Sample records for ethylene

  1. Cooperative ethylene receptor signaling

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling. PMID:22827938

  2. Analysis of Ethylene Receptors: Ethylene-Binding Assays.

    PubMed

    Binder, Brad M; Schaller, G Eric

    2017-01-01

    Plant ethylene receptors bind ethylene with high affinity. Most of the characterization of ethylene binding to the receptors has been carried out using a radioligand-binding assay on functional receptors expressed in yeast. In this chapter, we describe methods for expressing ethylene receptors in yeast and conducting ethylene-binding assays on intact yeast and yeast membranes. The ethylene-binding assays can be modified to analyze ethylene binding to intact plants and other organisms as well as membranes isolated from any biological source.

  3. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  4. 40 CFR Table 1 to Subpart F of... - Synthetic Organic Chemical Manufacturing Industry Chemicals

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... III Ethylcellulose 9004573 V Ethylcyanoacetate 105566 V Ethylene carbonate 96491 I Ethylene dibromide (Dibromoethane) 106934 I Ethylene glycol 107211 I Ethylene glycol diacetate 111557 I Ethylene glycol dibutyl ether 112481 V Ethylene glycol diethyl ether 629141 I (1,2-diethoxyethane). Ethylene glycol 110714 I...

  5. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis.

    PubMed

    Cancel, Jesse D; Larsen, Paul B

    2002-08-01

    Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response.

  6. Loss-of-Function Mutations in the Ethylene Receptor ETR1 Cause Enhanced Sensitivity and Exaggerated Response to Ethylene in Arabidopsis

    PubMed Central

    Cancel, Jesse D.; Larsen, Paul B.

    2002-01-01

    Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response. PMID:12177468

  7. Biological production of organic compounds

    DOEpatents

    Yu, Jianping; Wang, Bo; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2018-03-13

    Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.

  8. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana

    DOE PAGES

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; ...

    2015-03-26

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analysesmore » support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Lastly, we discuss implications of this model for ethylene signaling.« less

  9. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana*

    PubMed Central

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G. Eric

    2015-01-01

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed. PMID:25814663

  10. Determination of ethylene oxide, ethylene chlorohydrin, and ethylene glycol in aqueous solutions and ethylene oxide residues in associated plastics.

    PubMed

    Ball, N A

    1984-09-01

    A gas chromatographic (GC) method was developed for the determination of ethylene oxide and its two reaction products, ethylene chlorohydrin and ethylene glycol, in aqueous ophthalmic solutions. Propylene oxide was used as an internal standard. All three components were determined in one isothermal chromatographic analysis in less than 15 min. An extraction method for the determination of ethylene oxide residues in plastic components was also developed, and certain plastics with different ethylene oxide retention characteristics were identified.

  11. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Evans, M. L.

    1990-01-01

    We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.

  12. Autoinhibition of Ethylene Production in Citrus Peel Discs 1

    PubMed Central

    Riov, Joseph; Yang, Shang Fa

    1982-01-01

    Wound ethylene formation induced in flavede tissue of citrus fruit (Citrus paradisi MacFad. cv. Ruby Red) by slicing was almost completely inhibited by exogenous ethylene. The inhibition lasted for at least 6 hours after removal of exogenous ethylene and was then gradually relieved. The extent of inhibition was dependent upon the concentration of ethylene (1 to 10 microliters/liter) and the duration of treatment. The increase in wound ethylene production in control discs was paralleled by an increase in 1-aminocyclopropane-1-carboxylic acid (AAC) content, whereas in ethylene-treated discs there was little increase in ACC content. Application of ACC completely restored ethylene production in ethylene-pretreated discs, indicating that the conversion of ACC to ethylene is not impaired by the presence of ethylene. Thus, autoinhibition of ethylene synthesis was exerted by reducing the availability of ACC. Ethylene treatment resulted in a decrease in extractable ACC synthase activity, but this decrease was too small to account for the marked inhibition of ACC formation. The data indicate that autoinhibition of ethylene production in citrus flavede discs results from suppression of ACC formation through repression of the synthesis of ACC synthase and inhibition of its activity. PMID:16662276

  13. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Palladium/IzQO-Catalyzed Coordination-Insertion Copolymerization of Ethylene and 1,1-Disubstituted Ethylenes Bearing a Polar Functional Group.

    PubMed

    Yasuda, Hina; Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2018-02-07

    Coordination-insertion copolymerization of ethylene with 1,1-disubstituted ethylenes bearing a polar functional group, such as methyl methacrylate (MMA), is a long-standing challenge in catalytic polymerization. The major obstacle for this process is the huge difference in reactivity of ethylene versus 1,1-disubstituted ethylenes toward both coordination and insertion. Herein we report the copolymerization of ethylene and 1,1-disubstituted ethylenes by using an imidazo[1,5-a]quinolin-9-olate-1-ylidene-supported palladium catalyst. Various types of 1,1-disubstituted ethylenes were successfully incorporated into the polyethylene chain. In-depth characterization of the obtained copolymers and mechanistic inferences drawn from stoichiometric reactions of alkylpalladium complexes with methyl methacrylate and ethylene indicate that the copolymerization proceeds by the same coordination-insertion mechanism that has been postulated for ethylene.

  15. Analysis of Growth and Molecular Responses to Ethylene in Etiolated Rice Seedlings.

    PubMed

    Ma, Biao; Zhang, Jin-Song

    2017-01-01

    Ethylene plays a key role in various submergence responses of rice plants, but the mechanism of ethylene action remains largely unclear in rice. Regarding the differences between rice and Arabidopsis in ethylene-regulated processes, rice plants may possess divergent mechanisms in ethylene signaling in addition to the conserved aspects. Forward genetic analysis is essential to fully understand the ethylene signaling mechanism in rice. Here, we describe a method for screening ethylene-response mutants and evaluating ethylene responsiveness in etiolated rice seedlings.

  16. Role of ethylene receptors during senescence and ripening in horticultural crops

    PubMed Central

    Agarwal, Gaurav; Choudhary, Divya; Singh, Virendra P.; Arora, Ajay

    2012-01-01

    The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity. PMID:22751331

  17. Novel and existing data for a future physiological toxicokinetic model of ethylene and its metabolite ethylene oxide in mouse, rat, and human.

    PubMed

    Filser, Johannes Georg; Artati, Anna; Li, Qiang; Pütz, Christian; Semder, Brigitte; Klein, Dominik; Kessler, Winfried

    2015-11-05

    The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Characterisation of ethylene pathway components in non-climacteric capsicum.

    PubMed

    Aizat, Wan M; Able, Jason A; Stangoulis, James C R; Able, Amanda J

    2013-11-28

    Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the 'Breaker stage'. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may also exist in non-climacteric ripening as evidenced by the up-regulation of CaACO4 during ripening onset despite being negatively regulated by ethylene exposure. However, some level of ethylene perception may still be needed to induce ripening especially during the Breaker stage. A model of capsicum ripening is also presented to illustrate the probable role of ethylene in this non-climacteric fruit.

  19. Ethylene suppresses tomato (solanum lycopersicum) fruit set through modification of gibberellin metabolism

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene is probably best know as the “ripening hormone”. Ethylene also plays roles in senescence, stress responses and organ shedding (abscission). Regulation of ethylene synthesis, ethylene scavenging and genetic repression of ethylene synthesis and/or signaling are tactics dep...

  20. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    PubMed Central

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  1. Ethylene Receptor 1 (ETR1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana*

    PubMed Central

    McDaniel, Brittany K.; Binder, Brad M.

    2012-01-01

    Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ∼30% of binding with copper. However, alterations in the Kd for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper. PMID:22692214

  2. Ethylene Plays Multiple Nonprimary Roles in Modulating the Gravitropic Response in Tomato1

    PubMed Central

    Madlung, Andreas; Behringer, Friedrich J.; Lomax, Terri L.

    1999-01-01

    Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005–0.001 μL L−1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2(lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth. PMID:10398726

  3. Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato

    NASA Technical Reports Server (NTRS)

    Madlung, A.; Behringer, F. J.; Lomax, T. L.; Davies, E. (Principal Investigator)

    1999-01-01

    Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005-0.001 microliter L-1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2 (lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth.

  4. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Monomethyl Ether *Dimer Acids Dioxane Ethane Ethylene Glycol Monophenyl Ether *Ethoxylates, Misc. Ethylene Glycol Dimethyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monoethyl Ether Ethylene Glycol...

  5. Enhancement of RNA Synthesis, Protein Synthesis, and Abscission by Ethylene

    PubMed Central

    Abeles, F. B.; Holm, R. E.

    1966-01-01

    Ethylene stimulated RNA and protein synthesis in bean (Phaseolus vulgaris L. var. Red Kidney) abscission zone explants prior to abscission. The effect of ethylene on RNA synthesis and abscission was blocked by actinomycin D. Carbon dioxide, which inhibits the effect of ethylene on abscission, also inhibited the influence of ethylene on protein synthesis. An aging period appears to be essential before bean explants respond to ethylene. Stimulation of protein synthesis by ethylene occurred only in receptive or senescent explants. Treatment of juvenile explants with ethylene, which has no effect on abscission also has no effect on protein synthesis. Evidence in favor of a hormonal role for ethylene during abscission is discussed. PMID:16656405

  6. Ethylene binding site affinity in ripening apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, S.M.; Sisler, E.C.

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by applemore » tissue.« less

  7. The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea1

    PubMed Central

    Díaz, José; ten Have, Arjen; van Kan, Jan A.L.

    2002-01-01

    Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene, inhibitors of ethylene perception, or salicylate; (b) quantitative disease assays with mutants or transgenes affected in the production of or the response to either ethylene or jasmonate; and (c) expression analysis of defense-related genes before and after inoculation of plants with B. cinerea. Plants pretreated with ethylene showed a decreased susceptibility toward B. cinerea, whereas pretreatment with 1-methylcyclopropene, an inhibitor of ethylene perception, resulted in increased susceptibility. Ethylene pretreatment induced expression of several pathogenesis-related protein genes before B. cinerea infection. Proteinase inhibitor I expression was repressed by ethylene and induced by 1-methylcyclopropene. Ethylene also induced resistance in the mutant Never ripe. RNA analysis showed that Never ripe retained some ethylene sensitivity. The mutant Epinastic, constitutively activated in a subset of ethylene responses, and a transgenic line producing negligible ethylene were also tested. The results confirmed that ethylene responses are important for resistance of tomato to B. cinerea. The mutant Defenseless, impaired in jasmonate biosynthesis, showed increased susceptibility to B. cinerea. A transgenic line with reduced prosystemin expression showed similar susceptibility as Defenseless, whereas a prosystemin-overexpressing transgene was highly resistant. Ethylene and wound signaling acted independently on resistance. Salicylate and ethylene acted synergistically on defense gene expression, but antagonistically on resistance. PMID:12114587

  8. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene

    PubMed Central

    Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L−1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2−), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2’-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway. PMID:28662156

  9. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    PubMed

    Ge, Yun; Hu, Kang-Di; Wang, Sha-Sha; Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng; Zhang, Hua

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  10. Characterisation of ethylene pathway components in non-climacteric capsicum

    PubMed Central

    2013-01-01

    Background Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the ‘Breaker stage’. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. Results The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. Conclusions ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may also exist in non-climacteric ripening as evidenced by the up-regulation of CaACO4 during ripening onset despite being negatively regulated by ethylene exposure. However, some level of ethylene perception may still be needed to induce ripening especially during the Breaker stage. A model of capsicum ripening is also presented to illustrate the probable role of ethylene in this non-climacteric fruit. PMID:24286334

  11. The involvement of ethylene in regulation of Arabidopsis gravitropism

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhu, Lin

    Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow green 1, Chen et al 2005; Guo et al 2008). To address the molecular mechanism by which ethylene regulates gravitropism, a cutting-edge phosphopro-teomics approach has been adopted to discover new components involved in ethylene signaling pathways (Li et al 2009). Two putative ethylene response transcription factors: EIL1 and ERF110, have been identified to contain ethylene-regulated phosphorylation sites, the phos-phorylation status of which are ethylene treatment-dependent but EIN2-independent, strongly suggestive of the existence of novel signaling components mediating an alternative ethylene signal pathway. Combination of the time-dependent ethylene treatments with the systematic profiling of protein phosphorylation using functional phosphoproteomics among Arabidopsis ethylene response mutants is able to provide more valuable information about the molecular mechanisms underlying ethylene and gravity signaling pathways. (This work is supported by grants: RPC07/08.SC16, 661408, 661207, N HKUST627/06, DAG04/05.SC08, HKUST6105/01M, and HKUST6413/06M)

  12. Abscission: The Phytogerontological Effects of Ethylene

    PubMed Central

    Abeles, F. B.; Craker, L. E.; Leather, G. R.

    1971-01-01

    The role of ethylene in the aging of bean (Phaseolus vulgaris L. cv. Red Kidney) petiole abscission zone explants was examined. The data indicate that ethylene does accelerate aging in addition to inducing changes in break strength. Application of ethylene during the aging stage (stage 1) promoted abscission when followed by a second ethylene treatment during the cell separating stage (stage 2). The half-maximal effective concentration of ethylene to induce aging was around 0.3 microliter per liter; 10 microliters per liter was a saturating dose. CO2 reversal of ethylene action during stage 1 was incomplete and gave ambiguous results. CO2 (10%) reversed the effect of 10 microliters per liter ethylene but not 1 microliter per liter ethylene. The possibility that ethylene not only accelerated aging but was also a requirement for it was tested, and experimental evidence in favor of this idea was obtained. It was concluded that ethylene plays a dual role in the abscission of bean petiole explants: a phytogerontological effect and a cellulase-inducing effect. PMID:16657581

  13. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress1

    PubMed Central

    Thao, Nguyen Phuong; Khan, M. Iqbal R.; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A.; Tran, Lam-Son Phan

    2015-01-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance. PMID:26246451

  14. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  15. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  16. A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers.

    PubMed

    Jensen, Line; Hegelund, Josefine Nymark; Olsen, Andreas; Lütken, Henrik; Müller, Renate

    2016-05-23

    The phytohormone ethylene plays a central role in development and senescence of climacteric flowers. In ornamental plant production, ethylene sensitive plants are usually protected against negative effects of ethylene by application of chemical inhibitors. In Campanula, flowers are sensitive to even minute concentrations of ethylene. Monitoring flower longevity in three Campanula species revealed C. portenschlagiana (Cp) as ethylene sensitive, C. formanekiana (Cf) with intermediate sensitivity and C. medium (Cm) as ethylene insensitive. We identified key elements in ethylene signal transduction, specifically in Ethylene Response Sensor 2 (ERS2), Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 3- Like 1 and 2 (EIL1 and EIL2) homologous. Transcripts of ERS2, CTR1 and EIL1 were constitutively expressed in all species both throughout flower development and in response to ethylene. In contrast, EIL2 was found only in Cf and Cm. We identified a natural mutation in Cmeil2 causing a frameshift which resulted in difference in expression levels of EIL2, with more than 100-fold change between Cf and Cm in young flowers. This study shows that the naturally occurring 7 bp frameshift discovered in Cmeil2, a key gene in the ethylene signaling pathway, correlates with ethylene insensitivity in flowers. We suggest that transfer of the eil2 mutation to other plant species will provide a novel tool to engineer ethylene insensitive flowers.

  17. The Insulation of Copper Wire by the Electrostatic Coating Process.

    DTIC Science & Technology

    1983-06-30

    fluorinated ethylene propylene), ECFTE (ethylene- chlorotrifluoro ethylene), and PFA (perfluoroalkoxy resin). Another material of interest with good...Fluoroplastics - Fluoroplastics are a family of polymers with the general paraffin structure that have some or all of the hydrogen replaced by fluorine ...ETFE (ethylene-tetrafluoroethylene copolymer), PFA (perfluoroalkoxy resin), ECTFE (ethylene-chlorotrifluoroethylene), and FEP ( fluorinated ethylene

  18. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus

    PubMed Central

    Love, Jonathan; Björklund, Simon; Vahala, Jorma; Hertzberg, Magnus; Kangasjärvi, Jaakko; Sundberg, Björn

    2009-01-01

    The plant hormone ethylene is an important signal in plant growth responses to environmental cues. In vegetative growth, ethylene is generally considered as a regulator of cell expansion, but a role in the control of meristem growth has also been suggested based on pharmacological experiments and ethylene-overproducing mutants. In this study, we used transgenic ethylene-insensitive and ethylene-overproducing hybrid aspen (Populus tremula × tremuloides) in combination with experiments using an ethylene perception inhibitor [1-methylcyclopropene (1-MCP)] to demonstrate that endogenous ethylene produced in response to leaning stimulates cell division in the cambial meristem. This ethylene-controlled growth gives rise to the eccentricity of Populus stems that is formed in association with tension wood. PMID:19293381

  19. Dominant gain-of-function mutations in transmembrane domain III of ERS1 and ETR1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis.

    PubMed

    Deslauriers, Stephen D; Alvarez, Ashley A; Lacey, Randy F; Binder, Brad M; Larsen, Paul B

    2015-10-01

    Prior work resulted in identification of an Arabidopsis mutant, eer5-1, with extreme ethylene response in conjunction with failure to induce a subset of ethylene-responsive genes, including AtEBP. EER5, which is a TREX-2 homolog that is part of a nucleoporin complex, functions as part of a cryptic aspect of the ethylene signaling pathway that is required for regulating the magnitude of ethylene response. A suppressor mutagenesis screen was carried out to identify second site mutations that could restore the growth of ethylene-treated eer5-1 to wild-type levels. A dominant gain-of-function mutation in the ethylene receptor ETHYLENE RESPONSE SENSOR 1 (ERS1) was identified, with the ers1-4 mutation being located in transmembrane domain III at a point nearly equivalent to the previously described etr1-2 mutation in the other Arabidopsis subfamily I ethylene receptor, ETHYLENE RESPONSE 1 (ETR1). Although both ers1-4 and etr1-2 partially suppress the ethylene hypersensitivity of eer5-1 and are at least in part REVERSION TO ETHYLENE SENSITIVITY 1 (RTE1)-dependent, ers1-4 was additionally found to restore the expression of AtEBP in ers1-4;eer5-1 etiolated seedlings after ethylene treatment in an EIN3-dependent manner. Our work indicates that ERS1-regulated expression of a subset of ethylene-responsive genes is related to controlling the magnitude of ethylene response, with hyperinduction of these genes correlated with reduced ethylene-dependent growth inhibition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway.

    PubMed

    Bisson, Melanie M A; Groth, Georg

    2015-08-01

    The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  1. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    NASA Astrophysics Data System (ADS)

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  2. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening.

    PubMed

    Bisson, Melanie M A; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  3. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  4. Ethylene update

    USDA-ARS?s Scientific Manuscript database

    The gaseous plant hormone ethylene is required for many aspects of plant growth, development and responses to the environment. Potato tubers produce low amounts of ethylene and are highly sensitive to ethylene in the atmosphere. Several responses of potato tubers to endogenous and exogenous ethylene...

  5. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening

    PubMed Central

    Cunha, Camila P.; Roberto, Guilherme G.; Vicentini, Renato; Lembke, Carolina G.; Souza, Glaucia M.; Ribeiro, Rafael V.; Machado, Eduardo C.; Lagôa, Ana M. M. A.; Menossi, Marcelo

    2017-01-01

    The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed. PMID:28266527

  6. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    PubMed Central

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  7. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene

    PubMed Central

    Johnston, Jason W.; Gunaseelan, Kularajathaven; Pidakala, Paul; Wang, Mindy; Schaffer, Robert J.

    2009-01-01

    In this study, it is shown that anti-sense suppression of Malus domestica 1-AMINO-CYCLOPROPANE-CARBOXYLASE OXIDASE (MdACO1) resulted in fruit with an ethylene production sufficiently low to be able to assess ripening in the absence of ethylene. Exposure of these fruit to different concentrations of exogenous ethylene showed that flesh softening, volatile biosynthesis, and starch degradation, had differing ethylene sensitivity and dependency. Early ripening events such as the conversion of starch to sugars showed a low dependency for ethylene, but a high sensitivity to low concentrations of ethylene (0.01 μl l−1). By contrast, later ripening events such as flesh softening and ester volatile production showed a high dependency for ethylene but were less sensitive to low concentrations (needing 0.1 μl l−1 for a response). A sustained exposure to ethylene was required to maintain ripening, indicating that the role of ethylene may go beyond that of ripening initiation. These results suggest a conceptual model for the control of individual ripening characters in apple, based on both ethylene dependency and sensitivity. PMID:19429839

  9. Inhibitors of Ethylene Biosynthesis and Signaling.

    PubMed

    Schaller, G Eric; Binder, Brad M

    2017-01-01

    Ethylene is a gas biosynthesized by plants which has many physiological and developmental effects on their growth. Ethylene affects agriculturally and horticulturally important traits such as fruit ripening, post-harvest physiology, senescence, and abscission, and so ethylene action is often inhibited to improve the shelf life of fruits, vegetables, and cut flowers. Chemical inhibitors of ethylene action are also useful for research to characterize the mechanisms of ethylene biosynthesis and signal transduction, and the role that ethylene plays in various physiological processes. Here, we describe the use of three inhibitors commonly used for the study of ethylene action in plants: 2-aminoethoxyvinyl glycine (AVG), silver ions (Ag), and the gaseous compound 1-methylcyclopropene (1-MCP). AVG is an inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme involved in ethylene biosynthesis. Silver and 1-MCP are both inhibitors of the ethylene receptors. Inhibitor use as well as off-target effects are described with a focus on ethylene responses in dark-grown Arabidopsis seedlings. Methods for the use of these inhibitors can be applied to other plant growth assays.

  10. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls

    NASA Technical Reports Server (NTRS)

    Harrison, M. A.; Pickard, B. G.

    1986-01-01

    Assessments of the participation of ethylene in gravitropism by hypocotyls of tomato (Lycopersicon esculentum Mill.) indicate that gravitropism can occur without substantial change in ethylene production. Moreover, lowering or evaluating ethylene over a considerable range, as well as inhibiting ethylene action, fails to influence gravitropic bending. This vitiates the possibility that ethylene is a mediator of the primary, negative gravitropic response of tomato shoots.

  11. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    PubMed

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  12. Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit.

    PubMed

    Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu

    2003-01-01

    Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production.

  13. Ethylene Biosynthesis in Detached Young Persimmon Fruit Is Initiated in Calyx and Modulated by Water Loss from the Fruit1

    PubMed Central

    Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu

    2003-01-01

    Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production. PMID:12529535

  14. Ethylene Emission and Responsiveness to Applied Ethylene Vary among Poa Species That Inherently Differ in Leaf Elongation Rates1

    PubMed Central

    Fiorani, Fabio; Bögemann, Gerard M.; Visser, Eric J.W.; Lambers, Hans; Voesenek, Laurentius A.C.J.

    2002-01-01

    A plant's ability to produce and respond to ethylene is essential for its vegetative growth. We studied whole-shoot ethylene emission and leaf growth responses to applied ethylene in four Poa spp. that differ inherently in leaf elongation rate and whole-plant relative growth rate. Compared with the fast-growing Poa annua and Poa trivialis, the shoots of the slow-growing species Poa alpina and Poa compressa emitted daily 30% to 50% less ethylene, and their leaf elongation rate was more strongly inhibited when ethylene concentration was increased up to 1 μL L−1. To our surprise, however, low ethylene concentrations (0.02–0.03 μL L−1) promoted leaf growth in the two slow-growing species; at the same concentrations, leaf elongation rate of the two fast-growing species was only slightly inhibited. All responses were observed within 20 min after ethylene applications. Although ethylene generally inhibits growth, our results show that in some species, it may actually stimulate growth. Moreover, in the two slow-growing Poa spp., both growth stimulation and inhibition occurred in a narrow ethylene concentration range, and this effect was associated with a much lower ethylene emission. These findings suggest that the regulation of ethylene production rates and perception of the gas may be more crucial during leaf expansion of these species under non-stressful conditions and that endogenous ethylene concentrations are not large enough to saturate leaf growth responses. In the two fast-growing species, a comparatively higher ethylene endogenous concentration may conversely be present and sufficiently high to saturate leaf elongation responses, invariably leading to growth inhibition. PMID:12114591

  15. Ethylene and 1-methylcyclopropene differentially regulate gene expression during onion sprout suppression.

    PubMed

    Cools, Katherine; Chope, Gemma A; Hammond, John P; Thompson, Andrew J; Terry, Leon A

    2011-07-01

    Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 μL L(-1) ethylene or 1 μL L(-1) 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 μL L(-1)) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene.

  16. Ethylene and 1-Methylcyclopropene Differentially Regulate Gene Expression during Onion Sprout Suppression1[W][OA

    PubMed Central

    Cools, Katherine; Chope, Gemma A.; Hammond, John P.; Thompson, Andrew J.; Terry, Leon A.

    2011-01-01

    Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 μL L−1 ethylene or 1 μL L−1 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 μL L−1) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene. PMID:21593215

  17. Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits.

    PubMed

    Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo

    2015-10-01

    Grapefruits are among the citrus species more sensitive to cold and develop chilling injury symptoms during prolonged postharvest storage at temperatures lower than 8 ℃-10 ℃. The plant hormone ethylene has been described either to protect or potentiate chilling injury development in citrus whereas little is known about transcriptional regulation of ethylene biosynthesis, perception and response during cold storage and how the hormone is regulating its own perception and signaling cascade. Then, the objective of the present study was to explore the transcriptional changes in the expression of ethylene biosynthesis, receptors and response genes during cold storage of the white Marsh and the red Star Ruby grapefruits. The effect of the ethylene action inhibitor, 1-MCP, was evaluated to investigate the involvement of ethylene in the regulation of the genes of its own biosynthesis and perception pathway. Ethylene production was very low at the harvest time in fruits of both varieties and experienced only minor changes during storage. By contrast, inhibition of ethylene perception by 1-MCP markedly induced ethylene production, and this increase was highly stimulated during shelf-life at 20 ℃, as well as transcription of ACS and ACO. These results support the auto-inhibitory regulation of ethylene in grapefruits, which acts mainly at the transcriptional level of ACS and ACO genes. Moreover, ethylene receptor1 and ethylene receptor3 were induced by cold while no clear role of ethylene was observed in the induction of ethylene receptors. However, ethylene appears to be implicated in the transcriptional regulation of ERFs both under cold storage and shelf-life. © The Author(s) 2014.

  18. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.

    PubMed

    Kim, Joonyup; Wilson, Rebecca L; Case, J Brett; Binder, Brad M

    2012-11-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.

  19. 40 CFR Table 36 to Subpart G of... - Compound Lists Used for Compliance Demonstrations for Enhanced Biological Treatment Processes...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Ethylene Glycol MonobutylEther Acetate Chloroprene. Ethylene Glycol MonomethylEther Acetate Cumene (isopropylbenzene). Ethylene Glycol Dimethyl Ether Dibromoethane 1,2. Hexachlorobenzene Dichlorobenzene 1,4.... Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...

  20. Evaluation of Ethylene as a Mediator of Gravitropism by Tomato Hypocotyls 1

    PubMed Central

    Harrison, Marcia A.; Pickard, Barbara G.

    1986-01-01

    Assessments of the participation of ethylene in gravitropism by hypocotyls of tomato (Lycopersicon esculentum Mill.) indicate that gravitropism can occur without substantial change in ethylene production. Moreover, lowering or evaluating ethylene over a considerable range, as well as inhibiting ethylene action, fails to influence gravitropic bending. This vitiates the possibility that ethylene is a mediator of the primary, negative gravitropic response of tomato shoots. PMID:11539038

  1. The Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening1[W][OA

    PubMed Central

    Tacken, Emma; Ireland, Hilary; Gunaseelan, Kularajathevan; Karunairetnam, Sakuntala; Wang, Daisy; Schultz, Keith; Bowen, Judith; Atkinson, Ross G.; Johnston, Jason W.; Putterill, Jo; Hellens, Roger P.; Schaffer, Robert J.

    2010-01-01

    Fruit softening in apple (Malus × domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples. PMID:20237022

  2. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development.

    PubMed

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-06-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed.

  3. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development

    PubMed Central

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-01-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed. PMID:22451723

  4. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor.

    PubMed

    Lacey, Randy F; Binder, Brad M

    2016-08-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor1[OPEN

    PubMed Central

    2016-01-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. PMID:27246094

  6. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-1, 4-cyclohexylene dimethylene... Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers. Ethylene-1, 4-cyclohexylene dimethylene... purposes of this section, ethylene-1,4-cyclohexylene dimethylene terephthalate copolymers (1,4-benzene...

  7. 40 CFR 61.62 - Emission standard for ethylene dichloride plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission standard for ethylene... Standard for Vinyl Chloride § 61.62 Emission standard for ethylene dichloride plants. (a) Ethylene... used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except as...

  8. Ethylene Control of Anthocyanin Synthesis in Sorghum

    PubMed Central

    Craker, L. E.; Standley, L. A.; Starbuck, M. J.

    1971-01-01

    Light-induced anthocyanin synthesis in Sorghum vulgare L. seedlings was both promoted and inhibited by ethylene treatment. The rate of anthocyanin formation in sorghum tissue was dependent upon the time of ethylene treatment in relation to light exposure and the stage of the anthocyanin synthesis process. Those plants receiving ethylene treatment during the early lag phase of anthocyanin synthesis had higher anthocyanin content at 24 hours than control plants receiving no ethylene treatment. Plants receiving ethylene treatment after the lag phase had lower anthocyanin content at 24 hours than control plants receiving no ethylene treatment. PMID:16657796

  9. Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon.

    PubMed

    Touno, Kaori; Tamaoka, Jin; Ohashi, Yuko; Shimomura, Koichiro

    2005-02-01

    Lithospermum erythrorhizon shoots, cultured on phytohormone-free Murashige and Skoog solid medium, produced shikonin derivatives, whereas shoots cultured in well-ventilated petri dishes, produced small amount. Analysis by gas chromatography revealed the presence of ethylene in non-ventilated petri dishes where the shoots, producing shikonin derivatives, were cultured. Therefore, the possible involvement of ethylene in shikonin biosynthesis of shoot cultures was investigated. Treatment of ethylene or the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, resulted in increasing shikonin derivatives contents in cultured shoots. Silver ion, an ethylene-response inhibitor, or aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, decreased production of shikonin derivatives in cultured shoots. Our results indicate that ethylene is one of the regulatory elements of shikonin biosynthesis in L. erythrorhizon shoot culture.

  10. Gas Chromatography-Based Ethylene Measurement of Arabidopsis Seedlings.

    PubMed

    Yoon, Gyeong Mee; Chen, Yi-Chun

    2017-01-01

    Plants tightly regulate the biosynthesis of ethylene to control growth and development and respond to a wide range of biotic and abiotic stresses. To understand the molecular mechanism by which plants regulate ethylene biosynthesis as well as to identify stimuli triggering the alteration of ethylene production in plants, it is essential to have a reliable tool with which one can directly measure in vivo ethylene concentration. Gas chromatography is a routine detection technique for separation and analysis of volatile compounds with relatively high sensitivity. Gas chromatography has been widely used to measure the ethylene produced by plants, and has in turn become a valuable tool for ethylene research. Here, we describe a protocol for measuring the ethylene produced by dark-grown Arabidopsis seedlings using a gas chromatograph.

  11. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

    DOE PAGES

    Chang, Katherine Noelani; Zhong, Shan; Weirauch, Matthew T.; ...

    2013-06-11

    The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signalingmore » pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways.« less

  12. Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate.

    PubMed

    Zhang, Zhihong; Smart, Tristan J; Choi, Hwanho; Hardy, Florence; Lohans, Christopher T; Abboud, Martine I; Richardson, Melodie S W; Paton, Robert S; McDonough, Michael A; Schofield, Christopher J

    2017-05-02

    Ethylene is important in industry and biological signaling. In plants, ethylene is produced by oxidation of 1-aminocyclopropane-1-carboxylic acid, as catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase. Bacteria catalyze ethylene production, but via the four-electron oxidation of 2-oxoglutarate to give ethylene in an arginine-dependent reaction. Crystallographic and biochemical studies on the Pseudomonas syringae ethylene-forming enzyme reveal a branched mechanism. In one branch, an apparently typical 2-oxoglutarate oxygenase reaction to give succinate, carbon dioxide, and sometimes pyrroline-5-carboxylate occurs. Alternatively, Grob-type oxidative fragmentation of a 2-oxoglutarate-derived intermediate occurs to give ethylene and carbon dioxide. Crystallographic and quantum chemical studies reveal that fragmentation to give ethylene is promoted by binding of l-arginine in a nonoxidized conformation and of 2-oxoglutarate in an unprecedented high-energy conformation that favors ethylene, relative to succinate formation.

  13. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

    PubMed Central

    Chang, Katherine Noelani; Zhong, Shan; Weirauch, Matthew T; Hon, Gary; Pelizzola, Mattia; Li, Hai; Huang, Shao-shan Carol; Schmitz, Robert J; Urich, Mark A; Kuo, Dwight; Nery, Joseph R; Qiao, Hong; Yang, Ally; Jamali, Abdullah; Chen, Huaming; Ideker, Trey; Ren, Bing; Bar-Joseph, Ziv; Hughes, Timothy R; Ecker, Joseph R

    2013-01-01

    The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. DOI: http://dx.doi.org/10.7554/eLife.00675.001 PMID:23795294

  14. The Role of Ethylene in Plants Under Salinity Stress

    PubMed Central

    Tao, Jian-Jun; Chen, Hao-Wei; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene. PMID:26640476

  15. Simultaneous application of ethylene and 1-MCP affects banana ripening features during storage.

    PubMed

    Botondi, Rinaldo; De Sanctis, Federica; Bartoloni, Serena; Mencarelli, Fabio

    2014-08-01

    In order to avoid the ripening blocking effect of 1-MCP (1-methylcyclopropene) on bananas when applied before ethylene commercial treatment, 1-MCP in combination with 'CD ethylene' (ethylene-cyclodextrin complex) was used in gas formulations: 300 nmol mol(-1) 1-MCP + 1200, 2400 or 4800 nmol mol(-1) ethylene (ETH). Control bananas received 1-MCP alone or 4800 nmol mol(-1) ethylene alone or no treatment. Treatments were done on overseas shipped bananas, at 14 °C, 90% relative humidity (RH), for 16 h; the bananas were stored under the same atmospheric conditions. After 4 or 12 days the bananas were commercially treated with 500 µmol mol(-1) ethylene. A 300 nmol mol(-1) 1-MCP treatment significantly blocked banana ripening in terms of physiological and technological parameters, inhibiting ethylene production and respiration, despite the commercial ethylene treatment. The application of 300 nmol mol(-1) 1-MCP + 1200 or 2400 nmol mol(-1) ethylene delayed ripening but with a regular pattern. A 300 nmol mol(-1) 1-MCP + 4800 nmol mol(-1) ethylene application did not delay ripening as did 4800 nmol mol(-1) ethylene treatment. The development of black spots was closely associated with advanced ripening/senescence of fruits. The combined 300 nmol mol(-1) 1-MCP + 1200 or 2400 nmol mol(-1) ethylene treatment appears to be a promising treatment to extend banana storage, following overseas shipping. © 2014 Society of Chemical Industry.

  16. Inhibition of ethylene production by cobaltous ion. [Beans, apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, O.L; Yang, S.F.

    1976-07-01

    The effect of Co/sup 2 +/ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co/sup 2 +/, depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca/sup 2 +/, kinetin plus Ca/sup 2 +/, or Cu/sup 2 +/ treatments in mung bean hypocotyl segments. While Co/sup 2 +/ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co/sup 2 +/ does not exert its inhibitory effect as a general metabolicmore » inhibitor. Ni/sup 2 +/, which belongs to the same group as Co/sup 2 +/ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues. In a system in which kinetin and Ca/sup 2 +/ were applied together, kinetin greatly enhanced Ca/sup 2 +/ uptake, thus enhancing ethylene production. Co/sup 2 +/, however, slightly inhibited the uptake of Ca/sup 2 +/ but appreciably inhibited ethylene production, either in the presence or in the absence of kinetin. Tracer experiments using apple tissue indicated that Co/sup 2 +/ strongly inhibited the in vivo conversion of L-(U--/sup 14/C)methionine to /sup 14/C-ethylene. These data suggested that Co/sup 2 +/ inhibited ethylene production by inhibiting the conversion of methionine to ethylene, a common step which is required for ethylene formation by higher plants. Co/sup 2 +/ is known to promote elongation, leaf expansion, and hook opening in excised plant parts in response to applied auxins or cytokinins.Since ethylene is known to inhibit those growth phenomena, it is suggested that Co/sup 2 +/ exerts its promotive effect, at least in part, by inhibiting ethylene formation.« less

  17. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    PubMed Central

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  18. Molecular association of Arabidopsis RTH with its homolog RTE1 in regulating ethylene signaling.

    PubMed

    Zheng, Fangfang; Cui, Xiankui; Rivarola, Maximo; Gao, Ting; Chang, Caren; Dong, Chun-Hai

    2017-05-17

    The plant hormone ethylene affects many biological processes during plant growth and development. Ethylene is perceived by ethylene receptors at the endoplasmic reticulum (ER) membrane. The ETR1 ethylene receptor is positively regulated by the transmembrane protein RTE1, which localizes to the ER and Golgi apparatus. The RTE1 gene family is conserved in animals, plants, and lower eukaryotes. In Arabidopsis, RTE1-HOMOLOG (RTH) is the only homolog of the Arabidopsis RTE1 gene family. The regulatory function of the Arabidopsis RTH in ethylene signaling and plant growth is largely unknown. The present study shows Arabidopsis RTH gene expression patterns, protein co-localization with the ER and Golgi apparatus, and the altered ethylene response phenotype when RTH is knocked out or overexpressed in Arabidopsis. Compared with rte1 mutants, rth mutants exhibit less sensitivity to exogenous ethylene, while RTH overexpression confers ethylene hypersensitivity. Genetic analyses indicate that Arabidopsis RTH might not directly regulate the ethylene receptors. RTH can physically interact with RTE1, and evidence supports that RTH might act via RTE1 in regulating ethylene responses and signaling. The present study advances our understanding of the regulatory function of the Arabidopsis RTE1 gene family members in ethylene signaling. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene oxide polymer. 172.770 Section 172.770....770 Ethylene oxide polymer. The polymer of ethylene oxide may be safely used as a foam stabilizer in fermented malt beverages in accordance with the following conditions. (a) It is the polymer of ethylene...

  20. 40 CFR Table 4 to Subpart F of... - Organic Hazardous Air Pollutants Subject to Cooling Tower Monitoring Requirements in § 63.104

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Dichlorobenzidine (3,3″-) 91941 Dichloroethane (1,2-) (Ethylene dichloride) (EDC) 107062 Dichloroethyl ether (Bis(2... Ethyl acrylate 140885 Ethylbenzene 100414 Ethyl chloride (Chloroethane) 75003 Ethylene dibromide (Dibromoethane) 106934 Ethylene glycol dimethyl ether 110714 Ethylene glycol monobutyl ether 111762 Ethylene...

  1. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e) of...

  2. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO) to...

  3. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59 moles...

  4. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly-1-butene resins and butene/ethylene copolymers... resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers identified... the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by...

  5. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene/1,3-phenylene oxyethylene isophthalate... Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer. Ethylene/1, 3-phenylene... polymers complying with § 177.1630. (a) Identity. For the purpose of this section, ethylene/1,3-phenylene...

  6. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at a...

  7. Thigmomorphogenesis: the role of ethylene in the response of Pinus taeda and Abies fraseri to mechanical perturbation

    NASA Technical Reports Server (NTRS)

    Telewski, F. W.; Jaffe, M. J.

    1986-01-01

    Ethylene production was monitored for 48 h in two half-sibs of Pinus taeda L. grown in the greenhouse and given mechanical perturbation (MP) by flexing; and for 22 h in Abies fraseri (Pursh) Poir. grown in the field and exposed to wind-mediated MP. Both species produced a peak of ethylene 18 h after MP. Seedlings of P. taeda exposed to MP for the duration of the growing season (preconditioned) produced less ethylene compared to non-MP controls, with a peak production at 8 h. One half-sib which responded to MP by an increase in radial growth produced 16 times more ethylene than another half-sib which had no significant change in radial growth. Preconditioned A. fraseri produced no significant quantities of ethylene after MP. The production of wound ethylene appears to be different from MP-induced ethylene. When an ethylene-generating solution was applied to P. taeda seedlings, it mimicked many of the morphological and mechanical characteristics of MP seedlings. The putative role of ethylene in the thigmomorphogenetic response is addressed.

  8. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection

    PubMed Central

    Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong

    2017-01-01

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1, were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1-knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection. PMID:28994391

  9. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection.

    PubMed

    Zhao, Shanshan; Hong, Wei; Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong; Li, Yi

    2017-10-10

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1 , were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1- knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.

  10. Effect of the potassium permanganate during papaya fruit ripening: Ethylene production

    NASA Astrophysics Data System (ADS)

    Corrêa, S. F.; Filho, M. B.; da Silva, M. G.; Oliveira, J. G.; Aroucha, E. M. M.; Silva, R. F.; Pereira, M. G.; Vargas, H.

