies. The predominant players currently consist of a blend of the old and new. Within the wired world Ethernet and HomePlug Green PHY aremore » leading the way with an advantage to HomePlug because it doesn't require installing new wires. In the wireless the realm there are many more competitors but WiFi and ZigBee seem to have the most momentum.« less

  19. IOTA: the array controller for a gigapixel OTCCD camera for Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Onaka, Peter; Tonry, John; Luppino, Gerard; Lockhart, Charles; Lee, Aaron; Ching, Gregory; Isani, Sidik; Uyeshiro, Robin

    2004-09-01

    The PanSTARRS project has undertaken an ambitious effort to develop a completely new array controller architecture that is fundamentally driven by the large 1gigapixel, low noise, high speed OTCCD mosaic requirements as well as the size, power and weight restrictions of the PanSTARRS telescope. The result is a very small form factor next generation controller scalar building block with 1 Gigabit Ethernet interfaces that will be assembled into a system that will readout 512 outputs at ~1 Megapixel sample rates on each output. The paper will also discuss critical technology and fabrication techniques such as greater than 1MHz analog to digital converters (ADCs), multiple fast sampling and digital calculation of multiple correlated samples (DMCS), ball grid array (BGA) packaged circuits, LINUX running on embedded field programmable gate arrays (FPGAs) with hard core microprocessors for the prototype currently being developed.

  20. Slow Controls Using the Axiom M5235BCC

    NASA Astrophysics Data System (ADS)

    Hague, Tyler

    2008-10-01

    The Forward Vertex Detector group at PHENIX plans to adopt the Axiom M5235 Business Card Controller for use as slow controls. It is also being evaluated for slow controls on FermiLab e906. This controller features the Freescale MCF5235 microprocessor. It also has three parallel buses, these being the MCU port, BUS port, and enhanced Time Processing Unit (eTPU) port. The BUS port uses a chip select module with three external chip selects to communicate with peripherals. This will be used to communicate with and configure Field Programmable Gate Arrays (FPGAs). The controller also has an Ethernet port which can use several different protocols such as TCP and UDP. This will be used to transfer files with computers on a network. The M5235 Business Card Controller will be placed in a VME crate along with VME card and a Spartan-3 FPGA.

  1. Low cost open data acquisition system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zabolotny, Wojciech M.; Laniewski-Wollk, Przemyslaw; Zaworski, Wojciech

    2005-09-01

    In the biomedical applications it is often necessary to collect measurement data from different devices. It is relatively easy, if the devices are equipped with a MIB or Ethernet interface, however often they feature only the asynchronous serial link, and sometimes the measured values are available only as the analog signals. The system presented in the paper is a low cost alternative to commercially available data acquisition systems. The hardware and software architecture of the system is fully open, so it is possible to customize it for particular needs. The presented system offers various possibilities to connect it to the computer based data processing unit - e.g. using the USB or Ethernet ports. Both interfaces allow also to use many such systems in parallel to increase amount of serial and analog inputs. The open source software used in the system makes possible to process the acquired data with standard tools like MATLAB, Scilab or Octave, or with a dedicated, user supplied application.

  2. Fault identification and localization for Ethernet Passive Optical Network using L-band ASE source and various types of fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Bakar, A. Ashrif A.; Ab-Rahman, Mohammad Syuhaimi

    2018-01-01

    This paper presents a centralized and fault localization technique for Ethernet Passive Optical Access Network. This technique employs L-band Amplified Spontaneous Emission (ASE) as the monitoring source and various fiber Bragg Gratings (FBGs) as the fiber's identifier. An FBG with a unique combination of Bragg wavelength, reflectivity and bandwidth is inserted at each distribution fiber. The FBG reflection spectrum will be analyzed using an optical spectrum analyzer (OSA) to monitor the condition of the distribution fiber. Various FBGs reflection spectra is employed to optimize the limited bandwidth of monitoring source, thus allows more fibers to be monitored. Basically, one Bragg wavelength is shared by two distinct FBGs with different reflectivity and bandwidth. The experimental result shows that the system is capable to monitor up to 32 customers with OSNR value of ∼1.2 dB and monitoring power received of -24 dBm. This centralized and simple monitoring technique demonstrates a low power, cost efficient and low bandwidth requirement system.

  3. Scalable SCPPM Decoder

    NASA Technical Reports Server (NTRS)

    Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.

    2012-01-01

    A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.

  4. OSLG: A new granting scheme in WDM Ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Razmkhah, Ali; Rahbar, Akbar Ghaffarpour

    2011-12-01

    Several granting schemes have been proposed to grant transmission window and dynamic bandwidth allocation (DBA) in passive optical networks (PON). Generally, granting schemes suffer from bandwidth wastage of granted windows. Here, we propose a new granting scheme for WDM Ethernet PONs, called optical network unit (ONU) Side Limited Granting (OSLG) that conserves upstream bandwidth, thus resulting in decreasing queuing delay and packet drop ratio. In OSLG instead of optical line terminal (OLT), each ONU determines its transmission window. Two OSLG algorithms are proposed in this paper: the OSLG_GA algorithm that determines the size of its transmission window in such a way that the bandwidth wastage problem is relieved, and the OSLG_SC algorithm that saves unused bandwidth for more bandwidth utilization later on. The OSLG can be used as granting scheme of any DBA to provide better performance in the terms of packet drop ratio and queuing delay. Our performance evaluations show the effectiveness of OSLG in reducing packet drop ratio and queuing delay under different DBA techniques.

  5. An open-source, extensible system for laboratory timing and control

    NASA Astrophysics Data System (ADS)

    Gaskell, Peter E.; Thorn, Jeremy J.; Alba, Sequoia; Steck, Daniel A.

    2009-11-01

    We describe a simple system for timing and control, which provides control of analog, digital, and radio-frequency signals. Our system differs from most common laboratory setups in that it is open source, built from off-the-shelf components, synchronized to a common and accurate clock, and connected over an Ethernet network. A simple bus architecture facilitates creating new and specialized devices with only moderate experience in circuit design. Each device operates independently, requiring only an Ethernet network connection to the controlling computer, a clock signal, and a trigger signal. This makes the system highly robust and scalable. The devices can all be connected to a single external clock, allowing synchronous operation of a large number of devices for situations requiring precise timing of many parallel control and acquisition channels. Provided an accurate enough clock, these devices are capable of triggering events separated by one day with near-microsecond precision. We have achieved precisions of ˜0.1 ppb (parts per 109) over 16 s.

  6. Development of a ROV Deployed Video Analysis Tool for Rapid Measurement of Submerged Oil/Gas Leaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savas, Omer

    Expanded deep sea drilling around the globe makes it necessary to have readily available tools to quickly and accurately measure discharge rates from accidental submerged oil/gas leak jets for the first responders to deploy adequate resources for containment. We have developed and tested a field deployable video analysis software package which is able to provide in the field sufficiently accurate flow rate estimates for initial responders in accidental oil discharges in submarine operations. The essence of our approach is based on tracking coherent features at the interface in the near field of immiscible turbulent jets. The software package, UCB_Plume, ismore » ready to be used by the first responders for field implementation. We have tested the tool on submerged water and oil jets which are made visible using fluorescent dyes. We have been able to estimate the discharge rate within 20% accuracy. A high end WINDOWS laptop computer is suggested as the operating platform and a USB connected high speed, high resolution monochrome camera as the imaging device are sufficient for acquiring flow images under continuous unidirectional illumination and running the software in the field. Results are obtained over a matter of minutes.« less

  7. Building a better sticky trap: description of an easy-to-use trap and pole mount for quantifying the abundance of adult aquatic insects

    USGS Publications Warehouse

    Smith, Joshua T.; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2014-01-01

    Insect emergence is a fundamental process in freshwaters. It is a critical life-history stage for aquatic insects and provides an important prey resource for terrestrial and aquatic consumers. Sticky traps are increasingly being used to sample these insects. The most common design consists of an acetate sheet coated with a nondrying adhesive that is attached to a wire frame or cylinder. These traps must be prepared at the deployment site, a process that can be time consuming and difficult given the vagaries of field conditions. Our goals were to develop a sturdy, low-cost sticky trap that could be prepared in advance, rapidly deployed and recovered in the field, and used to estimate the flight direction of insects. We used 150-mm Petri dishes with lids. The dishes can be coated cleanly and consistently with Tangle-Trap® adhesive. Deploying traps is simple and requires only a pole set near the body of water being sampled. Four dishes can be attached to the pole using Velcro and aligned in 4 different directions to enable quantification of insect flight direction. After sampling, Petri dishes can be taped closed, packed in boxes, and stored indefinitely. Petri traps are comparable in price to standard acetate sheet traps at ∼US$0.50/directional deployment, but they require more space for storage than acetate sheet traps. However, a major benefit of Petri traps is that field deployment times are ⅓ those of acetate traps. Our study demonstrated that large Petri dishes are an ideal platform for sampling postemergent adult aquatic insects, particularly when the study design involves estimating flight direction and when rapid deployment and recovery of traps is critical.

  8. Advances in damage control resuscitation and surgery: implications on the organization of future military field forces

    PubMed Central

    Tien, Col Homer; Beckett, Maj Andrew; Garraway, LCol Naisan; Talbot, LCol Max; Pannell, Capt Dylan; Alabbasi, Thamer

    2015-01-01

    Medical support to deployed field forces is increasingly becoming a shared responsibility among allied nations. National military medical planners face several key challenges, including fiscal restraints, raised expectations of standards of care in the field and a shortage of appropriately trained specialists. Even so, medical services are now in high demand, and the availability of medical support may become the limiting factor that determines how and where combat units can deploy. The influence of medical factors on operational decisions is therefore leading to an increasing requirement for multinational medical solutions. Nations must agree on the common standards that govern the care of the wounded. These standards will always need to take into account increased public expectations regarding the quality of care. The purpose of this article is to both review North Atlantic Treaty Organization (NATO) policies that govern multinational medical missions and to discuss how recent scientific advances in prehospital battlefield care, damage control resuscitation and damage control surgery may inform how countries within NATO choose to organize and deploy their field forces in the future. PMID:26100784

  9. A field-deployable GC-EI-HRTOF-MS for in situ characterization of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Herndon, S. C.; Yacovitch, T. I.; Roscioli, J. R.; Fortner, E.; Knighton, W. B.; Sueper, D.; Isaacman-VanWertz, G. A.; Jayne, J. T.; Worsnop, D. R.

    2017-12-01

    Previous authors have demonstrated the value of coupling conventional gas chromatograph (GC) separation techniques with the new generation of electron-impact high-resolution time-of-flight mass spectrometry (EI-HR-ToF-MS) detectors for the measurement of halocarbons and semi-volatile organic species. Here, we present new instrumentation, analytical techniques and field data from the deployment of a GC-EI-HR-ToF-MS system in the mini Aerodyne mobile laboratory to sites upwind and downwind of San Antonio, Texas in May 2017. The instrument employed a multi-component adsorbent trap pre-concertation system followed by single-column separation. We will show results from the field work, including inter-comparison with other VOC measurements and characterization of C5-C10 hydrocarbon mixing ratios to distinguish urban and oil/gas emission sources in characterized air. We will discuss practical aspects of deployment of the GC-EI-HRTOF-MS in a mobile laboratory and system performance in the field. Will we also present further development of Aerodyne's TERN software package for chromatographic data analysis to processing of HRTOF-MS datasets.

  10. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  11. Next Generation Polar Seismic Instrumentation Challenges

    NASA Astrophysics Data System (ADS)

    Parker, T.; Beaudoin, B. C.; Gridley, J.; Anderson, K. R.

    2011-12-01

    Polar region logistics are the limiting factor for deploying deep field seismic arrays. The IRIS PASSCAL Instrument Center, in collaboration with UNAVCO, designed and deployed several systems that address some of the logistical constraints of polar deployments. However, continued logistics' pressures coupled with increasingly ambitious science projects require further reducing the logistics required for deploying both summer and over winter stations. Our focus is to reduce station power requirements and bulk, thereby minimizing the time and effort required to deploy these arrays. We will reduce the weight of the battery bank by incorporating the most applicable new high energy-density battery technology. Using these batteries will require a completely new power management system along with an appropriate smart enclosure. The other aspect will be to integrate the digitizing system with the sensor. Both of these technologies should reduce the install time and shipping volume plus weight while reducing some instrument costs. We will also continue work on an effective Iridium telemetry solution for automated data return. The costs and limitations of polar deep-field science easily justifies a specialized development effort but pays off doubly in that we will continue to leverage the advancements in reduced logistics and increased performance for the benefit of low-latitude seismic research.

  12. Deployment and Performance of the NASA D3R During the GPM OLYMPEx Field Campaign

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Beauchamp, Robert M.; Chen, Haonan; Vega, Manuel; Schwaller, Mathew; Willie, Delbert; Dabrowski, Aaron; Kumar, Mohit; Petersen, Walter; Wolff, David

    2016-01-01

    The NASA D3R was successfully deployed and operated throughout the NASA OLYMPEx field campaign. A differential phase based attenuation correction technique has been implemented for D3R observations. Hydrometeor classification has been demonstrated for five distinct classes using Ku-band observations of both convection and stratiform rain. The stratiform rain hydrometeor classification is compared against LDR observations and shows good agreement in identification of mixed-phase hydrometeors in the melting layer.

  13. SpaceCube Mini

    NASA Technical Reports Server (NTRS)

    Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas

    2012-01-01

    This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and application code for the PowerPCs and the Xilinx FPGA. In addition, it will feature highspeed DDR SDRAM (double data rate synchronous dynamic random-access memory) to store the instructions and data of active applications. This version will also feature SATA-II and Gigabit Ethernet interfaces. Furthermore, there will also be general-purpose, multi-gigabit interfaces. In addition, the system will have dozens of transceivers that can support LVDS (low-voltage differential signaling), RS-422, or SpaceWire. The SpaceCube Mini includes an I/O card that can be customized to meet the needs of each mission. This version of the SpaceCube will be designed so that multiple Minis can be networked together using SpaceWire, Ethernet, or even a custom protocol. Scalability can be provided by networking multiple SpaceCube Minis together. Rigid-Flex technology is being targeted for the construction of the SpaceCube Mini, which will make the extremely compact and low-weight design feasible. The SpaceCube Mini is designed to fit in the compact CubeSat form factor, thus allowing deployment in a new class of missions that the previous SpaceCube versions were not suited for. At the time of this reporting, engineering units should be available in the summer 2012.

  14. 10 CFR Appendix H to Subpart B of... - Uniform Test Method for Measuring the Power Consumption of Television Sets

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... connections (e.g., Wi-Fi and Ethernet), the TV shall be configured and connected to a single network source in... Hierarchy Priority Network connection type 1 Wi-Fi (Institution of Electrical and Electronics Engineers—IEEE...

  15. High-Temperature Superconductors as Electromagnetic Deployment and Support Structures in Spacecraft. [NASA NIAC Phase I

    NASA Technical Reports Server (NTRS)

    Getliffe, Gwendolyn V.; Inamdar, Niraj K.; Masterson, Rebecca; Miller, David W.

    2012-01-01

    This report, concluding a one-year NIAC Phase I study, describes a new structural and mechanical technique aimed at reducing the mass and increasing the deployed-to-stowed length and volume ratios of spacecraft systems. This technique uses the magnetic fields generated by electrical current passing through coils of high-temperature superconductors (HTSs) to support spacecraft structures and deploy them to operational configurations from their stowed positions inside a launch vehicle fairing.

  16. Mission Planning System Increment 5 (MPS Inc 5)

    DTIC Science & Technology

    2016-03-01

    DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA...Alternative Selected (Funds First Obligated (FFO)) (O/T) : Mar 2013 / Mar 2013 • MS B (O/T) : Apr 2012 / Apr 2012 • MS C (O/T) : N/A / N/A • FDD (O/T...Deployed Software Intensive Program" as described in the DOD Instruction 5000.02, January 7, 2015. 4. FDD provides approval to field the

  17. Development of ROACH firmware for microwave multiplexed X-ray TES microcalorimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, T. J.; Cecil, T. W.; Gades, L. M.

    We are developing room temperature electronics based upon the ROACH platform for reading out microwave multiplexed X-ray TES. ROACH is an open-source hardware and software platform featuring a large Xilinx Field Programmable Gate Array (FPGA), Power PC processor, several 10GB Ethernet SFP+ interfaces, and a collection of daughter boards for analog signal generation and acquisition. The combination of a ROACH board, ADC/DAC conversion daughter boards, and hardware for RF mixing allows for the generation and capture of multiple RF tones for reading out microwave multiplexed x-ray TES microcalorimeters. The FPGA is used to generate multiple tones in base band, frommore » 10MHz to 250MHz, which are subsequently mixed to RF in the multiple GHz range and sent through the microwave multiplexer. The tones are generated in the FPGA by storing a large lookup table in Quad Data Rate (QDR) SRAM modules and playing out the waveform to a DAC board. Once the signal has been modulated to RF, passed through the microwave multiplexer, and has been modulated back to base band, the signal is digitized by an ADC board. The tones are modulated to 0Hz by using a FPGA circuit consisting of a polyphase filter bank, several Xilinx FFT blocks, Xilinx CORDIC blocks (for converting to magnitude and phase), and special phase accumulator circuit for mixing to exactly 0Hz. Upwards of 256 channels can be simultaneously captured and written into a bank of 256 First-In-First-Out (FIFO) memories, with each FIFO corresponding to a channel. Individual channel data can be further processed in the FPGA before being streamed through a 10GB Ethernet fiber-optic interface to a Linux system. The Linux system runs software written in Python and QT C++ for controlling the ROACH system, capturing data, and processing data.« less

  18. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks

    PubMed Central

    González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina

    2017-01-01

    Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage. PMID:28075364

  19. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks.

    PubMed

    González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina

    2017-01-09

    Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.

  20. Velocity profiles, Reynolds stresses and bed roughness from an autonomous field deployed Acoustic Doppler Velocity Profiler in a mixed sediment tidal estuary

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Thorne, Peter; Cooke, Richard; Cohbed Team

    2014-05-01

    Estuaries are among some of the most important global landscapes in terms of population density, ecology and economy. Understanding the dynamics of these natural mixed sediment environments is of particular interest amid growing concerns over sea level rise, climate variations and estuarine response to these changes. Many predictors exist for bed form formation and sand transport in sandy coastal zones; however less work has been published on mixed sediments. This paper details a field study which forms part of the COHBED project aiming to increase understanding of bed forms in a biotic mixed sediment estuarine environment. The study was carried out in the Dee Estuary, in the eastern Irish Sea between England and Wales from the 21st May to 4th June 2013. A state of the art instrumentation frame, known as SEDbed, was deployed at three sites of differing sediment properties and biological makeup within the intertidal zone of the estuary. The SEDbed deployment consisted of a suite of optical and acoustic instrumentation, including an Acoustic Doppler Velocity Profiler (ADVP), Acoustic Doppler Velocimeter (ADV) and a three dimensional acoustic ripple profiler, 3D-ARP. Supplementary field samples and measurements were recorded alongside the frame during each deployment. This paper focuses on the use of new technological developments for the investigation of sediment dynamics. The hydrodynamics at each of the deployment sites are presented including centimetre resolution velocity profiles in the near bed region of the water column, obtained from the ADVP, which is presently the only autonomous field deployed coherent Doppler profiler . Based on these high resolution profiles variations in frictional velocity, bed shear stress and roughness length are calculated. Comparisons are made with theoretical models and with Reynolds stress values obtained from ADV data at a single point within the ADVP profile and from ADVP data itself. Predictions of bed roughness at each deployment site are compared with ripple measurements obtained on site using a three dimensional acoustic ripple profiler, 3D-ARP. These results will later be used to validate laboratory studies in mixed sediments, carried out as part of the COHBED Project, and enable development of new bed from predictors for biotic mixed sediment environments.

  1. Unmanned Ground Vehicle Communications Relays: Lessons Learned

    DTIC Science & Technology

    2014-04-01

    technology, specifically an open-source VPN package, OpenVPN . This technology provides a wrapper around the network messages, providing a plug-and-play...performed in OpenVPN :  Set the Maximum Transmission Unit (MTU) to 1600. This is because each VPN endpoint has an MTU of 1500 (the default for Ethernet

  2. iss055e024310

    NASA Image and Video Library

    2018-04-17

    iss055e024310 (April 17, 2018) --- NASA astronauts Drew Feustel and Scott Tingle are at work inside the U.S. Destiny laboratory module. Feustel works on routing and installing ethernet cables throughout the International Space Station. Tingle conducts research for the Metabolic Tracking experiment inside the lab module's Microgravity Science Glovebox.

  3. BioAir: Bio-Inspired Airborne Infrastructure Reconfiguration

    DTIC Science & Technology

    2016-01-01

    PI minicomputer powered by a different supply. The ODROID and Raspberry PI communicate via an Ethernet connection through a software interface named...HardKernel, an Atheros Wi-Fi card connected to it, and a dedicated power pack developed by RavPower. The hexarotor’s autopilot runs on a separate Raspberry

  4. Final test report for advanced traveler information systems (ATIS) and related standards as deployed by the Nebraska department of roads.

    DOT National Transportation Integrated Search

    2008-03-14

    This report contains the results, findings and conclusions generated from the evaluation and field testing of a specific subset of ITS Standards applicable to the center-to-center exchange of advanced traveler information as deployed by the Nebraska ...

  5. A Wireless Communications Laboratory on Cellular Network Planning

    ERIC Educational Resources Information Center

    Dawy, Z.; Husseini, A.; Yaacoub, E.; Al-Kanj, L.

    2010-01-01

    The field of radio network planning and optimization (RNPO) is central for wireless cellular network design, deployment, and enhancement. Wireless cellular operators invest huge sums of capital on deploying, launching, and maintaining their networks in order to ensure competitive performance and high user satisfaction. This work presents a lab…

  6. Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables

    NASA Astrophysics Data System (ADS)

    Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke

    2017-11-01

    Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.

  7. Field comparison of optical and clark cell dissolved-oxygen sensors

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.; Garcia, L.

    2005-01-01

    Three multi-parameter water-quality monitors equipped with either Clark cell type or optical type dissolved-oxygen sensors were deployed for 30 days in a brackish (salinity <10 parts per thousand) environment to determine the sensitivity of the sensors to biofouling. The dissolved-oxygen sensors compared periodically to a hand-held dissolved oxygen sensor, but were not serviced or cleaned during the deployment. One of the Clark cell sensors and the optical sensor performed similarly during the deployment. The remaining Clark cell sensor was not aged correctly prior to deployment and did not perform as well as the other sensors. All sensors experienced substantial biofouling that gradually degraded the accuracy of the dissolved-oxygen measurement during the last half of the deployment period. Copyright ASCE 2005.

  8. Deployable Mini-Payload Missions Enabled by Small Radioisotope Power Systems (RPSs)

    NASA Technical Reports Server (NTRS)

    Abelson, Robert D.; Satter, Celeste M.

    2005-01-01

    Deployable mini-payloads are envisioned as small, simple, standalone instruments that could be deployed from a mother vehicle such as a rover or the proposed Jupiter Icy Moons Orbiter to key points of interest within the solar system. Used in conjunction with a small radioisotope power system (RPS), these payloads could potentially be used for long-duration science missions or as positional beacons for rovers or other spacecraft. The RPS power source would be suitable for deployable mini-payload missions that would take place anywhere there is limited, intermittent, or no solar insolation. This paper introduces two such concepts: (1) a seismic monitoring station deployed by a rover or aerobot, and (2) a passive fields and particles station delivered by a mother spacecraft to Jupiter.

  9. Engaging High School Science Teachers in Field-Based Seismology Research: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Long, M. D.

    2015-12-01

    Research experiences for secondary school science teachers have been shown to improve their students' test scores, and there is a substantial body of literature about the effectiveness of RET (Research Experience for Teachers) or SWEPT (Scientific Work Experience Programs for Teachers) programs. RET programs enjoy substantial support, and several opportunities for science teachers to engage in research currently exist. However, there are barriers to teacher participation in research projects; for example, laboratory-based projects can be time consuming and require extensive training before a participant can meaningfully engage in scientific inquiry. Field-based projects can be an effective avenue for involving teachers in research; at its best, earth science field work is a fun, highly immersive experience that meaningfully contributes to scientific research projects, and can provide a payoff that is out of proportion to a relatively small time commitment. In particular, broadband seismology deployments provide an excellent opportunity to provide teachers with field-based research experience. Such deployments are labor-intensive and require large teams, with field tasks that vary from digging holes and pouring concrete to constructing and configuring electronics systems and leveling and orienting seismometers. A recently established pilot program, known as FEST (Field Experiences for Science Teachers) is experimenting with providing one week of summer field experience for high school earth science teachers in Connecticut. Here I report on results and challenges from the first year of the program, which is funded by the NSF-CAREER program and is being run in conjunction with a temporary deployment of 15 seismometers in Connecticut, known as SEISConn (Seismic Experiment for Imaging Structure beneath Connecticut). A small group of teachers participated in a week of field work in August 2015 to deploy seismometers in northern CT; this experience followed a visit of the PI to the classroom of one of the teacher participants during spring 2015 to give a series of talks on Connecticut earthquakes and geology. This presentation will focus on the challenges and opportunities of running small, PI-driven, field-based RET programs.

  10. Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    PubMed Central

    Lazarescu, Mihai T.

    2015-01-01

    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349

  11. The Field Shower Wastewater Recycling System: Development of a Program of Instruction and Preliminary Analysis of Its Potential Health Implications.

    DTIC Science & Technology

    1987-02-01

    The FSWRS will be used by forces deployed to Theaters of Operations located in water-short areas of the world, and will greatly reduce water supply... operators take ’ A appropriate precautions in handling sulfuric acid and un- . treat.d waters. Although no health hazards are anticipated to result from...field. The FSWRS will be used by forces deployed to Theaters of Operations located in water short areas of the world, and will greatly reduce water

  12. Evaluation of Methods for In-Situ Calibration of Field-Deployable Microphone Phased Arrays

    NASA Technical Reports Server (NTRS)

    Humphreys, William M.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.

    2017-01-01

    Current field-deployable microphone phased arrays for aeroacoustic flight testing require the placement of hundreds of individual sensors over a large area. Depending on the duration of the test campaign, the microphones may be required to stay deployed at the testing site for weeks or even months. This presents a challenge in regards to tracking the response (i.e., sensitivity) of the individual sensors as a function of time in order to evaluate the health of the array. To address this challenge, two different methods for in-situ tracking of microphone responses are described. The first relies on the use of an aerial sound source attached as a payload on a hovering small Unmanned Aerial System (sUAS) vehicle. The second relies on the use of individually excited ground-based sound sources strategically placed throughout the array pattern. Testing of the two methods was performed in microphone array deployments conducted at Fort A.P. Hill in 2015 and at Edwards Air Force Base in 2016. The results indicate that the drift in individual sensor responses can be tracked reasonably well using both methods. Thus, in-situ response tracking methods are useful as a diagnostic tool for monitoring the health of a phased array during long duration deployments.

  13. Thirty Meter Telescope narrow-field infrared adaptive optics system real-time controller prototyping results

    NASA Astrophysics Data System (ADS)

    Smith, Malcolm; Kerley, Dan; Chapin, Edward L.; Dunn, Jennifer; Herriot, Glen; Véran, Jean-Pierre; Boyer, Corinne; Ellerbroek, Brent; Gilles, Luc; Wang, Lianqi

    2016-07-01

    Prototyping and benchmarking was performed for the Real-Time Controller (RTC) of the Narrow Field InfraRed Adaptive Optics System (NFIRAOS). To perform wavefront correction, NFIRAOS utilizes two deformable mirrors (DM) and one tip/tilt stage (TTS). The RTC receives wavefront information from six Laser Guide Star (LGS) Shack- Hartmann WaveFront Sensors (WFS), one high-order Natural Guide Star Pyramid WaveFront Sensor (PWFS) and multiple low-order instrument detectors. The RTC uses this information to determine the commands to send to the wavefront correctors. NFIRAOS is the first light AO system for the Thirty Meter Telescope (TMT). The prototyping was performed using dual-socket high performance Linux servers with the real-time (PREEMPT_RT) patch and demonstrated the viability of a commercial off-the-shelf (COTS) hardware approach to large scale AO reconstruction. In particular, a large custom matrix vector multiplication (MVM) was benchmarked which met the required latency requirements. In addition all major inter-machine communication was verified to be adequate using 10Gb and 40Gb Ethernet. The results of this prototyping has enabled a CPU-based NFIRAOS RTC design to proceed with confidence and that COTS hardware can be used to meet the demanding performance requirements.

  14. A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment

    PubMed Central

    Dash, Suryadeep; Lomber, Stephen G.

