Science.gov

Sample records for ethylene oxide gas

  1. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  2. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  3. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  4. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  5. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO)...

  6. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  7. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  8. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  9. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  10. 21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone...

  11. Compliance problems solved by ethylene oxide scrubber at specialty gas plant

    SciTech Connect

    Not Available

    1986-01-01

    A specialty gas producer was confronted with an EPA compliance problem in dealing with ethylene oxide (EtO). The chemical had been added to the toxicity lists of the US EPA and the Occupational Safety and Health Administration (OSHA). Effective August 21, 1984, the OSHA standard for EtO limited exposure to a 1 ppm, eight-hour time weighted average. Ethylene oxide is used to sterilize many pharmaceutical and hospital supplies. Typically, EtO is supplied in cylinders as a mixture with Freon-12 or carbon dioxide. A standard cylinder contains 135 lb of product, of which about 16 lb is EtO. When a customer is finished with an EtO cylinder, it is returned to the specialty gas producer. Before recharging a cylinder, it must be purged of any remaining EtO and then cleaned. The purged EtO presented a problem in removal and disposal. An ethylene oxide scrubbing system was designed for the gas cylinder area. It consists of a specially designed 28 ft packed tower, a 400 gal holding tank, valves, and recirculation pump. Gas purged from returned EtO cylinders is directed to the scrubber and is channelled upward through the packed bed as scrubbing liquid flows countercurrently over the packing. A mist eliminator at the top of the packed bed prevents entrained liquids from escaping with the vent gas. The water soluble EtO is hydrolized to ethylene alcohol and then to ethylene glycol, a relatively inert and harmless chemical.

  12. Selective removal of ethylene, a deposit precursor, from a "dirty" synthesis gas stream via gas-phase partial oxidation.

    PubMed

    Villano, Stephanie M; Hoffmann, Jessica; Carstensen, Hans-Heinrich; Dean, Anthony M

    2010-06-17

    A fundamental issue in the gasification of biomass is that in addition to the desired synthesis gas product (a mixture of H(2) and CO), the gasifier effluent contains other undesirable products that need to be removed before any further downstream processing can occur. This work assesses the potential to selectively remove hydrocarbons from a synthesis gas stream via gas-phase partial oxidation. Specifically, the partial oxidation of methane-doped, ethylene-doped, and methane/ethylene-doped model synthesis gas mixtures has been investigated at ambient pressures over a temperature range of 760-910 degrees C and at residence times ranging from 0.4 to 2.4 s using a tubular flow reactor. For the synthesis gas mixtures that contain either methane or ethylene, the addition of oxygen substantially reduces the hydrocarbon concentration while only a small reduction in the hydrogen concentration is observed. For the synthesis gas mixtures doped with both methane and ethylene, the addition of oxygen preferentially removes ethylene while the concentrations of methane and hydrogen remain relatively unaffected. These results are compared to the predictions of a plug flow model using a reaction mechanism that is designed to describe the pyrolysis and partial oxidation of small hydrocarbon species. The agreement between the experimental observations and the model predictions is quite good, allowing us to explore the underlying chemistry that leads to the hydrocarbon selective oxidation. The implications of these results are briefly discussed in terms of using synthesis gas to produce liquid fuels and electrical power via a solid oxide fuel cell.

  13. Current Toxicology of Ethylene Oxide,

    DTIC Science & Technology

    1982-12-01

    carcinogenicity are presented. The overall toxicological implications and a recommendation on the use of ethylene oxide are briefly discussed. (U...wer exposed to ethylene oxide vapour. A single exposure of the male rats to vapour at 100 ppm for 4 hours resulted in reproduction A abnormalities...oxide causes leukemia. It should be noted also that ethylene oxide in the presence of water produces ethylene glycol. Subchronic and chronic exposures

  14. Ethylene Oxide and Hydrogen Peroxide Gas Plasma Sterilization: Precautionary Practices in U.S. Hospitals

    PubMed Central

    Boiano, James M.; Steege, Andrea L.

    2015-01-01

    Objective Evaluate precautionary practices and extent of use of ethylene oxide (EtO) and hydrogen peroxide gas plasma (HPGP) sterilization systems, including use of single chamber EtO units. Design Modular, web-based survey. Participants Members of professional practice organizations who reported using EtO or HPGP in the past week to sterilize medical instruments and supplies. Participating organizations invited members via email which included a hyperlink to the survey. Methods Descriptive analyses were conducted including simple frequencies and prevalences. Results A total of 428 respondents completed the module on chemical sterilants. Because most respondents worked in hospitals (87%, n=373) analysis focused on these workers. Most used HPGP sterilizers (84%, n=373), 38% used EtO sterilizers, with 22% using both. Nearly all respondents using EtO operated single chamber units (94%, n=120); most of them reported that the units employed single use cartridges (83%, n=115). Examples of where engineering and administrative controls were lacking for EtO include: operational local exhaust ventilation (7%; n=114); continuous air monitoring (6%; n=113); safe handling training (6%; n=142); and standard operating procedures (4%; n=142). Examples of practices which may increase HPGP exposure risk included lack of standard operating procedures (9%; n=311) and safe handling training (8%; n=312). Conclusions Use of precautionary practices was good but not universal. EtO use appears to have diminished in favor of HPGP which affords higher throughput and minimal regulatory constraints. Separate EtO sterilization and aeration units were still being used nearly one year after U.S. EPA prohibited their use. PMID:26594097

  15. Pure And Modified Co-poly(amide-12-b-ethylene oxide) Membranes For Gas Separation Studied By Molecular Investigations

    NASA Astrophysics Data System (ADS)

    Tocci, Elena; De Lorenzo, Luana; Gugliuzza, Annarosa; Macchione, Marialuigia; Drioli, Enrico

    2010-10-01

    A combined experimental and theoretical study has been performed to investigate transport properties in a pure and modified poly(amide-12-b-ethylene oxide) (PEBAX®2533) block copolymer membrane with N-ethylo,p-toluenesulphonamide (KET) as additive molecules. MD simulations using COMPASS force field, Gusev-Suter Transition State Theory (TST) and Monte Carlo methods have been used. Bulk models of PEBAX®2533 and PEBAX/KET in different copolymer/additive compositions have been assembled and analysed to evaluate gas permeability and the morphology to characterize structure-performance relationships.

  16. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  17. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  18. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e)...

  19. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    EPA Pesticide Factsheets

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  20. Preparation of ethylene gas and comparison of ethylene responses induced by ethylene, ACC, and ethephon.

    PubMed

    Zhang, Wei; Wen, Chi-Kuang

    2010-01-01

    Ethylene is a gaseous plant hormone used in many physiological studies examining its role in plant growth and development. However, ethylene gas may not be conveniently available to many laboratories for occasional use, and therefore several chemicals can be used as replacements. Here we report that the kinetics of the ethylene response induced by ethylene and two widely-used ethylene replacements are different. ACC failed to efficiently replace prolonged ethylene treatments, while the decomposition products of ethephon may cause non-specific responses and the efficiency of ethephon conversion to ethylene was relatively low. A cost-effective method to prepare ethylene gas was developed. Analyzed by gas chromatography, the chemically produced ethylene exhibited an identical chromatogram to that from the commercial source. Our synthetic ethylene gave the same dose-response curve in Arabidopsis as gaseous ethylene. Our study shows that the use of the ethylene gas is essential to experiments that are sensitive to treatment duration and dosage. When ACC and ethephon are used as replacements, caution should be taken in the experimental design. For laboratories that do not have an ethylene tank, ethylene gas can be easily prepared by a chemical approach without further purification.

  1. 49 CFR 173.323 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.323 Ethylene oxide. (a) For packaging ethylene oxide in non-bulk packagings, silver mercury or any of its alloys or copper may not be used in any... 49 Transportation 2 2012-10-01 2012-10-01 false Ethylene oxide. 173.323 Section...

  2. Cancer mortality in ethylene oxide workers.

    PubMed Central

    Bisanti, L; Maggini, M; Raschetti, R; Alegiani, S S; Ippolito, F M; Caffari, B; Segnan, N; Ponti, A

    1993-01-01

    A cohort of 1971 chemical workers licensed to handle ethylene oxide was followed up retrospectively from 1940 to 1984 and the vital status of each subject was ascertained. No quantitative information on exposure was available and therefore cohort members were considered as presumably exposed to ethylene oxide. The cohort comprised 637 subjects allowed to handle only ethylene oxide and 1334 subjects who obtained a licence valid for ethylene oxide as well as other toxic gases. Potential confounding arising from the exposure to these other chemical agents was taken into consideration. Causes of death were found from death certificates and comparisons of mortality were made with the general population of the region where cohort members were resident. Seventy six deaths were reported whereas 98.8 were expected; the difference was statistically significant. The number of malignancies for any site exceeded the expected number (standardised mortality ratio (SMR) = 130; 43 observed deaths; 95% confidence interval (95% CI) 94-175) and approached statistical significance. For all considered cancer sites the SMRs were higher than 100 but the excess was only significant (p < 0.05, two sided test) for lymphosarcoma and reticulosarcoma (International Classification of Diseases--9th revision (ICD-9) = 200; SMR = 682; four observed deaths; 95% CI 186-1745). The excess of cases for all cancers of haematopoietic tissue (ICD-9 = 200-208) also approached statistical significance (SMR = 250; six observed deaths; 95% CI 91-544). Focusing the analysis on the subcohort of the ethylene oxide only licensed workers, who are likely to have experienced a more severe exposure to this gas, it became evident that all but one of the observed cases of haematopoietic tissue cancers in the cohort were confined to this subgroup, enhancing the relevant SMR to 700 (95% CI 237-1637) and the SMR of lymphosarcoma and reticulosarcoma to 1693 (95% CI 349-4953). PMID:8494771

  3. Novel and existing data for a future physiological toxicokinetic model of ethylene and its metabolite ethylene oxide in mouse, rat, and human.

    PubMed

    Filser, Johannes Georg; Artati, Anna; Li, Qiang; Pütz, Christian; Semder, Brigitte; Klein, Dominik; Kessler, Winfried

    2015-11-05

    The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats.

  4. Poly(ethylene oxide) functionalization

    DOEpatents

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  5. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 6 2012-07-01 2012-07-01 false Ethylene oxide. 1910.1047 Section 1910.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1047 Ethylene oxide. (a) Scope and...

  6. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  7. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  8. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  9. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  10. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  11. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  12. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  13. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  14. 29 CFR 1926.1147 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical...

  15. 29 CFR 1915.1047 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this...

  16. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  17. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  18. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  19. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a...

  20. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at...

  1. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at...

  2. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at...

  3. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at...

  4. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase

    SciTech Connect

    Carlin, DA; Bertolani, SJ; Siegel, JB

    2015-01-01

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  5. Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.

    PubMed

    Carlin, D A; Bertolani, S J; Siegel, J B

    2015-02-11

    Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.

  6. How plants sense ethylene gas--the ethylene receptors.

    PubMed

    Lacey, Randy F; Binder, Brad M

    2014-04-01

    Ethylene is a hormone that affects many processes important for plant growth, development, and responses to stresses. The first step in ethylene signal transduction is when ethylene binds to its receptors. Numerous studies have examined how these receptors function. In this review we summarize many of these studies and present our current understanding about how ethylene binds to the receptors. The biochemical output of the receptors is not known but current models predict that when ethylene binds to the receptors, the activity of the associated protein kinase, CTR1 (constitutive triple response1), is reduced. This results in downstream transcriptional changes leading to ethylene responses. We present a model where a copper cofactor is required and the binding of ethylene causes the receptor to pass through a transition state to become non-signaling leading to lower CTR1 activity.

  7. Round-robin evaluation of a solid-phase microextraction-gas chromatographic method for reliable determination of trace level ethylene oxide in sterilized medical devices.

    PubMed

    Harper, Thomas; Cushinotto, Lisa; Blaszko, Nancy; Arinaga, Julie; Davis, Frank; Cummins, Calvin; DiCicco, Michael

    2008-02-01

    Medical devices that are sterilized with ethylene oxide (EtO) retain small quantities of EtO residuals, which may cause negative systemic and local irritating effects, and must be accurately quantified to ensure non-toxicity. The goal of this round-robin study is to investigate the capability of a novel solid-phase microextraction-gas chromatographic (SPME-GC) method for trace-level EtO residuals analysis: three independent laboratories conducted a guided experiment using this SPME-GC method, in assessing method performance, ruggedness and the feasibility of SPME fibers. These were satisfactory across the independent laboratories, at the 0.05-5.00 ppm EtO range. This method was then successfully applied to analyze EtO residuals in several sterilized/aerated medical devices of various polymeric composition, reliably detecting and quantifying the trace levels of EtO residuals present ( approximately 0.05 ppm EtO). SPME is a feasible alternative for quantifying trace-level EtO residuals in sterilized medical devices, thereby lowering the limit of quantification (LOQ) by as much as two to three orders of magnitude over the current GC methodology of direct liquid injection.

  8. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ethylene oxide. (a) Scope and application. (1) This section applies to all occupational exposures to... organic compound with chemical formula C2 H4 O. (c) Permissible exposure limits—(1) 8-hour time weighted... ethers, and other organic chemicals. EtO is also used as a sterilant and fumigant. E. Appearance and...

  9. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene oxide polymer. 172.770 Section 172.770....770 Ethylene oxide polymer. The polymer of ethylene oxide may be safely used as a foam stabilizer in fermented malt beverages in accordance with the following conditions. (a) It is the polymer of...

  10. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59...

  11. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59...

  12. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59...

  13. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59...

  14. Pure and Modified Co-Poly(amide-12-b-ethylene oxide) Membranes for Gas Separation Studied by Molecular Investigations

    PubMed Central

    De Lorenzo, Luana; Tocci, Elena; Gugliuzza, Annarosa; Drioli, Enrico

    2012-01-01

    This paper deals with a theoretical investigation of gas transport properties in a pure and modified PEBAX block copolymer membrane with N-ethyl-o/p-toluene sulfonamide (KET) as additive molecules. Molecular dynamics simulations using COMPASS force field, Gusev-Suter Transition State Theory (TST) and Monte Carlo methods were used. Bulk models of PEBAX and PEBAX/KET in different copolymer/additive compositions were assembled and analyzed to evaluate gas permeability and morphology to characterize structure-performance relationships. PMID:24958285

  15. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  16. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  17. 40 CFR 721.10375 - Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide, copolymer...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (generic). 721.10375... Substances § 721.10375 Hydroxypropyl methacrylate, reaction products with propylene oxide and ethylene oxide... products with propylene oxide and ethylene oxide, copolymer with N-vinyl caprolactam (PMN P-10-200)...

  18. The impact of carbon dioxide and exhaust gas recirculation on the oxidative reactivity of soot from ethylene flames and diesel engines

    NASA Astrophysics Data System (ADS)

    Al-Qurashi, Khalid O.

    Restrictive emissions standards to reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines necessitate the development of advanced emission control technology. The engine manufacturers in the United States have implemented the exhaust gas recirculation (EGR) and diesel particulate filters (DPF) to meet the stringent emissions limits on NOx and PM, respectively. Although the EGR-DPF system is an effective means to control diesel engine emissions, there are some concerns associated with its implementation. The chief concern with this system is the DPF regenerability, which depends upon several factors, among which are the physicochemical properties of the soot. Despite the plethora of research that has been conducted on DPF regenerability, the impact of EGR on soot reactivity and DPF regenerability is yet to be examined. This work concerns the impact of EGR on the oxidative reactivity of diesel soot. It is part of ongoing research to bridge the gap in establishing a relationship between soot formation conditions, properties, and reactivity. This work is divided into three phases. In the first phase, carbon dioxide (CO2) was added to the intake charge of a single cylinder engine via cylinders of compressed CO2. This approach simulates the cold-particle-free EGR. The results showed that inclusion of CO2 changes the soot properties and yields synergistic effects on the oxidative reactivity of the resulting soot. The second phase of this research was motivated by the findings from the first phase. In this phase, post-flame ethylene soot was produced from a laboratory co-flow laminar diffusion flame to better understand the mechanism by which the CO2 affects soot reactivity. This phase was accomplished by successfully isolating the dilution, thermal, and chemical effects of the CO2. The results showed that all of these effects account for a measurable increase in soot reactivity. Nevertheless, the thermal effect was found to be the most

  19. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Copolymer condensates of ethylene oxide and... CONSUMPTION Multipurpose Additives § 172.808 Copolymer condensates of ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be safely used in food under the...

  20. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3)...

  1. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Final Report)

    EPA Science Inventory

    EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Hea...

  2. Study of the desorption of ethylene oxide fixed on various materials during sterilization by a new procedure

    NASA Technical Reports Server (NTRS)

    Lacomme, M.; Chaigneau, M.; Lemoan, G.

    1977-01-01

    A continuous sterilization process using ethylene oxide was studied in comparison with a classical method in order to evaluate gas retention as a function of time and temperature on polyethylene, PVC, and rubber materials.

  3. Complete oxidation of ethylene over supported gold nanoparticle catalysts.

    PubMed

    Ahn, Ho-Geun; Choi, Byoung-Min; Lee, Do-Jin

    2006-11-01

    Complete oxidation of ethylene was performed over supported noble metals or transition metals oxide catalysts and on monoliths under atmospheric pressure. Gold nanoparticles on Al2O3 or MxOy(M = Mo, Fe, Mn) were prepared by impregnation, coprecipitation, deposition, and dispersion methods. Nanoparticles prepared by impregnation method were irregular and very large above 25 nm, but those by coprecipitation and deposition method were uniformly nanosized at 4-5 nm. The gold nanoparticle were outstandingly active in catalyzing oxidation of ethylene. The activity order of these catalysts with preparation methods was deposition > coprecipitation > impregnation, and Au/Co3O4 prepared by deposition method showed the best performance in ethylene oxidation. The addition of gold particles to MxOy/Al2O3 catalyst enhanced the ethylene oxidation activity significantly. The main role of the gold nanoparticles apparently was to promote dissociative adsorption of oxygen and to enhance the reoxidation of the catalyst.