    2005-06-01

    The effect of potassium permanganate (KMnO4) on the ripening process of papaya fruits by monitoring the ethylene emission rates is reported. The ethylene emission was monitored by a photoacoustic spectrometer. Two experimental conditions were applied, being one of them just putting the fruit alone inside the sampling chamber and the second, modifying the atmosphere by the presence of KMnO4. The use of the ethylene absorber reduces the autocatalytic process of ethylene during papaya fruit ripening. For 20 g of KMnO4 the maximal intensity of the ethylene emission decreases by a factor two. Using the same amount of KMnO4, a reduction of about 2.2% in the concentration of ethylene for a mixture of 1ppmv of ethylene in synthetic air was observed.

  11. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice1[OPEN

    PubMed Central

    Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326

  12. Stable Isotope Metabolic Labeling-based Quantitative Phosphoproteomic Analysis of Arabidopsis Mutants Reveals Ethylene-regulated Time-dependent Phosphoproteins and Putative Substrates of Constitutive Triple Response 1 Kinase*

    PubMed Central

    Yang, Zhu; Guo, Guangyu; Zhang, Manyu; Liu, Claire Y.; Hu, Qin; Lam, Henry; Cheng, Han; Xue, Yu; Li, Jiayang; Li, Ning

    2013-01-01

    Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on 15N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethylene-regulated phosphosites using the group-based prediction system with a protein–protein interaction filter revealed a total of 14 kinase–substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethylene-regulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light harvesting chlorophyll A/B binding protein 1.1, and flowering bHLH 3 proteins in a dual-and-opposing fashion. PMID:24043427

  13. A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery1[W][OA

    PubMed Central

    Kim, Joonyup; Wilson, Rebecca L.; Case, J. Brett; Binder, Brad M.

    2012-01-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa ‘Nipponbare’) seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics. PMID:22977279

  14. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    PubMed Central

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  15. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction.

    PubMed

    Shi, Jinrui; Drummond, Bruce J; Wang, Hongyu; Archibald, Rayeann L; Habben, Jeffrey E

    2016-08-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. © 2016 American Society of Plant Biologists. All Rights Reserved.

  16. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    PubMed

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is regulated in reproductive tissues in response to heat stress to modulate resource allocation dynamics.

  17. Ethylene biosynthesis and perception during ripening of loquat fruit (Eriobotrya japonica Lindl.).

    PubMed

    Alos, E; Martinez-Fuentes, A; Reig, C; Mesejo, C; Rodrigo, M J; Agustí, M; Zacarías, L

    2017-03-01

    In order to gain insights into the controversial ripening behavior of loquat fruits, in the present study we have analyzed the expression of three genes related to ethylene biosynthesis (ACS1, ACO1 and ACO2), two ethylene receptors (ERS1a and ERS1b), one signal transduction component (CTR1) and one transcription factor (EIL1) in peel and pulp of loquat fruit during natural ripening and also in fruits treated with ethylene (10μLL -1 ) and 1-MCP (10μLL -1 ), an ethylene action inhibitor. In fruits attached to or detached from the tree, a slight increase in ethylene production was detected at the yellow stage, but the respiration rate declined progressively during ripening. Accumulation of transcripts of ethylene biosynthetic genes did not correlate with changes in ethylene production, since the maximum accumulation of ACS1 and ACO1 mRNA was detected in fully coloured fruits. Expression of ethylene receptor and signaling genes followed a different pattern in peel and pulp tissues. After fruit detachment and incubation at 20°C for up to 6days, ACS1 mRNA slightly increased, ACO1 experienced a substantial increment and ACO2 declined. In the peel, these changes were advanced by exogenous ethylene and partially inhibited by 1-MCP. In the pulp, 1-MCP repressed most of the changes in the expression of biosynthetic genes, while ethylene had almost no effects. Expression of ethylene perception and signaling genes was barely affected by ethylene or 1-MCP. Collectively, a differential transcriptional regulation of ethylene biosynthetic genes operates in peel and pulp, and support the notion of non-climacteric ripening in loquat fruits. Ethylene action, however, appears to be required to sustain or maintain the expression of specific genes. Copyright © 2016. Published by Elsevier GmbH.

  18. Exogenous ethylene inhibits sprout growth in onion bulbs

    PubMed Central

    Bufler, Gebhard

    2009-01-01

    Background and Aims Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. Methods A cultivar (Allium cepa ‘Copra’) with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 °C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO2 and ethylene production of onion bulbs during storage were recorded. Key results Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO2 production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Conclusions Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy. PMID:18940850

  19. Exogenous ethylene inhibits sprout growth in onion bulbs.

    PubMed

    Bufler, Gebhard

    2009-01-01

    Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. A cultivar (Allium cepa 'Copra') with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 degrees C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO(2) and ethylene production of onion bulbs during storage were recorded. Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO(2) production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy.

  20. GDSL LIPASE1 Modulates Plant Immunity through Feedback Regulation of Ethylene Signaling1[W

    PubMed Central

    Kim, Hye Gi; Kwon, Sun Jae; Jang, Young Jin; Nam, Myung Hee; Chung, Joo Hee; Na, Yun-Cheol; Guo, Hongwei; Park, Ohkmae K.

    2013-01-01

    Ethylene is a key signal in the regulation of plant defense responses. It is required for the expression and function of GDSL LIPASE1 (GLIP1) in Arabidopsis (Arabidopsis thaliana), which plays an important role in plant immunity. Here, we explore molecular mechanisms underlying the relationship between GLIP1 and ethylene signaling by an epistatic analysis of ethylene response mutants and GLIP1-overexpressing (35S:GLIP1) plants. We show that GLIP1 expression is regulated by ethylene signaling components and, further, that GLIP1 expression or application of petiole exudates from 35S:GLIP1 plants affects ethylene signaling both positively and negatively, leading to ETHYLENE RESPONSE FACTOR1 activation and ETHYLENE INSENSITIVE3 (EIN3) down-regulation, respectively. Additionally, 35S:GLIP1 plants or their exudates increase the expression of the salicylic acid biosynthesis gene SALICYLIC ACID INDUCTION-DEFICIENT2, known to be inhibited by EIN3 and EIN3-LIKE1. These results suggest that GLIP1 regulates plant immunity through positive and negative feedback regulation of ethylene signaling, and this is mediated by its activity to accumulate a systemic signal(s) in the phloem. We propose a model explaining how GLIP1 regulates the fine-tuning of ethylene signaling and ethylene-salicylic acid cross talk. PMID:24170202

  1. Distillation sequence for the purification and recovery of hydrocarbons

    DOEpatents

    Reyneke, Rian; Foral, Michael; Papadopoulos, Christos G.; Logsdon, Jeffrey S.; Eng, Wayne W. Y.; Lee, Guang-Chung; Sinclair, Ian

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  2. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    PubMed

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  3. 40 CFR 98.240 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... acrylonitrile, carbon black, ethylene, ethylene dichloride, ethylene oxide, or methanol, except as specified in... independently of an oxychlorination process to produce ethylene dichloride is not part of the petrochemical...

  4. Biosynthesis of Ethylene from Methionine in Aminoethoxyvinylglycine-Resistant Avocado Tissue

    PubMed Central

    Baker, James E.; Anderson, James D.; Adams, Douglas O.; Apelbaum, Akiva; Lieberman, Morris

    1982-01-01

    This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [14C] ethylene production from [14C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [14C]ethylene production from [14C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [14C]ethylene production from [14C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [14C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [14C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC, and stimulation of total ethylene production by ACC provide evidence for the methionine → SAM → ACC → ethylene pathway in avocado and do not suggest the operation of an alternate pathway. PMID:16662192

  5. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    PubMed

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that the plant hormone ethylene induces combinatorial effects of H3K9Ac, K14Ac and K23Ac histone acetylation in gene expression genome widely. Further, for a group of ethylene regulated genes, in the absence of ethylene the levels and the covered breadths of H3K9Ac are the preexist markers for distinguishing up- and down- regulated genes, the change in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expression in the presence of ethylene.

  6. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, DA; Bertolani, SJ; Siegel, JB

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  7. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  8. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  9. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  10. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    PubMed

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  11. Ethylene glycol blood test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  12. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia.

    PubMed

    Yang, Weiyuan; Liu, Juanxu; Tan, Yinyan; Zhong, Shan; Tang, Na; Chen, Guoju; Yu, Yixun

    2015-09-01

    Petunia PhGRL1 suppression accelerated flower senescence and increased the expression of the genes downstream of ethylene signaling, whereas PhGR suppression did not. Ethylene plays an important role in flowers senescence. Homologous proteins Green-Ripe and Reversion to Ethylene sensitivity1 are positive regulators of ethylene responses in tomato and Arabidopsis, respectively. The petunia flower has served as a model for the study of ethylene response during senescence. In this study, petunia PhGR and PhGRL1 expression was analyzed in different organs, throughout floral senescence, and after exogenous ethylene treatment; and the roles of PhGR and PhGRL1 during petunia flower senescence were investigated. PhGRL1 suppression mediated by virus-induced gene silencing accelerated flower senescence and increased ethylene production; however, the suppression of PhGR did not. Taken together, these data suggest that PhGRL1 is involved in negative regulation of flower senescence, possibly via ethylene production inhibition and consequently reduced ethylene signaling activation.

  13. Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Knee, E. M.; Hangarter, R. P.; Knee, M.

    2000-01-01

    Etiolated seedlings frequently display a hypocotyl or epicotyl hook which opens on exposure to light. Etylene has been shown to be necessary for maintenance of the hook in a number of plants in darkness. We investigated the interaction of ethylene and light in the regulation of hypocotyl hook opening in Arabidopsis thaliana. We found that hooks of Arabidopsis open in response to continuous red, far-red or blue light in the presence of up to 100 microliters l-1 ethylene. Thus a change in sensitivity to ethylene is likely to be responsible for hook opening in Arabidopsis, rather than a decrease in ethylene production in hook tissues. We used photomorphogenic mutants of Arabidopsis to demonstrate the involvement of both blue light and phytochrome photosensory systems in light-induced hook opening in the presence of ethylene. In addition we used ethylene mutants and inhibitors of ethylene action to investigate the role of ethylene in hook maintenance in seedlings grown in light and darkness.

  14. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    PubMed Central

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  15. Role of Ethylene in the Geotropic Response of Bermudagrass (Cynodon dactylon L. Pers.) Stolons 1

    PubMed Central

    Balatti, Pedro A.; Willemöes, Jorge G.

    1989-01-01

    We studied the relationship between ethylene and gravity-induced upward bending of bermudagrass (Cynodon dactylon L. Pers.) stolons. Ethylene production begins within 3 hours of the onset of gravistimulation, and increases thereafter until the 15th hour, after which it declines. There is a close positive relationship between ethylene production and upward bending during the first 12 hours of gravistimulation. Incubation of stolons with AgNO3 did not prevent ethylene evolution but delayed upward bending. In addition, ethylene production was 10-fold greater and peaked earlier in gravistimulated nodes incubated with 1-aminocyclopropane 1-carboxylic acid. The gravitational stimulation could be due to an increase in both 1-aminocyclopropane 1-carboxylic acid synthase and the ethylene forming enzyme. The results suggest that ethylene promotes the activity of indoleacetic acid. PMID:16667170

  16. Ethylene Upregulates Auxin Biosynthesis in Arabidopsis Seedlings to Enhance Inhibition of Root Cell Elongation[W

    PubMed Central

    Swarup, Ranjan; Perry, Paula; Hagenbeek, Dik; Van Der Straeten, Dominique; Beemster, Gerrit T.S.; Sandberg, Göran; Bhalerao, Rishikesh; Ljung, Karin; Bennett, Malcolm J.

    2007-01-01

    Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion. PMID:17630275

  17. Links Between Ethylene and Sulfur Nutrition-A Regulatory Interplay or Just Metabolite Association?

    PubMed

    Wawrzynska, Anna; Moniuszko, Grzegorz; Sirko, Agnieszka

    2015-01-01

    Multiple reports demonstrate associations between ethylene and sulfur metabolisms, however the details of these links have not yet been fully characterized; the links might be at the metabolic and the regulatory levels. First, sulfur-containing metabolite, methionine, is a precursor of ethylene and is a rate limiting metabolite for ethylene synthesis; the methionine cycle contributes to both sulfur and ethylene metabolism. On the other hand, ethylene is involved in the complex response networks to various stresses and it is known that S deficiency leads to photosynthesis and C metabolism disturbances that might be responsible for oxidative stress. In several plant species, ethylene increases during sulfur starvation and might serve signaling purposes to initiate the process of metabolism reprogramming during adjustment to sulfur deficit. An elevated level of ethylene might result from increased activity of enzymes involved in its synthesis. It has been demonstrated that the alleviation of cadmium stress in plants by application of S seems to be mediated by ethylene formation. On the other hand, the ethylene-insensitive Nicotiana attenuata plants are impaired in sulfur uptake, reduction and metabolism, and they invest their already limited S into methionine needed for synthesis of ethylene constitutively emitted in large amounts to the atmosphere. Regulatory links of EIN3 and SLIM1 (both from the same family of transcriptional factors) involved in the regulation of ethylene and sulfur pathway, respectively, is also quite probable as well as the reciprocal modulation of both pathways on the enzyme activity levels.

  18. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis

    PubMed Central

    Ju, Chuanli; Yoon, Gyeong Mee; Shemansky, Jennifer Marie; Lin, David Y.; Ying, Z. Irene; Chang, Jianhong; Garrett, Wesley M.; Kessenbrock, Mareike; Groth, Georg; Tucker, Mark L.; Cooper, Bret; Kieber, Joseph J.; Chang, Caren

    2012-01-01

    The gaseous phytohormone ethylene C2H4 mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in ethylene signaling, but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the endoplasmic reticulum (ER) membrane to transcription factors in the nucleus is unknown. To close this gap in our understanding of the ethylene signaling pathway, the challenge has been to identify the target of the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) Raf-like protein kinase, as well as the molecular events surrounding ETHYLENE-INSENSITIVE2 (EIN2), an ER membrane-localized Nramp homolog that positively regulates ethylene responses. Here we demonstrate that CTR1 interacts with and directly phosphorylates the cytosolic C-terminal domain of EIN2. Mutations that block the EIN2 phosphorylation sites result in constitutive nuclear localization of the EIN2 C terminus, concomitant with constitutive activation of ethylene responses in Arabidopsis. Our results suggest that phosphorylation of EIN2 by CTR1 prevents EIN2 from signaling in the absence of ethylene, whereas inhibition of CTR1 upon ethylene perception is a signal for cleavage and nuclear localization of the EIN2 C terminus, allowing the ethylene signal to reach the downstream transcription factors. These findings significantly advance our understanding of the mechanisms underlying ethylene signal transduction. PMID:23132950

  19. Ethylene Regulates Monomeric GTP-Binding Protein Gene Expression and Activity in Arabidopsis1

    PubMed Central

    Moshkov, Igor E.; Mur, Luis A.J.; Novikova, Galina V.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    Ethylene rapidly and transiently up-regulates the activity of several monomeric GTP-binding proteins (monomeric G proteins) in leaves of Arabidopsis as determined by two-dimensional gel electrophoresis and autoradiographic analyses. The activation is suppressed by the receptor-directed inhibitor 1-methylcyclopropene. In the etr1-1 mutant, constitutive activity of all the monomeric G proteins activated by ethylene is down-regulated relative to wild type, and ethylene treatment has no effect on the levels of activity. Conversely, in the ctr1-1 mutant, several of the monomeric G proteins activated by ethylene are constitutively up-regulated. However, the activation profile of ctr1-1 does not exactly mimic that of ethylene-treated wild type. Biochemical and molecular evidence suggested that some of these monomeric G proteins are of the Rab class. Expression of the genes for a number of monomeric G proteins in response to ethylene was investigated by reverse transcriptase-PCR. Rab8 and Ara3 expression was increased within 10 min of ethylene treatment, although levels fell back significantly by 40 min. In the etr1-1 mutant, expression of Rab8 was lower than wild type and unaffected by ethylene; in ctr1-1, expression of Rab8 was much higher than wild type and comparable with that seen in ethylene treatments. Expression in ctr1-1 was also unaffected by ethylene. Thus, the data indicate a role for monomeric G proteins in ethylene signal transduction. PMID:12692329

  20. Oxidation of Ethylene Glycol by a Salt-Requiring Bacterium

    PubMed Central

    Caskey, William H.; Taber, Willard A.

    1981-01-01

    Bacterium T-52, cultured on ethylene glycol, readily oxidized glycolate and glyoxylate and exhibited elevated activities of ethylene glycol dehydrogenase and glycolate oxidase. Labeled glyoxylate was identified in reaction mixtures containing [14C]-ethylene glycol, but no glycolate was detected. The most likely pathway of ethylene glycol catabolism by bacterium T-52 is sequential oxidation to glycolate and glyoxylate. PMID:16345810

  1. Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae.

    PubMed

    Johansson, Nina; Persson, Karl O; Quehl, Paul; Norbeck, Joakim; Larsson, Christer

    2014-11-01

    We have previously shown that ethylene production in Saccharomyces cerevisiae expressing the ethylene-forming enzyme (EFE) from Pseudomonas syringae is strongly influenced by variations in the mode of cultivation as well as the choice of nitrogen source. Here, we have studied the influence of nitrogen metabolism on the production of ethylene further. Using ammonium, glutamate, glutamate/arginine, and arginine as nitrogen sources, it was found that glutamate (with or without arginine) correlates with a high ethylene production, most likely linked to an observed increase in 2-oxoglutarate levels. Arginine as a sole nitrogen source caused a reduced ethylene production. A reduction of arginine levels, accomplished using an arginine auxotrophic ARG4-deletion strain in the presence of limiting amounts of arginine or through CAR1 overexpression, did however not correlate with an increased ethylene production. As expected, arginine was necessary for ethylene production as ethylene production in the ARG4-deletion strain ceased at the time when arginine was depleted. In conclusion, our data suggest that high levels of 2-oxoglutarate and a limited amount of arginine are required for successful ethylene production in yeast. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    PubMed

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  3. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling.

    PubMed

    Wang, Honglin; Sun, Yue; Chang, Jianhong; Zheng, Fangfang; Pei, Haixia; Yi, Yanjun; Chang, Caren; Dong, Chun-Hai

    2016-07-01

    Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling.

  4. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.

    PubMed

    Muday, Gloria K; Brady, Shari R; Argueso, Cristiana; Deruère, Jean; Kieber, Joseph J; DeLong, Alison

    2006-08-01

    The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.

  5. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide.

    PubMed

    Garcia-Jimenez, Pilar; Brito-Romano, Olegario; Robaina, Rafael R

    2013-08-01

    The effects of different light conditions and exogenous ethylene on the emission of volatile compounds from the alga Gelidium arbuscula Bory de Saint-Vincent were studied. Special emphasis was placed on the possibility that the emission of ethylene and dimethyl sulfide (DMS) are related through the action of dimethylsulfoniopropionate (DMSP) lyase. The conversion of DMSP to DMS and acrylate, which is catalyzed by DMSP lyase, can indirectly support the synthesis of ethylene through the transformation of acrylate to ethylene. After mimicking the desiccation of G. arbuscula thalli experienced during low tides, the volatile compounds emitted were trapped in the headspace of 2 mL glass vials for 1 h. Two methods based on gas chromatography/mass spectrometry revealed that the range of organic volatile compounds released was affected by abiotic factors, such as the availability and spectral quality of light, salinity, and exogenous ethylene. Amines and methyl alkyl compounds were produced after exposure to white light and darkness but not after exposure to exogenous ethylene or red light. Volatiles potentially associated with the oxidation of fatty acids, such as alkenes and low-molecular-weight oxygenated compounds, accumu-lated after exposure to exogenous ethylene and red light. Ethylene was produced in all treatments, especially after exposure to exogenous ethylene. Levels of DMS, the most abundant sulfur-compound that was emitted in all of the conditions tested, did not increase after incubation with ethylene. Thus, although DMSP lyase is active in G. arbuscula, it is unlikely to contribute to ethylene synthesis. The generation of ethylene and DMS do not appear to be coordinated in G. arbuscula. © 2013 Phycological Society of America.

  6. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit 12

    PubMed Central

    Starrett, David A.; Laties, George G.

    1991-01-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A+) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening. PMID:16668073

  7. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    PubMed Central

    2014-01-01

    Background Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and mutant plants. PMID:25082369

  8. Ripening Behavior of Wild Tomato Species 1

    PubMed Central

    Grumet, Rebecca; Fobes, Jon F.; Herner, Robert C.

    1981-01-01

    Nine wild tomato species were surveyed for variability in ripening characteristics. External signs of ripening, age of fruit at ripening, and ethylene production patterns were compared. Ethylene production was monitored using an ethylene-free air stream system and gas chromatography. Based on these ripening characteristics, the fruits fell into three general categories: those that change color when they ripen, green-fruited species that abscise prior to ripening, and green-fruited species that ripen on the vine. The fruits that change color, Lycopersicon esculentum var. cerasiforme, Lycopersicon pimpinellifolium and Lycopersicon cheesmanii, exhibited a peak of ethylene production similar to the cultivated tomato; there were differences, however, in the timing and magnitude of the ethylene production. Peak levels of ethylene production are correlated with age at maturity. For the two species that abscise prior to ripening, Lycopersicon chilense and Lycopersicon peruvianum, ability to produce ethylene varied with stage of maturity. The two species differed from each other in time of endogenous ethylene production relative to abscission, suggesting differences in the control mechanisms regulating their ripening. For two of the green-fruited species that ripen on the vine, Lycopersicon chmielewskii and Lycopersicon parviflorum, ethylene production was correlated to fruit softening. For Lycopersicon hirsutum and Solanum pennellii, however, ethylene production was not correlated with external ripening changes, making questionable the role of ethylene as the ripening hormone in these fruits. PMID:16662121

  9. Differential Expression of Two Novel Members of the Tomato Ethylene-Receptor Family

    PubMed Central

    Tieman, Denise M.; Klee, Harry J.

    1999-01-01

    The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development. PMID:10318694

  10. Ethylene-associated phase change from juvenile to mature phenotype of daylily (Hemerocallis) in vitro

    NASA Technical Reports Server (NTRS)

    Smith, D. L.; Kelly, K.; Krikorian, A. D.

    1989-01-01

    Hemerocallis plantlets maintained in vitro for extended periods of time in tightly closed culture vessels frequently show a phenotype, albeit on a miniaturized scale, typical of more mature, field-grown plants. The positive relationship of elevated ethylene in the headspace of such vessels to the phase shift from juvenile to mature form is established. Rigorous restriction in air exchange with the external environment by means of silicone grease seals hastens the phase change and improves uniformity of response. Although some plantlets may take longer to accumulate enough ethylene in sealed jars to undergo change, added ethylene and ethylene-releasing agents promote it. Ethylene adsorbants (e.g. mercuric perchlorate) block the shift of juvenile to mature form. Critical ambient ethylene level for the shift is ca 1 microliter l-1. Levels up to 1000 microliters l-1 do not hasten the response but are not toxic. The phase change is fully reversible when air exchange permits ethylene to drop below 1 microliter l-1. At least 1 microliter l-1 ethylene is required to sustain the mature phenotype. The ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG) prevents the phase change, while the ethylene biosynthesis intermediate 1-aminocyclopropanecarboxylic acid (ACC) improves it. KOH, as a CO2 absorbent, does not prevent the phase change. Histology sections demonstrate subtle changes in the form of shoot tips of plantlets undergoing phase change.

  11. AUTOMOTIVE EMISSIONS OF ETHYLENE DIBROMIDE

    EPA Science Inventory

    Ethylene dibromide, a suspected carcinogen, and ethylene dichloride are commonly used in leaded gasoline as scavengers. Ethylene dibromide emission rates were determined from seven automobiles which had a wide range of control devices, ranging from totally uncontrolled to evapora...

  12. 78 FR 8513 - Product Cancellation Order for Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ...) Granular Concentrate. ethylene(dimethylimino)ethylene dichloride). 004787-00036 Glyfos Au Herbicide...-dimethyl, chloride. 045309-00010 Aqua Clear Algae Preventative.... Poly(oxyethylene(dimethylimino) ethylene(dimethylimino)ethylene dichloride). 045309-00011 Spa Clear Non-Foaming Algaecide.. Poly(oxyethylene...

  13. Gravitropism in higher plant shoots. IV - Further studies on participation of ethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; White, Rosemary G.; Salisbury, Frank B.

    1986-01-01

    Various hypotheses regarding the influence of ethylene on gravitropism in higher plant shoots were experimentally tested. It was found that ethylene at 1.0 and 10.0 cu cm/cu m decreased the rate of gravitropic bending in cocklebur stems, while 0.1 cm/cu m of ethylene had little effect. Treating cocklebur plants with 1.0 mmol aminoethoxyvinylglycine (AVG, an ethylene synthesis inhibitor) delayed stem bending compared with controls, but adding 0.1 cu cm/cu m ethylene in the surrounding atmosphere partially restored the rate of bending of AVG-treated plants. Virtually all newly synthesized ethylene appeared in bottom halves of horizontal stems, where ethylene concentrations were as much as 100 times those in upright stems or in top halves of horizontal stems. Auxin applied to one side of a vertical stem caused extreme bending away from that side; gibberellic acid, kinetin, and abscisic acid were without effect.

  14. Inhibiting ethylene perception with 1-methylcyclopropene triggers molecular responses aimed to cope with cell toxicity and increased respiration in citrus fruits.

    PubMed

    Establés-Ortiz, Beatriz; Romero, Paco; Ballester, Ana-Rosa; González-Candelas, Luis; Lafuente, María T

    2016-06-01

    The ethylene perception inhibitor 1-methylcyclopropene (1-MCP) has been critical in understanding the hormone's mode of action. However, 1-MCP may trigger other processes that could vary the interpretation of results related until now to ethylene, which we aim to understand by using transcriptomic analysis. Transcriptomic changes in ethylene and 1-MCP-treated 'Navelate' (Citrus sinensis L. Osbeck) oranges were studied in parallel with changes in ethylene production, respiration and peel damage. The effects of compounds modifying the levels of the ethylene co-product cyanide and nitric oxide (NO) on fruit physiology were also studied. Results suggested that: 1) The ethylene treatment caused sub-lethal stress since it induced stress-related responses and reduced peel damage; 2) 1-MCP induced ethylene-dependent and ethylene-independent responsive networks; 3) 1-MCP triggered ethylene overproduction, stress-related responses and metabolic shifts aimed to cope with cell toxicity, which mostly affected to the inner part of the peel (albedo); 4) 1-MCP increased respiration and drove metabolism reconfiguration for favoring energy conservation but up-regulated genes related to lipid and protein degradation and triggered the over-expression of genes associated with the plasma membrane cellular component; 5) Xenobiotics and/or reactive oxygen species (ROS) might act as signals for defense responses in the ethylene-treated fruit, while their uncontrolled generation would induce processes mimicking cell death and damage in 1-MCP-treated fruit; 6) ROS, the ethylene co-product cyanide and NO may converge in the toxic effects of 1-MCP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform.

    PubMed

    Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A

    2012-11-20

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.

  16. CADMIUM-INDUCED ETHYLENE PRODUCTION IN BEAN PLANTS

    EPA Science Inventory

    Studies were conducted to (1) compare stress ethylene production from roots and shoots (2) determine the association between stress ethylene production and tissue Cd levels; and (3) investigate the time course of stress ethylene production following the rhizosphere application of...

  17. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family

    PubMed Central

    Shakeel, Samina N.; Wang, Xiaomin; Binder, Brad M.; Schaller, G. Eric

    2013-01-01

    The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction. PMID:23543258

  18. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea.

    PubMed

    Wang, Hong; Liu, Gang; Li, Chunxia; Powell, Ann L T; Reid, Michael S; Zhang, Zhen; Jiang, Cai-Zhong

    2013-06-01

    Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter-regulated expression of the Arabidopsis ethylene receptor mutant ethylene-insensitive1-1 (etr1-1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1-1-expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1-1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1-1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence-related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1-1 expression alters tolerance to pathogens. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  19. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2014-01-07

    The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.

  20. Inhalation exposure to ethylene induces eosinophilic rhinitis and nasal epithelial remodeling in Fischer 344 rats.

    PubMed

    Brandenberger, Christina; Hotchkiss, Jon A; Krieger, Shannon M; Pottenger, Lynn H; Harkema, Jack R

    2015-11-05

    This study investigated the time- and concentration-dependent effects of inhaled ethylene on eosinophilic rhinitis and nasal epithelial remodeling in Fisher 344 rats exposed to 0, 10, 50, 300, or 10,000 ppm ethylene, 6 h/day, 5 days/week for up to 4 weeks. Morphometric quantitation of eosinophilic inflammation and mucous cell metaplasia/hyperplasia (MCM) and nasal mucosal gene expression were evaluated at anatomic sites previously shown to undergo ethylene-induced epithelial remodeling. Serum levels of total IgE, IgG1 and IgG2a were measured to determine if ethylene exposure increased the expression of Th2-associated (IgE and IgG1) relative to Th1-associated (IgG2a) antibody isotypes. Rats exposed to 0 or 10,000 ppm for 1, 3, 5, 10, or 20 days were analyzed to assess the temporal pattern of ethylene-induced alterations in nasal epithelial cell proliferation, morphology and gene expression. Rats exposed to 0, 10, 50, 300, and 10,000 ppm ethylene for 20 days were analyzed to assess concentration-dependent effects on lesion development. Additional rats exposed 4 weeks to 0, 300, or 10,000 ppm ethylene were held for 13 weeks post-exposure to examine the persistence of ethylene-induced mucosal alterations. The data indicate that cell death and reparative cell proliferation were not a part of the pathogenesis of ethylene-induced nasal lesions. Enhanced gene expression of Th2 cytokines (e.g., IL-5, IL-13) and chitinase (YM1/2) in the nasal mucosa was much greater than that of Th1 cytokines (e.g., IFNγ) after ethylene exposure. A significant increase in MCM was measured after 5 days of exposure to 10,000 ppm ethylene and after 20 days of exposure 10 ppm ethylene. Ethylene-induced MCM was reversible after cessation of exposure. No increase in total serum IgE, IgG1 or IgG2a was measured in any ethylene-exposed group. These data do not support involvement of an immune-mediated allergic mechanism in the pathogenesis of ethylene-induced nasal lesions in rats. Repeated inhalation of ethylene can induce a local Th2-mediated response in the nasal mucosa of rats, however the mechanisms which induce nasal inflammatory and epithelial responses are yet to be determined. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. An analysis of alternative technologies for the removal of ethylene from the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1995-01-01

    A variety of technologies were analyzed for their potential to remove ethylene from the CELSS Biomass Production Chamber (BPC). During crop production (e.g., lettuce, wheat, soybean, potato) in the BPC ethylene can accumulate in the airspace and subsequently affect plant viability. The chief source of ethylene is the plants themselves which reside in plastic trays containing nutrient solution. The main sink for ethylene is chamber leakage. The removal technology can be employed when deleterious levels (e.g., 50 ppb for potato) of ethylene are exceeded in the BPC and perhaps to optimize the plant growth process once a better understanding is developed of the relationship between exogenous ethylene concentration and plant growth. The technologies examined were catalytic oxidation, molecular sieve, cryotrapping, permanganate absorption, and UV degradation. Upon analysis, permanganate was chosen as the most suitable method. Experimental data for ethylene removal by permanganate during potato production was analyzed in order to design a system for installation in the BPC air duct. In addition, an analysis of the impact on ethylene concentration in the BPC of integrating the Breadboard Scale Aerobic Bioreactor (BSAB) with the BPC was performed. The result indicates that this unit has no significant effect on the ethylene material balance as a source or sink.

  2. A molecular framework of light-controlled phytohormone action in Arabidopsis.

    PubMed

    Zhong, Shangwei; Shi, Hui; Xue, Chang; Wang, Lei; Xi, Yanpeng; Li, Jigang; Quail, Peter H; Deng, Xing Wang; Guo, Hongwei

    2012-08-21

    Environmental changes strongly affect plant growth and development. Phytohormones, endogenous plant-made small molecules such as ethylene, regulate a wide range of processes throughout the lifetime of plants. The ability of plants to integrate external signals with endogenous regulatory pathways is vital for their survival. Ethylene has been found to suppress hypocotyl elongation in darkness while promoting it in light. How ethylene regulates hypocotyl elongation in such opposite ways is largely unknown. In particular, how light modulates and even reverses the function of ethylene has yet to be characterized. Here we show that the basic-helix-loop-helix transcription factor phytochrome-interacting factor 3 (PIF3) is directly activated by ETHYLENE-INSENSITIVE 3 (EIN3) and is indispensible for ethylene-induced hypocotyl elongation in light. Ethylene via EIN3 concomitantly activates two contrasting pathways: the PIF3-dependent growth-promoting pathway and an ethylene response factor 1 (ERF1)-mediated growth-inhibiting pathway. In the light, growth-promoting PIFs are limiting due to light-dependent destabilization, and thus ethylene stimulates growth under these conditions. In contrast, ERF1 is destabilized, and thus limiting, under dark conditions, explaining why ethylene inhibits growth in the dark. Our findings provide a mechanistic insight into how light modulates internal hormone-regulated plant growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  4. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis.

    PubMed

    Liu, Miao; Liu, Xing Xing; He, Xiao Lin; Liu, Li Juan; Wu, Hao; Tang, Cai Xian; Zhang, Yong Song; Jin, Chong Wei

    2017-02-01

    Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Ethylene responsive factor ERF110 mediates ethylene-regulated transcription of a sex determination-related orthologous gene in two Cucumis species.

    PubMed

    Tao, Qianyi; Niu, Huanhuan; Wang, Zhongyuan; Zhang, Wenhui; Wang, Hu; Wang, Shenhao; Zhang, Xian; Li, Zheng

    2018-05-25

    In plants, unisexual flowers derived from developmental sex determination form separate stamens and pistils that facilitate cross pollination. In cucumber and melon, ethylene plays a key role in sex determination. Six sex determination-related genes have been identified in ethylene biosynthesis in these Cucumis species. The interactions among these genes are thought to involve ethylene signaling; however, the underlying mechanism of regulation remains unknown. In this study, hormone treatment and qPCR assays were used to confirm expression of these sex determination-related genes in cucumber and melon is ethylene sensitive. RNA-Seq analysis subsequently helped identify the ethylene responsive factor (ERF) gene, CsERF110, related to ethylene signaling and sex determination. CsERF110 and its melon ortholog, CmERF110, shared a conserved AP2/ERF domain and showed ethylene-sensitive expression. Yeast one-hybrid and ChIP-PCR assays further indicated that CsERF110 bound to at least two sites in the promoter fragment of CsACS11, while transient transformation analysis showed that CsERF110 and CmERF110 enhance CsACS11 and CmACS11 promoter activity, respectively. Taken together, these findings suggest that CsERF110 and CmERF110 respond to ethylene signaling, mediating ethylene-regulated transcription of CsACS11 and CmACS11 in cucumber and melon, respectively. Furthermore, the mechanism involved in its regulation is thought to be conserved in these two Cucumis species.

  6. Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of CBF and Type-A ARR Genes in Arabidopsis[W][OA

    PubMed Central

    Shi, Yiting; Tian, Shouwei; Hou, Lingyan; Huang, Xiaozhen; Zhang, Xiaoyan; Guo, Hongwei; Yang, Shuhua

    2012-01-01

    The phytohormone ethylene regulates multiple aspects of plant growth and development and responses to environmental stress. However, the exact role of ethylene in freezing stress remains unclear. Here, we report that ethylene negatively regulates plant responses to freezing stress in Arabidopsis thaliana. Freezing tolerance was decreased in ethylene overproducer1 and by the application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid but increased by the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine or the perception antagonist Ag+. Furthermore, ethylene-insensitive mutants, including etr1-1, ein4-1, ein2-5, ein3-1, and ein3 eil1, displayed enhanced freezing tolerance. By contrast, the constitutive ethylene response mutant ctr1-1 and EIN3-overexpressing plants exhibited reduced freezing tolerance. Genetic and biochemical analyses revealed that EIN3 negatively regulates the expression of CBFs and type-A Arabidopsis response regulator5 (ARR5), ARR7, and ARR15 by binding to specific elements in their promoters. Overexpression of these ARR genes enhanced the freezing tolerance of plants. Thus, our study demonstrates that ethylene negatively regulates cold signaling at least partially through the direct transcriptional control of cold-regulated CBFs and type-A ARR genes by EIN3. Our study also provides evidence that type-A ARRs function as key nodes to integrate ethylene and cytokinin signaling in regulation of plant responses to environmental stress. PMID:22706288

  7. Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus).

    PubMed

    Manzano, Susana; Martínez, Cecilia; García, Juan Manuel; Megías, Zoraida; Jamilena, Manuel

    2014-12-01

    Although it is known that ethylene has a masculinizing effect on watermelon, the specific role of this hormone in sex expression and flower development has not been analyzed in depth. By using different approaches the present work demonstrates that ethylene regulates differentially two sex-related developmental processes: sexual expression, i.e. the earliness and the number of female flowers per plant, and the development of individual floral buds. Ethylene production in the shoot apex as well as in male, female and bisexual flowers demonstrated that the female flower requires much more ethylene than the male one to develop, and that bisexual flowers result from a decrease in ethylene production in the female floral bud. The occurrence of bisexual flowers was found to be associated with elevated temperatures in the greenhouse, concomitantly with a reduction of ethylene production in the shoot apex. External treatments with ethephon and AVG, and the use of Cucurbita rootstocks with different ethylene production and sensitivity, confirmed that, as occurs in other cucurbit species, ethylene is required to arrest the development of stamens in the female flower. Nevertheless, in watermelon ethylene inhibits the transition from male to female flowering and reduces the number of pistillate flowers per plant, which runs contrary to findings in other cucurbit species. The use of Cucurbita rootstocks with elevated ethylene production delayed the production of female flowers but reduced the number of bisexual flowers, which is associated with a reduced fruit set and altered fruit shape.

  8. Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice.

    PubMed

    Zhu, Xiao Fang; Zhu, Chun Quan; Wang, Chao; Dong, Xiao Ying; Shen, Ren Fang

    2017-01-01

    Nitric oxide (NO) and ethylene are both involved in cell wall phosphorus (P) reutilization in P-deficient rice; however, the crosstalk between them remains unclear. In the present study using P-deficient 'Nipponbare' (Nip), root NO accumulation significantly increased after 1 h and reached a maximum at 3 h, while ethylene production significantly increased after 3 h and reached a maximum at 6 h, indicating NO responded more quickly than ethylene. Irrespective of P status, addition of the NO donor sodium nitroprusside (SNP) significantly increased while the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) significantly decreased the production of ethylene, while neither the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) nor the ethylene inhibitor aminoethoxyvinylglycine (AVG) had any influence on NO accumulation, suggesting NO acted upstream of ethylene. Under P-deficient conditions, SNP and ACC alone significantly increased root soluble P content through increasing pectin content, and c-PTIO addition to the ACC treatment still showed the same tendency; however, AVG+SNP treatment had no effect, further indicating that ethylene was the downstream signal affecting pectin content. The expression of the phosphate transporter gene OsPT2 showed the same tendency as the NO-ethylene-pectin pathway. Taken together, we conclude that ethylene functions downstream of NO in cell wall P reutilization in P-deficient rice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Ethylene Biosynthesis and Signaling Is Required for Rice Immune Response and Basal Resistance Against Magnaporthe oryzae Infection.

    PubMed

    Helliwell, Emily E; Wang, Qin; Yang, Yinong

    2016-11-01

    Recent studies have suggested that ethylene enhances host resistance to fungal pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Among the six 1-aminocyclopropane-1-carboxylic acid synthase genes in rice, OsACS1 and OsACS2 are induced within 24 h of inoculation by M. oryzae. This induction occurs simultaneously with an increase in ethylene production that is noticeable 12 h postinoculation. The purpose of this study was to examine the dynamics of ethylene production and signaling in wild type and RNA interference-mediated suppression lines deficient in ethylene production (acs2) or signaling (eil1) after challenge with M. oryzae as well as fungal cell-wall elicitors. Ethylene-insensitive mutant lines show an attenuated basal defense response including lower basal expression of the genes encoding a chitin-binding receptor, pathogenesis-related (PR) proteins, and the enzymes involved in the synthesis of diterprenoid phytoalexins, a reduction on early hypersensitive response (HR)-like cell death, and reduced incidence of callose deposition. Ethylene-deficient mutants showed an intermediate phenotype, with a significant reduction in expression of defense-related genes and callose deposition, but only a slight reduction in HR-like cell death. As a result, all ethylene-insensitive mutants show increased susceptibility to M. oryzae, whereas the ethylene-deficient lines show a slight but less significant increase in disease severity. These results show that ethylene signaling and, to some extent, ethylene production are required for rice basal resistance against the blast fungus Magnaporthe oryzae.

  10. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. 40 CFR 63.360 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions Standards... subpart does not apply to ethylene oxide sterilization operations at stationary sources such as hospitals... sterilization chamber vents at sources using less than 1 ton of ethylene oxide that increase their ethylene...

  12. 21 CFR 878.5000 - Nonabsorbable poly(ethylene terephthalate) surgical suture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonabsorbable poly(ethylene terephthalate... Devices § 878.5000 Nonabsorbable poly(ethylene terephthalate) surgical suture. (a) Identification. Nonabsorbable poly(ethylene terephthalate) surgical suture is a multifilament, nonabsorbable, sterile, flexible...