    2016-01-01

    Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades. PMID:27509130

  15. A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment.

    PubMed

    Peel, Tyler R; Hafed, Ziad M; Dash, Suryadeep; Lomber, Stephen G; Corneil, Brian D

    2016-08-01

    Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades.

  16. Low-frequency interferometry: Design, calibration, and analysis towards detecting the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron Robert

    Low-frequency interferometry provides us with the possibility of directly observing, via red-shifted 21cm emission, the ionization of the primordial intergalactic medium by radiation from the first stars and black holes. Building such interferometers presents daunting technical challenges related to the cross-correlation, calibration, and analysis of data from large antenna arrays with wide fields-of-view in an observing band below 200 MHz. Addressing cross-correlation data processing, I present a general-purpose correlator architecture that uses standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array chips. These chips are programmed using open-source signal processing libraries developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, and facilitates upgrading to new generations of processing technology. This correlator architecture is supporting the incremental build-out of the Precision Array for Probing the Epoch of Reionization. Targeting calibration concerns, I present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delayrate images." These filters are augmented by a one-dimensional, complex CLEAN algorithm has been developed to compensate for data-excision effects related to the removal of radio frequency interference. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to PAPER data as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view. Finally, I describe PAPER's overall architecture and summarize two PAPER deployments: a 4-antenna array in of Western Australia and an 8-antenna array in Green Bank, WV. After reporting on system characterization and data analysis techniques, I present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. I calculate angular power spectra (Cℓ) in a cold patch and determine them to be dominated by point sources. Although the sample variance of foregrounds dominates errors in these power spectra, I measure a thermal noise level of 310 mK at ℓ = 100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the expected level of 21cm fluctuations associated with reionization.

  17. Signal timing on a shoestring

    DOT National Transportation Integrated Search

    2005-03-01

    The conventional approach to signal timing optimization and field deployment requires current traffic flow data, experience with optimization models, familiarity with the signal controller hardware, and knowledge of field operations including signal ...

  18. Signal timing on a shoestring.

    DOT National Transportation Integrated Search

    2005-03-01

    The conventional approach to signal timing optimization and field deployment requires current traffic flow data, experience with optimization models, familiarity with the signal controller hardware, and knowledge of field operations including signal ...

  19. VLT instruments: industrial solutions for non-scientific detector systems

    NASA Astrophysics Data System (ADS)

    Duhoux, P.; Knudstrup, J.; Lilley, P.; Di Marcantonio, P.; Cirami, R.; Mannetta, M.

    2014-07-01

    Recent improvements in industrial vision technology and products together with the increasing need for high performance, cost efficient technical detectors for astronomical instrumentation have led ESO with the contribution of INAF to evaluate this trend and elaborate ad-hoc solutions which are interoperable and compatible with the evolution of VLT standards. The ESPRESSO spectrograph shall be the first instrument deploying this technology. ESO's Technical CCD (hereafter TCCD) requirements are extensive and demanding. A lightweight, low maintenance, rugged and high performance TCCD camera product or family of products is required which can operate in the extreme environmental conditions present at ESO's observatories with minimum maintenance and minimal downtime. In addition the camera solution needs to be interchangeable between different technical roles e.g. slit viewing, pupil and field stabilization, with excellent performance characteristics under a wide range of observing conditions together with ease of use for the end user. Interoperability is enhanced by conformance to recognized electrical, mechanical and software standards. Technical requirements and evaluation criteria for the TCCD solution are discussed in more detail. A software architecture has been adopted which facilitates easy integration with TCCD's from different vendors. The communication with the devices is implemented by means of dedicated adapters allowing usage of the same core framework (business logic). The preference has been given to cameras with an Ethernet interface, using standard TCP/IP based communication. While the preferred protocol is the industrial standard GigE Vision, not all vendors supply cameras with this interface, hence proprietary socket-based protocols are also acceptable with the provision of a validated Linux compliant API. A fundamental requirement of the TCCD software is that it shall allow for a seamless integration with the existing VLT software framework. ESPRESSO is a fiber-fed, cross-dispersed echelle spectrograph that will be located in the Combined-Coudé Laboratory of the VLT in the Paranal Observatory in Chile. It will be able to operate either using the light of any of the UT's or using the incoherently combined light of up to four UT's. The stabilization of the incoming beam is achieved by dedicated piezo systems controlled via active loops closed on 4 + 4 dedicated TCCD's for the stabilization of the pupil image and of the field with a frequency goal of 3 Hz on a 2nd to 3rd magnitude star. An additional 9th TCCD system shall be used as an exposure-meter. In this paper we will present the technical CCD solution for future VLT instruments.

  20. The Glenview Model: Community Networking via Broadband Cable.

    ERIC Educational Resources Information Center

    Mundt, John P.

    This paper describes the installation of a data network in the community of Glenview, Illinois, which uses broadband cable equipment to connect schools, libraries, and governmental agencies to each other and to the Internet via a high speed Ethernet network. The history of the project is outlined followed by a discussion of the implementation of…

  1. Virtual Laboratory for QoS Study in Next-Generation Networks with Metro Ethernet Access

    ERIC Educational Resources Information Center

    Gomez-Sacristan, Angel; Sempere-Paya, Victor M.; Rodriguez-Hernandez, Miguel A.

    2016-01-01

    Teaching in university engineering departments is currently facing a number of challenges, especially for those involved in the most innovative and dynamic areas of information and communication technology. Learning model developments that place greater weight on laboratory activities require investment in specific equipment that is often very…

  2. 78 FR 57648 - Notice of Issuance of Final Determination Concerning Video Teleconferencing Server

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... the Chinese- origin Video Board and the Filter Board, impart the essential character to the video... includes the codec; a network filter electronic circuit board (``Filter Board''); a housing case; a power... (``Linux software''). The Linux software allows the Filter Board to inspect each Ethernet packet of...

  3. NAVO MSRC Navigator. Fall 2004

    DTIC Science & Technology

    2004-01-01

    conjunction with Concord eHealth Enterprise Management Suite. Together these enterprise management packages provide real-time network and host performance...Right. A Concord eHealth -generated trend report from the NAVO MSRC 10-Gb Ethernet backbone. B an dw id th U ti liz at io n 23AU G04 0:00 30 AUG 04

  4. 78 FR 75360 - Notice of Issuance of Final Determination Concerning Certain Ethernet Switches

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... printed circuit board assembly (``PCBA''), chassis, top cover, power supply, and fans. The switches... printed circuit board is populated with various electronic components to make a PCBA. 2. The PCBA is... Singapore. You argue that without the EOS software, the units exported from Singapore lack the intelligence...

  5. Network Design: Best Practices for Alberta School Jurisdictions.

    ERIC Educational Resources Information Center

    Schienbein, Ralph

    This report examines subsections of the computer network topology that relate to end-to-end performance and capacity planning in schools. Active star topology, Category 5 wiring, Ethernet, and intelligent devices are assumed. The report describes a model that can be used to project WAN (wide area network) connection speeds based on user traffic,…

  6. The BACnet Campus Challenge - Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masica, Ken; Tom, Steve

    Here, the BACnet protocol was designed to achieve interoperability among building automation vendors and evolve over time to include new functionality as well as support new communication technologies such as the Ethernet and IP protocols as they became prevalent and economical in the market place. For large multi-building, multi-vendor campus environments, standardizing on the BACnet protocol as an implementation strategy can be a key component in meeting the challenge of an interoperable, flexible, and scalable building automation system. The interoperability of BACnet is especially important when large campuses with legacy equipment have DDC upgrades to facilities performed over different timemore » frames and use different contractors that install equipment from different vendors under the guidance of different campus HVAC project managers. In these circumstances, BACnet can serve as a common foundation for interoperability when potential variability exists in approaches to the design-build process by numerous parties over time. Likewise, BACnet support for a range of networking protocols and technologies can be a key strategy for achieving flexible and scalable automation systems as campuses and enterprises expand networking infrastructures using standard interoperable protocols like IP and Ethernet.« less

  7. Real-time monitoring and fault locating using amplified spontaneous emission noise reflection for tree-structured Ethernet passive optical networks

    NASA Astrophysics Data System (ADS)

    Naim, Nani Fadzlina; Ab-Rahman, Mohammad Syuhaimi; Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.

    2013-09-01

    Nowadays, optical networks are becoming dense while detecting faulty branches in the tree-structured networks has become problematic. Conventional methods are inconvenient as they require an engineer to visit the failure site to check the optical fiber using an optical time-domain reflectometer. An innovative monitoring technique for tree-structured network topology in Ethernet passive optical networks (EPONs) by using the erbium-doped fiber amplifier to amplify the traffic signal is demonstrated, and in the meantime, a residual amplified spontaneous emission spectrum is used as the input signal to monitor the optical cable from the central office. Fiber Bragg gratings with distinct center wavelengths are employed to reflect the monitoring signals. Faulty branches of the tree-structured EPONs can be identified using a simple and low-cost receiver. We will show that this technique is capable of providing monitoring range up to 32 optical network units using a power meter with a sensitivity of -65 dBm while maintaining the bit error rate of 10-13.

  8. Near Theoretical Gigabit Link Efficiency for Distributed Data Acquisition Systems

    PubMed Central

    Abu-Nimeh, Faisal T.; Choong, Woon-Seng

    2017-01-01

    Link efficiency, data integrity, and continuity for high-throughput and real-time systems is crucial. Most of these applications require specialized hardware and operating systems as well as extensive tuning in order to achieve high efficiency. Here, we present an implementation of gigabit Ethernet data streaming which can achieve 99.26% link efficiency while maintaining no packet losses. The design and implementation are built on OpenPET, an opensource data acquisition platform for nuclear medical imaging, where (a) a crate hosting multiple OpenPET detector boards uses a User Datagram Protocol over Internet Protocol (UDP/IP) Ethernet soft-core, that is capable of understanding PAUSE frames, to stream data out to a computer workstation; (b) the receiving computer uses Netmap to allow the processing software (i.e., user space), which is written in Python, to directly receive and manage the network card’s ring buffers, bypassing the operating system kernel’s networking stack; and (c) a multi-threaded application using synchronized queues is implemented in the processing software (Python) to free up the ring buffers as quickly as possible while preserving data integrity and flow continuity. PMID:28630948

  9. Near Theoretical Gigabit Link Efficiency for Distributed Data Acquisition Systems.

    PubMed

    Abu-Nimeh, Faisal T; Choong, Woon-Seng

    2017-03-01

    Link efficiency, data integrity, and continuity for high-throughput and real-time systems is crucial. Most of these applications require specialized hardware and operating systems as well as extensive tuning in order to achieve high efficiency. Here, we present an implementation of gigabit Ethernet data streaming which can achieve 99.26% link efficiency while maintaining no packet losses. The design and implementation are built on OpenPET, an opensource data acquisition platform for nuclear medical imaging, where (a) a crate hosting multiple OpenPET detector boards uses a User Datagram Protocol over Internet Protocol (UDP/IP) Ethernet soft-core, that is capable of understanding PAUSE frames, to stream data out to a computer workstation; (b) the receiving computer uses Netmap to allow the processing software (i.e., user space), which is written in Python, to directly receive and manage the network card's ring buffers, bypassing the operating system kernel's networking stack; and (c) a multi-threaded application using synchronized queues is implemented in the processing software (Python) to free up the ring buffers as quickly as possible while preserving data integrity and flow continuity.

  10. The BACnet Campus Challenge - Part 1

    DOE PAGES

    Masica, Ken; Tom, Steve

    2015-12-01

    Here, the BACnet protocol was designed to achieve interoperability among building automation vendors and evolve over time to include new functionality as well as support new communication technologies such as the Ethernet and IP protocols as they became prevalent and economical in the market place. For large multi-building, multi-vendor campus environments, standardizing on the BACnet protocol as an implementation strategy can be a key component in meeting the challenge of an interoperable, flexible, and scalable building automation system. The interoperability of BACnet is especially important when large campuses with legacy equipment have DDC upgrades to facilities performed over different timemore » frames and use different contractors that install equipment from different vendors under the guidance of different campus HVAC project managers. In these circumstances, BACnet can serve as a common foundation for interoperability when potential variability exists in approaches to the design-build process by numerous parties over time. Likewise, BACnet support for a range of networking protocols and technologies can be a key strategy for achieving flexible and scalable automation systems as campuses and enterprises expand networking infrastructures using standard interoperable protocols like IP and Ethernet.« less

  11. Investigation of wing upper surface flow-field disturbance due to NASA DC-8-72 in-flight inboard thrust-reverser deployment

    NASA Technical Reports Server (NTRS)

    Hamid, Hedayat U.; Margason, Richard J.; Hardy, Gordon

    1995-01-01

    An investigation of the wing upper surface flow-field disturbance due to in-flight inboard thrust reverser deployment on the NASA DC-8-72, which was conducted cooperatively by NASA Ames, the Federal Aviation Administration (FAA), McDonnell Douglas, and the Aerospace Industry Association (AIA), is outlined and discussed in detail. The purpose of this flight test was to obtain tufted flow visualization data which demonstrates the effect of thrust reverser deployment on the wing upper surface flow field to determine if the disturbed flow regions could be modeled by computational methods. A total of six symmetric thrust reversals of the two inboard engines were performed to monitor tuft and flow cone patterns as well as the character of their movement at the nominal Mach numbers of 0.55, 0.70, and 0.85. The tufts and flow cones were photographed and video-taped to determine the type of flow field that occurs with and without the thrust reversers deployed. In addition, the normal NASA DC-8 onboard Data Acquisition Distribution System (DADS) was used to synchronize the cameras. Results of this flight test will be presented in two parts. First, three distinct flow patterns associated with the above Mach numbers were sketched from the motion videos and discussed in detail. Second, other relevant aircraft parameters, such as aircraft's angular orientation, altitude, Mach number, and vertical descent, are discussed. The flight test participants' comments were recorded on the videos and the interested reader is referred to the video supplement section of this report for that information.

  12. Using Consumer Electronics and Apps in Industrial Environments - Development of a Framework for Dynamic Feature Deployment and Extension by Using Apps on Field Devices

    NASA Astrophysics Data System (ADS)

    Schmitt, Mathias

    2014-12-01

    The aim of this paper is to give a preliminary insight regarding the current work in the field of mobile interaction in industrial environments by using established interaction technologies and metaphors from the consumer goods industry. The major objective is the development and implementation of a holistic app-framework, which enables dynamic feature deployment and extension by using mobile apps on industrial field devices. As a result, field device functionalities can be updated and adapted effectively in accordance with well-known appconcepts from consumer electronics to comply with the urgent requirements of more flexible and changeable factory systems of the future. In addition, a much more user-friendly and utilizable interaction with field devices can be realized. Proprietary software solutions and device-stationary user interfaces can be overcome and replaced by uniform, cross-vendor solutions

  13. Coverage-guaranteed sensor node deployment strategies for wireless sensor networks.

    PubMed

    Fan, Gaojuan; Wang, Ruchuan; Huang, Haiping; Sun, Lijuan; Sha, Chao

    2010-01-01

    Deployment quality and cost are two conflicting aspects in wireless sensor networks. Random deployment, where the monitored field is covered by randomly and uniformly deployed sensor nodes, is an appropriate approach for large-scale network applications. However, their successful applications depend considerably on the deployment quality that uses the minimum number of sensors to achieve a desired coverage. Currently, the number of sensors required to meet the desired coverage is based on asymptotic analysis, which cannot meet deployment quality due to coverage overestimation in real applications. In this paper, we first investigate the coverage overestimation and address the challenge of designing coverage-guaranteed deployment strategies. To overcome this problem, we propose two deployment strategies, namely, the Expected-area Coverage Deployment (ECD) and BOundary Assistant Deployment (BOAD). The deployment quality of the two strategies is analyzed mathematically. Under the analysis, a lower bound on the number of deployed sensor nodes is given to satisfy the desired deployment quality. We justify the correctness of our analysis through rigorous proof, and validate the effectiveness of the two strategies through extensive simulation experiments. The simulation results show that both strategies alleviate the coverage overestimation significantly. In addition, we also evaluate two proposed strategies in the context of target detection application. The comparison results demonstrate that if the target appears at the boundary of monitored region in a given random deployment, the average intrusion distance of BOAD is considerably shorter than that of ECD with the same desired deployment quality. In contrast, ECD has better performance in terms of the average intrusion distance when the invasion of intruder is from the inside of monitored region.

  14. Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS) will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire cornected with a 6.2-mile (10 kilometer) long nonconducting tether. This photograph shows Less Johnson, a scientist at MSFC inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.

  15. Surgical workload of a foreign medical team after Typhoon Haiyan.

    PubMed

    Read, David J; Holian, Annette; Moller, Cea-Cea; Poutawera, Vaughan

    2016-05-01

    On 8 November 2013, Typhoon Haiyan struck the Philippines causing widespread loss of lives and infrastructures. At the request of the Government of the Philippines, the Australian Government deployed a surgical field hospital to the city of Tacloban for 4 weeks. This paper describes the establishment of the hospital, the surgical workload and handover to the local health system upon the end of deployment. A Microsoft excel database was utilized throughout the deployment, recording demographics, relationship to the typhoon and surgical procedure performed. Over the 21 days of surgical activity, the Australian field hospital performed 222 operations upon 131 persons. A mean of 10.8 procedures were performed per day (range 3-20). The majority (70.2%) of procedures were soft tissue surgery. Diabetes was present in 22.9% and 67.9% were typhoon-related. The Australian Medical Assistance Team field hospital adhered to the World Health Organization guidelines for foreign medical teams, in ensuring informed consent, appropriate anaesthesia and surgery, and worked collaboratively with local surgeons, ensuring adequate documentation and clinical handover. This paper describes the experience of a trained, equipped and collaborative surgical foreign medical team in Tacloban in the aftermath of Typhoon Haiyan. Sepsis from foot injuries in diabetic patients constituted an unexpected majority of the workload. New presentations of typhoon-related injuries were presented throughout the deployment. © 2015 Royal Australasian College of Surgeons.

  16. Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Pühlhofer, G.; Bauer, C.; Eisenkolb, F.; Florin, D.; Föhr, C.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Koziol, J.; Lahmann, R.; Manalaysay, A.; Marszalek, A.; Rajda, P. J.; Reimer, O.; Romaszkan, W.; Rupinski, M.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Weitzel, Q.; Winiarski, K.; Zietara, K.

    2014-07-01

    The FlashCam project is preparing a camera prototype around a fully digital FADC-based readout system, for the medium sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The FlashCam design is the first fully digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for digitization and triggering, and a high performance camera server as back end. It provides the option to easily implement different types of trigger algorithms as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. The readout of the front end modules into the camera server is Ethernet-based using standard Ethernet switches and a custom, raw Ethernet protocol. In the current implementation of the system, data transfer and back end processing rates of 3.8 GB/s and 2.4 GB/s have been achieved, respectively. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several ten kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, mechanically detached from the front end modules. It interfaces to the digital readout system via analogue signal transmission. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. By now, a 144-pixel mini-camera" setup, fully equipped with photomultipliers, PDP electronics, and digitization/ trigger electronics, has been realized and extensively tested. Preparations for a full-scale, 1764 pixel camera mechanics and a cooling system are ongoing. The paper describes the status of the project.

  17. Coherent optical WDM systems for 1.6 Tb/s Ethernet over 40 km of single-mode fiber

    NASA Astrophysics Data System (ADS)

    Torres-Ferrera, P.; García-Yáñez, M. A.; Gutiérrez-Castrejón, R.; Tomkos, I.

    2018-07-01

    Two 1.6 Tb/s coherent optical wavelength division multiplexed (WDM) systems targeting inter-data center links of up to 40-km reach over conventional single-mode fiber (CSMF) on C-band are proposed and numerically analyzed: a DP-QPSK-based 16 × 112 Gb/s system and a DP-16-QAM-based 8 × 224 Gb/s system. To satisfy the metro access space, noise and power transceiver characteristics are optimized, avoiding the use of any type of optical amplification or forward-error correction (FEC) scheme. Accordingly to the current Ethernet standard, feasibility of both 28 GBd architectures is hence numerically demonstrated at a very low bit-error-ratio (BER) threshold of 1 × 10-13, uncovering power sensitivities of -26.0 and -13.5 dBm and optical signal-to-noise ratio (OSNR) sensitivities of 35 and 40 dB for the first and second architectures, respectively. Negligible transmission OSNR and power penalties with respect to the back-to-back (BtB) case are calculated, thus demonstrating the effectiveness of the utilized DSP algorithms. Our simulation work also confirms that the 16-QAM-based scheme is more demanding in terms of OSNR and transmission power specifications than the 16-channel one, requiring approximately 12 dB more power and 5 dB more OSNR level at the transmitter laser outputs, with similar requirements at the receiver end. It is also demonstrated that laser linewidths of at most 1 MHz should be specified in both architectures, that the transmitter laser characteristics play a more appreciable role than those of the receiver laser, and that the frequency offset between these two lasers should be kept below 3 GHz. Our research work leverages the use of optical coherent technology at metro network level and claims for a necessary technological upgrade to such schemes for a forthcoming 1.6 Tb/s Ethernet standard to be feasible.

  18. Acquisition of Oceanographic Measurements from Baleen Whales: Field Deployments of Tags Developed Under Grant ONR (N00014-13-1-0854)

    DTIC Science & Technology

    2014-09-30

    and on blue and humpback whales in Iceland. • To evaluate the reliability and quality of CTD data collected in arctic ice covered waters by slow...swimming bowhead whales and from the open ocean by fast swimming blue and humpback whales . APPROACH Diving ocean predators can act as “real-time...2014: Deployment of tags on bowhead whales in Disko Bay. June-July 2015: Deployment of tags on blue and humpback whales in Iceland. April-December

  19. San Diego field operational test of smart call boxes : institutional issues

    DOT National Transportation Integrated Search

    1997-01-01

    Important institutional lessons learned in the course of the San Diego smart call box field operational test are presented. These lessons relate both to the conduct of the field test itself and to requirements for deployment of intelligent transporta...

  20. Applications of Dynamic Deployment of Services in Industrial Automation

    NASA Astrophysics Data System (ADS)

    Candido, Gonçalo; Barata, José; Jammes, François; Colombo, Armando W.

    Service-oriented Architecture (SOA) is becoming a de facto paradigm for business and enterprise integration. SOA is expanding into several domains of application envisioning a unified solution suitable across all different layers of an enterprise infrastructure. The application of SOA based on open web standards can significantly enhance the interoperability and openness of those devices. By embedding a dynamical deployment service even into small field de- vices, it would be either possible to allow machine builders to place built- in services and still allow the integrator to deploy on-the-run the services that best fit his current application. This approach allows the developer to keep his own preferred development language, but still deliver a SOA- compliant application. A dynamic deployment service is envisaged as a fundamental framework to support more complex applications, reducing deployment delays, while increasing overall system agility. As use-case scenario, a dynamic deployment service was implemented over DPWS and WS-Management specifications allowing designing and programming an automation application using IEC61131 languages, and deploying these components as web services into devices.

  1. Development Status of the Rad-Tolerant TTEthernet Controller

    NASA Astrophysics Data System (ADS)

    Fidi, Christian; van Masar, Ivan

    2016-08-01

    The use of switched networking technologies for aerospace and more recently automotive brings additional advantages for space applications like the increase in performance of the overall avionics of a spacecraft. These networks are characterized by a central device (switch) and a point-to-point structure between switch and terminal devices that eases electrical and logical insulation.However, for a use in highly-reliable or highly-available applications as in launchers or satellites systems, these network technologies need to provide built-in determinism and redundancy to fulfill the tight latency and jitter requirements of the avionics control loops and the respective hardware redundancy. Therefore a state of the art networking technology already provides these features and allows the modularity and scalability to be used for the different space applications and would allow combining the deterministic avionics with the high speed payload network in a spacecraft [1].Introducing the time-triggered principle to Ethernet allows combining the open industry standard IEE802.3 Ethernet currently use in almost all GSE platforms, with full control of latency and jitter of the time-triggered approach. To allow the time-triggered data flow over Ethernet, a network- wide synchronization time-base has to be established to allow deriving all network events on a globally known time which is typically done in software in almost all spacecrafts. The additional synchronization service of Time-triggered Ethernet has been implemented as additional quality of service (QoS) on layer 2 of the ISO/OSI network model and been standardized in the SAE AS6802 [3].Within a launcher, the communication system ensured the data exchanges between avionic functions during all phases of the launcher lifecycle which is composed of three areas: AIT operations, ground phase and flight phase. To ensure the use of a single network for the different phases, the network needs to support features like the handling of different traffic classes (critical traffic and non-critical traffic, i.e. TT, RC and BE [2]). Also the compatibility to the IEEE1588 synchronization protocol can be used to connect legacy IEEE1588 equipment for GSE equipment.However this commercially available technology currently used in the aviation-, the industrial- and the automotive market needs to be matured for the use in space applications. Therefore a development of the necessary space-grade components, mainly the switch and the end system is needed.This paper presents the current development status of a radiation tolerant integrated circuit for the use in different space applications. It outlines the different steps needed to be performed to ensure the usability of this digital chip in highly reliable as well as in highly available space applications.

  2. Deployment Health Surveillance

    DTIC Science & Technology

    2004-06-01

    executing a rigorous pre- and post- deployment health screening program. Our healthcare providers practice preventive medicine, promote healthy lifestyles ...individual responsibility for their health and fitness. This includes avoidance of unhealthy behaviors like alcohol abuse and cigarette smoking...due to accident or disease. The basic principles of disease prevention in the field really haven’t changed much. Hand washing, food sanitation

  3. Quick survey of avirulence genes in field isolates of Magnaporthe oryzae in the past 60 years

    USDA-ARS?s Scientific Manuscript database

    Avirulence (AVR) genes in Magnaporthe oryzae determine deployment of effective corresponding resistance (R) genes. Instability of AVR genes is the major cause for resistance breakdown. Information on the presence or absence (P/A) of AVR genes can be used as a predictor of the stability of deployed R...

  4. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods. Two Hawaiian Electric feeder models were converted to real-time models in the OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters that were modeled from characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factormore » and volt-watt control settings on voltage regulation of the selected feeders. The results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  5. Fabrication system, method and apparatus for microelectromechanical devices

    NASA Technical Reports Server (NTRS)

    Johnson, A. David (Inventor); Busta, Heinz H. (Inventor); Nowicki, Ronald S. (Inventor)

    1999-01-01

    A fabrication system and method of fabrication for producing microelectromechanical devices such as field-effect displays using thin-film technology. A spacer is carried at its proximal end on the surface of a substrate having field-effect emitters with the spacer being enabled for tilting movement from a nested position to a deployed position which is orthogonal to the plane of the substrate. An actuator is formed with one end connected with the substrate and another end connected with spacer. The actuator is made of a shape memory alloy material which contracts when heated through the material's phase-change transition temperature. Contraction of the actuator exerts a pulling force on the spacer which is tilted to the deployed position. A plurality of the spacers are distributed over the area of the display. A glass plate having a phosphor-coated surface is fitted over the distal ends of the deployed spacer.

  6. Advanced Opto-Electronics (LIDAR and Microsensor Development)

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C. (Technical Monitor); Spangler, Lee H.

    2005-01-01

    Our overall intent in this aspect of the project were to establish a collaborative effort between several departments at Montana State University for developing advanced optoelectronic technology for advancing the state-of-the-art in optical remote sensing of the environment. Our particular focus was on development of small systems that can eventually be used in a wide variety of applications that might include ground-, air-, and space deployments, possibly in sensor networks. Specific objectives were to: 1) Build a field-deployable direct-detection lidar system for use in measurements of clouds, aerosols, fish, and vegetation; 2) Develop a breadboard prototype water vapor differential absorption lidar (DIAL) system based on highly stable, tunable diode laser technology developed previously at MSU. We accomplished both primary objectives of this project, in developing a field-deployable direct-detection lidar and a breadboard prototype of a water vapor DIAL system. Paper summarizes each of these accomplishments.

  7. High Field Side MHD Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.

    2017-10-01

    MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.

  8. New Generator Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Roy S.

    2015-02-17

    New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. Thesemore » remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company will provide the necessary services to make this project succeed.« less

  9. Power Monitoring Using the Raspberry Pi

    ERIC Educational Resources Information Center

    Snyder, Robin M.

    2014-01-01

    The Raspberry Pi is a credit card size low powered compute board with Ethernet connection, HDMI video output, audio, full Linux operating system run from an SD card, and more, all for $45. With cables, SD card, etc., the cost is about $70. Originally designed to help teach computer science principles to low income children and students, the Pi has…

  10. 76 FR 35810 - Review of the Emergency Alert System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... Plan that provides for delivery of such alerts. 3. The Third FNPRM builds on that effort by seeking...)(3) of the Commission's rules should be modified to include a requirement for a single Ethernet port... distribution should be delineated in terms of how the EAN is distributed from the PEP/NP to the PN/NN stations...