  4. Nitric oxide counters ethylene effects on ripening fruits

    PubMed Central

    Manjunatha, Girigowda; Gupta, Kapuganti J.; Lokesh, Veeresh; Mur, Luis AJ; Neelwarne, Bhagyalakshmi

    2012-01-01

    Ethylene plays a key role in promoting fruit ripening, so altering its biosynthesis/signaling could be an important means to delay this process. Nitric oxide (NO)-generated signals are now being shown to regulate ethylene pathways. NO signals have been shown to transcriptionally repress the expression of genes involved in ethylene biosynthesis enzymes and post-translationally modify methionine adenosyl transferase (MAT) activity through S-nitrosylation to reduce the availably of methyl groups required to produce ethylene. Additionally, NO cross-talks with plant hormones and other signal molecules and act to orchestrate the suppression of ethylene effects by modulating enzymes/proteins that are generally triggered by ethylene signaling at post-climacteric stage. Thus, medication of endogenous NO production is suggested as a strategy to postpone the climacteric stage of many tropical fruits. PMID:22499176

  5. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  6. A coal mine multi-point fiber ethylene gas concentration sensor

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Chang, Jun; Lian, Jie; Liu, Tongyu

    2015-03-01

    Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.

  7. Workers exposed to ethylene oxide: a follow up study.

    PubMed Central

    Gardner, M J; Coggon, D; Pannett, B; Harris, E C

    1989-01-01

    A cohort study has been carried out of 2876 men and women with potential exposure to ethylene oxide. Subjects were identified from employment records at four companies that have produced or used ethylene oxide since the 1950s and at eight hospitals which have had ethylene oxide sterilising units since the 1960s. The cohort represents a substantial proportion of the British workforce with a history of occupational exposure to ethylene oxide. Industrial hygiene data were not available before 1977, but since then time weighted average exposures have been less than 5 ppm in almost all jobs and less than 1 ppm in many. Past exposures were probably somewhat higher. In contrast to some previous studies, no clear excess of leukaemia (three deaths observed, 2.09 expected) and no increase in stomach cancer (five deaths observed, 5.95 expected) were found. This discrepancy with earlier reports may be due in part to differences in levels of exposure. Total cancer mortality was similar to that expected from national and local death rates. Some specific cancers showed small excesses but their relevance to ethylene oxide exposure is doubtful. Again, contrary to some earlier reports, no excess of cardiovascular disease was found. This study does not exclude the possibility that ethylene oxide is a human carcinogen but suggests that any risk of cancer from currently permitted occupational exposures is small. PMID:2611160

  8. [Decontamination of some spices by ethylene oxide. Development of 2-chloroethanol and ethylene glycol during the preservation].

    PubMed

    Chaigneau, M; Muraz, B

    1993-01-01

    After the disinfection by ethylene oxide and storage by ethylene oxide in definite conditions of 16 spices (parsley, chervil, tarragone, chive, thyme, rosemary, coriander, nutmeg, mace, cinnamon, allspices, clove, pepper), the authors observed the fast loss of residual ethylene oxide and ethyleneglycol. On the contrary, the persistence of 2-chloroethanol was followed up for 6 months. They turn their attention to the toxicity of this compound to ensure the protection of customers.

  9. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  10. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  11. Anomalous diffusion of poly(ethylene oxide) in agarose gels.

    PubMed

    Brenner, Tom; Matsukawa, Shingo

    2016-11-01

    We report on the effect of probe size and diffusion time of poly(ethylene) oxide in agarose gels. Time-dependence of the diffusion coefficient, reflecting anomalous diffusion, was observed for poly(ethylene) oxide chains with hydrodynamic radii exceeding about 20nm at an agarose concentration of 2%. The main conclusion is that the pore distribution includes pores that are only several nm across, in agreement with scattering reports in the literature. Interpretation of the diffusion coefficient dependence on the probe size based on a model of entangled rigid rods yielded a rod length of 72nm.

  12. Identification of ethylene oxide in herbs, spices and other dried vegetables imported into Italy.

    PubMed

    Bononi, Monica; Quaglia, Giancarlo; Tateo, Fernando

    2014-01-01

    Gas chromatography-mass spectrometry was used to analyse ethylene oxide (EO) in 63 samples of dried vegetable materials for food use derived from import commodities and subjected to quality control for three food-transformation industries. EO residues were quantified through the determination of ethylene chlorohydrin (ECH). About 29% of the samples analysed contained more than 0.3 mg kg(-1) of EO. Thus, this specific analytical control limited to 20% of import aromatic matters needs to be increased. This paper demonstrates the importance of this specific control considering the banned use of microbial decontamination EO treatment in the European Union.

  13. Optimization of a novel headspace-solid-phase microextraction-gas chromatographic method by means of a Doehlert uniform shell design for the analysis of trace level ethylene oxide residuals in sterilized medical devices.

    PubMed

    DiCicco, Michael P; Lang, Bridget; Harper, Thomas I

    2009-06-01

    Medical devices sterilized by ethylene oxide (EtO) retain trace quantities of EtO residuals, which may irritate patients' tissue. Reliably quantifying trace level EtO residuals in small medical devices requires an extremely sensitive analytical method. In this research, a Doehlert uniform shell design was utilized in obtaining a response surface to optimize a novel headspace-solid-phase microextraction-gas chromatographic (HS-SPME-GC) method developed for analyzing trace levels of EtO residuals in sterilized medical devices, by evaluating sterilized, polymer-coated, drug-eluting cardiovascular stents. The effects of four independent experimental variables (HS-SPME desorption time, extraction temperature, GC inlet temperature and extraction time) on GC peak area response of EtO were investigated simultaneously and the most influential experimental variables determined were extraction temperature and GC inlet temperature, with the fitted model showing no evidence of lack-of-fit. The optimized HS-SPME-GC method demonstrated overall good linearity/linear range, accuracy, repeatability, reproducibility, absolute recovery and high sensitivity. This novel method was successfully applied to analysis of trace levels of EtO residuals in sterilized/aerated cardiovascular stents of various lengths and internal diameter, where, upon heating, trace EtO residuals fully volatilized into HS for extraction, thereby nullifying matrix effects. As an alternative, this novel HS-SPME-GC method can offer higher sensitivity compared with conventional headspace analyzer-based sampling.

  14. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  15. 21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or...

  16. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  17. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  18. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  19. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  20. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  1. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  2. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ethylene oxide: Loading and off loading. 154.1730... Operating Requirements § 154.1730 Ethylene oxide: Loading and off loading. (a) The master shall ensure that before ethylene oxide is loaded into a cargo tank: (1) The tank is thoroughly clean, dry, and free...

  3. 21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or...

  4. 21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or...

  5. 21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or...

  6. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ethylene oxide: Loading and off loading. 154.1730... Operating Requirements § 154.1730 Ethylene oxide: Loading and off loading. (a) The master shall ensure that before ethylene oxide is loaded into a cargo tank: (1) The tank is thoroughly clean, dry, and free...

  7. 21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or...

  8. 21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a...

  9. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  10. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ethylene oxide: Loading and off loading. 154.1730... Operating Requirements § 154.1730 Ethylene oxide: Loading and off loading. (a) The master shall ensure that before ethylene oxide is loaded into a cargo tank: (1) The tank is thoroughly clean, dry, and free...

  11. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  12. Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers

    SciTech Connect

    Alexandridis, P.; Athanassiou, V.; Fukuda, Shinya; Hatton, T.A. )

    1994-08-01

    The surface tension of aqueous solutions of seven poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-PPO-PEO) Pluronic copolymers, covering a wide range of molecular weights (3400-14600) and PPO/PEO ratios (0.19-1.79), was determined over the 10[sup [minus]5]-10% w/v concentration range, at two temperatures (25 and 35[degree]C). Two breaks (changes in slope) were observed in the surface tension vs log concentration curve for most of the copolymers. The low-concentration break, occurring at bulk copolymer concentrations of approximately 10[sup [minus]3]%, is believed to originate from rearrangement of the copolymer molecules on the surface at complete coverage of the air/water interface. The breaks at the high-concentration part of the surface tension curve occurred at concentrations that correspond to the critical micellization concentration values as determined by a dye solubilization technique. The surface area per copolymer molecule, A, increased as a function of the number of EO segments, N[sub EO], obeying a scaling law (A [approx] N[sub EO][sup 1/2]) similar to that of lower molecular weight C[sub i]E[sub j] nonionic surfactants. 56 refs., 6 figs., 2 tabs.

  13. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (4) Any laboratory or other test which the examining physician deems necessary by sound medical... and odor: colorless liquid; gas at temperature above 10.7 °F or 51.3 °C with ether-like odor above 700...); 2. Stability: decomposes violently at temperatures above 800 °F; 3. Flammable limits in air,...

  14. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (4) Any laboratory or other test which the examining physician deems necessary by sound medical... and odor: colorless liquid; gas at temperature above 10.7 °F or 51.3 °C with ether-like odor above 700...); 2. Stability: decomposes violently at temperatures above 800 °F; 3. Flammable limits in air,...

  15. 29 CFR 1910.1047 - Ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (4) Any laboratory or other test which the examining physician deems necessary by sound medical... and odor: colorless liquid; gas at temperature above 10.7 °F or 51.3 °C with ether-like odor above 700...); 2. Stability: decomposes violently at temperatures above 800 °F; 3. Flammable limits in air,...

  16. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  17. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  18. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  19. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  20. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  1. Thermal oxidative degradation of ethylene tetrafluoroethylene copolymer systems

    NASA Astrophysics Data System (ADS)

    Elders, Jonathan Patrick

    Thermo-oxidative degradation of ethylene tetrafluoroethylene (ETFE) was investigated to determine how modifications for use in an electrical wire system affected its thermal stability. Modifications included electron irradiation and subsequent cross-linking during manufacture and contact with a metal surface. Samples with irradiation histories between 0 and 48 MRads were investigated. Degradation of ETFE was enhanced by contact with a metal "conductor" surface: silver - coated copper. Polymer degradation was analyzed by weight loss kinetics (thermogravimetric analysis (TGA)), changes in polymer morphology (differential scanning calorimetry (DSC)), optical microscopy, attenuated total reflectance (ATR) infrared spectroscopy, and gas chromatography - mass spectroscopy (GC/MS). Conductor aging (copper permeation through silver with subsequent oxidation) was investigated using scanning Auger Electron Spectroscopy (AES). Conductor aging is enhanced in the presence of the polymer surface. Interactions between conductor and polymer were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The rate of polymer degradation from 220°C to 280°C was independent of time and extent of degradation, and rate was proportional to irradiation dose. The activation energy for degradation of unirradiated ETFE was 227 kJ/mol and decreased from 150 to 138 kJ/mol for ETFE irradiated to doses between 6 and 48 MRads. Rates of degradation at 300°C to 320°C were dependent on the extent of degradation. Rates of degradation at temperatures between 230°C and 310°C were an order of magnitude larger in the presence of a conductor than in its absence, and activation energies for degradation in the presence of conductor were reduced to 120 kJ/mol. Degradation was modeled as the combination of bulk polymer degradation and catalytic degradation at the polymer-metal interface. ETFE aged at 250°C in the presence or absence of a conductor

  2. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Health Assessment Document. EPA’s program and regional offices may use this assessment to inform decisions to protect human health. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science consultation materials provided to other agencies, including interagency review drafts of the IRIS Toxicological Review of Ammonia and the charge to external peer reviewers, are posted on this site.

  3. Performance limitations of polymer electrolytes based on ethylene oxide polymers.

    SciTech Connect

    Buriez, Olivier; Han, Yong Bong; Hou, Jun; Kerr, John B.; Qiao, Jun; Sloop, Steven E.; Tian, Minmin; Wang, Shanger

    1999-10-07

    Studies of polymer electrolyte solutions for lithium-polymer batteries are described. Two different salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoromethanesulfonate (LiTf), were dissolved in a variety of polymers. The structures were all based upon the ethylene oxide unit for lithium ion solvation and both linear and comb-branch polymer architectures have been examined. Conductivity, salt diffusion coefficient and transference number measurements demonstrate the superior transport properties of the LiTFSI salt over LiTf. Data obtained on all of these polymers combined with LiTFSI salts suggest that there is a limit to the conductivity achievable at room temperature, at least for hosts containing ethylene oxide units. The apparent conductivity limit is 5 x 10-5 S/cm at 25 C. Providing that the polymer chain segment containing the ethylene oxide units is at least 5-6 units long there appears to be little influence of the polymer framework to which the solvating groups are attached. To provide adequate separator function, the mechanical properties may be disconnected from the transport properties by selection of an appropriate architecture combined with an adequately long ethylene oxide chain. For both bulk and interfacial transport of the lithium ions, conductivity data alone is insufficient to understand the processes that occur. Lithium ion transference numbers and salt diffusion coefficients also play a major role in the observed behavior and the transport properties of these polymer electrolyte solutions appear to be quite inadequate for ambient temperature performance. At present, this restricts the use of such systems to high temperature applications. Several suggestions are given to overcome these obstacles.

  4. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    PubMed Central

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  5. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination.

    PubMed

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  6. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    NASA Astrophysics Data System (ADS)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-01

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  7. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  8. Effect of Moisture on Ethylene Oxide Sterilization1

    PubMed Central

    Gilbert, George L.; Gambill, Vernon M.; Spiner, David R.; Hoffman, Robert K.; Phillips, Charles R.

    1964-01-01

    Bacterial cells dehydrated beyond a critical point no longer react uniformly to ethylene oxide sterilization. The percentage of cells resistant to the lethal effect of ethylene oxide after desiccation is often as small as 0.1 to 0.001%. However, 5% resistant cells were observed with one type of microorganism dried in broth. The presence of organic matter increases the percentage of cells that become resistant to ethylene oxide after dehydration. The phenomenon is produced by exposing cells to a vacuum or a chemically desiccated atmosphere. It is not a permanent change, because the resistant cells rapidly become susceptible if wetted with water. On the other hand, mere exposure to a high relative humidity (RH), i.e., 75 to 98%, after desiccation requires 6 and 4 days, respectively, to overcome this resistance. Moisture studies showed that there is less water in bacterial cells that have been desiccated and then equilibrated to successively high RH values up to 100% RH, than in cells that have not been desiccated, but allowed to dry naturally until equilibrated to the same RH values. Images FIG. 1 PMID:14239581

  9. Influence of ethylene oxide exposure on the extraction of indomethacin from dimethicone polymeric rods.

    PubMed

    Hurst, P R; Peplow, P V; von Dadelszen, P

    1982-05-01

    Dimethicone polymeric rods were made to contain 0.3, 2.0, or 3.3% by weight of indomethacin. For each different loading of indomethacin, some of the rods were treated with ethylene oxide at 55 degrees for 1 hr, while others were not exposed to the gas. Treated and untreated rods were sliced, placed in ethanol to extract the indomethacin, and the concentrations of indomethacin in the extracts determined by fluorometry and high-performance liquid chromatography (HPLC). After ethylene oxide treatment, the quantity of indomethacin in the extracts was significantly reduced in rods containing 0.3 and 2.0% indomethacin. For the rods containing 3.3% indomethacin, the recovery of the drug from treated rods was not significantly different from those not exposed.

  10. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  11. Type I allergic hypersensitivity reactions due to ethylene oxide sterilised leucocyte filters in patients with thalassaemia: report of four cases

    PubMed Central

    Belen, Burcu; Polat, Meltem

    2015-01-01

    Ethylene oxide (EO) is a highly reactive gas used in sterilisation of heat sensitive medical devices, such as infusion sets, cannulae, intubation materials, ventriculoperitoneal shunts, dialysis catheters and stents. Allergic reactions due to EO have been reported in haemodialysis patients, patients undergoing extracorporeal photopheresis and donors of plasmapheresis. Clinical manifestations vary considerably and generally do not allow differentiation between IgE-mediated anaphylaxis and anaphylactoid reactions. We report four patients with thalassaemia who experienced anaphylaxis during transfusion due to ethylene oxide sterilised leucocyte filters. The aim of this report is to highlight the fact that frequently transfused patients can have allergic reactions due to EO particles left in leucocyte filters. PMID:25725028

  12. Ethylene/propylene oxide block copolymer interfacial phenomena in relation to coal cleaning by advanced flotation methods

    SciTech Connect

    McCloy, J.L.; Chander, S.

    1995-12-01

    Surface tension of aqueous ethylene/propylene oxide (EO/PO) block copolymer reagents were measured to understand their role in advanced coal flotation. Coal flotation is one of the most promising methods for separating the combustible matter in coal from ash forming minerals. The use of EO/PO block copolymer reagents enhances the rejection of ash minerals during coal flotation procedures. Since the mechanism whereby this enhancement is achieved is not known very well, an investigation of the surface tension characteristics of EO/PO block copolymer reagents was performed at various concentrations. Data obtained were used to compute adsorption densities at the liquid/gas interface. The adsorption characteristics of nine different EO/PO block copolymers were determined to examine the effect of percent ethylene oxide and formula weight. These studies predict that flotation experiments are most efficient when surfactants with low ethylene oxide percentages are utilized.

  13. Health-hazard evaluation report HETA 83-335-1618, Kendall Company, Augusta, Georgia. [Ethylene oxide

    SciTech Connect

    Seligman, P.; Gorman, R.

    1985-08-01

    Environmental and breathing-zone samples were analyzed for ethylene oxide at the Kendall Company, Augusta, Georgia in August, 1983 and July and August, 1984. The evaluation was requested confidentially to investigate employee complaints of eye irritation and neurologic symptoms and concern over an excessive number of miscarriages. Physicians at the Medical College of Georgia had reported cases of peripheral neuropathy and cataracts related to ethylene-oxide exposure. Twenty-one employees were interviewed. Company medical records were reviewed. Ethylene-oxide concentrations ranged from nondetectable to 0.83 part per million (ppm). The OSHA standard for ethylene oxide is 1.00 ppm. Grab samples taken during sterilizer down/loading contained 0.3 to 25.0ppm ethylene oxide. Medical records confirmed three cases of neuropathy and four of cataracts. Headache, eye irritation, and fatigue were the most prominent symptoms reported. Many of these symptoms were resolved when ethylene oxide was removed from the alcohol wipes. Five of six miscarriages were not occupationally related. The authors conclude that cases of peripheral neuropathy and cataracts among ethylene-oxide sterilizer operators can be related to past exposures, which were higher. Recommendations include using engineering controls to reduce ethylene-oxide exposure further and complying with OSHA recommendations in monitoring employees exposed to action-level concentrations of 0.5ppm ethylene oxide.