  13. Low capital implementation of distributed distillation in ethylene recovery

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  14. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.).

    PubMed

    In, Byung-Chun; Binder, Brad M; Falbel, Tanya G; Patterson, Sara E

    2013-11-01

    It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription-PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers.

  15. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.)

    PubMed Central

    Patterson, Sara E.

    2013-01-01

    It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription–PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers. PMID:24078672

  16. Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems

    NASA Technical Reports Server (NTRS)

    Steed, C. L.; Taylor, L. K.; Harrison, M. A.

    2004-01-01

    During gravitropism, the accumulation of auxin in the lower side of the stem causes increased growth and the subsequent curvature, while the gaseous hormone ethylene plays a modulating role in regulating the kinetics of growth asymmetries. Light also contributes to the control of gravitropic curvature, potentially through its interaction with ethylene biosynthesis. In this study, red-light pulse treatment of etiolated pea epicotyls was evaluated for its effect on ethylene biosynthesis during gravitropic curvature. Ethylene biosynthesis analysis included measurements of ethylene; the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC); malonyl-conjugated ACC (MACC); and expression levels of pea ACC oxidase (Ps-ACO1) and ACC synthase (Ps-ACS1, Ps-ACS2) genes by reverse transcriptase-polymerase chain reaction analysis. Red-pulsed seedlings were given a 6 min pulse of 11 micromoles m-2 s-1 red-light 15 h prior to horizontal reorientation for consistency with the timeline of red-light inhibition of ethylene production. Red-pulse treatment significantly reduced ethylene production and MACC levels in epicotyl tissue. However, there was no effect of red-pulse treatment on ACC level, or expression of ACS or ACO genes. During gravitropic curvature, ethylene production increased from 60 to 120 min after horizontal placement in both control and red-pulsed epicotyls. In red-pulsed tissues, ACC levels increased by 120 min after horizontal reorientation, accompanied by decreased MACC levels in the lower portion of the epicotyl. Overall, our results demonstrate that ethylene production in etiolated epicotyls increases after the initiation of curvature. This ethylene increase may inhibit cell growth in the lower portion of the epicotyl and contribute to tip straightening and reduced overall curvature observed after the initial 60 min of curvature in etiolated pea epicotyls.

  17. The Central Role of PhEIN2 in Ethylene Responses throughout Plant Development in Petunia1

    PubMed Central

    Shibuya, Kenichi; Barry, Kristin G.; Ciardi, Joseph A.; Loucas, Holly M.; Underwood, Beverly A.; Nourizadeh, Saeid; Ecker, Joseph R.; Klee, Harry J.; Clark, David G.

    2004-01-01

    The plant hormone ethylene regulates many aspects of growth and development. Loss-of-function mutations in ETHYLENE INSENSITIVE2 (EIN2) result in ethylene insensitivity in Arabidopsis, indicating an essential role of EIN2 in ethylene signaling. However, little is known about the role of EIN2 in species other than Arabidopsis. To gain a better understanding of EIN2, a petunia (Petunia × hybrida cv Mitchell Diploid [MD]) homolog of the Arabidopsis EIN2 gene (PhEIN2) was isolated, and the role of PhEIN2 was analyzed in a wide range of plant responses to ethylene, many that do not occur in Arabidopsis. PhEIN2 mRNA was present at varying levels in tissues examined, and the PhEIN2 expression decreased after ethylene treatment in petals. These results indicate that expression of PhEIN2 mRNA is spatially and temporally regulated in petunia during plant development. Transgenic petunia plants with reduced PhEIN2 expression were compared to wild-type MD and ethylene-insensitive petunia plants expressing the Arabidopsis etr1-1 gene for several physiological processes. Both PhEIN2 and etr1-1 transgenic plants exhibited significant delays in flower senescence and fruit ripening, inhibited adventitious root and seedling root hair formation, premature death, and increased hypocotyl length in seedling ethylene response assays compared to MD. Moderate or strong levels of reduction in ethylene sensitivity were achieved with expression of both etr1-1 and PhEIN2 transgenes, as measured by downstream expression of PhEIL1. These results demonstrate that PhEIN2 mediates ethylene signals in a wide range of physiological processes and also indicate the central role of EIN2 in ethylene signal transduction. PMID:15466231

  18. Mechanisms of Hormone Action

    PubMed Central

    Abeles, F. B.; Ruth, J. M.; Forrence, L. E.; Leather, G. R.

    1972-01-01

    We observed no exchange between deuterated ethylene (C2D4) and the hydrogen of pea seedlings (Pisum sativum L. cv. Alaska). This suggests that bonding forces in which exchange could readily occur are not important in the physiological action of ethylene. Deuterated ethylene was just as effective as normal ethylene in inhibiting the growth of pea root sections. These results indicate that splitting carbon to hydrogen bonds did not occur during ethylene action. PMID:16658026

  19. Volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Overall mass-transfer coefficients for the volatilization of ethylene dibromide from water were measured simultaneously with the oxygen absorption coefficient in a laboratory stirred tank. Coefficients were measured as a function of mixing conditions in the water for two windspeeds. The ethylene dibromide mass-transfer coefficient depended on windspeed; the ethylene dibromide liquid-film coefficient did not, in agreement with theory. A constant relation existed between the liquid-film coefficients for ethylene dibromide and oxygen.

  20. Ethylene production with engineered Synechocystis sp PCC 6803 strains.

    PubMed

    Veetil, Vinod Puthan; Angermayr, S Andreas; Hellingwerf, Klaas J

    2017-02-23

    Metabolic engineering and synthetic biology of cyanobacteria offer a promising sustainable alternative approach for fossil-based ethylene production, by using sunlight via oxygenic photosynthesis, to convert carbon dioxide directly into ethylene. Towards this, both well-studied cyanobacteria, i.e., Synechocystis sp PCC 6803 and Synechococcus elongatus PCC 7942, have been engineered to produce ethylene by introducing the ethylene-forming enzyme (Efe) from Pseudomonas syringae pv. phaseolicola PK2 (the Kudzu strain), which catalyzes the conversion of the ubiquitous tricarboxylic acid cycle intermediate 2-oxoglutarate into ethylene. This study focuses on Synechocystis sp PCC 6803 and shows stable ethylene production through the integration of a codon-optimized version of the efe gene under control of the Ptrc promoter and the core Shine-Dalgarno sequence (5'-AGGAGG-3') as the ribosome-binding site (RBS), at the slr0168 neutral site. We have increased ethylene production twofold by RBS screening and further investigated improving ethylene production from a single gene copy of efe, using multiple tandem promoters and by putting our best construct on an RSF1010-based broad-host-self-replicating plasmid, which has a higher copy number than the genome. Moreover, to raise the intracellular amounts of the key Efe substrate, 2-oxoglutarate, from which ethylene is formed, we constructed a glycogen-synthesis knockout mutant (ΔglgC) and introduced the ethylene biosynthetic pathway in it. Under nitrogen limiting conditions, the glycogen knockout strain has increased intracellular 2-oxoglutarate levels; however, surprisingly, ethylene production was lower in this strain than in the wild-type background. Making use of different RBS sequences, production of ethylene ranging over a 20-fold difference has been achieved. However, a further increase of production through multiple tandem promoters and a broad-host plasmid was not achieved speculating that the transcription strength and the gene copy number are not the limiting factors in our system.

  1. Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus).

    PubMed

    Fuentes, Lida; Monsalve, Liliam; Morales-Quintana, Luis; Valdenegro, Mónika; Martínez, Juan-Pablo; Defilippi, Bruno G; González-Agüero, Mauricio

    2015-05-01

    Red Raspberry (Rubus idaeus) is traditionally classified as non-climacteric, and the role of ethylene in fruit ripening is not clear. The available information indicates that the receptacle, a modified stem that supports the drupelets, is involved in ethylene production of ripe fruits. In this study, we report receptacle-related ethylene biosynthesis during the ripening of fruits of cv. Heritage. In addition, the expression pattern of ethylene biosynthesis transcripts was evaluated during the ripening process. The major transcript levels of 1-aminocyclopropane-1-carboxylic acid synthase (RiACS1) and 1-aminocyclopropane-1-carboxylic acid oxidase (RiACO1) were concomitant with ethylene production, increased total soluble solids (TSS) and decreased titratable acidity (TA) and fruit firmness. Moreover, ethylene biosynthesis and transcript levels of RiACS1 and RiACO1 were higher in the receptacle, sustaining the receptacle's role as a source of ethylene in regulating the ripening of raspberry. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption.

    PubMed

    Pires, João; Pinto, Moisés L; Saini, Vipin K

    2014-08-13

    The separation of ethylene from ethane is one of the most energy-intensive single distillations practiced. This separation could be alternatively made by an adsorption process if the adsorbent would preferentially adsorb ethane over ethylene. Materials that exhibit this feature are scarce. Here, we report the case of a metal-organic framework, the IRMOF-8, for which the adsorption isotherms of ethane and ethylene were measured at 298 and 318 K up to pressures of 1000 kPa. Separation of ethane/ethylene mixtures was achieved in flow experiments using a IRMOF-8 filled column. The interaction of gas molecules with the surface of IRMOF-8 was explored using density functional theory (DFT) methods. We show both experimentally and computationally that, as a result of the difference in the interaction energies of ethane and ethylene in IRMOF-8, this material presents the preferential adsorption of ethane over ethylene. The results obtained in this study suggest that MOFs with ligands exhibiting high aromaticity character are prone to adsorb ethane preferably over ethylene.

  3. Effects of ethylene on gene expression in carrot roots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, S.E.

    1984-01-01

    To investigate ethylene effects on expression of genetic information, cDNA clones corresponding to ethylene-induced carrot root mRNAs were constructed and isolated. RNA dot blot analysis showed that for the three clones studied peak cytosolic mRNA prevalence occurred at 21 hours of treatment followed thereafter by rapid messenger decay. DNA filter excess hybridization to in vitro synthesized nuclear RNA showed that the ethylene-induced mRNA increase is engendered by transcription of previously quiescent genes. The kinetics and magnitude of changes in mRNA prevalence parallel changes in transcriptional activity; therefore, the ethylene effect is primarily at the level of the transcription. In vivomore » pulse labelling with (/sup 35/S)-methionine showed that between 18 and 27 hours of ethylene treatment a 2.5 fold increase in translational efficiency occurred for one message studied. The resulting protein is the predominant protein synthesized in carrots treated with ethylene for 27 hours. Thus, ethylene exerts multiple regulatory controls on the expression of genetic information.« less

  4. Molecular aspects of flower senescence and strategies to improve flower longevity

    PubMed Central

    Shibuya, Kenichi

    2018-01-01

    Flower longevity is one of the most important traits for ornamental plants. Ethylene plays a crucial role in flower senescence in some plant species. In several species that show ethylene-dependent flower senescence, genetic modification targeting genes for ethylene biosynthesis or signaling has improved flower longevity. Although little is known about regulatory mechanisms of petal senescence in flowers that show ethylene-independent senescence, a recent study of Japanese morning glory revealed that a NAC transcription factor, EPHEMERAL1 (EPH1), is a key regulator in ethylene-independent petal senescence. EPH1 is induced in an age-dependent manner irrespective of ethylene signal, and suppression of EPH1 expression dramatically delays petal senescence. In ethylene-dependent petal senescence, comprehensive transcriptome analyses revealed the involvement of transcription factors, a basic helix-loop-helix protein and a homeodomain-leucine zipper protein, in the transcriptional regulation of the ethylene biosynthesis enzymes. This review summarizes molecular aspects of flower senescence and discusses strategies to improve flower longevity by molecular breeding. PMID:29681752

  5. Ethylene Production by Plants in a Closed Environment

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    1996-01-01

    Ethylene production by 20-sq m stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml/sq m/day during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 ml/g fresh weight/h. Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  6. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene.

    PubMed

    Dubois, Vincent; Moritz, Thomas; García-Martínez, José L

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA 1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon de-submergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence.

  7. Examination of two lowland rice cultivars reveals that gibberellin-dependent early response to submergence is not necessarily mediated by ethylene

    PubMed Central

    Dubois, Vincent; Moritz, Thomas

    2011-01-01

    Using two lowland rice (Oryza sativa L.) cultivars we found that in both cases submerged-induced elongation early after germination depends on gibberellins (GAs). Submergence increases the content of the active GA1 by enhancing the expression of GA biosynthesis genes, thus facilitating the seedlings to escape from the water and preventing asphyxiation. However, the two cultivars differ in their response to ethylene. The cultivar Senia (short), by contrast to cultivar Bomba (tall), does not elongate after ethylene application, and submerged-induced elongation is not negated by an inhibitor of ethylene perception. Also, while ethylene emanation in Senia is not altered by submergence, Bomba seedlings emanate more ethylene upon desubmergence, associated with enhanced expression of the ethylene biosynthesis gene OsACS5. The cultivar Senia thus allows the possibility of clarifying the role of ethylene and other factors as triggers of GA biosynthesis enhancement in rice seedlings under submergence. PMID:21224726

  8. Ethylene: Role in Fruit Abscission and Dehiscence Processes 12

    PubMed Central

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of natural fruit dehiscence, an important component of ripening in some fruits. Our data also suggest a possible involvement of ethylene in young fruit abscission. PMID:16658259

  9. Ethylene: role in fruit abscission and dehiscence processes.

    PubMed

    Lipe, J A; Morgan, P W

    1972-12-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of natural fruit dehiscence, an important component of ripening in some fruits. Our data also suggest a possible involvement of ethylene in young fruit abscission.

  10. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  11. The role of the embryo and ethylene in avocado fruit mesocarp discoloration

    PubMed Central

    Hershkovitz, Vera; Friedman, Haya; Goldschmidt, Eliezer E.; Pesis, Edna

    2009-01-01

    Chilling injury (CI) symptoms in avocado (Persea americana Mill.) fruit, expressed as mesocarp discoloration, were found to be associated with embryo growth and ethylene production during cold storage. In cvs Ettinger and Arad most mesocarp discoloration was located close to the base of the seed and was induced by ethylene treatment in seeded avocado fruit. However, ethylene did not increase mesocarp discoloration in seedless fruit stored at 5 °C. Application of ethylene to whole fruit induced embryo development inside the seed. It also induced seedling elongation when seeds were imbibed separately. Persea americana ethylene receptor (PaETR) gene expression and polyphenol oxidase activity were highest close to the base of the seed and decreased gradually toward the blossom end. By contrast, expressions of PaETR transcript and polyphenol oxidase activity in seedless avocado fruit were similar throughout the pulp at the base of the fruit. Application of the ethylene inhibitor, 1-methylcyclopropene, decreased mesocarp browning, embryo development, seedling growth, and ion leakage, and down-regulated polyphenol oxidase activity. The results demonstrate that ethylene-mediated embryo growth in whole fruit is involved in the mesocarp response to ethylene perception and the development of CI disorders. PMID:19196750

  12. The role of the embryo and ethylene in avocado fruit mesocarp discoloration.

    PubMed

    Hershkovitz, Vera; Friedman, Haya; Goldschmidt, Eliezer E; Pesis, Edna

    2009-01-01

    Chilling injury (CI) symptoms in avocado (Persea americana Mill.) fruit, expressed as mesocarp discoloration, were found to be associated with embryo growth and ethylene production during cold storage. In cvs Ettinger and Arad most mesocarp discoloration was located close to the base of the seed and was induced by ethylene treatment in seeded avocado fruit. However, ethylene did not increase mesocarp discoloration in seedless fruit stored at 5 degrees C. Application of ethylene to whole fruit induced embryo development inside the seed. It also induced seedling elongation when seeds were imbibed separately. Persea americana ethylene receptor (PaETR) gene expression and polyphenol oxidase activity were highest close to the base of the seed and decreased gradually toward the blossom end. By contrast, expressions of PaETR transcript and polyphenol oxidase activity in seedless avocado fruit were similar throughout the pulp at the base of the fruit. Application of the ethylene inhibitor, 1-methylcyclopropene, decreased mesocarp browning, embryo development, seedling growth, and ion leakage, and down-regulated polyphenol oxidase activity. The results demonstrate that ethylene-mediated embryo growth in whole fruit is involved in the mesocarp response to ethylene perception and the development of CI disorders.

  13. 40 CFR Table 6 to Subpart Jj of... - VHAP of Potential Concern

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... glycol butyl ether, ethylene glycol ethyl ether (2-ethoxy ethanol), ethylene glycol hexyl ether, ethylene..., ethylene glycol mono-2-ethylhexyl ether, diethylene glycol butyl ether, diethylene glycol ethyl ether... glycol propyl ether, triethylene glycol butyl ether, triethylene glycol ethyl ether, triethylene glycol...

  14. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as...

  15. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  16. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a device...

  17. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  18. Timing of Ethylene Modification Is Critical For Regeneration In Barley

    USDA-ARS?s Scientific Manuscript database

    : The plant hormone ethylene is important for higher rates of callus formation and green plant regeneration. Ethylene can have positive or negative effects on these traits depending on the genotype, type of explant and stage of application. Therefore, the effects of both ethylene precur...

  19. Ethylene oxide sterilisation--is it safe?

    PubMed Central

    Gillespie, E H; Jackson, J M; Owen, G R

    1979-01-01

    Tests show that ethylene oxide penetrates and can sterilise long narrow tubes in a hospital ethylene oxide steriliser. Residual ethylene oxide levels in plastic tubing after sterilisation have been estimated. Although initially the levels were very high, storage for four days at room temperature reduced them to a safe level. If adequate controls of the sterilising process and storage are carried out, sterilisation by ethylene oxide is considered to be safe for new plastics and clean equipment. Images Figure PMID:512032

  20. Investigation into the role of endogenous abscisic acid during ripening of imported avocado cv. Hass.

    PubMed

    Meyer, Marjolaine D; Chope, Gemma A; Terry, Leon A

    2017-08-01

    The importance of ethylene in avocado ripening has been extensively studied. In contrast, little is known about the possible role of abscisic acid (ABA). The present work studied the effect of 1-methylcyclopropene (1-MCP) (0.3 μL L -1 ), e+® Ethylene Remover and the combination thereof on the quality of imported avocado cv. Hass fruit stored for 7 days at 12 °C. Ethylene production, respiration, firmness, colour, heptose (C7) sugars and ABA concentrations in mesocarp tissue were measured throughout storage. Treatment with e+® Ethylene Remover reduced ethylene production, respiration rate and physiological ripening compared with controls. Fruit treated with 1-MCP + e+® Ethylene Remover and, to a lesser extent 1-MCP alone, had the lowest ethylene production and respiration rate and hence the best quality. Major sugars measured in mesocarp tissue were mannoheptulose and perseitol, and their content was not correlated with ripening parameters. Mesocarp ABA concentration, as determined by mass spectrometry, increased as fruit ripened and was negatively correlated with fruit firmness. Results suggest a relationship between ABA and ethylene metabolism since blocking ethylene, and to a larger extent blocking and removing ethylene, resulted in lower ABA concentrations. Whether ABA influences avocado fruit ripening needs to be determined in future research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea).

    PubMed

    Iqbal, Noushina; Umar, Shahid; Khan, Nafees A

    2015-04-15

    Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening[OPEN

    PubMed Central

    Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui

    2017-01-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple (Malus domestica). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1, an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2, encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3, encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1. This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1. Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. PMID:28550149

  3. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. © 2014 CIRAD New Phytologist © 2014 New Phytologist Trust.

  4. Current understanding on ethylene signaling in plants: the influence of nutrient availability.

    PubMed

    Iqbal, Noushina; Trivellini, Alice; Masood, Asim; Ferrante, Antonio; Khan, Nafees A

    2013-12-01

    The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    PubMed

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.

  6. The Jasmonate-Activated Transcription Factor MdMYC2 Regulates ETHYLENE RESPONSE FACTOR and Ethylene Biosynthetic Genes to Promote Ethylene Biosynthesis during Apple Fruit Ripening.

    PubMed

    Li, Tong; Xu, Yaxiu; Zhang, Lichao; Ji, Yinglin; Tan, Dongmei; Yuan, Hui; Wang, Aide

    2017-06-01

    The plant hormone ethylene is critical for ripening in climacteric fruits, including apple ( Malus domestica ). Jasmonate (JA) promotes ethylene biosynthesis in apple fruit, but the underlying molecular mechanism is unclear. Here, we found that JA-induced ethylene production in apple fruit is dependent on the expression of MdACS1 , an ACC synthase gene involved in ethylene biosynthesis. The expression of MdMYC2 , encoding a transcription factor involved in the JA signaling pathway, was enhanced by MeJA treatment in apple fruits, and MdMYC2 directly bound to the promoters of both MdACS1 and the ACC oxidase gene MdACO1 and enhanced their transcription. Furthermore, MdMYC2 bound to the promoter of MdERF3 , encoding a transcription factor involved in the ethylene-signaling pathway, thereby activating MdACS1 transcription. We also found that MdMYC2 interacted with MdERF2, a suppressor of MdERF3 and MdACS1 This protein interaction prevented MdERF2 from interacting with MdERF3 and from binding to the MdACS1 promoter, leading to increased transcription of MdACS1 Collectively, these results indicate that JA promotes ethylene biosynthesis through the regulation of MdERFs and ethylene biosynthetic genes by MdMYC2. © 2017 American Society of Plant Biologists. All rights reserved.

  7. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level.

    PubMed

    Zhao, Fanggui; Wang, Chen; Han, Jian; Zhu, Xudong; Li, Xiaopeng; Wang, Xicheng; Fang, Jinggui

    2017-05-01

    MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.

  8. Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway

    PubMed Central

    Oracz, Krystyna; El-Maarouf-Bouteau, Hayat; Bogatek, Renata; Bailly, Christophe

    2008-01-01

    Freshly harvested sunflower (Helianthus annuus L.) seeds are considered to be dormant because they fail to germinate at relatively low temperatures (10 °C). This dormancy results mainly from an embryo dormancy and disappears during dry storage. Although endogenous ethylene is known to be involved in sunflower seed alleviation of dormancy, little attention had been paid to the possible role of cyanide, which is produced by the conversion of 1-aminocyclopropane 1-carboxylic acid to ethylene, in this process. The aims of this work were to investigate whether exogenous cyanide could improve the germination of dormant sunflower seeds and to elucidate its putative mechanisms of action. Naked dormant seeds became able to germinate at 10 °C when they were incubated in the presence of 1 mM gaseous cyanide. Other respiratory inhibitors showed that this effect did not result from an activation of the pentose phosphate pathway or the cyanide-insensitive pathway. Cyanide stimulated germination of dormant seeds in the presence of inhibitors of ethylene biosynthesis, but its improving effect required functional ethylene receptors. It did not significantly affect ethylene production and the expression of genes involved in ethylene biosynthesis or in the first steps of ethylene signalling pathway. However, the expression of the transcription factor Ethylene Response Factor 1 (ERF1) was markedly stimulated in the presence of gaseous cyanide. It is proposed that the mode of action of cyanide in sunflower seed dormancy alleviation does not involve ethylene production and that ERF1 is a common component of the ethylene and cyanide signalling pathways. PMID:18448476

  9. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription.

    PubMed

    Li, Tong; Jiang, Zhongyu; Zhang, Lichao; Tan, Dongmei; Wei, Yun; Yuan, Hui; Li, Tianlai; Wang, Aide

    2016-12-01

    Ripening in climacteric fruit requires the gaseous phytohormone ethylene. Although ethylene signaling has been well studied, knowledge of the transcriptional regulation of ethylene biosynthesis is still limited. Here we show that an apple (Malus domestica) ethylene response factor, MdERF2, negatively affects ethylene biosynthesis and fruit ripening by suppressing the transcription of MdACS1, a gene that is critical for biosynthesis of ripening-related ethylene. Expression of MdERF2 was suppressed by ethylene during ripening of apple fruit, and we observed that MdERF2 bound to the promoter of MdACS1 and directly suppressed its transcription. Moreover, MdERF2 suppressed the activity of the promoter of MdERF3, a transcription factor that we found to bind to the MdACS1 promoter, thereby increasing MdACS1 transcription. We determined that the MdERF2 and MdERF3 proteins directly interact, and this interaction suppresses the binding of MdERF3 to the MdACS1 promoter. Moreover, apple fruit with transiently downregulated MdERF2 expression showed higher ethylene production and faster ripening. Our results indicate that MdERF2 negatively affects ethylene biosynthesis and fruit ripening in apple by suppressing the transcription of MdACS1 via multiple mechanisms, thereby acting as an antagonist of positive ripening regulators. Our findings offer a deep understanding of the transcriptional regulation of ethylene biosynthesis during climacteric fruit ripening. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis

    PubMed Central

    Robles, Linda M.; Deslauriers, Stephen D.; Alvarez, Ashley A.; Larsen, Paul B.

    2012-01-01

    As part of a continuing effort to elucidate mechanisms that regulate the magnitude of ethylene signalling, an Arabidopsis mutant with an enhanced ethylene response was identified. Subsequent characterization of this loss-of-function mutant revealed severe hypocotyl shortening in the presence of saturating ethylene along with increased expression in leaves of a subset of ethylene-responsive genes. It was subsequently determined by map-based cloning that the mutant (sar1-7) represents a loss-of-function mutation in the previously described nucleoporin AtNUP160 (At1g33410, SAR1). In support of previously reported results, the sar1-7 mutant partially restored auxin responsiveness to roots of an rce1 loss-of-function mutant, indicating that AtNUP160/SAR1 is required for proper expression of factors responsible for the repression of auxin signalling. Analysis of arf7-1/sar1-7 and arf19-1/sar1-7 double mutants revealed that mutations affecting either ARF7 or ARF19 function almost fully blocked manifestation of the sar1-7-dependent ethylene hypersensitivity phenotype, suggesting that ARF7- and ARF19-mediated auxin signalling is responsible for regulating the magnitude of and/or competence for the ethylene response in Arabidopsis etiolated hypocotyls. Consistent with this, addition of auxin to ethylene-treated seedlings resulted in severe hypocotyl shortening, reminiscent of that seen for other eer (enhanced ethylene response) mutants, suggesting that auxin functions in part synergistically with ethylene to control hypocotyl elongation and other ethylene-dependent phenomena. PMID:22238449

  11. Research tools: ethylene preparation. In: Chi-Kuang Wen editor. Ethylene in plants. Springer Netherlands. Springer Link

    USDA-ARS?s Scientific Manuscript database

    Ethylene is a plant hormone that regulates many aspects of plant growth and development, germination, fruit ripening, senescence, sex determination, abscission, defense, gravitropism, epinasty, and more. For experimental purposes, one needs to treat plant material with ethylene and its inhibitors t...

  12. Life cycle expression analysis of three cell wall degradation-related genes in ethylene-treated grass

    USDA-ARS?s Scientific Manuscript database

    Ethylene regulates multiple developmental processes during a plant life cycle, but the effect of ethylene on the upregulation of senescence-, stress-, and post-harvest-related genes in forage grasses is poorly understood. In this work, we used quantitative PCR to determine whether ethylene applicat...

  13. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Ethylene polymer, chloro-sulfonated is produced by chloro-sulfonation of a carbon tetrachloride solution of... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...

  14. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate copolymers. 177.1350 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1350 Ethylene-vinyl acetate copolymers. Ethylene-vinyl acetate copolymers may be safely used as articles or components of articles...

  15. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  16. 21 CFR 177.1312 - Ethylene-carbon monoxide copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-carbon monoxide copolymers. 177.1312... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1312 Ethylene-carbon monoxide copolymers. The ethylene-carbon monoxide copolymers identified in paragraph (a) of this section may be safely...

  17. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone ETO...

  18. 21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or karaya...

  19. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  20. 40 CFR 180.1016 - Ethylene; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene; exemption from the requirement of a tolerance. 180.1016 Section 180.1016 Protection of Environment ENVIRONMENTAL PROTECTION... Exemptions From Tolerances § 180.1016 Ethylene; exemption from the requirement of a tolerance. Ethylene is...

  1. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used in...

  2. 49 CFR 173.323 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethylene oxide. 173.323 Section 173.323... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.323 Ethylene oxide. (a) For packaging ethylene oxide in non-bulk packagings, silver mercury or any of its alloys or copper may not be used in any...

  3. 21 CFR 173.230 - Ethylene dichloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene dichloride. 173.230 Section 173.230 Food... Solvents, Lubricants, Release Agents and Related Substances § 173.230 Ethylene dichloride. A tolerance of 30 parts per million is established for ethylene dichloride in spice oleoresins when present therein...

  4. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used in... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food...

  5. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used in... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food...

  6. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used in... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food...

  7. 21 CFR 573.440 - Ethylene dichloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.440 Ethylene dichloride. The food additive ethylene dichloride may be safely used in... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ethylene dichloride. 573.440 Section 573.440 Food...

  8. Ethylene Production and 1-Aminocyclopropane-1-Carboxylic Acid Conjugation in Thermoinhibited Cicer arietinum L. Seeds 1

    PubMed Central

    Gallardo, Mercedes; Delgado, María del Mar; Sánchez-Calle, Isabel María; Matilla, Angel Jesús

    1991-01-01

    The effect of supraoptimal temperatures (30°C, 35°C) on germination and ethylene production of Cicer arietinum (chick-pea) seeds was measured. Compared with a 25°C control, these temperatures inhibited both germination and ethylene production. The effect of supraoptimal temperatures could be alleviated by treating the seeds with ethylene. It was concluded that one effect of high temperature on germination was due to its negative effect on ethylene production. This inhibitory effect of high temperature was due to increased conjugation of 1-aminocyclopropane-1-carboxylic acid to 1-(malonylamino)cyclopropane-1-carboxylic acid and to an inhibition of ethylene-forming enzyme activity. PMID:16668358

  9. Phytohormone ecology : Herbivory byThrips tabaci induces greater ethylene production in intact onions than mechanical damage alone.

    PubMed

    Kendall, D M; Bjostad, L B

    1990-03-01

    Herbivory byThrips tabaci affected production of the phytohormone ethylene from living onion foliage. Ethylene analysis was performed by gas chromatography on intact onion tissue. Thrips feeding damage and a crushed thrips extract stimulated significantly greater production of eihylene than could be explained by either one-time or semicontinuous mechanical damage alone, suggesting that ethylene-inducing cues may be transferred to the plant during feeding. This is the first demonstration of increased ethylene production from insect-infested intact plants. This study suggests that herbivores affect both the phytohormone physiology and secondary chemistry of living plants because ethylene has been shown to enhance production of defensive phytochemicals.

  10. The effect of ethylene on root growth of Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Whalen, M. C.; Feldman, L. J.

    1988-01-01

    The control of primary root growth in Zea mays cv. Merit by ethylene was examined. At applied concentrations of ethylene equal to or greater than 0.1 microliter L-1, root elongation during 24 h was inhibited. The half-maximal response occurred at 0.6 microliter L-1 and the response saturated at 6 microliters L-1. Inhibition of elongation took place within 20 min. However, after ethylene was removed, elongation recovered to control values within 15 min. Root elongation was also inhibited by green light. The inhibition caused by a 24-h exposure to ethylene was restricted to the elongating region just behind the apex, with inhibition of cortical cell elongation being the primary contributor to the effect. Based on use of 2,5-norbornadiene, a gaseous competitive inhibitor of ethylene, it was concluded that endogenous ethylene normally inhibits root elongation.

  11. Interaction of Light and Ethylene on Stem Gravitropism

    NASA Technical Reports Server (NTRS)

    Harrison, Marcia A.

    1996-01-01

    The major objective of this study was to evaluate light-regulated ethylene production during gravitropic bending in etiolated pea stems. Previous investigations indicated that ethylene production increases after gravistimulation and is associated with the later (counter-reactive) phase of bending. Additionally, changes in the counter-reaction and locus of curvature during gravitropism are greatly influenced by red light and ethylene production. Ethylene production may be regulated by the levels of available precursor (1-aminocyclopropane-l-carboxylic acid, ACC) via its synthesis, conjugation to malonyl-ACC or glutamyl-ACC, or oxidation to ethylene. The regulation of ethylene production by quantifying ACC and conjugated ACC levels in gravistimulated pea stemswas examined. Also measured was the changes in protein and enzyme activity associated with gravitropic curvature by electrophoretic and spectrophotometric techniques. An image analysis system was used to visualize and quantify enzymatic activity and transcriptional products in gravistimulated and red-light treated etiolated pea stem tissues.

  12. 4,4,4-trifluoro-3-(indole-3-)butyric acid promotes root elongation in Lactuca sativa independent of ethylene synthesis and pH

    NASA Technical Reports Server (NTRS)

    Zhang, Nenggang; Hasenstein, Karl H.

    2002-01-01

    We studied the mode of action of 4,4,4-trifluoro-3- (indole-3-) butyric acid (TFIBA), a recently described root growth stimulator, on primary root growth of Lactuca sativa L. seedlings. TFIBA (100 micromoles) promoted elongation of primary roots by 40% in 72 h but inhibited hypocotyl growth by 35%. TFIBA induced root growth was independent of pH. TFIBA did not affect ethylene production, but reduced the inhibitory effect of ethylene on root elongation. TFIBA promoted root growth even in the presence of the ethylene biosynthesis inhibitor L-alpha-(2-aminoethoxyvinyl)glycine. TFIBA and the ethylene-binding inhibitor silver thiosulphate (STS) had a similar effect on root elongation. The results indicate that TFIBA-stimulated root elongation was neither pH-dependent nor related to inhibition of ethylene synthesis, but was possibly related to ethylene action.

  13. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development1

    PubMed Central

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-01-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. PMID:26232489

  14. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...

  15. 21 CFR 177.1360 - Ethylene-vinyl acetate-vinyl alcohol copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-vinyl acetate-vinyl alcohol copolymers... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1360 Ethylene-vinyl acetate-vinyl alcohol copolymers. Ethylene-vinyl acetate-vinyl alcohol copolymers (CAS Reg. No. 26221-27-2...

  16. 40 CFR 61.65 - Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission standard for ethylene... AIR POLLUTANTS National Emission Standard for Vinyl Chloride § 61.65 Emission standard for ethylene dichloride, vinyl chloride and polyvinyl chloride plants. An owner or operator of an ethylene dichloride...

  17. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when...

  18. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene

    PubMed Central

    Chen, Xi; Liang, Yong; Hua, Jing; Tao, Li; Qin, Wensheng; Chen, Sanfeng

    2010-01-01

    In order to efficiently utilize natural cellulose materials to produce ethylene, three expression vectors containing the ethylene-forming enzyme (efe) gene from Pseudomonas syringae pv. glycinea were constructed. The target gene was respectively controlled by different promoters: cbh I promoter from Trichoderma reesei cellobiohydrolases I gene, gpd promoter from Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase gene and pgk I promoter from T. reesei 3-phosphoglycerate kinase I gene. After transforming into T. reesei QM9414, 43 stable transformants were obtained by PCR amplification and ethylene determination. Southern blot analysis of 14 transformants demonstrated that the efe gene was integrated into chromosomal DNA with copy numbers from 1 to 4. Reverse transcription polymerase chain reaction (RT-PCR) analysis of 6 transformants showed that the heterologous gene was transcribed. By using wheat straw as a carbon source, the ethylene production rates of aforementioned 14 transformants were measured. Transformant C30-3 with pgk I promoter had the highest ethylene production (4,012 nl h-1 l-1). This indicates that agricultural wastes could be used to produce ethylene in recombinant filamentous fungus T. reesei. PMID:20150979

  19. Influence of Plant Hormones on Ethylene Production in Apple, Tomato, and Avocado Slices during Maturation and Senescence

    PubMed Central

    Lieberman, Morris; Baker, James E.; Sloger, Marcia

    1977-01-01

    Ethylene production by tissue slices from preclimacteric, climacteric, and postclimacteric apples was significantly reduced by isopentenyl adenosine (IPA), and by mixtures of IPA and indoleacetic acid, and of IPA, indoleacetic acid, and gibberellic acid after 4 hours of incubation. Ethylene production by apple (Pyrus malus L.) slices in abscisic acid was increased in preclimacteric tissues, decreased in climacteric peak tissues, and little affected in postclimacteric tissues. Indoleacetic acid suppressed ethylene production in tissues from preclimacteric apples but stimulated ethylene production in late climacteric rise, climacteric, and postclimacteric tissue slices. Gibberellic acid had less influence in suppressing ethylene production in preclimacteric peak tissue, and little influenced the production in late climacteric rise, climacteric peak, and postclimacteric tissues. IPA also suppressed ethylene production in pre- and postclimacteric tissue of tomatoes (Lycopersicon esculentum) and avocados (Persea gratissima). If ethylene production in tissue slices of ripening fruits is an index of aging, then IPA would appear to retard aging in ripening fruit, just as other cytokinins appear to retard aging in senescent leaf tissue. PMID:16660062

  20. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.

    PubMed

    Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun

    2015-03-21

    Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Influence of Plant Hormones on Ethylene Production in Apple, Tomato, and Avocado Slices during Maturation and Senescence.

    PubMed

    Lieberman, M; Baker, J E; Sloger, M

    1977-08-01

    Ethylene production by tissue slices from preclimacteric, climacteric, and postclimacteric apples was significantly reduced by isopentenyl adenosine (IPA), and by mixtures of IPA and indoleacetic acid, and of IPA, indoleacetic acid, and gibberellic acid after 4 hours of incubation. Ethylene production by apple (Pyrus malus L.) slices in abscisic acid was increased in preclimacteric tissues, decreased in climacteric peak tissues, and little affected in postclimacteric tissues. Indoleacetic acid suppressed ethylene production in tissues from preclimacteric apples but stimulated ethylene production in late climacteric rise, climacteric, and postclimacteric tissue slices. Gibberellic acid had less influence in suppressing ethylene production in preclimacteric peak tissue, and little influenced the production in late climacteric rise, climacteric peak, and postclimacteric tissues. IPA also suppressed ethylene production in pre- and postclimacteric tissue of tomatoes (Lycopersicon esculentum) and avocados (Persea gratissima). If ethylene production in tissue slices of ripening fruits is an index of aging, then IPA would appear to retard aging in ripening fruit, just as other cytokinins appear to retard aging in senescent leaf tissue.

  2. Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components.

    PubMed

    Vandenbussche, Filip; Callebert, Pieter; Zadnikova, Petra; Benkova, Eva; Van Der Straeten, Dominique

    2013-01-01

    To reach favorable conditions for photosynthesis, seedlings grow upward when deprived of light upon underground germination. To direct their growth, they use their negative gravitropic capacity. Negative gravitropism is under tight control of multiple hormones. By counting the number of standing plants in a population or by real time monitoring of the reorientation of gravistimulated seedlings of Arabidopsis thaliana, we evaluated the negative gravitropism of ethylene or brassinosteroid (BR) treated plants. Meta-analysis of transcriptomic data on AUX/IAA genes was gathered, and subsequent mutant analysis was performed. Ethylene and BR have opposite effects in regulating shoot gravitropism. Lack of BR enhances gravitropic reorientation in 2-d-old seedlings, whereas ethylene does not. Lack of ethylene signaling results in enhanced BR sensitivity. Ethylene and BRs regulate overlapping sets of AUX/IAA genes. BRs regulate a wider range of auxin signaling components than ethylene. Upward growth in seedlings depends strongly on the internal hormonal balance. Endogenous ethylene stimulates, whereas BRs reduce negative gravitropism in a manner that depends on the function of different, yet overlapping sets of auxin signaling components.

  3. The evolution of ethylene signaling in plant chemical ecology.

    PubMed

    Groen, Simon C; Whiteman, Noah K

    2014-07-01

    Ethylene is a key hormone in plant development, mediating plant responses to abiotic environmental stress, and interactions with attackers and mutualists. Here, we provide a synthesis of the role of ethylene in the context of plant ecology and evolution, and a prospectus for future research in this area. We focus on the regulatory function of ethylene in multi-organismal interactions. In general, plant interactions with different types of organisms lead to reduced or enhanced levels of ethylene. This in turn affects not only the plant's response to the interacting organism at hand, but also to other organisms in the community. These community-level effects become observable as enhanced or diminished relationships with future commensals, and systemic resistance or susceptibility to secondary attackers. Ongoing comparative genomic and phenotypic analyses continue to shed light on these interactions. These studies have revealed that plants and interacting organisms from separate kingdoms of life have independently evolved the ability to produce, perceive, and respond to ethylene. This signature of convergent evolution of ethylene signaling at the phenotypic level highlights the central role ethylene metabolism and signaling plays in plant interactions with microbes and animals.

  4. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls.

    PubMed

    Ma, Qianqian; Sun, Jingbo; Mao, Tonglin

    2016-05-15

    The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.

  5. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission.

    PubMed

    Pacifici, Silvia; Prisa, Domenico; Burchi, Gianluca; van Doorn, Wouter G

    2015-01-15

    In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Roles of auxin and ethylene in aerenchyma formation in sugarcane roots.