  11. Hadfield and Marshburn during HRCS Ku Comm Unit 2 Installation

    NASA Image and Video Library

    2013-04-02

    ISS035-E-013783 (2 April 2013) --- In the U.S. lab Destiny on the International Space Station, Expedition 35 Commander Chris Hadfield (right) and Flight Engineer Tom Marshburn remove the Video Baseband Signal Processor (VBSP) in order to replace it with a new Ku communication unit and its associated data and Ethernet cabling.

  12. Hadfield and Marshburn during HRCS Ku Comm Unit 2 Installation

    NASA Image and Video Library

    2013-04-02

    ISS035-E-013790 (2 April 2013) --- In the U.S. lab Destiny on the International Space Station, Expedition 35 Commander Chris Hadfield (background) and Flight Engineer Tom Marshburn remove the Video Baseband Signal Processor (VBSP) in order to replace it with a new Ku communication unit and its associated data and Ethernet cabling.

  13. System Framework for a Multi-Band, Multi-Mode Software Defined Radio

    DTIC Science & Technology

    2014-06-01

    detection, while the VITA Radio Transport ( VRT ) protocol over Gigabit Ethernet (GIGE) is implemented for the data interface. In addition to the SoC...CTRL VGA CTRL C2 GPP C2 CORE SW ARM0 RX SYN CTRL PL MEMORY MAP DR CTRL GENERIC INTERRUPT CONTROLLER DR GPP VITERBI ALGORITHM & VRT INTERFACE ARM1

  14. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks

    PubMed Central

    Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco

    2016-01-01

    In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles. PMID:27399709

  15. Development of a muon radiographic imaging electronic board system for a stable solar power operation

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Tanaka, H. K. M.; Tanaka, M.

    2010-02-01

    Cosmic-ray muon radiography is a method that is used to study the internal structure of volcanoes. We have developed a muon radiographic imaging board with a power consumption low enough to be powered by a small solar power system. The imaging board generates an angular distribution of the muons. Used for real-time reading, the method may facilitate the prediction of eruptions. For real-time observations, the Ethernet is employed, and the board works as a web server for a remote operation. The angular distribution can be obtained from a remote PC via a network using a standard web browser. We have collected and analyzed data obtained from a 3-day field study of cosmic-ray muons at a Satsuma-Iwojima volcano. The data provided a clear image of the mountain ridge as a cosmic-ray muon shadow. The measured performance of the system is sufficient for a stand-alone cosmic-ray muon radiography experiment.

  16. Parallel Navier-Stokes computations on shared and distributed memory architectures

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Jayasimha, D. N.; Pillay, Sasi Kumar

    1995-01-01

    We study a high order finite difference scheme to solve the time accurate flow field of a jet using the compressible Navier-Stokes equations. As part of our ongoing efforts, we have implemented our numerical model on three parallel computing platforms to study the computational, communication, and scalability characteristics. The platforms chosen for this study are a cluster of workstations connected through fast networks (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and a distributed memory multiprocessor (the IBM SPI). Our focus in this study is on the LACE testbed. We present some results for the Cray YMP and the IBM SP1 mainly for comparison purposes. On the LACE testbed, we study: (1) the communication characteristics of Ethernet, FDDI, and the ALLNODE networks and (2) the overheads induced by the PVM message passing library used for parallelizing the application. We demonstrate that clustering of workstations is effective and has the potential to be computationally competitive with supercomputers at a fraction of the cost.

  17. Total Quality Management (TQM) in Self-Financed Technical Institutions: A Quality Function Deployment (QFD) and Force Field Analysis Approach

    ERIC Educational Resources Information Center

    Thakkar, Jitesh; Deshmukh, S. G.; Shastree, Anil

    2006-01-01

    Purpose: To explore the potential for adoption of TQM in self-financed technical institutions in the light of new demands and challenges posed by customers/students and society. Design/methodology/approach: The paper presents use of quality function deployment (QFD) which prioritizes technical requirements and correlates them with various…

  18. Pest Management Practices for the Military: Novel Field Studies to Develop Methods to Protect Deployed Troops from Mosquito, Filth/Biting Flies, and Sand Fly Vectors

    USDA-ARS?s Scientific Manuscript database

    New techniques that we developed to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques illustrated included (1) novel military personal protection methods, (2) barrier treatments...

  19. Deploying a Proximal Sensing Cart to Identify Drought-Adaptive Traits in Upland Cotton for High-Throughput Phenotyping

    PubMed Central

    Thompson, Alison L.; Thorp, Kelly R.; Conley, Matthew; Andrade-Sanchez, Pedro; Heun, John T.; Dyer, John M.; White, Jeffery W.

    2018-01-01

    Field-based high-throughput phenotyping is an emerging approach to quantify difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts represent an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the field. A proximal sensing cart and specifically a deployment protocol, were developed to phenotype traits related to drought tolerance in the field. The cart-sensor package included an infrared thermometer, ultrasonic transducer, multi-spectral reflectance sensor, weather station, and RGB cameras. The cart deployment protocol was evaluated on 35 upland cotton (Gossypium hirsutum L.) entries grown in 2017 at Maricopa, AZ, United States. Experimental plots were grown under well-watered and water-limited conditions using a (0,1) alpha lattice design and evaluated in June and July. Total collection time of the 0.87 hectare field averaged 2 h and 27 min and produced 50.7 MB and 45.7 GB of data from the sensors and RGB cameras, respectively. Canopy temperature, crop water stress index (CWSI), canopy height, normalized difference vegetative index (NDVI), and leaf area index (LAI) differed among entries and showed an interaction with the water regime (p < 0.05). Broad-sense heritability (H2) estimates ranged from 0.097 to 0.574 across all phenotypes and collections. Canopy cover estimated from RGB images increased with counts of established plants (r = 0.747, p = 0.033). Based on the cart-derived phenotypes, three entries were found to have improved drought-adaptive traits compared to a local adapted cultivar. These results indicate that the deployment protocol developed for the cart and sensor package can measure multiple traits rapidly and accurately to characterize complex plant traits under drought conditions. PMID:29868041

  20. Temporal and spatial variability of aeolian sand transport: Implications for field measurements

    NASA Astrophysics Data System (ADS)

    Ellis, Jean T.; Sherman, Douglas J.; Farrell, Eugene J.; Li, Bailiang

    2012-01-01

    Horizontal variability is often cited as one source of disparity between observed and predicted rates of aeolian mass flux, but few studies have quantified the magnitude of this variability. Two field projects were conducted to evaluate meter-scale spatial and temporal in the saltation field. In Shoalhaven Heads, NSW, Australia a horizontal array of passive-style sand traps were deployed on a beach for 600 or 1200 s across a horizontal span of 0.80 m. In Jericoacoara, Brazil, traps spanning 4 m were deployed for 180 and 240 s. Five saltation sensors (miniphones) spaced 1 m apart were also deployed at Jericoacoara. Spatial variation in aeolian transport rates over small spatial and short temporal scales was substantial. The measured transport rates ( Q) obtained from the passive traps ranged from 0.70 to 32.63 g/m/s. When considering all traps, the coefficient of variation ( CoV) values ranged from 16.6% to 67.8%, and minimum and maximum range of variation coefficient ( RVC) values were 106.1% to 152.5% and 75.1% to 90.8%, respectively. The miniphone Q and CoV averaged 47.1% and 4.1% for the 1260 s data series, which was subsequently sub-sampled at 60-630 s intervals to simulate shorter deployment times. A statistically significant ( p < 0.002), inverselinear relationship was found between sample duration and CoV and between Q and CoV, the latter relationship also considering data from previous studies.

  1. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  2. Mobile phone tools for field-based health care workers in low-income countries.

    PubMed

    Derenzi, Brian; Borriello, Gaetano; Jackson, Jonathan; Kumar, Vikram S; Parikh, Tapan S; Virk, Pushwaz; Lesh, Neal

    2011-01-01

    In low-income regions, mobile phone-based tools can improve the scope and efficiency of field health workers. They can also address challenges in monitoring and supervising a large number of geographically distributed health workers. Several tools have been built and deployed in the field, but little comparison has been done to help understand their effectiveness. This is largely because no framework exists in which to analyze the different ways in which the tools help strengthen existing health systems. In this article we highlight 6 key functions that health systems currently perform where mobile tools can provide the most benefit. Using these 6 health system functions, we compare existing applications for community health workers, an important class of field health workers who use these technologies, and discuss common challenges and lessons learned about deploying mobile tools. © 2011 Mount Sinai School of Medicine.

  3. Field deployment of a scope for growth assay involving Gammarus pulex, a freshwater benthic invertebrate.

    PubMed

    Maltby, L; Naylor, C; Calow, P

    1990-06-01

    Scope for growth (SfG) is a measure of the energy balance of an animal (i.e., the difference between energy intake and metabolic output). The SfG of marine invertebrates, particularly the mussel Mytilus edulis, has been successfully used as the basis of a field bioassay to detect a range of stresses both natural (temperature, food, salinity) and anthropogenic (hydrocarbons, sewage sludge). SfG of the freshwater amphipod Gammarus pulex was found to be a sensitive indicator of stress under laboratory conditions and here we describe the field deployment of this technique and present data from three field trials. In every case, SfG was reduced at the downstream polluted site compared with that at an upstream reference site. This reduction in SfG was the result of a decrease in energy intake (absorption) rather than an increase in energy expenditure (respiration).

  4. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna

    NASA Astrophysics Data System (ADS)

    Gu, Yongzhen; Duan, Baoyan; Du, Jingli

    2018-05-01

    The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.

  5. Characterization of field isolates of Magnaporthe oryzae with mating type, DNA fingerprinting, and pathogenicity assays

    USDA-ARS?s Scientific Manuscript database

    Due to the harmful nature of the rice blast fungus, Magnaporthe oryzae, it is beneficial to characterize field isolates to help aid in the deployment of resistance (R) genes in rice. In the present study, 190 field isolates of M. oryzae, collected from rice fields of Yunnan province in China, were a...

  6. Social Learning Strategies: Bridge-Building between Fields.

    PubMed

    Kendal, Rachel L; Boogert, Neeltje J; Rendell, Luke; Laland, Kevin N; Webster, Mike; Jones, Patricia L

    2018-07-01

    While social learning is widespread, indiscriminate copying of others is rarely beneficial. Theory suggests that individuals should be selective in what, when, and whom they copy, by following 'social learning strategies' (SLSs). The SLS concept has stimulated extensive experimental work, integrated theory, and empirical findings, and created impetus to the social learning and cultural evolution fields. However, the SLS concept needs updating to accommodate recent findings that individuals switch between strategies flexibly, that multiple strategies are deployed simultaneously, and that there is no one-to-one correspondence between psychological heuristics deployed and resulting population-level patterns. The field would also benefit from the simultaneous study of mechanism and function. SLSs provide a useful vehicle for bridge-building between cognitive psychology, neuroscience, and evolutionary biology. Copyright © 2018. Published by Elsevier Ltd.

  7. [Application of new technologies in the design, manufacture and use of technology deployment of field medical units and establishments].

    PubMed

    Iakovlev, S V; Sidorov, V A; Korniushko, I G; Medvedev, V R; Matveev, A G

    2011-11-01

    Presented data is about attendance means of deployment of field medical units and pieces of army-level medical services and disaster medicine Defense Ministry did not ensure compliance with requirements to create optimal conditions for highly effective work of the medical staff, placing the wounded, the use of modern aids and appliances. The prospects of creation of mobile unit for high-availability modular pre-fabricated on the basis of tent structures, pneumoconstructions and removable habitable bodies, containers, tents, pneumocovers till 2020 are analyzed. Livelihood systems provide armor protection against fragments, bullets, flames, damaging factors of chemical and biological weapons.

  8. The acoustic field of singing humpback whales in the vertical plane

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.; Pack, Adam A.; Lammers, Marc O.; Herman, Louis; Andrews, Kimberly; Deakos, Mark

    2003-04-01

    A vertical array of five hydrophones was used to measure the acoustic field of singing humpback whales. Once a singer was located, two swimmers with snorkel gear were deployed to determine the orientation of the whale and to position the boat so that the array could be deployed in front of the whale at a minimum standoff distance of 10 m. The spacing of the hydrophones was 7 m with the deepest hydrophone deployed at depth of 35 m. An 8-channel TASCAM recorder having a bandwidth of 24 kHz was used to record the hydrophone signals. The location of the singer was determined by computing the time of arrival differences between the hydrophone signals. The maximum source level varied between individual units in a song, with values between 180 and 190 dB. The acoustic field determined by considering the relative intensity of higher frequency harmonics in the signals indicate that the sounds are projected in the horizontal direction with the singer's head canted downward 45 to 60°. High-frequency harmonics extended beyond 24 kHz, suggesting that humpback whales may have an upper frequency limit of hearing as high as 24 kHz.

  9. Optical datacenter network employing slotted (TDMA) operation for dynamic resource allocation

    NASA Astrophysics Data System (ADS)

    Bakopoulos, P.; Tokas, K.; Spatharakis, C.; Patronas, I.; Landi, G.; Christodoulopoulos, K.; Capitani, M.; Kyriakos, A.; Aziz, M.; Reisis, D.; Varvarigos, E.; Zahavi, E.; Avramopoulos, H.

    2018-02-01

    The soaring traffic demands in datacenter networks (DCNs) are outpacing progresses in CMOS technology, challenging the bandwidth and energy scalability of currently established technologies. Optical switching is gaining traction as a promising path for sustaining the explosive growth of DCNs; however, its practical deployment necessitates extensive modifications to the network architecture and operation, tailored to the technological particularities of optical switches (i.e. no buffering, limitations in radix size and speed). European project NEPHELE is developing an optical network infrastructure that leverages optical switching within a software-defined networking (SDN) framework to overcome the bandwidth and energy scaling challenges of datacenter networks. An experimental validation of the NEPHELE data plane is reported based on commercial off-the-shelf optical components controlled by FPGA boards. To facilitate dynamic allocation of the network resources and perform collision-free routing in a lossless network environment, slotted operation is employed (i.e. using time-division multiple-access - TDMA). Error-free operation of the NEPHELE data plane is verified for 200 μs slots in various scenarios that involve communication between Ethernet hosts connected to custom-designed top-of-rack (ToR) switches, located in the same or in different datacenter pods. Control of the slotted data plane is obtained through an SDN framework comprising an OpenDaylight controller with appropriate add-ons. Communication between servers in the optical-ToR is demonstrated with various routing scenarios, concerning communication between hosts located in the same rack or in different racks, within the same or different datacenter pods. Error-free operation is confirmed for all evaluated scenarios, underpinning the feasibility of the NEPHELE architecture.

  10. A new approach to build VPLS with auto-discovery mechanism

    NASA Astrophysics Data System (ADS)

    Dong, Ximing; Yu, Shaohua

    2005-11-01

    VPLS is the key technology implemented to provide Layer 2 bridge-like services, connecting dispersed locations to work in a switched LAN over an MPLS backbone. However, implementing VPLS requires creating a complex matrix of services and locations that quickly becomes difficult to configure and maintain. To address this complexity, this paper proposes a new approach to automate the configuration and maintenance of VPLS networks, a node-discovery process in which each router advertises its VPLS-enabled status and capabilities to all other routers. Our approach can be summarized into four steps. (1) Discover other VPLS PE nodes with VPLS capabilities and create the VPLS capable PE routers list. We introduce a finite state machine which includes four states to illustrate the process how a VPLS peer can be discovered and the peer relations be kept alive. (2) Build MPLS LSP tunnels to all the PE routers in the list, according to the advertised VPLS protocol capabilities. (3) Use the lists to create targeted-LDP sessions for VPLS services discovery. (4) VC label assignment. The PE edge routers exchanges messages to define VC labels and bind them with each built PWE. The suggested auto-discovery mechanism is sensitive to any service provider's topology change and customer's service modification. The dynamic process for the FIB building, MAC address learning and withdrawal, is also covered as the result of VPLS auto-discovery. The suggested mechanism can be implemented as a software module and could be seamlessly integrated with currently deployed Metro Ethernet routing and switching platform.

  11. REMOTES: reliable and modular telescope solution for seamless operation and monitoring of various observation facilities

    NASA Astrophysics Data System (ADS)

    Jakubec, M.; Skala, P.; Sedlacek, M.; Nekola, M.; Strobl, J.; Blazek, M.; Hudec, R.

    2012-09-01

    Astronomers often need to put several pieces of equipment together and have to deploy them at a particular location. This task could prove to be a really tough challenge, especially for distant observing facilities with intricate operating conditions, poor communication infrastructure and unreliable power source. To have this task even more complicated, they also expect secure and reliable operation in both attended and unattended mode, comfortable software with user-friendly interface and full supervision over the observation site at all times. During reconstruction of the D50 robotic telescope facility, we faced many of the issues mentioned above. To get rid of them, we based our solution on a flexible group of hardware modules controlling the equipment of the observation site, connected together by the Ethernet network and orchestrated by our management software. This approach is both affordable and powerful enough to fulfill all of the observation requirements at the same time. We quickly figured out that the outcome of this project could also be useful for other observation facilities, because they are probably facing the same issues we have solved during our project. In this contribution, we will point out the key features and benefits of the solution for observers. We will demonstrate how the solution works at our observing location. We will also discuss typical management and maintenance scenarios and how we have supported them in our solution. Finally, the overall architecture and technical aspects of the solution will be presented and particular design and technology decisions will be clarified.

  12. Return to contingency: developing a coherent strategy for future R2E/R3 land medical capabilities.

    PubMed

    Ingram, Mike; Mahan, J

    2015-03-01

    Key to deploying forces in the future will be the provision of a rapidly deployable Deployed Hospital Capability. Developing this capability has been the focus of 34 Field Hospital and 2nd Medical Brigade over the last 18 months and this paper describes a personal account of this development work to date. Future contingent Deployed Hospital Capability must meet the requirements of Defence; that is to be rapidly deployable delivering a hospital standard of care. The excellence seen in clinical delivery on recent operations is intensive; in personnel, equipment, infrastructure and sustainment. The challenge in developing a coherent capability has been in balancing the clinical capability and capacity against strategic load in light of recent advances in battlefield medicine. This paper explores the issues encountered and solutions found to date in reconstituting a Very High Readiness Deployed Hospital Capability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Environmental Assessment/Overseas Environmental Assessment for the F-35 Joint Strike Fighter Initial Operational Test and Evaluation

    DTIC Science & Technology

    2009-09-01

    NAS Lemoore; Yolk Field ANGB; Alpena 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON a. REPORT...Currently identified preferred locations for conducting deployment demonstrations are Alpena Combat Readiness Training Center (CRTC), Michigan; Edwards...3-5 3.1.3 Deployment Demonstration Locations .............................................................3-5 3.1.3.1 Alpena Combat Range Test

  14. Nonstrategic Nuclear Weapons

    DTIC Science & Technology

    2017-02-21

    missiles; cruise missiles; and gravity bombs . In contrast with the longer-range “strategic” nuclear weapons, these weapons had a lower profile in policy...States sought to deploy dual-capable aircraft and nuclear bombs at bases on the territories of NATO members in eastern Europe. Neither NATO, as an...ballistic missiles; cruise missiles; and gravity bombs . The United States deployed these weapons with its troops in the field, aboard aircraft, on

  15. Deployment Considerations for Low-cost Air Quality Sensor Networks; Examining Spatial Variability of Gas-Phase Pollutants Around a Building in Los Angeles

    NASA Astrophysics Data System (ADS)

    Collier-Oxandale, A. M.; Hannigan, M.; Casey, J. G.; Johnston, J.; Coffey, E.; Thorson, J.

    2017-12-01

    The field of low-cost air quality sensing technologies is growing rapidly through the continual development of new sensors, increased research into sensor performance, and more and more community groups utilizing sensors to investigate local issues. However, as this technology is still in an exploratory phase, there are few `best-practices' available to serve as guidelines for these projects and the standardization of some procedures could benefit the research community as a whole. For example, deployment considerations such as where and how to place a monitor at a given location are often determined by accessibility and safety, power-requirements, and what is an ideal for sampling the target pollutant. Using data from multiple gas-phase sensors, we will examine the importance of siting considerations for low-cost monitoring systems. During a sampling campaign in Los Angeles, a subset of monitors was deployed at one field site to explore the variability in air quality sensor data around a single building. The site is a three story, multi-family housing unit in a primarily residential neighborhood that is near two major roadways and other potential sources of pollution. Five low-cost monitors were co-located prior to and following the field deployment. During the approximately 2.5-month deployment, these monitors were placed at various heights above street level, on different sides of the building, and on the roof. In our analysis, we will examine how monitor placement affects a sensor's ability to detect local verses more regional trends and how this building-scale spatial variability changes over time. Additionally, examining data from VOC sensors (quantified for methane and total non-methane hydrocarbon signals) and O3 sensors will allow us to compare the variability of primary and secondary pollutants. An outcome of this analysis may include guidelines or `best practices' for siting sensors that could aid in ensuring the collection of high quality field data. These may be particularly useful in community-based projects where monitor siting is typically a collaborative process.

  16. Acadia National Park ITS field operational test : visitor survey

    DOT National Transportation Integrated Search

    2003-02-01

    In 2002, as part of the Acadia National Park Field Operational Test, Intelligent Transportation Systems (ITS) components were deployed to help visitors travel around Mount Desert Island and in Acadia National Park. Using data from surveys of visitors...

  17. DISTRIBUTED CONTROL AND DA FOR ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. SCUDDER; ET AL

    1999-05-01

    The control system for the Atlas pulsed power generator being built at Los Alamos National Laboratory will utilize a significant level of distributed control. Other principal design characteristics include noise immunity, modularity and use of commercial products wherever possible. The data acquisition system is tightly coordinated with the control system. Both share a common database server and a fiber-optic ethernet communications backbone.

  18. Internet and Intranet Use with a PC: Effects of Adapter Cards, Windows Versions and TCP/IP Software on Networking Performance.

    ERIC Educational Resources Information Center

    Nieuwenhuysen, Paul

    1997-01-01

    Explores data transfer speeds obtained with various combinations of hardware and software components through a study of access to the Internet from a notebook computer connected to a local area network based on Ethernet and TCP/IP (transmission control protocol/Internet protocol) network protocols. Upgrading is recommended for higher transfer…

  19. Long-range interactions and parallel scalability in molecular simulations

    NASA Astrophysics Data System (ADS)

    Patra, Michael; Hyvönen, Marja T.; Falck, Emma; Sabouri-Ghomi, Mohsen; Vattulainen, Ilpo; Karttunen, Mikko

    2007-01-01

    Typical biomolecular systems such as cellular membranes, DNA, and protein complexes are highly charged. Thus, efficient and accurate treatment of electrostatic interactions is of great importance in computational modeling of such systems. We have employed the GROMACS simulation package to perform extensive benchmarking of different commonly used electrostatic schemes on a range of computer architectures (Pentium-4, IBM Power 4, and Apple/IBM G5) for single processor and parallel performance up to 8 nodes—we have also tested the scalability on four different networks, namely Infiniband, GigaBit Ethernet, Fast Ethernet, and nearly uniform memory architecture, i.e. communication between CPUs is possible by directly reading from or writing to other CPUs' local memory. It turns out that the particle-mesh Ewald method (PME) performs surprisingly well and offers competitive performance unless parallel runs on PC hardware with older network infrastructure are needed. Lipid bilayers of sizes 128, 512 and 2048 lipid molecules were used as the test systems representing typical cases encountered in biomolecular simulations. Our results enable an accurate prediction of computational speed on most current computing systems, both for serial and parallel runs. These results should be helpful in, for example, choosing the most suitable configuration for a small departmental computer cluster.

  20. Recent GPS Results at SLAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrend, Dirk; Imfeld, Hans L.; /SLAC

    2005-08-17

    The Alignment Engineering Group (AEG) makes use of GPS technology for fulfilling part of its above ground surveying tasks at SLAC since early 2002. A base station (SLAC M40) has been set up at a central location of the SLAC campus serving both as master station for real-time kinematic (RTK) operations and as datum point for local GPS campaigns. The Leica RS500 system is running continuously and the GPS data are collected both externally (logging PC) and internally (receiver flashcard). The external logging is facilitated by a serial to Ethernet converter and an Ethernet connection at the station. Internal loggingmore » (ring buffer) is done for data security purposes. The weatherproof boxes for the instrumentation are excellent shelters against rain and wind, but do heat up considerably in sun light. Whereas the GPS receiver showed no problems, the Pacific Crest PDL 35 radio shut down several times due to overheating disrupting the RTK operations. In order to prevent heat-induced shutdowns, a protection against direct sun exposure (shading) and a constant air circulation system (ventilation) were installed. As no further shutdowns have occurred so far, it appears that the two measures successfully mended the heat problem.« less

  1. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  2. A Measurement and Power Line Communication System Design for Renewable Smart Grids

    NASA Astrophysics Data System (ADS)

    Kabalci, E.; Kabalci, Y.

    2013-10-01

    The data communication over the electric power lines can be managed easily and economically since the grid connections are already spread around all over the world. This paper investigates the applicability of Power Line Communication (PLC) in an energy generation system that is based on photovoltaic (PV) panels with the modeling study in Matlab/Simulink. The Simulink model covers the designed PV panels, boost converter with Perturb and Observe (P&O) control algorithm, full bridge inverter, and the binary phase shift keying (BPSK) modem that is utilized to transfer the measured data over the power lines. This study proposes a novel method to use the electrical power lines not only for carrying the line voltage but also to transmit the measurements of the renewable energy generation plants. Hence, it is aimed at minimizing the additional monitoring costs such as SCADA, Ethernet-based or GSM based systems by using the proposed technique. Although this study is performed with solar power plants, the proposed model can be applied to other renewable generation systems. Consequently, the usage of the proposed technique instead of SCADA or Ethernet-based systems eliminates additional monitoring costs.

  3. Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens

    PubMed Central

    Rey, Jean-François; Barrett, Luke G.; Thrall, Peter H.

    2018-01-01

    Genetically-controlled plant resistance can reduce the damage caused by pathogens. However, pathogens have the ability to evolve and overcome such resistance. This often occurs quickly after resistance is deployed, resulting in significant crop losses and a continuing need to develop new resistant cultivars. To tackle this issue, several strategies have been proposed to constrain the evolution of pathogen populations and thus increase genetic resistance durability. These strategies mainly rely on varying different combinations of resistance sources across time (crop rotations) and space. The spatial scale of deployment can vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However, experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durability (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-scale deployment strategies presents major logistical challenges. Therefore, we developed a spatially explicit stochastic model able to assess the epidemiological and evolutionary outcomes of the four major deployment options described above, including both qualitative resistance (i.e. major genes) and quantitative resistance traits against several components of pathogen aggressiveness: infection rate, latent period duration, propagule production rate, and infectious period duration. This model, implemented in the R package landsepi, provides a new and useful tool to assess the performance of a wide range of deployment options, and helps investigate the effect of landscape, epidemiological and evolutionary parameters. This article describes the model and its parameterisation for rust diseases of cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to assess the epidemiological and evolutionary potential of the combination of a major gene and different traits of quantitative resistance. The comparison of the four major deployment strategies described above will be the objective of future studies. PMID:29649208

  4. Intra-urban spatial variability of surface ozone in Riverside, CA: viability and validation of low-cost sensors

    NASA Astrophysics Data System (ADS)

    Sadighi, Kira; Coffey, Evan; Polidori, Andrea; Feenstra, Brandon; Lv, Qin; Henze, Daven K.; Hannigan, Michael

    2018-03-01

    Sensor networks are being more widely used to characterize and understand compounds in the atmosphere like ozone (O3). This study employs a measurement tool, called the U-Pod, constructed at the University of Colorado Boulder, to investigate spatial and temporal variability of O3 in a 200 km2 area of Riverside County near Los Angeles, California. This tool contains low-cost sensors to collect ambient data at non-permanent locations. The U-Pods were calibrated using a pre-deployment field calibration technique; all the U-Pods were collocated with regulatory monitors. After collocation, the U-Pods were deployed in the area mentioned. A subset of pods was deployed at two local regulatory air quality monitoring stations providing validation for the collocation calibration method. Field validation of sensor O3 measurements to minute-resolution reference observations resulted in R2 and root mean squared errors (RMSEs) of 0.95-0.97 and 4.4-5.9 ppbv, respectively. Using the deployment data, ozone concentrations were observed to vary on this small spatial scale. In the analysis based on hourly binned data, the median R2 values between all possible U-Pod pairs varied from 0.52 to 0.86 for ozone during the deployment. The medians of absolute differences were calculated between all possible pod pairs, 21 pairs total. The median values of those median absolute differences for each hour of the day varied between 2.2 and 9.3 ppbv for the ozone deployment. Since median differences between U-Pod concentrations during deployment are larger than the respective root mean square error values, we can conclude that there is spatial variability in this criteria pollutant across the study area. This is important because it means that citizens may be exposed to more, or less, ozone than they would assume based on current regulatory monitoring.