  14. Exposure-response analysis of cancer mortality in a cohort of workers exposed to ethylene oxide.

    PubMed

    Stayner, L; Steenland, K; Greife, A; Hornung, R; Hayes, R B; Nowlin, S; Morawetz, J; Ringenburg, V; Elliot, L; Halperin, W

    1993-11-15

    The authors previously reported results from the largest cohort mortality study of ethylene oxide-exposed workers that has been conducted to date. Here they extend their previous work by quantitatively examining the relation between cancer mortality and ethylene oxide exposure. This study included workers from 13 of the 14 geographically distinct facilities that were included in the previous investigation. These facilities began regularly using ethylene oxide to sterilize medical supplies or spices sometime between 1938 and 1969. Workers were followed from first exposure through December 31, 1987. Historical exposures to ethylene oxide were estimated using a regression model. Standard life-table analysis was used to examine cancer mortality in three categories of cumulative exposure to ethylene oxide. The Cox proportional hazards model was also used to examine cumulative and other measures of ethylene oxide exposure as predictors of cancer mortality. In both the life-table analysis and the Cox model, a positive trend was observed in all lymphatic and hematopoietic cancer mortality for cumulative ethylene oxide exposure. This trend was strengthened when ethylene oxide exposures 10 years prior to death were discounted (lagged) and when the analysis was restricted to neoplasms of lymphoid cell origin. Despite limitations discussed in this paper, the authors believe that these findings provide some support for the hypothesis that exposure to ethylene oxide increases the risk of mortality from lymphatic and hematopoietic neoplasms. The authors intend to continue follow-up of this relatively young cohort, which may allow more definitive conclusions to be drawn in the future.

  15. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    EPA is initiating a public comment period prior to peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that will appear in the Integrated Risk Information System (IRIS) database. EPA seeks external peer review on how the Agency responded to the SAB panel recommendations, the exposure-response modeling of epidemiologic data, including new analyses since the 2007 external peer review, and on the adequacy, transparency, and clarity of the revised draft. The peer review will include an opportunity for the public to address the peer reviewers.

  16. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    EPA is seeking peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that will appear in the Integrated Risk Information System (IRIS) database. EPA seeks external peer review on how the Agency responded to the SAB panel recommendations, the exposure-response modeling of epidemiologic data, including new analyses since the 2007 external peer review, and on the adequacy, transparency, and clarity of the revised draft. The peer review will include an opportunity for the public to address the peer reviewers.

  17. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    On September 22, 2006, the draft Evaluation of the Carinogenicity of Ethylene Oxide (EPA/635/R-06/003) and the draft charge to external peer reviewers were released for external peer review and public comment. This draft was reviewed by EPA’s Science Advisory Board (SAB) and the expert panel’s final report was made available December 21, 2007. Since that time the Agency implemented the May 2009 IRIS assessment development process in which other federal agencies and the Executive Offices of the President are provided two opportunities to comment on IRIS human health assessments; Interagency Science Consultation (Step 3) prior to public comment/peer review and Interagency Science Discussion (Step 6b) following peer review. In July, 2011, the draft assessment incorporating the SAB recommendations (December 2007) was sent to other federal agencies and Executive Offices of the President as part of Step 6 of the IRIS process. Following the May 2009 process, all written comments submitted by other agencies will be made publicly available. Accordingly, the interagency comments for ethylene oxide and the interagency science discussion materials provided to the other agencies are posted on this site. Note: After further consideration EPA has decided to undertake an additional peer review of the revised draft assessment on how the Agency responded to the SAB panel recommendations (December 2007), the exposure-response modeling of epidemiologic data, including n

  18. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    In December 2016, EPA finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. EPA’s evaluation was reviewed internally by EPA and by other federal agencies and White House Offices in October 2016, before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science discussion materials provided to other agencies, including interagency review drafts of the EPA’s Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide, are posted on this site. Note: No major science comments were received on the Interagency Science Discussion Draft. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science consultation materials provided to other agencies, including interagency review drafts of the IRIS Toxicological Review of Ammonia and the charge to external peer reviewers, are posted on this site.

  19. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    NASA Astrophysics Data System (ADS)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  20. Ethylene Oxide in Blood of Ethylene-Exposed B6C3F1 Mice, Fischer 344 Rats, and Humans

    PubMed Central

    Filser, Johannes Georg; Erbach, Eva; Faller, Thomas; Kreuzer, Paul Erich; Li, Qiang

    2013-01-01

    The gaseous olefin ethylene (ET) is metabolized in mammals to the carcinogenic epoxide ethylene oxide (EO). Although ET is the largest volume organic chemical worldwide, the EO burden in ET-exposed humans is still uncertain, and only limited data are available on the EO burden in ET-exposed rodents. Therefore, EO was quantified in blood of mice, rats, or 4 volunteers that were exposed once to constant atmospheric ET concentrations of between 1 and 10 000 ppm (rodents) or 5 and 50 ppm (humans). Both the compounds were determined by gas chromatography. At ET concentrations of between 1 and 10 000 ppm, areas under the concentration-time curves of EO in blood (µmol × h/l) ranged from 0.039 to 3.62 in mice and from 0.086 to 11.6 in rats. At ET concentrations ≤ 30 ppm, EO concentrations in blood were 8.7-fold higher in rats and 3.9-fold higher in mice than that in the volunteer with the highest EO burdens. Based on measured EO concentrations, levels of EO adducts to hemoglobin and lymphocyte DNA were calculated for diverse ET concentrations and compared with published adduct levels. For given ET exposure concentrations, there were good agreements between calculated and measured levels of adducts to hemoglobin in rats and humans and to DNA in rats and mice. Reported hemoglobin adduct levels in mice were higher than calculated ones. Furthermore, information is given on species-specific background adduct levels. In summary, the study provides most relevant data for an improved assessment of the human health risk from exposure to ET. PMID:24068676

  1. Ethylene oxide in blood of ethylene-exposed B6C3F1 mice, Fischer 344 rats, and humans.

    PubMed

    Filser, Johannes Georg; Kessler, Winfried; Artati, Anna; Erbach, Eva; Faller, Thomas; Kreuzer, Paul Erich; Li, Qiang; Lichtmannegger, Josef; Numtip, Wanwiwa; Klein, Dominik; Pütz, Christian; Semder, Brigitte; Csanády, György András

    2013-12-01

    The gaseous olefin ethylene (ET) is metabolized in mammals to the carcinogenic epoxide ethylene oxide (EO). Although ET is the largest volume organic chemical worldwide, the EO burden in ET-exposed humans is still uncertain, and only limited data are available on the EO burden in ET-exposed rodents. Therefore, EO was quantified in blood of mice, rats, or 4 volunteers that were exposed once to constant atmospheric ET concentrations of between 1 and 10 000 ppm (rodents) or 5 and 50 ppm (humans). Both the compounds were determined by gas chromatography. At ET concentrations of between 1 and 10 000 ppm, areas under the concentration-time curves of EO in blood (µmol × h/l) ranged from 0.039 to 3.62 in mice and from 0.086 to 11.6 in rats. At ET concentrations ≤ 30 ppm, EO concentrations in blood were 8.7-fold higher in rats and 3.9-fold higher in mice than that in the volunteer with the highest EO burdens. Based on measured EO concentrations, levels of EO adducts to hemoglobin and lymphocyte DNA were calculated for diverse ET concentrations and compared with published adduct levels. For given ET exposure concentrations, there were good agreements between calculated and measured levels of adducts to hemoglobin in rats and humans and to DNA in rats and mice. Reported hemoglobin adduct levels in mice were higher than calculated ones. Furthermore, information is given on species-specific background adduct levels. In summary, the study provides most relevant data for an improved assessment of the human health risk from exposure to ET.

  2. Risk-based maintenance of ethylene oxide production facilities.

    PubMed

    Khan, Faisal I; Haddara, Mahmoud R

    2004-05-20

    This paper discusses a methodology for the design of an optimum inspection and maintenance program. The methodology, called risk-based maintenance (RBM) is based on integrating a reliability approach and a risk assessment strategy to obtain an optimum maintenance schedule. First, the likely equipment failure scenarios are formulated. Out of many likely failure scenarios, the ones, which are most probable, are subjected to a detailed study. Detailed consequence analysis is done for the selected scenarios. Subsequently, these failure scenarios are subjected to a fault tree analysis to determine their probabilities. Finally, risk is computed by combining the results of the consequence and the probability analyses. The calculated risk is compared against known acceptable criteria. The frequencies of the maintenance tasks are obtained by minimizing the estimated risk. A case study involving an ethylene oxide production facility is presented. Out of the five most hazardous units considered, the pipeline used for the transportation of the ethylene is found to have the highest risk. Using available failure data and a lognormal reliability distribution function human health risk factors are calculated. Both societal risk factors and individual risk factors exceeded the acceptable risk criteria. To determine an optimal maintenance interval, a reverse fault tree analysis was used. The maintenance interval was determined such that the original high risk is brought down to an acceptable level. A sensitivity analysis is also undertaken to study the impact of changing the distribution of the reliability model as well as the error in the distribution parameters on the maintenance interval.

  3. Ethylene directly inhibits foliar gas exchange in Glycine max

    SciTech Connect

    Gunderson, C.A.; Taylor, G.E. Jr. )

    1991-01-01

    Gas exchange of individual attached leaves of soybean, Glycine max (L,) Merr cv Davis, was monitored during exposure to exogenous ethylene (C{sub 2}H{sub 4}) to test the hypothesis that the effects of C{sub 2}H{sub 4} on net photosynthesis (P{sub n}) and stomatal conductance to H{sub 2}O{sub 4} vapor (g{sub s}) are direct and not mediated by changes in leaf orientation to light. Leaflets were held perpendicular to incident light in a temperature-controlled cuvette throughout a 5.5 hour exposure to 10 microliters per liter C{sub 2}H{sub 4}. Declines in both P{sub N} and g{sub s} were evident within 2 hours and became more pronounced throughout the exposure period. In C{sub 2}H{sub 4} treated plants, P{sub N} and g{sub s} decreased to 80 and 62%, respectively, of the rates in control plants. Because epinastic movement of the leaflets was prohibited by the cuvette, the observed declines in P{sub N} and g{sub s} were a direct effect of C{sub 2}H{sub 4} rather than the result of reduced light interception caused by changing leaf angle.

  4. Study of positive and negative plasma catalytic oxidation of ethylene.

    PubMed

    Van Wesenbeeck, K; Hauchecorne, B; Lenaerts, S

    2016-10-06

    The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15 kV. This shows the potential of plasma catalysis as indoor air purification technology.

  5. Unusual behavior of poly(ethylene-oxide) in aqueous mixtures.

    SciTech Connect

    Lal, J.; Hakem, I. F.; IPNS

    2004-10-01

    The model system of poly(ethylene-oxide) or PEO, where the changing hydrogen-bond connectivity of the water has large effect on the conformation of the polymer chain, in mixtures of water and acetonitrile, is experimentally studied. The results show the existence of a threshold water content in the system at which the 3d connectivity of the water network begins. Unusual expansion of the polymer chain, an effect larger than that observed in either of the pure solvents, is seen. Upon addition of small amounts of a monovalent salt, binding of ion to polymer takes place in pure acetonitrile solutions. Salt ions begin to co-ordinate with water molecules at the same solvent ratio as the threshold for water network formation. Ions now no longer complex to PEO; instead, hydrogen bonding of water to the polymer strongly dictates conformation in this regime.

  6. Evaluation of the Carcinogenicity of Ethylene Oxide (2006 ...

    EPA Pesticide Factsheets

    EPA conducted a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that when finalized will appear on the Integrated Risk Information System (IRIS) database. EPA is announcing a 30-day public comment period for this document. The release of this draft document is solely for the purpose of seeking public comment and for review by the EPA Science Advisory Board (SAB) via a meeting to be held later in 2006. The time and place of the SAB meeting will be announced in a separate Federal Register notice. This document has not been formally disseminated by EPA and does not represent, and should not be construed to represent, any Agency policy or determination. EPA will consider any public comments submitted in accordance with the requirements specified in the Notice of Public Comment Period when revising this draft document.

  7. Generation of ethylene tracer by noncatalytic pyrolysis of natural gas at elevated pressure

    USGS Publications Warehouse

    Lu, Y.; Chen, S.; Rostam-Abadi, M.; Ruch, R.; Coleman, D.; Benson, L.J.

    2005-01-01

    There is a critical need within the pipeline gas industry for an inexpensive and reliable technology to generate an identification tag or tracer that can be added to pipeline gas to identify gas that may escape and improve the deliverability and management of gas in underground storage fields. Ethylene is an ideal tracer, because it does not exist naturally in the pipeline gas, and because its physical properties are similar to the pipeline gas components. A pyrolysis process, known as the Tragen process, has been developed to continuously convert the ???2%-4% ethane component present in pipeline gas into ethylene at common pipeline pressures of 800 psi. In our studies of the Tragen process, pyrolysis without steam addition achieved a maximum ethylene yield of 28%-35% at a temperature range of 700-775 ??C, corresponding to an ethylene concentration of 4600-5800 ppm in the product gas. Coke deposition was determined to occur at a significant rate in the pyrolysis reactor without steam addition. The ?? 13C isotopic analysis of gas components showed a ?? 13C value of ethylene similar to ethane in the pipeline gas, indicating that most of the ethylene was generated from decomposition of the ethane in the raw gas. However, ?? 13C isotopic analysis of the deposited coke showed that coke was primarily produced from methane, rather than from ethane or other heavier hydrocarbons. No coke deposition was observed with the addition of steam at concentrations of > 20% by volume. The dilution with steam also improved the ethylene yield. ?? 2005 American Chemical Society.

  8. Ethylene adsorption and oxidation on Pt( h k l) in acidic media

    NASA Astrophysics Data System (ADS)

    Berná, Antonio; Kuzume, Akiyoshi; Herrero, Enrique; Feliu, Juan M.

    Ethylene adsorption and oxidation on platinum electrodes have been investigated in acidic solution by means of cyclic voltammetry and in situ infrared spectroscopy. Ethylene oxidation is a surface structure-sensitive reaction being Pt(1 1 1) the only active electrode surface at potentials below surface oxidation. In situ infrared reflection absorption spectroscopy (IRRAS) allows to identify the products formed during the adsorption and oxidation of ethylene. Vinylidene species were detected as oxidized adsorbates coming from ethylene and the only oxygen-containing species observed were on-top adsorbed CO and dissolved CO 2 that is the final oxidation product. A potential dependent equilibrium for transformation between two different adsorption configurations of adsorbed vinylidene, μ 3-η 2-C dbnd CH 2 and μ-C dbnd CH 2, has been observed.

  9. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation.

    PubMed

    Herzberger, Jana; Niederer, Kerstin; Pohlit, Hannah; Seiwert, Jan; Worm, Matthias; Wurm, Frederik R; Frey, Holger

    2016-02-24

    The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.

  10. Catalysis by Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide Synthesis on Ag, Cu or Au Nanoclusters

    DTIC Science & Technology

    2008-02-07

    GRANT NUMBER Propylene Oxide Synthesis on Ag , Cu or Au nanoclusters F49620-01-1-0459 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Horia...Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide Synthesis on Ag , Cu or Au nanoclusters, F49620-01-1-0459 Final Performance Report (for the period 07...andthe mobility of Ag clusters and Au clusters on TiO 2(1 10) have been published " . We found that Au atoms are very mobile and form large clusters at

  11. Health-hazard evaluation report HETA 86-277-1750, Project Orbis, Inc. , New York, New York. [Ethylene oxide et al

    SciTech Connect

    Boiano, J.M.

    1986-11-01

    In response to a request from the nurse administrator of Project Orbis, Inc., New York, New York, exposures to anesthetics and ethylene oxide were evaluated aboard the aircraft used as a teaching eye hospital. Each mission involved about 20 staff members. Anesthetics included nitrous oxide, halothane, and isoflurane. Ethylene oxide was used for equipment sterilization. Breathing-zone and general air samples were collected, and analytical methods included gas chromatography, spectrophotometry, and adsorbent-based dosimetry. Recovery-room nurses were overexposed to nitrous oxide (up to 79ppm) and isoflurane (0.96ppm) from patients. The author concludes that anesthetic exposures are excessive, and ethylene oxide exposure is a potential risk. Recommendations include engineering controls to limit anesthetic exposure, and good sterilization work practices.

  12. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    PubMed

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed.

  13. Mortality study of ethylene oxide workers in chemical manufacturing: a 10 year update.

    PubMed Central

    Teta, M J; Benson, L O; Vitale, J N

    1993-01-01

    Men assigned to units producing ethylene oxide by the chlorohydrin or direct oxidation processes and to other departments using ethylene oxide in two chemical plants were followed up for mortality from 1940 to 1988 (n = 1896). Based on findings from a previous study of these workers to the end of 1978, which identified confounding exposures, workers assigned to one unit with low ethylene oxide exposure potential were excluded (n = 278). Average duration of exposure was over five years and average follow up was 27 years, with all subjects at least 10 years from first exposure. The data did not support associations of ethylene oxide with all cancer types combined, leukaemia, non-Hodgkin's lymphoma, or brain, pancreatic, or stomach cancers. There were also no duration-response trends. The standardised mortality ratio (SMR) for total cancer was 86 (95% confidence interval 71-104) and did not increase for those hired the earliest and with long duration assignments. The results of this 10 year update and those of other recent studies of ethylene oxide workers do not confirm findings from animal studies and are not consistent with the earliest results reported among ethylene oxide workers. PMID:8398856

  14. Ethylene Oxide Commerical Sterilization and Fumigation Operations National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The purpose of this document is to provide implementation materials to assist in conducting complete and efficient inspections at ethylene oxide commercial sterilization and fumigation operations to determine compliance with the NESHAP

  15. Evaluation of the Carcinogenicity of Ethylene Oxide (2006 External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that when finalized will appear on the Integrated Risk Information System (IRIS) database.

  16. Fact Sheets: Final Air Toxics Rules for Ethylene Oxide Emissions from Commercial Sterilization and Fumigation Operations

    EPA Pesticide Factsheets

    This page contains November 1994 and November 1999 fact sheets with information regarding the Final Ethylene Oxide Emissions Standards for Sterilization Facilities. These documents contain answers to common questions for this NESHAP

  17. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and... tank vapor space is inerted with nitrogen. (b) Ethylene oxide must be off loaded by a deepwell pump...

  18. 46 CFR 154.1730 - Ethylene oxide: Loading and off loading.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Special Design and... tank vapor space is inerted with nitrogen. (b) Ethylene oxide must be off loaded by a deepwell pump...