    PubMed

    Tavares, E Q P; Grandis, A; Lembke, C G; Souza, G M; Purgatto, E; De Souza, A P; Buckeridge, M S

    2018-03-04

    Although the cross-talk between auxin and ethylene has been described during plant development, the role played by auxin upon gene expression during aerenchyma formation is poorly understood. Root aerenchyma formation results from the opening of gas spaces in the cortex. It is part of a developmental program (constitutive) or due to ethylene treatment or abiotic stress (induced) such as flooding and nutrient starvation. This process relies on programmed cell death and cell wall modifications. Here we followed development of aerenchyma formation in sugarcane along 5 cm from the root apex. As a constitutive process, the aerenchyma formation was observed in the cortex from the 3 rd cm onwards. This occurred despite 1-methylcyclepropene (1-MCP) treatment, an inhibitor of ethylene perception. However, this process occurred while ethylene (and auxin) levels decreased. Within the aerenchyma formation zone, the concentration of ethylene is lower in comparison to the concentration in maize. Besides, the ratio between both hormones (ethylene and auxin) was around 1:1. These pieces of evidence suggest that ethylene sensitivity and ethylene-auxin balance may play a role in the formation of aerenchyma. Furthermore, the transcriptional analysis showed that genes related to cell expansion are up-regulated due to 1-MCP treatment. Our results help explaining the regulation of the formation constitutive aerenchyma in sugarcane.

  7. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production.

    PubMed

    Wang, Xuchu; Wang, Dan; Sun, Yong; Yang, Qian; Chang, Lili; Wang, Limin; Meng, Xueru; Huang, Qixing; Jin, Xiang; Tong, Zheng

    2015-09-08

    Ethylene is a stimulant to increase natural rubber latex. After ethylene application, both fresh yield and dry matter of latex are substantially improved. Moreover, we found that ethylene improves the generation of small rubber particles. However, most genes involved in rubber biosynthesis are inhibited by exogenous ethylene. Therefore, we conducted a proteomics analysis of ethylene-stimulated rubber latex, and identified 287 abundant proteins as well as 143 ethylene responsive latex proteins (ERLPs) with mass spectrometry from the 2-DE and DIGE gels, respectively. In addition, more than 1,600 proteins, including 404 ERLPs, were identified by iTRAQ. Functional classification of ERLPs revealed that enzymes involved in post-translational modification, carbohydrate metabolism, hydrolase activity, and kinase activity were overrepresented. Some enzymes for rubber particle aggregation were inhibited to prolong latex flow, and thus finally improved latex production. Phosphoproteomics analysis identified 59 differential phosphoproteins; notably, specific isoforms of rubber elongation factor and small rubber particle protein that were phosphorylated mainly at serine residues. This post-translational modification and isoform-specific phosphorylation might be important for ethylene-stimulated latex production. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the use of ethylene to stimulate rubber latex production.

  8. Prediction and validation of the duration of hemodialysis sessions for the treatment of acute ethylene glycol poisoning.

    PubMed

    Iliuta, Ioan-Andrei; Lachance, Philippe; Ghannoum, Marc; Bégin, Yannick; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Agharazii, Mohsen

    2017-08-01

    The duration of hemodialysis (HD) sessions for the treatment of acute ethylene glycol poisoning is dependent on concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. Ethylene glycol assays are not readily available, potentially leading to undue extension or premature termination of HD. We report a prediction model for the duration of high-efficiency HD sessions based retrospectively on a cohort study of 26 cases of acute ethylene glycol poisoning in 24 individuals treated by alcohol dehydrogenase competitive inhibitors, cofactors and HD. Two patients required HD for more than 14 days, and two died. In 19 cases, the mean ethylene glycol elimination half-life during high-efficiency HD was 165 minutes (95% confidence interval of 151-180 minutes). In a training set of 12 patients with acute ethylene glycol poisoning, using the 90th percentile half-life (195 minutes) and a target ethylene glycol concentration of 2 mmol/l (12.4 mg/dl) allowed all cases to reach a safe ethylene glycol under 3 mmol/l (18.6 mg/dl). The prediction model was then validated in a set of seven acute ethylene glycol poisonings. Thus, the HD session time in hours can be estimated using 4.7 x (Ln [the initial ethylene glycol concentration (mmol/l)/2]), provided that metabolic acidosis is corrected. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  9. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle.

    PubMed

    Chen, Zhong; Gallie, Daniel R

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity.

  10. A Strong Loss-of-Function Mutation in RAN1 Results in Constitutive Activation of the Ethylene Response Pathway as Well as a Rosette-Lethal Phenotype

    PubMed Central

    Woeste, Keith E.; Kieber, Joseph J.

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors. PMID:10715329

  11. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle

    PubMed Central

    Chen, Zhong; Gallie, Daniel R.

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity. PMID:26630486

  12. Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis.

    PubMed

    Dong, Zhijun; Yu, Yanwen; Li, Shenghui; Wang, Juan; Tang, Saijun; Huang, Rongfeng

    2016-01-04

    Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene production. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACS8, and ACO2 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the promoters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demonstrate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. Effect of postharvest ethylene treatment on sugar content, glycosidase activity and its gene expression in mango fruit.

    PubMed

    Chidley, Hemangi G; Deshpande, Ashish B; Oak, Pranjali S; Pujari, Keshav H; Giri, Ashok P; Gupta, Vidya S

    2017-03-01

    Ripening-associated softening is one of the important attributes that largely determines the shelf-life of mango (Mangifera indica Linn.) fruits. To reveal the effect of pre-climacteric ethylene treatment on ripening-related softening of Alphonso mango, ethylene treatment was given to mature, raw Alphonso fruits. Changes in the pool of reducing and non-reducing sugars, enzymatic activity of three glycosidases: β-d-galactosidase, α-d-mannosidase and β-d-glucosidase and their relative transcript abundance were analysed for control and ethylene treated fruits during ripening. Early activity of all the three glycosidases and accelerated accumulation of reducing and non-reducing sugars on ethylene treatment was evident. β-d-Galactosidase showed the highest activity among three glycosidases in control fruits and marked increase in activity upon ethylene treatment. This was confirmed by the histochemical assay of its activity in control and ethylene treated ripe fruits. Relative transcript abundance revealed high transcript levels of β-d-galactosidase in control fruits. Ethylene-treated fruits showed early and remarkable increase in the β-d-galactosidase transcripts while α-d-mannosidase transcript variants displayed early accumulation. The findings suggest reduction in the shelf-life of Alphonso mango upon pre-climacteric ethylene treatment, a significant role of β-d-galactosidase and α-d-mannosidase in the ripening related softening of Alphonso fruits and transcriptional regulation of their expression by ethylene. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype

    NASA Technical Reports Server (NTRS)

    Woeste, K. E.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    2000-01-01

    A recessive mutation was identified that constitutively activated the ethylene response pathway in Arabidopsis and resulted in a rosette-lethal phenotype. Positional cloning of the gene corresponding to this mutation revealed that it was allelic to responsive to antagonist1 (ran1), a mutation that causes seedlings to respond in a positive manner to what is normally a competitive inhibitor of ethylene binding. In contrast to the previously identified ran1-1 and ran1-2 alleles that are morphologically indistinguishable from wild-type plants, this ran1-3 allele results in a rosette-lethal phenotype. The predicted protein encoded by the RAN1 gene is similar to the Wilson and Menkes disease proteins and yeast Ccc2 protein, which are integral membrane cation-transporting P-type ATPases involved in copper trafficking. Genetic epistasis analysis indicated that RAN1 acts upstream of mutations in the ethylene receptor gene family. However, the rosette-lethal phenotype of ran1-3 was not suppressed by ethylene-insensitive mutants, suggesting that this mutation also affects a non-ethylene-dependent pathway regulating cell expansion. The phenotype of ran1-3 mutants is similar to loss-of-function ethylene receptor mutants, suggesting that RAN1 may be required to form functional ethylene receptors. Furthermore, these results suggest that copper is required not only for ethylene binding but also for the signaling function of the ethylene receptors.

  15. Transcriptomic Analysis Implies That GA Regulates Sex Expression via Ethylene-Dependent and Ethylene-Independent Pathways in Cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Yan; Zhao, Guiye; Li, Yushun; Mo, Ning; Zhang, Jie; Liang, Yan

    2017-01-01

    Sex differentiation of flower buds is an important developmental process that directly affects fruit yield of cucumber ( Cucumis sativus L.). Plant hormones, such as gibberellins (GAs) and ethylene can promote development of male and female flowers, respectively, however, the regulatory mechanisms of GA-induced male flower formation and potential involvement of ethylene in this process still remain unknown. In this study, to unravel the genes and gene networks involved in GA-regulated cucumber sexual development, we performed high throughout RNA-Seq analyses that compared the transcriptomes of shoot tips between GA 3 treated and untreated gynoecious cucumber plants. Results showed that GA 3 application markedly induced male flowers but decreased ethylene production in shoot tips. Furthermore, the transcript levels of M ( CsACS2 ) gene, ethylene receptor CsETR1 and some ethylene-responsive transcription factors were dramatically changed after GA 3 treatment, suggesting a potential involvement of ethylene in GA-regulated sex expression of cucumber. Interestingly, GA 3 down-regulated transcript of a C-class floral homeotic gene, CAG2 , indicating that GA may also influence cucumber sex determination through an ethylene-independent process. These results suggest a novel model for hormone-mediated sex differentiation and provide a theoretical basis for further dissection of the regulatory mechanism of male flower formation in cucumber. Statement: We reveal that GA can regulate sex expression of cucumber via an ethylene-dependent manner, and the M ( CsACS2 ), CsETR1 , and ERFs are probably involved in this process. Moreover, CAG2 , a C-class floral homeotic gene, may also participate in GA-modulated cucumber sex determination, but this pathway is ethylene-independent.

  16. Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development

    PubMed Central

    Wen, Chi-Kuang

    2013-01-01

    In Arabidopsis, the ethylene-receptor signal output occurs at the endoplasmic reticulum and is mediated by the Raf-like protein CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) but is prevented by overexpression of the CTR1 N terminus. A phylogenic analysis suggested that rice OsCTR2 is closely related to CTR1, and ectopic expression of CTR1p:OsCTR2 complemented Arabidopsis ctr1-1. Arabidopsis ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE SENSOR1 physically interacted with OsCTR2 on yeast two-hybrid assay, and green fluorescence protein-tagged OsCTR2 was localized at the endoplasmic reticulum. The osctr2 loss-of-function mutation and expression of the 35S:OsCTR2 1–513 transgene that encodes the OsCTR2 N terminus (residues 1–513) revealed several and many aspects, respectively, of ethylene-induced growth alteration in rice. Because the osctr2 allele did not produce all aspects of ethylene-induced growth alteration, the ethylene-receptor signal output might be mediated in part by OsCTR2 and by other components in rice. Yield-related agronomic traits, including flowering time and effective tiller number, were altered in osctr2 and 35S:OsCTR2 1–513 transgenic lines. Applying prolonged ethylene treatment to evaluate ethylene effects on rice without compromising rice growth is technically challenging. Our understanding of roles of ethylene in various aspects of growth and development in japonica rice varieties could be advanced with the use of the osctr2 and 35S:OsCTR2 1–513 transgenic lines. PMID:24006427

  17. Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity.

    PubMed

    Sanikhani, Mohsen; Mibus, Heiko; Stummann, Bjarne M; Serek, Margrethe

    2008-04-01

    Transgenic Kalanchoe blossfeldiana Poelln. with reduced ethylene sensitivity in flowers was obtained by Agrobacterium tumefaciens-mediated transformation using the plasmid pBEO210 containing the mutant ethylene receptor gene etr1-1 from Arabidopsis thaliana under the control of the flower-specific fbp1-promoter from Petunia. Three ethylene-resistent T0 lines, 300, 324 and 331, were selected and analyzed for postharvest-performance and morphological characteristics. Line 324 was found to be infertile and only slightly less ethylene-sensitive than control-plants, but lines 300 and 331 had significantly increased ethylene-resistance and were fertile. These two lines were analyzed for copy-number of the etr1-1 gene by Southern blotting and were crossed with the ethylene-sensitive cultivar 'Celine' to create T1 progeny. Line 300 contains two T-DNA copies per nucleus, one of which is rearranged, and these are unlinked according to segregation data from the crossing to 'Celine' and PCR-analysis of progeny plants. For control plants all flowers were closed after 2 days at 2 microl l(-1 )ethylene, but for line 300 only 33% were closed after 10 days. Line 331 contains three T-DNA copies per nucleus and is more sensitive to ethylene than line 300. In the line 300 the etr1-1 gene was found by RT-PCR to be expressed in petals and stamens but not in carpels and sepals. Both lines 300 and 331, and their progeny, appear morphologically and physiologically identical to control plants except for the higher ethylene resistance. Line 300 and its progeny with only one T-DNA copy have very low ethylene sensitivity and may be useful in future breeding.

  18. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  19. Different Preclimacteric Events in Apple Cultivars with Modified Ripening Physiology

    PubMed Central

    Singh, Vikram; Weksler, Asya; Friedman, Haya

    2017-01-01

    “Anna” is an early season apple cultivar exhibiting a fast softening and juiciness loss during storage, in comparison to two mid-late season cultivars “Galaxy” and “GD.” The poor storage capacity of “Anna” was correlated with high lipid oxidation-related autoluminescence, high respiration and ethylene production rates, associated with high expression of MdACO1, 2, 4, 7, and MdACS1. All cultivars at harvest responded to exogenous ethylene by enhancing ethylene production, typical of system-II. The contribution of pre-climacteric events to the poor storage capacity of “Anna” was examined by comparing respiration and ethylene production rates, response to exogenous ethylene, expression of genes responsible for ethylene biosynthesis and response, and developmental regulators in the three cultivars throughout fruit development. In contrast to the “Galaxy” and “GD,” “Anna” showed higher ethylene production and respiration rates during fruit development, and exhibited auto-stimulatory (system II-like) effect in response to exogenous ethylene. The higher ethylene production rate in “Anna” was correlated with higher expression of ethylene biosynthesis genes, MdACS3a MdACO2, 4, and 7 during early fruit development. The expression of negative regulators of ripening (AP2/ERF) and ethylene response pathway, (MdETR1,2 and MdCTR1) was lower in “Anna” in comparison to the other two cultivars throughout development and ripening. Similar pattern of gene expression was found for SQUAMOSA promoter binding protein (SBP)-box genes, including MdCNR and for MdFUL. Taken together, this study provides new understanding on pre-climacteric events in “Anna” that might affect its ripening behavior and physiology following storage. PMID:28928755

  20. Ethylene production throughout growth and development of plants

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  1. SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development

    PubMed Central

    Lin, Zhefeng; Arciga-Reyes, Luis; Zhong, Silin; Alexander, Lucy; Hackett, Rachel; Wilson, Ian; Grierson, Don

    2008-01-01

    The gaseous hormone ethylene is perceived by a family of ethylene receptors which interact with the Raf-like kinase CTR1. SlTPR1 encodes a novel TPR (tetratricopeptide repeat) protein from tomato that interacts with the ethylene receptors NR and LeETR1 in yeast two-hybrid and in vitro protein interaction assays. SlTPR1 protein with a GFP fluorescent tag was localized in the plasmalemma and nuclear membrane in Arabidopsis, and SlTPR1-CFP and NR-YFP fusion proteins were co-localized in the plasmalemma and nuclear membrane following co-bombardment of onion cells. Overexpression of SlTPR1 in tomato resulted in ethylene-related pleiotropic effects including reduced stature, delayed and reduced production of inflorescences, abnormal and infertile flowers with degenerate styles and pollen, epinasty, reduced apical dominance, inhibition of abscission, altered leaf morphology, and parthenocarpic fruit. Similar phenotypes were seen in Arabidopsis overexpressing SlTPR1. SlTPR1 overexpression did not increase ethylene production but caused enhanced accumulation of mRNA from the ethylene responsive gene ChitB and the auxin-responsive gene SlSAUR1-like, and reduced expression of the auxin early responsive gene LeIAA9, which is known to be inhibited by ethylene and to be associated with parthenocarpy. Cuttings from the SlTPR1-overexpressors produced fewer adventitious roots and were less responsive to indole butyric acid. It is suggested that SlTPR1 overexpression enhances a subset of ethylene and auxin responses by interacting with specific ethylene receptors. SlTPR1 shares features with human TTC1, which interacts with heterotrimeric G-proteins and Ras, and competes with Raf-1 for Ras binding. Models for SlTPR1 action are proposed involving modulation of ethylene signalling or receptor levels. PMID:19036844

  2. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits.

    PubMed

    Muñoz-Bertomeu, J; Miedes, E; Lorences, E P

    2013-09-01

    Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. Effect of postharvest temperature and ethylene on carotenoid accumulation in the Flavedo and juice sacs of Satsuma Mandarin ( Citrus unshiu Marc.) fruit.

    PubMed

    Matsumoto, Hikaru; Ikoma, Yoshinori; Kato, Masaya; Nakajima, Naoko; Hasegawa, Yoshinori

    2009-06-10

    The effect of postharvest temperature (5, 20, and 30 degrees C) and ethylene at different temperatures (20 and 5 degrees C) on carotenoid content and composition and on the expression of the carotenoid biosynthesis-related genes was investigated in the flavedo and juice sacs of Satsuma mandarin ( Citrus unshiu Marc.) fruit. Under an ethylene-free atmosphere, storage at 20 degrees C rapidly increased the carotenoid content in flavedo and maintained the content in juice sacs. In contrast, storage at 5 and 30 degrees C gradually decreased the content in juice sacs but slowly increased that in flavedo. Under an ethylene atmosphere, storage at 20 degrees C enhanced the carotenoid accumulation in flavedo more dramatically than found under an ethylene-free atmosphere with distinct changes in the carotenoid composition but did not noticeably change the content and composition in juice sacs. In contrast, storage at 5 degrees C under an ethylene atmosphere repressed carotenoid accumulation with changes in the carotenoid composition in flavedo but did not clearly change the carotenoid content in juice sacs. Under an ethylene-free atmosphere, differences in the gene expression profile among the temperatures were observed but were not well-correlated with those in the carotenoid content in flavedo and juice sacs. Under an ethylene atmosphere, in flavedo, the gene expression of phytoene synthase (PSY) and phytoene desaturase (PDS) was slightly higher at 20 degrees C but lower at 5 degrees C than under an ethylene-free atmosphere. At 20 degrees C, the gene expression of several carotenoid biosynthetic enzymes promoted by ethylene seemed to be responsible for the enhanced accumulation of carotenoid in flavedo. In contrast, at 5 degrees C, the repressed gene expression of PSY and PDS by ethylene seemed to be primarily responsible for the repressed accumulation of carotenoid in flavedo. In juice sacs, the small response of the gene expression to ethylene seemed to be responsible for small changes in carotenoid accumulation under an ethylene atmosphere.

  4. Characterization and Expression of Genes Involved in the Ethylene Biosynthesis and Signal Transduction during Ripening of Mulberry Fruit

    PubMed Central

    Liu, Changying; Zhao, Aichun; Zhu, Panpan; Li, Jun; Han, Leng; Wang, Xiling; Fan, Wei; Lü, Ruihua; Wang, Chuanhong; Li, Zhengang; Lu, Cheng; Yu, Maode

    2015-01-01

    Although ethylene is well known as an essential regulator of fruit development, little work has examined the role ethylene plays in the development and maturation of mulberry (Morus L.) fruit. To study the mechanism of ethylene action during fruit development in this species, we measured the ethylene production, fruit firmness, and soluble solids content (SSC) during fruit development and harvest. By comparing the results with those from other climacteric fruit, we concluded that Morus fruit are probably climacteric. Genes associated with the ethylene signal transduction pathway of Morus were characterized from M. notabilis Genome Database, including four ethylene receptor genes, a EIN2-like gene, a CTR1-like gene, four EIN3-like genes, and a RTE1-like gene. The expression patterns of these genes were analyzed in the fruit of M. atropurpurea cv. Jialing No.40. During fruit development, transcript levels of MaETR2, MaERS, MaEIN4, MaRTE, and MaCTR1 were lower at the early stages and higher after 26 days after full bloom (DAF), while MaETR1, MaEIL1, MaEIL2, and MaEIL3 remained constant. In ripening fruit, the transcripts of MaACO1 and MaACS3 increased, while MaACS1 and MaACO2 decreased after harvest. The transcripts of MaACO1, MaACO2, and MaACS3 were inhibited by ethylene, and 1-MCP (1–methylcyclopropene) upregulated MaACS3. The transcripts of the MaETR-like genes, MaRTE, and MaCTR1 were inhibited by ethylene and 1-MCP, suggesting that ethylene may accelerate the decline of MaETRs transcripts. No significant changes in the expression of MaEIN2, MaEIL1, and MaEIL3 were observed during ripening or in response to ethylene, while the expressions of MaEIL2 and MaEIL4 increased rapidly after 24 h after harvest (HAH) and were upregulated by ethylene. The present study provides insights into ethylene biosynthesis and signal transduction in Morus plants and lays a foundation for the further understanding of the mechanisms underlying Morus fruit development and ripening. PMID:25822202

  5. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development

    PubMed Central

    Wang, Juan; Wei, Pengcheng; Huang, Rongfeng

    2017-01-01

    Rice is an important monocotyledonous crop worldwide; it differs from the dicotyledonous plant Arabidopsis in many aspects. In Arabidopsis, ethylene and auxin act synergistically to regulate root growth and development. However, their interaction in rice is still unclear. Here, we report that the transcriptional activation of OsEIL1 on the expression of YUC8/REIN7 and indole-3-pyruvic acid (IPA)-dependent auxin biosynthesis is required for ethylene-inhibited root elongation. Using an inhibitor of YUC activity, which regulates auxin biosynthesis via the conversion of IPA to indole-3-acetic acid (IAA), we showed that ethylene-inhibited primary root elongation is dependent on YUC-based auxin biosynthesis. By screening phenotypes of seedling primary root from mutagenesis libraries following ethylene treatment, we identified a rice ethylene-insensitive mutant, rein7-1, in which YUC8/REIN7 is truncated at its C-terminus. Mutation in YUC8/REIN7 reduced auxin biosynthesis in rice, while YUC8/REIN7 overexpression enhanced ethylene sensitivity in the roots. Moreover, YUC8/REIN7 catalyzed the conversion of IPA to IAA, truncated version at C-terminal end of the YUC8/REIN7 resulted in significant reduction of enzymatic activity, indicating that YUC8/REIN7 is required for IPA-dependent auxin biosynthesis and ethylene-inhibited root elongation in rice early seedlings. Further investigations indicated that ethylene induced YUC8/REIN7 expression and promoted auxin accumulation in roots. Addition of low concentrations of IAA rescued the ethylene response in the rein7-1, strongly demonstrating that ethylene-inhibited root elongation depends on IPA-dependent auxin biosynthesis. Genetic studies revealed that YUC8/REIN7-mediated auxin biosynthesis functioned downstream of OsEIL1, which directly activated the expression of YUC8/REIN7. Thus, our findings reveal a model of interaction between ethylene and auxin in rice seedling primary root elongation, enhancing our understanding of ethylene signaling in rice. PMID:28829777

  6. Overcoming substrate limitations for improved production of ethylene in E. coli.

    PubMed

    Lynch, Sean; Eckert, Carrie; Yu, Jianping; Gill, Ryan; Maness, Pin-Ching

    2016-01-01

    Ethylene is an important industrial compound for the production of a wide variety of plastics and chemicals. At present, ethylene production involves steam cracking of a fossil-based feedstock, representing the highest CO2-emitting process in the chemical industry. Biological ethylene production can be achieved via expression of a single protein, the ethylene-forming enzyme (EFE), found in some bacteria and fungi; it has the potential to provide a sustainable alternative to steam cracking, provided that significant increases in productivity can be achieved. A key barrier is determining factors that influence the availability of substrates for the EFE reaction in potential microbial hosts. In the presence of O2, EFE catalyzes ethylene formation from the substrates α-ketoglutarate (AKG) and arginine. The concentrations of AKG, a key TCA cycle intermediate, and arginine are tightly controlled by an intricate regulatory system that coordinates carbon and nitrogen metabolism. Therefore, reliably predicting which genetic changes will ultimately lead to increased AKG and arginine availability is challenging. We systematically explored the effects of media composition (rich versus defined), gene copy number, and the addition of exogenous substrates and other metabolites on the formation of ethylene in Escherichia coli expressing EFE. Guided by these results, we tested a number of genetic modifications predicted to improve substrate supply and ethylene production, including knockout of competing pathways and overexpression of key enzymes. Several such modifications led to higher AKG levels and higher ethylene productivity, with the best performing strain more than doubling ethylene productivity (from 81 ± 3 to 188 ± 13 nmol/OD600/mL). Both EFE activity and substrate supply can be limiting factors in ethylene production. Targeted modifications in central carbon metabolism, such as overexpression of isocitrate dehydrogenase, and deletion of glutamate synthase or the transcription regulator ArgR, can effectively enhance substrate supply and ethylene productivity. These results not only provide insight into the intricate regulatory network of the TCA cycle, but also guide future pathway and genome-scale engineering efforts to further boost ethylene productivity.

  7. Ethylene Is Not Responsible for Phytochrome-Mediated Apical Hook Exaggeration in Tomato

    PubMed Central

    Takahashi-Asami, Miki; Shichijo, Chizuko; Tsurumi, Seiji; Hashimoto, Tohru

    2016-01-01

    The apical hook of tomato seedlings is exaggerated by phytochrome actions, while in other species such as bean, pea and Arabidopsis, the hook is exaggerated by ethylene and opens by phytochrome actions. The present study was aimed to clarify mainly whether ethylene is responsible for the phytochrome-mediated hook exaggeration of tomato seedlings. Dark-grown 5-day-old seedlings were subjected to various ways of ethylene application in the dark as well as under the actions of red (R) or far-red light (FR). The ethylene emitted by seedlings was also quantified relative to hook exaggeration. The results show: Ambient ethylene, up-to about 1.0 μL L-1, suppressed (opened) the hooks formed in the dark as well as the ones exaggerated by R or FR, while at 3.0–10 μL L-1 it enhanced (closed) the hook only slightly as compared with the most-suppressed level at about 1.0 μL L-1. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene biosynthesis, did not enhance the hook, only mimicking the suppressive effects of ambient ethylene. The biosynthesis inhibitor, CoCl2 or aminoethoxyvinylglycine, enhanced hook curvature, and the enhancement was canceled by supplement of ethylene below 1.0 μL L-1. Auxin transport inhibitor, N-1-naphthylphthalamic acid, by contrast, suppressed curvature markedly without altering ethylene emission. The effects of the above-stated treatments did not differentiate qualitatively among the R-, FR-irradiated seedlings and dark control so as to explain phytochrome-mediated hook exaggeration. In addition, ethylene emission by seedlings was affected neither by R nor FR at such fluences as to cause hook exaggeration. In conclusion, (1) ethylene suppresses not only the light-exaggerated hook, but also the dark-formed one; (2) ethylene emission is not affected by R or FR, and also not correlated with the hook exaggerations; thus ethylene is not responsible for the hook exaggeration in tomato; and (3) auxin is essential for the maintenance and development of the hook in tomato as is the case in other species lacking phytochrome-mediated hook exaggeration. A possible mechanism of phytochrome action for hook exaggeration is discussed. PMID:27933077

  8. Assessment of the Mutagenic Potential of Carbon Disulfide, Carbon Tetrachloride, Dichloromethane, Ethylene Dichloride, and Methyl Bromide: A Comparative Analysis in Relation to Ethylene Dibromide

    EPA Science Inventory

    The document provides an evaluation of the mutagenic potential of five alternative fumigants to ethylene dibromide(EDB). These include carbon disulfide(CS2), carbon tetrachloride(CCl4), dichloromethane(DCM), ethylene dichloride(EDC), and methyl bromide (MB). Of the five proposed ...

  9. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Poly-1-butene resins and butene/ethylene... Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1570 Poly-1-butene resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers...

  10. Developing tools for investigating the multiple roles of ethylene: Identification and mapping genes for ethylene biosynthesis and reception in barley

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene is important to many plant processes from germination through senescence, including responses to in vitro growth and plant regeneration. Knowledge of the number of genes, and of their function, that are involved in ethylene biosynthesis and reception is necessary to determ...

  11. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether (EGBE,2-Butoxyethanol...

  12. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide: Loading and off loading. 154.1730... Operating Requirements § 154.1730 Ethylene oxide: Loading and off loading. (a) The master shall ensure that before ethylene oxide is loaded into a cargo tank: (1) The tank is thoroughly clean, dry, and free of...

  13. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  14. 78 FR 24738 - Ethylene Oxide; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2013-0276; FRL-9385-2] Ethylene Oxide; Receipt of... ethylene oxide (CAS No. 75-21-8) to sterilize the interior surfaces of enclosed animal isolator units to... APHIS has requested the EPA Administrator to issue a quarantine exemption for the use of ethylene oxide...

  15. 40 CFR Table 6 to Subpart Jj of... - VHAP of Potential Concern

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Formaldehyde 0.2 101144 4,4′-Methylene bis(2-chloroaniline) 0.02 107131 Acrylonitrile 0.03 106934 Ethylene... Chlorobenzilate 0.04 62737 Dichlorvos 0.02 75014 Vinyl chloride 0.02 75218 Ethylene oxide 0.09 96457 Ethylene... 51796 Ethyl carbamate (Urethane) 0.08 107062 Ethylene dichloride (1,2-Dichloroethane) 0.08 78875...

  16. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  17. An Indirect Role for Ethylene in Shoot-inversion Release of Apical Dominance in Pharbitis Nil

    NASA Technical Reports Server (NTRS)

    Cline, M. G.

    1985-01-01

    Evidence is presented which indicated that ethylene does not play a direct role in promoting or inhibiting bud outgrowth as a gravity response. It is concluded that the treatment of inactive or induced lateral buds with ethylene inhibitors or ethrel has no significant effect on bud outgrowth and that no changes occur in ethylene emanation in the Highest Lateral Bud (HLB) or HLB node following shoot inversion. Possible mechanisms by which ethylene released by shoot inversion may indirectly promote outgrowth of the HLB is presented.

  18. Regulating the ethylene response of a plant by modulation of F-box proteins

    DOEpatents

    Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA

    2011-03-08

    The invention relates to transgenic plants having reduced sensitivity to ethylene as a result of having a recombinant nucleic acid encoding an F-box protein that interacts with a EIN3 involved in an ethylene response of plants, and a method of producing a transgenic plant with reduced ethylene sensitivity by transforming the plant with a nucleic acid sequence encoding an F-box protein. The inventions also relates to methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein.

  19. Ethylene-Mediated Acclimations to Flooding Stress1

    PubMed Central

    Sasidharan, Rashmi; Voesenek, Laurentius A.C.J.

    2015-01-01

    Flooding is detrimental for plants, primarily because of restricted gas exchange underwater, which leads to an energy and carbohydrate deficit. Impeded gas exchange also causes rapid accumulation of the volatile ethylene in all flooded plant cells. Although several internal changes in the plant can signal the flooded status, it is the pervasive and rapid accumulation of ethylene that makes it an early and reliable flooding signal. Not surprisingly, it is a major regulator of several flood-adaptive plant traits. Here, we discuss these major ethylene-mediated traits, their functional relevance, and the recent progress in identifying the molecular and signaling events underlying these traits downstream of ethylene. We also speculate on the role of ethylene in postsubmergence recovery and identify several questions for future investigations. PMID:25897003

  20. Determination of ammonia in ethylene using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  1. The ethylene response pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The simple gas ethylene influences a diverse array of plant growth and developmental processes including germination, senescence, cell elongation, and fruit ripening. This review focuses on recent molecular genetic studies, principally in Arabidopsis, in which components of the ethylene response pathway have been identified. The isolation and characterization of two of these genes has revealed that ethylene sensing involves a protein kinase cascade. One of these genes encodes a protein with similarity to the ubiquitous Raf family of Ser/Thr protein kinases. A second gene shows similarity to the prokaryotic two-component histidine kinases and most likely encodes an ethylene receptor. Additional elements involved in ethylene signaling have only been identified genetically. The characterization of these genes and mutants will be discussed.

  2. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  3. Ethylene-mediated regulation of gibberellin content and growth in helianthus annuus L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, D.W.; Reid, D.M.; Pharis, R.P.

    1991-04-01

    Elongation of hypocotyls of sunflower can be promoted by gibberellins (GAs) and inhibited by ethylene. The role of these hormones in regulating elongation was investigated by measuring changes in both endogenous GAs and in the metabolism of exogenous ({sup 3}H)- and ({sup 2}H{sub 2})GA{sub 20} in the hypocotyls of sunflower (Helianthus annuus L. cv Delgren 131) seedlings exposed to ethylene. The major biologically active GAs identified by gas chromatography-mass spectrometry were GA{sub 1}, GA{sub 19}, GA{sub 20}, and GA{sub 44}. In hypocotyls of seedlings exposed to ethylene, the concentration of GA{sub 1}, known to be directly active in regulating shootmore » elongation in a number of species, was reduced. Ethylene treatment reduced the metabolism of ({sup 3}H)GA{sub 20} and less ({sup 2}H{sub 2})GA{sub 1} was found in the hypocotyls of those seedlings exposed to the higher ethylene concentrations. However, it is not known if the effect of ethylene on GA{sub 20} metabolism was direct or indirect. In seedlings treated with exogenous GA{sub 1} or GA{sub 3}, the hypocotyls elongated faster than those of controls, but the GA treatment only partially overcame the inhibitory effect of ethylene on elongation. The authors conclude that GA content is a factor which may limit elongation in hypocotyls of sunflower, and that while exposure to ethylene results in reduced concentration of GA{sub 1} this is not sufficient per se to account for the inhibition of elongation caused by ethylene.« less

  4. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene.

    PubMed

    Itzhaki, H; Maxson, J M; Woodson, W R

    1994-09-13

    The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene.

  5. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening.

    PubMed

    Wang, Rui-Heng; Yuan, Xin-Yu; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level.

  6. Ethylene Synthesis Regulated by Biphasic Induction of 1-Aminocyclopropane-1-Carboxylic Acid Synthase and 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Genes Is Required for Hydrogen Peroxide Accumulation and Cell Death in Ozone-Exposed Tomato1

    PubMed Central

    Moeder, Wolfgang; Barry, Cornelius S.; Tauriainen, Airi A.; Betz, Christian; Tuomainen, Jaana; Utriainen, Merja; Grierson, Donald; Sandermann, Heinrich; Langebartels, Christian; Kangasjärvi, Jaakko

    2002-01-01

    We show that above a certain threshold concentration, ozone leads to leaf injury in tomato (Lycopersicon esculentum). Ozone-induced leaf damage was preceded by a rapid increase in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, ACC content, and ethylene emission. Changes in mRNA levels of specific ACC synthase, ACC oxidase, and ethylene receptor genes occurred within 1 to 5 h. Expression of the genes encoding components of ethylene biosynthesis and perception, and biochemistry of ethylene synthesis suggested that ozone-induced ethylene synthesis in tomato is under biphasic control. In transgenic plants containing an LE-ACO1 promoter-β-glucuronidase fusion construct, β-glucuronidase activity increased rapidly at the beginning of the O3 exposure and had a spatial distribution resembling the pattern of extracellular H2O2 production at 7 h, which coincided with the cell death pattern after 24 h. Ethylene synthesis and perception were required for active H2O2 production and cell death resulting in visible tissue damage. The results demonstrate a selective ozone response of ethylene biosynthetic genes and suggest a role for ethylene, in combination with the burst of H2O2 production, in regulating the spread of cell death. PMID:12481074

  7. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas.

    PubMed

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J; Lang, Walter

    2017-10-07

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system.

  8. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission.

    PubMed

    Liang, Xiaolei; Wang, Huahua; Hu, Yanfeng; Mao, Lina; Sun, Lili; Dong, Tian; Nan, Wenbin; Bi, Yurong

    2015-02-01

    Silicon induces cell death when ethylene is suppressed in cultured tobacco BY-2 cells. There is a crosstalk between Si and ethylene signaling. Silicon (Si) is beneficial for plant growth. It alleviates both biotic and abiotic stresses in plants. How Si works in plants is still mysterious. This study investigates the mechanism of Si-induced cell death in tobacco BY-2 cell cultures when ethylene is suppressed. Results showed that K2SiO3 alleviated the damage of NaCl stress. Si treatment rapidly increased ethylene emission and the expression of ethylene biosynthesis genes. Treatments with Si + Ag and Si + aminooxyacetic acid (AOA, ethylene biosynthesis inhibitor) reduced the cell growth and increased cell damage. The treatment with Si + Ag induced hydrogen peroxide (H2O2) generation and ultimately cell death. Some nucleus of BY-2 cells treated with Si + Ag appeared TUNEL positive. The inhibition of H2O2 and nitric oxide (NO) production reduced the cell death rate induced by Si + Ag treatment. Si eliminated the up-regulation of alternative pathway by Ag. These data suggest that ethylene plays an important role in Si function in plants. Without ethylene, Si not only failed to enhance plant resistance, but also elevated H2O2 generation and further induced cell death in tobacco BY-2 cells.

  9. Ethylene Epoxidation with Nitrous Oxide over Fe-BTC Metal-Organic Frameworks: A DFT Study.

    PubMed

    Maihom, Thana; Choomwattana, Saowapak; Wannakao, Sippakorn; Probst, Michael; Limtrakul, Jumras

    2016-11-04

    The epoxidation of ethylene with N 2 O over the metal-organic framework Fe-BTC (BTC=1,3,5-benzentricarboxylate) is investigated by means of density functional calculations. Two reaction paths for the production of ethylene oxide or acetaldehyde are systematically considered in order to assess the efficiency of Fe-BTC for the selective formation of ethylene oxide. The reaction starts with the decomposition of N 2 O to form an active surface oxygen atom on the Fe site of Fe-BTC, which subsequently reacts with an ethylene molecule to form an ethyleneoxy intermediate. This intermediate can then be selectively transformed either by 1,2-hydride shift into the undesired product acetaldehyde or into the desired product ethylene oxide by way of ring closure of the intermediate. The production of ethylene oxide requires an activation energy of 5.1 kcal mol -1 , which is only about one-third of the activation energy of acetaldehyde formation (14.3 kcal mol -1 ). The predicted reaction rate constants for the formation of ethylene oxide in the relevant temperature range are approximately 2-4 orders of magnitude higher than those for acetaldehyde. Altogether, the results suggest that Fe-BTC is a good candidate catalyst for the epoxidation of ethylene by molecular N 2 O. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ethylene Response Factor TERF1, Regulated by ETHYLENE-INSENSITIVE3-like Factors, Functions in Reactive Oxygen Species (ROS) Scavenging in Tobacco (Nicotiana tabacum L.).

    PubMed

    Zhang, Hongbo; Li, Ang; Zhang, Zhijin; Huang, Zejun; Lu, Pingli; Zhang, Dingyu; Liu, Xinmin; Zhang, Zhong-Feng; Huang, Rongfeng

    2016-07-20

    The phytohormone ethylene plays a crucial role in the production and accumulation of reactive oxygen species (ROS) in plants under stress conditions. Ethylene response factors (ERFs) are important ethylene-signaling regulators functioning in plant defense responses against biotic and abiotic stresses. However, the roles of ERFs during plant adapting to ROS stress have not yet been well documented. Our studies previously reported that a tomato ERF transcription factor TERF1 functions in the regulation of plant ethylene responses and stress tolerance. Here, we report our findings regarding the roles of TERF1 in ROS scavenging. In this study, we revealed that the transcription of TERF1 is regulated by upstream EIN3-like (EIN3, ethylene-insensitive 3) regulators LeEIL3 and LeEIL4 in tomato (Solanum lycopersicum), and is also inducible by exogenous applied ROS-generating reagents. Ectopic expression of TERF1 in tobacco promoted the expression of genes involved in oxidative stress responses, including carbonic anhydrase functioning in hypersensitive defense, catalase and glutathione peroxidase catalyzing oxidative reactions, and GDP-D-mannose pyrophosphorylase functioning in ascorbic acid biosynthesis, reduced the ROS content induced by ethylene treatment, and enhanced stress tolerance of tobacco seedlings to hydrogen peroxide (H2O2). Cumulatively, these findings suggest that TERF1 is an ethylene inducible factor regulating ROS scavenging during stress responses.

  11. Investigating the ability of Pseudomonas fluorescens UW4 to reduce cadmium stress in Lactuca sativa via an intervention in the ethylene biosynthetic pathway.

    PubMed

    Albano, Lucas J; Macfie, Sheila M

    2016-12-01

    A typical plant response to any biotic or abiotic stress, including cadmium (Cd), involves increased ethylene synthesis, which causes senescence of the affected plant part. Stressed plants can experience reduced ethylene and improved growth if they are inoculated with bacteria that have the enzyme ACC deaminase, which metabolizes the ethylene precursor ACC (1-aminocyclopropane-1-carboxylate). We investigated whether one such bacterium, Pseudomonas fluorescens UW4, reduces the production of ethylene and improves the growth of lettuce (Lactuca sativa) sown in Cd-contaminated potting material (PRO-MIX® BX). Plants were inoculated with the wild-type P. fluorescens UW4 or a mutant strain that cannot produce ACC deaminase. Cadmium-treated plants contained up to 50 times more Cd than did control plants. In noninoculated plants, Cd induced a 5-fold increase in ethylene concentration. The wild-type bacterium prevented Cd-induced reductions in root biomass but there was no relationship between Cd treatment and ethylene production in inoculated plants. In contrast, when the concentration of ethylene was plotted against the extent of bacterial colonization of the roots, increased colonization with wild-type P. fluorescens UW4 was associated with 20% less ethylene production. Ours is the first study to show that the protective effect of this bacterium is proportional to the quantity of bacteria on the root surface.