  5. Cost-Effective, Insitu Field Measurements for Determining the Water Retention Quantification onBehavior of Individual Right-of-Way Bioswales

    NASA Astrophysics Data System (ADS)

    Wang, S.; McGillis, W. R.; Hu, R.; Culligan, P. J.

    2017-12-01

    Green infrastructure (GI) interventions, such as right-of-way bioswales, are being implemented in many urban areas, including New York City, to help mitigate the negative impacts of stormwater runoff. To understand the storm water retention capacity of bioswales, hydrological models, at scales ranging from the tributary area of a single right-of-way bioswale to an entire watershed, are often invoked. The validation and calibration of these models is, however, currently hampered by lack of extensive field measurements that quantify bioswale stormwater retention behaviors for different storm sizes and bioswale configurations. To overcome this problem, three field methods to quantify the water retention capacity of individual bioswales were developed. The methods are potentially applicable to other applications concerned with quantifying flow regimes in urban area. Precise measurements with high time resolutions and low environmental impacts are desired for gauging the hydraulic performance of bioswales, and similar GI configurations. To satisfy these requirements, an in-field measurement method was developed which involved the deployment of acoustic water-level sensors to measure the upstream and downstream water levels of flow into and out of a bioswale located in the Bronx areas of New York City. The measurements were made during several individual storm events. To provide reference flow rates to enable accurate calibration of the acoustic water level measurements, two other conductometry-based methods, which made use of YSI sensors and injected calcium chloride solutions, were also developed and deployed simultaneously with the water level measurements. The suite of data gathered by these methods enabled the development of a relationship between stage-discharge and rainfall intensity, which was then used to obtain the upstream and downstream hydrographs for the individual bioswale for the different storm events. This presentation will describe in detail the developed field methods, and will present results arising from the deployment of the methods, including results on the stormwater infiltration quantity and infiltration rate of the studied bioswale. The field methods are easily deployed at other bioswales sites and for other similar GI configurations.

  6. "Warrant" Revisited: Integrating Mathematics Teachers' Pedagogical and Epistemological Considerations into Toulmin's Model for Argumentation

    ERIC Educational Resources Information Center

    Nardi, Elena; Biza, Irene; Zachariades, Theodossios

    2012-01-01

    In this paper, we propose an approach to analysing teacher arguments that takes into account field dependence--namely, in Toulmin's sense, the dependence of warrants deployed in an argument on the field of activity to which the argument relates. Freeman, to circumvent issues that emerge when we attempt to determine the field(s) that an argument…

  7. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    NASA Astrophysics Data System (ADS)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  8. Flux Chamber Measurements of Methane Emissions and Stable Isotope Composition from an Arctic Wetland Using Field-Deployed Real-Time CRDS Vs Lab Measurements

    NASA Astrophysics Data System (ADS)

    Thompson, H. A.; Stern, J. C.; Graham, H. V.; Pratt, L. M.; White, J. R.

    2014-12-01

    The emission of CH4 from Arctic landscapes under warming climate is an important feedback in Earth's climate system. Studies of CH4 flux from Arctic wetlands have been growing in recent years, but few provide details on biogeochemical controls. Stable isotopic measurements help elucidate methane production and consumption pathways and offer important understanding about dynamics of CH4 cycling in Arctic systems. In order to demonstrate the possible instrumental approaches to measuring methane dynamics of wetlands in the Arctic, a fringing wetland of a small lake near the Russell Glacier in Southwestern Greenland was outfitted with static flux chambers and instrumented with a field-deployable Cavity Ring Down Spectrometer (CRDS) to measure real-time concentrations of CH4 and CO2 and their stable carbon isotopes. Several different wetland plant communities were included in the flux chamber experiments and field tests were conducted during several weeks in July 2014. Analytical measurements by CRDS were compared to batch samples analyzed in the laboratory using both Off-Axis Integrated Cavity Output Spectroscopy (ICOS) and Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) with cryogenic pre-concentration. Results from flux chamber deployments will be presented and comparisons between the real-time field measurements and laboratory instrumental techniques will be evaluated.

  9. Gastrointestinal Infections in Deployed Forces in the Middle East Theater: An Historical 60 Year Perspective

    PubMed Central

    Riddle, Mark S.; Savarino, Stephen J.; Sanders, John W.

    2015-01-01

    Infectious diarrhea has been among the most common maladies of military deployments throughout time. The U.S. military experienced a significant burden from this disease in the middle eastern and north African campaigns of World War II (WWII). This article compares patterns of disease experienced in WWII with the recent military deployments to the same region for Operation Iraqi Freedom and Operation Enduring Freedom (OIF/OEF). Remarkable similarities in the prevalence and risk factors were noted, which belie the assumed improvements in prevention against these infections. In both campaigns, peaks of diarrhea occurred shortly after arrival of new personnel, which were seasonally associated and were linked to initial lapses in field sanitation and hygiene. It is important to reassess current strategies, especially, in light of emerging evidence of the chronic sequelae of these common infections to include a reemphasis on or reexamination of vaccine development, rapid field diagnostics, treatment algorithms, and antimicrobial prophylaxis. PMID:26350450

  10. Smoking and deployment: perspectives of junior-enlisted U.S. Air Force and U.S. Army personnel and their supervisors.

    PubMed

    Poston, Walker S C; Taylor, Jennifer E; Hoffman, Kevin M; Peterson, Alan L; Lando, Harry A; Shelton, Suzanne; Haddock, C Keith

    2008-05-01

    Smoking during deployments is a growing problem, particularly among junior-enlisted personnel, who have the highest smoking rates in the military. Few studies have examined reasons for smoking initiation among never smokers, relapse among former smokers, or increased smoking frequency among current smokers. We conducted 24 focus groups at four Air Force and two Army installations (N = 189) to examine the extent of smoking during deployment and to elucidate factors thought to contribute to new initiation, relapse, and increased smoking in a sample of junior-enlisted personnel and their supervisors. Important reasons for smoking included: (1) managing stress, boredom, anxiety, and sleep deprivation; (2) lack of alternate activities and privileges; (3) the perception that dangers in the field trumps the health impact of smoking; and (4) the role of the military environment in encouraging smoking. In addition, the phenomenon of new initiation and relapse to smoking in the field was discussed.

  11. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework

    EPA Science Inventory

    Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deploy...

  12. Cloud Environment Automation: from infrastructure deployment to application monitoring

    NASA Astrophysics Data System (ADS)

    Aiftimiei, C.; Costantini, A.; Bucchi, R.; Italiano, A.; Michelotto, D.; Panella, M.; Pergolesi, M.; Saletta, M.; Traldi, S.; Vistoli, C.; Zizzi, G.; Salomoni, D.

    2017-10-01

    The potential offered by the cloud paradigm is often limited by technical issues, rules and regulations. In particular, the activities related to the design and deployment of the Infrastructure as a Service (IaaS) cloud layer can be difficult to apply and time-consuming for the infrastructure maintainers. In this paper the research activity, carried out during the Open City Platform (OCP) research project [1], aimed at designing and developing an automatic tool for cloud-based IaaS deployment is presented. Open City Platform is an industrial research project funded by the Italian Ministry of University and Research (MIUR), started in 2014. It intends to research, develop and test new technological solutions open, interoperable and usable on-demand in the field of Cloud Computing, along with new sustainable organizational models that can be deployed for and adopted by the Public Administrations (PA). The presented work and the related outcomes are aimed at simplifying the deployment and maintenance of a complete IaaS cloud-based infrastructure.

  13. Swarm Deployable Boom Assembly (DBA) Development of a Deployable Magnetometer Boom for the Swarm Spacecraft

    NASA Astrophysics Data System (ADS)

    McMahon, Paul; Jung, Hans-Juergen; Edwards, Jeff

    2013-09-01

    The Swarm programme consists of 3 magnetically clean satellites flying in close formation designed to measure the Earth's magnetic field using 2 Magnetometers mounted on a 4.3m long deployable boom.Deployment is initiated by releasing 3 HDRMs, once released the boom oscillates back and forth on a pair of pivots, similar to a restaurant kitchen door hinge, for around 120 seconds before coming to rest on 3 kinematic mounts which are used to provide an accurate reference location in the deployed position. Motion of the boom is damped through a combination of friction, spring hysteresis and flexing of the 120+ cables crossing the hinge. Considerable development work and accurate numerical modelling of the hinge motion was required to predict performance across a wide temperature range and ensure that during the 1st overshoot the boom did not damage itself, the harness or the spacecraft.Due to the magnetic cleanliness requirements of the spacecraft no magnetic materials could be used in the design of the hardware.

  14. Space Shuttle to deploy Magellan planetary science mission

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-30 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objective of STS-30 is to successfully deploy the Magellan spacecraft into low earth orbit. Following deployment, Magellan will be propelled to its Venus trajectory by an Inertial Upper Stage booster. The objectives of the Magellan mission are to obtain radar images of more than 70 percent of Venus' surface, a near-global topographic map, and near-global gravity field data. Secondary STS-30 payloads include the Fluids Experiment Apparatus (FEA) and the Mesoscale Lightning Experiment (MLE).

  15. Brady's Geothermal Field - Map of DAS, Nodal, Vibroseis and Reftek Station Deployment

    DOE Data Explorer

    Kurt Feigl

    2016-10-15

    Map of DAS, nodal, vibroseis and Reftek stations during March 2016 deployment. The plot on the left has nodal stations labeled; the plot on the right has vibroseis observations labeled. Stations are shown in map-view using Brady's rotated X-Y coordinates with side plots denoting elevation with respect to the WGS84 ellipsoid. Blue circles denote vibroseis data, x symbols denote DAS (cyan for horizontal and magenta for vertical), black asterisks denote Reftek data, and red plus signs denote nodal data. This map can be found on UW-Madison's askja server at /PoroTomo/DATA/MAPS/Deployment_Stations.pdf

  16. Utility-Scale Photovoltaic Deployment Scenarios of the Western United States: Implications for Solar Energy Zones in Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frew, Bethany; Mai, Trieu; Krishnan, Venkat

    2016-12-01

    In this study, we use the National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment System (ReEDS) capacity expansion model to estimate utility-scale photovoltaic (UPV) deployment trends from present day through 2030. The analysis seeks to inform the U.S. Bureau of Land Management's (BLM's) planning activities related to UPV development on federal lands in Nevada as part of the Resource Management Plan (RMP) revision for the Las Vegas and Pahrump field offices. These planning activities include assessing the demand for new or expanded additional Solar Energy Zones (SEZ), per the process outlined in BLM's Western Solar Plan process.

  17. Military deployment toxicology: a program manager's perspective.

    PubMed

    Knechtges, P L

    2000-02-01

    The Persian Gulf War drew attention to the potential hazards of chemicals that personnel may encounter during military operations and deployments overseas. During the War, the oil well fires of Kuwait highlighted the military threat of industrial chemicals in the area of operations. Following the War, the occurrence of Gulf War Illnesses brought home concerns and suspicions regarding "low level" and "mixed" exposures to chemicals. The public's concern and attention resulted in numerous institutional responses to the real and perceived problems of health risks during military deployments. These institutional responses ranged in scope from a Presidential Review Directive to the initiative known as the Deployment Toxicology Research, Development, Testing and Evaluation (RDT&E) Program. Most institutions, however, seem to agree that additional research is needed to assess the health risks from chemical exposures during military deployments. Establishing and managing an effective RDT&E program in risk assessment for deployed forces is a challenging enterprise. The Deployment Toxicology RDT&E Program was conceived utilizing the military's acquisition framework, an effective methodology with a proven record of fielding of new technologies. Based on a series of structured meetings with military representatives that would utilize new risk assessment tools, a hierarchical set of plans was developed to identify and prioritize end products. The challenge ahead for the Deployment Toxicology RDT&E Program is to execute these plans, provide the necessary oversight, and transition the results into successful product development.

  18. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument response within 10% deviation. During the field deployment, aerosol extinction coefficients and associated aerosol size distributions have been measured and will be presented as comparison studies between measured and calculated data.

  19. Radiological Monitoring Equipment For Real-Time Quantification Of Area Contamination In Soils And Facility Decommissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. V. Carpenter; Jay A. Roach; John R Giles

    2005-09-01

    The environmental restoration industry offers several sys¬tems that perform scan-type characterization of radiologically contaminated areas. The Idaho National Laboratory (INL) has developed and deployed a suite of field systems that rapidly scan, characterize, and analyse radiological contamination in surface soils. The base system consists of a detector, such as sodium iodide (NaI) spectrometers, a global positioning system (GPS), and an integrated user-friendly computer interface. This mobile concept was initially developed to provide precertifica¬tion analyses of soils contaminated with uranium, thorium, and radium at the Fernald Closure Project, near Cincinnati, Ohio. INL has expanded the functionality of this basic system tomore » create a suite of integrated field-deployable analytical systems. Using its engineering and radiation measurement expertise, aided by computer hardware and software support, INL has streamlined the data acquisition and analysis process to provide real-time information presented on wireless screens and in the form of coverage maps immediately available to field technicians. In addition, custom software offers a user-friendly interface with user-selectable alarm levels and automated data quality monitoring functions that validate the data. This system is deployed from various platforms, depending on the nature of the survey. The deployment platforms include a small all-terrain vehicle used to survey large, relatively flat areas, a hand-pushed unit for areas where manoeuvrability is important, an excavator-mounted system used to scan pits and trenches where personnel access is restricted, and backpack- mounted systems to survey rocky shoreline features and other physical settings that preclude vehicle-based deployment. Variants of the base system include sealed proportional counters for measuring actinides (i.e., plutonium-238 and americium-241) in building demolitions, soil areas, roadbeds, and process line routes at the Miamisburg Closure Project near Dayton, Ohio. In addition, INL supports decontamination operations at the Oak Ridge National Laboratory.« less

  20. A Descriptive Analysis of Dental Conditions Occurring During Conflicts, Deployments, and Field Training Exercises

    DTIC Science & Technology

    1999-12-01

    Infection of an extraction site (dry socket, localized osteitis). Apical abscess /periapical abscess - Collection of purulent exudate around the area...conditions for deployment data were 5.79% higher than the rate during conflicts. Caries, third molar complications, periapical abscesses , and endodontics are...restorations and fractured teeth. The "Periodontal" category was grouped to include periodontal abscess , acute necrotizing gingivitis (ANUG), and

  1. Gypsy moth (Lepidoptera: Lymantriidae) flight behavior and phenology based on field-deployed automated pheromone-baited traps

    Treesearch

    Patrick C. Tobin; Kenneth T. Klein; Donna S. Leonard

    2009-01-01

    Populations of the gypsy moth, Lymantria dispar (L.), are extensively monitored in the United States through the use of pheromone-baited traps.We report on use of automated pheromone-baited traps that use a recording sensor and data logger to record the unique date-time stamp of males as they enter the trap.We deployed a total of 352 automated traps...

  2. The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation

    PubMed Central

    Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.

    2013-01-01

    Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938

  3. First insights into macro- and meiofaunal colonisation patterns on paired wood/slate substrata at Atlantic deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Cuvelier, Daphne; Beesau, Julie; Ivanenko, Viatcheslav N.; Zeppilli, Daniela; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2014-05-01

    In 2006, paired wood and slate panels, each equipped with a temperature probe, were deployed on three different localities on and around the Eiffel Tower edifice (Lucky Strike vent field, Mid-Atlantic Ridge) within close proximity of visible hydrothermal activity. Recovery of these panels took place in 2008. For this two-year deployment period, the composition of colonising organisms (both macro-and meiofauna) was assessed, along with image analyses of the deployment sites in 2006 and 2008. Very few significant differences in colonisation between organic (wood) and inorganic (slate) panels were revealed. Rather, the locality of deployment and the local environmental conditions and hydrothermal activity were found to influence taxonomic composition. Variability in microhabitat conditions and biological interactions were hypothesised to interact jointly in shaping new faunal communities on the colonisation substrata.

  4. ­The Carnegie Quick Deploy Box (QDB) for use with broadband and intermediate period sensors

    NASA Astrophysics Data System (ADS)

    Wagner, L. S.; Roman, D.; Bartholomew, T.; Golden, S.; Schleigh, B.

    2017-12-01

    Recent data processing advances have increased the call for dense recordings of teleseismic data. However, traditional broadband field installations typically comprise 1) a sensor vault 2) a field box to hold the recording and power systems, and 3) a solar panel mount. The construction of these installations is time consuming and requires bulky construction materials, limiting the number of stations that can be installed from a single vehicle without repeated trips to a storage facility. Depending on the deployment location, watertight containers for both vault and field box can be difficult to find, resulting in a loss of data due to flooding. Recent technological improvements have made possible the direct burial of sensors (no vault required) and a reduction in the size of the solar panels needed to run a station. With support from the Brinson Foundation, we take advantage of these advances to create a field box/shipping container that will greatly simplify these types of seismic deployments. The goal of the Carnegie Quick Deploy Box (QDB) is to have everything needed for an intermediate period station install (except battery and shovel) contained in a single box for shipment, and to be able to leave everything (except the shovel) in that box when the station is deployed. The box is small enough ( 13"x13"x21") and lightweight enough (< 35 lbs) to be checked as airline luggage. The solar panel mount can be attached securely to the top of the box, but it can also be pole mounted with U-bolts or hose clamps. The sensor can be direct-buried. The sensor cable and solar panel cable plug into watertight bulkhead-fitted plugs on the outside of the box that are in turn plugged into the digitizer and power regulator inside the box. Our prototype boxes (Pelican Cases) have proved watertight when submerged for days. This equipment has been tested in Alaska in winter and Nicaragua in summer without failure due to flooding or power. The cost for parts for a single box (not including sensor cable, sensor, or digitizer) is $500. The setup is simple, and can be completed in a matter of minutes once the sensor is installed. QDBs such as ours will make possible a dramatic increase in the number of stations that can be installed, while also significantly decreasing the cost of deployment per station by reducing vehicle time, fuel, personnel time, and shipping costs.

  5. In-beam experience with a highly granular DAQ and control network: TrbNet

    NASA Astrophysics Data System (ADS)

    Michel, J.; Korcyl, G.; Maier, L.; Traxler, M.

    2013-02-01

    Virtually all Data Acquisition Systems (DAQ) for nuclear and particle physics experiments use a large number of Field Programmable Gate Arrays (FPGAs) for data transport and more complex tasks as pattern recognition and data reduction. All these FPGAs in a large system have to share a common state like a trigger number or an epoch counter to keep the system synchronized for a consistent event/epoch building. Additionally, the collected data has to be transported with high bandwidth, optionally via the ubiquitous Ethernet protocol. Furthermore, the FPGAs' internal states and configuration memories have to be accessed for control and monitoring purposes. Another requirement for a modern DAQ-network is the fault-tolerance for intermittent data errors in the form of automatic retransmission of faulty data. As FPGAs suffer from Single Event Effects when exposed to ionizing particles, the system has to deal with failing FPGAs. The TrbNet protocol was developed taking all these requirements into account. Three virtual channels are merged on one physical medium: The trigger/epoch information is transported with the highest priority. The data channel is second in the priority order, while the control channel is the last. Combined with a small frame size of 80 bit this guarantees a low latency data transport: A system with 100 front-ends can be built with a one-way latency of 2.2 us. The TrbNet-protocol was implemented in each of the 550 FPGAs of the HADES upgrade project and has been successfully used during the Au+Au campaign in April 2012. With 2ṡ106/s Au-ions and 3% interaction ratio the accepted trigger rate is 10 kHz while data is written to storage with 150 MBytes/s. Errors are reliably mitigated via the implemented retransmission of packets and auto-shut-down of individual links. TrbNet was also used for full monitoring of the FEE status. The network stack is written in VHDL and was successfully deployed on various Lattice and Xilinx devices. The TrbNet is also used in other experiments, like systems for detector and electronics development for PANDA and CBM at FAIR. As a platform for such set-ups, e.g. for high-channel time measurement with 15 ps resolution, a generic FPGA platform (TRB3) has been developed.

  6. A new towed platform for the unobtrusive surveying of benthic habitats and organisms

    USGS Publications Warehouse

    Zawada, David G.; Thompson, P.R.; Butcher, J.

    2008-01-01

    Maps of coral ecosystems are needed to support many conservation and management objectives, as well as research activities. Examples include ground-truthing aerial and satellite imagery, characterizing essential habitat, assessing changes, and monitoring the progress of restoration efforts. To address some of these needs, the U.S. Geological Survey developed the Along-Track Reef-Imaging System (ATRIS), a boat-based sensor package for mapping shallow-water benthic environments. ATRIS consists of a digital still camera, a video camera, and an acoustic depth sounder affixed to a moveable pole. This design, however, restricts its deployment to clear waters less than 10 m deep. To overcome this limitation, a towed version has been developed, referred to as Deep ATRIS. The system is based on a light-weight, computer-controlled, towed vehicle that is capable of following a programmed diving profile. The vehicle is 1.3 m long with a 63-cm wing span and can carry a wide variety of research instruments, including CTDs, fluorometers, transmissometers, and cameras. Deep ATRIS is currently equipped with a high-speed (20 frames · s-1) digital camera, custom-built light-emitting-diode lights, a compass, a 3-axis orientation sensor, and a nadir-looking altimeter. The vehicle dynamically adjusts its altitude to maintain a fixed height above the seafloor. The camera has a 29° x 22° field-of-view and captures color images that are 1360 x 1024 pixels in size. GPS coordinates are recorded for each image. A gigabit ethernet connection enables the images to be displayed and archived in real time on the surface computer. Deep ATRIS has a maximum tow speed of 2.6 m · s-1and a theoretical operating tow-depth limit of 27 m. With an improved tow cable, the operating depth can be extended to 90 m. Here, we present results from the initial sea trials in the Gulf of Mexico and Biscayne National Park, Florida, USA, and discuss the utility of Deep ATRIS for map-ping coral reef habitats. Several example mosaics illustrate the high-quality imagery that can be obtained with this system. The images also reveal the potential for unobtrusive animal observations; fish and sea turtles are unperturbed by the presence of Deep ATRIS

  7. LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS

    EPA Science Inventory

    A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...

  8. On Efficient Deployment of Wireless Sensors for Coverage and Connectivity in Constrained 3D Space.

    PubMed

    Wu, Chase Q; Wang, Li

    2017-10-10

    Sensor networks have been used in a rapidly increasing number of applications in many fields. This work generalizes a sensor deployment problem to place a minimum set of wireless sensors at candidate locations in constrained 3D space to k -cover a given set of target objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor locations or target objects, we formulate four classes of sensor deployment problems in 3D space: deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets (D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT, CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each problem where the deployed sensors must form a connected network, and design an approximation algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based approach. Extensive simulation results show that the proposed deployment algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem instances and a significantly superior overall performance than the theoretical upper bound.

  9. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags

    PubMed Central

    Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.

    2016-01-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the ‘flasher’ and the ‘inverted-cone fold’, for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver’s side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes. PMID:27703707

  10. Stent deployment protocol for optimized real-time visualization during endovascular neurosurgery.

    PubMed

    Silva, Michael A; See, Alfred P; Dasenbrock, Hormuzdiyar H; Ashour, Ramsey; Khandelwal, Priyank; Patel, Nirav J; Frerichs, Kai U; Aziz-Sultan, Mohammad A

    2017-05-01

    Successful application of endovascular neurosurgery depends on high-quality imaging to define the pathology and the devices as they are being deployed. This is especially challenging in the treatment of complex cases, particularly in proximity to the skull base or in patients who have undergone prior endovascular treatment. The authors sought to optimize real-time image guidance using a simple algorithm that can be applied to any existing fluoroscopy system. Exposure management (exposure level, pulse management) and image post-processing parameters (edge enhancement) were modified from traditional fluoroscopy to improve visualization of device position and material density during deployment. Examples include the deployment of coils in small aneurysms, coils in giant aneurysms, the Pipeline embolization device (PED), the Woven EndoBridge (WEB) device, and carotid artery stents. The authors report on the development of the protocol and their experience using representative cases. The stent deployment protocol is an image capture and post-processing algorithm that can be applied to existing fluoroscopy systems to improve real-time visualization of device deployment without hardware modifications. Improved image guidance facilitates aneurysm coil packing and proper positioning and deployment of carotid artery stents, flow diverters, and the WEB device, especially in the context of complex anatomy and an obscured field of view.

  11. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags

    NASA Astrophysics Data System (ADS)

    Bruton, Jared T.; Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.

    2016-09-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the `flasher' and the `inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.

  12. Packing and deploying Soft Origami to and from cylindrical volumes with application to automotive airbags.

    PubMed

    Bruton, Jared T; Nelson, Todd G; Zimmerman, Trent K; Fernelius, Janette D; Magleby, Spencer P; Howell, Larry L

    2016-09-01

    Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the 'flasher' and the 'inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.

  13. Low Density Supersonic Decelerator Parachute Decelerator System

    NASA Technical Reports Server (NTRS)

    Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.

  14. Understanding Return on Investment for Data Center Consolidation

    DTIC Science & Technology

    2013-09-01

    Channel over Ethernet FDCCI Federal Data Center Consolidation Initiative GAO Government Accountability Office GDA Government Directed Actions GIG ...to judge how each stakeholder group will benefit from it. Such measures as lower risk, greater control, better economies of scale, better utilization...NMS product by Kratos Networks called Neural Star to manage the Global Information Grid ( GIG ) (Kratos, 2013). DISA uses Neural Star as the primary

  15. An Assessment of a Beowulf System for a Wide Class of Analysis and Design Software

    NASA Technical Reports Server (NTRS)

    Katz, D. S.; Cwik, T.; Kwan, B. H.; Lou, J. Z.; Springer, P. L.; Sterling, T. L.; Wang, P.

    1997-01-01

    A typical Beowulf system, such as the machine at the Jet Propulsion Laboratory (JPL), may comprise 16 nodes interconnected by 100 base T Fast Ethernet. Each node may include a single Inter Pentium Pro 200 MHz microprocessor, 128 MBytes of DRAM, 2.5 GBytes of IDE disk, and PCI bus backplane, and an assortment of other devices.

  16. Expeditionary Oblong Mezzanine

    DTIC Science & Technology

    2016-03-01

    Operating System OSI Open Systems Interconnection OS X Operating System Ten PDU Power Distribution Unit POE Power Over Ethernet xvii SAAS ...providing infrastructure as a service (IaaS) and software as a service ( SaaS ) cloud computing technologies. IaaS is a way of providing computing services...such as servers, storage, and network equipment services (Mell & Grance, 2009). SaaS is a means of providing software and applications as an on

  17. Host-Based Systemic Network Obfuscation System for Windows

    DTIC Science & Technology

    2011-06-01

    speed, CPU speed, and memory size. These additional parameters are control variables and do not change throughout the experiment. The applications...physical median that passes the network traffic, such as a wireless signal or Ethernet cable and does not need obfuscation. The colored layers in Figure...Gul09] Ron Gula, “ Enchanced Operating System Identification with Nessus.” [Online]. Available: http://blog.tenablesecurity.com/2009/02

  18. PLCs used in smart home control

    NASA Astrophysics Data System (ADS)

    Barz, C.; Deaconu, S. I.; Latinovic, T.; Berdie, A.; Pop-Vadean, A.; Horgos, M.

    2016-02-01

    This paper presents the realization of a smart home automation using Siemens PLCs. The smart home interface is realized using the HMI Weintek eMT3070a touchscreen, which shows the window for controlling and monitoring the lighting, room temperature, irrigation systems, swimming pool, etc. By using PLCs, the smart home can be controlled via Ethernet and it can be programmed to the needs of tenants.

  19. Field Data on Head Injuries in Side Airbag Vehicles in Lateral Impact

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Gennarelli, Thomas A.

    2005-01-01

    Field data on side airbag deployments in lateral crashes and head injuries have largely remained anecdotal. Consequently, the purpose of this research was to report head injuries in lateral motor vehicle impacts. Data from the National Automotive Sampling System files were extracted from side impacts associated with side airbag deployments. Matched pairs with similar vehicle characteristics but without side airbags were also extracted. All data were limited to the United States Federal Motor vehicle Safety Standards FMVSS 214 compliant vehicles so that the information may be more effectively used in the future. In this study, some fundamental analyses are presented regarding occupant- and vehicle-related parameters. PMID:16179147

  20. A field-deployable compound-specific isotope analyzer based on quantum cascade laser and hollow waveguide

    NASA Astrophysics Data System (ADS)

    Wu, Sheng; Deev, Andrei

    2013-01-01

    A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.