  19. An epidemiological study of workers potentially exposed to ethylene oxide.

    PubMed

    Wong, O; Trent, L S

    1993-04-01

    This epidemiological study was of 18,728 employees at 14 United States facilities producing sterilised medical supplies and spices, who were potentially exposed to ethylene oxide (EO) for at least 90 days. The mortality of the cohort was studied to the end of 1988. A total of 1353 deaths was identified. The cohort had a significantly lower mortality than the general population from all causes, all cancers, and non-malignant diseases. In the entire cohort, mortality was not significantly increased from any of the cancer sites examined. In particular, no significant increase in mortality was found in the cancer sites of interest based on previous studies--namely, stomach, leukaemia (including major specific cell types), pancreas, and brain. The lack of an increased mortality for these cancer sites was further strengthened by the lack of a dose-response relation with duration of employment and latency. Among the men, a statistically significant increase in mortality from non-Hodgkin's lymphoma was found. There was no indication for a dose-response relation for non-Hodgkin's lymphoma and no specific job categories seemed to be responsible for the increase. Among the women, a deficit of non-Hodgkin's lymphoma was found, which was not consistent with the finding in the men. Therefore, the increase among the men did not seem to be related to exposure to EO.

  20. An epidemiological study of workers potentially exposed to ethylene oxide.

    PubMed Central

    Wong, O; Trent, L S

    1993-01-01

    This epidemiological study was of 18,728 employees at 14 United States facilities producing sterilised medical supplies and spices, who were potentially exposed to ethylene oxide (EO) for at least 90 days. The mortality of the cohort was studied to the end of 1988. A total of 1353 deaths was identified. The cohort had a significantly lower mortality than the general population from all causes, all cancers, and non-malignant diseases. In the entire cohort, mortality was not significantly increased from any of the cancer sites examined. In particular, no significant increase in mortality was found in the cancer sites of interest based on previous studies--namely, stomach, leukaemia (including major specific cell types), pancreas, and brain. The lack of an increased mortality for these cancer sites was further strengthened by the lack of a dose-response relation with duration of employment and latency. Among the men, a statistically significant increase in mortality from non-Hodgkin's lymphoma was found. There was no indication for a dose-response relation for non-Hodgkin's lymphoma and no specific job categories seemed to be responsible for the increase. Among the women, a deficit of non-Hodgkin's lymphoma was found, which was not consistent with the finding in the men. Therefore, the increase among the men did not seem to be related to exposure to EO. PMID:8494770

  1. Fourier Transform Microwave Spectra of CO{2}-ETHYLENE Sulfide, CO{2}-ETHYLENE Oxide and CO{2}-PROPYLENE Oxide Complexes

    NASA Astrophysics Data System (ADS)

    Orita, Yukari; Kawashima, Yoshiyuki; Hirota, Eizi

    2010-06-01

    We have previously examined the difference in roles of O and S in structure and dynamics of the CO-ethylene oxide (EO) and CO-ethylene sulfide (ES) complexes. We have extended the investigation to CO{2}-EO and CO{2}-ES for comparison. We have also observed the CO{2}-propylene oxide (PO) complex, which is an important intermediate in the reaction of PO with CO{2} leading to polycarbonate. Both a-type and b-type transitions were observed for the CO{2}-EO and CO{2}-ES, but no c-type transitions were observed at all. We also detected the {34}S and {13}C isotopic species in natural abundance and the species containing {18}OCO and C{18}O% {2}, which were synthesized by burning paper in an {18}O{2} and{% 16}O{2} mixture. By analyzing the observed spectra we concluded the CO{2} moiety of CO{2}-EO and CO{2}-ES located in a plane % prependicular to the three-membered ring and bisecting the COC or CSC angle of EO or ES, respectively, as in the case of CO-EO and CO-ES complexes. An % ab initio MO calculation at the level of MP2/6-311G(d, p) yielded an optimized structure in good agreement with the experimental result. We have derived from the observed spectra the distance, the stretching force constant, and the binding energy of the bonds between the constituents of the CO{2}-EO and CO{2}-ES complexes and have found that the distances of the two complexes were shorter by 0.2Å than those in CO-EO and CO-ES, respectively, and that the intermolecular bonds were two times stronger in the CO{2} complexes than in the corresponding CO complexes. We have concluded from the observed spectra that the CO{2} moiety in CO{2}-PO is located on the PO three-membered ring plane opposite to the methyl group. The constituents in CO{2}-PO were more weakly bound than those in CO{2}-EO and CO{2}-ES. S. Sato, Y. Kawashima, Y. Tatamitani, and E. Hirota, 63rd International Symposium on Molecular Spectroscopy, WF05 (2008).

  2. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    PubMed

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-04

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder.

  3. Direct Routes from Synthesis Gas to Ethylene Glycol.

    ERIC Educational Resources Information Center

    Dombek, B. D.

    1986-01-01

    Discusses the synthesis of ethylene glycol from carbon monoxide and hydrogen using bimetallic catalysts. Although this technology has not been implemented, it illustrates two important future trends, namely, use of bimetallic catalysts and use of coal-derived carbon monoxide and hydrogen as a new feed stock. (JN)

  4. Rapid determination of ethylene oxide with fiber-packed sample preparation needle.

    PubMed

    Ueta, Ikuo; Saito, Yoshihiro; Ghani, Nadia Binti Abdul; Ogawa, Mitsuhiro; Yogo, Kentaro; Abe, Akira; Shirai, Shingoro; Jinno, Kiyokatsu

    2009-04-03

    Fiber-packed sample preparation device was applied to the simultaneous derivatization/preconcentration of ethylene oxide (EO) in air samples. The polymer-coated filaments were packed longitudinally into the needle, and hydrogen bromide (HBr) was loaded onto the filaments in the preconditioning process. Simultaneous derivatization with HBr in the needle was made during the sampling process of the gaseous EO, and the corresponding derivatized analyte, 2-bromoethanol, was desorbed by passing a small amount of methanol through the extraction needle in the heated gas chromatograph (GC) injector. The basic extraction/desorption parameters for EO have been evaluated. The limit of detection (LOD), limit of quantification (LOQ) and the relative standard deviation (RSD) of run-to-run repeatability were 1.8 ng/L, 5.4 ng/L and less than 4%, respectively, with an extraction time of about 10 min. Satisfactory storage performance for three days at room temperature was also confirmed.

  5. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene

    PubMed Central

    Womack, Caroline C.; Martin-Drumel, Marie-Aline; Brown, Gordon G.; Field, Robert W.; McCarthy, Michael C.

    2015-01-01

    Ozonolysis is one of the dominant oxidation pathways for tropospheric alkenes. Although numerous studies have confirmed a 1,3-cycloaddition mechanism that generates a Criegee intermediate (CI) with form R1R2COO, no small CIs have ever been directly observed in the ozonolysis of alkenes because of their high reactivity. We present the first experimental detection of CH2OO in the gas-phase ozonolysis of ethylene, using Fourier transform microwave spectroscopy and a modified pulsed nozzle, which combines high reactant concentrations with rapid sampling and sensitive detection. Nine other product species of the O3 + C2H4 reaction were also detected, including formaldehyde, formic acid, dioxirane, and ethylene ozonide. The presence of all these species can be attributed to the unimolecular and bimolecular reactions of CH2OO, and their abundances are in qualitative agreement with published mechanisms and rate constants. PMID:26601145

  6. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.

    PubMed

    Womack, Caroline C; Martin-Drumel, Marie-Aline; Brown, Gordon G; Field, Robert W; McCarthy, Michael C

    2015-03-01

    Ozonolysis is one of the dominant oxidation pathways for tropospheric alkenes. Although numerous studies have confirmed a 1,3-cycloaddition mechanism that generates a Criegee intermediate (CI) with form R1R2COO, no small CIs have ever been directly observed in the ozonolysis of alkenes because of their high reactivity. We present the first experimental detection of CH2OO in the gas-phase ozonolysis of ethylene, using Fourier transform microwave spectroscopy and a modified pulsed nozzle, which combines high reactant concentrations with rapid sampling and sensitive detection. Nine other product species of the O3 + C2H4 reaction were also detected, including formaldehyde, formic acid, dioxirane, and ethylene ozonide. The presence of all these species can be attributed to the unimolecular and bimolecular reactions of CH2OO, and their abundances are in qualitative agreement with published mechanisms and rate constants.

  7. Emission of ethylene oxide during frying of foods in soybean oil.

    PubMed

    Lin, Jiune-Shyoung; Chuang, Karl T; Huang, Mao-Sun; Wei, Kuo-Ming

    2007-04-01

    High levels of ethylene oxide (EO) and acetaldehyde (AE) were detected, using gas chromatography and a portable gas detector, among volatile organic compounds (VOC) emitted during simulated frying of herbs and spices in soybean oil at temperatures between 120 degrees C and 200 degrees C. Both EO and AE were distributed between the gas phase and oil phase after cooking each vegetable at 150 degrees C for 5min under either nitrogen or air at 1atm. EO concentrations in the gas phase (25-75ppm) exceeded the threshold limit value of 1ppm, the TLV TWA value established by the American Conference of Government Industrial Hygienists and permitted by the Occupational Safety and Health Administration. EO has been identified as a significant carcinogen. Thus, while no causal relationship can be concluded from this study, the results suggest a possible relationship between the high levels of EO emitted during frying and the high incidence of lung cancer among Taiwanese women engaged in traditional cooking.

  8. Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer.

    PubMed

    Morioka, Takashi; Nakano, Koji; Tominaga, Yoichi

    2017-02-21

    A random copolymer of ethylene oxide with CO2 , namely, poly(ethylene carbonate/ethylene oxide) (P(EC/EO)), has been synthesized as a novel candidate for polymer electrolytes. Electrolyte composed of P(EC/EO) and lithium bis(fluorosulfonyl)imide has an ionic conductivity of 0.48 mS cm(-1) and a Li transference number (t + ) of 0.66 at 60 °C. To study ion-conductive behavior of P(EC/EO)-based electrolytes, the Fourier transform infrared (FT-IR) technique is used to analyze the interactions between Li(+) and functional groups of the copolymer. The carbonate groups may interact preferentially with Li(+) rather than the ether groups in P(EC/EO). This study suggests that copolymerization of carbonate and flexible ether units can realize both high conductivity and t + for polymer electrolytes. High-performance P(EC/EO) electrolyte is expected to be a candidate material for use in all-solid-state batteries.

  9. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  10. Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation.

    PubMed

    Sedláková, Zuzana; Clarizia, Gabriele; Bernardo, Paola; Jansen, Johannes Carolus; Slobodian, Petr; Svoboda, Petr; Kárászová, Magda; Friess, Karel; Izak, Pavel

    2014-01-03

    Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance.

  11. Carbon Nanotube- and Carbon Fiber-Reinforcement of Ethylene-Octene Copolymer Membranes for Gas and Vapor Separation

    PubMed Central

    Sedláková, Zuzana; Clarizia, Gabriele; Bernardo, Paola; Jansen, Johannes Carolus; Slobodian, Petr; Svoboda, Petr; Kárászová, Magda; Friess, Karel; Izak, Pavel

    2014-01-01

    Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water for the representative samples. The mechanical properties and homogeneity of samples was checked by stress-strain tests. The addition of virgin CNTs and CFs improve mechanical properties. Gas permeability of EOC lies between that of the more permeable PDMS and the less permeable semi-crystalline polyethylene and polypropylene. Organic vapors are more permeable than permanent gases in the composite membranes, with toluene and hexane permeabilities being about two orders of magnitude higher than permanent gas permeability. The results of the carbon-filled membranes offer perspectives for application in gas/vapor separation with improved mechanical resistance. PMID:24957119

  12. Physico-chemical and toxicologo-hygienic aspects of using ethylene oxide for the sterilization of medical appliances. Part I. Sorption and diffusion of ethylene oxide in polymeric materials.

    PubMed

    Lyarskii, P P; Likhtman, T V; Kareyev, N V; Komarkova, N I; Gleiberman, S E

    1984-01-01

    Sorption ability of polymeric materials for medical purposes was studied with respect to the sterilizing gas - ethylene oxide - at 23, 35 and 55 degrees C. Sorption coefficients of ethylene oxide (EO) for the materials under study were calculated on the basis of results. Investigation of the kinetics of desorption of EO from the polymeric materials for medical purposes has shown that its content changes exponentially depending on the time of degassing. However, the lines in the 1g Q/Q0 - tau coordinates show a sharp break which testifies to a change in the mechanism of the process determining the character of the mentioned dependence. In the first region, corresponding to high concentrations and short periods of time, the determining process is diffusion while in the second region (low concentrations, long time intervals) - it is desorption of EO molecules most firmly bound to the polymer. Diffusion coefficients were calculated for the first region. The possibility of predicting the time periods of removing ethylene oxide from the polymeric materials was demonstrated for both stages on the basis of calculated diffusion coefficients and kinetic curves of degassing. Recommendations were given for the use of polymers for medical appliances and apparatuses.

  13. Induction of alternative respiratory pathway involves nitric oxide, hydrogen peroxide and ethylene under salt stress.

    PubMed

    Wang, Huahua; Huang, Junjun; Bi, Yurong

    2010-12-01

    Alternative respiratory pathway (AP) plays an important role in plant thermogenesis, fruit ripening and responses to environmental stresses. AP may participate in the adaptation to salt stress since salt stress increased the activity of the AP. Recently, new evidence revealed that ethylene and hydrogen peroxide (H(2)O(2)) are involved in the salt-induced increase of the AP, which plays an important role in salt tolerance in Arabidopsis callus, and ethylene may be acting downstream of H(2)O(2). Recent observations also indicated both ethylene and nitric oxide (NO) act as signaling molecules in responses to salt stress, and ethylene may be a part of the downstream signal molecular in NO action. In this addendum, a hypothetical model for NO function in regulation of H(2)O(2)- and ethylene-mediated induction of AP under salt stress is presented.

  14. Gas-film coefficients for the volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tal, D.Y.

    1986-01-01

    Gas-film coefficients for the volatilization of ethylene dibromide (EDB) and water were determined in the laboratory as a function of wind speed and temperature. The ratio of the coefficients was independent of wind speed and increased slightly with temperature. Use of this ratio with an environmentally determined gas-film coefficient for the evaporation of water permits determination of the gas-film coefficient for the volatilization of EDB from environmental waters.

  15. Oxidation induced decomposition of ethylene carbonate from DFT calculations--importance of explicitly treating surrounding solvent.

    PubMed

    Xing, Lidan; Borodin, Oleg

    2012-10-05

    The oxidation induced reactions of the common lithium battery electrolyte solvent ethylene carbonate (EC) have been investigated for EC(2) using density functional theory and for selected reaction paths using Møller-Plesset perturbation theory (MP4). The importance of explicitly treating at least one solvent molecule interacting with EC during oxidation (removal of an electron) on the EC oxidation potential and decomposition reactions was shown by comparing oxidation of EC and EC(2). Accuracy of DFT results was evaluated by comparing with MP4 and G4 values for oxidation of EC. The polarized continuum model (PCM) was used to implicitly include the rest of the surrounding solvent. The oxidation potentials of EC(2) and EC(4) were found to be significantly lower than the intrinsic oxidation potential of an isolated EC and also lower than the oxidation potential of EC-BF(4)(-). The exothermic proton abstraction from the ethylene group of EC by the carbonyl group of another EC was responsible for the decreased oxidative stability of EC(2) and EC(4) compared to EC. The most exothermic path with the smallest barrier for EC(2) oxidation yielded CO(2) and an ethanol radical cation. The reaction paths with the higher barrier yielded oligo(ethylene carbonate) suggesting a pathway for the experimentally observed poly(ethylene carbonate) formation of EC-based electrolytes at cathode surfaces.

  16. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association

    SciTech Connect

    Alexandridis, P.; Hatton, T.A. . Dept. of Chemical Engineering); Holzwarth, J.F. )

    1994-04-25

    The critical micellization temperature (cmt) and critical micellization concentration (cmc) values of 12 Pluronic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, covering a wide range of molecular weights (2,900--14,600) and PPO/PEO ratios (0.19--1.79), were determined employing a dye solubilization method. A closed association model was found to describe adequately the copolymer micellization process for the majority of the Pluronics and used to obtain the standard free energies ([Delta]G[degree]), enthalpies ([Delta]H[degree]), and entropies ([Delta]S[degree]) of micellization. It was determined that the micellization process is entropy-driven and has an endothermic micellization enthalpy. The hydrophobic part of the Pluronics, PPO, was responsible for the micellization, apparently due to diminishing hydrogen bonding between water and PPO with increasing temperature. The cmc dependence on temperature and size of headgroup (PEO) of Pluronics follows a similar trend with lower molecular weight C[sub i]E[sub j] nonionic surfactants, the effect of temperature being more pronounced with the Pluronics. The PEO-PPO-PEO block copolymers were compared to PPO-PEO-PPO block and PEO-PPO random copolymers, in an attempt to probe the effect of molecular architecture in the formation of micelles. No micelles were observed in aqueous PPO-PEO-PPO block copolymer solutions with increasing temperature, up to the cloud point.

  17. Multiple phase transition and scaling law for poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution.

    PubMed

    Liu, Sijun; Li, Lin

    2015-02-04

    The multiple phase transition and the scaling behavior of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer (Pluronic F127, PEO100-PPO65-PEO100) have been studied by micro-differential scanning calorimetry and rheology. The scaling behavior of the triblock copolymer was examined using the Winter-Chambon criterion to obtain the critical gel temperature Tgel and the scaling exponent n. n was found to decrease linearly with increasing copolymer concentration. A stable hard gel was formed, but the hard gel was transformed into a soft gel upon further heating. Increasing copolymer concentration led to the increase in the temperature of hard-soft gel transition, while the sol-gel transition temperature decreased with increasing copolymer concentration. A phase diagram has been determined, which is able to classify unimers, micelles, hard gel, and soft gel regions upon heating. In addition, the scaling relation of the plateau modulus Ge with copolymer concentration was also obtained as Ge ≈ c(3.0) for both soft gel and hard gel.

  18. Crystallization behaviour of poly(ethylene oxide) under confinement in the electrospun nanofibers of polystyrene/poly(ethylene oxide) blends.