  12. The Triple Response Assay and Its Use to Characterize Ethylene Mutants in Arabidopsis.

    PubMed

    Merchante, Catharina; Stepanova, Anna N

    2017-01-01

    Exposure of plants to ethylene results in drastic morphological changes. Seedlings germinated in the dark in the presence of saturating concentrations of ethylene display a characteristic phenotype known as the triple response. This phenotype is robust and easy to score. In Arabidopsis the triple response is usually evaluated at 3 days post germination in seedlings grown in the dark in rich media supplemented with 10 μM of the ethylene precursor ACC in air or in unsupplemented media in the presence of 10 ppm ethylene. The triple response in Arabidopsis consists of shortening and thickening of hypocotyls and roots and exaggeration of the curvature of apical hooks. The search for Arabidopsis mutants that fail to show this phenotype in ethylene or, vice versa, display the triple response in the absence of exogenously supplied hormone has allowed the identification of the key components of the ethylene biosynthesis and signaling pathways. Herein, we describe a simple protocol for assaying the triple response in Arabidopsis. The method can also be employed in many other dicot species, with minor modifications to account for species-specific differences in germination. We also compiled a comprehensive table of ethylene-related mutants of Arabidopsis, including many lines with auxin-related defects, as wild-type levels of auxin biosynthesis, transport, signaling, and response are necessary for the normal response of plants to ethylene.

  13. Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation1[OPEN

    PubMed Central

    Tao, Jian-Jun; Cao, Yang-Rong; Chen, Hao-Wei; Wei, Wei; Li, Qing-Tian; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation. PMID:25941315

  14. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    The gaseous phytohormone ethylene (C2H4) mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in the ethylene signaling (1), but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the e...

  15. Ethylene-forming enzyme and bioethylene production

    PubMed Central

    2014-01-01

    Worldwide, ethylene is the most produced organic compound. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and a process has been developed for its conversion into liquid transportation fuels. Currently, commercial ethylene production involves steam cracking of fossil fuels, and is the highest CO2-emitting process in the chemical industry. Therefore, there is great interest in developing technology for ethylene production from renewable resources including CO2 and biomass. Ethylene is produced naturally by plants and some microbes that live with plants. One of the metabolic pathways used by microbes is via an ethylene-forming enzyme (EFE), which uses α-ketoglutarate and arginine as substrates. EFE is a promising biotechnology target because the expression of a single gene is sufficient for ethylene production in the absence of toxic intermediates. Here we present the first comprehensive review and analysis of EFE, including its discovery, sequence diversity, reaction mechanism, predicted involvement in diverse metabolic modes, heterologous expression, and requirements for harvesting of bioethylene. A number of knowledge gaps and factors that limit ethylene productivity are identified, as well as strategies that could guide future research directions. PMID:24589138

  16. First evidence of ethylene production by Fusarium mangiferae associated with mango malformation

    PubMed Central

    Ansari, Mohammad Wahid; Shukla, Alok; Pant, Ramesh Chandra; Tuteja, Narendra

    2013-01-01

    Malformation is arguably the most crucial disease of mango (Mangifera indica L.) at present. It is receiving great attention not only because of its widespread and destructive nature but also because of its etiology and control is not absolutely understood. Recently, Fusarium mangiferae is found to be associated with mango malformation disease. There are indications that stress ethylene production could be involved in the disease. Here we have shown the first direct evidence of production of ethylene in pure culture of F. mangiferae obtained from mango. The study also revealed that all the isolates dissected from mango acquire morphological features of F. mangiferae showing most similarity to the features of species with accepted standard features. The isolates of F. mangiferae from mango were observed to produce ethylene in significant amounts, ranging from 9.28–13.66 n mol/g dry wt/day. The findings presented here suggest that F. mangiferae could contribute to the malformation of mango by producing ethylene and probably stimulating stress ethylene production in malformed tissue of mango. Ethylene might be produced through 2-oxoglutarate-dependent oxygenase-type ethylene-forming-enzyme (EFE) pathway in Fusarium sp, which needs to be investigated. PMID:23221756

  17. First evidence of ethylene production by Fusarium mangiferae associated with mango malformation.

    PubMed

    Ansari, Mohammad Wahid; Shukla, Alok; Pant, Ramesh Chandra; Tuteja, Narendra

    2013-01-01

    Malformation is arguably the most crucial disease of mango (Mangifera indica L.) at present. It is receiving great attention not only because of its widespread and destructive nature but also because of its etiology and control is not absolutely understood. Recently, Fusarium mangiferae is found to be associated with mango malformation disease. There are indications that stress ethylene production could be involved in the disease. Here we have shown the first direct evidence of production of ethylene in pure culture of F. mangiferae obtained from mango. The study also revealed that all the isolates dissected from mango acquire morphological features of F. mangiferae showing most similarity to the features of species with accepted standard features. The isolates of F. mangiferae from mango were observed to produce ethylene in significant amounts, ranging from 9.28-13.66 n mol/g dry wt/day. The findings presented here suggest that F. mangiferae could contribute to the malformation of mango by producing ethylene and probably stimulating stress ethylene production in malformed tissue of mango. Ethylene might be produced through 2-oxoglutarate-dependent oxygenase-type ethylene-forming-enzyme (EFE) pathway in Fusarium sp, which needs to be investigated.

  18. Current methods for detecting ethylene in plants

    PubMed Central

    Cristescu, Simona M.; Mandon, Julien; Arslanov, Denis; De Pessemier, Jérôme; Hermans, Christian; Harren, Frans J. M.

    2013-01-01

    Background In view of ethylene's critical developmental and physiological roles the gaseous hormone remains an active research topic for plant biologists. Progress has been made to understand the ethylene biosynthesis pathway and the mechanisms of perception and action. Still numerous questions need to be answered and findings to be validated. Monitoring gas production will very often complete the picture of any ethylene research topic. Therefore the search for suitable ethylene measuring methods for various plant samples either in the field, greenhouses, laboratories or storage facilities is strongly motivated. Scope This review presents an update of the current methods for ethylene monitoring in plants. It focuses on the three most-used methods – gas chromatography detection, electrochemical sensing and optical detection – and compares them in terms of sensitivity, selectivity, time response and price. Guidelines are provided for proper selection and application of the described sensor methodologies and some specific applications are illustrated of laser-based detector for monitoring ethylene given off by Arabidopsis thaliana upon various nutritional treatments. Conclusions Each method has its advantages and limitations. The choice for the suitable ethylene sensor needs careful consideration and is driven by the requirements for a specific application. PMID:23243188

  19. Ethylene Detection Based on Organic Field-Effect Transistors With Porogen and Palladium Particle Receptor Enhancements.

    PubMed

    Besar, Kalpana; Dailey, Jennifer; Katz, Howard E

    2017-01-18

    Ethylene sensing is a highly challenging problem for the horticulture industry because of the limited physiochemical reactivity of ethylene. Ethylene plays a very important role in the fruit life cycle and has a significant role in determining the shelf life of fruits. Limited ethylene monitoring capability results in huge losses to the horticulture industry as fruits may spoil before they reach the consumer, or they may not ripen properly. Herein we present a poly(3-hexylthiophene-2,5-diyl) (P3HT)-based organic field effect transistor as a sensing platform for ethylene with sensitivity of 25 ppm V/V. To achieve this response, we used N-(tert-Butoxy-carbonyloxy)-phthalimide and palladium particles as additives to the P3HT film. N-(tert-Butoxy-carbonyloxy)-phthalimide is used to increase the porosity of the P3HT, thereby increasing the overall sensor surface area, whereas the palladium (<1 μm diameter) particles are used as receptors for ethylene molecules in order to further enhance the sensitivity of the sensor platform. Both modifications give statistically significant sensitivity increases over pure P3HT. The sensor response is reversible and is also highly selective for ethylene compared to common solvent vapors.

  20. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit.

    PubMed

    Yang, Xiaotang; Song, Jun; Du, Lina; Forney, Charles; Campbell-Palmer, Leslie; Fillmore, Sherry; Wismer, Paul; Zhang, Zhaoqi

    2016-03-01

    The effects of ethylene and 1-methylcyclopropene (1-MCP) on apple fruit volatile biosynthesis and gene expression were investigated. Statistical analysis identified 17 genes that changed significantly in response to ethylene and 1-MCP treatments. Genes encoding branched-chain amino acid aminotransferase (BCAT), aromatic amino acid aminotransferase (ArAT) and amino acid decarboxylases (AADC) were up-regulated during ripening and further enhanced by ethylene treatment. Genes related to fatty acid synthesis and metabolism, including acyl-carrier-proteins (ACPs), malonyl-CoA:ACP transacylase (MCAT), acyl-ACP-desaturase (ACPD), lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC2), β-oxidation, acyl-CoA synthetase (ACS), enoyl-CoA hydratase (ECHD), acyl-CoA dehydrogenase (ACAD), and alcohol acyltransferases (AATs) also increased during ripening and in response to ethylene treatment. Allene oxide synthase (AOS), alcohol dehydrogenase 1 (ADH1), 3-ketoacyl-CoA thiolase and branched-chain amino acid aminotransferase 2 (BCAT2) decreased in ethylene-treated fruit. Treatment with 1-MCP and ethylene generally produced opposite effects on related genes, which provides evidence that regulation of these genes is ethylene dependent. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin.

    PubMed

    Busatto, Nicola; Tadiello, Alice; Trainotti, Livio; Costa, Fabrizio

    2017-01-02

    Apple is a fleshy fruit distinguished by a climacteric type of ripening, since most of the relevant physiological changes are triggered and governed by the action of ethylene. After its production, this hormone is perceived by a series of receptors to regulate, through a signaling cascade, downstream ethylene related genes. The possibility to control the effect of ethylene opened new horizons to the improvement of the postharvest fruit quality. To this end, 1-methylcyclopropene (1-MCP), an ethylene antagonist, is routinely used to modulate the ripening progression increasing storage life. In a recent work published in The Plant Journal, the whole transcriptome variation throughout fruit development and ripening, with the adjunct comparison between normal and impaired postharvest ripening, has been illustrated. In particular, besides the expected downregulation of ethylene-regulated genes, we shed light on a regulatory circuit leading to de-repressing the expression of a specific set of genes following 1-MCP treatment, such as AUX/IAA, NAC and MADS. These findings suggested the existence of a possible ethylene/auxin cross-talk in apple, regulated by a transcriptional circuit stimulated by the interference at the ethylene receptor level.

  2. Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia.

    PubMed Central

    Dwyer, D F; Tiedje, J M

    1983-01-01

    Methanogenic enrichments capable of degrading polyethylene glycol and ethylene glycol were obtained from sewage sludge. Ethanol, acetate, methane, and (in the case of polyethylene glycols) ethylene glycol were detected as products. The sequence of product formation suggested that the ethylene oxide unit [HO-(CH2-CH2-O-)xH] was dismutated to acetate and ethanol; ethanol was subsequently oxidized to acetate by a syntrophic association that produced methane. The rates of degradation for ethylene, diethylene, and polyethylene glycol with molecular weights of 400, 1,000, and 20,000, respectively, were inversely related to the number of ethylene oxide monomers per molecule and ranged from 0.84 to 0.13 mM ethylene oxide units degraded per h. The enrichments were shown to best metabolize glycols close to the molecular weight of the substrate on which they were enriched. The anaerobic degradation of polyethylene glycol (molecular weight, 20,000) may be important in the light of the general resistance of polyethylene glycols to aerobic degradation. PMID:6614903

  3. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

    PubMed

    Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong

    2018-03-07

    The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

  4. Phenolic Polymer Solvation in Water and Ethylene Glycol, II: Ab Initio Computations.

    PubMed

    Bauschlicher, Charles W; Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Lawson, John W

    2017-04-06

    Ab initio techniques are used to study the interaction of ethylene glycol and water with a phenolic polymer. The water bonds more strongly with the phenolic OH than with the ring. The phenolic OH groups can form hydrogen bonds between themselves. For more than one water molecule, there is a competition between water-water and water-phenolic interactions. Ethylene glycol shows the same effects as those of water, but the potential energy surface is further complicated by CH 2 -phenolic interactions, different conformers of ethylene glycol, and two OH groups on each molecule. Thus, the ethylene glycol-phenolic potential is more complicated than the water-phenolic potential. The results of the ab initio calculations are compared to those obtained using a force field. These calibration studies show that the water system is easier to describe than the ethylene glycol system. The calibration studies confirm the reliability of force fields used in our companion molecular dynamics study of a phenolic polymer in water and ethylene solutions.

  5. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    PubMed

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

    PubMed

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-09-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... *Ethylene-Methacrylic Acid Copolymers *Ethylene-Vinyl Acetate Copolymers *Fatty Acid Resins *Fluorocarbon..., Acrylates (Latex) *PVC Copolymers, Ethylene-Vinyl Chloride *Rosin Derivative Resins *Rosin Modified Resins...

  8. Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions

    NASA Astrophysics Data System (ADS)

    Yu, Tongxu; Zhao, Lishan; Wang, Qiang; Cao, Zexian

    2017-06-01

    Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions, in reference to that of the binary combinations, has been investigated towards a better understanding of their cryoprotective ability. In water-deficient solutions, the disaccharides, including trehalose, sucrose and maltose, can associate with more than 100 ethylene glycol molecules to form amorphous complex, one order of magnitude larger than the corresponding hydration numbers. In water-rich solutions, a second glass transition emerges with increasing molar fraction of ethylene glycol, indicating the possible synergy of disaccharides and ethylene glycol in vitrification of the ternary aqueous solution.

  9. The effect of light and dark periods on the production of ethylene from water-stressed wheat leaves.

    PubMed

    Wright, S T

    1981-10-01

    Light was found to inhibit substantially (i.e. up to 88%) the production of ethylene induced by water stress in excised wheat leaves and from the shoots of intact plants. The relatively small amounts of ethylene emanating fron non-stressed leaves were also inhibited by light but to a smaller degree (i.e. up to 61%). In water-stressed leaves the degree of light inhibition of ethylene production was shown to be related to the age of the leaves; the amounts of ethylene diffusing from young leaves (i.e. 6-days old) was inhibited 52% by light whereas in older leaves (i.e. 9-days old) it was inhibited by 85%. Previous studies [Wright (1979) Planta 144, 179-188 and (1980) Planta 148, 381-388] had shown that application of 6-benzyladenine (BA) to leaves a day before wilting, greatly increases the amount of ethylene diffusing from the leaves following wilting (e.g. 8-fold), and to smaller degrees do applications of indole-3-acetic acid (IAA) and gibberellic acid (GA3). On the other hand abscisic acid (ABA) treatment reduces the amount of ethylene produced. In these earlier experiments the ethylene was collected from leaves held under dark or near-dark conditions, so in the present study the activities of these growth regulators (10(-4) mol l(-1) solutions) under dark and light conditions were compared. It was found that they maintained the same relative activities on ethylene emanation (i.e. BA>IAA>GA3>water controls>ABA) under both light and dark conditions. However, because of the inhibitory effect of light, the absolute amounts of ethylene produced from all treatments were always much higher in the dark than in the light (usually about a 6-fold difference). An interesting effect of light treatment on ethylene biosynthesis was found when water-stressed leaves were kept in dark chambers for 41/2 h and then transferred to light. Quite unexpectedly, instead of the rate of ethylene production falling immediately, it continued to be produced at the dark rate (i.e. no light inhibition!) for over 2 h before the rate began to decline, and for a much longer period (i.e. in excess of 41/2 h) if the leaves had previously been sprayed with BA. Predictably, leaves placed in the light (i.e. in leaf chambers) and then transferred to darkness, immediately or very soon produced ethylene at the dark rate. One explanation of these results, which is discussed, would be that the biosynthesis of an ethylene precursor requires an obligatory dark stage. The possible implications of these studies to a survival role of ethylene in plants during periods of water stress is discussed.

  10. Transcriptome changes associated wtih delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor

    USDA-ARS?s Scientific Manuscript database

    Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr 1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr 1-1 gene was over-expressed under the control of a c...

  11. In situ quantitation of ring-conjugated ethylenic lignin-units in spruce thermomechanical pulps by FT-Raman spectroscopy

    Treesearch

    Umesh Agarwal; Sally A. Ralph

    2003-01-01

    With the objective of using FT-Raman to quantitatively analyze ethylenic units in lignin in thermomechanical pulps (TMPs), coniferyl alcohol, coniferin, coniferaldehyde, and G-DHP lignin models were used to first demonstrate that the technique was fully capable of quantifying ring conjugated ethylenic units. Based on this result, the amount of ethylenic units in TMP...

  12. Environmentally Compliant Thermoplastic Powder Coating, Phase 1

    DTIC Science & Technology

    1992-10-07

    TPC flame sprayed application equipment and ethylene acrylic acid (EAA) and ethylene methacrylic acid (EMAA) copolymers thermoplastic powder...have worked closely with Dow Chemical to develop and optimize their systems using Dow "Envelon" ethylene acrylic acid (EAA) thermoplastic copolymers...provide on/off control. CFS recommends the use of Dow "Envelon" ethylene acrylic acid (EAA) copolymer thermoplastic powder with this unit. The CFS system

  13. Ethylene Decomposition Initiated by Ultraviolet Radiation from Low Pressure Mercury Lamps: Kinetics Model Prediction and Experimental Verification.

    NASA Astrophysics Data System (ADS)

    Jozwiak, Zbigniew Boguslaw

    1995-01-01

    Ethylene is an important auto-catalytic plant growth hormone. Removal of ethylene from the atmosphere surrounding ethylene-sensitive horticultural products may be very beneficial, allowing an extended period of storage and preventing or delaying the induction of disorders. Various ethylene removal techniques have been studied and put into practice. One technique is based on using low pressure mercury ultraviolet lamps as a source of photochemical energy to initiate chemical reactions that destroy ethylene. Although previous research showed that ethylene disappeared in experiments with mercury ultraviolet lamps, the reactions were not described and the actual cause of ethylene disappearance remained unknown. Proposed causes for this disappearance were the direct action of ultraviolet rays on ethylene, reaction of ethylene with ozone (which is formed when air or gas containing molecular oxygen is exposed to radiation emitted by this type of lamp), or reactions with atomic oxygen leading to formation of ozone. The objective of the present study was to determine the set of physical and chemical actions leading to the disappearance of ethylene from artificial storage atmosphere under conditions of ultraviolet irradiation. The goal was achieved by developing a static chemical model based on the physical properties of a commercially available ultraviolet lamp, the photochemistry of gases, and the kinetics of chemical reactions. The model was used to perform computer simulations predicting time dependent concentrations of chemical species included in the model. Development of the model was accompanied by the design of a reaction chamber used for experimental verification. The model provided a good prediction of the general behavior of the species involved in the chemistry under consideration; however the model predicted lower than measured rate of ethylene disappearance. Some reasons for the model -experiment disagreement are radiation intensity averaging, the experimental technique, mass transfer in the chamber, and incompleteness of the set of chemical reactions included in the model. The work is concluded with guidelines for development of a more complex mathematical model that includes elements of mass transfer inside the reaction chamber, and uses a three dimensional approach to distribute radiation from the low pressure mercury ultraviolet tube.

  14. Reducing ethylene levels along the food supply chain: a key to reducing food waste?

    PubMed

    Blanke, Michael M

    2014-09-01

    Excessive waste along the food supply chain of 71 (UK, Netherlands) to 82 (Germany) kg per head per year sparked widespread criticism of the agricultural food business and provides a great challenge and task for all its players and stakeholders. Origins of this food waste include private households, restaurants and canteens, as well as supermarkets, and indicate that 59-65% of this food waste can be avoided. Since ∼50% of the food waste is fruit and vegetables, monitoring and control of their natural ripening gas - ethylene - is suggested here as one possible key to reducing food waste. Ethylene accelerates ripening of climacteric fruits, and accumulation of ethylene in the supply chain can lead to fruit decay and waste. While ethylene was determined using a stationary gas chromatograph with gas cylinders, the new generation of portable sensor-based instruments now enables continuous in situ determination of ethylene along the food chain, a prerequisite to managing and maintaining the quality and ripeness of fruits and identifying hot spots of ethylene accumulation along the supply chain. Ethylene levels were measured in a first trial, along the supply chain of apple fruit from harvest to the consumer, and ranged from 10 ppb in the CA fruit store with an ethylene scrubber, 70 ppb in the fruit bin, to 500 ppb on the sorting belt in the grading facility, to ppm levels in perforated plastic bags of apples. This paper also takes into account exogenous ethylene originating from sources other than the fruit itself. Countermeasures are discussed, such as the potential of breeding for low-ethylene fruit, applications of ethylene inhibitors (e.g. 1-MCP) and absorber strips (e.g. 'It's Fresh', Ryan'), packages (e.g. 'Peakfresh'), both at the wholesale and retail level, vents and cooling for the supply chain, sale of class II produce ('Wunderlinge'), collection (rather than waste) of produce on the 'sell by' date ('Die Tafel') and whole crop purchase (WCP) to aid reducing food waste. © 2014 Society of Chemical Industry.

  15. An evaluation of the effects of exogenous ethephon, an ethylene releasing compound, on photosynthesis of mustard (Brassica juncea) cultivars that differ in photosynthetic capacity

    PubMed Central

    Khan, NA

    2004-01-01

    Background The stimulatory effect of CO2 on ethylene evolution in plants is known, but the extent to which ethylene controls photosynthesis is not clear. Studies on the effects of ethylene on CO2 metabolism have shown conflicting results. Increase or inhibition of photosynthesis by ethylene has been reported. To understand the physiological processes responsible for ethylene-mediated changes in photosynthesis, stomatal and mesophyll effects on photosynthesis and ethylene biosynthesis in response to ethephon treatment in mustard (Brassica juncea) cultivars differing in photosynthetic capacity were studied. Results The effects of ethephon on photosynthetic rate (PN), stomatal conductance (gS), carbonic anhydrase (CA) activity, 1-aminocyclopropane carboxylic acid synthase (ACS) activity and ethylene evolution were similar in both the cultivars. Increasing ethephon concentration up to 1.5 mM increased PN, gS and CA maximally, whereas 3.0 mM ethephon proved inhibitory. ACS activity and ethylene evolution increased with increasing concentrations of ethephon. The corresponding changes in gs and CA activity suggest that the changes in photosynthesis in response to ethephon were triggered by altered stomatal and mesophyll processes. Stomatal conductance changed in parallel with changes in mesophyll photosynthetic properties. In both the cultivars ACS activity and ethylene increased up to 3.0 mM ethephon, but 1.5 mM ethephon caused maximum effects on photosynthetic parameters. Conclusion These results suggest that ethephon affects foliar gas exchange responses. The changes in photosynthesis in response to ethephon were due to stomatal and mesophyll effects. The changes in gS were a response maintaining stable intercellular CO2 concentration (Ci) under the given treatment in both the cultivars. Also, the high photosynthetic capacity cultivar, Varuna responded less to ethephon than the low photosynthetic capacity cultivar, RH30. The photosynthetic capacity of RH30 increased with the increase in ethylene evolution due to 1.5 mM ethephon application. PMID:15625009

  16. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  17. Ethylene Oxide

    Cancer.gov

    Learn about ethylene oxide, which can raise your risk of lymphoma and leukemia. Exposure may occur through industrial emissions, tobacco smoke, and the use of products sterilized with ethylene oxide, such as certain medical products or cosmetics.

  18. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  19. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.

    1986-01-01

    We investigated the effect of Ca2+ on ethylene production in 2-cm long apical segments from primary roots of corn (Zea mays L., B73 x Missouri 17) seedlings. The seedlings were raised under different conditions of Ca2+ availability. Low-Ca and high-Ca seedlings were raised by soaking the grains and watering the seedlings with distilled water or 10 mM CaCl2, respectively. Segments from high-Ca roots produced more than twice as much ethylene as segments from low-Ca roots. Indoleacetic acid (IAA; 1 micromole) enhanced ethylene production in segments from both low-Ca and high-Ca roots but auxin-induced promotion of ethylene production was consistently higher in segments from high-Ca roots. Addition of 1-aminocyclopropane-1-carboxylic acid (ACC) to root segments from low-Ca seedlings doubled total ethylene production and the rate of production remained fairly constant during a 24 h period of monitoring. In segments from high-Ca seedlings ACC also increased total ethylene production but most of the ethylene was produced within the first 6 h. The data suggest that Ca2+ enhances the conversion of ACC to ethylene. The terminal 2 mm of the root tip were found to be especially important to ethylene biosynthesis by apical segments and, experiments using 45Ca2+ as tracer indicated that the apical 2 mm of the root is the region of strongest Ca2+ accumulation. Other cations such as Mn2+, Mg2+, and K+ could largely substitute for Ca2+. The significance of these findings is discussed with respect to recent evidence for gravity-induced Ca2+ redistribution and its relationship to the establishment of asymmetric growth during gravitropic curvature.

  20. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration

    PubMed Central

    Liu, Daofeng; Liu, Xiaojing; Meng, Yonglu; Sun, Cuihui; Tang, Hongshu; Jiang, Yudong; Khan, Muhammad Ali; Xue, Jingqi; Ma, Nan; Gao, Junping

    2013-01-01

    Dehydration is a major factor resulting in huge loss from cut flowers during transportation. In the present study, dehydration inhibited petal cell expansion and resulted in irregular flowers in cut roses, mimicking ethylene-treated flowers. Among the five floral organs, dehydration substantially elevated ethylene production in the sepals, whilst rehydration caused rapid and elevated ethylene levels in the gynoecia and sepals. Among the five ethylene biosynthetic enzyme genes (RhACS1–5), expression of RhACS1 and RhACS2 was induced by dehydration and rehydration in the two floral organs. Silencing both RhACS1 and RhACS2 significantly suppressed dehydration- and rehydration-induced ethylene in the sepals and gynoecia. This weakened the inhibitory effect of dehydration on petal cell expansion. β-glucuronidase activity driven by both the RhACS1 and RhACS2 promoters was dramatically induced in the sepals, pistil, and stamens, but not in the petals of transgenic Arabidopsis. This further supports the organ-specific induction of these two genes. Among the five rose ethylene receptor genes (RhETR1–5), expression of RhETR3 was predominantly induced by dehydration and rehydration in the petals. RhETR3 silencing clearly aggravated the inhibitory effect of dehydration on petal cell expansion. However, no significant difference in the effect between RhETR3-silenced flowers and RhETR-genes-silenced flowers was observed. Furthermore, RhETR-genes silencing extensively altered the expression of 21 cell expansion-related downstream genes in response to ethylene. These results suggest that induction of ethylene biosynthesis by dehydration proceeds in an organ-specific manner, indicating that ethylene can function as a mediator in dehydration-caused inhibition of cell expansion in rose petals. PMID:23599274

  1. Gravitropism in Higher Plant Shoots 1

    PubMed Central

    Wheeler, Raymond M.; White, Rosemary G.; Salisbury, Frank B.

    1986-01-01

    Ethylene at 1.0 and 10.0 cubic centimeters per cubic meter decreased the rate of gravitropic bending in stems of cocklebur (Xanthium strumarium L.) and tomato (Lycopersicon esculentum Mill), but 0.1 cubic centimeter per cubic meter ethylene had little effect. Treating cocklebur plants with 1.0 millimolar aminoethoxyvinylglycine (AVG) (ethylene synthesis inhibitor) delayed stem bending compared with controls, but adding 0.1 cubic centimeter per cubic meter ethylene in the surrounding atmosphere (or applying 0.1% ethephon solution) partially restored the rate of bending of AVG-treated plants. Ethylene increases in bending stems, and AVG inhibits this. Virtually all newly synthesized ethylene appeared in bottom halves of horizontal stems, where ethylene concentrations were as much as 100 times those in upright stems or in top halves of horizontal stems. This was especially true when horizontal stems were physically restrained from bending. Ethylene might promote cell elongation in bottom tissues of a horizontal stem or indicate other factors there (e.g. a large amount of `functioning' auxin). Or top and bottom tissues may become differentially sensitive to ethylene. Auxin applied to one side of a vertical stem caused extreme bending away from that side; gibberellic acid, kinetin, and abscisic acid were without effect. Acidic ethephon solutions applied to one side of young seedlings of cocklebur, tomato, sunflower (Helianthus annuus L.), and soybean (Glycine max [L.] Merr.) caused bending away from that side, but neutral ethephon solutions did not cause bending. Buffered or unbuffered acid (HCl) caused similar bending. Neutral ethephon solutions produced typical ethylene symptoms (i.e. epinasty, inhibition of stem elongation). HCl or acidic ethephon applied to the top of horizontal stems caused downward bending, but these substances applied to the bottom of such stems inhibited growth and upward bending—an unexpected result. PMID:11539089

  2. Study of conformation and thermodynamics of α-amylase interaction with ethylene in vitro.

    PubMed

    Hu, Yiwei; Zhang, Guangxian; Zhang, Fengxiu

    2016-10-01

    In this article, the conformation and thermodynamics of α-amylase interaction with ethylene in vitro were investigated. The ultraviolet (UV) absorption showed a strong peak of α-amylase treated with 6.04, 29.32 and 262.11μmolL(-1) ethylene appears at ~222nm and a weak peak at 278nm blue-shifted 1nm. Circular dichroism (CD) spectra indicated that the conformations of α-amylase treated with 29.32 and 262.11μmolL(-1) ethylene were obviously changed in which α-helix content were decreased by 20 and 31% respectively, and β-sheet, β-turn and random coil contents were increased by contrast. Fluorescence spectra suggested that the peak intensities of α-amylase at 342nm were obviously increased with the ethylene increase from 6.04 to 525.75μmolL(-1) and more than control group. The binding constants K between ethylene and α-amylase were 3.318×10(6), 4.407×10(6) and 5.125×10(6)Lmol(-1) at 288, 298 and 308K, respectively. And the calculated values of ΔH(0) and ΔS(0) are positive, which suggests that the interaction between ethylene and α-amylase is an endothermic reaction. The negative ΔG(0) values implied that the direct effect of ethylene on α-amylase conformation was spontaneous. The possible reason is that ethylene molecules were easily embedded into the interior of α-amylase in term of the hydrophobic force between α-amylase and ethylene, causing the conformation and thermodynamics changes of α-amylase. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Quantitative and Functional Phosphoproteomic Analysis Reveals that Ethylene Regulates Water Transport via the C-Terminal Phosphorylation of Aquaporin PIP2;1 in Arabidopsis.

    PubMed

    Qing, Dongjin; Yang, Zhu; Li, Mingzhe; Wong, Wai Shing; Guo, Guangyu; Liu, Shichang; Guo, Hongwei; Li, Ning

    2016-01-04

    Ethylene participates in the regulation of numerous cellular events and biological processes, including water loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a (15)N stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eil1-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene-regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-0 and ein3eil1 genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up-regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  4. Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit.

    PubMed

    Vilanova, Laura; Vall-Llaura, Núria; Torres, Rosario; Usall, Josep; Teixidó, Neus; Larrigaudière, Christian; Giné-Bordonaba, Jordi

    2017-11-01

    The role of ethylene on inducing plant resistance or susceptibility to certain fungal pathogens clearly depends on the plant pathogen interaction with little or no-information available focused on the apple-Penicillium interaction. Taken advantage that Penicillium expansum is the compatible pathogen and P. digitatum is the non-host of apples, the present study aimed at deciphering how each Penicillium spp. could interfere in the fruit ethylene biosynthesis at the biochemical and molecular level. The infection capacity and different aspects related to the ethylene biosynthesis were conducted at different times post-inoculation. The results show that the fruit ethylene biosynthesis was differently altered during the P. expansum infection than in response to other biotic (non-host pathogen P. digitatum) or abiotic stresses (wounding). The first symptoms of the disease due to P. expansum were visible before the initiation of the fruit ethylene climacteric burst. Indeed, the ethylene climacteric burst was reduced in response to P. expansum concomitant to an important induction of MdACO3 gene expression and an inhibition (ca. 3-fold) and overexpression (ca. 2-fold) of ACO (1-Aminocyclopropane-1-carboxylic acid oxidase) and ACS (1-Aminocyclopropane-1-carboxylic acid synthase) enzyme activities, indicating a putative role of MdACO3 in the P. expansum-apple interaction which may, in turn, be related to System-1 ethylene biosynthesis. System-1 is auto-inhibited by ethylene and is characteristic of non-climateric or pre-climacteric fruit. Accordingly, we hypothesise that P. expansum may 'manipulate' the endogenous ethylene biosynthesis in apples, leading to the circumvention or suppression of effective defences hence facilitating its colonization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. 75 FR 53867 - Additions to Listing of Exempt Chemical Mixtures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ...% acetonitrile), dimethylformamide, ethylene glycol, isopropanol, methanol, methanol/water (50:50), methanol..., acetonitrile, acetonitrile: water (>= 50% acetonitrile), dimethylformamide, ethylene glycol, isopropanol...% acetonitrile), dimethylformamide, ethylene glycol, isopropanol, methanol, methanol/water (50:50), methanol...

  6. Prebiotic syntheses of vitamin coenzymes: I. Cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M)

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    The reaction of NH3 and SO3(2-) with ethylene sulfide is shown to be a prebiotic synthesis of cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M). A similar reaction with ethylene imine would give cysteamine and taurine. Ethylene oxide would react with NH3 and N(CH3)3 to give the phospholipid components ethanolamine and choline. The prebiotic sources of ethylene sulfide, ethylene imine and ethylene oxide are discussed. Cysteamine itself is not a suitable thioester for metabolic processes because of acyl transfer to the amino group, but this can be prevented by using an amide of cysteamine. The use of cysteamine in coenzyme A may have been due to its prebiotic abundance. The facile prebiotic synthesis of both cysteamine and coenzyme M suggests that they were involved in very early metabolic pathways.

  7. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagee, O.; Riov, J.; Goren, J.

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of themore » mechanisms by which ethylene endogenous IAA levels.« less

  8. Ethylene synthesis and sensitivity in crop plants

    NASA Technical Reports Server (NTRS)

    Klassen, Stephen P.; Bugbee, Bruce

    2004-01-01

    Closed and semi-closed plant growth chambers have long been used in studies of plant and crop physiology. These studies include the measurement of photosynthesis and transpiration via photosynthetic gas exchange. Unfortunately, other gaseous products of plant metabolism can accumulate in these chambers and cause artifacts in the measurements. The most important of these gaseous byproducts is the plant hormone ethylene (C2H4). In spite of hundreds of manuscripts on ethylene, we still have a limited understanding of the synthesis rates throughout the plant life cycle. We also have a poor understanding of the sensitivity of intact, rapidly growing plants to ethylene. We know ethylene synthesis and sensitivity are influenced by both biotic and abiotic stresses, but such whole plant responses have not been accurately quantified. Here we present an overview of basic studies on ethylene synthesis and sensitivity.

  9. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway

    PubMed Central

    Dodd, Ian C.

    2013-01-01

    Many plant-growth-promoting rhizobacteria (PGPR) associated with plant roots contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and can metabolize ACC, the immediate precursor of the plant hormone ethylene, thereby decreasing plant ethylene production and increasing plant growth. However, relatively few studies have explicitly linked ethylene emission and/or action to growth promotion in these plant–microbe interactions. This study examined effects of the PGPR Variovorax paradoxus 5C-2 containing ACC deaminase on the growth and development of Arabidopsis thaliana using wild-type (WT) plants and several ethylene-related mutants (etr1-1, ein2-1, and eto1-1). Soil inoculation with V. paradoxus 5C-2 promoted growth (leaf area and shoot biomass) of WT plants and the ethylene-overproducing mutant eto1-1, and also enhanced floral initiation of WT plants by 2.5 days. However, these effects were not seen in ethylene-insensitive mutants (etr1-1 and ein2-1) even though bacterial colonization of the root system was similar. Furthermore, V. paradoxus 5C-2 decreased ACC concentrations of rosette leaves of WT plants by 59% and foliar ethylene emission of both WT plants and eto1-1 mutants by 42 and 37%, respectively. Taken together, these results demonstrate that a fully functional ethylene signal transduction pathway is required for V. paradoxus 5C-2 to stimulate leaf growth and flowering of A. thaliana. PMID:23404897

  10. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway.

    PubMed

    Chen, Lin; Dodd, Ian C; Theobald, Julian C; Belimov, Andrey A; Davies, William J

    2013-04-01

    Many plant-growth-promoting rhizobacteria (PGPR) associated with plant roots contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and can metabolize ACC, the immediate precursor of the plant hormone ethylene, thereby decreasing plant ethylene production and increasing plant growth. However, relatively few studies have explicitly linked ethylene emission and/or action to growth promotion in these plant-microbe interactions. This study examined effects of the PGPR Variovorax paradoxus 5C-2 containing ACC deaminase on the growth and development of Arabidopsis thaliana using wild-type (WT) plants and several ethylene-related mutants (etr1-1, ein2-1, and eto1-1). Soil inoculation with V. paradoxus 5C-2 promoted growth (leaf area and shoot biomass) of WT plants and the ethylene-overproducing mutant eto1-1, and also enhanced floral initiation of WT plants by 2.5 days. However, these effects were not seen in ethylene-insensitive mutants (etr1-1 and ein2-1) even though bacterial colonization of the root system was similar. Furthermore, V. paradoxus 5C-2 decreased ACC concentrations of rosette leaves of WT plants by 59% and foliar ethylene emission of both WT plants and eto1-1 mutants by 42 and 37%, respectively. Taken together, these results demonstrate that a fully functional ethylene signal transduction pathway is required for V. paradoxus 5C-2 to stimulate leaf growth and flowering of A. thaliana.

  11. A Gas Chromatographic System for the Detection of Ethylene Gas Using Ambient Air as a Carrier Gas

    PubMed Central

    Zaidi, Nayyer Abbas; Tahir, Muhammad Waseem; Vellekoop, Michael J.; Lang, Walter

    2017-01-01

    Ethylene gas is a naturally occurring gas that has an influence on the shelf life of fruit during their transportation in cargo ships. An unintentional exposure of ethylene gas during transportation results in a loss of fruit. A gas chromatographic system is presented here for the detection of ethylene gas. The gas chromatographic system was assembled using a preconcentrator, a printed 3D printed gas chromatographic column, a humidity sensor, solenoid valves, and an electrochemical ethylene gas sensor. Ambient air was used as a carrier gas in the gas chromatographic system. The flow rate was fixed to 10 sccm. It was generated through a mini-pump connected in series with a mass flow controller. The metal oxide gas sensor is discussed with its limitation in ambient air. The results show the chromatogram obtained from metal oxide gas sensor has low stability, drifts, and has uncertain peaks, while the chromatogram from the electrochemical sensor is stable and precise. Furthermore, ethylene gas measurements at higher ppb concentration and at lower ppb concentration were demonstrated with the electrochemical ethylene gas sensor. The system separates ethylene gas and humidity. The chromatograms obtained from the system are stable, and the results are 1.2% repeatable in five similar measurements. The statistical calculation of the gas chromatographic system shows that a concentration of 2.3 ppb of ethylene gas can be detected through this system. PMID:28991173

  12. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    NASA Astrophysics Data System (ADS)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  13. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    PubMed

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae1[OPEN

    PubMed Central

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-01-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. PMID:26265775

  15. Ethylene resistance in flowering ornamental plants – improvements and future perspectives

    PubMed Central

    Olsen, Andreas; Lütken, Henrik; Hegelund, Josefine Nymark; Müller, Renate

    2015-01-01

    Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques. PMID:26504580

  16. A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis.

    PubMed

    Larsen, Paul B; Cancel, Jesse D

    2004-05-01

    By screening etiolated Arabidopsis seedlings for mutants with aberrant ethylene-related phenotypes, we identified a mutant that displays features of the ethylene-mediated triple response even in the absence of ethylene. Further characterization showed that the phenotype observed for the dark-grown seedlings of this mutant is reversible by prevention of ethylene perception and is dependent on a modest increase in ethylene production correlated with an increase in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) activity in the hypocotyl. Molecular characterization of leaves of the mutant revealed severely impaired induction of basic chitinase (chiB) and plant defensin (PDF)1.2 following treatment with jasmonic acid and/or ethylene. Positional cloning of the mutation resulted in identification of a 49-bp deletion in RCE1 (related to ubiquitin 1 (RUB1)-conjugating enzyme), which has been demonstrated to be responsible for covalent attachment of RUB1 to the SCF (Skpl Cdc 53 F-box) ubiquitin ligase complex to modify its activity. Our analyses with rce1-2 demonstrate a previously unknown requirement for RUB1 modification for regulation of ethylene biosynthesis and proper induction of defense-related genes in Arabidopsis.

  17. Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology.

    PubMed

    Jeong, Keuk Min; Hong, Yeo Joo; Saha, Prosenjit; Park, Seong Ho; Kim, Jin Kuk

    2014-11-01

    In this study, a composite has been prepared by mixing waste rubber, such as ethylene-propylene-diene-monomer and low-density poly ethylene foaming, with supercritical carbon dioxide. In order to optimise the foaming process of the waste ethylene-propylene-diene-monomer-low-density poly ethylene composite, the variations of pressure and temperature on the foamed Microcell formation were studied. As indicated in scanning electron microscope photographs, the most uniform microcellular pattern was found at 200 bar and 100 °C using 30% by weight of waste ethylene-propylene-diene-monomer. Carbon dioxide could not be dissolved uniformly during foaming owing to extensive cross-linking of the waste ethylene-propylene-diene-monomer used for the composite. As a result the presence of un-uniform microcells after foaming were observed in the composite matrix to impart inferior mechanical properties of the composite. This problem was solved with uniform foaming by increasing the cross-link density of low-density poly ethylene using 1.5 parts per hundred dicumyl peroxide that enhances composite tensile and compressive strength up to 57% and 15%, respectively. The composite has the potential to be used as a foaming mat for artificial turf. © The Author(s) 2014.