  1. IR sensors and imagers in networked operations

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Cabanski, Wolfgang

    2005-05-01

    "Network-centric Warfare" is a common slogan describing an overall concept of networked operation of sensors, information and weapons to gain command and control superiority. Referring to IR sensors, integration and fusion of different channels like day/night or SAR images or the ability to spread image data among various users are typical requirements. Looking for concrete implementations the German Army future infantryman IdZ is an example where a group of ten soldiers build a unit with every soldier equipped with a personal digital assistant (PDA) for information display, day photo camera and a high performance thermal imager for every unit. The challenge to allow networked operation among such a unit is bringing information together and distribution over a capable network. So also AIM's thermal reconnaissance and targeting sight HuntIR which was selected for the IdZ program provides this capabilities by an optional wireless interface. Besides the global approach of Network-centric Warfare network technology can also be an interesting solution for digital image data distribution and signal processing behind the FPA replacing analog video networks or specific point to point interfaces. The resulting architecture can provide capabilities of data fusion from e.g. IR dual-band or IR multicolor sensors. AIM has participated in a German/UK collaboration program to produce a demonstrator for day/IR video distribution via Gigabit Ethernet for vehicle applications. In this study Ethernet technology was chosen for network implementation and a set of electronics was developed for capturing video data of IR and day imagers and Gigabit Ethernet video distribution. The demonstrator setup follows the requirements of current and future vehicles having a set of day and night imager cameras and a crew station with several members. Replacing the analog video path by a digital video network also makes it easy to implement embedded training by simply feeding the network with simulation data. The paper addresses the special capabilities, requirements and design considerations of IR sensors and imagers in applications like thermal weapon sights and UAVs for networked operating infantry forces.

  2. U.S. Army Annual Injury Epidemiology Report 2007

    DTIC Science & Technology

    2009-09-30

    IPP) analyses, field investigations, and evaluations completed in 2007 are also presented. Topics included the examination of predictors of injuries...from non-deployment-related analyses, field investigations, and evaluations completed in 2007 by the Injury Prevention Program at U.S. Army Center for...injuries will be higher in the summer and should follow the work/rest recommendations and water replacement guidelines in Field Manual 21-10, Field

  3. Effects of field-of-view restrictions on speed and accuracy of manoeuvring.

    PubMed

    Toet, Alexander; Jansen, Sander E M; Delleman, Nico J

    2007-12-01

    Effects of field-of-view restrictions on the speed and accuracy of participants performing a real-world manoeuvring task through an obstacled environment were investigated. Although field-of-view restrictions are known to affect human behaviour and to degrade performance for a range of different tasks, the relationship between human manoeuvring performance and field-of-view size is not known. This knowledge is essential to evaluate a trade-off between human performance, cost, and ergonomic aspects of field-of-view limiting devises like head-mounted displays and night vision goggles which are frequently deployed for tasks involving human motion through environments with obstacles. In this study the speed and accuracy of movement were measured in 15 participants (8 men, 7 women, 22.9 +/- 2.8 yr. of age) traversing a course formed by three wall segments for different field-of-view restrictions. Analysis showed speed decreased linearly with decreasing field-of-view extent, while accuracy was consistently reduced for all restricted field-of-view conditions. Present results may be used to evaluate cost and performance trade-offs for field-of-view restricting devices deployed to perform time-limited human-locomotion tasks in complex structured environments, such as night-vision goggles and head-mounted displays.

  4. Food and drinking water hygiene and intestinal protozoa in deployed German soldiers.

    PubMed

    Frickmann, Hagen; Schwarz, Norbert G; Wiemer, Dorothea F; Fischer, Marcellus; Tannich, Egbert; Scheid, Patrick L; Müller, Martin; Schotte, Ulrich; Bock, Wolfgang; Hagen, Ralf M

    2013-03-01

    This report analyzes the occurrence of Cryptosporidium spp., E. histolytica, and G. intestinalis in stool of returnees from military deployments and the impact of hygiene precautions. Between 2007 and 2010, stool samples of 830 returnees that were obtained 8-12 weeks after military deployments in Afghanistan, Uzbekistan, the Balkans, Democratic Republic of the Congo/Gabonese Republic, and Sudan and 292 control samples from non-deployed soldiers were analyzed by PCR for Cryptosporidium spp., E. histolytica, G. intestinalis, and the commensal indicator of fecal contamination E. dispar. Data on hygiene precautions were available. The soldiers were questioned regarding gastrointestinal and general symptoms. Among 1122 stool samples, 18 were positive for G. intestinalis, 10 for E. dispar, and no-one for Cryptosporidium spp. and E. histolytica. An increased risk of acquiring chronic parasitic infections in comparison with non-deployed controls was demonstrated only for G. intestinalis in Sudan, where standardized food and drinking water hygiene precautions could not be implemented. Standard food and drinking water hygiene precautions in the context of screened military field camps proved to be highly reliable in preventing food-borne and water-borne chronic infections and colonization by intestinal protozoa, leading to detection proportions similar to those in non-deployed controls.

  5. Appendix I1-2 to Wind HUI Initiative 1: Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Zack; Deborah Hanley; Dora Nakafuji

    This report is an appendix to the Hawaii WindHUI efforts to dev elop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET field campaign deployment experiences and challenges. As part of the WindNET project on the Big Island of Hawaii, AWS Truepower (AWST) conducted a field campaign to assess the viability of deploying a network of monitoring systems to aid in local wind energy forecasting. The data provided at these monitoring locations, which were strategically placed around the Big Island of Hawaii based upon results from the Oahu Wind Integration and Transmission Studymore » (OWITS) observational targeting study (Figure 1), provided predictive indicators for improving wind forecasts and developing responsive strategies for managing real-time, wind-related system events. The goal of the field campaign was to make measurements from a network of remote monitoring devices to improve 1- to 3-hour look ahead forecasts for wind facilities.« less

  6. Exposure assessment of microwave ovens and impact on total exposure in WLANs

    PubMed Central

    Plets, David; Verloock, Leen; Van Den Bossche, Matthias; Tanghe, Emmeric; Joseph, Wout; Martens, Luc

    2016-01-01

    In situ exposure of electric fields of 11 microwave ovens is assessed in an occupational environment and in an office. Measurements as a function of distance without load and with a load of 275 ml of tap water were performed at distances of <1 m. The maximal measured field was 55.2 V m−1 at 5 cm from the oven (without load), which is 2.5 and 1.1 times below the International Commission on Non-Ionizing Radiation Protection reference level for occupational exposure and general public exposure, respectively. For exposure at distances of >1 m, a model of the electric field in a realistic environment is proposed. In an office scenario, switching on a microwave oven increases the median field strength from 91 to 145 mV m−1 (+91 %) in a traditional Wireless Local Area Network (WLAN) deployment and from 44 to 92 mV m−1 (+109 %) in an exposure-optimised WLAN deployment. PMID:25956787

  7. Artist's Concept of Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Pictured is an artist's concept of NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS). ProSEDS will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire tether cornected with a 6.2-mile (10 kilometer) long nonconducting tether. The ProSEDS experiment is managed by the Space Transportation Directorate at the Marshall Space Flight Center.

  8. Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedeschi, Jonathan R.; Smith, Leon E.; Moore, David E.

    2015-09-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-costmore » commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.« less

  9. Israel and Iran: A Dangerous Rivalry

    DTIC Science & Technology

    2011-01-01

    and Knesset view the Islamic Republic as “a bitter ideological enemy that is deter- mined to bring about the physical annihilation of Israel”; only...entirely different set of values. . . . Iran sends children into mine fields. Iran denies the Holocaust. Iran openly calls for Israel’s destruction...compromise on sovereignty by having U.S. troops deployed here.” Quoted in Barbara Opall -Rome, “U.S. to Deploy Radar, Troops In Israel,” Defense News

  10. Laser Remote Sensing at NASA

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    2005-01-01

    NASA is developing active remote sensors to monitor the health of Planet Earth and for exploration of other planets. Development and deployment of these remote sensors can have a huge economic impact. Lasers for these active remote sensors span the spectral range from the ultraviolet to the mid infrared spectral regions. Development activities range from quantum mechanical modeling and prediction of new laser materials to the design, development, and demonstration be deployed in the field.

  11. ALFA MHK Biological Monitoring Stationary deployment

    DOE Data Explorer

    Horne, John

    2016-10-01

    Acoustic backscatter data from a WBAT operating at 70kHz deployed at PMEC-SETS from April to September of 2016. 180 pings were collected at 1Hz every two hours, as part of the Advanced Laboratory and Field Arrays (ALFA) for Marine Energy project. Data was subject to preliminary processing (noise removal, a threshold of -75dB was applied, surface turbulence and data below 0.5m from the bottom was removed).

  12. Early disaster response in Haiti: the Israeli field hospital experience.

    PubMed

    Kreiss, Yitshak; Merin, Ofer; Peleg, Kobi; Levy, Gad; Vinker, Shlomo; Sagi, Ram; Abargel, Avi; Bartal, Carmi; Lin, Guy; Bar, Ariel; Bar-On, Elhanan; Schwaber, Mitchell J; Ash, Nachman

    2010-07-06

    The earthquake that struck Haiti in January 2010 caused an estimated 230,000 deaths and injured approximately 250,000 people. The Israel Defense Forces Medical Corps Field Hospital was fully operational on site only 89 hours after the earthquake struck and was capable of providing sophisticated medical care. During the 10 days the hospital was operational, its staff treated 1111 patients, hospitalized 737 patients, and performed 244 operations on 203 patients. The field hospital also served as a referral center for medical teams from other countries that were deployed in the surrounding areas. The key factor that enabled rapid response during the early phase of the disaster from a distance of 6000 miles was a well-prepared and trained medical unit maintained on continuous alert. The prompt deployment of advanced-capability field hospitals is essential in disaster relief, especially in countries with minimal medical infrastructure. The changing medical requirements of people in an earthquake zone dictate that field hospitals be designed to operate with maximum flexibility and versatility regarding triage, staff positioning, treatment priorities, and hospitalization policies. Early coordination with local administrative bodies is indispensable.

  13. Development of a Laser Raman Spectrometer for In Situ Measurements in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    White, S. N.; Brewer, P. G.; Peltzer, E. T.; Malby, G. E.; Pasteris, J. D.

    2002-12-01

    We have developed an ROV-deployable laser Raman spectrometer (LRS) to make in situ measurements of solid, liquid and gaseous species in the ocean (up to 3600 m depth). The LRS can be used to determine chemical and structural composition by irradiating the target with a laser and measuring the inelastically scattered (Raman shifted) light. The frequency shift from the exciting wavelength is due to characteristic molecular vibrations of the molecule; thus, the Raman spectrum serves as a fingerprint of a substance based on molecular composition and crystal structure. Raman spectroscopy is rapid, and typically requires no sample preparation. However, the weak Raman effect (~1 in 108 photons), the need for precise laser positioning, and fluorescence, pose challenges. We have acquired an LRS from Kaiser Optical Systems, Inc. and adapted it for use in the ocean by dividing the components into three pressure cases, building penetrating fiber optic cables, developing an Ethernet interface to control the system from shipboard, and redesigning and rebuilding non-robust components. Future improvements will include weight/size reduction, adding through-the-lens visualization, and using liquid core optical waveguides to increase sensitivity. An increase in sensitivity of x10 would permit direct observation of natural seawater HCO3 and CO3 peaks. The LRS has been successfully deployed over 6 times on MBARI's two remotely operated vehicles in 2002. Initial measurements of standards (e.g., isopropanol, calcite, and diamond) at depths as great as 3600 m have proven the effectiveness of the instrument in the deep ocean and have allowed us to advance methods for its use. Detailed spectra of seawater in situ and in the lab have also been obtained to better understand the ever-present seawater background (which includes water and SO4 peaks, and very little fluorescence). We have used the LRS in a number of deep-sea CO2 sequestration studies to acquire spectra of gaseous CO2 and CO2/N2 mixtures from the surface to 400 m depth, and of liquid CO2 and CO2 hydrate on the seafloor at 3600 m. Future plans include measurements of gas vents, hydrothermal vent fluids and minerals, natural gas hydrates, sediment pore waters, and bacterial mats.

  14. Informing Urban Decision Making with an Array of Things

    NASA Astrophysics Data System (ADS)

    Jacob, R. L.; Catlett, C.; Beckman, P. H.; Sankaran, R.

    2015-12-01

    Over the next several decades, the population of the world's cities is projected to nearly double, increasing by 2.6 billion people and requiring massive urban expansion globally. This massive growth in urban density and scale will compound ongoing city challenges related to climate change, energy, infrastructure, public health, and more. Cities are using data they already collect such as 311 calls, bus and train operations, street repair orders, census data and building permits to help understand the complex interactions between the human, built and natural systems within a city and inform their decision making. Helping to guide urban decision-making is The Array of Things (AoT): a new tool for measuring many aspects of the physical environment of urban areas at the city block scale with continuous, reliable, integrated data from a variety of sensors. An AoT node includes multiple sensors to measure basic meteorological quantities such as pressure, temperature and humidity as well as light and trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. The sensors operate 24/7 with ingest frequencies as high as 1Hz. The nodes are modular and allow new sensors to be added or swapped out. The hardware/software backbone of an AoT node is provided by the Waggle architecture. Each AoT node includes, via Waggle, compute power from a single board computer running Linux that allows data to be processed in-situ and, if needed, command and control of components of the node. Data is communicated in near real-time typically through WiFi, 3G or wired ethernet to a designated host and resilience is built-in to prevent data loss if communication is disrupted. The AoT includes a software stack with a programmable API and cloud-based infrastructure for performing data ingest and further analysis. The first full instance of AoT will comprise 500 nodes deployed in the City of Chicago, each with power, Internet, and a base set of sensing and embedded information systems capabilities. A prototype of the Array of Things consisting of 12 nodes has been deployed on the campus of the University of Chicago and initial data from the array will be presented.

  15. Tethered Satellite System (TSS-1R)-Post Flight (STS-75) Engineering Performance Report

    NASA Technical Reports Server (NTRS)

    Lavoie, Anthony R.

    1996-01-01

    The first mission of the Tethered Satellite deployer was flown onboard Atlantis in 1992 during the Space Transportation System (STS) flight STS-46. Due to a mechanical interference with the level wind mechanism the satellite was only Deployed to 256 m rather than the planned 20,000 m. Other problems were also experienced during the STS-46 flight and several modifications were made to the Deployer and Satellite. STS-75 was a reflight of the Tethered Satellite System 1 (TSS-1) designated as Tethered Satellite System 1 Reflight (TSS-1 R) onboard Columbia. As on STS-46, the TSS payload consisted of the Deployer, the Satellite, 3 cargo bay mounted experiments: Shuttle Electrodynamic Tether System (SETS), Shuttle Potential and Return Electron Experiment (SPREE), Deployer Core Equipment (DCORE) 4 Satellite mounted experiments: Research on Electrodynamics Tether Effects (RETE), Research on Orbital Plasma Electrodynamics (ROPE), Satellite Core Instruments (SCORE), Tether Magnetic Field Experiment (TEMAG) and an aft flight deck camera: Tether Optical Phenomena Experiment (TOP). Following successful pre-launch, launch and pre-deployment orbital operations, the Deployer deployed the Tethered Satellite to 19,695 m at which point the tether broke within the Satellite Deployment Boom (SDB). The planned length for On-Station I (OST1) was 20,700 m The Satellite flew away from the Orbiter with the tether attached. The satellite was "safed" and placed in a limited power mode via the RF link. The Satellite was contacted periodically during overflights of ground stations. Cargo bay science activities continued for the period of time allocated to TSS-1 R operations.

  16. Oxyanion flux characterization using passive flux meters: Development and field testing of surfactant-modified granular activated carbon

    NASA Astrophysics Data System (ADS)

    Lee, Jimi; Rao, P. S. C.; Poyer, Irene C.; Toole, Robyn M.; Annable, M. D.; Hatfield, K.

    2007-07-01

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate >> chromate > selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (˜ 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of ˜ 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m 2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of the surfactant-modified GACs for measuring fluxes of other anions of environmental interest is discussed.

  17. Oxyanion flux characterization using passive flux meters: development and field testing of surfactant-modified granular activated carbon.

    PubMed

    Lee, Jimi; Rao, P S C; Poyer, Irene C; Toole, Robyn M; Annable, M D; Hatfield, K

    2007-07-17

    We report here on the extension of Passive Flux Meter (PFM) applications for measuring fluxes of oxyanions in groundwater, and present results for laboratory and field studies. Granular activated carbon, with and without impregnated silver (GAC and SI-GAC, respectively), was modified with a cationic surfactant, hexadecyltrimethylammonium (HDTMA), to enhance the anion exchange capacity (AEC). Langmuir isotherm sorption maxima for oxyanions measured in batch experiments were in the following order: perchlorate>chromate>selenate, consistent with their selectivity. Linear sorption isotherms for several alcohols suggest that surfactant modification of GAC and SI-GAC reduced (approximately 30-45%) sorption of alcohols by GAC. Water and oxyanion fluxes (perchlorate and chromate) measured by deploying PFMs packed with surfactant-modified GAC (SM-GAC) or surfactant-modified, silver-impregnated GAC (SM-SI-GAC) in laboratory flow chambers were in close agreement with the imposed fluxes. The use of SM-SI-GAC as a PFM sorbent was evaluated at a field site with perchlorate contamination of a shallow unconfined aquifer. PFMs packed with SM-SI-GAC were deployed in three existing monitoring wells with a perchlorate concentration range of approximately 2.5 to 190 mg/L. PFM-measured, depth-averaged, groundwater fluxes ranged from 1.8 to 7.6 cm/day, while depth-averaged perchlorate fluxes varied from 0.22 to 1.7 g/m2/day. Groundwater and perchlorate flux distributions measured in two PFM deployments closely matched each other. Depth-averaged Darcy fluxes measured with PFMs were in line with an estimate from a borehole dilution test, but much smaller than those based on hydraulic conductivity and head gradients; this is likely due to flow divergence caused by well-screen clogging. Flux-averaged perchlorate concentrations measured with PFM deployments matched concentrations in groundwater samples taken from one well, but not in two other wells, pointing to the need for additional field testing. Use of the surfactant-modified GACs for measuring fluxes of other anions of environmental interest is discussed.

  18. GEOS axial booms

    NASA Technical Reports Server (NTRS)

    Schmidt, G. K.

    1979-01-01

    A booms and mechanisms subsystem was designed, developed, and qualified for the geostationary scientific satellite GEOS. Part of this subsystem consist of four axial booms consisting of one pair of 1 m booms and one pair of 2.5 m booms. Each of these booms is carrying one bird cage electric field sensor. Alignment accuracy requirements led to a telescopic type solution. Deployment is performed by pressurized nitrogen. At deployment in orbit two of these booms showed some anomalies and one of these two deployed only about 80%. Following this malfunction a detailed failure investigation was performed resulting in a design modification of some critical components as release mechanism, guide sleeves of the telescopic elements, and pressure system.

  19. Taking it to the streets: delivering on deployment.

    PubMed

    Carr, Dafna; Welch, Vickie; Fabik, Trish; Hirji, Nadir; O'Connor, Casey

    2009-01-01

    From inception to deployment, the Wait Time Information System (WTIS) project faced significant challenges associated with time, scope and complexity. It involved not only the creation and deployment of two large-scale province-wide systems (the WTIS and Ontario's Client Registry/Enterprise Master Patient Index) within aggressive time frames, but also the active engagement of 82 Ontario hospitals, scores of healthcare leaders and several thousand clinicians who would eventually be using the new technology and its data. The provincial WTIS project team (see Figure 1) also had to be able to adapt and evolve their planning in an environment that was changing day-by-day. This article looks at the factors that allowed the team to take the WTIS out to the field and shares the approach, processes and tools used to deploy this complex and ambitious information management and information technology (IM/IT) initiative.

  20. Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Meyers, Stew; Sturm, James

    2004-01-01

    The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25-kilogram micro-class spacecraft in formation through the Earth's magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25-kg Micosat resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state-of-the-art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper. This paper describes the development efforts and resulting self-deploying magnetometer boom.

  1. Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission

    NASA Technical Reports Server (NTRS)

    Meyers, Stew; Sturm, James

    2004-01-01

    The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25 kilogram micro class spacecraft in formation through the Earth s magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25 kg "Micosat" resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state of the art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper, This paper describes the development efforts and resulting self-deploying magnetometer boom.

  2. Security-by-Experiment: Lessons from Responsible Deployment in Cyberspace.

    PubMed

    Pieters, Wolter; Hadžiosmanović, Dina; Dechesne, Francien

    2016-06-01

    Conceiving new technologies as social experiments is a means to discuss responsible deployment of technologies that may have unknown and potentially harmful side-effects. Thus far, the uncertain outcomes addressed in the paradigm of new technologies as social experiments have been mostly safety-related, meaning that potential harm is caused by the design plus accidental events in the environment. In some domains, such as cyberspace, adversarial agents (attackers) may be at least as important when it comes to undesirable effects of deployed technologies. In such cases, conditions for responsible experimentation may need to be implemented differently, as attackers behave strategically rather than probabilistically. In this contribution, we outline how adversarial aspects are already taken into account in technology deployment in the field of cyber security, and what the paradigm of new technologies as social experiments can learn from this. In particular, we show the importance of adversarial roles in social experiments with new technologies.

  3. Field-deployable sniffer for 2,4-dinitrotoluene detection.

    PubMed

    Albert, K J; Myrick, M L; Brown, S B; James, D L; Milanovich, F P; Walt, D R

    2001-08-01

    A field-deployable instrument has been developed to detect low-level 2,4-dinitrotoluene (2,4-DNT) vapors. The system is based on previously developed artificial nose technology and employs an array of sensory materials attached to the distal tips of an optical fiber bundle. Both semiselective and nonspecific, cross-reactive sensors were employed. Each sensor within the array responds differentially to vapor exposure so the array's fluorescence response patterns are unique for each analyte. The instrument is computationally "trained" to discriminate target response patterns from nontarget and background environments. This detection system has been applied to detect 2,4-DNT, an analyte commonly detected on the soil surface above buried 2,4,6-trinitrotoluene (TNT) land mines, in spiked soil and aqueous and ground samples. The system has been characterized and demonstrated the ability to detect 120 ppb 2,4-DNT vapor in blind (unknown) humidified samples during a supervised field test.

  4. Study on the three-station typical network deployments of workspace Measurement and Positioning System

    NASA Astrophysics Data System (ADS)

    Xiong, Zhi; Zhu, J. G.; Xue, B.; Ye, Sh. H.; Xiong, Y.

    2013-10-01

    As a novel network coordinate measurement system based on multi-directional positioning, workspace Measurement and Positioning System (wMPS) has outstanding advantages of good parallelism, wide measurement range and high measurement accuracy, which makes it to be the research hotspots and important development direction in the field of large-scale measurement. Since station deployment has a significant impact on the measurement range and accuracy, and also restricts the use-cost, the optimization method of station deployment was researched in this paper. Firstly, positioning error model was established. Then focusing on the small network consisted of three stations, the typical deployments and error distribution characteristics were studied. Finally, through measuring the simulated fuselage using typical deployments at the industrial spot and comparing the results with Laser Tracker, some conclusions are obtained. The comparison results show that under existing prototype conditions, I_3 typical deployment of which three stations are distributed in a straight line has an average error of 0.30 mm and the maximum error is 0.50 mm in the range of 12 m. Meanwhile, C_3 typical deployment of which three stations are uniformly distributed in the half-circumference of an circle has an average error of 0.17 mm and the maximum error is 0.28 mm. Obviously, C_3 typical deployment has a higher control effect on precision than I_3 type. The research work provides effective theoretical support for global measurement network optimization in the future work.

  5. Evaluation of fatigue-prone details using a low-cost thermoelastic stress analysis system.

    DOT National Transportation Integrated Search

    2016-11-01

    This study was designed to develop a novel approach for in situ evaluation of stress fields in the vicinity of fatigue-prone details on highway bridges using a low-cost microbolometer thermal imager. : The method was adapted into a field-deployable i...

  6. Measuring the impact of complete streets projects : preliminary field testing : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    This report describes a field study that sought to assess the impact of Complete Streets (CS) projects in Buffalo, NY. Multiple data collection tools were deployed to capture a diversity of impacts on 8 street corridors where CS projects have been im...

  7. IrLaW an OGC compliant infrared thermography measurement system developed on mini PC with real time computing capabilities for long term monitoring of transport infrastructures

    NASA Astrophysics Data System (ADS)

    Dumoulin, J.; Averty, R.

    2012-04-01

    One of the objectives of ISTIMES project is to evaluate the potentialities offered by the integration of different electromagnetic techniques able to perform non-invasive diagnostics for surveillance and monitoring of transport infrastructures. Among the EM methods investigated, uncooled infrared camera is a promising technique due to its dissemination potential according to its relative low cost on the market. Infrared thermography, when it is used in quantitative mode (not in laboratory conditions) and not in qualitative mode (vision applied to survey), requires to process in real time thermal radiative corrections on raw data acquired to take into account influences of natural environment evolution with time. But, camera sensor has to be enough smart to apply in real time calibration law and radiometric corrections in a varying atmosphere. So, a complete measurement system was studied and developed with low cost infrared cameras available on the market. In the system developed, infrared camera is coupled with other sensors to feed simplified radiative models running, in real time, on GPU available on small PC. The system studied and developed uses a fast Ethernet camera FLIR A320 [1] coupled with a VAISALA WXT520 [2] weather station and a light GPS unit [3] for positioning and dating. It can be used with other Ethernet infrared cameras (i.e. visible ones) but requires to be able to access measured data at raw level. In the present study, it has been made possible thanks to a specific agreement signed with FLIR Company. The prototype system studied and developed is implemented on low cost small computer that integrates a GPU card to allow real time parallel computing [4] of simplified radiometric [5] heat balance using information measured with the weather station. An HMI was developed under Linux using OpenSource and complementary pieces of software developed at IFSTTAR. This new HMI called "IrLaW" has various functionalities that let it compliant to be use in real site for long term monitoring. It can be remotely controlled in wire or wireless communication mode depending on what is the context of measurement and the degree of accessibility to the system when it is running on real site. To complete and conclude, thanks to the development of a high level library, but also to the deployment of a daemon, our developed measurement system was tuned to be compatible with OGC standards. Complementary functionalities were also developed to allow the system to self declare to 52North. For that, a specific plugin was developed to be inserted previously at 52North level. Finally, data are also accessible by tasking the system when required, fort instance by using the web portal developed in the ISTIMES Framework. ACKNOWLEDGEMENT - The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n° 225663.

  8. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallan, R; Wilt, M; Kirkendall, B

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series ofmore » three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of the tool in a low risk environment. The Dixie Valley site offered an environment where the tool could locate near-well fractures associated with steam development. The Lost Hills field measurements yielded a data set suitable for 3D imaging. The Geo-BLT data corresponded to existing conventional logging data and showed clear indications, in several depth intervals, of near-well 3D structure. Subsequent 3D inversion of these data produced a model consistent with non-planar water flow in specific layers. The Dixie Valley measurements identified structures associated with dike intrusions and water inflow at particular depths. Preliminary analysis suggests these structures are steeply dipping, which is consistent with the geology.« less

  9. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

    DTIC Science & Technology

    2011-09-30

    www.bio.utexas.edu/research/cummingslab/ LONG-TERM GOALS Camouflage in marine environments requires matching all of the background optical ...polarized light field in near-shore and near-surface environments (2) Characterize the biological camouflage response of organisms to these dynamic optical ...field will be measured by the simultaneous deployment of a comprehensive optical suite including underwater video-polarimetry (Cummings), inherent

  10. Effective Use of Personal Assistants for Students with Disabilities: Lessons Learned from the 2014 Accessible Geoscience Field Trip

    ERIC Educational Resources Information Center

    Hendricks, Julie E.; Atchison, Christopher L.; Feig, Anthony D.

    2017-01-01

    In 2014, the Geological Society of America sponsored an Accessible Field Trip, designed to demonstrate best practices in accommodating a wide variety of participants with disabilities during a field experience. During the trip, an aide was deployed to assist two student participants with sensory disabilities, one with low vision and the other with…

  11. Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes

    USGS Publications Warehouse

    Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.

    2014-01-01

    Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.