    PubMed

    Samanta, Pratick; V, Thangapandian; Singh, Sajan; Srivastava, Rajiv; Nandan, Bhanu; Liu, Chien-Liang; Chen, Hsin-Lung

    2016-06-21

    We have studied the confined crystallization behaviour of poly(ethylene oxide) (PEO) in the electrospun nanofibers of the phase-separated blends of polystyrene (PS) and PEO, where PS was present as the major component. The size and shape of PEO domains in the nanofibers were considerably different from those in the cast films, presumably because of the nano-dimensions of the nanofibers and the extensional forces experienced by the polymer solution during electrospinning. The phase-separated morphology in turn influenced the crystallization behaviour of PEO in the blend nanofibers. At a PEO weight fraction of ≥0.3, crystallization occurred through a heterogeneous nucleation mechanism similar to that in cast blend films. However, as the PEO weight fraction in the blend nanofibers was reduced from 0.3 to 0.2, an abrupt transformation of the nucleation mechanism from the heterogeneous to predominantly homogenous type was observed. The change in the nucleation mechanism implied a drastic reduction of the spatial continuity of PEO domains in the nanofibers, which was not encountered in the cast film. The melting temperature and crystallinity of the PEO crystallites developed in the nanofibers were also significantly lower than those in the corresponding cast films. The phenomena observed were reconciled by the morphological observation, which revealed that the phase separation under the radial constraint of the nanofibers led to the formation of small-sized fibrillar PEO domains with limited spatial connectivity. The thermal treatment of the PS/PEO blend nanofibers above the glass transition temperature of PS induced an even stronger confinement effect on PEO crystallization.

  19. Poly(cyclohexylethylene)-block-poly(ethylene oxide) block polymers for metal oxide templating

    SciTech Connect

    Schulze, Morgan W.; Sinturel, Christophe

    2015-09-01

    A series of poly(cyclohexylethylene)-block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation produces an ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.

  20. Poly(cyclohexylethylene)-block-poly(ethylene oxide) block polymers for metal oxide templating

    DOE PAGES

    Schulze, Morgan W.; Sinturel, Christophe; Hillmyer, Marc A.

    2015-09-01

    A series of poly(cyclohexylethylene)-block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation produces anmore » ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.« less

  1. GAS-PHASE FLAME SYNTHESIS AND PROPERTIES OF MAGNETIC IRON OXIDE NANOPARTICLES WITH REDUCED OXIDATION STATE

    PubMed Central

    Kumfer, Benjamin M; Shinoda, Kozo; Jeyadevan, Balachandran; Kennedy, Ian M

    2010-01-01

    Iron oxide nanoparticles of reduced oxidation state, mainly in the form of magnetite, have been synthesized utilizing a new continuous, gas-phase, nonpremixed flame method using hydrocarbon fuels. This method takes advantage of the characteristics of the inverse flame, which is produced by injection of oxidizer into a surrounding flow of fuel. Unlike traditional flame methods, this configuration allows for the iron particle formation to be maintained in a more reducing environment. The effects of flame temperature, oxygen-enrichment and fuel dilution (i.e. the stoichiometric mixture fraction), and fuel composition on particle size, Fe oxidation state, and magnetic properties are evaluated and discussed. The crystallite size, Fe(II) fraction, and saturation magnetization were all found to increase with flame temperature. Flames of methane and ethylene were used, and the use of ethylene resulted in particles containing metallic Fe(0), in addition to magnetite, while no Fe(0) was present in samples synthesized using methane. PMID:20228941

  2. Ethylene oxide: an assessment of the epidemiological evidence on carcinogenicity.

    PubMed Central

    Shore, R E; Gardner, M J; Pannett, B

    1993-01-01

    Mortality from cancer among workers exposed to ethylene oxide (EtO) has been studied in 10 distinct cohorts that include about 29,800 workers and 2540 deaths. This paper presents a review and meta-analysis of these studies, primarily for leukaemia, non-Hodgkin's lymphoma, stomach cancer, pancreatic cancer, and cancer of the brain and nervous system. The magnitude and consistency of the standardised mortality ratios (SMRs) were evaluated for the individual and combined studies, as well as trends by intensity or frequency of exposure, by duration of exposure, and by latency (time since first exposure). Exposures to other workplace chemicals were examined as possible confounder variables. Three small studies by Hogstedt initially suggested an association between EtO and leukaemia, but in seven subsequent studies the SMRs for leukaemia have been much lower. For the combined studies the SMR = 1.06 (95% confidence interval (95% CI) 0.73-1.48). There was a slight suggestion of a trend by duration of exposure (p = 0.19) and a suggested increase with longer latency (p = 0.07), but there was no overall trend in risk of leukaemia by intensity or frequency of exposure; nor did a cumulative exposure analysis in the largest study indicate a quantitative association. There was also an indication that in two studies with increased risks the workers had been exposed to other potential carcinogens. For non-Hodgkin's lymphoma there was a suggestive risk overall (SMR = 1.35, 95% CI 0.93-1.90). Breakdowns by exposure intensity or frequency, exposure duration, or latency did not indicate an association, but a positive trend by cumulative exposure (p = 0.05) was seen in the largest study. There was a suggested increase in the overall SMR for stomach cancer (SMR = 1.28, 95% CI 0.98-1.65 (CI 0.73-2.26 when heterogeneity among the risk estimates was taken into account)), but analyses by intensity or duration of exposure or cumulative exposure did not support a causal association for stomach

  3. A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography.

    PubMed

    Ehlers, Alexandra; Morris, Cory; Krasowski, Matthew D

    2013-12-01

    A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard. The method employed a single-step derivitization using phenylboronic acid, was linear to 200 mg/dL and had a lower limit of quantitation of 1 mg/dL suitable for clinical analyses. The analytical method described allows for laboratories with HS-GC instrumentation to analyze ethanol, methanol, isopropanol, ethylene glycol, and propylene glycol on a single instrument with rapid switch-over from alcohols to glycols analysis. In addition to the novel HS-GC method, a retrospective analysis of patient specimens containing ethylene glycol and propylene glycol was also described. A total of 36 patients ingested ethylene glycol, including 3 patients who presented with two separate admissions for ethylene glycol toxicity. Laboratory studies on presentation to hospital for these patients showed both osmolal and anion gap in 13 patients, osmolal but not anion gap in 13 patients, anion but not osmolal gap in 8 patients, and 1 patient with neither an osmolal nor anion gap. Acidosis on arterial blood gas was present in 13 cases. Only one fatality was seen; this was a patient with initial serum ethylene glycol concentration of 1282 mg/dL who died on third day of hospitalization. Propylene glycol was common in patients being managed for toxic ingestions, and was often attributed to iatrogenic administration of propylene glycol-containing medications such as activated charcoal and intravenous lorazepam. In six patients, propylene glycol contributed to an abnormally high osmolal gap. The common presence of propylene glycol in hospitalized patients emphasizes the importance of being able to identify both ethylene glycol and propylene glycol by chromatographic methods.

  4. Coarse-graining poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers using the MARTINI force field.

    PubMed

    Nawaz, Selina; Carbone, Paola

    2014-02-13

    The MARTINI coarse-grain (CG) force field is extended for a class of triblock block copolymers known as Pluronics. Existing MARTINI bead types are used to model the non-bonded part of the potential while single chain properties for both homopolymers, poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), are used to develop the bonded interactions. The new set of force field parameters reproduces structural and dynamical properties of high molecular weight homo- and copolymers. The CG model is moderately transferable in solvents of different polarity and concentration; however, the PEO homopolymer model presents a reduced thermodynamic transferability especially in water probably due to the lack of hydrogen bonds with the solvent. Our simulations of a monolayer of Pluronic L44 show polymer-brush-like characteristics for the PEO segments which protrude into the aqueous phase. Other membrane properties not easily accessible using experimental techniques such as its membrane thickness are also calculated.

  5. Genotoxic effects of ethylene oxide, propylene oxide and epichlorohydrin in humans: update review (1990-2001).

    PubMed

    Kolman, Ada; Chovanec, Miroslav; Osterman-Golkar, Siv

    2002-12-01

    Ethylene oxide (EtO), propylene oxide (PO) and epichlorohydrin (ECH) are important industrial chemicals widely used as intermediates for various synthetic products. EtO and PO are also environmental pollutants. In this review we summarize data published during the period 1990-2001 concerning both the genotoxic and carcinogenic effects of these epoxides in humans. The use of DNA and hemoglobin adducts as biomarkers of exposure and the role of polymorphism, as well as confounding factors, are discussed. We have also included recent in vitro data comprising genotoxic effects induced by EtO, PO and ECH in mammalian cells. The uncertainties regarding cancer risk estimation still persist, in spite of the large database collected.

  6. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway.

    PubMed

    Gniazdowska, Agnieszka; Krasuska, Urszula; Bogatek, Renata

    2010-11-01

    The connection between classical phytohormone-ethylene and two signaling molecules, nitric oxide (NO) and hydrogen cyanide (HCN), was investigated in dormancy removal and germination "sensu stricto" of apple (Malus domestica Borkh.) embryos. Deep dormancy of apple embryos was removed by short-term (3-6 h) pre-treatment with NO or HCN. NO- or HCN-mediated stimulation of germination was associated with enhanced emission of ethylene by the embryos, coupled with transient increase in ROS concentration in embryos. Ethylene vapors stimulated germination of dormant apple embryos and eliminated morphological anomalies characteristic for young seedlings developed from dormant embryos. Inhibitors of ethylene receptors completely impeded beneficial effect of NO and HCN on embryo germination. NO- and HCN-induced ethylene emission by apple embryo was only slightly reduced by inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity during first 4 days of germination. Short-term pre-treatment of the embryos with NO and HCN modified activity of both key enzymes of ethylene biosynthetic pathway: ACC synthase and ACC oxidase. Activity of ACC synthase declined during first 4 days of germination, while activity of ACC oxidase increased markedly at that time. Additional experiments point to non-enzymatic conversion of ACC to ethylene in the presence of ROS (H(2)O(2)). The results indicate that NO and HCN may alleviate dormancy of apple embryos "via" transient accumulation of ROS, leading to enhanced ethylene emission which is required to terminate germination "sensu stricto". Therefore, ethylene seems to be a trigger factor in control of apple embryo dormancy removal and germination.

  7. Oxidative Condensation of Methane — a New Pathway to the Synthesis of Ethane, Ethylene, and Other Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Minachev, Khabib M.; Usachev, Nikolay Ya; Udut, V. N.; Khodakov, Yu S.

    1988-03-01

    During the last five years, the chemistry of methane has been enriched by the possibility of obtaining C2 and other hydrocarbons as a result of the oxidative condensation of methane in the presence of a series of catalytic systems. The availability of the starting materials (CH4 and O2) leads to extensive prospects for the replacement of the petroleum raw materials by natural gas in single-stage syntheses of valuable compounds and in the first place ethylene. This review gives a systematic account of the results of the selection of effective catalysts and surveys the information leading to the elucidation of the mechanism for the formation of the products of the extensive oxidation and oxidative condensation of methane. The bibliography includes 118 references.

  8. Asymmetric poly(ethylene-alt-propylene)-poly(ethylene oxide) micelles: a system with starlike morphology and interactions.

    PubMed

    Laurati, M; Stellbrink, J; Lund, R; Willner, L; Zaccarelli, E; Richter, D

    2007-10-01

    We report on an experimental study of single particle properties and interactions of poly(ethylene-alt-propylene)-poly(ethylene oxide) (PEP-PEO) starlike micelles. The starlike regime is achieved by an extremely asymmetric block ratio (1:20) and the number of arms (functionality) is changed by varying the composition of the solvent (the interfacial tension). Small angle neutron scattering (SANS) data in the dilute regime can be modeled by assuming a constant density profile in the micellar core (compact core) and a starlike density profile in the corona (starlike shell). The starlike morphology of the corona is confirmed by a direct comparison with SANS measurements of dilute poly butadiene star solutions. Comparison of structure factors obtained by SANS measurements in the concentrated regime shows in addition that the interactions in the two systems are equivalent. Micellar structure factors at several packing fractions can be modeled by using the ultrasoft potential recently proposed for star polymers [Likos, Phys. Rev. Lett. 80, 4450 (1998)]. The experimental phase diagram of PEP-PEO micelles is quantitatively compared to theoretical expectations, finding good agreement for the location of the liquid-solid boundary and excellent agreement for the critical packing fraction where the liquid-to-bcc crystal transition takes place for f<70. The functionality, i.e., the coronal density, strongly influences the nature of the solid phase: for f<70 the system crystallizes into a bcc phase, high f>70 formation of amorphous arrested states prevents crystallization.

  9. Ethylene effects in pea stem tissue

    SciTech Connect

    Steen, D.A.; Chadwick, A.V.

    1981-01-01

    The marked effects of ethylene on pea stem growth have been investigated. Low temperatures and colchicine, both known microtubule depolymerization agents, reverse the effects of ethylene in straight growth tests. Low temperature (6 C) also profoundly reduces the effects of gas in terms of swelling, hook curvature, and horizontal mutation. Deuterium oxide, an agent capable of rigidifying microtubular structure, mimics the effects of ethylene. Electron microscopy shows that microtubule orientation is strikingly altered by ethylene. These findings indicate that some of the ethylene responses may be due to a stabilizing effect on microtubules in plant cells.

  10. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  11. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (2016 Interagency Science Discussion Draft)

    EPA Science Inventory

    In December 2016, EPA finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. EPA’s evaluation was reviewed internally by EPA and by other federal agencies and White House Offices in October 2016, before public release. Consistent with the May 2009 IRIS asse...

  12. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (2011 Interagency Science Discussion Draft)

    EPA Science Inventory

    On September 22, 2006, the draft Evaluation of the Carinogenicity of Ethylene Oxide (EPA/635/R-06/003) and the draft charge to external peer reviewers were released for external peer review and public comment. This draft was reviewed by EPA’s Science Advisory Board (SAB)...

  13. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  14. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  15. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  16. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  17. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide...

  18. Microviscosity in Pluronic and Tetronic poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles

    SciTech Connect

    Nivaggioli, T.; Tsao, B.; Alexandridis, P.; Hatton, T.A. )

    1995-01-01

    The micellar microviscosity afforded by Pluronic and Tetronic poly(ethylene oxide)-poly(propylene oxide) block copolymer aqueous solutions has been investigated by fluorescence and NMR spectroscopy. Comparison is made with bulk poly(propylene oxide) (PPO) samples of different molecular weights. The microviscosity in Pluronic PEO-PPO-PEO copolymer micelles is much larger than that observed in conventional surfactant micelles and depends strongly on the size of the hydrophobic PPO block: the larger this block, the higher the viscosity. Above the critical micellar temperature (CMT), as temperature increases, the microviscosity decreases. However, this decrease is not as important as that observed in bulk PPO. Hence, the relative microviscosity, defined as the ratio of the two observed phenomena, increases. This suggests structural transformation of the micelles resulting in a core becoming more and more compact as temperature increases. Such results have been confirmed by NMR studies that showed broadening of the PPO peak and relatively constant spin-lattice relaxation time, T[sub i], with increasing temperature while the PEO signal remained relatively sharp with an exponential increase in T[sub 1]. 30 refs., 9 figs., 1 tab.

  19. Analysis of Volatile Organic Compounds in a Controlled Environment: Ethylene Gas Measurement Studies on Radish

    NASA Technical Reports Server (NTRS)

    Kong, Suk Bin

    2001-01-01

    Volatile organic compound(VOC), ethylene gas, was characterized and quantified by GC/FID. 20-50 ppb levels were detected during the growth stages of radish. SPME could be a good analytical tool for the purpose. Low temperature trapping method using dry ice/diethyl ether and liquid nitrogen bath was recommended for the sampling process for GC/PID and GC/MS analysis.

  20. Abundances of ethylene oxide and acetaldehyde in hot molecular cloud cores

    NASA Technical Reports Server (NTRS)

    Nummelin, A.; Dickens, J. E.; Bergman, P.; Hjalmarson, A.; Irvine, W. M.; Ikeda, M.; Ohishi, M.

    1998-01-01

    We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.

  1. Toxicity potential of residual ethylene oxide on fresh or frozen embryos maintained in plastic straws.

    PubMed

    Schiewe, M C; Schmidt, P M; Pontbriand, D; Wildt, D E

    1988-01-01

    The toxic effects of residual ethylene oxide (EtO), a frequently used gas-sterilant, on embryos either frozen for long-term purposes or stored acutely for 30 min to 9 hr in a fresh condition in 0.25-ml straw containers were evaluated. In Experiment 1, fresh embryos were frozen (using conventional technology) in straws previously aerated for 0 hr to 8 mo after EtO sterilization. With the exception of the 8-mo group in which survival and quality ratings were depressed, embryo viability was not affected significantly by short-term prefreeze and post-thaw exposure to EtO residues. Experiment 2 was conducted to analyze the influence of prefreeze exposure to EtO residues on embryo development in vitro for embryos temporarily stored in previously sterilized straws aerated for different intervals. Compared to non-EtO-sterilized control straws, the development, quality, and viability of embryos exposed to EtO-treated straws were compromised (p less than 0.05) as the aeration interval decreased and the exposure interval increased. The combined results of both experiments indicate that EtO-treated straws can be used to cryopreserve gametes efficiently, but only if the aeration interval is greater than or equal to 72 hr and the prefreeze duration of exposure is less than or equal to 3 hr.

  2. Field evaluation of direct-reading continuous ethylene oxide monitors. Final report

    SciTech Connect

    Hossain, M.A.; Carpenter, D.R.

    1989-05-01

    The Wilford Hall USAF Medical Center Central Processing Section (WHMC/SGLP) uses ethylene oxide (EtO) as a primary sterilizing agent. Because of their concern about the health effects of EtO, SGLP has searched for a continuous-monitoring EtO system. In their search, they found two units (AMSCO's Envirogard III and Baseline Industries, Inc.'s Model 5500 Gas Analyzer). The objective of this evaluation was to conduct a field study to compare the performances of the two direct-reading continuous EtO monitors against the Occupational Safety and Health Administration's (OSHA) acceptable charcoal-tube sampling method. In addition, the 3M EtO passive monitor sampling method was compared with the charcoal-tube method and direct-reading instrumental method as well. Neither the Baseline Industries, Inc. nor the AMSCO continuous monitors corresponded to OSHA acceptable charcoal tube method of air sampling. Both instruments reported EtO concentrations much higher than those detected by the charcoal tubes. There is no way of knowing which method, the direct-reading continuous monitor or the charcoal tube/passive monitor, is more correct. However, the OSHA standard for EtO is based on measuring EtO by the charcoal tube method.