  18. Induced Plant Defense Responses against Chewing Insects. Ethylene Signaling Reduces Resistance of Arabidopsis against Egyptian Cotton Worm But Not Diamondback Moth1

    PubMed Central

    Stotz, Henrik U.; Pittendrigh, Barry R.; Kroymann, Jürgen; Weniger, Kerstin; Fritsche, Jacqueline; Bauke, Antje; Mitchell-Olds, Thomas

    2000-01-01

    The induction of plant defenses by insect feeding is regulated via multiple signaling cascades. One of them, ethylene signaling, increases susceptibility of Arabidopsis to the generalist herbivore Egyptian cotton worm (Spodoptera littoralis; Lepidoptera: Noctuidae). The hookless1 mutation, which affects a downstream component of ethylene signaling, conferred resistance to Egyptian cotton worm as compared with wild-type plants. Likewise, ein2, a mutant in a central component of the ethylene signaling pathway, caused enhanced resistance to Egyptian cotton worm that was similar in magnitude to hookless1. Moreover, pretreatment of plants with ethephon (2-chloroethanephosphonic acid), a chemical that releases ethylene, elevated plant susceptibility to Egyptian cotton worm. By contrast, these mutations in the ethylene-signaling pathway had no detectable effects on diamondback moth (Plutella xylostella) feeding. It is surprising that this is not due to nonactivation of defense signaling, because diamondback moth does induce genes that relate to wound-response pathways. Of these wound-related genes, jasmonic acid regulates a novel β-glucosidase 1 (BGL1), whereas ethylene controls a putative calcium-binding elongation factor hand protein. These results suggest that a specialist insect herbivore triggers general wound-response pathways in Arabidopsis but, unlike a generalist herbivore, does not react to ethylene-mediated physiological changes. PMID:11080278

  19. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants.

    PubMed

    Yamasaki, S; Fujii, N; Matsuura, S; Mizusawa, H; Takahashi, H

    2001-06-01

    Sex determination in cucumber (Cucumis sativus L.) plants is genetically controlled by the F and M loci. These loci interact to produce three different sexual phenotypes: gynoecious (M-F-), monoecious (M-ff), and andromonoecious (mmff). Gynoecious cucumber plants produce more ethylene than do monoecious plants. We found that the levels of ethylene production and the accumulation of CS-ACS2 mRNA in andromonoecious cucumber plants did not differ from those in monoecious plants and were lower than the levels measured in gynoecious plants. Ethylene inhibited stamen development in gynoecious cucumbers but not in andromonoecious ones. Furthermore, ethylene caused substantial increases in the accumulation of CS-ETR2, CS-ERS, and CS-ACS2 mRNA in monoecious and gynoecious cucumber plants, but not in andromonoecious one. In addition, the inhibitory effect of ethylene on hypocotyl elongation in andromonoecious cucumber plants was less than that in monoecious and gynoecious plants. These results suggest that ethylene responses in andromonoecious cucumber plants are reduced from those in monoecious and gynoecious plants. This is the first evidence that ethylene signals may influence the product of the M locus and thus inhibit stamen development in cucumber. The andromonoecious line provides novel material for studying the function of the M locus during sex determination in flowering cucumbers.

  20. Ethylene: Response of Fruit Dehiscence to CO2 and Reduced Pressure 1

    PubMed Central

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO2 (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO2 effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO2 and reduced pressure delayed dehiscence. CO2 and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits. PMID:16658260

  1. Ethylene: Response of Fruit Dehiscence to CO(2) and Reduced Pressure.

    PubMed

    Lipe, J A; Morgan, P W

    1972-12-01

    These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO(2) (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton (Gossypium hirsutum L.), pecan (Carya illinoensis [Wang.] K. Koch), and okra (Hibiscus esculentus L.). The CO(2) effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO(2) and reduced pressure delayed dehiscence. CO(2) and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits.

  2. Ethylene glycol emissions from on-road vehicles: implications for aqueous phase secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wood, E. C.; Knighton, W. B.; Fortner, E.; Herndon, S. C.; Onasch, T. B.; Franklin, J.; Harley, R. A.; Gentner, D. R.; Goldstein, A. H.

    2012-12-01

    Ethylene glycol (HOCH2CH2OH), used as an engine coolant for most on-road vehicles, is an intermediate volatility organic compound (IVOC) with a high Henry's Law Coefficient (kH > 10,000 M atm-1) . Oxidation of ethylene glycol, especially in the atmospheric aqueous phase (clouds, fog, wet aerosol), can lead to the formation of glycolaldehyde, oxalic acid, and ultimately secondary organic aerosol. We present measurements of unexpectedly high ethylene glycol emissions in the Caldecott Tunnel near San Francisco (Summer 2010) and the Washburn Tunnel near Houston (Spring 2009). Ethylene glycol was detected using a proton-transfer reaction mass spectrometer (PTR-MS) at m/z = 45, which is usually interpreted as acetaldehyde. Although not necessarily a tailpipe emission, effective fuel-based emission factors are calculated using the carbon balance method and range from 50 to 400 mg ethylene glycol per kg fuel. Total US and global emissions are estimated using these emission factors and fuel consumption rates and are compared to previous model estimates of ethylene glycol emissions (e.g., the Regional Atmospheric Chemistry Model). Compared to biogenically emitted isoprene, ethylene glycol is likely a minor source of glycolaldehyde globally, but may contribute significantly to glycolaldehyde, oxalate and SOA formation in areas dominated by urban emissions.

  3. Root Formation in Ethylene-Insensitive Plants1

    PubMed Central

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  4. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    NASA Astrophysics Data System (ADS)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  5. Synthesis of Ethylene and Other Useful Products by Reduction of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.; Makel, Darby B.; Finn, John E.

    1998-01-01

    The synthesis of ethylene and other useful products by reduction of carbon dioxide is discussed. The synthesis of ethylene from carbon dioxide has been undertaken. A few different chemical reactions are presented for the production of ethylene. This ethylene can then form the basis for the manufacture of a variety of useful products. It can be used in the preparation of a variety of plastics that can be used for the fabrication of structural materials, and can be used in creating life support systems, which can lead to the development of closed life support systems based on the use of inorganic processes and chemical engineering principles.

  6. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfate 77781 6. Dinitrotoluene (2,4) 121142 7. Dioxane (1,4) 123911 8. Ethylene glycol dimethyl ether 110714 9. Ethylene glycol monobutyl ether acetate 112072 10. Ethylene glycol monomethyl ether acetate...

  7. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations.

    PubMed

    Fan, Denise; Dai, Der-Jong; Wu, Ho-Shing

    2012-12-28

    Ethylene is the primary component in most plastics, making it economically valuable. It is produced primarily by steam-cracking of hydrocarbons, but can alternatively be produced by the dehydration of ethanol, which can be produced from fermentation processes using renewable substrates such as glucose, starch and others. Due to rising oil prices, researchers now look at alternative reactions to produce green ethylene, but the process is far from being as economically competitive as using fossil fuels. Many studies have investigated catalysts and new reaction engineering technologies to increase ethylene yield and to lower reaction temperature, in an effort to make the reaction applicable in industry and most cost-efficient. This paper presents various lab synthesized catalysts, reaction conditions, and reactor technologies that achieved high ethylene yield at reasonable reaction temperatures, and evaluates their practicality in industrial application in comparison with steam-cracking plants. The most promising were found to be a nanoscale catalyst HZSM-5 with 99.7% ethylene selectivity at 240 °C and 630 h lifespan, using a microreactor technology with mechanical vapor recompression, and algae-produced ethanol to make ethylene.

  8. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.)

    PubMed Central

    Wang, Shu; Tao, Qianyi; Pan, Junsong; Si, Longting; Gong, Zhenhui; Cai, Run

    2012-01-01

    It is well established that the plant hormone ethylene plays a key role in cucumber sex determination. Since the unisexual control gene M was cloned and shown to encode an ethylene synthase, instead of an ethylene receptor, the ‘one-hormone hypothesis’, which was used to explain the cucumber sex phenotype, has been challenged. Here, the physiological function of CsACS2 (the gene encoded by the M locus) was studied using the transgenic tobacco system. The results indicated that overexpression of CsACS2 increased ethylene production in the tobacco plant, and the native cucumber promoter had no activity in transgenic tobacco (PM). However, when PM plants were treated with exogenous ethylene, CsACS2 expression could be detected. In cucumber, ethylene treatment could also induce transcription of CsACS2, while inhibition of ethylene action reduced the expression level. These findings suggest a positive feedback regulation mechanism for CsACS2, and a modified ‘one-hormone hypothesis’ for sex determination in cucumber is proposed. PMID:22577183

  9. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.).

    PubMed

    Li, Zheng; Wang, Shu; Tao, Qianyi; Pan, Junsong; Si, Longting; Gong, Zhenhui; Cai, Run

    2012-07-01

    It is well established that the plant hormone ethylene plays a key role in cucumber sex determination. Since the unisexual control gene M was cloned and shown to encode an ethylene synthase, instead of an ethylene receptor, the 'one-hormone hypothesis', which was used to explain the cucumber sex phenotype, has been challenged. Here, the physiological function of CsACS2 (the gene encoded by the M locus) was studied using the transgenic tobacco system. The results indicated that overexpression of CsACS2 increased ethylene production in the tobacco plant, and the native cucumber promoter had no activity in transgenic tobacco (PM). However, when PM plants were treated with exogenous ethylene, CsACS2 expression could be detected. In cucumber, ethylene treatment could also induce transcription of CsACS2, while inhibition of ethylene action reduced the expression level. These findings suggest a positive feedback regulation mechanism for CsACS2, and a modified 'one-hormone hypothesis' for sex determination in cucumber is proposed.

  10. Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.

    PubMed

    LaMontagne, A D; Kelsey, K T

    2001-03-01

    This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts.

  11. Mechanical perturbation-induced ethylene releases apical dominance in Pharbitis nil by restricting shoot growth

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1985-01-01

    Mechanical perturbation (MP, rubbing) or internodes of Pharbitis nil shoots initiates release of lateral buds (LB) from apical dominance within 48 h. Evidence is presented which suggests that MP promotion of LB outgrowth is mediated by ethylene-induced restriction of main shoot growth. Ethylene production in the internodes is stimulated by MP within 2 h. Effects of MP are mimicked by treatments with 1-aminocyclopropane-1-carboxylic acid (ACC) and are negated by the inhibitors of ethylene production or action, aminoethoxy vinylglycine (AVG) and AgNO3. The fact that effects of MP, ACC, and ethylene inhibitors are observed to occur on main shoot growth at least 24 h before they are observed to occur on LB growth suggests a possible cause and effect relationship. MP also causes an increase in internode diameter. MP stimulation of ethylene production appears to be mediated by ACC synthase. The results of this study and our previous studies suggest that apical dominance may be released by any mechanism which induces ethylene restriction of main shoot growth.

  12. Difference of carboxybetaine and oligo(ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study.

    PubMed

    Shao, Qing; White, Andrew D; Jiang, Shaoyi

    2014-01-09

    Polycarboxybetaine and poly(ethylene glycol) materials resist nonspecific protein adsorption but differ in influencing biological functions such as enzymatic activity. To investigate this difference, we studied the influence of carboxybetaine and oligo(ethylene glycol) moieties on hydrophobic interactions using molecular simulations. We employed a model system composed of two non-polar plates and studied the potential of mean force of plate-plate association in carboxybetaine, (ethylene glycol)4, and (ethylene glycol)2 solutions using well-tempered metadynamics simulations. Water, trimethylamine N-oxide, and urea solutions were used as reference systems. We analyzed the variation of the potential of mean force in various solutions to study how carboxybetaine and oligo(ethylene glycol) moieties influence the hydrophobic interactions. To study the origin of their influence, we analyzed the normalized distributions of moieties and water molecules using molecular dynamics simulations. The simulation results showed that oligo(ethylene glycol) moieties repel water molecules away from the non-polar plates and weaken the hydrophobic interactions. Carboxybetaine moieties do not repel water molecules away from the plates and therefore do not influence the hydrophobic interactions.

  13. Participation of ethylene in gravitropism

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    In shoots of many plants, of which tomato (Lycopersicon esculentum Mill.) is an example, ethylene production is substantially increased during gravitropism. As a first step toward elucidating the role of ethylene in gravitropism, detailed time courses of ethylene production in isolated hypocotyl segments and whole plants were measured for gravistimulated and upright tomato seedlings. In the first experiment, seedlings were set upright or laid horizontal and then, at 15 min intervals, sets of hypocotyls were excised and sealed into gas tight vials. A steady long term rise in ethylene production begins after 15 min gravistimulation. It is possible that this increase is a consequence of the accumulation of indoleacetic acid (IAA) in the lower tissue of the hypocotyle. In a second kind of experiment, whole seedlings were enclosed in sealed chambers and air samples were withdrawn at 5 min intervals. Stimulated seedlings produced more ethylene than controls during the first 5 min interval, but not appreciably more during the second. This suggests the possibility that the ethylene production induced during the first 5 min occurs immediately rather than after a lag, and thus much too soon to be controlled by redistribution of IAA.

  14. Absorption of Ethylene on Membranes Containing Potassium Permanganate Loaded into Alumina-Nanoparticle-Incorporated Alumina/Carbon Nanofibers.

    PubMed

    Tirgar, Ashkan; Han, Daewoo; Steckl, Andrew J

    2018-06-06

    Ethylene is a natural aging hormone in plants, and controlling its concentration has long been a subject of research aimed at reducing wastage during packaging, transport, and storage. We report on packaging membranes, produced by electrospinning, that act as efficient carriers for potassium permanganate (PPM), a widely used ethylene oxidant. PPM salt loaded on membranes composed of alumina nanofibers incorporating alumina nanoparticles outperform other absorber systems and oxidize up to 73% of ethylene within 25 min. Membrane absorption of ethylene generated by avocados was totally quenched in 21 h, and a nearly zero ethylene concentration was observed for more than 5 days. By comparison, the control experiments exhibited a concentration of 53% of the initial value after 21 h and 31% on day 5. A high surface area of the alumina nanofiber membranes provides high capacity for ethylene absorption over a long period of time. In combination with other properties, such as planar form, flexibility, ease of handling, and lightweight, these membranes are a highly desirable component of packaging materials engineered to enhance product lifetime.

  15. Perception of the plant hormone ethylene: known-knowns and known-unknowns.

    PubMed

    Light, Kenneth M; Wisniewski, John A; Vinyard, W Andrew; Kieber-Emmons, Matthew T

    2016-09-01

    The gaseous phytohormone ethylene is implicated in virtually all phases of plant growth and development and thus has a major impact on crop production. This agronomic impact makes understanding ethylene signaling the Philosopher's Stone of the plant biotechnology world in applications including post-harvest transport of foodstuffs, consistency of foodstuff maturity pre-harvest, decorative flower freshness and longevity, and biomass production for biofuel applications. Ethylene is biosynthesized by plants in response to environmental factors and plant life-cycle events, and triggers a signaling cascade that modulates over 1000 genes. The key components in the perception of ethylene are a family of copper dependent receptors, the bioinorganic chemistry of which has been largely ignored by the chemical community. Since identification of these receptors two decades ago, there has been tremendous growth in knowledge in the biological community on the signal transduction pathways and mechanisms of ethylene signaling. In this review, we highlight these advances and key chemical voids in knowledge that are overdue for exploration, and which are required to ultimately regulate and control ethylene signaling.

  16. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    PubMed

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-04

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder.

  17. Epidermal Cell Death in Rice Is Regulated by Ethylene, Gibberellin, and Abscisic Acid

    PubMed Central

    Steffens, Bianka; Sauter, Margret

    2005-01-01

    Programmed cell death (PCD) of epidermal cells that cover adventitious root primordia in deepwater rice (Oryza sativa) is induced by submergence. Early suicide of epidermal cells may prevent injury to the growing root that emerges under flooding conditions. Induction of PCD is dependent on ethylene signaling and is further promoted by gibberellin (GA). Ethylene and GA act in a synergistic manner, indicating converging signaling pathways. Treatment of plants with GA alone did not promote PCD. Treatment with the GA biosynthesis inhibitor paclobutrazol resulted in increased PCD in response to ethylene and GA presumably due to an increased sensitivity of epidermal cells to GA. Abscisic acid (ABA) was shown to efficiently delay ethylene-induced as well as GA-promoted cell death. The results point to ethylene signaling as a target of ABA inhibition of PCD. Accumulation of ethylene and GA and a decreased ABA level in the rice internode thus favor induction of epidermal cell death and ensure that PCD is initiated as an early response that precedes adventitious root growth. PMID:16169967

  18. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations

    PubMed Central

    Fan, Denise; Dai, Der-Jong; Wu, Ho-Shing

    2012-01-01

    Ethylene is the primary component in most plastics, making it economically valuable. It is produced primarily by steam-cracking of hydrocarbons, but can alternatively be produced by the dehydration of ethanol, which can be produced from fermentation processes using renewable substrates such as glucose, starch and others. Due to rising oil prices, researchers now look at alternative reactions to produce green ethylene, but the process is far from being as economically competitive as using fossil fuels. Many studies have investigated catalysts and new reaction engineering technologies to increase ethylene yield and to lower reaction temperature, in an effort to make the reaction applicable in industry and most cost-efficient. This paper presents various lab synthesized catalysts, reaction conditions, and reactor technologies that achieved high ethylene yield at reasonable reaction temperatures, and evaluates their practicality in industrial application in comparison with steam-cracking plants. The most promising were found to be a nanoscale catalyst HZSM-5 with 99.7% ethylene selectivity at 240 °C and 630 h lifespan, using a microreactor technology with mechanical vapor recompression, and algae-produced ethanol to make ethylene. PMID:28809297

  19. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...

  20. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Dinitrotoluene (2,4) 121142 7. Dioxane (1,4) 123911 8. Ethylene glycol dimethyl ether 110714 9. Ethylene glycol monobutyl ether acetate 112072 10. Ethylene glycol monomethyl ether acetate 110496 11. Isophorone 78591 12...

  1. 40 CFR Table 5 to Subpart U of... - Known Organic HAP Emitted From the Production of Elastomer Products

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) ✔ Epichlorohydrin (106898) ✔ Ethylbenzene (100414) ✔ ✔ Ethylene Dichloride (107062) ✔ Ethylene Oxide (75218... Rubber. EPI = Epichlorohydrin Rubber. EPR = Ethylene Propylene Rubber. HBR = Halobutyl Rubber. HYP...

  2. Experience with ethylene plant computer control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasi, M.; Darby, M.L.; Sourander, M.

    This article discusses the control strategies, results and opinions of management and operations of a computer based ethylene plant control system. The ethylene unit contains 9 cracking heaters, and its nameplate capacity is 200,000 tpa ethylene. Reports on control performance during different unit loading and using different feedstock types. By converting the yield and utility consumption benefits due to computer control into monetary units, the payback time of the system is less than 2 yrs.

  3. Sorption interactions between ethylene glycol and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butyrskaya, E. V.; Belyakova, N. V.; Nechaeva, L. S.; Shaposhnik, V. A.; Selemenev, V. F.

    2017-03-01

    The adsorption of ethylene glycol by carbon nanoparticles is studied. Carbon nanoparticles with the highest affinity to ethylene glycol are identified, and an adsorption isotherm is constructed. Based on quantum chemical calculations of the energies of interaction between the sorbate and nanotubes with (4,4) and (6,6) chirality, a change in mechanism is revealed upon the monomolecular adsorption of ethylene glycol on carbon nanotubes, and the adsorption isotherm is thus interpreted.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riande, E.; Guzman, J.; Roman, J.S.

    The dipole moments of poly (thiodiethylene glycol terephthalate) chains were determined as a function of temperature by means of dielectric constant measurements in dioxane. The experimental results were found to be in fair agreement with theoretical results based on a rotational isomeric state model in which the required conformational energies were obtained from previous configurational analysis on poly(ethylene terephthalate), poly(diethylene glycol terephthalate) and poly(thiodiethylene glycol). Since poly(thiodiethylene glycol terephthalate) can be considered an alternating copolymer of ethylene terephthalate and thioethylene units, its configuration-dependent properties were compared with those of poly(ethylene terephthalate) and poly(ethylene sulfide). It was found the flexibility ofmore » the copolymer, as expressed by the partition function, intermediate to that of its parent homopolymers. The theoretical results also indicate that the dimensions of poly(thiodiethylene glycol) are similar to those of poly(ethylene terephthalate) while its dipole moment ratio resembles that of poly(ethylene sulfide).« less

  5. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    PubMed

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Interactions of oxygen and ethylene with submonolayer Ag films supported on Ni(111).

    PubMed

    Rettew, Robert E; Meyer, Axel; Senanayake, Sanjaya D; Chen, Tsung-Liang; Petersburg, Cole; Ingo Flege, J; Falta, Jens; Alamgir, Faisal M

    2011-06-21

    We investigate the oxidation of, and the reaction of ethylene with, Ni(111) with and without sub-monolayer Ag adlayers as a function of temperature. The addition of Ag to Ni(111) is shown to enhance the activity towards the ethylene epoxidation reaction, and increase the temperature at which ethylene oxide is stable on the surface. We present a systematic study of the formation of chemisorbed oxygen on the Ag-Ni(111) surfaces and correlate the presence and absence of O(1-) and O(2-) surface species with the reactivity towards ethylene. By characterizing the samples with low-energy electron microscopy (LEEM) in combination with X-ray photoelectron spectroscopy (XPS), we have identified specific growth of silver on step-edge sites and successfully increased the temperature at which the produced ethylene oxide remains stable, a trait which is desirable for catalysis.

  7. Molecular mechanism of gelation with ethylene glycol added to a solution of polyacrylonitrile in dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Vettegren', V. I.; Machalaba, N. N.; Zharov, V. B.; Kulik, V. B.; Savitskii, A. V.

    2011-06-01

    The mechanism of solidifying a solution of polyacrylonitrile (PAN) in dimethylsulfoxide (DMSO) into which ethylene glycol is added is studied by the method of Raman spectroscopy. In the absence of ethylene glycol, DMSO molecules produce dipole-dipole bonds to PAN molecules. Upon adding ethylene glycol, DMSO molecules form hydrogen bonds with it and a line at 1000 cm-1 appears in the Raman spectrum, which is assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. After DMSO is removed, ethylene glycol molecules produce hydrogen bonds with two neighboring PAN molecules, giving rise to a band at 2264 cm-1, which is assigned to the valence vibrations of C≡N bonds involved in these hydrogen bonds. A high-viscosity gel consisting of PAN molecules arises in which these molecules are bonded to each other through ethylene glycol molecules.

  8. Ethylene signaling triggered by low concentrations of ascorbic acid regulates biomass accumulation in Arabidopsis thaliana.

    PubMed

    Caviglia, M; Mazorra Morales, L M; Concellón, A; Gergoff Grozeff, G E; Wilson, M; Foyer, C H; Bartoli, C G

    2018-02-02

    Ascorbic acid (AA) is a major redox buffer in plant cells. The role of ethylene in the redox signaling pathways that influence photosynthesis and growth was explored in two independent AA deficient Arabidopsis thaliana mutants (vtc2-1 and vtc2-4). Both mutants, which are defective in the AA biosynthesis gene GDP-L-galactose phosphorylase, produce higher amounts of ethylene than wt plants. In contrast to the wt, the inhibition of ethylene signaling increased leaf conductance, photosynthesis and dry weight in both vtc2 mutant lines. The AA-deficient mutants showed altered expression of genes encoding proteins involved in the synthesis/responses to phytohormones that control growth, particularly auxin, cytokinins, abscisic acid, brassinosterioids, ethylene and salicylic acid. These results demonstrate that AA deficiency modifies hormone signaling in plants, redox-ethylene interactions providing a regulatory node controlling shoot biomass accumulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Assay Methods for ACS Activity and ACS Phosphorylation by MAP Kinases In Vitro and In Vivo.

    PubMed

    Han, Xiaomin; Li, Guojing; Zhang, Shuqun

    2017-01-01

    Ethylene, a gaseous phytohormone, has profound effects on plant growth, development, and adaptation to the environment. Ethylene-regulated processes begin with the induction of ethylene biosynthesis. There are two key steps in ethylene biosynthesis. The first is the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) from S-Adenosyl-Methionine (SAM), a common precursor in many metabolic pathways, which is catalyzed by ACC synthase (ACS). The second is the oxidative cleavage of ACC to form ethylene under the action of ACC oxidase (ACO). ACC biosynthesis is the committing and generally the rate-limiting step in ethylene biosynthesis. As a result, characterizing the cellular ACS activity and understanding its regulation are important. In this chapter, we detail the methods used to measure, (1) the enzymatic activity of both recombinant and native ACS proteins, and (2) the phosphorylation of ACS protein by mitogen-activated protein kinases (MAPKs) in vivo and in vitro.

  10. Mechanistic Insights in Ethylene Perception and Signal Transduction1

    PubMed Central

    Ju, Chuanli; Chang, Caren

    2015-01-01

    The gaseous hormone ethylene profoundly affects plant growth, development, and stress responses. Ethylene perception occurs at the endoplasmic reticulum membrane, and signal transduction leads to a transcriptional cascade that initiates diverse responses, often in conjunction with other signals. Recent findings provide a more complete picture of the components and mechanisms in ethylene signaling, now rendering a more dynamic view of this conserved pathway. This includes newly identified protein-protein interactions at the endoplasmic reticulum membrane, as well as the major discoveries that the central regulator ETHYLENE INSENSITIVE2 (EIN2) is the long-sought phosphorylation substrate for the CONSTITUTIVE RESPONSE1 protein kinase, and that cleavage of EIN2 transmits the signal to the nucleus. In the nucleus, hundreds of potential gene targets of the EIN3 master transcription factor have been identified and found to be induced in transcriptional waves, and transcriptional coregulation has been shown to be a mechanism of ethylene cross talk. PMID:26246449

  11. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk.

    PubMed

    Hu, Yuming; Vandenbussche, Filip; Van Der Straeten, Dominique

    2017-03-01

    This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.

  12. Microbial mineralization of ethene under sulfate-reducing conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    2002-01-01

    A limited investigation of the potential for anaerobic ethylene biodegradation under SO4-reducing conditions was performed. Microorganisms indigenous to a lake-bed sediment completely mineralized [1,2-14C] ethylene to 14CO2 when incubated under SO4-reducing conditions. Reliance on ethylene and/or ethane accumulation as a quantitative indicator of complete reductive dechlorination of chloroethylene contaminants may not be warranted. SO4 addition stimulated SO4 reduction as indicated by decreasing SO4 concentrations (> 40% decrease) and production of dissolved sulfide (880 ??M). SO4 amendment completely suppressed the production of ethane and methane. The concomitant absence of ethane and methane production under SO4-amended conditions was consistent with previous conclusions that reduction of ethylene to ethane occurred under methanogenic conditions. A lack of ethylene accumulation under SO4-reducing conditions may reflect insignificant reductive dechlorination of vinyl chloride or efficient anaerobic mineralization of ethylene to CO2.

  13. Control of Abscission in Agricultural Crops and Its Physiological Basis 1

    PubMed Central

    Cooper, W. C.; Rasmussen, G. K.; Rogers, B. J.; Reece, P. C.; Henry, W. H.

    1968-01-01

    Some naphthalene and phenoxy compounds prevent preharvest drop of apples, pears, and citrus fruits. These studies have been complicated by an unrecognized high level of ethylene produced by leaves and fruit on trees sprayed with these growth regulators. An apparent contradiction is the effectiveness of both 2,4-dichlorophenoxyacetic acid and n-dimethylaminosuccinamic acid (a growth retardant which retards biosynthesis of auxin) in preventing abscission of apples. Thus, in the presence of low auxin concentrations in the tissue, this growth retardant prevents fruit abscission even more effectively than 2,4-dichlorophenoxyacetic acid at high auxin concentrations in the tissue. This anomaly is clarified on the basis that n-dimethylaminosuccinamic acid, in the presence of a known low ethylene biosynthesis, delays maturity of the fruit and thus prevents fruit abscission. On the other hand, 2,4-dichlorophenoxyacetic acid prevents abscission by direct growth hormone action, in spite of the side effects of ethylene production which speeds ripening of the fruit. With the promotion of abscission of leaves and fruit of agricultural crops, attention is given to the use of chemicals which induce ethylene production when applied to the plant, but which have no growth promotion effect to retard abscission. We can distinguish 5 kinds of such chemicals. One group includes gibberellic and abscisic acids that induce treated leaves to produce ethylene and abscise (under certain circumstances). However, they do not induce ethylene production by fruit and do not promote fruit abscission. A second group includes ascorbic acid, which, when used at relatively high levels, induces fruit to produce enough ethylene to promote abscission. Ascorbic acid-treated leaves also produce ethylene but not enough to cause much defoliation. A third group includes protein-synthesis inhibitors, such as cycloheximide. When low concentrations (about 30 μmoles/l) are sprayed on the fruit, the rapid effect of the freely moving ethylene (produced by the treated fruit) appears to mask temporarily any potential effect of the slowly moving inhibitor. A fourth group includes 2-chloroethylphosphonic and cupric ethylenediaminetetracetic acids, which induce ethylene production of fruit and leaves; production by leaves is substantially greater than by fruit and substantial defoliation results. A fifth group includes the cotton defoliation chemicals which clearly produce ethylene primarily as a result of chemical injury to the leaf blade. Another group of compounds, represented by beta-hydroxyethylhydrazine, produces ethylene by a chemical reaction with formaldehyde and water, and the presence of leaves or fruit is not required. At this time we are unaware of how chemicals in groups one to four act to promote ethylene evolution in leaves and fruit, but possible biological and chemical paths of ethylene production are discussed. Images PMID:16657019

  14. Protective Effect of Propolis in Proteinuria, Crystaluria, Nephrotoxicity and Hepatotoxicity Induced by Ethylene Glycol Ingestion.

    PubMed

    El Menyiy, Nawal; Al Waili, Noori; Bakour, Meryem; Al-Waili, Hamza; Lyoussi, Badiaa

    2016-10-01

    Propolis is a natural honeybee product with wide biological activities and potential therapeutic properties. The aim of the study is to evaluate the protective effect of propolis extract on nephrotoxicity and hepatotoxicity induced by ethylene glycol in rats. Five groups of rats were used. Group 1 received drinking water, group 2 received 0.75% ethylene-glycol in drinking water, group 3 received 0.75% ethylene-glycol in drinking water along with cystone 500 mg/kg/body weight (bw) daily, group 4 received 0.75% ethylene-glycol in drinking water along with propolis extract at a dose of 100 mg/kg/bw daily, and group 5 received 0.75% ethylene-glycol in drinking water along with propolis extract at a dose of 250 mg/kg/bw daily. The treatment continued for a total of 30 d. Urinalyses for pH, crystals, protein, creatinine, uric acid and electrolytes, and renal and liver function tests were performed. Ethylene-glycol increased urinary pH, urinary volume, and urinary calcium, phosphorus, uric acid and protein excretion. It decreased creatinine clearance and magnesium and caused crystaluria. Treatment with propolis extract or cystone normalized the level of magnesium, creatinine, sodium, potassium and chloride. Propolis is more potent than cystone. Propolis extract alleviates urinary protein excretion and ameliorates the deterioration of liver and kidney function caused by ethylene glycol. Propolis extract has a potential protective effect against ethylene glycol induced hepatotoxicity and nephrotoxicity and has a potential to treat and prevent urinary calculus, crystaluria and proteinuria. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  15. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae.

    PubMed

    Guan, Rongxia; Su, Jianbin; Meng, Xiangzong; Li, Sen; Liu, Yidong; Xu, Juan; Zhang, Shuqun

    2015-09-01

    Ethylene, a key phytohormone involved in plant-pathogen interaction, plays a positive role in plant resistance against fungal pathogens. However, its function in plant bacterial resistance remains unclear. Here, we report a detailed analysis of ethylene induction in Arabidopsis (Arabidopsis thaliana) in response to Pseudomonas syringae pv tomato DC3000 (Pst). Ethylene biosynthesis is highly induced in both pathogen/microbe-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI), and the induction is potentiated by salicylic acid (SA) pretreatment. In addition, Pst actively suppresses PAMP-triggered ethylene induction in a type III secretion system-dependent manner. SA potentiation of ethylene induction is dependent mostly on MITOGEN-ACTIVATED PROTEIN KINASE6 (MPK6) and MPK3 and their downstream ACS2 and ACS6, two type I isoforms of 1-aminocyclopropane-1-carboxylic acid synthases (ACSs). ACS7, a type III ACS whose expression is enhanced by SA pretreatment, is also involved. Pst expressing the avrRpt2 effector gene (Pst-avrRpt2), which is capable of triggering ETI, induces a higher level of ethylene production, and the elevated portion is dependent on SALICYLIC ACID INDUCTION DEFICIENT2 and NONEXPRESSER OF PATHOGENESIS-RELATED GENE1, two key players in SA biosynthesis and signaling. High-order ACS mutants with reduced ethylene induction are more susceptible to both Pst and Pst-avrRpt2, demonstrating a positive role of ethylene in plant bacterial resistance mediated by both PAMP-triggered immunity and ETI. © 2015 American Society of Plant Biologists. All Rights Reserved.

  16. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol dinitrate]. Erythritol tetranitrate explosives..., trinitroglycerine]. Nitroglycide. Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives...

  17. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol dinitrate]. Erythritol tetranitrate explosives..., RNG, nitro, glyceryl trinitrate, trinitroglycerine]. Nitroglycide. Nitroglycol [ethylene glycol...

  18. Gravitropism in higher plant shoots. I - A role for ethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.; Salisbury, Frank B.

    1981-01-01

    Two inhibitors of ethylene synthesis, Co(2+) and aminoethoxyvinylglycine (AVG), and two inhibitors of ethylene action, Ag(+) and CO2, are shown to delay the gravitropic response of cocklebur (Xanthium strumarium L.), tomato (Lycopersicon esculentum Mill.), and castor bean (Ricinus communis L.) stems. Gentle shaking on a mechanical shaker does not inhibit the gravitropic response, but vigorous hand shaking for 120 seconds delays the response somewhat. AVG and Ag(+) further delay the response of mechanically stimulated plants. AVG retards the storage of bending energy but not of stimulus. In gravitropism, graviperception may first stimulate ethylene evolution, which may then influence bending directly, or responses involving ethylene could be more indirect.

  19. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Jaffe, M. J.

    1984-01-01

    The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.

  20. Theoretical study of the bonding of the first-row transition-metal positive ions to ethylene

    NASA Technical Reports Server (NTRS)

    Sodupe, M.; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1992-01-01

    Ab initio calculations were performed to study the bonding of the first-row transition-metal ions with ethylene. While Sc(+) and Ti(+) insert into the pi bond of ethylene to form a three-membered ring, the ions V(+) through Cu(+) form an electrostatic complex with ethylene. The binding energies are compared with those from experiment and with those of comparable calculations performed previously for the metal-acetylene ion systems.

  1. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.

    PubMed

    Hu, Yaochi; Zhan, Nina; Dou, Chang; Huang, He; Han, Yuwang; Yu, Dinghua; Hu, Yi

    2010-11-01

    Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.

  2. Analysis of the Ethylene Response in the epinastic Mutant of Tomato1

    PubMed Central

    Barry, Cornelius S.; Fox, Elizabeth A.; Yen, Hsiao-ching; Lee, Sanghyeob; Ying, Tie-jin; Grierson, Donald; Giovannoni, James J.

    2001-01-01

    Ethylene can alter plant morphology due to its effect on cell expansion. The most widely documented example of ethylene-mediated cell expansion is promotion of the “triple response” of seedlings grown in the dark in ethylene. Roots and hypocotyls become shorter and thickened compared with controls due to a reorientation of cell expansion, and curvature of the apical hook is more pronounced. The epinastic (epi) mutant of tomato (Lycopersicon esculentum) has a dark-grown seedling phenotype similar to the triple response even in the absence of ethylene. In addition, in adult plants both the leaves and the petioles display epinastic curvature and there is constitutive expression of an ethylene-inducible chitinase gene. However, petal senescence and abscission and fruit ripening are all normal in epi. A double mutant (epi/epi;Nr/Nr) homozygous for both the recessive epi and dominant ethylene-insensitive Never-ripe loci has the same dark-grown seedling and vegetative phenotypes as epi but possesses the senescence and ripening characteristics of Never-ripe. These data suggest that a subset of ethylene responses controlling vegetative growth and development may be constitutively activated in epi. In addition, the epi locus has been placed on the tomato RFLP map on the long arm of chromosome 4 and does not demonstrate linkage to reported tomato CTR1 homologs. PMID:11553734

  3. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca).

    PubMed

    Marty, I; Bureau, S; Sarkissian, G; Gouble, B; Audergon, J M; Albagnac, G

    2005-07-01

    In order to elucidate the regulation mechanisms of carotenoid biosynthesis in apricot fruit (Prunus armeniaca), carotenoid content and carotenogenic gene expression were analysed as a function of ethylene production in two colour-contrasted apricot varieties. Fruits from Goldrich (GO) were orange, while Moniqui (MO) fruits were white. Biochemical analysis showed that GO accumulated precursors of the uncoloured carotenoids, phytoene and phytofluene, and the coloured carotenoid, beta-carotene, while Moniqui (MO) fruits only accumulated phytoene and phytofluene but no beta-carotene. Physiological analysis showed that ethylene production was clearly weaker in GO than in MO. Carotenogenic gene expression (Psy-1, Pds, and Zds) and carotenoid accumulation were measured with respect to ethylene production which is initiated in mature green fruits at the onset of the climacteric stage or following exo-ethylene or ethylene-receptor inhibitor (1-MCP) treatments. Results showed (i) systematically stronger expression of carotenogenic genes in white than in orange fruits, even for the Zds gene involved in beta-carotene synthesis that is undetectable in MO fruits, (ii) ethylene-induction of Psy-1 and Pds gene expression and the corresponding product accumulation, (iii) Zds gene expression and beta-carotene production independent of ethylene. The different results obtained at physiological, biochemical, and molecular levels revealed the complex regulation of carotenoid biosynthesis in apricots and led to suggestions regarding some possible ways to regulate it.

  4. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes.

  5. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes

    PubMed Central

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-01-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1–MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein–protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  6. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  7. Chemical composition separation of a propylene-ethylene random copolymer by high temperature solvent gradient interaction chromatography.

    PubMed

    Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald

    2017-11-03

    A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    PubMed

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening.

    PubMed

    Mou, Wangshu; Li, Dongdong; Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening.

  10. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice.

    PubMed

    Yang, Chao; Li, Wen; Cao, Jidong; Meng, Fanwei; Yu, Yongqi; Huang, Junkai; Jiang, Lan; Liu, Muxing; Zhang, Zhengguang; Chen, Xuewei; Miyamoto, Koji; Yamane, Hisakazu; Zhang, Jinsong; Chen, Shouyi; Liu, Jun

    2017-01-01

    Ethylene plays diverse roles in plant growth, development and stress responses. However, the roles of ethylene signaling in immune responses remain largely unknown. In this study, we showed that the blast fungus Magnaporthe oryzae infection activated ethylene biosynthesis in rice. Resistant rice cultivars accumulated higher levels of ethylene than susceptible ones. Ethylene signaling components OsEIN2 and the downstream transcription factor OsEIL1 positively regulated disease resistance. Mutation of OsEIN2 led to enhanced disease susceptibility. Whole-genome transcription analysis revealed that responsive genes of ethylene, jasmonates (JAs) and reactive oxygen species (ROS) signaling as well as phytoalexin biosynthesis genes were remarkably induced. Transcription of OsrbohA/B, which encode NADPH oxidases, and OsOPRs, the JA biosynthesis genes, were induced by M. oryzae infection. Furthermore, we demonstrated that OsEIL1 binds to the promoters of OsrbohA/OsrbohB and OsOPR4 to activate their expression. These data suggest that OsEIN2-mediated OsrbohA/OsrbohB and OsOPR transcription may play essential roles in ROS generation, JA biosynthesis and the subsequent phytoalexin accumulation. Therefore, the involvement of ethylene signaling in disease resistance is probably by activation of ROS and phytoalexin production in rice during M. oryzae infection. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening

    PubMed Central

    Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening. PMID:27100326

  12. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    DOE PAGES

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan; ...

    2016-08-25

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO 2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of amore » process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the productivity of ethylene has the largest effect on cost and is calculated based on a number of variables that are incorporated into this cost model (i.e., quantum requirement, photon transmission efficiency, and the percent of energy going to either ethylene or cyanobacterial biomass production).« less

  13. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO 2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of amore » process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the productivity of ethylene has the largest effect on cost and is calculated based on a number of variables that are incorporated into this cost model (i.e., quantum requirement, photon transmission efficiency, and the percent of energy going to either ethylene or cyanobacterial biomass production).« less

  14. Cloning and characterisation of two CTR1-like genes in Cucurbita pepo: regulation of their expression during male and female flower development.