  12. Vigil: Providing Trust for Enhanced Security in Pervasive Systems

    DTIC Science & Technology

    2005-01-01

    environment consisting of Bluetooth, Infrared, 802.11b and Ethernet. Vigil is the extension and culmination of our two previous projects: Centaurus [22] and...Centau- rus2 [36]. The main design goal of the Centaurus project was the development of a framework for building portals to services using various...types of mobile devices. Centaurus provides a uniform infrastructure for access to heterogeneous hardware and software components. It uses a language

  13. 78 FR 65400 - Self-Regulatory Organizations; International Securities Exchange, LLC; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... currently offers three Ethernet connection options, a 1 Gb connection at a cost of $500 per month, a 10 Gb connection at a cost of $4,000 per month, and a 10 Gb low latency connection at a cost of $7,000 per month... option to enable a more efficient connection to the Exchange. The growth in the size of consolidated and...

  14. Computer-Aided Fabrication of Integrated Circuits

    DTIC Science & Technology

    1989-09-30

    baseline CMOS process. One result of this effort was the identification of several residual bugs in the PATRAN graphics processor . The vendor promises...virtual memory. The internal Nubus architecture uses a 32-bit LISP processor running at 10 megahertz (100 ns clock period). An ethernet controller is...For different patterns, we need different masks for the photo step, and for dif- ferent micro -structures of the wafers, we need different etching

  15. Security Primitives for Reconfigurable Hardware-Based Systems

    DTIC Science & Technology

    2010-05-01

    work, we propose security primitives using ideas centered around the notion of “moats and drawbridges .” The primitives encompass four design properties...Santa Bar- bara, CA 93106; email: sherwood@cs.ucsb.edu; R. Kastner, Department of Computer Science and Engineering , University of California, San...fingerprint reader), the other to control the ethernet IP core—and an AES encryption engine used by both of the processor cores. These cores are all implemented

  16. Jet Engine Control Using Ethernet with a BRAIN (Postprint)

    DTIC Science & Technology

    2008-07-01

    current communications may be mitigated. 15. SUBJECT TERMS BRAIN, Braided Ring Availability Integrity Network, Gas turbine, FADEC , disturbed...urrent state of the art engine controls have converged on the notion of the Full Authority Digital Engine Control ( FADEC ), which consists of a centralized...is completely dependent on the proper operation of the controller. In current systems, the FADEC is often located on the relatively cool engine fan

  17. Cooperative processing user interfaces for AdaNET

    NASA Technical Reports Server (NTRS)

    Gutzmann, Kurt M.

    1991-01-01

    A cooperative processing user interface (CUI) system shares the task of graphical display generation and presentation between the user's computer and a remote host. The communications link between the two computers is typically a modem or Ethernet. The two main purposes of a CUI are reduction of the amount of data transmitted between user and host machines, and provision of a graphical user interface system to make the system easier to use.

  18. Promoting Wired Links in Wireless Mesh Networks: An Efficient Engineering Solution

    PubMed Central

    Barekatain, Behrang; Raahemifar, Kaamran; Ariza Quintana, Alfonso; Triviño Cabrera, Alicia

    2015-01-01

    Wireless Mesh Networks (WMNs) cannot completely guarantee good performance of traffic sources such as video streaming. To improve the network performance, this study proposes an efficient engineering solution named Wireless-to-Ethernet-Mesh-Portal-Passageway (WEMPP) that allows effective use of wired communication in WMNs. WEMPP permits transmitting data through wired and stable paths even when the destination is in the same network as the source (Intra-traffic). Tested with four popular routing protocols (Optimized Link State Routing or OLSR as a proactive protocol, Dynamic MANET On-demand or DYMO as a reactive protocol, DYMO with spanning tree ability and HWMP), WEMPP considerably decreases the end-to-end delay, jitter, contentions and interferences on nodes, even when the network size or density varies. WEMPP is also cost-effective and increases the network throughput. Moreover, in contrast to solutions proposed by previous studies, WEMPP is easily implemented by modifying the firmware of the actual Ethernet hardware without altering the routing protocols and/or the functionality of the IP/MAC/Upper layers. In fact, there is no need for modifying the functionalities of other mesh components in order to work with WEMPPs. The results of this study show that WEMPP significantly increases the performance of all routing protocols, thus leading to better video quality on nodes. PMID:25793516

  19. NEW EPICS/RTEMS IOC BASED ON ALTERA SOC AT JEFFERSON LAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jianxun; Seaton, Chad; Allison, Trent L.

    A new EPICS/RTEMS IOC based on the Altera System-on-Chip (SoC) FPGA is being designed at Jefferson Lab. The Altera SoC FPGA integrates a dual ARM Cortex-A9 Hard Processor System (HPS) consisting of processor, peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth interconnect backbone. The embedded Altera SoC IOC has features of remote network boot via U-Boot from SD card or QSPI Flash, 1Gig Ethernet, 1GB DDR3 SDRAM on HPS, UART serial ports, and ISA bus interface. RTEMS for the ARM processor BSP were built with CEXP shell, which will dynamically load the EPICS applications atmore » runtime. U-Boot is the primary bootloader to remotely load the kernel image into local memory from a DHCP/TFTP server over Ethernet, and automatically run RTEMS and EPICS. The first design of the SoC IOC will be compatible with Jefferson Lab’s current PC104 IOCs, which have been running in CEBAF 10 years. The next design would be mounting in a chassis and connected to a daughter card via standard HSMC connectors. This standard SoC IOC will become the next generation of low-level IOC for the accelerator controls at Jefferson Lab.« less

  20. Real-time ground motions monitoring system developed by Raspberry Pi 3

    NASA Astrophysics Data System (ADS)

    Chen, P.; Jang, J. P.; Chang, H.; Lin, C. R.; Lin, P. P.; Wang, C. C.

    2016-12-01

    Ground-motions seismic stations are usually installed in the special geological area, like high possibility landslide area, active volcanoes, or nearby faults, to real-time monitor the possible geo-hazards. Base on the demands, three main issues needs to be considered: size, low-power consumption and real-time data transmission. Raspberry Pi 3 has the suitable characteristics to fit our requests. Thus, we develop a real-time ground motions monitoring system by Raspberry Pi 3. The Raspberry Pi has the credit-card-sized with single-board computers. The operating system is based on the programmable Linux system.The volume is only 85.6 by 53.98 by 17 mm with USB and Ethernet interfaces. The power supply is only needed 5 Volts and 2.1 A. It is easy to get power by using solar power and transmit the real-time data through Ethernet or by the mobile signal through USB adapter. As Raspberry Pi still a kind of small computer, the service, software or GUI can be very flexibly developed, such as the basic web server, ftp server, SSH connection, and real-time visualization interface tool etc. Until now, we have developed ten instruments with on-line/ real-time data transmission and have installed in the Taiping Mountain in Taiwan to motor the geohazard like mudslide.

  1. 2009 Goose Bay Experiment Ocean Measurements. Part 1; Data

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    During late February and early March 2009, a field experiment was performed using the NASA P3 over the Labrador Sea. During this experiment, expendable probes deployed from the aircraft acquired ocean mixed layer temperature, salinity and currents Probes were deployed during three flights of the four. Overall 7 AXBTs, 15 AXCTDs and 7 AXCPs were deployed with a success rate of nearly 70%. This is much lower than expected based on prior experience deploying from other aircraft. But given the difficulties associated with the Pneumatic Sonobuoy Launch Tube mechanism on the NASA P3, this rate likely can be improved significantly by using a different deployment mechanism. Additionally, two sets of collocated measurements of AXBTs, AXCPs and AXCTDs were made to verify the drop rates and measurements of the old AXBTs. While there were differences in the measurements, the old AXCTDs are performing well. The expendable data from the experiment are compared to the Argo profiles in the region to check for consistency. Comparisons indicate all the expendable probes acquired useful data and are well within the range of values measured by Argo floats.

  2. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.

    PubMed

    Yoon, Yourim; Kim, Yong-Hyuk

    2013-10-01

    Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.

  3. Field deployable microcantilever based chemical sensing: discrimination between H2O, DMMP and Toluene

    NASA Astrophysics Data System (ADS)

    Thoreson, E. J.; Stievater, T. H.; Rabinovich, W. S.; Ferraro, M. S.; Papanicolaou, N. A.; Bass, R.; Boos, J. B.; Stepnowski, J. L.; McGill, R. A.

    2008-10-01

    Low cost passive detection of Chemical Warfare Agents (CWA) and being able to distinguish them from interferents is of great interest in the protection of human capital. If CWA sensors could be made cheaply enough, they could be deployed profusely throughout the environment intended for protection. NRL (Naval Research Labs) has demonstrated a small sensor with potentially very low unit cost and compatible with high volume production which has the ability to distinguish between H2O, DMMP, and Toluene. Additionally, they have measured concentrations as low as 17 ppb passively in a package the size of a quarter. Using the latest MEMS technology coupled with advanced chemical identification algorithms we propose a development path for a low cost, highly integrated chemical sensor capable of detecting CWA's, Explosives, VOC's (Volatile Organic Chemicals), and TIC's (Toxic Industrial Chemicals). ITT AES (Advanced Engineering & Sciences) has partnered with NRL (Naval Research Labs) to develop this ``microharp'' technology into a field deployable sensor that will be capable of remote communication with a central server.

  4. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Prabakar, Kumaraguru; Nagarajan, Adarsh

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. Themore » integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.« less

  5. Development of a measurement and control system for a 10 kW@20 K refrigerator based on Siemens PLC S7-300

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, L. Q.; Liu, T.; Xu, X. D.; Dong, B.; Lu, W. H.; Pan, W.; Wu, J. H.; Xiong, L. Y.

    2017-02-01

    A 10 kW@20 K refrigerator has been established by the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. A measurement and control system based on Siemens PLC S7-300 for this 10 kW@20 K refrigerator is developed. According to the detailed measurement requirements, proper sensors and transmitters are adopted. Siemens S7-300 PLC CPU315-2 PN/DP operates as a master station. Two sets of ET200M DP remote expand I/O, one power meter, two compressors and one vacuum gauge operate as slave stations. Profibus-DP field communication and Modbus communication are used between the master station and the slave stations in this control system. The upper computer HMI (Human Machine Interface) is compiled using Siemens configuration software WinCC V7.0. The upper computer communicates with PLC by means of industrial Ethernet. After commissioning, this refrigerator has been operating with a 10 kW of cooling power at 20 K for more than 72 hours.

  6. System Description and First Application of an FPGA-Based Simultaneous Multi-Frequency Electrical Impedance Tomography

    PubMed Central

    Aguiar Santos, Susana; Robens, Anne; Boehm, Anna; Leonhardt, Steffen; Teichmann, Daniel

    2016-01-01

    A new prototype of a multi-frequency electrical impedance tomography system is presented. The system uses a field-programmable gate array as a main controller and is configured to measure at different frequencies simultaneously through a composite waveform. Both real and imaginary components of the data are computed for each frequency and sent to the personal computer over an ethernet connection, where both time-difference imaging and frequency-difference imaging are reconstructed and visualized. The system has been tested for both time-difference and frequency-difference imaging for diverse sets of frequency pairs in a resistive/capacitive test unit and in self-experiments. To our knowledge, this is the first work that shows preliminary frequency-difference images of in-vivo experiments. Results of time-difference imaging were compared with simulation results and shown that the new prototype performs well at all frequencies in the tested range of 60 kHz–960 kHz. For frequency-difference images, further development of algorithms and an improved normalization process is required to correctly reconstruct and interpreted the resulting images. PMID:27463715

  7. An automatic chip structure optical inspection system for electronic components

    NASA Astrophysics Data System (ADS)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  8. Systems-on-chip approach for real-time simulation of wheel-rail contact laws

    NASA Astrophysics Data System (ADS)

    Mei, T. X.; Zhou, Y. J.

    2013-04-01

    This paper presents the development of a systems-on-chip approach to speed up the simulation of wheel-rail contact laws, which can be used to reduce the requirement for high-performance computers and enable simulation in real time for the use of hardware-in-loop for experimental studies of the latest vehicle dynamic and control technologies. The wheel-rail contact laws are implemented using a field programmable gate array (FPGA) device with a design that substantially outperforms modern general-purpose PC platforms or fixed architecture digital signal processor devices in terms of processing time, configuration flexibility and cost. In order to utilise the FPGA's parallel-processing capability, the operations in the contact laws algorithms are arranged in a parallel manner and multi-contact patches are tackled simultaneously in the design. The interface between the FPGA device and the host PC is achieved by using a high-throughput and low-latency Ethernet link. The development is based on FASTSIM algorithms, although the design can be adapted and expanded for even more computationally demanding tasks.

  9. Implementing a Digital Phasemeter in an FPGA

    NASA Technical Reports Server (NTRS)

    Rao, Shanti R.

    2008-01-01

    Firmware for implementing a digital phasemeter within a field-programmable gate array (FPGA) has been devised. In the original application of this firmware, the phase that one seeks to measure is the difference between the phases of two nominally-equal-frequency heterodyne signals generated by two interferometers. In that application, zero-crossing detectors convert the heterodyne signals to trains of rectangular pulses, the two pulse trains are fed to a fringe counter (the major part of the phasemeter) controlled by a clock signal having a frequency greater than the heterodyne frequency, and the fringe counter computes a time-averaged estimate of the difference between the phases of the two pulse trains. The firmware also does the following: Causes the FPGA to compute the frequencies of the input signals; Causes the FPGA to implement an Ethernet (or equivalent) transmitter for readout of phase and frequency values; and Provides data for use in diagnosis of communication failures. The readout rate can be set, by programming, to a value between 250 Hz and 1 kHz. Network addresses can be programmed by the user.

  10. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  11. Calibration and Vegetation Field Spectra Collection for the 2000 AVIRIS Hawaii Deployment

    NASA Technical Reports Server (NTRS)

    Dennison, Philip E.; Gardner, Margaret E.; Roberts, Dar A.; Green, Robert O.

    2001-01-01

    As part of the April 2000 Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Hawaii deployment, two researchers from the University of California, Santa Barbara, were sent to Hawaii to collect supporting field data. The primary goal of the fieldwork was to obtain spectra of bright targets to be used for retrieving surface reflectance from AVIRIS imagery. Secondary goals included recording the spectra of dominant vegetation, marking the position of homogeneous land cover for use as potential image endmembers (PIEs), and recording firsthand impressions of cover types. Primary and secondary goals were met. Spectra were recorded for 12 calibration targets on 5 islands and spectra were obtained for 61 vegetation species. Twenty PIEs were located, and video was used to document cover at 56 locations.

  12. Analysis of apple beverages treated with high-power ultrasound: a quality function deployment approach.

    PubMed

    Režek Jambrak, Anet; Šimunek, Marina; Grbeš, Franjo; Mandura, Ana; Djekic, Ilija

    2018-04-01

    The objective of this paper was to demonstrate application of quality function deployment in analysing effects of high power ultrasound on quality properties of apple juices and nectars. In order to develop a quality function deployment model, joint with instrumental analysis of treated samples, a field survey was performed to identify consumer preferences towards quality characteristics of juices/nectar. Based on field research, the three most important characteristics were 'taste' and 'aroma' with 28.5% of relative absolute weight importance, followed by 'odour' (16.9%). The quality function deployment model showed that the top three 'quality scores' for apple juice were treatments with amplitude 90 µm, 9 min treatment time and sample temperature 40 °C; 60 µm, 9 min, 60 °C; and 90 µm, 6 min, 40 °C. For nectars, the top three were treatments 120 µm, 9 min, 20 °C; 60 µm, 9 min, 60 °C; and A2.16 60 µm, 9 min, 20 °C. This type of quality model enables a more complex measure of large scale of different quality parameters. Its simplicity should be understood as its practical advantage and, as such, this tool can be a part of design quality when using novel preservation technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Tether deployment monitoring system, phase 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An operational Tether Deployment Monitoring System (TEDEMS) was constructed that would show system functionality in a terrestrial environment. The principle function of the TEDEMS system is the launching and attachment of reflective targets onto the tether during its deployment. These targets would be tracked with a radar antenna that was pointed towards the targets by a positioning system. A spring powered launcher for the targets was designed and fabricated. An instrumentation platform and launcher were also developed. These modules are relatively heavy and will influence tether deployment scenarios, unless they are released with a velocity and trajectory closely matching that of the tether. Owing to the tracking range limitations encountered during field trails of the Radar system, final TEDEMS system integration was not completed. The major module not finished was the system control computer. The lack of this device prevented any subsystem testing or field trials to be conducted. Other items only partially complete were the instrumentation platform launcher and modules and the radar target launcher. The work completed and the tests performed suggest that the proposed system continues to be a feasible approach to tether monitoring, although additional effort is still necessary to increase the range at which modules can be detected. The equipment completed and tested, to the extent stated, is available to NASA for use on any future program that requires tether tracking capability.

  14. Creative Uses of Custom Electronics for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Hicks, S.; Aufdenkampe, A. K.; Montgomery, D. S.

    2012-12-01

    The ability to build custom electronic devices specifically suited to a unique task has gotten easier and cheaper, thanks to the recent popularity of open source electronics platforms like Arduino. Using Arduino-based processor boards, we have been creating a variety of helpful devices to perform functions that would have been too expensive to implement with standard methods and commercial hardware. The Christina River Basin CZO is currently operating dozens of homemade dataloggers that are connected to different types of environmental sensors. Most of these Arduino loggers have been deployed for over a year, so our experiences with them and their sensors have taught us a lot about the reliability and accuracy of both the loggers and the sensors. Some loggers also have the capability for wireless radio or ethernet data transmission for reporting live data to web sites for instant graphing or archiving. Other Arduino devices have the ability to be controlled remotely through web sites or telephones, making it easy to remotely trigger sample pumps or valves. The open-source nature of Arduino means collaboration is easy because the circuit schematics and source code for programming the boards can be shared between users. And because Arduino devices are easy to use and program, we developed an interface board that allows educators to easily connect a variety of inexpensive environmental sensors to an Arduino board. Then the students can write and upload simple programs to interact with the sensors, making it a very effective tool for teaching electronics and environmental science at the same time. The flexibility and capability of electronics prototyping platforms like Arduino mean these simple boards can cheaply and effectively perform a countless number of tasks for projects in environmental science and education.

  15. Using 100G Network Technology in Support of Petascale Science

    NASA Technical Reports Server (NTRS)

    Gary, James P.

    2011-01-01

    NASA in collaboration with a number of partners conducted a set of individual experiments and demonstrations during SC 10 that collectively were titled "Using 100G Network Technology in Support of Petascale Science". The partners included the iCAIR, Internet2, LAC, MAX, National LambdaRail (NLR), NOAA and SCinet Research Sandbox (SRS) as well as the vendors Ciena, Cisco, ColorChip, cPacket, Extreme Networks, Fusion-io, HP and Panduit who most generously allowed some of their leading edge 40G/100G optical transport, Ethernet switch and Internet Protocol router equipment and file server technologies to be involved. The experiments and demonstrations featured different vendor-provided 40G/100G network technology solutions for full-duplex 40G and 100G LAN data flows across SRS-deployed single-node fiber-pairs among the Exhibit Booths of NASA, the National Center for Data lining, NOAA and the SCinet Network Operations Center, as well as between the NASA Exhibit Booth in New Orleans and the Starlight Communications Exchange facility in Chicago across special SC 10- only 80- and 100-Gbps wide area network links provisioned respectively by the NLR and Internet2, then on to GSFC across a 40-Gbps link. provisioned by the Mid-Atlantic Crossroads. The networks and vendor equipment were load-stressed by sets of NASA/GSFC High End Computer Network Team-built, relatively inexpensive, net-test-workstations that are capable of demonstrating greater than 100Gbps uni-directional nuttcp-enabled memory-to-memory data transfers, greater than 80-Gbps aggregate--bidirectional memory-to-memory data transfers, and near 40-Gbps uni-directional disk-to-disk file copying. This paper will summarize the background context, key accomplishments and some significances of these experiments and demonstrations.

  16. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they entermore » and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.« less

  17. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  18. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

    DTIC Science & Technology

    2012-09-30

    deployment of a comprehensive optical suite including underwater video- polarimetry (full Stokes vector video-imaging camera custom-built Cummings; and...During field operations, we couple polarimetry measurements of live, free-swimming animals in their environments with a full suite of optical...Seibel, Ahmed). We also restrain live, awake animals to take polarimetry measurements (in the field and laboratory) under a complete set of

  19. Integrated Field Testing of Fuel Cells and Micro-Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerome R. Temchin; Stephen J. Steffel

    A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This reportmore » contains installation and operation issues as well as the utility perspective on DG deployment.« less

  20. Architectures and methodologies for future deployment of multi-site Zettabyte-Exascale data handling platforms

    NASA Astrophysics Data System (ADS)

    Acín, V.; Bird, I.; Boccali, T.; Cancio, G.; Collier, I. P.; Corney, D.; Delaunay, B.; Delfino, M.; dell'Agnello, L.; Flix, J.; Fuhrmann, P.; Gasthuber, M.; Gülzow, V.; Heiss, A.; Lamanna, G.; Macchi, P.-E.; Maggi, M.; Matthews, B.; Neissner, C.; Nief, J.-Y.; Porto, M. C.; Sansum, A.; Schulz, M.; Shiers, J.

    2015-12-01

    Several scientific fields, including Astrophysics, Astroparticle Physics, Cosmology, Nuclear and Particle Physics, and Research with Photons, are estimating that by the 2020 decade they will require data handling systems with data volumes approaching the Zettabyte distributed amongst as many as 1018 individually addressable data objects (Zettabyte-Exascale systems). It may be convenient or necessary to deploy such systems using multiple physical sites. This paper describes the findings of a working group composed of experts from several

  1. Habitat Demonstration Unit Medical Operations Workstation Upgrades

    NASA Technical Reports Server (NTRS)

    Trageser, Katherine H.

    2011-01-01

    This paper provides an overview of the design and fabrication associated with upgrades for the Medical Operations Workstation in the Habitat Demonstration Unit. The work spanned a ten week period. The upgrades will be used during the 2011 Desert Research and Technology Studies (Desert RATS) field campaign. Upgrades include a deployable privacy curtain system, a deployable tray table, an easily accessible biological waste container, reorganization and labeling of the medical supplies, and installation of a retractable camera. All of the items were completed within the ten week period.

  2. Pathfinder

    NASA Image and Video Library

    1999-03-01

    NASA's Propulsive Small Expendable Deployer System experiment (ProSEDS) will demonstrate the use of an electrodynamic tether, basically a long, thin wire, for propulsion. An electrodynamic tether uses the same principles as electric motors in toys, appliances and computer disk drives, and generators in automobiles and power plants. When electrical current is flowing through the tether, a magnetic field is produced that pushes against the magnetic field of the Earth. For ProSEDS, the current in the tether results by virtue of the voltage generated when the tether moves through the Earth's magnetic field at more than 17,000 mph. This approach can produce drag thrust generating useable power. Since electrodynamic tethers require no propellant, they could substantially reduce the weight of the spacecraft and provide a cost-effective method of reboosting spacecraft. The initial flight of ProSEDS is scheduled to fly aboard an Air Force Delta II rocket in the summer of 2002. In orbit, ProSEDS will deploy from a Delta II second stage. It will be a 3.1-mile (5 kilometer) long, ultrathin base-wire cornected with a 6.2-mile (10 kilometer) long nonconducting tether. This photograph shows Less Johnson, a scientist at MSFC inspecting the nonconducting part of a tether as it exits a deployer similar to the one to be used in the ProSEDS experiment. The ProSEDS experiment is managed by the Space Transportation Directorate at MSFC.

  3. Evaluation and Comparison of Methods for Measuring Ozone ...

    EPA Pesticide Factsheets

    Ambient evaluations of the various ozone and NO2 methods were conducted during field intensive studies as part of the NASA DISCOVER-AQ project conducted during July 2011 near Baltimore, MD; January – February 2013 in the San Juaquin valley, CA; September 2013 in Houston, TX; and July – August 2014 near Denver, CO. During field intensive studies, instruments were calibrated according to manufacturers’ operation manuals and in accordance with FRM requirements listed in 40 CFR 50. During the ambient evaluation campaigns, nightly automated zero and span checks were performed to monitor the validity of the calibration and control for drifts or variations in the span and/or zero response. Both the calibration gas concentrations and the nightly zero and span gas concentrations were delivered using a dynamic dilution calibration system (T700U/T701H, Teledyne API). The analyzers were housed within a temperature-controlled shelter during the sampling campaigns. A glass inlet with sampling height located approximately 5 m above ground level and a subsequent sampling manifold were shared by all instruments. Data generated by all analyzers were collected and logged using a field deployable data acquisition system (Envidas Ultimate). A summary of instruments used during DISCOVER-AQ deployment are listed in Table 1. Figure 1 shows a typical DISCOVER-AQ site (Houston 2013) where EPA (and others) instrumentation was deployed. Under the Clean Air Act, the U.S. EPA has estab

  4. Doppler lidar characterization of the boundary layer for aircraft mass-balance estimates of greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Hardesty, R.; Brewer, A.; Banta, R. M.; Senff, C. J.; Sandberg, S. P.; Alvarez, R. J.; Weickmann, A. M.; Sweeney, C.; Karion, A.; Petron, G.; Frost, G. J.; Trainer, M.

    2012-12-01

    Aircraft-based mass balance approaches are often used to estimate greenhouse gas emissions from distributed sources such as urban areas and oil and gas fields. A scanning Doppler lidar, which measures range-resolved wind and aerosol backscatter information, can provide important information on mixing and transport processes in the planetary boundary layer for these studies. As part of the Uintah Basin Winter Ozone Study, we deployed a high resolution Doppler lidar to characterize winds and turbulence, atmospheric mixing, and mixing layer depth in the oil and gas fields near Vernal, Utah. The lidar observations showed evolution of the horizontal wind field, vertical mixing and aerosol structure for each day during the 5-week deployment. This information was used in conjunction with airborne in situ observations of methane and carbon dioxide to compute methane fluxes and estimate basin-wide methane emissions. A similar experiment incorporating a lidar along with a radar wind profiler and instrumented aircraft was subsequently carried out in the vicinity of the Denver-Julesburg Basin in Colorado. Using examples from these two studies we discuss the use of Doppler lidar in conjunction with other sources of wind information and boundary layer structure for mass-balance type studies. Plans for a one-year deployment of a Doppler lidar as part of the Indianapolis Flux experiment to estimate urban-scale greenhouse gas emissions near are also presented.

  5. Supporting the joint warfighter by development, training, and fielding of man-portable UGVs

    NASA Astrophysics Data System (ADS)

    Ebert, Kenneth A.; Stratton, Benjamin V.

    2005-05-01

    The Robotic Systems Pool (RSP), sponsored by the Joint Robotics Program (JRP), is an inventory of small robotic systems, payloads, and components intended to expedite the development and integration of technology into effective, supportable, fielded robotic assets. The RSP loans systems to multiple users including the military, first-responders, research organizations, and academia. These users provide feedback in their specific domain, accelerating research and development improvements of robotic systems, which in turn allow the joint warfighter to benefit from such changes more quickly than from traditional acquisition cycles. Over the past year, RSP assets have been used extensively for pre-deployment operator and field training of joint Explosive Ordnance Disposal (EOD) teams, and for the training of Navy Reservist repair technicians. These Reservists are part of the Robotic Systems Combat Support Platoon (RSCSP), attached to Space and Naval Warfare Systems Center, San Diego. The RSCSP maintains and repairs RSP assets and provides deployable technical support for users of robotic systems. Currently, a small team from the RSCSP is deployed at Camp Victory repairing and maintaining man-portable unmanned ground vehicles (UGVs) used by joint EOD teams in Operation Iraqi Freedom. The focus of this paper is to elaborate on the RSP and RSCSP and their role as invaluable resources for spiral development in the robotics community by gaining first-hand technical feedback from the warfighter and other users.

  6. Novel Sensor for the In Situ Measurement of Uranium Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatfield, Kirk

    2015-02-10

    The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction withmore » DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under controlled field conditions. In the third and fourth year a suite of larger field studies were conducted. For these studies, the uranium flux sensor was used with uranium speciation measurements and molecular-biological tools to characterize microbial community and active biomass at synonymous wells distributed in a large grid. These field efforts quantified spatial changes in uranium flux and field-scale rates of uranium attenuation (ambient and stimulated), uranium stability, and quantitatively assessed how fluxes and effective reaction rates were coupled to spatial variations in microbial community and active biomass. Analyses of data from these field experiments were used to generate estimates of Monod kinetic parameters that are ‘effective’ in nature and optimal for modeling uranium fate and transport at the field-scale. This project provided the opportunity to develop the first sensor that provides direct measures of both uranium (VI) and groundwater flux. A multidisciplinary team was assembled to include two geochemists, a microbiologist, and two quantitative contaminant hydrologists. Now that the project is complete, the sensor can be deployed at DOE sites to evaluate field-scale uranium attenuation, source behavior, the efficacy of remediation, and off-site risk. Because the sensor requires no power, it can be deployed at remote sites for periods of days to months. The fundamental science derived from this project can be used to advance the development of predictive models for various transport and attenuation processes in aquifers. Proper development of these models is critical for long-term stewardship of contaminated sites in the context of predicting uranium source behavior, remediation performance, and off-site risk.« less

  7. A scalable PC-based parallel computer for lattice QCD

    NASA Astrophysics Data System (ADS)

    Fodor, Z.; Katz, S. D.; Pappa, G.