  3. Janus-Type Dendrimer-like Poly(ethylene oxide)s

    PubMed Central

    Feng, Xiaoshuang; Taton, Daniel; Ibarboure, Emmanuel; Chaikof, Elliot L.; Gnanou, Yves

    2009-01-01

    A straightforward and original methodology allowing the synthesis of Janus-type dendrimer-like poly(ethylene oxide)s (PEOs) carrying orthogonal functional groups on their surface is described. The use of 3-allyloxy-1,2-propanediol (1) as a latent AB2-type heterofunctional initiator of anionic ring-opening polymerization (AROP) of ethylene oxide (EO) and of selective branching agents of PEO chain ends served to construct the two dendrons of these dendrimer-like PEOs, following a divergent pathway. Thus, the first PEO generation of the first dendron was grown by AROP from 1 followed by the reaction of the corresponding α-allyl,ω,ω′-bishydroxy- heterofunctional PEO derivative with 2-(3′-chloromethybenzyloxymethyl)-2-methyl-5,5-dimethyl-1,3-dioxane (2) used as a branching agent. This afforded the dendron A with four latent peripheral hydroxyls protected in the form of two ketal rings. The remaining α-allylic double bond of the PEO thus prepared was transformed into two hydroxyl groups using OsO4 in order to create the first PEO generation of the dendron B by AROP of EO. Allyl chloride (3) was then used as another (latent) branching agent to react with the terminal hydroxyl of the corresponding PEO chains. Deprotection under acidic conditions of the ketal groups of dendron A, followed by AROP of EO, afforded the second PEO generation on this face. This alternate and divergent procedure, combining AROP of EO and selective branching of PEO branches, could be readily iterated, one dendron after the other up to the generation six, leading to a Janus-type dendrimer-like PEO exhibiting a total mass of around 300 kg/mol and possessing 64 peripheral groups on each face. The possibility of orthogonal functionalization of the surfaces of such Janus-type dendritic PEOs was exploited. Indeed, a dendron of generation 4 was functionalized with hydroxyl functions at its periphery, whereas the other was end-capped with either tertiary amino or disulfide groups. In a variant of

  4. Ethylene oxide-block-butylene oxide copolymer uptake by silicone hydrogel contact lens materials

    NASA Astrophysics Data System (ADS)

    Huo, Yuchen; Ketelson, Howard; Perry, Scott S.

    2013-05-01

    Four major types of silicone hydrogel contact lens material have been investigated following treatments in aqueous solutions containing poly(ethylene oxide) and poly(butylenes oxide) block copolymer (EO-BO). The extent of lens surface modification by EO-BO and the degree of bulk uptake were studied using X-ray photoelectron spectroscopy (XPS) and ultra-performance liquid chromatography (UPLC), respectively. The experimental results suggest that different interaction models exist for the lenses, highlighting the influence of both surface and bulk composition, which greatly differs between the lenses examined. Specifically, lenses with hydrophilic surface treatments, i.e., PureVision® (balafilcon A) and O2OPTIX (lotrafilcon B), demonstrated strong evidence of preferential surface adsorption within the near-surface region. In comparison, surface adsorption on ACUVUE® Oasys® (senofilcon A) and Biofinity® (comfilcon A) was limited. As for bulk absorption, the amount of EO-BO uptake was the greatest for balafilcon A and comfilcon A, and least for lotrafilcon B. These findings confirm the presence of molecular concentration gradients within the silicone hydrogel lenses following exposure to EO-BO solutions, with the nature of such concentration gradients found to be lens-specific. Together, the results suggest opportunities for compositional modifications of lenses for improved performance via solution treatments containing surface-active agents.

  5. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Revised July 2013 External Review Draft) (Public Comment Draft)

    EPA Science Inventory

    EPA is initiating a public comment period prior to peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that will appear in the Integrated Risk Information System (IRIS) database.

  6. Health Hazard Evaluation Report HETA 85-065-1578, United Hospital, Grand Forks, North Dakota. [Ethylene oxide

    SciTech Connect

    Gunter, B.J.

    1985-04-01

    Environmental and breathing zone samples were analyzed for ethylene-oxide at United Hospital, Grand Forks, North Dakota in January, 1985. The survey was requested by the management to determine if using ethylene-oxide for sterilization purposes posed a health risk. All employees (number not specified) in the central supply department were interviewed. These concentrations originated from an old sterilizer. The sterilizer was not normally used, but was operated on the day of the survey to stimulate a worst-case situation. None of the workers had any medical complaints. The author concludes that a health hazard due to ethylene-oxide does not exist at the facility. He recommends not using the old sterilizer until it has been refurbished and conducting periodic monitoring for ethylene/oxide with an infrared analyzer.

  7. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Revised August 2014 External Review Draft) (SAB Review Draft)

    EPA Science Inventory

    EPA is seeking peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that will appear in the Integrated Risk Information System (IRIS) database.

  8. Thermal stability of polyacetal/ethylene-octene copolymer/zinc oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Grigalovica, A.; Merijs Meri, R.; Zicans, J.; Ivanova, T.; Grabis, J.

    2013-12-01

    In this work we investigate binary blends of polyoxymethylene and ethylene octene copolymer (EOC) and their composites with nanostructured zinc oxide (ZnO). EOC content in the composites varies from 0 to 50 wt. %. The amount of ZnO filler in the composites is changed in the interval from 0 to 5 wt. %. Thermal properties of composites are investigated with thermogravimetric analysis and differential scanning calorimetry. It is observed that ZnO addition increases thermal stability of the investigated composites.

  9. Reduction of PCR-amplifiable DNA by ethylene oxide treatment of forensic consumables.

    PubMed

    Neureuther, Katharina; Rohmann, Edyta; Hilken, Manuela; Sonntag, Marie-Luise; Herdt, Silke; Koennecke, Thomas; Jacobs, Roland; Adamski, Michalina; Reisbacher, Stefan; Alfs, Knut; Strain, Peter; Bastisch, Ingo

    2014-09-01

    A reliable method to provide molecular biology products free of contaminating DNA is of forensic interest. Ethylene oxide (EO) treatment has been demonstrated as an effective method in published studies. This study aimed to address some additional experiments that are closer to forensic practice. In the first part of this study, different consumables such as cotton swabs, latex gloves and micro test tubes were spiked with saliva, blood and skin cells to mimic a real-life contamination scenario. EO treatment was performed for a period of 3, 5, 7, and 10h, respectively. For comparison, gamma and electron beam treatment was applied. In the second part of this study, a cell culture line (K562) was used to apply defined cell counts on cotton swabs followed by EO treatment for 3 and 5h. After extraction of samples, the DNA content was quantified using a real-time PCR based system. STR analysis was performed using a latest generation STR kit to meet current sensitivity limits. A good correlation of real-time PCR results and STR results was observed. This work confirmed the findings of earlier studies showing that chemical EO treatment is much more successful in reducing the amount of PCR-amplifiable DNA than ionising radiation. Furthermore, the efficacy of EO treatment is affected by the nature of the samples. DNA in saliva was more susceptible to damage by EO gas than DNA in blood. Our results show, that accessibility of the sample to EO gas has a strong influence on the method's efficiency. While treatment of samples on cotton swabs packed into gas-permeable bags was very successful, samples inside a closed micro test tube were resistant to the same treatment conditions. Our work with defined K562 cell numbers and multi-copy quantitative PCR could show that a 5h EO treatment results in a 10(5) fold reduction of PCR-amplifiable DNA. Corresponding STR-PCR results also show only sporadic allele calls in the Mini-loci range, providing a reliable interpretation of forensic

  10. Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular alga Chlamydomonas reinhardtii.

    PubMed

    Yordanova, Zhenya P; Iakimova, Elena T; Cristescu, Simona M; Harren, Frans J M; Kapchina-Toteva, Veneta M; Woltering, Ernst J

    2010-02-22

    This work demonstrates a contribution of ethylene and NO (nitric oxide) in MP (mastoparan)-induced cell death in the green algae Chlamydomonas reinhardtii. Following MP treatment, C. reinhardtii showed massive cell death, expressing morphological features of PCD (programmed cell death). A pharmacological approach involving combined treatments with MP and ethylene- and NO-interacting compounds indicated the requirement of trace amounts of both ethylene and NO in MP-induced cell death. By employing a carbon dioxide laser-based photoacoustic detector to measure ethylene and a QCL (quantum cascade laser)-based spectrometer for NO detection, simultaneous increases in the production of both ethylene and NO were observed following MP application. Our results show a tight regulation of the levels of both signalling molecules in which ethylene stimulates NO production and NO stimulates ethylene production. This suggests that, in conjunction with the elicitor, NO and ethylene cooperate and act synchronously in the mediation of MP-induced PCD in C. reinhardtii. To the best of our knowledge, this is the first report on the functional significance of ethylene and NO in MP-induced cell death.

  11. Mechanical Characterization of Hybrid Vesicles Based on Linear Poly(Dimethylsiloxane-b-Ethylene Oxide) and Poly(Butadiene-b-Ethylene Oxide) Block Copolymers

    PubMed Central

    Gaspard, Jeffery; Casey, Liam M.; Rozin, Matt; Munoz-Pinto, Dany J.; Silas, James A.; Hahn, Mariah S.

    2016-01-01

    Poly(dimethylsiloxane-ethylene oxide) (PDMS-PEO) and poly(butadiene-b-ethylene oxide) (PBd-PEO) are two block copolymers which separately form vesicles with disparate membrane permeabilities and fluidities. Thus, hybrid vesicles formed from both PDMS-PEO and PBd-PEO may ultimately allow for systematic, application-specific tuning of vesicle membrane fluidity and permeability. However, given the relatively low strength previously noted for comb-type PDMS-PEO vesicles, the mechanical robustness of the resulting hybrid vesicles must first be confirmed. Toward this end, we have characterized the mechanical behavior of vesicles formed from mixtures of linear PDMS-PEO and linear PBd-PEO using micropipette aspiration. Tension versus strain plots of pure PDMS12-PEO46 vesicles revealed a non-linear response in the high tension regime, in contrast to the approximately linear response of pure PBd33-PEO20 vesicles. Remarkably, the area expansion modulus, critical tension, and cohesive energy density of PDMS12-PEO46 vesicles were each significantly greater than for PBd33-PEO20 vesicles, although critical strain was not significantly different between these vesicle types. PDMS12-PEO46/PBd33-PEO20 hybrid vesicles generally displayed graded responses in between that of the pure component vesicles. Thus, the PDMS12-PEO46/PBd33-PEO20 hybrid vesicles retained or exceeded the strength and toughness characteristic of pure PBd-PEO vesicles, indicating that future assessment of the membrane permeability and fluidity of these hybrid vesicles may be warranted. PMID:26999148

  12. Assessment of cancer risk from ethylene oxide residues in spices imported into New Zealand.

    PubMed

    Fowles, J; Mitchell, J; McGrath, H

    2001-11-01

    Quantitative estimates of cancer risks from ethylene oxide (ETO) residues were constructed based on 200 retail samples of various spices in New Zealand. Two samples of cinnamon contained detectable ETO. The highest value encountered was 15 ppm. ETO was not detected in the remaining 198 samples. However, 31 samples had detectable levels of ethylene chlorohydrin (ECH) and/or ethylene bromohydrin (EBH). A conservative estimate of ETO intake, based on average spice consumption, was 3.4 x 10(-6) mg/kg/day. Cancer potency factors for ETO ranging from 0.29 to 0.55 (mg/kg/day)(-1) were used to form cancer risk estimates. The resulting estimates of average lifetime excess cancer risk was 0.8 x 10(-6) to 1.7 x 10(-6). The US 97.5 percentile value for spice consumption (2.8 kg spices per year), gave an extreme upper-end estimate of lifetime cancer risk of approximately 1.4 x 10(-5). These risks are practically negligible considering the conservative assumptions used in estimating exposure to ETO. The exposures to ECH and EBH are 200-300-fold higher than to ETO. These compounds are of lesser potency to ETO in terms of mutagenicity or carcinogenicity in studies to date. However, the precise contribution of these compounds to the cancer risk estimate is uncertain due to large toxicological data gaps, including the absence of a 2-year cancer bioassay by the oral route.

  13. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination.

    PubMed

    Fong, Celesta; Weerawardena, Asoka; Sagnella, Sharon M; Mulet, Xavier; Krodkiewska, Irena; Chong, Josephine; Drummond, Calum J

    2011-03-15

    The neat and lyotropic phase behavior of eight new ethylene oxide amphiphiles (EO = 1-8) with a hexahydrofarnesyl chain (3,7,11-trimethyldodecyl) and narrow polydispersity (>98.5% purity) is reported. Below five EO units the behavior of the neat surfactants show only a glass transition, Tg ∼ -90 °C. Above four EO units, crystallization (Tcrys) and crystal-isotropic liquid (Tm) transitions are also observed that increase with degree of ethoxylation of the surfactant headgroup. The lyotropic liquid crystalline phase behavior spans a complex spectrum of surfactant-water interfacial curvatures. Specifically, inverse phases are present below ambient temperatures for EO < 4, with HFarn(EO)2 exhibiting an inverse hexagonal (H(II)) phase stable to dilution. The phase diagram of HFarn(EO)3 displays both the gyroid (Ia3d) and double diamond (Pn3m) inverse bicontinuous cubic phases, with the latter being thermodynamically stable in excess water within the physiological regime. There is a strong preference for planar bilayer structures at intermediate headgroup ethoxylation, with the crossover to normal phases occurring at HFarn(EO)(7-8) which exhibits normal hexagonal (H(I)) and cubic (Q(I)) phases at ambient temperatures. The toxicity of colloidal dispersions of these EO amphiphiles was assayed against normal breast epithelial (HMEpiC) and breast cancer (MCF7) cell lines. The IC50 of the EO amphiphiles was similar in both cell lines with moderate toxicity ranging from ca. <5 to 140 μM in an in vitro cell viability assay. Observations are qualitatively rationalized in terms of the molecular geometry of the surfactant. The physicochemical behavior of the HFarnesyl ethylene oxide amphiphiles is compared to other ethylene oxide surfactants.

  14. Comparison of methanol and ethylene glycol oxidation by alloy and Core-Shell platinum based catalysts

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Burstein, L.; Rosenberg, Yu.; Peled, E.

    2011-10-01

    Two Core-Shell, RuCore-PtShell and IrNiCore-PtRuShell, XC72-supported catalyst were synthesized in a two-step deposition process with NaBH4 as reducing agent. The structure and composition of the Core-Shell catalysts were determined by EDS, XPS and XRD. Electrochemical characterization was performed with the use of cyclic voltammetry. Methanol and ethylene glycol oxidation activities of the Core-Shell catalysts (in terms of surface and mass activities) were studied at 80 °C and compared to those of a commercial Pt-Ru alloy catalyst. The surface activity of the alloy based catalyst, in the case of methanol oxidation, was found to be superior as a result of optimized surface Pt:Ru composition. However, the mass activity of the PtRu/IrNi/XC72 was higher than that of the alloy based catalyst by ∼50%. Regarding ethylene glycol oxidation, while the surface activity of the alloy based catalyst was slightly higher than that of the Pt/Ru/XC72 catalyst, the latter showed ∼66% higher activities in terms of A g-1 of Pt. These results show the potential of Core-Shell catalysts for reducing the cost of catalysts for DMFC and DEGFC.

  15. Chemical kinetic analysis of detonability-enhancing strategies for ethylene-oxidizer mixtures

    NASA Astrophysics Data System (ADS)

    St. George, Andrew; Driscoll, R.; Anand, V.; Gutmark, E.

    2016-11-01

    Four detailed chemical kinetic mechanisms are used in conjunction with an empirical detonation cell width model to numerically assess strategies to increase the detonation sensitivity of ethylene-oxidizer mixtures. Using this method, reasonable agreement is achieved with computed cell width and the available experimental data. Elevated initial pressures significantly reduce cell width for a wide range of equivalence ratios, yielding 80% reduction at stoichiometric conditions for a tenfold increase in pressure. Elevated initial temperatures have almost no effect on the cell width at stoichiometric conditions, but yield 80% reduction at lean conditions when the initial temperature is doubled. Reduced nitrogen dilution within the oxidizer dramatically reduces the cell width for the entire computed range of equivalence ratios. Introducing hydrogen as a fuel additive yields mild improvement to detonation sensitivity at stoichiometric conditions, but requires relatively high H2 concentrations and is ineffective when coupled with elevated initial pressures. Introduction of supplemental oxygen and increasing the initial reactant pressure appears to be the most effective approach to enhance detonability for ethylene-oxidizer mixtures.

  16. Morphological, rheological and electrochemical studies ofpoly(ethylene oxide) electrolytes containing fumed silicananoparticles

    SciTech Connect

    Xie, Jiangbing; Kerr, John B.; Duan, Robert G.; Han, Yongbong

    2003-06-01

    In this paper, the rheology and crystallization of composite Poly(Ethylene Oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting point were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

  17. Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide).

    PubMed

    Pereda, Mariana; El Kissi, Nadia; Dufresne, Alain

    2014-06-25

    Polysaccharide nanocrystals with a rodlike shape but with different dimensions and specific surface area were prepared from cotton and capim dourado cellulose, and with a plateletlike morphology from waxy maize starch granules. The rheological behavior of aqueous solutions of poly(ethylene oxide) (PEO) with different molecular weights when adding these nanoparticles was investigated evidencing specific interactions between PEO chains and nanocrystals. Because PEO also bears hydrophobic moieties, it was employed as a compatibilizing agent for the melt processing of polymer nanocomposites. The freeze-dried mixtures were used to prepare nanocomposite materials with a low density polyethylene matrix by extrusion. The thermal and mechanical behavior of ensuing nanocomposites was studied.

  18. Synthesis and Properties of Highly Dispersed Ionic Silica–Poly(ethylene oxide) Nanohybrids

    PubMed Central

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent. PMID:23351113

  19. [Preparation of budesonide-poly (ethylene oxide) solid dispersions using supercritical carbon dioxide and in vitro evaluation].

    PubMed

    Liu, Hui; Pan, Wei-san; Zhou, Li-li; Zhang, Zhi-hong

    2007-02-01

    An application of supercritical fluids technology for processing of budesonide-poly (ethylene oxide) solid dispersions was presented. The correlations of the operation parameters in the preparation process were studied. Solid dispersions of budesonide in poly (ethylene oxide) were prepared using a static method for supercritical carbon dioxide and characterized by powder X-ray diffractometry, differential scanning calorimetry, intrinsic dissolution, and in vitro dissolution. It was found that the optimum condition of solid dispersions formation was as follows: temperature, 40 degrees C ; pressure, 20 MPa; the ratio of budesonide and poly (ethylene oxide) , 1: 10. Drug existed in amorphous state in hydrophilic poly (ethylene oxide) carriers and intrinsic solubility and dissolution rates were significantly enhanced. The mechanism of the enhanced dissolution may be attributed to the amorphous character of the budesonide, improvement of the wettability of the hydrophobic budesonide, together with the formation of hydrogen bond of budesonide and hydrophilic poly (ethylene oxide). The supercritical fluids process can be used as an alternative method for preparation of solid dispersions.