    PubMed

    Manzano, Susana; Martínez, Cecilia; Gómez, Pedro; Garrido, Dolores; Jamilena, Manuel

    2010-12-01

    Ethylene is an essential regulator of flower development in Cucurbita pepo, controlling the sexual expression, and the differentiation and maturation of floral organs. To study the action mechanism of ethylene during the male and female flower development, we have identified two CTR1 homologues from C. pepo, CpCTR1 and CpCTR2, and analysed their expressions during female and male flower development and in response to external treatments with ethylene. CpCTR1 and CpCTR2 share a high homology with plant CTR1-like kinases, but differ from other related kinases such as the Arabidopsis EDR1 and the tomato LeCTR2. The C-terminal ends of both CpCTR1 and CpCTR2 have all the conserved motifs of Ser/Thr kinase domains, including the ATP-binding signature and the protein kinase active site consensus sequence, which suggests that CpCTR1 and CpCTR2 could have the same function as CTR1 in ethylene signalling. The transcripts of both genes were detected in different organs of the plant, including roots, leaves and shoots, but were mostly accumulated in mature flowers. During the development of male and female flowers, CpCTR1 and CpCTR2 expressions were concomitant with ethylene production, which indicates that both genes could be upregulated by ethylene, at least in flowers. Moreover, external treatments with ethylene, although did not alter the expression of these two genes in seedlings and leaves, were able to upregulate their expression in flowers. In the earlier stages of flower development, when ethylene production is very low, the expression of CpCTR1 and CpCTR2 is higher in male floral organs, which agrees with the role of these genes as negative regulators of ethylene signalling, and explain the lower ethylene sensitivity of male flowers in comparison with female flowers. The function of the upregulation of these two genes in later stages of female flower development, when the production of ethylene is also increased, is discussed.

  15. Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria.

    PubMed

    Ibort, Pablo; Molina, Sonia; Núñez, Rafael; Zamarreño, Ángel María; García-Mina, José María; Ruiz-Lozano, Juan Manuel; Orozco-Mosqueda, Maria Del Carmen; Glick, Bernard R; Aroca, Ricardo

    2017-07-01

    Plant growth-promoting bacteria (PGPB) are soil micro-organisms able to interact with plants and stimulate their growth, positively affecting plant physiology and development. Although ethylene plays a key role in plant growth, little is known about the involvement of ethylene sensitivity in bacterial inoculation effects on plant physiology. Thus, the present study was pursued to establish whether ethylene perception is critical for plant-bacteria interaction and growth induction by two different PGPB strains, and to assess the physiological effects of these strains in juvenile and mature tomato ( Solanum lycopersicum ) plants. An experiment was performed with the ethylene-insensitive tomato never ripe and its isogenic wild-type line in which these two strains were inoculated with either Bacillus megaterium or Enterobacter sp. C7. Plants were grown until juvenile and mature stages, when biomass, stomatal conductance, photosynthesis as well as nutritional, hormonal and metabolic statuses were analysed. Bacillus megaterium promoted growth only in mature wild type plants. However, Enterobacter C7 PGPB activity affected both wild-type and never ripe plants. Furthermore, PGPB inoculation affected physiological parameters and root metabolite levels in juvenile plants; meanwhile plant nutrition was highly dependent on ethylene sensitivity and was altered at the mature stage. Bacillus megaterium inoculation improved carbon assimilation in wild-type plants. However, insensitivity to ethylene compromised B. megaterium PGPB activity, affecting photosynthetic efficiency, plant nutrition and the root sugar content. Nevertheless, Enterobacter C7 inoculation modified the root amino acid content in addition to stomatal conductance and plant nutrition. Insensitivity to ethylene severely impaired B. megaterium interaction with tomato plants, resulting in physiological modifications and loss of PGPB activity. In contrast, Enterobacter C7 inoculation stimulated growth independently of ethylene perception and improved nitrogen assimilation in ethylene-insensitive plants. Thus, ethylene sensitivity is a determinant for B. megaterium , but is not involved in Enterobacter C7 PGPB activity. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Final Report)

    EPA Science Inventory

    EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Hea...

  17. 40 CFR 63.366 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions... subject to these emissions standards subsequently increases its use of ethylene oxide within any... amount of ethylene oxide used during the previous consecutive 12-month period in the initial notification...

  18. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...

  19. Health Assessment Document for Ethylene Oxide

    EPA Science Inventory

    The largest single use of ethylene oxide is as an intermediate in the synthesis of ethylene glycol. However, small amounts of this epoxide are used as a sterilant or pesticide in commodities, pharmaceuticals, medical devices, tobacco, and other items, representing a considerable ...

  20. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... [2,2-dinitropropyl acrylate]. DNPD [dinitropentano nitrile]. Dynamite. E EDDN [ethylene diamine dinitrate]. EDNA [ethylenedinitramine]. Ednatol. EDNP [ethyl 4,4-dinitropentanoate]. EGDN [ethylene glycol.... Nitroglycol [ethylene glycol dinitrate, EGDN]. Nitroguanidine explosives. Nitronium perchlorate propellant...

  1. 40 CFR Table 9 to Subpart Ggg of... - Default Biorates for Soluble HAP

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....178 Dinitrotoluene(2,4) 0.784 Dioxane(1,4) 0.393 Ethylene glycol dimethyl ether 0.364 Ethylene glycol monobutyl ether acetate 0.496 Ethylene glycol monomethyl ether acetate 0.159 Isophorone 0.598 Methanol a...

  2. 76 FR 18149 - Codex Alimentarius Commission: Meeting of the Codex Committee on Food Labeling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... organically produced foods. (a) Annex 1: Inclusion of ethylene for other products at Step 7. Use of ethylene... ethylene for de-greening of citrus fruit, induction of flowering in pineapples and sprout inhibition in...

  3. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.

    PubMed

    Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile; Farrusseng, David

    2012-09-12

    Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.

  4. Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites.

    PubMed

    Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María Del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel

    2015-01-01

    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity.

  5. Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites

    PubMed Central

    Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel

    2015-01-01

    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity. PMID:26177024

  6. Anaerobic ethylene glycol degradation by microorganisms in poplar and willow rhizospheres.

    PubMed

    Carnegie, D; Ramsay, J A

    2009-07-01

    Although aerobic degradation of ethylene glycol is well documented, only anaerobic biodegradation via methanogenesis or fermentation has been clearly shown. Enhanced ethylene glycol degradation has been demonstrated by microorganisms in the rhizosphere of shallow-rooted plants such as alfalfa and grasses where conditions may be aerobic, but has not been demonstrated in the deeper rhizosphere of poplar or willow trees where conditions are more likely to be anaerobic. This study evaluated ethylene glycol degradation under nitrate-, and sulphate-reducing conditions by microorganisms from the rhizosphere of poplar and willow trees planted in the path of a groundwater plume containing up to 1.9 mol l(-1) (120 g l(-1)) ethylene glycol and, the effect of fertilizer addition when nitrate or sulphate was provided as a terminal electron acceptor (TEA). Microorganisms in these rhizosphere soils degraded ethylene glycol using nitrate or sulphate as TEAs at close to the theoretical stoichiometric amounts required for mineralization. Although the added nitrate or sulphate was primarily used as TEA, TEAs naturally present in the soil or CO(2) produced from ethylene glycol degradation were also used, demonstrating multiple TEA usage. Anaerobic degradation produced acetaldehyde, less acetic acid, and more ethanol than under aerobic conditions. Although aerobic degradation rates were faster, close to 100% disappearance was eventually achieved anaerobically. Degradation rates under nitrate-reducing conditions were enhanced upon fertilizer addition to achieve rates similar to aerobic degradation with up to 19.3 mmol (1.20 g) of ethylene glycol degradation l(-1) day(-1) in poplar soils. This is the first study to demonstrate that microorganisms in the rhizosphere of deep rooted trees like willow and poplar can anaerobically degrade ethylene glycol. Since anaerobic biodegradation may significantly contribute to the phytoremediation of ethylene glycol in the deeper subsurface, the need for "pump and treat" or an aerobic treatment would be eliminated, hence reducing the cost of treatment.

  7. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    PubMed

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and biomass-derived wastewater streams. Copyright © 2018. Published by Elsevier Inc.

  8. Short-Term Effects of gamma-Irradiation on 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Early Climacteric Cherry Tomatoes : Comparison with Wounding.

    PubMed

    Larrigaudière, C; Latché, A; Pech, J C; Triantaphylidès, C

    1990-03-01

    gamma-Irradiation of early climacteric (breaker) cherry tomatoes (Lycopersicon pimpinellifollium L.) caused a sharp burst in ethylene production during the first hour. The extent of ethylene production was dose dependent and was maximum at about 3 kilograys. The content of 1-aminocyclopropane-1-carboxylic acid (ACC), followed the same evolution as ethylene production, while malonyl ACC increased steadily with time in irradiated fruits. The burst in ethylene production was accompanied by a sharp stimulation of ACC synthase activity which began 15 minutes after irradiation. The stimulation was completely prevented by cycloheximide, but not by actinomycin d or cordycepin. In contrast with irradiation, mechanical wounding continuously stimulated ethylene production over several hours. gamma-Irradiation and cordycepin applied to wounded tissues both caused the cessation of this continuous increase, but the initial burst was still persisting. These data suggest that gamma-irradiation, like wounding, stimulates the translation of preexisting mRNAs. It also reduces, at least temporarily, the subsequent transcription-dependent stimulation of ethylene production. gamma-Irradiation greatly inhibited the activity of ethylene-forming enzyme at doses higher than 1 kilogray. Such sensitivity is in accordance with a highly integrated membranebound enzyme.

  9. Ethylene formation by polymorphonuclear leukocytes. Role of myeloperoxidase

    PubMed Central

    1978-01-01

    Ethylene formation from the thioethers, beta-methylthiopropionaldehyde (methional) and 2-keto-4-thiomethylbutyric acid by phagocytosing polymorphonuclear leukocytes (PMNs) was found to be largely dependent on myeloperoxidase (MPO). Conversion was less than 10% of normal when MPO-deficient PMNs were employed; formation by normal PMNs was inhibited by the peroxidase inhibitors, azide, and cyanide, and a model system consisting of MPO, H2O2, chloride (or bromide) and EDTA was found which shared many of the properties of the predominant PMN system. MPO-independent mechanisms of ethylene formation were also identified. Ethylene formation from methional by phagocytosing eosinophils and by H2O2 in the presence or absence of catalase was stimulated by azide. The presence of MPO-independent, azide-stimulable systems in the PMN preparations was suggested by the azide stimulation of ethylene formation from methional when MPO-deficient leukocytes were employed. Ethylene formation by dye-sensitized photooxidation was also demonstrated and evidence obtained for the involvement of singlet oxygen (1O2). These findings are discussed in relation to the participation of H2O2, hydroxyl radicals, the superoxide anion and 1O2 in the formation of ethylene by PMNs and by the MPO model system. PMID:212502

  10. Cyanide Metabolism in Relation to Ethylene Production in Plant Tissues 1

    PubMed Central

    Yip, Wing-Kin; Yang, Shang Fa

    1988-01-01

    HCN is the putative product of C-1 and amino moieties of 1-aminocyclopropane-1-carboxylic acid (ACC) during its conversion to ethylene. In apple (Malus sylvestrus Mill.) slices or auxin-treated mungbean (Vigna radiata L.) hypocotyls, which produced ethylene at high rates, the steady state concentration of HCN was found to be no higher than 0.2 micromolar, which was too low to inhibit respiration (reported Ki for HCN to inhibit respiration was 10-20 micromolar). However, these tissues became cyanogenic when treated with ACC, the precursor of ethylene, and with 2-aminoxyacetic acid, which inhibits β-cyanoalanine synthase, the main enzyme to detoxify HCN; the HCN levels in these tissues went up to 1.7 and 8.1 micromolar, respectively. Although ethylene production by avocado (Persea gratissima) and apple fruits increased several hundred-fold during ripening, β-cyanoalanine synthase activity increased only one- to two-fold. These findings support the notion that HCN is a co-product of ethylene biosynthesis and that the plant tissues possess ample capacity to detoxify HCN formed during ethylene biosynthesis so that the concentration of HCN in plant tissues is kept at a low level. PMID:16666329

  11. Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries.

    PubMed

    Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won

    2017-12-13

    Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.

  12. Ethylene Mediates Alkaline-Induced Rice Growth Inhibition by Negatively Regulating Plasma Membrane H+-ATPase Activity in Roots

    PubMed Central

    Chen, Haifei; Zhang, Quan; Cai, Hongmei; Xu, Fangsen

    2017-01-01

    pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress. PMID:29114258

  13. Biodegradation of Ethylene Glycol by a Salt-Requiring Bacterium1

    PubMed Central

    Gonzalez, Carlos F.; Taber, Willard A.; Zeitoun, M. A.

    1972-01-01

    A gram-negative nonmotile rod which was capable of using 1,2-14C-ethylene glycol as a sole carbon source for growth was isolated from a brine pond, Great Salt Lake, Utah. The bacterium (ATCC 27042) required at least 0.85% NaCl for growth and, although the chloride ion was replaceable by sulfate ion, the sodium ion was not replaceable by potassium ion. The maximal concentration of salt tolerated for growth was approximately 12%. The bacterium was oxidase-negative when N,N-dimethyl-p-phenylenediamine was used and weakly positive when N,N,N′,N′-tetramethyl-p-phenylenediamine was used. It grows on many sugars but does not ferment them, it does not have an exogenous vitamin requirement, and it possesses a guanine plus cytosine ratio of 64.3%. Incorporation of ethylene glycol carbon into cell and respired CO2 was quantitated by use of radioactive ethylene glycol and a force-aerated fermentor. Glucose suppressed ethylene glycol metabolism. Cells grown on ethylene and propylene glycol respired ethylene glycol in a Warburg respirometer more rapidly than cells grown on glucose. Spectrophotometric evidence was obtained for oxidation of glycolate to glyoxylate by a dialyzed cell extract. PMID:4568254

  14. Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Lignocellulose Nanofibers Dried in Melted Ethylene-Butene Copolymer

    PubMed Central

    Iwamoto, Shinichiro; Yamamoto, Shigehiro; Lee, Seung-Hwan; Ito, Hirokazu; Endo, Takashi

    2014-01-01

    Lignocellulose nanofibers were prepared by the wet disk milling of wood flour. First, an ethylene-butene copolymer was pre-compounded with wood flour or lignocellulose nanofibers to prepare master batches. This process involved evaporating the water of the lignocellulose nanofiber suspension during compounding with ethylene-butene copolymer by heating at 105 °C. These master batches were compounded again with polypropylene to obtain the final composites. Since ethylene-butene copolymer is an elastomer, its addition increased the impact strength of polypropylene but decreased the stiffness. In contrast, the wood flour- and lignocellulose nanofiber-reinforced composites showed significantly higher flexural moduli and slightly higher flexural yield stresses than did the ethylene-butene/polypropylene blends. Further, the wood flour composites exhibited brittle fractures during tensile tests and had lower impact strengths than those of the ethylene-butene/polypropylene blends. On the other hand, the addition of the lignocellulose nanofibers did not decrease the impact strength of the ethylene-butene/polypropylene blends. Finally, the addition of wood flour and the lignocellulose nanofibers increased the crystallization temperature and crystallization rate of polypropylene. The increases were more remarkable in the case of the lignocellulose nanofibers than for wood flour. PMID:28788222

  15. Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.

    PubMed Central

    LaMontagne, A D; Kelsey, K T

    2001-01-01

    OBJECTIVES: This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. METHODS: An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. RESULTS: After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. CONCLUSIONS: These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts. PMID:11236406

  16. Short-Term Effects of γ-Irradiation on 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Early Climacteric Cherry Tomatoes 1

    PubMed Central

    Larrigaudière, Christian; Latché, Alain; Pech, Jean Claude; Triantaphylidès, Christian

    1990-01-01

    γ-Irradiation of early climacteric (breaker) cherry tomatoes (Lycopersicon pimpinellifollium L.) caused a sharp burst in ethylene production during the first hour. The extent of ethylene production was dose dependent and was maximum at about 3 kilograys. The content of 1-aminocyclopropane-1-carboxylic acid (ACC), followed the same evolution as ethylene production, while malonyl ACC increased steadily with time in irradiated fruits. The burst in ethylene production was accompanied by a sharp stimulation of ACC synthase activity which began 15 minutes after irradiation. The stimulation was completely prevented by cycloheximide, but not by actinomycin d or cordycepin. In contrast with irradiation, mechanical wounding continuously stimulated ethylene production over several hours. γ-Irradiation and cordycepin applied to wounded tissues both caused the cessation of this continuous increase, but the initial burst was still persisting. These data suggest that γ-irradiation, like wounding, stimulates the translation of preexisting mRNAs. It also reduces, at least temporarily, the subsequent transcription-dependent stimulation of ethylene production. γ-Irradiation greatly inhibited the activity of ethylene-forming enzyme at doses higher than 1 kilogray. Such sensitivity is in accordance with a highly integrated membranebound enzyme. PMID:16667318

  17. Influence of low temperature preincubation on somatic embryogenesis and ethylene emanation from orchardgrass leaves

    NASA Technical Reports Server (NTRS)

    Tomaszewski, Z. Jr; Kuklin, A. I.; Sams, C. E.; Conger, B. V.

    1994-01-01

    The objectives of this study were to determine the effects of low temperature (4 degrees C) preincubation on somatic embryogenesis from orchardgrass (Dactylis glomerata L.) leaf cultures and to relate these effects to ethylene emanation during the preincubation and incubation periods. Experiments were also conducted with an ethylene biosynthesis inhibitor aminooxyacetic acid (AOA). Segments from the innermost two leaves were cultured on SH medium with 30 micromoles dicamba at 4 degrees C for 1 to 7 d before transfer to 21 degrees C. Results from a paired design showed that the embryogenic response of leaf segments preincubated at 4 degrees C was equal or superior to nonpreincubated leaves at all time periods. Ethylene emanation was decreased during the low temperature incubation. Transfer of leaf segments from 4 degrees C to 21 degrees C was accompanied by a burst of ethylene which rose to control levels within 30 min. AOA at 20 and 40 micromoles decreased ethylene emanation but did not stimulate the embryogenic response. We conclude that the stimulation of somatic embryogenesis by low temperature is probably due to factors other than suppression of ethylene biosynthesis.

  18. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers...

  19. 40 CFR 63.364 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions.... (2) Each owner or operator of an ethylene oxide sterilization facility subject to these emissions...: (1) Sample the scrubber liquor and analyze and record once per week the ethylene glycol concentration...

  20. Ethylene insensitive plants

    DOEpatents

    Ecker, Joseph R [Carlsbad, CA; Nehring, Ramlah [La Jolla, CA; McGrath, Robert B [Philadelphia, PA

    2007-05-22

    Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

  1. 40 CFR 63.362 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions Standards... Section 63.362—Standards for Ethylene Oxide Commercial Sterilizers and Fumigators Existing and new sources.... Each owner or operator of a sterilization source using 1 ton shall reduce ethylene oxide emissions to...

  2. 40 CFR 63.361 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions Standards... used to facilitate off-gassing of ethylene oxide at a sterilization facility. Aeration room vent means the point(s) through which the evacuation of ethylene oxide-laden air from an aeration room occurs...

  3. Health Assessment Document for Ethylene Oxide (External Review Draft)

    EPA Science Inventory

    The largest single use of ethylene oxide is an intermediate in the synthesis of ethylene glycol. However, small amounts of this epoxide are used as a sterilant or pesticide in commodities, pharmaceuticals, medical devices, tobacco, and other items, representing a considerable pot...

  4. 40 CFR Table 37 to Subpart G of... - Default Biorates for List 1 Compounds

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DIMethyl sulfate 0.178 Dinitrophenol 2,4 0.620 Dinitrotoluene(2,4) 0.784 Dioxane(1,4) 0.393 Ethylene glycol dimethyl ether 0.364 Ethylene glycol monomethyl ether acetate 0.159 Ethylene glycol monobutyl ether acetate...

  5. 75 FR 54387 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... previously approved collection. Title of Collection: Standard on Ethylene Oxide (29 CFR 1910.1047). OMB... requirements contained in the Standard. The information collection requirements specified in Ethylene Oxide... ethylene oxide. The principal information collection requirements in the EtO Standard include conducting...

  6. Effect of Ethylene on Flower Abscission: a Survey

    PubMed Central

    VAN DOORN, WOUTER G.

    2002-01-01

    The effect of ethylene on flower abscission was investigated in monocotyledons and eudicotyledons, in about 300 species from 50 families. In all species studied except Cymbidium, flower abscission was highly sensitive to ethylene. Flower fall was not consistent among the species in any family studied. It also showed no relationship with petal senescence or abscission, nor with petal colour changes or flower closure. Results suggest that flower abscission is generally mediated by endogenous ethylene, but that some exceptional ethylene‐insensitive abscission occurs in the Orchidaceae. PMID:12102524

  7. Preliminary Work for Identifying and Tracking Combustion Reaction Pathways by Coherent Microwave Mapping of Photoelectrons

    DTIC Science & Technology

    2016-06-24

    wall Radar technique has been built and preliminary results of pyrolysis of iso-butane have been obtained. Qualitative measurements of ethylene in...The (2+1) REMPI ionizations of ethylene (C2H4, 11B3u(π,3p) Rydberg manifold) was selectively induced at 310─325nm. The ethylene was detectable at...quantitative measurements of ethylene as one of the pyrolysis products by using coherent microwave Rayleigh scattering (Radar) from Resonant Enhanced Multi

  8. Highly selective catalytic process for synthesizing 1-hexene from ethylene

    DOEpatents

    Sen, Ayusman; Murtuza, Shahid; Harkins, Seth B.; Andes, Cecily

    2002-01-01

    Ethylene is trimerized to form 1-hexene, at a selectivity of up to about 99 mole percent, by contacting ethylene, at an ethylene pressure of from about 200-1500 psig and at a reaction temperature of from about 0.degree. C. to about 100.degree. C., with a catalyst comprising a tantalum compound (e.g., TaCl.sub.5) and a alkylating component comprising a metal hydrocarbyl compound or a metal hydrocarbyl halide compound (e.g., Sn(CH.sub.3).sub.4).

  9. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    PubMed

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  10. Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat

    PubMed Central

    Valluru, Ravi; Davies, William J.; Reynolds, Matthew P.; Dodd, Ian C.

    2016-01-01

    Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early–stage selection tool aiding genotype selection for stress tolerance. PMID:27148292

  11. Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1.

    PubMed

    Larsen, Paul Brian; Cancel, Jesse Daniel

    2003-06-01

    Ethylene signaling in Arabidopsis begins with a family of five ethylene receptors that regulate the activity of the Raf-like kinase, CTR1. Recent work to identify novel factors required for modulating ethylene signaling resulted in the isolation of enhanced ethylene response 1 (eer1), a mutant that displays both increased sensitivity and increased amplitude of response to ethylene. Molecular cloning of eer1 reveals that its mutant phenotype results from a loss-of-function mutation in the previously characterized RCN1, one of three PP2A A regulatory subunits in Arabidopsis. Our analysis shows that neither RCN1 expression nor PP2A activity is regulated by ethylene. Instead, we found that Arabidopsis PP2A-1C, a PP2A catalytic subunit previously characterized as interacting with RCN1, associates strongly with the kinase domain of CTR1 in vitro. This likely represents a role for PP2A in modulation of CTR1 activity because an in vitro kinase assay did not reveal phosphorylation of either RCN1 or PP2A-1C by CTR1, indicating that neither of them is a substrate for CTR1. PP2A activity is required for Ras-dependent activation of mammalian Raf, with reductions in PP2A activity significantly compromising the effectiveness of this mechanism. Our genetic and biochemical results suggest that a similar requirement for PP2A activity exists for ethylene signaling, with loss-of-function mutations affecting PP2A activity possibly reducing the effectiveness of CTR1 activation, thus lowering the threshold required for manifestation of ethylene response.

  12. Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard.

    PubMed

    Iqbal, Noushina; Umar, Shahid; Per, Tasir S; Khan, Nafees A

    2017-05-04

    Salinity is a serious threat to plant growth and development worldwide reducing agricultural productivity each year. Ethylene is an important phytohormone that affects plants performance under normal and abiotic stress conditions. In this study, role of ethylene was investigated in mitigating salinity stress (100 mM NaCl) effects on photosynthesis in mustard plants subjected to different nitrogen (N; 5 and 10 mM) levels. Plants under salinity stress exhibited marked increase in proline and reduced glutathione (GSH) content and activity of antioxidant enzymes. Nitrogen supplementation at 10 mM was better than 200 µl l -1 ethephon treatment under no stress. However, under salinity stress, both N and ethephon were equally effective. The combined application of 10 mM N and ethephon to salinity stressed plants produced greatest increase in photosynthesis by increasing proline and antioxidant metabolism. Ethylene evolution was high under salinity stress, but treatment of 10 mM N and 200 µl l -1 ethephon greatly decreased ethylene evolution that was equivalent to the 10 mM N treatment alone. This concentration of ethylene decreased the oxidative stress and increased the photosynthetic nitrogen use efficiency (NUE) maximally to increase photosynthesis. The use of ethylene action inhibitor, norbornadiene (NBD) showed reduction in ethylene mediated effects in alleviating salinity. Norbornadiene decreased the photosynthetic-NUE, proline and GSH content that resulted in decrease in photosynthesis under salinity stress. This study indicated that ethylene regulated the proline and antioxidant metabolism under salinity stress to increase photosynthetic functions of mustard grown with low and optimum N. The modulation of ethylene could be adopted in agricultural practices to increase photosynthesis under salinity stress.

  13. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers.

    PubMed

    Çelikel, Fisun G; van Doorn, Wouter G

    2012-09-15

    The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200 nL L(-1) ethylene for 24 h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias1

    PubMed Central

    Liu, Juanxu; Wei, Qian; Wang, Rongmin; Yang, Weiyuan; Ma, Yueyue; Chen, Guoju

    2017-01-01

    Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate < 0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P < 0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation. PMID:27810942

  15. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum.

    PubMed

    Wi, Soo Jin; Jang, Su Jin; Park, Ky Young

    2010-07-01

    Reactive oxygen species (ROS), such as H(2)O(2), are important plant cell signaling molecules involved in responses to biotic and abiotic stresses and in developmental and physiological processes. Despite the well-known physiological functions of ethylene production and stress signaling via ROS during stresses, whether ethylene acts alone or in conjunction with ROS has not yet been fully elucidated. Therefore, we investigated the relationship between ethylene production and ROS accumulation during the response to abiotic stress. We used three independent transgenic tobacco lines, CAS-AS-2, -3 and -4, in which an antisense transcript of the senescence-related ACC synthase (ACS) gene from carnation flower (CARACC, Gen-Bank accession No. M66619) was expressed heterologously. Biphasic ethylene biosynthesis was reduced significantly in these transgenic plants, with or without H(2)O(2) treatment. These plants exhibited significantly reduced H(2)O(2)-induced gene-specific expression of ACS members, which were regulated in a time-dependent manner. The higher levels of NtACS1 expression in wild-type plants led to a second peak in ethylene production, which resulted in a more severe level of necrosis and cell death, as determined by trypan blue staining. In the transgenic lines, upregulated transcription of CAB, POR1 and RbcS resulted in increased photosynthetic performance following salt stress. This stress tolerance of H(2)O(2)-treated transgenic plants resulted from reduced ethylene biosynthesis, which decreased ROS accumulation via increased gene expression and activity of ROS-detoxifying enzymes, including MnSOD, CuZnSOD, and catalase. Therefore, it is suggested that ethylene plays a potentially critical role as an amplifier for ROS accumulation, implying a synergistic effect between biosynthesis of ROS and ethylene.

  16. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.

    PubMed

    Zhang, Boce; Luo, Yaguang; Kanyuck, Kelsey; Bauchan, Gary; Mowery, Joseph; Zavalij, Peter

    2016-06-29

    Controlled ripening of climacteric fruits, such as bananas and avocados, is a critical step to provide consumers with high-quality products while reducing postharvest losses. Prior to ripening, these fruits can be stored for an extended period of time but are usually not suitable for consumption. However, once ripening is initiated, they undergo irreversible changes that lead to rapid quality loss and decay if not consumed within a short window of time. Therefore, technologies to slow the ripening process after its onset or to stimulate ripening immediately before consumption are in high demand. In this study, we developed a solid porous metal-organic framework (MOF) to encapsulate gaseous ethylene for subsequent release. We evaluated the feasibility of this technology for on-demand stimulated ripening of bananas and avocados. Copper terephthalate (CuTPA) MOF was synthesized via a solvothermal method and loaded with ethylene gas. Its crystalline structure and chemical composition were characterized by X-ray diffraction crystallography, porosity by N2 and ethylene isotherms, and morphology by electron microscopy. The MOF loaded with ethylene (MOF-ethylene) was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The headspace gas composition and fruit color and texture were monitored periodically. Results showed that this CuTPA MOF is highly porous, with a total pore volume of 0.39 cm(3)/g. A 50 mg portion of MOF-ethylene can absorb and release up to 654 μL/L of ethylene in a 4 L container. MOF-ethylene significantly accelerated the ripening-related color and firmness changes of treated bananas and avocados. This result suggests that MOF-ethylene technology could be used for postharvest application to stimulate ripening just before the point of consumption.

  17. Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes.

    PubMed

    Li, Weiqiang; Nishiyama, Rie; Watanabe, Yasuko; Van Ha, Chien; Kojima, Mikiko; An, Ping; Tian, Lei; Tian, Chunjie; Sakakibara, Hitoshi; Tran, Lam-Son Phan

    2018-05-10

    Ethylene is involved in regulation of various aspects of plant growth and development. Physiological and genetic analyses have indicated the existence of crosstalk between ethylene and other phytohormones, including auxin, cytokinin (CK), abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), jasmonic acid (JA), brassinosteroid (BR) and strigolactone (SL) in regulation of different developmental processes. However, the effects of ethylene on the biosynthesis and contents of these hormones are not fully understood. Here, we investigated how overproduction of ethylene may affect the contents of other plant hormones using the ethylene-overproducing mutant ethylene-overproducer 1 (eto1-1). The contents of various hormones and transcript levels of the associated biosynthetic genes in the 10-day-old Arabidopsis eto1-1 mutant and wild-type (WT) plants were determined and compared. Higher levels of CK and ABA, while lower levels of auxin, SA and GA were observed in eto1-1 plants in comparison with WT, which was supported by the up- or down-regulation of their biosynthetic genes. Although we could not quantify the BR and SL contents in Arabidopsis, we observed that the transcript levels of the potential rate-limiting BR and SL biosynthetic genes were increased in the eto1-1 versus WT plants, suggesting that BR and SL levels might be enhanced by ethylene overproduction. JA level was not affected by overproduction of ethylene, which might be explained by unaltered expression level of the proposed rate-limiting JA biosynthetic gene allene oxide synthase. Taken together, our results suggest that ET affects the levels of auxin, CK, ABA, SA and GA, and potentially BR and SL, by influencing the expression of genes involved in the rate-limiting steps of their biosynthesis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Lace plant ethylene receptors, AmERS1a and AmERS1c, regulate ethylene-induced programmed cell death during leaf morphogenesis.

    PubMed

    Rantong, Gaolathe; Evans, Rodger; Gunawardena, Arunika H L A N

    2015-10-01

    The lace plant, Aponogeton madagascariensis, is an aquatic monocot that forms perforations in its leaves as part of normal leaf development. Perforation formation occurs through developmentally regulated programmed cell death (PCD). The molecular basis of PCD regulation in the lace plant is unknown, however ethylene has been shown to play a significant role. In this study, we examined the role of ethylene receptors during perforation formation. We isolated three lace plant ethylene receptors AmERS1a, AmERS1b and AmERS1c. Using quantitative PCR, we examined their transcript levels at seven stages of leaf development. Through laser-capture microscopy, transcript levels were also determined in cells undergoing PCD and cells not undergoing PCD (NPCD cells). AmERS1a transcript levels were significantly lower in window stage leaves (in which perforation formation and PCD are occurring) as compared to all other leaf developmental stages. AmERS1a and AmERS1c (the most abundant among the three receptors) had the highest transcript levels in mature stage leaves, where PCD is not occurring. Their transcript levels decreased significantly during senescence-associated PCD. AmERS1c had significantly higher transcript levels in NPCD compared to PCD cells. Despite being significantly low in window stage leaves, AmERS1a transcripts were not differentially expressed between PCD and NPCD cells. The results suggested that ethylene receptors negatively regulate ethylene-controlled PCD in the lace plant. A combination of ethylene and receptor levels determines cell fate during perforation formation and leaf senescence. A new model for ethylene emission and receptor expression during lace plant perforation formation and senescence is proposed.

  19. EIN2 mediates direct regulation of histone acetylation in the ethylene response.

    PubMed

    Zhang, Fan; Wang, Likai; Qi, Bin; Zhao, Bo; Ko, Eun Esther; Riggan, Nathaniel D; Chin, Kevin; Qiao, Hong

    2017-09-19

    Ethylene gas is essential for developmental processes and stress responses in plants. Although the membrane-bound protein EIN2 is critical for ethylene signaling, the mechanism by which the ethylene signal is transduced remains largely unknown. Here we show the levels of H3K14Ac and H3K23Ac are correlated with the levels of EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to rescue the levels of H3K14/23Ac of ein2 -5 at the target loci, using CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C associates with histone partially through an interaction with EIN2 nuclear-associated protein1 (ENAP1), which preferentially binds to the genome regions that are associated with actively expressed genes both with and without ethylene treatments. Specifically, in the presence of ethylene, ENAP1-binding regions are more accessible upon the interaction with EIN2, and more EIN3 proteins bind to the loci where ENAP1 is enriched for a quick response. Together, these results reveal EIN2-C is the key factor regulating H3K14Ac and H3K23Ac in response to ethylene and uncover a unique mechanism by which ENAP1 interacts with chromatin, potentially preserving the open chromatin regions in the absence of ethylene; in the presence of ethylene, EIN2 interacts with ENAP1, elevating the levels of H3K14Ac and H3K23Ac, promoting more EIN3 binding to the targets shared with ENAP1 and resulting in a rapid transcriptional regulation.

  20. Anthropogenic and biogenic sources of Ethylene and the potential for human exposure: A literature review.

    PubMed

    Morgott, David A

    2015-11-05

    This review examines available published information on ethylene emission sources, emission magnitudes, and inhalation exposures in order to assess those factors and circumstances that can affect human contact with this omnipresent gas. The results reveal that airborne ethylene concentrations at the ppb levels are commonplace and can arise in the vicinity of traffic corridors, forest fires, indoor kitchens, horticultural areas, oil fields, house fires, and petrochemical sites. The primary biogenic sources of ethylene derive from microbial activity in most soil and marine environments as well as its biological formation in wide variety of plant species. Sizable amounts of ethylene can also result from the burning of fossil fuels, forest and savanna fires, and crop residue combustion. Motor vehicle exhaust is the largest contributor to urban ethylene levels under most circumstances, but industrial flare releases and fugitive emissions may also be of relevance. Occupational exposures generally range up to about 50-100 ppm and have been documented for those working in the horticultural, petrochemical, and fire and rescue industries. Continuous personal monitoring at the community level has documented exposures of 3-4 ppb. These levels are more closely associated with the ethylene concentrations found indoors rather than outdoors indicating the importance of exposure sources found within the home. Indoor air sources of ethylene are associated with environmental tobacco smoke, wood or propane fuel use, fruit and vegetable storage, and cooking. Ethylene is not found in any consumer or commercial products and does not off-gas from building products to any appreciable extent. The review indicates that outdoor sources located some distance from the home do not make an appreciable contribution to personal exposures given the strength and variety of sources found in the immediate living environment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1

    PubMed Central

    Nilsen, Karl N.; Hodges, Clinton F.

    1983-01-01

    A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly. PMID:16662806

  2. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development

    PubMed Central

    Trivellini, Alice; Ferrante, Antonio; Vernieri, Paolo; Serra, Giovanni

    2011-01-01

    The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style–stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l−1 methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style–stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style–stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied. PMID:21841180

  3. Growth of Graphene by Catalytic Dissociation of Ethylene on CuNi(111)

    NASA Astrophysics Data System (ADS)

    Ventrice, Carl A., Jr.; Tyagi, Parul; Golden, Max; Mowll, Tyler

    2015-03-01

    The growth of graphene by the catalytic decomposition of ethylene on a 90:10 CuNi(111) substrate was performed. The growths were done in a UHV system by either heating the substrate to the growth temperature followed by introducing the ethylene precursor or by introducing the ethylene precursor and subsequently heating it to the growth temperature. The growth using the former method results in a two-domain epitaxial graphene overlayer at temperatues as low as 550 °C. However, introducing the ethylene before heating the substrate resulted in considerable rotational disorder within the graphene film. This has been attributed to the formation of a carbide phase below 550 °C. This research was supported by the NSF (DMR-1006411).

  4. Ethylene Removal in Strong Electric Field Formed by Floating Multi-Electrode

    NASA Astrophysics Data System (ADS)

    Nagasawa, Takeshi

    Ethylene gas that contains the acetic acid ester element can be removed by applying the pulse voltage to the floating multi-electrode device. This phenomenon is caused in the weak discharge by the strong electric field between the narrow electrodes. This device is possible in very small electric power (<1.5Wh). When this device was installed in the container for preservation, the following results were obtained: Each removal effect of ethylene gas is 16ppm/35min for bananas 10.8kg, 14ppm/6 hour for 50 apples, and 3.5ppm/30min for 2 melons. However, ethylene gas that doesn't contain the acetic acid ester cannot be removed (ex. ethylene pure gas and Japanese apricot).

  5. Analysis of Ethylene Receptor Interactions by Co-immunoprecipitation Assays.

    PubMed

    Gao, Zhiyong; Schaller, G Eric

    2017-01-01

    Ethylene receptors are predominantly localized to the endoplasmic reticulum (ER) membrane, and coordinate ethylene signal output through protein-protein interactions with each other and additional signaling components. Here, we describe a co-immunoprecipitation (Co-IP) assay based on the use of the Tandem Affinity Purification (TAP) tag to examine the interactions of ethylene receptors in plant extracts. Human IgG-agarose beads are used to pull down TAP-tagged versions of the protein of interest from detergent extracts of Arabidopsis membranes, and the precipitate then is analyzed immunologically for co-purification of the ethylene receptors. This method has been successfully used to examine interactions of the receptors with each other as well as with the Raf-like kinase CTR1.

  6. 40 CFR 61.61 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymerization process which initiates from free radical catalyst sites and is sold undried. (i) Bulk resin means... as follows: (a) Ethylene dichloride plant includes any plant which produces ethylene dichloride by reaction of oxygen and hydrogen chloride with ethylene. (b) Vinyl chloride plant includes any plant which...

  7. 40 CFR 61.61 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymerization process which initiates from free radical catalyst sites and is sold undried. (i) Bulk resin means... as follows: (a) Ethylene dichloride plant includes any plant which produces ethylene dichloride by reaction of oxygen and hydrogen chloride with ethylene. (b) Vinyl chloride plant includes any plant which...

  8. Real World of Industrial Chemistry: Ethylene: The Organic Chemical Industry's Most Important Building Block.

    ERIC Educational Resources Information Center

    Fernelius, W. Conrad, Ed.; And Others

    1979-01-01

    The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)

  9. Methods and compositions to modulate ethylene sensitivity

    DOEpatents

    Stepanova, Anna N.; Ecker, Joseph R.

    2007-01-30

    The field of the invention relates to plants and plant genes, including both plant mutants and transgenic plants containing a gene that confers an ethylene insensitive phenotype. Also encompassed by the invention are methods of using the disclosed plant gene to confer an ethylene insensitive phenotype.

  10. 40 CFR 63.363 - Compliance and performance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ethylene Oxide Emissions Standards for Sterilization Facilities § 63.363 Compliance and performance... operating limit either: (i) The maximum ethylene glycol concentration using the procedures described in § 63... initial compliance test, analyze ethylene oxide concentration data from § 63.364(e) or a continuous...

  11. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical to...

  12. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this section...

  13. Production of Ethylene and Carbon Monoxide by Microorganisms

    Treesearch

    T. H. Filer; L. R. Brown; S. Brown-Sarobot; S. Martin

    1984-01-01

    Various quantities of ethylene and carbon monoxide were produced on PDA by Fusicladium effusum, Pestilotia nucicola, Alternaria tenuis, and Fusarium oxysporum subcultured from diseased pecan shucks. Repeated subculturing of these fungi on potato dextrose broth supplemented with iron powder produced ethylene. The production of...

  14. Drinking Water Criteria Document for Ethylene Dibromide (EDB) (Final Draft, 1985)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a "Drinking Water Criteria Document on Ethylene Dibromide (EDB)". The Criteria Document is an extensive review of the following topics: Physical and chemical properties of ethylene dibromide, to...

  15. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Glick, Bernard R.

    2018-01-01

    Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection. PMID:29520283

  16. Overcoming substrate limitations for improved production of ethylene in E. coli

    DOE PAGES

    Lynch, Sean; Eckert, Carrie; Yu, Jianping; ...