    2003-05-01

    A PC-based parallel computer for medium/large scale lattice QCD simulations is suggested. The Eo¨tvo¨s Univ., Inst. Theor. Phys. cluster consists of 137 Intel P4-1.7GHz nodes. Gigabit Ethernet cards are used for nearest neighbor communication in a two-dimensional mesh. The sustained performance for dynamical staggered (wilson) quarks on large lattices is around 70(110) GFlops. The exceptional price/performance ratio is below $1/Mflop.

  8. DDN (Defence Data Network) Protocol Implementations and Vendors Guide

    DTIC Science & Technology

    1988-08-01

    Artificial Intelligence Laboratory Room NE43-723 545 Technology Square Cambridge, MA 02139 (617) 253-8843 S John Wroclawski, (JTW@AI.AJ.MIT.EDU...Massachusetts Institute of Technology Artificial Intelligence Laboratory Room NE43-743 545 Technology Square 0 Cambridge, MA 02139 (617) 253-7885 ORDERING...TCP/IP Network Software for PC-DOS Systems CPU: IBM-PC/XT/AT/compatible in conjunction with EXOS 205 Inteligent Ethernet Controller for PCbus 0/s

  9. Rotary Kiln Gasification of Solid Waste for Base Camps

    DTIC Science & Technology

    2017-10-02

    cup after full day run 3.3 Feedstock Handling System Garbage bags containing waste feedstock are placed into feed bin FB-101. Ram feeder RF-102...Environmental Science and Technology using the Factory Talk SCADA software running on a laptop computer. A wireless Ethernet router that is located within the...pyrolysis oil produced required consistent draining from the system during operation and became a liquid waste disposal problem. A 5-hour test run could

  10. Dual-Use Telemedicine Support System for Pathology.

    DTIC Science & Technology

    1998-12-01

    Pathology 2.6.3 Conclusion 2.7 UMC/Cortex Medical Management Systems Demo by Judith Krebs and Mark Stevens (cyto geneticist) 2.7.1 Conclusion 2.7.2...Systems demo by Judith Krebs and Mark Stevens (cyto geneticist) Mrs. Krebs was coming into Tucson to check on the newly installed Gold Standard System at...The system uses a Novell and Ethernet networks and gives reasonably fast response. Judith has found that doctors are definitely becoming more

  11. Intelligent Advanced Communications IP Telephony Feasibility for the U.S. Navy: Phase 2

    DTIC Science & Technology

    2009-03-31

    PDAs) and smart phones. In addition, it considers how solutions integrate on-premise enterprise functions with the functions of mobile operators...and Control System GIG Global Information Grid GigE Gigabit Ethernet GIPS Global IP Solutions Inc. GMSK Gaussian Minimum Shift Keying GPHY Gigabit...Feasibility for the U.S. Navy – Phase 2 UAC User Agent Client UART Universal Asynchronous Receiver/Transmitter UAS User Agent Server UCR

  12. The Johns Hopkins Medical Institutions' Premise Distribution Plan

    PubMed Central

    Barta, Wendy; Buckholtz, Howard; Johnston, Mark; Lenhard, Raymond; Tolchin, Stephen; Vienne, Donald

    1987-01-01

    A Premise Distribution Plan is being developed to address the growing voice and data communications needs at Johns Hopkins Medical Institutions. More specifically, the use of a rapidly expanding Ethernet computer network and a new Integrated Services Digital Network (ISDN) Digital Centrex system must be planned to provide easy, reliable and cost-effective data and voice communications services. Existing Premise Distribution Systems are compared along with voice and data technologies which would use them.

  13. DDN (Defense Data Network) Protocol Implementations and Vendors Guide,

    DTIC Science & Technology

    1988-02-01

    TELNET) TCP/IP on an ethernet network. The program simulates a Hayes modem through the serial port. BWFTP is a thorough implementation of the FTP...25 IMP interface at VV from 19.2 Kbps to 56K bps. The IP, ICMP, TCP, Telnet. FFP and SMTP protocols are implemented along with R-Utxities...WANs. microcomputers, dataswitches. minicomputers. "black boxes" and modems . DOCUMENTATION: Software System Overview, Generic X.25 Porting Guide

  14. DDN (Defense Data Network) Protocol Implementations and Vendors Guide

    DTIC Science & Technology

    1987-08-01

    length. Lower rates can be selected or determined by attached modem types 303, 209, V.35, or 188-114. Units are in pairs, one at each end of the...ECUs communicate with the IMP via direct cable or modems . DOCUMENTATION: Fully documented vendor product; descriptive literature available...terminals, PCs and modems to an Ethernet. The device can support up to 80 lines and 2 parallel printers. Full domain naming is supported as well as

  15. A Multi-scale Cognitive Approach to Intrusion Detection and Response

    DTIC Science & Technology

    2015-12-28

    the behavior of the traffic on the network, either by using mathematical formulas or by replaying packet streams. As a result, simulators depend...large scale. Summary of the most important results We obtained a powerful machine, which has 768 cores and 1.25 TB memory . RBG has been...time. Each client is configured with 1GB memory , 10 GB disk space, and one 100M Ethernet interface. The server nodes include web servers

  16. Hardware-in-the-Loop Testing of Wireless Sensor Networks

    DTIC Science & Technology

    2009-09-01

    sensor and missile systems with visible, infrared, acoustic, and seismic sensors has become common place in the test and evaluation (T& E ) community...combined performance has the potential to be greater than the sum of the individual system capabilities. The T& E of the system of systems must take into...2009 335 simulation is executed on a Silicon Graphics Inc. ( Freemont , California) Altix XE 320 cluster with gigabit Ethernet connections. One

  17. Advanced On-the-Job Training System: System Specification

    DTIC Science & Technology

    1990-05-01

    3.1.5.2.10 Evaluation Subsystem spotfor the Traking Devopment and Deliery Subsystem ..... 22 3.1.5.2.11 TrIning Development=dDelivery Subsystem sL...e. Alsys Ada compiler f. Ethernet Local Area Network reference manual(s) g. Infotron 992 network reference manual(s) h. Computer Program Source...1989 a. Daily check of mainframe components, including all elements critical to support the terminal network . b. Restoration of mainframe equipment

  18. Robust Airborne Networking Extensions (RANGE)

    DTIC Science & Technology

    2008-02-01

    IMUNES [13] project, which provides an entire network stack virtualization and topology control inside a single FreeBSD machine . The emulated topology...Multicast versus broadcast in a manet.” in ADHOC-NOW, 2004, pp. 14–27. [9] J. Mukherjee, R. Atwood , “ Rendezvous point relocation in protocol independent...computer with an Ethernet connection, or a Linux virtual machine on some other (e.g., Windows) operating system, should work. 2.1 Patching the source code

  19. Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign

    NASA Astrophysics Data System (ADS)

    Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.

    2004-12-01

    A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.

  20. An agronomic field-scale sensor network for monitoring soil water and temperature variation

    NASA Astrophysics Data System (ADS)

    Brown, D. J.; Gasch, C.; Brooks, E. S.; Huggins, D. R.; Campbell, C. S.; Cobos, D. R.

    2014-12-01

    Environmental sensor networks have been deployed in a variety of contexts to monitor plant, air, water and soil properties. To date, there have been relatively few such networks deployed to monitor dynamic soil properties in cropped fields. Here we report on experience with a distributed soil sensor network that has been deployed for seven years in a research farm with ongoing agronomic field operations. The Washington State University R. J. Cook Agronomy Farm (CAF), Pullman, WA, USA has recently been designated a United States Department of Agriculture (USDA) Long-Term Agro-Ecosystem Research (LTAR) site. In 2007, 12 geo-referenced locations at CAF were instrumented, then in 2009 this network was expended to 42 locations distributed across the 37-ha farm. At each of this locations, Decagon 5TE probes (Decagon Devices Inc., Pullman, WA, USA) were installed at five depths (30, 60, 90, 120, and 150 cm), with temperature and volumetric soil moisture content recorded hourly. Initially, data loggers were wirelessly connected to a data station that could be accessed through a cell connection, but due to the logistics of agronomic field operations, we later buried the dataloggers at each site and now periodically download data via local radio transmission. In this presentation, we share our experience with the installation, maintenance, calibration and data processing associated with an agronomic soil monitoring network. We also present highlights of data derived from this network, including seasonal fluctuations of soil temperature and volumetric water content at each depth, and how these measurements are influenced by crop type, soil properties, landscape position, and precipitation events.

  1. Pattern mining of user interaction logs for a post-deployment usability evaluation of a radiology PACS client.

    PubMed

    Jorritsma, Wiard; Cnossen, Fokie; Dierckx, Rudi A; Oudkerk, Matthijs; van Ooijen, Peter M A

    2016-01-01

    To perform a post-deployment usability evaluation of a radiology Picture Archiving and Communication System (PACS) client based on pattern mining of user interaction log data, and to assess the usefulness of this approach compared to a field study. All user actions performed on the PACS client were logged for four months. A data mining technique called closed sequential pattern mining was used to automatically extract frequently occurring interaction patterns from the log data. These patterns were used to identify usability issues with the PACS. The results of this evaluation were compared to the results of a field study based usability evaluation of the same PACS client. The interaction patterns revealed four usability issues: (1) the display protocols do not function properly, (2) the line measurement tool stays active until another tool is selected, rather than being deactivated after one use, (3) the PACS's built-in 3D functionality does not allow users to effectively perform certain 3D-related tasks, (4) users underuse the PACS's customization possibilities. All usability issues identified based on the log data were also found in the field study, which identified 48 issues in total. Post-deployment usability evaluation based on pattern mining of user interaction log data provides useful insights into the way users interact with the radiology PACS client. However, it reveals few usability issues compared to a field study and should therefore not be used as the sole method of usability evaluation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. ULTIMATE: a deployable multiple integral field unit for Subaru

    NASA Astrophysics Data System (ADS)

    Ellis, S. C.; Zhelem, Ross; Brown, David; Staszak, Nicholas F.; Lidman, Chris; Nataf, David M.; Casey, Andrew R.; Xavier, Pascal; Sheinis, Andrew; Gillingham, Peter; Tims, Julia; Lawrence, Jon; Bryant, Julia; Sharp, Rob

    2016-08-01

    ULTIMATE is an instrument concept under development at the AAO, for the Subaru Telescope, which will have the unique combination of ground layer adaptive optics feeding multiple deployable integral field units. This will allow ULTIMATE to probe unexplored parameter space, enabling science cases such as the evolution of galaxies at z 0:5 to 1.5, and the dark matter content of the inner part of our Galaxy. ULTIMATE will use Starbugs to position between 7 and 13 IFUs over a 14 × 8 arcmin field-of-view, pro- vided by a new wide-field corrector. All Starbugs can be positioned simultaneously, to an accuracy of better than 5 milli-arcsec within the typical slew-time of the telescope, allowing for very efficient re-configuration between observations. The IFUs will feed either the near-infrared nuMOIRCS or the visible/ near-infrared PFS spectrographs, or both. Future possible upgrades include the possibility of purpose built spectrographs and incorporating OH suppression using fibre Bragg gratings. We describe the science case and resulting design requirements, the baseline instrument concept, and the expected performance of the instrument.

  3. Multifaceted contributions: health workers and smallpox eradication in India.

    PubMed

    Bhattacharya, Sanjoy

    2008-01-01

    Smallpox eradication in South Asia was a result of the efforts of many grades of health-workers. Working from within the confines of international organisations and government structures, the role of the field officials, who were of various nationalities and also drawn from the cities and rural enclaves of the countries in these regions, was crucial to the development and deployment of policies. However, the role of these personnel is often downplayed in official histories and academic histories, which highlight instead the roles played by a handful of senior officials within the World Health Organization and the federal governments in the sub-continent. This article attempts to provide a more rounded assessment of the complex situation in the field. In this regard, an effort is made to underline the great usefulness of the operational flexibility displayed by field officers, wherein lessons learnt in the field were made an integral part of deploying local campaigns; careful engagement with the communities being targeted, as well as the employment of short term workers from amongst them, was an important feature of this work.

  4. Comparison of on-site field measured inorganic arsenic in rice with laboratory measurements using a field deployable method: Method validation.

    PubMed

    Mlangeni, Angstone Thembachako; Vecchi, Valeria; Norton, Gareth J; Raab, Andrea; Krupp, Eva M; Feldmann, Joerg

    2018-10-15

    A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water was modified into a field deployable method (FDM) to measure iAs in rice. While the method has been validated to give precise and accurate results in the laboratory, its on-site field performance has not been evaluated. This study was designed to test the method on-site in Malawi in order to evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated reference method and giving original data on inorganic arsenic in Malawian rice and rice-based products. The method was validated by using the established laboratory-based HPLC-ICPMS. Statistical tests indicated there were no significant differences between on-site and laboratory iAs measurements determined using the FDM (p = 0.263, ά = 0.05) and between on-site measurements and measurements determined using HPLC-ICP-MS (p = 0.299, ά = 0.05). This method allows quick (within 1 h) and efficient screening of rice containing iAs concentrations on-site. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. FInd Gas Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, Bryan; Sauer, Jeremy; Dubey, Manvendra

    2017-02-24

    FIGS is a neural network software that ingests real time synchronized field data on environmental flow fields and turbulence and gas concentration variations at high frequency and uses an error minimization algorithm to locate the gas source and quantify its strength. The software can be interfaced with atmospheric, oceanic and subsurface instruments in a variety of platforms stationary or mobile (e.g. cars, UAVs, submersible vehicles or boreholes) and used to find gas sources by smart use of data and phenomenology. FIGS can be trained by phenomenological model of the flow fields in the environment of interest and/or be calibrated bymore » controlled release. After initial deployment the FIGS learning will grow with time as it accumulates data on source quantification. FIGS can be installed on any computer from small beagle-bones for field deployment/end-use to PC/MACs/main-frame for training/analysis. FIGS has been trained (using LANL's high resolution atmospheric simulations) and calibrated, tested and evaluated in the field and shown to perform well in finding and quantifying methane leaks at 10-100m scales at well pads by ingesting atmospheric measurements. The code is applicable to gas and particle source location at large scales.« less

  6. MODIS airborne simulator visible and near-infrared calibration, 1992 ASTEX field experiment. Calibration version: ASTEX King 1.0

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared (near-IR) channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1992 Atlantic Stratocumulus Transition Experiment (ASTEX) field deployment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Tests during the ASTEX deployment were conducted to calibrate the hemisphere and then the MAS. This report summarizes the ASTEX hemisphere calibration, and then describes how the MAS was calibrated from the hemisphere data. All MAS calibration measurements are presented and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. In addition, comparisons to an independent MAS calibration by Ames personnel using their 30-inch integrating sphere is discussed.

  7. Injury risk to restrained children exposed to deployed first- and second-generation air bags in frontal crashes.

    PubMed

    Arbogast, Kristy B; Durbin, Dennis R; Kallan, Michael J; Elliott, Michael R; Winston, Flaura K

    2005-04-01

    To estimate the risk of serious nonfatal injuries in frontal crashes among belted children seated in the right front seat of vehicles in which second-generation passenger air bags deployed compared with that of belted children seated in the right front seat of vehicles in which first-generation passenger air bags deployed. We enrolled a probability sample of 1781 seat belt-restrained occupants aged 3 through 15 years seated in the right front seat, exposed to deployed passenger air bags in frontal crashes involving insured vehicles in 3 large US regions, between December 1, 1998, and November 30, 2002. A telephone interview was conducted with the driver of the vehicle using a previously validated instrument. The study sample was weighted according to each subject's probability of selection, with analyses conducted on the weighted sample. Main Outcome Measure Risk of serious injury (Abbreviated Injury Scale score of > or =2 injuries and facial lacerations). The risk of serious injury for restrained children in the right front seat exposed to deployed second-generation passenger air bags was 9.9%, compared with 14.9% for similar children exposed to deployed first-generation passenger air bags (adjusted odds ratio, 0.59; 95% confidence interval, 0.36-0.97). This study provides evidence based on field data that the risk of injury to children exposed to deploying second-generation passenger air bags is reduced compared with earlier designs.

  8. The development of expertise using an intelligent computer-aided training system

    NASA Technical Reports Server (NTRS)

    Johnson, Debra Steele

    1991-01-01

    An initial examination was conducted of an Intelligent Tutoring System (ITS) developed for use in industry. The ITS, developed by NASA, simulated a satellite deployment task. More specifically, the PD (Payload Assist Module Deployment)/ICAT (Intelligent Computer Aided Training) System simulated a nominal Payload Assist Module (PAM) deployment. The development of expertise on this task was examined using three Flight Dynamics Officer (FDO) candidates who has no previous experience with this task. The results indicated that performance improved rapidly until Trial 5, followed by more gradual improvements through Trial 12. The performance dimensions measured included performance speed, actions completed, errors, help required, and display fields checked. Suggestions for further refining the software and for deciding when to expose trainees to more difficult task scenarios are discussed. Further, the results provide an initial demonstration of the effectiveness of the PD/ICAT system in training the nominal PAM deployment task and indicate the potential benefits of using ITS's for training other FDO tasks.

  9. The development of expertise on an intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Johnson, Debra Steele

    1989-01-01

    An initial examination was conducted of an Intelligent Tutoring System (ITS) developed for use in industry. The ITS, developed by NASA, simulated a satellite deployment task. More specifically, the PD (Payload Assist Module Deployment)/ICAT (Intelligent Computer Aided Training) System simulated a nominal Payload Assist Module (PAM) deployment. The development of expertise on this task was examined using three Flight Dynamics Officer (FDO) candidates who had no previous experience with this task. The results indicated that performance improved rapidly until Trial 5, followed by more gradual improvements through Trial 12. The performance dimensions measured included performance speed, actions completed, errors, help required, and display fields checked. Suggestions for further refining the software and for deciding when to expose trainees to more difficult task scenarios are discussed. Further, the results provide an initial demonstration of the effectiveness of the PD/ICAT system in training the nominal PAM deployment task and indicate the potential benefits of using ITS's for training other FDO tasks.

  10. Photodegradation of polyaromatic hydrocarbons in passive air samplers: Field testing different deployment chambers

    USGS Publications Warehouse

    Bartkow, M.E.; Kennedy, K.E.; Huckins, J.N.; Holling, N.; Komarova, T.; Muller, J.F.

    2006-01-01

    Semi-permeable membrane devices (SPMDs) were loaded with deuterated anthracene and pyrene as performance reference compounds (PRCs) and deployed at a test site in four different chambers (open and closed box chamber, bowl chamber and cage chamber) for 29 days. The losses of PRCs and the uptake of polyaromatic hydrocarbons (PAHs) from the ambient air were quantified. UV-B levels measured in each deployment chamber indicated that SPMDs would be exposed to the most UV-B in the cage chamber and open box chamber. Significantly less PAHs were quantified in SPMDs deployed in the cage chamber and open box chamber compared to samplers from the other two chambers, suggesting that photodegradation of PAHs had occurred. The loss of PRCs confirmed these results but also showed that photodegradation was occurring in the closed box chamber. The bowl chamber appears to provide the best protection from the influence of direct photodegradation. ?? 2006 Elsevier Ltd. All rights reserved.

  11. The UIST image slicing integral field unit

    NASA Astrophysics Data System (ADS)

    Ramsay Howat, S.; Todd, S.; Wells, M.; Hastings, P.

    2006-06-01

    The UKIRT Imager Spectrometer (UIST) contains a deployable integral field unit which is one of the most popular modes of this common-user instrument. In this paper, we review all aspects of the UIST IFU from the design and production of the aluminium mirrors to the integration with the telescope system during commissioning. Reduction of the integral field data is fully supported by the UKIRT data reduction pipeline, ORAC-DR.

  12. Treatment for Uncomplicated Plasmodium falciparum Malaria in French Soldiers Deployed in Sub-Saharan Africa: Gaps Between Policy and Field Practice.

    PubMed

    Perisse, Anne; Velut, Guillaume; Javelle, Emilie; Loarer, Gwion; Michel, Remy; Simon, F

    2018-02-07

    Malaria prevention and treatment are big challenges for the French forces deployed in sub-Saharan Africa. Since December 2013, 1,800 French soldiers have been deployed at any one time in the Central African Republic in the framework of "Operation Sangaris" and European Union Force (EUFOR). Over the 2014-2015 period, about 500 cases of malaria were notified in these troops during the operation or after their return (annual incidence: 13.4 p.100 person-year). The recommendation to use dihydroartemisinin-piperaquine (DHA-PQ) as the first-line treatment for French soldiers suffering from uncomplicated Plasmodium falciparum malaria in endemic areas is not always followed in practice in the field by French military general practitioners (GPs). We conduced a retrospective Knowledge-Attitude-Practice study by self-administered questionnaire, to all military French doctors who were in mission in Central African Republic from January 2014 to July 2015 to try to understand what were the reasons for the GP not to prescribe DHA-PQ on the field. Thirty-six GPs (53%) answered to the questionnaire. Eighty-three percent of them knew about the recommendation to use DHA-PQ for un uncomplicated Pf malaria. Fifty-eight percent had a favorable attitude toward DHA-PQ. The factors associated with the prescription of another drug (Atovaquone-proguanil) were: the habit (odds ratio [OR] 0.1, confidence interval (CI) 0-0.6], the fact that Atovaquone-proguanil is more practical to use [OR 0.01, CI 0-0.1]. In practice, only 37.5% prescribed DHA-PQ the most of the time during their mission. Factors associated with a non-favorable attitude toward DHA-PQ were: the necessity to calculate a QTc interval during the treatment [OR 0.2, confidence interval 0-0.9], and the fact that DHA-PQ must be taken on an empty stomach [OR 0.3, CI 0.1-0.8]. GP who received a formation before their mission about malaria and treatment had a favorable attitude toward DHA-PQ. There is very satisfactory knowledge by the military GPs stationed in the Central African Republic on both the recommendations and prescription of antimalarial drugs. The present study highlights some difficulties in implementing the recommendations in an operational context, notably factors limiting the prescription of DHA-PQ during military deployment (need for ECG monitoring, empty stomach, and lack of habit). Proposals can be made to improve the efficacy, tolerance, and practicability of malaria treatment in the field. The main focus should be a more flexible application of the French DHA-PQ risk management plan in the field, specific training and communication about DHA-PQ use, the generalization of ECG printing equipment in the field, and the switch from DHA-PQ to an alternative artemisinin-based combination therapy during deployments in malaria-endemic areas. © Association of Military Surgeons of the United States 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Investigation of hydrologic and biogeochemical controls on arsenic mobilization using distributed sensing at a field site in Munshiganj, Bangladesh

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Estrin, D.; Harmon, T.; Harvey, C.; Jay, J.; Kohler, E.; Rothenberg, S.

    2006-12-01

    The presence of arsenic in the groundwater has led to the largest environmental poisoning in history; tens of millions of people in the Ganges Delta continue to drink groundwater that is dangerously contaminated with arsenic. A current working hypothesis is that arsenic is mobilized in the near surface environment where sediments are weathered by seasonal changes in the redox state that drive a cycle of pyrite oxidation and iron oxide reduction. In order to test the supporting hypothesis that subsurface geochemical changes may be induced by agricultural activity, we deployed 42 wirelessly networked ion-selective electrodes, including calcium, ammonium, nitrate, ORP, chloride, carbonate, and pH in a rice paddy in the Munshiganj district of Bangladesh in January of 2006. Each sensor was connected to an MDA300 sensor board and Mica2 wireless transceiver and computational device. Over a period of 11 days, we observed clear diel, and diurnal trends in 4 of the electrodes (calcium, ammonium, chloride and carbonate). The trends may be due to hydrological changes, or geochemical changes induced either by photosynthesis in the overlying water (which then infiltrated to the depth of the sensors) or in the root zone of rice plants. While the spatiotemporally dense measurements from wireless sensor networks enable scientists to ask new questions and elucidate complex relationships in heterogeneous physical environments such as soil, there are many practical issues to address in order to collect data usable for scientific purposes. For example, in response to a stream of faults in one of our sensor network deployments, we designed Sympathy to enable users to find and fix problems impacting the quantity of data collected in the field. Sympathy detects packet loss experienced at the base station and systematically assigns blame to faulty components in the network for remediation, replacing the prior policy of ad-hoc node rebooting and battery replacements. Sympathy has been deployed in many habitat monitoring sensor networks. While using Sympathy at our Bangladesh field site we received 80% of the sensor data expected at the base station, upon returning, post-deployment analysis revealed that 42% of these sensor data were potentially faulty. Due to the remote location of the deployment, we were unable to go back and validate the questionable segments of the data set, forcing us to discard potentially interesting information. In addition to being undesirable, this response is often avoidable as well. Even simple actions such as checking sensor connections and quickly validating sensors in the field could have increased our confidence in the quality of the data, minimizing doubts that data observations were simply caused by badly behaving hardware. To improve data quality, we have designed a system called Confidence, which continuously monitors data collected at a base-station to identify faulty data and notify the user in the field of actions they can take to validate the data or remediate the sensor fault. Augmenting a sensor network deployment with Confidence and Sympathy enables users in the identification and remediation of faults impacting the quality and quantity of data respectively.

  14. Recent Advances in the Tempest UAS for In-Situ Measurements in Highly-Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Argrow, B. M.; Frew, E.; Houston, A. L.; Weiss, C.

    2014-12-01

    The spring 2010 deployment of the Tempest UAS during the VORTEX2 field campaign verified that a small UAS, supported by a customized mobile communications, command, and control (C3) architecture, could simultaneously satisfy Federal Aviation Administration (FAA) airspace requirements, and make in-situ thermodynamic measurements in supercell thunderstorms. A multi-hole airdata probe was recently integrated into the Tempest UAS airframe and verification flights were made in spring 2013 to collect in-situ wind measurements behind gust fronts produced by supercell thunderstorms in northeast Colorado. Using instantaneous aircraft attitude estimates from the autopilot, the in-situ measurements were converted to inertial wind estimates, and estimates of uncertainty in the wind measurements was examined. To date, the limited deployments of the Tempest UAS have primarily focused on addressing the engineering and regulatory requirements to conduct supercell research, and the Tempest UAS team of engineers and meteorologists is preparing for deployments with the focus on collecting targeted data for meteorological exploration and hypothesis testing. We describe the recent expansion of the operations area and altitude ceiling of the Tempest UAS, engineering issues for accurate inertial wind estimates, new concepts of operation that include the simultaneous deployment of multiple aircraft with mobile ground stations, and a brief description of our current effort to develop a capability for the Tempest UAS to perform autonomous path planning to maximize energy harvesting from the local wind field for increased endurance.

  15. Deploying the ODIS robot in Iraq and Afghanistan

    NASA Astrophysics Data System (ADS)

    Smuda, Bill; Schoenherr, Edward; Andrusz, Henry; Gerhart, Grant

    2005-05-01

    The wars in Iraq and Afghanistan have shown the importance of robotic technology as a force multiplier and a tool for moving soldiers out of harms way. Situations on the ground make soldiers performing checkpoint operations easy targets for snipers and suicide bombers. Robotics technology reduces risk to soldiers and other personnel at checkpoints. Early user involvement in innovative and aggressive development and acquisition strategies are the key to moving robotic and associated technology into the hands of the user. This paper updates activity associated with rapid development of the Omni-Directional Inspection System (ODIS) robot for under vehicle inspection and reports on our field experience with robotics in Iraq and Afghanistan. In February of 2004, two TARDEC Engineers departed for a mission to Iraq and Afghanistan with ten ODIS Robots. Six robots were deployed in the Green Zone in Baghdad. Two Robots were deployed at Kandahar Army Airfield and two were deployed at Bagram Army Airfield in Afghanistan. The TARDEC Engineers who performed this mission trained the soldiers and provided initial on site support. They also trained Exponent employees assigned to the Rapid Equipping Force in ODIS repair. We will discuss our initial deployment, lessons learned and future plans.

  16. Development and evaluation of an open-source, low-cost distributed sensor network for environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Gunawardena, N.; Pardyjak, E. R.; Stoll, R.; Khadka, A.