  20. Ripening, storage temperature, ethylene action, and oxidative stress alter apple peel phytosterol metabolism.

    PubMed

    Rudell, David R; Buchanan, David A; Leisso, Rachel S; Whitaker, Bruce D; Mattheis, James P; Zhu, Yanmin; Varanasi, Vijay

    2011-08-01

    The chilling conditions of apple cold storage can provoke an economically significant necrotic peel disorder called superficial scald (scald) in susceptible cultivars. Disorder development can be reduced by inhibiting ethylene action or oxidative stress as well as intermittent warming. It was previously demonstrated that scald is preceded by a metabolomic shift that results in altered levels of various classes of triterpenoids, including metabolites with mass spectral features similar to β-sitosterol. In this study, a key class of phytosterol metabolites was identified. Changes in peel tissue levels of conjugates of β-sitosterol and campesterol, including acylated steryl glycosides (ASG), steryl glycosides (SG) and steryl esters (SE), as well as free sterols (FS), were determined during the period of scald development. Responses to pre-storage treatment with the ethylene action inhibitor, 1-methylcyclopropene, or an antioxidant (diphenylamine), rapid temperature elevation, and cold acclimation using intermittent warming treatments were evaluated. Diphenylamine, 1-MCP, and intermittent warming all reduced or prevented scald development. ASG levels increased and SE levels decreased in untreated control fruit during storage. Removing fruit from cold storage to ambient temperature induced rapid shifts in ASG and SE fatty acyl moieties from unsaturated to saturated. FS and SG levels remained relatively stable during storage but SG levels increased following a temperature increase after storage. ASG, SE, and SG levels did not increase during 6 months cold storage in fruit subjected to intermittent warming treatment. Overall, the results show that apple peel phytosteryl conjugate metabolism is influenced by storage duration, oxidative stress, ethylene action/ripening, and storage temperature.

  1. Chitin-incorporated poly(ethylene oxide)-based nanocomposite electrolytes for lithium batteries.

    PubMed

    Stephan, A Manuel; Kumar, T Prem; Kulandainathan, M Anbu; Lakshmi, N Angu

    2009-02-19

    Nanocomposite polymer electrolytes (NCPE), with different proportions of poly(ethylene oxide)/LiClO(4)/chitin were prepared by a hot press method. Nanochitin, a biopolymer, poly(beta-(1-->4)-N acetyl-d-glucosamine) was incorporated as a filler in poly(ethylene oxide) (PEO). The ionic conductivity of the composite polymer electrolytes was enhanced by one order upon addition of nanochitin. The lithium transference number, t(Li)(+), was increased from 0.24 to 0.51 upon chitin addition. The membranes were subjected to scanning electron microscopy, thermogravimetric-differential thermal analysis, differential scanning calorimetry, ionic conductivity, and Fourier transform infrared (FTIR) spectroscopy analysis. The free volume V(f) was probed by positron annihilation lifetime spectroscopy studies at 30 degrees C. Li/NCPE/Li symmetric cells were assembled, and the thickness of the solid electrolyte interface as a function of time was analyzed. This paper also describes FTIR spectroscopic studies of the interface between lithium metal and NCPE, which suggests that the surface chemistry of lithium electrodes in contact with NCPE is dominated by compounds with C-N-Li and C-O-Li bonding.

  2. Local Structure and Ion Transport in Glassy Poly(ethylene oxide styrene) Copolymers

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Mays, Jimmy; Sokolov, Alexei P.; Winey, Karen I.

    2014-03-01

    Polymer electrolytes have attracted attention for a wide variety of applications in energy production such as lithium-ion batteries and fuel cells. The concept of free volume provides important information about ion mobility and chain dynamics in the polymer matrix. Researchers have recently demonstrated that ion transport in glassy polymer can be improved by designing a system with high free volume. We have studied the effect of temperature and humidity on the intermolecular correlations of poly(ethylene oxide styrene-block-styrene) (PEOSt- b-St) block copolymer and poly(ethylene oxide styrene) (PEOSt) homopolymer using in situ multi-angle x-ray scattering across a wide range of scattering angles (q = 0.007-1.5 Å-1) . An increase in backbone-to-backbone distance is observed, indicating an increase in free volume between different polymer main chains. Structural characterization of the polymer segments will be discussed together with conductivity and dielectric results to better understand the ion transport mechanism in the local environment of the polymer system. Department of Chemistry, University of Tennessee.

  3. Atomistic simulation of CO2 solubility in poly(ethylene oxide) oligomers

    NASA Astrophysics Data System (ADS)

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2014-06-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henry's constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henry's constant. Dependence of the calculated Henry's constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length.

  4. A study on optical absorption and constants of doped poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Al-Faleh, R. S.; Zihlif, A. M.

    2011-05-01

    Thin films of polymer electrolyte based on poly(ethylene oxide) doped with sodium iodide (NaI) were prepared using the solution cast method. The films obtained have average thickness of 70 μm and different NaI concentrations. Absorption and reflectance spectra of UV-radiation were studied in the wavelength range 300-800 nm. The optical results were analyzed in terms of absorption formula for non-crystalline materials. The optical energy gap and the basic optical constants, refractive index, and dielectric constants of the prepared films have been investigated and showed a clear dependence on the NaI concentration. The interpreted absorption mechanism is a direct electron transition. The observed optical energy gap for neat poly(ethylene oxide) is about 2.6 eV, and decreases to a value 2.36 eV for the film of 15 wt% NaI content. It was found that the calculated refractive index and the dielectric constants of the polymer electrolyte thin films increase with NaI content. Models were used to describe the dependences of the dielectric constant on the NaI concentration, and the refractive index on the incident photon energy.

  5. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  6. EFFECTS OF CHEMICAL PROCESSING AND OXIDE ETHYLENE STERILIZATION ON CORTICAL AND CANCELLOUS RAT BONE: A LIGHT AND ELECTRON SCANNING MICROSCOPY STUDY

    PubMed Central

    Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista

    2015-01-01

    To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450

  7. Monitoring occupational exposure to ethylene oxide by the determination of hemoglobin adducts.

    PubMed

    van Sittert, N J; Beulink, G D; van Vliet, E W; van der Waal, H

    1993-03-01

    In a study on workers in a chemical plant where ethylene oxide (EtO) is manufactured and partly used for ethylene glycol production, exposure to EtO was monitored during annual periodic health assessments in January 1988, December 1988, and March 1990 by the determination of the level of 2-hydroxyethylvaline (HOEtVal) in hemoglobin. The HOEtVal levels in workers corresponded with the potential EtO exposures. The highest level was found in December 1988, in blood samples collected 1-2 months after a shut-down, maintenance, and start-up program. The range of adduct levels found in the three examinations indicated that average EtO exposures during the 4 months preceding blood sampling were below 0.5 ppm. It was demonstrated that the method allows for the accurate monitoring of low levels of EtO exposure and provides personalized time-integrated exposure data with great discriminative power. In addition, the method may serve to identify unexpected personal exposures, which may lead to targeted exposure control measures.

  8. Nanopowder Metal Oxide for Photoluminescent Gas Sensing

    NASA Astrophysics Data System (ADS)

    Zhyrovetsky, V. M.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.

    2017-02-01

    Gas sensing properties of metal oxide nanopowders (ZnO, TiO2, WO3, SnO2) with average diameters of 40-60 nm were analyzed by room-temperature photoluminescence spectroscopy. The influence of gas environment (O2, N2, H2, CO, CO2) on the emission intensity was investigated for metal oxide nanopowders with surface doped by impurities (Pt, Ag, Au, Sn, Ni or Cu). Established physicochemical regularities of modification of surface electronic states of initial and doped nanopowders during gas adsorption. The nature of metal oxide nanopowder gas-sensing properties (adsorption capacity, sensitivity, selectivity) has been established and the design and optimal materials for the construction of the multi-component sensing matrix have been selected.

  9. Gelation, swelling and water vapor permeability behavior of radiation synthesized poly(ethylene oxide) hydrogels

    NASA Astrophysics Data System (ADS)

    Savaş, Hülya; Güven, Olgun

    2002-04-01

    In this study, gamma ray induced gelation of aqueous solutions of poly(ethylene oxide), (PEO) with 73.300 Da average molecular weight has been studied. Percent of conversion of polymer into gel as well as swelling behavior were investigated gravimetrically. The effect of the dose rate on these properties was studied. Within the dose rate range studied, it is observed that low dose rate irradiation favors chain scission and although the dominant effect is still crosslinking, %gelation at a given dose decreases. Water vapor permeability (Wvp) of PEO hydrogels has been studied with regard to crosslink density changes and temperature. The water vapor permeability of hydrogels obtained at high dose rate was found to be lower than those obtained at low dose rate which was related to higher crosslink density achieved under higher dose rate irradiations.

  10. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation.

    PubMed

    Rieger, Katrina A; Birch, Nathan P; Schiffman, Jessica D

    2016-03-30

    Electrospinning hydrophilic nanofiber mats that deliver hydrophobic agents would enable the development of new therapeutic wound dressings. However, the correlation between precursor solution properties and nanofiber morphology for polymer solutions electrospun with or without hydrophobic oils has not yet been demonstrated. Here, cinnamaldehyde (CIN) and hydrocinnamic alcohol (H-CIN) were electrospun in chitosan (CS)/poly(ethylene oxide) (PEO) nanofiber mats as a function of CS molecular weight and degree of acetylation (DA). Viscosity stress sweeps determined how the oils affected solution viscosity and chain entanglement (Ce) concentration. Experimentally, the maximum polymer:oil mass ratio electrospun was 1:3 and 1:6 for CS/PEO:CIN and:H-CIN, respectively; a higher chitosan DA increased the incorporation of H-CIN only. The correlations determined for electrospinning plant-derived oils could potentially be applied to other hydrophobic molecules, thus broadening the delivery of therapeutics from electrospun nanofiber mats.

  11. In situ preparation of poly(ethylene oxide)-SiO 2 composite polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Lee, J. Y.; Hong, L.

    Amorphous poly(ethylene oxide) (PEO)-SiO 2 composites are prepared by in situ reactions that involve the simultaneous formation of the polymer network and inorganic nanoparticles. The polymer matrix is formed by ultraviolet irradiation of a PEO macromer, and silica is produced in situ by the sol-gel method. The PEO-SiO 2 composite mixed with LiBF 4 is used as a lithium-ion conducting solid electrolyte and electrochemical transport properties such as ionic conductivity and Li + transference number are measured. A significant increase in the Li + transference number, up to 0.56, is found together with a slight decrease in the ionic conductivity. The results are interpreted in terms of interactions between the surface OH groups of the inorganic particles, the cations, the anions, and the ether oxygen atoms on the PEO backbone.

  12. Industrial-hygiene characterization of ethylene oxide exposures of hospital and nursing-home workers

    SciTech Connect

    Ringenburg, V.L.; Elliott, L.J.; Morelli-Schroth, P.; Molina, D.

    1986-12-01

    Industrial-hygiene surveys were conducted at 12 hospitals and one nursing home to determine possible employee exposure to ethylene oxide (EtO). Different types of exposure situations existed at each of the facilities as a result of various engineering controls, administrative controls and work practices. Sampling indicated that the time-weighted averages (TWAs) of exposure over periods of 36 to 724 minutes ranged from below the limit of detection to 6.7 parts per million (ppm). Personal short-term exposure levels covering 2 to 30 minutes ranged from less than the limit of detection to 103.2ppm. Factors found to be responsible for these higher-than-permissible levels of EtO exposure included improper installation or lack of engineering controls (such as improper placement of the sterilizing operations), unbalanced ventilation systems, and lack of administrative controls resulting in inappropriate work practices.

  13. Ethylene Oxide: Acute Four-Hour and One-Hour Inhalation Toxicity Testing in Rats

    PubMed Central

    Snellings, William M.; Nachreiner, Donald J.; Pottenger, Lynn H.

    2011-01-01

    Ethylene oxide was tested on groups of rats for either 4-hour or 1-hour inhalation exposure, followed by 14 days of observation. Groups of five Sprague-Dawley rats/sex were exposed, and clinical signs and mortality were recorded. Clinical signs noted included irregular breathing, absence of certain reflexes, and tremors. Rats that died had moderate to severe pulmonary congestion. The calculated LC50 values, reported as ppm by volume (with 95% confidence limits), were as follows. 4-hour LC50 values were 1972 (1887 to 2061) ppm for males; 1537 (1391 to 1698) ppm for females; 1741 (1655 to 1831) ppm for the combined sexes. The 1-hour LC50 values were 5748 (5276 to 6262) ppm for males; 4439 (4034 to 4884) ppm for females; 5029 (4634 to 5459) ppm for the combined sexes. PMID:21785591

  14. Collective motion in Poly(ethylene oxide)/poly(methylmethacrylate) blends

    SciTech Connect

    Farago, Bela; Chen Chunxia; Maranas, Janna K.; Kamath, Sudesh; Colby, Ralph H.; Pasquale, Anthony J.; Long, Timothy E.

    2005-09-01

    We present neutron spin echo and structural measurements on a perdeutereted miscible polymer blend: poly(ethylene oxide)[PEO]/poly(methyl methacrylate)[PMMA], characterized by a large difference in component glass transition temperatures and minimal interactions. The measurements cover the q range 0.35 to 1.66 A{sup -1} and the temperature range T{sub g}-75 to T{sub g}+89 K, where T{sub g} is the blend glass transition. The spectra, obtained directly in the time domain, are very broad with stretching parameters {beta}{approx}0.30. The relaxation times vary considerably over the spatial range considered however at none of the q values do we see two distinct relaxation times. At small spatial scales relaxations are still detectable at temperatures far below T{sub g}. The temperature dependence of these relaxation times strongly resembles the {beta}-relaxation process observed in pure PMMA.

  15. Durability of amide N-chloramine biocides to ethylene oxide sterilization.

    PubMed

    Zhao, Nan; Logsetty, Sarvesh; Liu, Song

    2012-01-01

    The objective of this work is to study the stability of three novel topical antimicrobial dressings consisting of amide N-chloramine structures against ethylene oxide sterilization. Cotton gauze samples bonded with one of three amide N-chloramine structures were subjected to standard ethylene oxide (EtO) sterilization. The amounts of amide N-chloramine structures before and after the sterilization were quantified to indicate the stabilities of these amide N-chloramine structures to the sterilization. The samples after sterilization were challenged with a clinical isolate of healthcare-associated multidrug-resistant Escherichia coli. N-Chloramine structure converted from polymethacrylamide (dressing 2) had the highest durability (89.7% retained active chlorine) toward EtO sterilization; that from hydantoin (dressing 3; 86.3% retained active chlorine) followed; and poly(N-chloroacrylamide) (dressing 1) had the lowest (64.0% retained active chlorine). After EtO sterilization, all the samples still reduced E. coli presence at 5 minutes of contact, with dressing 2 retaining a log 6 reduction. The three tested amide N-chloramine structures could all survive EtO sterilization while retaining percentages of active chlorine ranging from 64.0 to 89.7%. Dressing 2 showed the best durability, whereas dressing 1 had the poorest durability. With the remaining amounts of amide N-chloramine structures after EtO sterilization, all the dressings could still reduce E. coli numbers within 5 minutes of contact, and dressing 2 resulted in a log 6 reduction in colony count.

  16. Poly(ethylene oxide) star polymer adsorption at the silica/aqueous interface and displacement by linear poly(ethylene oxide).

    PubMed

    Saigal, Trishna; Riley, John K; Golas, Patricia Lynn; Bodvik, Rasmus; Claesson, Per M; Matyjaszewski, Krzysztof; Tilton, Robert D

    2013-03-26

    Multiarm star copolymers with approximately 460 poly(ethylene oxide) (PEO) arms that have a degree of polymerization N = 45 were synthesized via atom transfer radical polymerization (ATRP) of PEO-methacrylate macromonomers in the presence of divinyl benzene cross-linkers. These are an example of molecular or nanoparticulate brushes that are of interest as steric stabilizers or boundary lubrication agents when adsorbed from solution to a solid/aqueous interface. We use ellipsometry to measure adsorption isotherms at the silica/aqueous interface for PEO star polymers and linear PEO chains having molecular weights comparable either to the star polymer or to the individual arms. The compactness of the PEO star polymers (molecular weight 1.2 × 10(6)) yields a saturation surface excess concentration that is approximately 3.5 times greater than that of the high molecular weight (1 × 10(6)) linear PEO. Adsorption of low molecular weight (6000) linear PEO was below the detection limit. Competitive adsorption experiments were conducted with ellipsometry, complemented by independent quartz crystal microbalance with dissipation (QCM-D) measurements. Linear PEO (high molecular weight) displaced preadsorbed PEO star polymers over the course of approximately 1.5 h, to form a mixed adsorbed layer having not only a significantly lower overall polymer surface excess concentration, but also a significantly greater amount of hydrodynamically entrapped water. Challenging a preadsorbed linear PEO (high molecular weight) layer with PEO star polymers produced no measurable change in the overall polymer surface excess concentration, but changes in the QCM-D energy dissipation and resonance frequency suggested that the introduction of PEO star polymers caused a slight swelling of the layer with a correspondingly small increase in entrapped water content.

  17. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  18. Atmospheric chemistry of toxic contaminants 2. Saturated aliphatics: Acetaldehyde, dioxane, ethylene glycol ethers, propylene oxide

    SciTech Connect

    Grosjean, D. )

    1990-11-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the saturated aliphatic contaminants acetaldehyde, dioxane, ethylene glycol ethers (methyl, ethyl, n-butyl) and propylene oxide. In-situ formation is of major importance for acetaldehyde. In-situ removal involves reaction with OH (all compounds) and, for acetaldehyde, photolysis and reaction with NO{sub 3}. Acetaldehyde, dioxane, and the ethers are rapidly removed (half-lives of less than one day), leading to PAN (acetaldehyde) and to 2-oxodioxane and formaldehyde (dioxane). Reaction products of the glycol ethers include a large number of hydroxyesters, hydroxyacids, and hydroxycarbonyls. Propylene oxide reacts only slowly with OH, with an atmospheric half-life of 3 - 10 days, to yeild formaldehyde, acetaldehyde, and PAN. Uncertainties in the reaction mechanisms for dioxane, the glycol ethers, and propylene oxide are discussed and include C-C vs C-O bond scission in alkoxy radicals as well as alkoxy radical unimolecular decomposition vs reaction with oxygen.