    2016-01-04

    Ethylene is an important industrial compound for the production of a wide variety of plastics and chemicals. At present, ethylene production involves steam cracking of a fossil-based feedstock, representing the highest CO 2-emitting process in the chemical industry. Biological ethylene production can be achieved via expression of a single protein, the ethylene-forming enzyme (EFE), found in some bacteria and fungi; it has the potential to provide a sustainable alternative to steam cracking, provided that significant increases in productivity can be achieved. A key barrier is determining factors that influence the availability of substrates for the EFE reaction in potential microbialmore » hosts. In the presence of O 2, EFE catalyzes ethylene formation from the substrates α-ketoglutarate (AKG) and arginine. The concentrations of AKG, a key TCA cycle intermediate, and arginine are tightly controlled by an intricate regulatory system that coordinates carbon and nitrogen metabolism. Thus, reliably predicting which genetic changes will ultimately lead to increased AKG and arginine availability is challenging.« less

  17. Gibberellin-enhanced elongation of inverted Pharbitis nil shoot prevents the release of apical dominance

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1987-01-01

    Ethylene evolution resulting from the gravity stress of shoot inversion appears to induce the release of apical dominance in Pharbitis nil (L.) by inhibiting elongation of the inverted shoot. It has been previously demonstrated that this shoot inversion release of apical dominance can be prevented by promoting elongation in the inverted shoot via interference with ethylene synthesis or action. In the present study it was shown that apical dominance release can also be prevented by promoting elongation of the inverted shoot via treatment with gibberellic acid (GA3). A synergistic effect was observed when AgNO3, the ethylene action inhibitor, was applied with GA3. Both GA3 and AgNO3 increased ethylene production in the inverted shoot. These results are consistent with the view that it is ethylene-induced inhibition of elongation and not any direct effect of ethylene per se which is responsible for the outgrowth of the highest lateral bud.

  18. A coal mine multi-point fiber ethylene gas concentration sensor

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Chang, Jun; Lian, Jie; Liu, Tongyu

    2015-03-01

    Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.

  19. Hemodiafiltration efficacy in treatment of methanol and ethylene glycol poisoning in a 2-year-old girl.

    PubMed

    Szmigielska, Agnieszka; Szymanik-Grzelak, Hanna; Kuźma-Mroczkowska, Elżbieta; Roszkowska-Blaim, Maria

    2015-01-01

    Every year about 2.4 million people in USA are exposed to toxic substances. Many of them are children below 6 years of age. Majority of poisonings in children are incidental and related to household products including for example drugs, cleaning products or antifreeze products. Antifreeze solutions contain ethylene glycol and methanol. Treatment of these toxic substances involves ethanol administration, fomepizole, hemodialysis and correction of metabolic acidosis. The aim of the study was to check the efficacy of continuous venovenous hemodiagiltration in intoxication with ethylene glycol and methanol. One year and 7 months old girl after intoxication with ethylene glycol and methanol was treated with continuous venovenous hemodiafiltration instead of hemodialysis because of technical problems (circulatory instability). Intravenous ethanol infusion with hemodialtration resulted in rapid elimination of methanol from the body and significantly reduced blood ethylene glycol level. Continuous venovenous hemodiafiltration can be helpful in treatment of ethylene glycol and methanol intoxication.

  20. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence.

    PubMed

    Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J

    2005-02-14

    Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.

  1. EFFECTS OF CHEMICAL PROCESSING AND OXIDE ETHYLENE STERILIZATION ON CORTICAL AND CANCELLOUS RAT BONE: A LIGHT AND ELECTRON SCANNING MICROSCOPY STUDY

    PubMed Central

    Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista

    2015-01-01

    To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450

  2. Reduction of energy usage in postharvest horticulture through management of ethylene.

    PubMed

    Wills, Ron B H; Golding, John B

    2015-05-01

    Cool chain management is the preferred technology to extend the postharvest life of horticultural produce, but with rising energy costs and community pressure to reduce greenhouse gas emissions, there is a need to use less energy-intensive technologies. Minimising the level of ethylene around horticultural produce inhibits ripening and senescence and therefore has the potential to reduce the use of refrigeration. The long-distance transport of bananas within Australia and from Central America to Europe is used as a case study to show that the need for refrigeration could be reduced if the appropriate concentrations of ethylene were maintained around fruit during transit. Data are also presented to show a similar benefit of ethylene control with green beans, as well as another study showing that apples treated with the ethylene action inhibitor 1-methylcyclopropene could be stored at a higher temperature without loss of quality to the consumer. The range of technologies available to manage ethylene levels is discussed. © 2014 Society of Chemical Industry.

  3. Facile Dehydrogenation of Ethane on the IrO2(110) Surface.

    PubMed

    Bian, Yingxue; Kim, Minkyu; Li, Tao; Asthagiri, Aravind; Weaver, Jason F

    2018-02-21

    Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO 2 (110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO 2 (110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K. Continued heating causes as much as 40% of the dissociated ethane to dehydrogenate and desorb as ethylene near 350 K, with the remainder oxidizing to CO x species. Both TPRS and DFT show that ethylene desorption is the rate-controlling step in the conversion of ethane to ethylene on IrO 2 (110) during TPRS. Partial hydrogenation of the IrO 2 (110) surface is found to enhance ethylene production from ethane while suppressing oxidation to CO x species. DFT predicts that hydrogenation of reactive oxygen atoms of the IrO 2 (110) surface effectively deactivates these sites as H atom acceptors, and causes ethylene desorption to become favored over further dehydrogenation and oxidation of ethane-derived species. The study reveals that IrO 2 (110) exhibits an exceptional ability to promote ethane dehydrogenation to ethylene near room temperature, and provides molecular-level insights for understanding how surface properties influence selectivity toward ethylene production.

  4. Ethylene-induced gene expression, enzyme activities, and water soaking in immature and ripe watermelon (Citrullus lanatus) fruit.

    PubMed

    Karakurt, Yasar; Huber, Donald J

    2004-04-01

    Watermelon fruit exhibit acute softening and placental-tissue water soaking following short exposure to exogenous ethylene. Experiments were performed to address transcript abundance and activities of cell wall and membrane hydrolases in placental tissue in response to treatment of watermelon fruit with ethylene. Watermelon fruit were harvested at immature and full-ripe stages and exposed to 50 microL L(-1) ethylene for 6 days at 20 degrees C. Ethylene affected the abundance of transcripts for PME (EC 3.2.1.11), and alpha-(EC 3.2.1.22) and beta-GAL (EC 3.2.1.23) but these effects were dependent on fruit maturity and appeared not to be associated with the water-soaking syndrome. PG (EC 3.2.1.15) and EXP mRNAs accumulated significantly in response to ethylene exposure. Additionally, the levels of mRNA and activities of LOX (EC 1.13.11.12), PLC (EC 3.1.4.3) and PLD (EC 3.1.4.4) were elevated in fruit of both maturity classes exposed to ethylene and were temporally associated with the visible symptoms of water soaking. The activity trends and transcript abundance in ethylene- compared with air-treated fruit indicate that PG, EXP, LOX, PLC and PLD levels increase with the onset and development of the water-soaking disorder and support the view that catabolic reactions targeting the membranes and cell-walls contribute to the disorder.

  5. Ethylene Response Factors Are Controlled by Multiple Harvesting Stresses in Hevea brasiliensis

    PubMed Central

    Putranto, Riza-Arief; Duan, Cuifang; Kuswanhadi; Chaidamsari, Tetty; Rio, Maryannick; Piyatrakul, Piyanuch; Herlinawati, Eva; Pirrello, Julien; Dessailly, Florence; Leclercq, Julie; Bonnot, François; Tang, Chaorong; Hu, Songnian; Montoro, Pascal

    2015-01-01

    Tolerance of recurrent mechanical wounding and exogenous ethylene is a feature of the rubber tree. Latex harvesting involves tapping of the tree bark and ethephon is applied to increase latex flow. Ethylene is an essential element in controlling latex production. The ethylene signalling pathway leads to the activation of Ethylene Response Factor (ERF) transcription factors. This family has been identified in Hevea brasiliensis. This study set out to understand the regulation of ERF genes during latex harvesting in relation to abiotic stress and hormonal treatments. Analyses of the relative transcript abundance were carried out for 35 HbERF genes in latex, in bark from mature trees and in leaves from juvenile plants under multiple abiotic stresses. Twenty-one HbERF genes were regulated by harvesting stress in laticifers, revealing an overrepresentation of genes in group IX. Transcripts of three HbERF-IX genes from HbERF-IXc4, HbERF-IXc5 and HbERF-IXc6 were dramatically accumulated by combining wounding, methyl jasmonate and ethylene treatments. When an ethylene inhibitor was used, the transcript accumulation for these three genes was halted, showing ethylene-dependent induction. Subcellular localization and transactivation experiments confirmed that several members of HbERF-IX are activator-type transcription factors. This study suggested that latex harvesting induces mechanisms developed for the response to abiotic stress. These mechanisms probably depend on various hormonal signalling pathways. Several members of HbERF-IX could be essential integrators of complex hormonal signalling pathways in Hevea. PMID:25906196

  6. Comparative reactivity of TpRu(L)(NCMe)Ph (L = CO or PMe3): impact of ancillary ligand l on activation of carbon-hydrogen bonds including catalytic hydroarylation and hydrovinylation/oligomerization of ethylene.

    PubMed

    Foley, Nicholas A; Lail, Marty; Lee, John P; Gunnoe, T Brent; Cundari, Thomas R; Petersen, Jeffrey L

    2007-05-30

    Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.

  7. Gaseous emissions from plants in controlled environments

    NASA Technical Reports Server (NTRS)

    Dubay, Denis T.

    1988-01-01

    Plant growth in a controlled ecological life support system may entail the build-up over extended time periods of phytotoxic concentrations of volatile organic compounds produced by the plants themselves. Ethylene is a prominent gaseous emission of plants, and is the focus of this report. The objective was to determine the rate of ethylene release by spring wheat, white potato, and lettuce during early, middle, and late growth stages, and during both the light and dark segments of the diurnal cycle. Plants grown hydroponically using the nutrient film technique were covered with plexiglass containers for 4 to 6 h. At intervals after enclosure, gas samples were withdrawn with a syringe and analyzed for ethylene with a gas chromatograph. Lettuce produced 10 to 100 times more ethylene than wheat or potato, with production rates ranging from 141 to 158 ng g-dry/wt/h. Wheat produced from 1.7 to 14.3 ng g-dry/wt/h, with senescent wheat producing the least amount and flowering wheat the most. Potatoes produced the least amount of ethylene, with values never exceeding 5 ng g-dry/wt/h. Lettuce and potatoes each produced ethylene at similar rates whether in dark period or light period. Ethylene sequestering of 33 to 43 percent by the plexiglass enclosures indicated that these production estimates may be low by one-third to one-half. These results suggest that concern for ethylene build-up in a contained atmosphere should be greatest when growing lettuce, and less when growing wheat or potato.

  8. Inhibition of ethylene synthesis reduces salt-tolerance in tomato wild relative species Solanum chilense.

    PubMed

    Gharbi, Emna; Martínez, Juan-Pablo; Benahmed, Hela; Lepoint, Gilles; Vanpee, Brigitte; Quinet, Muriel; Lutts, Stanley

    2017-03-01

    Exposure to salinity induces a burst in ethylene synthesis in the wild tomato halophyte plant species Solanum chilense. In order to gain information on the role of ethylene in salt adaptation, plants of Solanum chilense (accession LA4107) and of cultivated glycophyte Solanum lycopersicum (cv. Ailsa Craig) were cultivated for 7days in nutrient solution containing 0 or 125mM NaCl in the presence or absence of the inhibitor of ethylene synthesis (aminovinylglycine (AVG) 2μM). Salt-induced ethylene synthesis in S. chilense occurred concomitantly with an increase in stomatal conductance, an efficient osmotic adjustment and the maintenance of carbon isotope discrimination value (Δ 13 C). In contrast, in S. lycopersicum, salt stress decreased stomatal conductance and Δ 13 C values while osmotic potential remained higher than in S. chilense. Inhibition of stress-induced ethylene synthesis by AVG decreased stomatal conductance and Δ 13 C in S. chilense and compromised osmotic adjustment. Solanum chilense behaved as an includer and accumulated high amounts of Na in the shoot but remained able to maintain K nutrition in the presence of NaCl. This species however did not stimulate the expression of genes coding for high-affinity K transport but genes coding for ethylene responsive factor ERF5 and JREF1 were constitutively more expressed in S. chilense than in S. lycopersicum. It is concluded that ethylene plays a key role in salt tolerance of S. chilense. Copyright © 2016. Published by Elsevier GmbH.

  9. Phosphorylation of 1-Aminocyclopropane-1-Carboxylic Acid Synthase by MPK6, a Stress-Responsive Mitogen-Activated Protein Kinase, Induces Ethylene Biosynthesis in ArabidopsisW⃞

    PubMed Central

    Liu, Yidong; Zhang, Shuqun

    2004-01-01

    Mitogen-activated protein kinases (MAPKs) are implicated in regulating plant growth, development, and response to the environment. However, the underlying mechanisms are unknown because of the lack of information about their substrates. Using a conditional gain-of-function transgenic system, we demonstrated that the activation of SIPK, a tobacco (Nicotiana tabacum) stress-responsive MAPK, induces the biosynthesis of ethylene. Here, we report that MPK6, the Arabidopsis thaliana ortholog of tobacco SIPK, is required for ethylene induction in this transgenic system. Furthermore, we found that selected isoforms of 1-aminocyclopropane-1-carboxylic acid synthase (ACS), the rate-limiting enzyme of ethylene biosynthesis, are substrates of MPK6. Phosphorylation of ACS2 and ACS6 by MPK6 leads to the accumulation of ACS protein and, thus, elevated levels of cellular ACS activity and ethylene production. Expression of ACS6DDD, a gain-of-function ACS6 mutant that mimics the phosphorylated form of ACS6, confers constitutive ethylene production and ethylene-induced phenotypes. Increasing numbers of stress stimuli have been shown to activate Arabidopsis MPK6 or its orthologs in other plant species. The identification of the first plant MAPK substrate in this report reveals one mechanism by which MPK6/SIPK regulates plant stress responses. Equally important, this study uncovers a signaling pathway that modulates the biosynthesis of ethylene, an important plant hormone, in plants under stress. PMID:15539472

  10. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...

  11. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...

  12. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...

  13. 77 FR 12050 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... Maximum Achievable Control Technology Standards for Carbon Black, Ethylene, Cyanide and Spandex (Renewal... Control Technology Standards for Carbon Black, Ethylene, Cyanide and Spandex (Renewal). ICR Numbers: EPA... control technology standards for carbon black, ethylene, cyanide and spandex facilities. Estimated Number...

  14. 40 CFR 63.365 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide... amount of ethylene oxide, for the duration of the first evacuation under normal operating conditions (i.e., sterilization pressure and temperature). (i) The amount of ethylene oxide loaded into the sterilizer (Wc) shall...

  15. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste... resulting from the quench and compression of cracked gas (the cracking furnace effluent) at an ethylene... within an ethylene production unit. Process wastewater is not organic wastes, process fluids, product...

  16. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene

    PubMed Central

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J.; Goldschmidt, Eliezer E.; Friedman, Haya

    2010-01-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO2 peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the increase in ethylene production similarly to LeMADS-RIN. PMID:20200120

  17. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    PubMed

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the increase in ethylene production similarly to LeMADS-RIN.

  18. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  19. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3) Cargo...

  20. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3) Cargo...

  1. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3) Cargo...

  2. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3) Cargo...

  3. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives complying with § 175.105 of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  4. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  5. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  6. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DDD, shall maintain an ethylene glycol concentration in the process contact cooling tower at or below... to the process contact cooling tower. (1) To determine the ethylene glycol concentration, owners or... procedures specified in 40 CFR 60.564(j)(1)(i). An average ethylene glycol concentration by weight shall be...

  7. 40 CFR 63.10430 - What notifications must I submit and by when?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Hospital Ethylene Oxide Sterilizers Notifications... the number of ethylene oxide sterilizers, the size (volume) of each, the number of aeration units, if any, the amount of annual ethylene oxide usage at the facility, the control technique used for each...

  8. 78 FR 37807 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Commercial Ethylene Oxide..., go to www.regulations.gov . Title: NESHAP for Commercial Ethylene Oxide Sterilization and Fumigation.... Respondents/Affected Entities: Owners or operator of commercial ethylene oxide sterilization and fumigation...

  9. 75 FR 5553 - Federal Motor Vehicle Safety Standards; Motor Vehicle Brake Fluids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Vehicle Brake Fluids, so that brake fluids would be tested with ethylene, propylene, and diene terpolymer.... SUPPLEMENTARY INFORMATION: Table of Contents I. Background II. Testing With Ethylene, Propylene, and Diene... test procedures and devices. II. Testing With Ethylene, Propylene, and Diene Terpolymer Rubber This...

  10. Application of exogenous ethylene inhibits postharvest peel browning of ‘Huangguan’ pear

    USDA-ARS?s Scientific Manuscript database

    Peel browning disorder has an enormous impact on the exterior quality of ‘Huangguan’ pear whereas the underlying mechanism is still unclear. In this study, the effect of exogenous ethylene on peel browning of pear fruits stored at 0' was evaluated. Results showed that ethylene effectively inhibited ...

  11. 40 CFR 63.367 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide... subject to § 63.362 shall maintain records of ethylene oxide use on a 12-month rolling average basis... operators of a source using less than 1 ton shall maintain records of ethylene oxide use on a 12-month...

  12. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiming; Li, Baiyan; Wu, Zili

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO 3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO 3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  13. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    DOE PAGES

    Zhang, Yiming; Li, Baiyan; Wu, Zili; ...

    2015-01-09

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO 3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO 3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  14. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  15. Plant Ethylene Detection Using Laser-Based Photo-Acoustic Spectroscopy.

    PubMed

    Van de Poel, Bram; Van Der Straeten, Dominique

    2017-01-01

    Analytical detection of the plant hormone ethylene is an important prerequisite in physiological studies. Real-time and super sensitive detection of trace amounts of ethylene gas is possible using laser-based photo-acoustic spectroscopy. This Chapter will provide some background on the technique, compare it with conventional gas chromatography, and provide a detailed user-friendly hand-out on how to operate the machine and the software. In addition, this Chapter provides some tips and tricks for designing and performing physiological experiments suited for ethylene detection with laser-based photo-acoustic spectroscopy.

  16. Laser photoacoustic system for characterization of climacteric and nonclimacteric fruits in postharvest

    NASA Astrophysics Data System (ADS)

    Giubileo, G.; Lai, A.; Piccinelli, D.; Puiu, A.

    2005-06-01

    The emission of ethylene from climacteric fruit banana (Musa x paradisiaca L.) and non climacteric fruits lemon (Citrus limon Burm. F.) at different stages of ripening (from a few days after setting to full maturity stage) by the Laser Photoacoustic Spectroscopy System, developed in ENEA Frascati, was measured. A high ethylene production rate from mature banana fruit was found, as expected for climacteric fruit. Significant differences between ethylene emitted by the lemon after setting stage and by the young fruit were observed. Also ethylene emission from lemon fruits at different ripening stages (from light green to turning and full ripe) was detected. Depending on the ripening stage, differences in ethylene emission rates were found, although the emissions were low as expected for non-climacteric fruit.

  17. Formation mechanism of glycolaldehyde and ethylene glycol in astrophysical ices from HCO• and •CH2OH recombination: an experimental study

    NASA Astrophysics Data System (ADS)

    Butscher, T.; Duvernay, F.; Theule, P.; Danger, G.; Carissan, Y.; Hagebaum-Reignier, D.; Chiavassa, T.

    2015-10-01

    Among all existing complex organic molecules, glycolaldehyde HOCH2CHO and ethylene glycol HOCH2CH2OH are two of the largest detected molecules in the interstellar medium. We investigate both experimentally and theoretically the low-temperature reaction pathways leading to glycolaldehyde and ethylene glycol in interstellar grains. Using infrared spectroscopy, mass spectroscopy and quantum calculations, we investigate formation pathways of glycolaldehyde and ethylene glycol based on HCO• and •CH2OH radical-radical recombinations. We also show that •CH2OH is the main intermediate radical species in the H2CO to CH3OH hydrogenation processes. We then discuss astrophysical implications of the chemical pathway we propose on the observed gas-phase ethylene glycol and glycolaldehyde.

  18. Effects of Ethylene on Seed Germination of Halophyte Plants Under Salt Stress.

    PubMed

    Li, Weiqiang; Tran, Lam-Son Phan

    2017-01-01

    Halophyte plant species are those that can finish their life cycle in the presence of 50% or more seawater concentration. Ethylene, as a natural plant hormone produced at later stages of seed germination, plays an important role in regulating seed germination. However, its regulatory role in seed dormancy and germination of halophyte plants under salt stress is still not well understood. In this chapter, we describe methods used for applications of two ethylene donors, ethephon and 1-aminocyclopropane-1-carboxylic acid, in studies aimed at examining the effects of ethylene on seed germination of a representative halophyte plant Suaeda salsa under high salinity. Similar approaches can be applied to the study of ethylene and salt interactions in other plant species, when taking into account that salt sensitivities may differ.

  19. Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids.

    PubMed

    Smet, Dajo; Žádníková, Petra; Vandenbussche, Filip; Benková, Eva; Van Der Straeten, Dominique

    2014-06-01

    Germination of Arabidopsis seeds in darkness induces apical hook development, based on a tightly regulated differential growth coordinated by a multiple hormone cross-talk. Here, we endeavoured to clarify the function of brassinosteroids (BRs) and cross-talk with ethylene in hook development. An automated infrared imaging system was developed to study the kinetics of hook development in etiolated Arabidopsis seedlings. To ascertain the photomorphogenic control of hook opening, the system was equipped with an automatic light dimmer. We demonstrate that ethylene and BRs are indispensable for hook formation and maintenance. Ethylene regulation of hook formation functions partly through BRs, with BR feedback inhibition of ethylene action. Conversely, BR-mediated extension of hook maintenance functions partly through ethylene. Furthermore, we revealed that a short light pulse is sufficient to induce rapid hook opening. Our dynamic infrared imaging system allows high-resolution, kinetic imaging of up to 112 seedlings in a single experimental run. At this high throughput, it is ideally suited to rapidly gain insight in pathway networks. We demonstrate that BRs and ethylene cooperatively regulate apical hook development in a phase-dependent manner. Furthermore, we show that light is a predominant regulator of hook opening, inhibiting ethylene- and BR-mediated postponement of hook opening. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. The beneficial effect of cynodon dactylon fractions on ethylene glycol-induced kidney calculi in rats.

    PubMed

    Khajavi Rad, Abolfazl; Hadjzadeh, Mousa-Al-Reza; Rajaei, Ziba; Mohammadian, Nema; Valiollahi, Saleh; Sonei, Mehdi

    2011-01-01

    To assess the beneficial effect of different fractions of Cynodon dactylon (C. dactylon) on ethylene glycol-induced kidney calculi in rats. Male Wistar rats were randomly divided into control, ethylene glycol, curative, and preventive groups. The control group received tap drinking water for 35 days. Ethylene glycol, curative, and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation. Preventive and curative subjects also received different fractions of C. dactylon extract in drinking water at 12.8 mg/kg, since day 0 and day 14, respectively. After 35 days, the kidneys were removed and examined for histopathological findings and counting the CaOx deposits in 50 microscopic fields. In curative protocol, treatment of rats with C. dactylon N-butanol fraction and N-butanol phase remnant significantly reduced the number of the kidney CaOx deposits compared to ethylene glycol group. In preventive protocol, treatment of rats with C. dactylon ethyl acetate fraction significantly decreased the number of CaOx deposits compared to ethylene glycol group. Fractions of C. dactylon showed a beneficial effect on preventing and eliminating CaOx deposition in the rat kidney. These results provide a scientific rational for preventive and treatment roles of C. dactylon in human kidney stone disease.

  1. Effect of stimulation and hyperpolarization on non-electrolyte and sodium permeability in perfused axons of squid.

    PubMed

    Hidalgo, C; Latorre, R

    1970-11-01

    1. The permeability for micro-injected [(3)H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed.2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above.3. Experiments were done with the combined voltage clamp-perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant.4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled.

  2. Effect of stimulation and hyperpolarization on non-electrolyte and sodium permeability in perfused axons of squid

    PubMed Central

    Hidalgo, Cecilia; Latorre, Ramón

    1970-01-01

    1. The permeability for micro-injected [3H]ethylene glycol was measured in resting state and during stimulation at 100/sec in squid giant axons. No detectable changes during electrical activity were observed. 2. The influxes of urethane, tritiated water, ethylene glycol, urea and sodium were measured in internally perfused squid axons. Ethylene glycol and urea influxes were determined simultaneously with sodium influxes. The electrical stimulation of the fibre produced an increase in the influx of sodium but did not alter the influxes of the non-electrolytes listed above. 3. Experiments were done with the combined voltage clamp—perfusion technique. The influxes of ethylene glycol and sodium were simultaneously measured in resting state and during maximum sodium current under stimulation at 10/sec. The influx of sodium increased in these conditions but the influx of ethylene glycol remained constant. In some experiments, the fibre was hyperpolarized to 10 or 20 mV, above the resting potential and the influxes of ethylene glycol and sodium were measured. The sodium influx decreased to 60% at 20 mV above the resting potential whereas the influx of ethylene glycol remained constant. 4. These results indicate that in the giant axons of the squid Dosidicus gigas, sodium and non-electrolytes fluxes are not coupled. PMID:5500991

  3. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis[W

    PubMed Central

    Jiang, Caifu; Belfield, Eric J.; Cao, Yi; Smith, J. Andrew C.; Harberd, Nicholas P.

    2013-01-01

    High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ETHYLENE OVERPRODUCER1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ETHYLENE RESISTANT1–CONSTITUTIVE TRIPLE RESPONSE1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF)–dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated HIGH-AFFINITY K+ TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation. PMID:24064768

  4. Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica).

    PubMed

    Ziosi, Vanina; Bregoli, Anna Maria; Bonghi, Claudio; Fossati, Tiziana; Biondi, Stefania; Costa, Guglielmo; Torrigiani, Patrizia

    2006-01-01

    The time course of ethylene biosynthesis and perception was investigated in ripening peach fruit (Prunus persica) following treatments with the polyamines putrescine (Pu) and spermidine (Sd), and with aminoethoxyvinylglycine (AVG). Fruit treatments were performed in planta. Ethylene production was measured by gas chromatography, and polyamine content by high-performance liquid chromatography; expression analyses were performed by Northern blot or real-time polymerase chain reaction. Differential increases in the endogenous polyamine pool in the epicarp and mesocarp were induced by treatments; in both cases, ethylene production, fruit softening and abscission were greatly inhibited. The rise in 1-aminocyclopropane-1-carboxylate oxidase (PpACO1) mRNA was counteracted and delayed in polyamine-treated fruit, whereas transcript abundance of ethylene receptors PpETR1 (ethylene receptor 1) and PpERS1 (ethylene sensor 1) was enhanced at harvest. Transcript abundance of arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) was transiently reduced in both the epicarp and mesocarp. AVG, here taken as a positive control, exerted highly comparable effects to those of Pu and Sd. Thus, in peach fruit, increasing the endogenous polyamine pool in the epicarp or in the mesocarp strongly interfered, both at a biochemical and at a biomolecular level, with the temporal evolution of the ripening syndrome.

  5. Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin

    NASA Technical Reports Server (NTRS)

    Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.

  6. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus

    PubMed Central

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1–2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1–2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a. PMID:27231553

  7. A mechanistic investigation on copolymerization of ethylene with polar monomers using a cyclophane-based Pd(II) alpha-diimine catalyst.

    PubMed

    Popeney, Chris S; Guan, Zhibin

    2009-09-02

    A detailed mechanistic investigation of the copolymerization of ethylene and methyl acrylate (MA) by a Pd(II) cyclophane-based alpha-diimine catalyst is reported. Our previous observations of unusually high incorporations of acrylates in copolymerization using this catalyst (J. Am. Chem. Soc. 2007, 129, 10062) prompted us to conduct a full mechanistic study on ethylene/MA copolymerization, which indicates a dramatic departure from normal Curtin-Hammett kinetic behavior as observed in copolymerization using the normal Brookhart type of Pd(II) alpha-diimine catalysts. Further investigation reveals that this contrasting behavior originates from the axial blocking effect of the cyclophane ligand hindering olefin substitution and equilibration. In equilibrium studies of ethylene with nitriles, the cyclophane catalyst was found to more strongly favor the linearly binding nitrile ligands as compared to the standard acyclic Pd(II) alpha-diimine catalysts. Ethylene exchange rates in the complexes [(N--N)PdMe(C(2)H(4))](+) (N--N = diimine) were measured by 2D EXSY NMR spectroscopy and found to be over 100 times slower in the cyclophane case. Measurement of the slow equilibration of ethylene, methyl acrylate, and 4-methoxystyrene in cyclophane-based Pd(II) olefin complexes by (1)H NMR and fitting of the obtained kinetic plots allowed for the estimation of exchange rates and equilibrium constants of the olefins. After extrapolation to typical polymerization temperature, DeltaG(double dagger) = 20.6 and 16.4 kcal/mol for ethylene-methyl acrylate exchange in the forward (ethylene displacement by methyl acrylate) and reverse directions, respectively. These values are of similar magnitude to the previously determined migratory insertion barriers of ethylene (DeltaG(double dagger) = 18.9 kcal/mol) and methyl acrylate (DeltaG(double dagger) = 16.3 kcal/mol) under equivalent conditions, but contrast strongly to the rapid olefin exchange seen in the Brookhart acyclic catalyst. The large barrier to olefin exchange hinders olefin pre-equilibrium, decreasing the cyclophane catalyst's ability to preferentially incorporate one monomer (in this case ethylene) over the other, thus giving rise to high comonomer incorporations.

  8. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development.

    PubMed

    Fracetto, Giselle Gomes Monteiro; Peres, Lázaro Eustáquio Pereira; Lambais, Marcio Rodrigues

    2017-07-01

    Plant responses to the environment and microorganisms, including arbuscular mycorrhizal fungi, involve complex hormonal interactions. It is known that abscisic acid (ABA) and ethylene may be involved in the regulation of arbuscular mycorrhiza (AM) and that part of the detrimental effects of ABA deficiency in plants is due to ethylene overproduction. In this study, we aimed to determine whether the low susceptibility to mycorrhizal colonization in ABA-deficient mutants is due to high levels of ethylene and whether AM development is associated with changes in the steady-state levels of transcripts of genes involved in the biosynthesis of ethylene and ABA. For that, tomato (Solanum lycopersicum) ethylene overproducer epinastic (epi) mutant and the ABA-deficient notabilis (not) and sitiens (sit) mutants, in the same Micro-Tom (MT) genetic background, were inoculated with Rhizophagus clarus, and treated with the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The development of AM, as well as the steady-state levels of transcripts involved in ethylene (LeACS2, LeACO1 and LeACO4) and ABA (LeNCED) biosynthesis, was determined. The intraradical colonization in epi, not and sit mutants was significantly reduced compared to MT. The epi mutant completely restored the mycorrhizal colonization to the levels of MT with the application of 10 µM of AVG, probably due to the inhibition of the ACC synthase gene expression. The steady-state levels of LeACS2 and LeACO4 transcripts were induced in mycorrhizal roots of MT, whereas the steady-state levels of LeACO1 and LeACO4 transcripts were significantly induced in sit, and the steady-state levels of LeNCED transcripts were significantly induced in all genotypes and in mycorrhizal roots of epi mutants treated with AVG. The reduced mycorrhizal colonization in sit mutants seems not to be limited by ethylene production via ACC oxidase regulation. Both ethylene overproduction and ABA deficiency impaired AM fungal colonization in tomato roots, indicating that, besides hormonal interactions, a fine-tuning of each hormone level is required for AM development.

  9. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    PubMed Central

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  10. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments.

    PubMed

    Merdan, Thomas; Kunath, Klaus; Fischer, Dagmar; Kopecek, Jindrich; Kissel, Thomas

    2002-02-01

    Critical steps in the subcellular processing of poly(ethylene imine)/nucleic acid complexes, especially endosomal/lysosomal escape, were visualized by using living cell confocal laser scanning microscopy (CSLM) to obtain an insight into their mechanism. Living cell confocal microscopy was used to examine the intracellular fate of poly(ethylene imine)/ribozyme and poly(L-lysine)/ribozyme complexes over time, in the presence of and without bafilomycin Al, a selective inhibitor of endosomal/lysosomal acidification. The compartment of complex accumulation was identified by confocal microscopy with a fluorescent acidotropic dye. To confirm microscopic data, luciferase reporter gene expression was determined under similar experimental conditions. Poly(ethylene imine)/ribozyme complexes accumulate in acidic vesicles, most probably lysosomes. Release of complexes occurs in a sudden event, very likely due to bursting of these organelles. After release, poly(ethylene imine) and ribozyme spread throughout the cell, during which slight differences in distribution between cytosol and nucleus are visible. No lysosomal escape was observed with poly(L-lysine)/ribozyme complexes or when poly(ethylene imine)/ ribozyme complexes were applied together with bafilomycin A1. Poly(ethylene imine)/plasmid complexes exhibited a high luciferase expression, which was reduced approximately 200-fold when lysosomal acidification was suppressed with bafilomycin A1. Our data provide, for the first time, direct experimental evidence for the escape of poly(ethylene imine)/nucleic acid complexes from the endosomal/lysosomal compartment. CLSM, in conjunction with living cell microscopy, is a promising tool for studying the subcellular fate of polyplexes in nucleic acid/gene delivery.

  11. Application of Exogenous Ethylene Inhibits Postharvest Peel Browning of 'Huangguan' Pear.

    PubMed

    Ma, Yurong; Yang, Mengnan; Wang, Jingjing; Jiang, Cai-Zhong; Wang, Qingguo

    2016-01-01

    Peel browning disorder has an enormous impact on the exterior quality of 'Huangguan' pear whereas the underlying mechanism is still unclear. Although different methods have been applied for inhibiting the peel browning of 'Huangguan' pear, there are numerous issues associated with these approaches, such as time cost, efficacy, safety and stability. In this study, to develop a rapid, efficient and safe way to protect 'Huangguan' pear from skin browning, the effect of exogenous ethylene on peel browning of pear fruits stored at 0°C was evaluated. Results showed that ethylene treatments at 0.70-1.28 μL/L significantly decreased the browning rate and browning index from 73.80% and 0.30 to 6.80% and 0.02 after 20 days storage at 0°C, respectively, whereas ethylene treatments at 5 μL/L completely inhibited the occurrence of browning. In addition, ethylene treatments at 5 μL/L decreased the electrolyte leakage and respiration rate, delayed the loss of total phenolic compounds. Furthermore, ethylene (5 μL/L) treatment significantly enhanced the activity of catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD) and increased the 1, 1-diphenyl-2-picrylhydrazyl inhibition rate, but inhibited the activity of polyphenol oxidase (PPO) and peroxidase (POD). Our data revealed that ethylene prevented the peel browning through improving antioxidant enzymes (CAT, APX and SOD) activities and reducing PPO activity, electrolyte leakage rate and respiration rate. This study demonstrates that exogenous ethylene application may provide a safe and effective alternative method for controlling browning, and contributes to the understanding of peel browning of 'Huangguan' pear.

  12. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome

    PubMed Central

    Minas, Ioannis S.; Tanou, Georgia; Karagiannis, Evangelos; Belghazi, Maya; Molassiotis, Athanassios

    2016-01-01

    Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. “Hayward”] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this “dilemma,” kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L−1, 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general. PMID:26913040

  13. Antiphase light and temperature cycles affect PHYTOCHROME B-controlled ethylene sensitivity and biosynthesis, limiting leaf movement and growth of Arabidopsis.

    PubMed

    Bours, Ralph; van Zanten, Martijn; Pierik, Ronald; Bouwmeester, Harro; van der Krol, Alexander

    2013-10-01

    In the natural environment, days are generally warmer than the night, resulting in a positive day/night temperature difference (+DIF). Plants have adapted to these conditions, and when exposed to antiphase light and temperature cycles (cold photoperiod/warm night [-DIF]), most species exhibit reduced elongation growth. To study the physiological mechanism of how light and temperature cycles affect plant growth, we used infrared imaging to dissect growth dynamics under +DIF and -DIF in the model plant Arabidopsis (Arabidopsis thaliana). We found that -DIF altered leaf growth patterns, decreasing the amplitude and delaying the phase of leaf movement. Ethylene application restored leaf growth in -DIF conditions, and constitutive ethylene signaling mutants maintain robust leaf movement amplitudes under -DIF, indicating that ethylene signaling becomes limiting under these conditions. In response to -DIF, the phase of ethylene emission advanced 2 h, but total ethylene emission was not reduced. However, expression analysis on members of the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase ethylene biosynthesis gene family showed that ACS2 activity is specifically suppressed in the petiole region under -DIF conditions. Indeed, petioles of plants under -DIF had reduced ACC content, and application of ACC to the petiole restored leaf growth patterns. Moreover, acs2 mutants displayed reduced leaf movement under +DIF, similar to wild-type plants under -DIF. In addition, we demonstrate that the photoreceptor PHYTOCHROME B restricts ethylene biosynthesis and constrains the -DIF-induced phase shift in rhythmic growth. Our findings provide a mechanistic insight into how fluctuating temperature cycles regulate plant growth.

  14. The aqueous photolysis of ethylene glycol adsorbed on geothite

    USGS Publications Warehouse

    Cunningham, Kirkwood M.; Goldberg, Marvin C.; Weiner, E.R.

    1985-01-01

    Suspensions of goethite (α-FeOOH) were photolyzed in aerated ethylene glycol-water solutions at pH 6.5, with ultraviolet light in the wavelength range300–400 nm. Under these conditions, formaldehyde and glycolaldehyde were detected as photoproducts. Quantum yields of formaldehyde production ranged from 1.9 7times; 10-5 to 2.9 × 10-4 over the ethylene glycol concentration range of 0.002-2.0 mol/ℓ, and gave evidence that the reaction occurred at the goethite surface. Quantum yields of glycolaldehyde were 20% less than those of formaldehyde, and displayed a concentration-dependent relationship with ethylene glycol similar to that of formaldehyde. Immediately after photolysis, Fe2+ was measured to be 4.6 × 10-7 mol/ℓ in an aerated suspension containing 1.3 mol/ℓ ethylene glycol, and 8.5 × 10-6 mol/ℓ in the corresponding deoxygenated suspension. Glycolaldehyde was not generated in the deoxygenated suspensions. These results are consistent with a mechanism involving the transfer of an electron from an adsorbed ethylene glycol molecule to an excited state of Fe3+ (Iron[III]) in the goethite lattice, to produce Fe2+ and an organic cation. In a series of reactions involving O2, FeOOH, and Fe2+, the organic cation decomposes to form formaldehyde and the intermediate radicals “OH and” CH2OH. OH reacts further with ethylene glycol in the presence of O2to yield glycolaldehyde. Aqueous photolysis of ethylene glycol sorbed onto goethite is typical of reactions that can occur in the aquatic environment.

  15. Generation of ethylene tracer by noncatalytic pyrolysis of natural gas at elevated pressure

    USGS Publications Warehouse

    Lu, Y.; Chen, S.; Rostam-Abadi, M.; Ruch, R.; Coleman, D.; Benson, L.J.

    2005-01-01

    There is a critical need within the pipeline gas industry for an inexpensive and reliable technology to generate an identification tag or tracer that can be added to pipeline gas to identify gas that may escape and improve the deliverability and management of gas in underground storage fields. Ethylene is an ideal tracer, because it does not exist naturally in the pipeline gas, and because its physical properties are similar to the pipeline gas components. A pyrolysis process, known as the Tragen process, has been developed to continuously convert the ???2%-4% ethane component present in pipeline gas into ethylene at common pipeline pressures of 800 psi. In our studies of the Tragen process, pyrolysis without steam addition achieved a maximum ethylene yield of 28%-35% at a temperature range of 700-775 ??C, corresponding to an ethylene concentration of 4600-5800 ppm in the product gas. Coke deposition was determined to occur at a significant rate in the pyrolysis reactor without steam addition. The ?? 13C isotopic analysis of gas components showed a ?? 13C value of ethylene similar to ethane in the pipeline gas, indicating that most of the ethylene was generated from decomposition of the ethane in the raw gas. However, ?? 13C isotopic analysis of the deposited coke showed that coke was primarily produced from methane, rather than from ethane or other heavier hydrocarbons. No coke deposition was observed with the addition of steam at concentrations of > 20% by volume. The dilution with steam also improved the ethylene yield. ?? 2005 American Chemical Society.

  16. Ethylene Production Via Sunlight Opens Door to Future | News | NREL

    Science.gov Websites

    genetically engineered strains to promote ethylene production. Photo by Dennis Schroeder Here's the future of (storage) compounds in cyanobacteria at the molecular biology lab at NREL. Photo by Dennis Schroeder Jianping Yu to cultivate genetic strains of cyanobacteria to increase ethylene production. Photo by Dennis

  17. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol diglycidyl...

  18. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol diglycidyl...

  19. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ethylene-methyl acrylate copolymer resins used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  20. A Combinatorial Interplay Among the 1-Aminocyclopropane-1-carboxylate Isoforms Regulates Ethylene Biosynthesis in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Ethylene (C2H4) is a unique plant-signaling molecule that regulates numerous developmental processes. The key enzyme in the two-step biosynthetic pathway of ethylene is 1-aminocyclopropane-1-carboxylate synthase (ACS), which catalyzes the conversion of Sadenosyl-methionine (AdoMet) to ACC, the precu...

Top