    2018-02-01

    Over the last decade there has been a proliferation of low-cost sensor networks that enable highly distributed sensor deployments in environmental applications. The technology is easily accessible and rapidly advancing due to the use of open-source microcontrollers. While this trend is extremely exciting, and the technology provides unprecedented spatial coverage, these sensors and associated microcontroller systems have not been well evaluated in the literature. Given the large number of new deployments and proposed research efforts using these technologies, it is necessary to quantify the overall instrument and microcontroller performance for specific applications. In this paper, an Arduino-based weather station system is presented in detail. These low-cost energy-budget measurement stations, or LEMS, have now been deployed for continuous measurements as part of several different field campaigns, which are described herein. The LEMS are low-cost, flexible, and simple to maintain. In addition to presenting the technical details of the LEMS, its errors are quantified in laboratory and field settings. A simple artificial neural network-based radiation-error correction scheme is also presented. Finally, challenges and possible improvements to microcontroller-based atmospheric sensing systems are discussed.

  17. VIRUS: first deployment of the massively replicated fiber integral field spectrograph for the upgraded Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; Tuttle, Sarah E.; Vattiat, Brian L.; Lee, Hanshin; Drory, Niv; Kelz, Andreas; Ramsey, Jason; Peterson, Trent W.; DePoy, D. L.; Marshall, J. L.; Gebhardt, Karl; Chonis, Taylor; Dalton, Gavin; Farrow, Daniel; Good, John M.; Haynes, Dionne M.; Indahl, Briana L.; Jahn, Thomas; Kriel, Hermanus; Montesano, Francesco; Nicklas, Harald; Noyola, Eva; Prochaska, Travis; Allen, Richard D.; Bender, Ralf; Blanc, Guillermo; Fabricius, Maximilian H.; Finkelstein, Steve; Landriau, Martin; MacQueen, Phillip J.; Roth, M. M.; Savage, R. D.; Snigula, Jan M.; Anwad, Heiko

    2016-08-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) consists of 156 identical spectrographs (arrayed as 78 pairs) fed by 35,000 fibers, each 1.5 arcsec diameter, at the focus of the upgraded 10 m Hobby-Eberly Telescope (HET). VIRUS has a fixed bandpass of 350-550 nm and resolving power R 700. VIRUS is the first example of industrial-scale replication applied to optical astronomy and is capable of surveying large areas of sky, spectrally. The VIRUS concept offers significant savings of engineering effort, cost, and schedule when compared to traditional instruments. The main motivator for VIRUS is to map the evolution of dark energy for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX‡), using 0.8M Lyman-alpha emitting galaxies as tracers. The VIRUS array is undergoing staged deployment during 2016 and 2017. It will provide a powerful new facility instrument for the HET, well suited to the survey niche of the telescope, and will open up large spectroscopic surveys of the emission line universe for the first time. We will review the production, lessons learned in reaching volume production, characterization, and first deployment of this massive instrument.

  18. UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications.

    PubMed

    Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Tonolo, Fabio Giulio; Lingua, Andrea

    2015-07-02

    Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author's group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.

  19. Rickettsial infection among military personnel deployed in Northern Sri Lanka.

    PubMed

    Premaratna, Ranjan; Ariyaratna, Nimalka; Attanayake, Champaka; Bandara, Wijesinghe; Chandrasena, Nilmini; de Silva, H Janaka

    2014-12-20

    Military personnel deployed in field actvities report on frequent tick bites. Therefore they may run the risk of exposure to rickettsial organisms. In order to assess the risk of exposure to rickettsial organisms, two groups of military personnel who were deployed in field activities of Nothern Sri Lanka were investigated. The first group was studied in order to assess the sero-prevalence of rickettsioses and consisted of soldiers who were admitted following injuries during field activities. The second group was studied to identify the incidence of acute rickettsioses during their acute febrile presentations. They were tested with IFA-IgG against spotted fever group rickettsioses (SFG), scrub typhus (ST) and murine typhus. In the first group, 48/57 (84%) military personnel had serological evidence of exposure to rickettsioses (in all, IFA-IgG titer ≥ 1:128): 33/50 (66%) to SFG rickettsioses, 1/50 (2%) to ST and 14/50 (28%) had mixed titers for both (in all, titers were higher for SFG). While all of them were in military uniform most of the time and frequently slept on scrub land, 35/57 (61.4%) had never used insect repellents and none were on doxycycline prophylaxis. 48/57 (84%) had experienced tick bites during field activity. In the second group, there were 49 who presented with acute febrile illness with a mean duration of 8.5 days (SD 3.2). 33/49 (67.3%) were serologically positive for acute rickettsioses (IgG ≥1:256); 26 (79%) due to ST and 7 (21%) due to SFG rickettsioses, Exposure to rickettsial disease was common among soldiers who were deployed in Northern Sri Lanka. Scrub typhus was the predominent species accounting for acute febrile illness. Further studies are needed to understand the reasons for very high sero-prevalence for SFG rickettsioses with no anticedent febrile illness. Use of preventive measures was not satisfactory. The high sero-prevelence of SFG rickettsioses is likely to interfere with serological diagnosis of acute SFG rickettsioses in this population.

  20. Deployable Integral Field Units, Multislits, and Image Slicer for the Goodman Imaging Spectrograph on the SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Cecil, Gerald N.; Moffett, A. J.; Cui, Y.; Eckert, K. D.; McBride, J.; Kannappan, S.; Keller, K.; Barlow, B. N.; Dunlap, B.; Bland-Hawthorn, J.

    2010-01-01

    The Goodman Imager-Spectrograph on the 4.1m SOAR telescope has operated on Cerro Pachon, Chile with volume-phase holographic gratings in long-slit mode since its commissioning in 2008. Recently, UNC graduate students played key roles to implement robust upgrades for multi-object spectroscopy that will soon be available to US astronomers through the NOAO time share on SOAR: • Multislits over 3x5 arcmin, generated on PCB solder stencils with exceptional sharpness compared to conventional laser cuts, initially to survey globular clusters for pulsating hot sub-dwarfs • An image slicer to obtain 3 simultaneous parallel spectra 70-arcsec long, 1- or 2-arcsec wide, spanning 320-750 nm to map stellar and gaseous emission and mass over the 1500 galaxies in the RESOLVE survey underway on SOAR • Four integral field units, each composed of 5-arcsec diameter, fused bundles of 0.5-arcsec diameter thin-clad optical fiber, independently deployed over a 10x5 arcmin field targeted by an EMCCD also used for Lucky Imaging. Initially will study aperture effects in single fiber surveys, extragalactic globular clusters, and demonstrate technology prior to deployment on larger telescopes • New wheels supporting a large set of existing narrow-band and Sloan filters • A trombone-style atmospheric dispersion compensator that corrects the full 12-arcmin diameter science field down to 30 deg elevation. Working in UNC's Goodman Laboratory for Astronomical Instrumentation, students employed SolidWorks and ZEMAX to design parts for in-house CAM on CNC machines and a 3D printer. All motors are controlled by LabVIEW as is the SOAR TCS. The deployable IFU axes are controlled by Quicksilver Controls Inc. intelligent servos and $80 model robot (Firgelli Corp.) actuators driven by a PIC-microcontroller and a student designed custom PCB. Upgrades and students were supported by $200K from SOAR Corporation, Research Corporation, NSF, and UNC competitive funds, and NC NASA Space Grant, Sigma Xi, and NASA fellowships.

  1. Austere, remote, and disaster medicine missions: an operational mnemonic can help organize a deployment.

    PubMed

    Macias, Darryl J; Williams, Jason

    2013-01-01

    Medical care in resource-limited environments (austere settings) can occur in the context of a disaster, wilderness, or a tactical field operation. Regardless of the type of environment, there are common organizational themes in most successful humanitarian missions that occur in harsh natural or manmade environmental conditions. These principles prioritize the initiation and execution of any given deployment in austere or remote settings, diverging from priorities that would occur in a situation in which change to the existing medical structure is intact and operating well. Attention to these priorities not only helps providers to deliver medical care to people in need during a period of resource limitations but it also can keep providers, teams, the public, and patients safe during and after a deployment.

  2. Results from laboratory and field testing of nitrate measuring spectrophotometers

    USGS Publications Warehouse

    Snazelle, Teri T.

    2015-01-01

    In Phase II, the analyzers were deployed in field conditions at three diferent USGS sites. The measured nitrate concentrations were compared to discrete (reference) samples analyzed by the Direct UV method on a Shimadzu UV1800 bench top spectrophotometer, and by the National Environmental Methods Index (NEMI) method I-2548-11 at the USGS National Water Quality Laboratory. The first deployment at USGS site 0249620 on the East Pearl River in Hancock County, Mississippi, tested the ability of the TriOs ProPs (10-mm path length), Hach NITRATAX (5 mm), Satlantic SUNA (10 mm), and the S::CAN Spectro::lyser (5 mm) to accurately measure low-level (less than 2 mg-N/L) nitrate concentrations while observing the effect turbidity and colored dissolved organic matter (CDOM) would have on the analyzers' measurements. The second deployment at USGS site 01389005 Passaic River below Pompton River at Two Bridges, New Jersey, tested the analyzer's accuracy in mid-level (2-8 mg-N/L) nitrate concentrations. This site provided the means to test the analyzers' performance in two distinct matrices—the Passaic and the Pompton Rivers. In this deployment, three instruments tested in Phase I (TriOS, Hach, and SUNA) were deployed with the S::CAN Spectro::lyser (35 mm) already placed by the New Jersey Water Science Center (WSC). The third deployment at USGS site 05579610 Kickapoo Creek at 2100E Road near Bloomington, Illinois, tested the ability of the analyzers to measure high nitrate concentrations (greater than 8 mg-N/L) in turbid waters. For Kickapoo Creek, the HIF provided the TriOS (10 mm) and S::CAN (5 mm) from Phase I, and a SUNA V2 (5 mm) to be deployed adjacent to the Illinois WSC-owned Hach (2 mm). A total of 40 discrete samples were collected from the three deployment sites and analyzed. The nitrate concentration of the samples ranged from 0.3–22.2 mg-N/L. The average absolute difference between the TriOS measurements and discrete samples was 0.46 mg-N/L. For the combined data from the Hach 5-mm and 2-mm analyzers, the average absolute difference between the Hach samples and the discrete samples was 0.13 mg-N/L. For the SUNA and SUNA V2 combined data, the average absolute difference between the SUNA samples and the discrete samples was 0.66 mg-N/L. The average absolute difference between the S::CAN samples and the discrete samples was 0.63 mg-N/L.

  3. Novel Tools in Determining the Physiological Demands and Nutritional Practices of Ontario FireRangers during Fire Deployments

    PubMed Central

    Robertson, A. H.; Larivière, C.; Leduc, C. R.; McGillis, Z.; Eger, T.; Godwin, A.; Larivière, M.; Dorman, S. C.

    2017-01-01

    Introduction The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments. Methods Participants (n = 21) from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA), Project Fire (P), and Fire Base (B) deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV) monitoring devices (Zephyr BioHarness3 units). Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software. Results Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate); P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR) for protein was acceptable: 22–25% (across deployment types). Whereas the AMDR for fat and carbohydrates were high: 40–50%; and low: 27–37% respectively, across deployment types. Conclusions This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices. PMID:28107380

  4. An ARM Mobile Facility Designed for Marine Deployments

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2007-05-01

    The U.S. Dept. of Energy's ARM (Atmospheric Radiation Measurements) Program is designing a Mobile Facility exclusively for marine deployments. This marine facility is patterned after ARM's land Mobile Facility, which had its inaugural deployment at Point Reyes, California, in 2005, followed by deployments to Niger in 2006 and Germany in 2007 (ongoing), and a planned deployment to China in 2008. These facilities are primarily intended for the study of clouds, radiation, aerosols, and surface processes with a goal to include these processes accurately in climate models. They are preferably embedded within larger field campaigns which provide context. They carry extensive instrumentation (in several large containers) including: cloud radar, lidar, microwave radiometers, infrared spectrometers, broadband and narrowband radiometers, sonde-launching facilities, extensive surface aerosol measurements, sky imagers, and surface latent and sensible heat flux devices. ARM's Mobile Facilities are designed for 6-10 month deployments in order to capture climatically-relevant datasets. They are available to any scientist, U.S. or international, who wishes to submit a proposal during the annual Spring call. The marine facility will be adapted to, and ruggedized for, the harsh marine environment and will add a scanning two-frequency radar, a boundary-layer wind profiler, a shortwave spectrometer, and aerosol instrumentation adapted to typical marine aerosols like sea salt. Plans also include the use of roving small UAVs, automated small boats, and undersea autonomous vehicles in order to address the point-to-area-average problem which is so crucial for informing climate models. Initial deployments are planned for small islands in climatically- interesting cloud regimes, followed by deployments on oceanic platforms (like decommissioned oil rigs and the quasi-permanent platform of this session's title) and eventually on large ships like car carriers plying routine routes.

  5. Novel Tools in Determining the Physiological Demands and Nutritional Practices of Ontario FireRangers during Fire Deployments.

    PubMed

    Robertson, A H; Larivière, C; Leduc, C R; McGillis, Z; Eger, T; Godwin, A; Larivière, M; Dorman, S C

    2017-01-01

    The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments. Participants (n = 21) from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA), Project Fire (P), and Fire Base (B) deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV) monitoring devices (Zephyr BioHarness3 units). Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software. Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate); P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR) for protein was acceptable: 22-25% (across deployment types). Whereas the AMDR for fat and carbohydrates were high: 40-50%; and low: 27-37% respectively, across deployment types. This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices.

  6. First Results from UAS Deployed Ocean Sensor Systems during the 2013 MIZOPEX Campaign

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Weibel, D.; Lawrence, D.; LoDolce, G.; Bradley, A. C.; Adler, J.; Maslanik, J. A.; Walker, G.

    2013-12-01

    The Marginal Ice Zone Observations and Processes Experiment (MIZOPEX), is an Arctic field campaign which occurred during summer 2013. The goals of the project are to understand how warming of the marginal ice zone affects sea ice melt and if this warming has been over or underestimated by satellite measurements. To achieve these goals calibrated physical measurements, both remote and in-situ, of the marginal ice zone over scales of square kilometers with a resolution of square meters is required. This will be accomplished with a suite of unmanned aerial vehicles (UAVs) equipped with both remote sensing and in-situ instruments, air deployed microbuoys, and ship deployed buoys. In this talk we will present details about the air deployed microbouys (ADMB) and self-deployed surface sondes (SDSS) developed at the University of Colorado. Both the ADMB and SDSS share a common measurement suite with the capability to measure water temperature at three distinct depths and provide position information via GPS. The ADMB is 90 grams, 1.3 inches in diameter, 4.25 inches long and is designed for deployment from the InSitu ScanEagle platform. The designed and experimentally verified operational lifetime is 10 days, however this can be extended with additional batteries.. While the ADMB are deployed from the ScanEagle, the SDSS are vectorable and can be remotely and precisely positioned. Lab performance results, calibration results and initial results from the ADMB and SDSS that were deployed during the MIZOPEX mission will be presented. These results include day-in-the-life tests, antenna pattern analysis, range tests, temperature measurement accuracy and initial scientific results from the campaign.

  7. Lessons Learned in the Development of Gamma-Rover (GRover) Inspection Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdez, Patrick LJ; Alzheimer, James M.; Catalan, Michael A.

    2006-02-11

    The Gamma-Rover (GRover) is an electrically powered crawler designed to visually inspect and characterize the radiological conditions within the B-Cell and D-Cell ventilation ducting in support of the Hanford Site’s 324 Building Stabilization/Deactivation Project. Due to the bid opening of the Department of Energy’s River Corridor Project prior to deployment, GRover has not yet been deployed. The delay in deployment has allowed the designers to develop lessons learned from the original development in order to propose improvements when the system is deployed in the future. Gamma field information is detected with a pair of Eberline DA1-8/RMS systems. One system ismore » mounted directly on the crawler, while the second is mounted on the deployment platform. Four web cameras on a pair of CAT-5e/USB channels provide video feedback from both the crawler and the deployment platform. The drive system was designed to overcome a potentially difficult path of the duct, which included three ninety-degree bends. Mockups of the duct bends yielded high friction on the tether, and a drive system to overcome this friction was especially difficult to design into such a small package. Deployment was to be performed during a routine air filter change-out. As such, a specialized deployment platform was designed to pass through the existing filter housing. GRover would be required to be staged within the hot cell prior to the filter change-out and could therefore be dosed in excess of 8 hours. Thus, the platform also had to protect the electronics from radiation damage for an extended period of time.« less

  8. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Transport Protocol (Transmission Control Protocol/User Datagram Protocol [TCP/UDP]) Analysis

    DTIC Science & Technology

    2015-09-01

    the network Mac8 Medium Access Control ( Mac ) (Ethernet) address observed as destination for outgoing packets subsessionid8 Zero-based index of...15. SUBJECT TERMS tactical networks, data reduction, high-performance computing, data analysis, big data 16. SECURITY CLASSIFICATION OF: 17...Integer index of row cts_deid Device (instrument) Identifier where observation took place cts_collpt Collection point or logical observation point on

  9. The special radiation-hardened processors for new highly informative experiments in space

    NASA Astrophysics Data System (ADS)

    Serdin, O. V.; Antonov, A. A.; Dubrovsky, A. G.; Novogilov, E. A.; Zuev, A. L.

    2017-01-01

    The article provides a detailed description of the series of special radiation-hardened microprocessor developed by SRISA for use in space technology. The microprocessors have 32-bit and 64-bit KOMDIV architecture with embedded SpaceWire, RapidIO, Ethernet and MIL-STD-1553B interfaces. These devices are used in space telescope GAMMA-400 data acquisition system, and may also be applied to other experiments in space (such as observatory “Millimetron” etc.).

  10. Causality-Preserving Timestamps in Distributed Programs

    DTIC Science & Technology

    1993-06-01

    monitoring,deh!bigging. tac-hvon,catisaIi tvý Abstract A tachyon is an improperly ordered event in a distributed program. Tachvonis are most often...that tachyons do in fact. occur commonly in distributed pro- grams on our Ethernet at Carnegie Mellon University. and we disc’ss some ways of...before it is sent) is called a tach yon. (’learly it is very disconcerting to try to debug a parallel program that contains tachyons . Of course, in "real

  11. Technical Facilities and Capabilities Assessment Report

    DTIC Science & Technology

    1990-06-01

    ARMAMENT LABORATORY Air Force Systems Command I United States Air Force I Eglin Air Force Base , Florida Best Available Copy 90 0 8 20 026 NOTICE When...The Air Force Armament Laboratory (AFATL) provides the technology base for future armament systems and supports the other elements of the deputy...color and filter digital images once an image is on the system . The IPL and the RSPL are accessible over the base Ethernet. This allows users to logon to

  12. DDN (Defense Data Network) Protocol Implementations and Vendors Guide,

    DTIC Science & Technology

    1986-08-01

    3000 feet) in length. Lower rates can be selected or determined by attached modem types 303, 209, V.35, or 188-114. Units are in pairs, one at each...each direction. ECUs communicate with the IMP via direct cable or modems . DOCUMENTATION: Fully documented vendor product; descriptive literature...application is the attachment of terminals, PCs and modems to an Ethernet. The device can support up to 80 lines and 2 parallel printers. Full domain naming

  13. Automated Synthesis of Long Communication Delays for Testing

    NASA Technical Reports Server (NTRS)

    Seibert, Marc; McKim, James

    2005-01-01

    Planetary-Ohio Network Emulator (p- ONE) is a computer program for local laboratory testing of high bandwidth data-communication systems subject to long delays in propagation over interplanetary distances. p-ONE is installed on a personal computer connected to two bidirectional Ethernet interfaces, denoted A and B, that represent local-area networks at opposite ends of a long propagation path. Traffic that is to be passed between A and B is encapsulated in IP (Internet Protocol) packets (e.g., User Data Protocol, UDP). Intercepting this traffic between A and B in both directions, p-ONE time-tags each packet and stores it in memory or on the hard disk of the computer for a user-specified interval that equals the propagation delay to be synthesized. At the expiration of its storage time, each such packet is sent to its destination (that is, if it was received from A, it is sent to B, or vice versa). The accuracy of the p-ONE software is very high, with zero packet loss through the system and negligible latency. Optionally, p-ONE can be configured to delay all network traffic to and from all network addresses on each Ethernet interface or to selectively delay traffic between specific addresses or traffic of specific types. p-ONE works well with Linux and is also designed to be compatible with other operating systems.

  14. Integrating new Storage Technologies into EOS

    NASA Astrophysics Data System (ADS)

    Peters, Andreas J.; van der Ster, Dan C.; Rocha, Joaquim; Lensing, Paul

    2015-12-01

    The EOS[1] storage software was designed to cover CERN disk-only storage use cases in the medium-term trading scalability against latency. To cover and prepare for long-term requirements the CERN IT data and storage services group (DSS) is actively conducting R&D and open source contributions to experiment with a next generation storage software based on CEPH[3] and ethernet enabled disk drives. CEPH provides a scale-out object storage system RADOS and additionally various optional high-level services like S3 gateway, RADOS block devices and a POSIX compliant file system CephFS. The acquisition of CEPH by Redhat underlines the promising role of CEPH as the open source storage platform of the future. CERN IT is running a CEPH service in the context of OpenStack on a moderate scale of 1 PB replicated storage. Building a 100+PB storage system based on CEPH will require software and hardware tuning. It is of capital importance to demonstrate the feasibility and possibly iron out bottlenecks and blocking issues beforehand. The main idea behind this R&D is to leverage and contribute to existing building blocks in the CEPH storage stack and implement a few CERN specific requirements in a thin, customisable storage layer. A second research topic is the integration of ethernet enabled disks. This paper introduces various ongoing open source developments, their status and applicability.

  15. High Performance Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek; Kaewpijit, Sinthop

    1998-01-01

    Traditional remote sensing instruments are multispectral, where observations are collected at a few different spectral bands. Recently, many hyperspectral instruments, that can collect observations at hundreds of bands, have been operational. Furthermore, there have been ongoing research efforts on ultraspectral instruments that can produce observations at thousands of spectral bands. While these remote sensing technology developments hold great promise for new findings in the area of Earth and space science, they present many challenges. These include the need for faster processing of such increased data volumes, and methods for data reduction. Dimension Reduction is a spectral transformation, aimed at concentrating the vital information and discarding redundant data. One such transformation, which is widely used in remote sensing, is the Principal Components Analysis (PCA). This report summarizes our progress on the development of a parallel PCA and its implementation on two Beowulf cluster configuration; one with fast Ethernet switch and the other with a Myrinet interconnection. Details of the implementation and performance results, for typical sets of multispectral and hyperspectral NASA remote sensing data, are presented and analyzed based on the algorithm requirements and the underlying machine configuration. It will be shown that the PCA application is quite challenging and hard to scale on Ethernet-based clusters. However, the measurements also show that a high- performance interconnection network, such as Myrinet, better matches the high communication demand of PCA and can lead to a more efficient PCA execution.

  16. 40 Gbps data acquisition system for NectarCAM

    NASA Astrophysics Data System (ADS)

    Hoffmann, Dirk; Houles, Julien; NectarCAM Team; CTA Consortium, the

    2017-10-01

    The Cherenkov Telescope Array (CTA) will be the next generation ground-based gamma-ray observatory. It will be made up of approximately 100 telescopes of three different sizes, from 4 to 23 meters in diameter. The previously presented prototype of a high speed data acquisition (DAQ) system for CTA (CHEP 2012, [6]) has become concrete within the NectarCAM project, one of the most challenging camera projects with very demanding needs for bandwidth of data handling. We designed a Linux-PC system able to concentrate and process without packet loss the 40 Gb/s average data rate coming from the 265 Front End Boards (FEB) through Gigabit Ethernet links, and to reduce data to fit the two ten-Gigabit Ethernet downstream links by external trigger decisions as well as custom tailored compression algorithms. Within the given constraints, we implemented de-randomisation of the event fragments received as relatively small UDP packets emitted by the FEB, using off-the-shelf equipment as required by the project and for an operation period of at least 30 years. We tested out-of-the-box interfaces and used original techniques to cope with these requirements, and set up a test bench with hundreds of synchronous Gigabit links in order to validate and tune the acquisition chain including downstream data logging based on zeroMQ and Google ProtocolBuffers [8].

  17. Preparedness Evaluation of French Military Orthopedic Surgeons Before Deployment.

    PubMed

    Choufani, Camille; Barbier, Olivier; Mayet, Aurélie; Rigal, Sylvain; Mathieu, Laurent

    2018-06-13

    A deployed military orthopedic surgeon is a trauma surgeon working in austere conditions. The first aim of this study was to analyze the current activity of French military orthopedic surgeons in the field and to identify the differences of the combat zone with their daily practice. The second aim was to assess the adequacy of the preparedness they received before their deployment and to identify additional needs that could be addressed in future training. An evaluation survey was sent to all French military orthopedic surgeons deployed in theaters of operations between 2004 and 2014. An analogic visual scale of 10 was used to evaluate their surgical activity abroad and prior training. A total of 55 surgeons, with a median deployment number of 7, were included in this study after they answered the survey. Debridement and external fixation were the most common orthopedic procedures. The practice of general surgery was mostly concerned with vascular and abdominal injuries as part of damage control procedures. Median scores were ranked at seven for surgical preparedness, five for physical readiness, and three for mental preparedness. There was a significant inverse relationship between the number of missions performed and the evaluation of surgical preparedness. The higher they perceived their mental preparedness, the better they estimated their surgical preparedness. In the French Army, deployed orthopedic surgeons perform general surgical activity. Their initial training must be adapted to this constraint and enhanced by continuing medical education.

  18. Newberry Seismic Deployment Fieldwork Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C

    2012-03-21

    This report summarizes the seismic deployment of Lawrence Livermore National Laboratory (LLNL) Geotech GS-13 short-period seismometers at the Newberry Enhanced Geothermal System (EGS) Demonstration site located in Central Oregon. This Department of Energy (DOE) demonstration project is managed by AltaRock Energy Inc. AltaRock Energy had previously deployed Geospace GS-11D geophones at the Newberry EGS Demonstration site, however the quality of the seismic data was somewhat low. The purpose of the LLNL deployment was to install more sensitive sensors which would record higher quality seismic data for use in future seismic studies, such as ambient noise correlation, matched field processing earthquakemore » detection studies, and general EGS microearthquake studies. For the LLNL deployment, seven three-component seismic stations were installed around the proposed AltaRock Energy stimulation well. The LLNL seismic sensors were connected to AltaRock Energy Gueralp CMG-DM24 digitizers, which are powered by AltaRock Energy solar panels and batteries. The deployment took four days in two phases. In phase I, the sites were identified, a cavity approximately 3 feet deep was dug and a flat concrete pad oriented to true North was made for each site. In phase II, we installed three single component GS-13 seismometers at each site, quality controlled the data to ensure that each station was recording data properly, and filled in each cavity with native soil.« less

  19. A magnetic shield/dual purpose mission

    NASA Technical Reports Server (NTRS)

    Watkins, Seth; Albertelli, Jamil; Copeland, R. Braden; Correll, Eric; Dales, Chris; Davis, Dana; Davis, Nechole; Duck, Rob; Feaster, Sandi; Grant, Patrick

    1994-01-01

    The objective of this work is to design, build, and fly a dual-purpose payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field to protect manned spacecraft against particle radiation. An additional mission objective is to study the effect of this moving field on upper atmosphere plasmas. Both mission objectives appear to be capable of being tested using the same superconducting coil. The potential benefits of this magnetic shield concept apply directly to both earth-orbital and interplanetary missions. This payload would be a first step in assessing the true potential of large volume magnetic fields in the U.S. space program. Either converted launch systems or piggyback payload opportunities may be appropriate for this mission. The use of superconducting coils for magnetic shielding against solar flare radiation during manned interplanetary missions has long been contemplated and was considered in detail in the years preceding the Apollo mission. With the advent of new superconductors, it has now become realistic to reconsider this concept for a Mars mission. Even in near-earth orbits, large volume magnetic fields produced using conventional metallic superconductors allow novel plasma physics experiments to be contemplated. Both deployed field-coil and non-deployed field-coil shielding arrangements have been investigated, with the latter being most suitable for an initial test payload in a polar orbit.

  20. The World through Glass: Developing Novel Methods with Wearable Computing for Urban Videographic Research

    ERIC Educational Resources Information Center

    Paterson, Mark; Glass, Michael R.

    2015-01-01

    Google Glass was deployed in an Urban Studies field course to gather videographic data for team-based student research projects. We evaluate the potential for wearable computing technology such as Glass, in combination with other mobile computing devices, to enhance reflexive research skills, and videography in particular, during field research.…

Top