  19. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.

    PubMed

    Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun

    2015-03-21

    Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method.

  20. Biomaterial based sulphur di oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Sarkar, A.

    2013-06-01

    Biomaterials are getting importance in the present research field of sensors. In this present paper performance of biomaterial based gas sensor made of gum Arabica and garlic extract had been studied. Extract of garlic clove with multiple medicinal and chemical utility can be proved to be useful in sensing Sulphur di Oxide gas. On exposure to Sulphur di Oxide gas the material under observation suffers some temporary structural change, which can be observed in form of amplified potentiometric change through simple electronic circuitry. Exploiting this very property a potentiometric gas sensor of faster response and recovery time can be designed. In this work sensing property of the said material has been studied through DC conductance, FTIR spectrum etc.

  1. Confinement effects on the crystallization of poly(ethylene oxide) nanotubes.

    PubMed

    Maiz, Jon; Martin, Jaime; Mijangos, Carmen

    2012-08-21

    In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results.

  2. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    SciTech Connect

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  3. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  4. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  5. Health Hazard Evaluation Report HETA 83-166-1594, Witco Chemical Corporation, Perth Amboy, New Jersey. [Ethylene oxide, glycols, and adipic acid

    SciTech Connect

    Cummings, C.E.; Roseman, J.

    1985-05-01

    Area and personel air samples were analyzed for ethylene oxide, glycols, and adipic-acid at the Witco Chemical Corporation, Perth Amboy, New Jersey from November to December, 1983 and May, 1984. The evaluation was requested by the union to investigate possible health effects due to polychlorinated biphenyls (PCBs), glycols, and ethylene oxide. The evaluation was assigned to the New Jersey State Department of Health. The authors conclude that health hazards due to ethylene oxide and airborne fatty acid exposures exist. Recommendations include improving ventilation and work practices and implementing an OSHA approved respirator program.

  6. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  7. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat.

    PubMed

    Khan, M Iqbal R; Nazir, Faroza; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2015-01-15

    We have studied the influence of selenium (Se) and sulfur (S) in the protection of photosynthetic capacity of wheat (Triticum aestivum) against cadmium (Cd) stress. The involvement of ethylene and its interaction with proline and antioxidant metabolism in the tolerance of plants to Cd stress was evaluated. Application of Se or S alleviated Cd-induced oxidative stress by increasing proline accumulation as a result of increased activity of glutamyl kinase (GK) and decreased activity of proline oxidase (PROX). These nutrients also induced the activity of ATP-sulfurylase and serine acetyl transferase and the content of cysteine (Cys), a precursor for the synthesis of both reduced glutathione (GSH) and ethylene. Further, application of Se and S to plants under Cd stress reduced ethylene level and increased the activity of glutathione reductase (GR) and glutathione peroxidase (GPX), reduced oxidative stress and improved photosynthesis and growth. The involvement of ethylene in Se and S-mediated alleviation of Cd stress was substantiated with the use of ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG). The use of AVG reversed the effects of Se and S on ethylene, content of proline and GSH and photosynthesis. The results suggested that Se and S both reversed Cd-induced oxidative stress by regulating ethylene formation, proline and GSH metabolism. Thus, Se or S-induced regulatory interaction between ethylene and proline and GSH metabolism may be used for the reversal of Cd-induced oxidative stress.

  8. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    SciTech Connect

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu; Somorjai, Gabor A.

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.

  9. Enhanced Lithium Ion Transport in Poly(ethylene glycol) Diacrylate-Supported Solvate Ionogel Electrolytes via Chemically Cross-linked Ethylene Oxide Pathways.

    PubMed

    D'Angelo, Anthony J; Panzer, Matthew J

    2017-02-02

    Lithium-ion solvate ionic liquids (SILs), consisting of complexed Li(+) cations and a weakly basic anion, represent an emergent class of nonvolatile liquid electrolytes suitable for lithium-based electrochemical energy storage. In this report, solid-state, flexible solvate ionogel electrolytes are synthesized via UV-initiated free radical polymerization/cross-linking of poly(ethylene glycol) diacrylate (PEGDA) in situ within the [Li(G4)][TFSI] electrolyte, which is formed by an equimolar mixture of lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and tetraglyme (G4). Ion diffusivity measurements reveal enhanced Li(+) diffusion in PEGDA-supported solvate ionogels, as compared to poly(methyl methacrylate)-supported gels that lack ethylene oxide chains. At 21 vol% PEGDA, a maximum Li(+) transport number of 0.58 and a room temperature ionic conductivity of 0.43 mS/cm have been achieved in a solvate ionogel electrolyte that exhibits an elastic modulus of 0.47 MPa. These results demonstrate the importance of polymer scaffold selection on solvate ionogel electrolyte performance for advanced lithium-based batteries.

  10. Fabrication and anti-fouling properties of photochemically and thermally immobilized poly(ethylene oxide) and low molecular weight poly(ethylene glycol) thin films.

    PubMed

    Wang, Hui; Ren, Jin; Hlaing, Aye; Yan, Mingdi

    2011-02-01

    Poly(ethylene oxide) (PEO) and low molecular weight poly(ethylene glycol) (PEG) were covalently immobilized on silicon wafers and gold films by way of the CH insertion reaction of perfluorophenyl azides (PFPAs) by either photolysis or thermolysis. The immobilization does not require chemical derivatization of PEO or PEG, and polymers of different molecular weights were successfully attached to the substrate to give uniform films. Microarrays were also generated by printing polymer solutions on PFPA-functionalized wafer or Au slides followed by light activation. For low molecular weight PEG, the immobilization was highly dependent on the quality of the film deposited on the substrate. While the spin-coated and printed PEG showed poor immobilization efficiency, thermal treatment of the PEG melt on PFPA-functionalized surfaces resulted in excellent film quality, giving, for example, a grafting density of 9.2×10(-4)Å(-2) and an average distance between grafted chains of 33Å for PEG 20,000. The anti-fouling property of the films was evaluated by fluorescence microscopy and surface plasmon resonance imaging (SPRi). Low protein adsorption was observed on thermally-immobilized PEG whereas the photoimmobilized PEG showed increased protein adsorption. In addition, protein arrays were created using polystyrene (PS) and PEG based on the differential protein adsorption of the two polymers.

  11. Non-invasive ethylene quantification in attached fruit headspace at 1 ppb by gas chromatography - mass spectrometry.

    PubMed

    Pereira, Lara; Pujol, Marta; Garcia-Mas, Jordi; Phillips, Michael A

    2017-03-28

    Ethylene is a gaseous plant hormone involved in defense, adaptations to environmental stress, and fruit ripening. Its relevance to the latter makes its detection highly useful to physiologists interested in ripening onset. Produced as a sharp peak during the respiratory burst, ethylene is biologically active at tens of nL·L(-1) . Reliable quantification at such concentrations generally requires specialized instrumentation. Here we present a rapid, high sensitivity method for detecting ethylene in attached fruit using a conventional gas chromatography - mass spectrometry (GC-MS) system and in situ headspace collection chambers. We apply this method to melon (Cucumis melo L.), a unique species consisting of climacteric and non-climacteric varieties, with a high variation in the climacteric phenotype among climacteric types. Using a population of recombinant inbred lines (RILs) derived from highly climacteric ("Védrantais", cantalupensis type) and non-climacteric ("Piel de sapo", inodorus type) parental lines, we observed a significant variation for the intensity, onset, and duration of the ethylene burst during fruit ripening. Our method does not require concentration, sampling times over 1 h, or fruit harvest. We achieved a limit of detection of 0.41 ± 0.04 nL·L(-1) and a limit of quantification of 1.37 ± 0.13 nL·L(-1) with an analysis time of 2.6 min per sample. Validation of the analytical method indicated that linearity (>98%), precision (CV ≤ 2%), and sensitivity compared favorably with dedicated optical sensors. This study adds to evidence of the characteristic climacteric ethylene burst as a complex trait whose intensity in our RIL population lies along a continuum in addition to two extremes. This article is protected by copyright. All rights reserved.

  12. Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane → Ethylene Coupling. Scope and Mechanistic Observations.

    PubMed

    Peter, Matthias; Marks, Tobin J

    2015-12-09

    Using abundant soft oxidants, a high methane-to-ethylene conversion might be achievable due to the low thermodynamic driving force for over-oxidation. Here we report on the oxidative coupling of methane by gaseous S2 (SOCM). The catalytic properties of Pd/Fe3O4 are compared with those of Fe3O4, and it is found that high ethylene selectivities can be achieved without noble metals; conversion and selectivity on Fe3O4 are stable for at least 48 h at SOCM conditions. SOCM data for 10 oxides are compared, and ethylene selectivities as high as 33% are found; the C2H4/C2H6 ratios of 9-12 observed at the highest S2 conversions are significantly higher than the C2H4/C2H6 ratios usually found in the CH4 coupling with O2. Complementary in-detail analytical studies show that, on Mg, Zr, Sm, W, and La catalysts, which strongly coke during the reaction, lower ethylene selectivities are observed than on Fe, Ti, and Cr catalysts, which only coke to a minor extent. Further catalyst-dependent changes during SOCM in surface area, surface composition, and partial conversion to oxysulfides and sulfides are discussed. Evidence concerning the reaction mechanism is obtained taking into account the selectivity for the different reaction products versus the contact time. CH4 coupling proceeds non-oxidatively with the evolution of H2 on some catalysts, and evidence is presented that C2H4 and C2H2 formation occur via C2H6 and C2H4 dehydrogenation, respectively.

  13. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural.

    PubMed

    Pacheco, Joshua J; Davis, Mark E

    2014-06-10

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed.

  14. Small angle x-ray scattering study of the interaction of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers with lipid bilayers.

    SciTech Connect

    Firestone, M. A.; Wolf, A. C.; Seifert, S.; Univ. Chicago

    2003-11-01

    The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic poly(propylene oxide), PPO, block has been found to be a critical determinant of the nature of triblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers possessing a PPO chain length commensurate with the acyl chain dimensions of the lipid bilayer yield highly ordered, swollen lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Triblock copolymers of lesser PPO chain length yield materials with structural characteristics similar to a simple dispersion of DMPC in water. Increasing the concentration (from 4 to 12 mol %) of well-integrated triblock copolymers enhances the structural ordering of the lamellar phase, while concentrations exceeding 16 mol % result in the formation of a hexagonal phase. Examination of temperature-induced changes in the structure of these mesophases (complex fluids) reveals that if the temperature is reduced sufficiently, all compositions exclude polymer and thus exhibit the characteristic SAXS pattern for hydrated DMPC bilayers. Increasing the temperature promotes better insertion of the polymers possessing PPO chain lengths sufficient for membrane insertion. No temperature-induced structural changes are observed in compositions prepared with PEO-PPO-PEO polymers that feature PPO length insufficient to permit full incorporation into the lipid bilayer.

  15. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    SciTech Connect

    Patel, Mogon; Bowditch, Martin; Jones, Ben; Netherton, David; Khan, Niaz; Letant, Sonia; Maxwell, Robert S.; Birdsell, Stephen A.

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively. We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.

  16. Volatile out gassing characteristics of highly filled ethylene vinyl acetate binder materials: Gas phase infra-red spectroscopy

    DOE PAGES

    Patel, Mogon; Bowditch, Martin; Jones, Ben; ...

    2012-12-08

    Gas phase Infra-red (IR) spectroscopy has been used to investigate volatile out gassing properties of highly filled poly (ethylene-co-vinyl acetate) materials. In these studies, a Scout-ENTM heated gas cell was interfaced to a vacuum FTIR spectrometer, and the quantification of evolved species was achieved through calibration of the gas cell with certified gas standards. The volatile out gassing properties were monitored as a function of time during storage at 75°C under vacuum conditions (< 1mbar). Acetic acid, carbon dioxide and water were identified as the major out gassing products through IR absorption peaks at 1797, 2354 and 3853 cm-1, respectively.more » We present a comparison of three highly filled poly (ethyleneco- vinyl acetate) resins.« less

  17. Influence of ethylene glycol on CaCO 3 particles formation via carbonation in the gas-slurry system

    NASA Astrophysics Data System (ADS)

    Konopacka-łyskawa, Donata; Lackowski, Marcin

    2011-04-01

    Calcium carbonate precipitation was investigated in the gas-slurry system in the reaction of calcium hydroxide and carbon dioxide. The precipitation process was occurred in the presence of ethylene glycol (EG). The used organic additive changed the viscosity of reactive mixture, the solubility of carbon dioxide and the solubility of calcium carbonate which influence CaCO 3 precipitation conditions. The course of reaction was monitored by conductivity probe. The increase concentration of ethylene glycol in the reactive mixture caused higher CO 2 usage to achieve the end point of reaction. Calcium carbonate was precipitated as calcite and produced CaCO 3 particles formed agglomerates in all experiments. The size of obtained CaCO 3 particles decreased when the EG concentration increased from 0% to 15% (by vol.). The further increase of EG concentration in solution up to 20% resulted in an increase of the size of CaCO 3 particles.

  18. On the interactions between poly(ethylene oxide) and graphite oxide: A comparative study by different computational methods

    NASA Astrophysics Data System (ADS)

    Garcia-Yoldi, I.; Álvarez, F.; Colmenero, J.

    2013-03-01

    The aim of this work is to investigate polymer...substrate interactions for a polymer nanocomposite material: poly(ethylene oxide) (PEO) confined in graphite oxide (GO). Six discrete and simplified models (one for PEO and five for GO) have been chosen in order to reproduce the most likely PEO...GO interactions. Twelve potential interaction energy curves have been built using the models and curve minima have been optimized using the 2nd order Møller-Plesset perturbation theory (MP2)/6-31+G(d) method. The intermolecular interactions have been analyzed in terms of distances, stabilities, and bond critical points properties revealing several dispersion assisted π-interactions and the most stable hydrogen bond interaction between the hydrogen of the GO hydroxyl groups and the oxygen of the PEO. MP2 results have been compared with five density functionals developed by Truhlar and Zhao (M05, M05-2X, M05-2X, M06-HF, and M06-L).

  19. Industrywide studies report: a walk through survey of Ross Laboratories (Division of Abbott Laboratories), Columbus, Ohio. [Ethylene oxide

    SciTech Connect

    Greife, A.; Steenland, K.

    1985-10-02

    A walk-through survey was conducted at Ross Laboratories, a Division of Abbott Laboratories, Columbus, Ohio in August, 1985. The purpose of the survey was to determine the feasibility of including the facility in a NIOSH industry wide mortality/industrial hygiene survey of ethylene oxide. The facility produced infant formula and infant related products, including nipples. The company had a full time nurse on the first and second shifts. A physician was available on a contract basis. New employees were given preemployment physicals. Employees received annual physicals until 1982 after which they became optional. The physicals did not include any components relating to ethylene-oxide exposure. The authors conclude that the personnel records are not adequate to identify a cohort of exposed individuals at the facility. The facility will not be included in the NIOSH study.

  20. Synthesis of eight-shaped poly(ethylene oxide) by the combination of Glaser coupling with ring-opening polymerization.

    PubMed

    Wang, Guowei; Fan, Xiaoshan; Hu, Bin; Zhang, Yannan; Huang, Junlian

    2011-10-18

    The eight-shaped poly(ethylene oxide) (PEO) is synthesized by a combination of Glaser coupling with ring-opening polymerization (ROP). Firstly, the star-shaped (PEO-OH)(4) is synthesized by ROP of ethylene oxide (EO) using pentaerythritol as an initiator and diphenylmethyl potassium (DPMK) as a deprotonated agent, and then the alkyne group is introduced onto the PEO arm-end to give (PEO-Alkyne)(4) in a NaH/tetrahydrofuran (THF) system. The intramolecular cyclization is carried out by a Glaser coupling reaction in a pyridine/CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA) system at room temperature in an air atmosphere, and eight-shaped PEO was formed with high efficiency (almost 100%). The target polymers and intermediates were well characterized by SEC, MALDI-TOF MS, (1)H NMR and FT-IR in detail.

  1. Industry-wide studies report of an industrial hygiene of Kettering Medical Center, Kettering, Ohio. [Ethylene oxide

    SciTech Connect

    Ringenburg, V.L.; Morelli-Schroth, P.; Elliott, L.J.

    1986-05-01

    Environmental and breathing-zone samples were analyzed for ethylene oxide in the respiratory therapy area of Kettering Medical Center, Kettering, Ohio in August, 1985. Work practices and engineering controls were observed. Engineering controls included local exhaust ventilation over sterilizer doors and the pressure relief valve and floor drain, and dedicated exhaust ventilation of the sterilizers and aerators. Effective work practices included wearing cotton gloves when unloading sterilizers and pulling instead of pushing carts containing sterilized items.

  2. Isothermal Crystallization of Poly(ethylene oxide) / Single Walled Carbon Nanotube Nanocomposites

    NASA Astrophysics Data System (ADS)

    Lorenzo, Arnaldo; Chatterjee, Tirtha; Krishnamoorti, Ramanan

    2011-03-01

    The isothermal crystallization behavior of poly(ethylene oxide)/single walled carbon nanotubes (PEO/SWNT) nanocomposites were studied with a focus on the overall crystallization kinetics and the morphological evolution of PEO using differential scanning calorimetry and in-situ small angle x-ray scattering measurements, respectively. The overall crystallization process of the PEO was strongly affected by lithium dodecyl sulfate (LDS) stabilized carbon nanotubes. Further, analysis of the overall crystallization kinetics showed that the PEO chains were topologically constrained by the presence of LDS with an increased energy barrier associated with nucleation and crystal growth, and the nanotubes further act as a barrier to chain transport or enhance the LDS action on the PEO chains. The energy penalty and diffusional barrier to chain transport in the nanocomposites disrupt the PEO crystal helical conformation. This destabilization leads to formation of thinner crystal lamellae and suggests that the crystallization kinetics is primarily controlled by the growth process. This study is particularly interesting considering the suppression of the PEO crystallinity in presence of small amounts of Lithium ion based surfactant and carbon nanotubes.

  3. Flocculation with poly(ethylene oxide)/tyrosine-rich polypeptide complexes.

    PubMed

    Lu, Chen; Pelton, Robert

    2005-04-26

    New insights into the mechanism for the flocculation of aqueous colloids by the sequential addition of a water-borne phenolic polymer, called cofactor, followed by very high molecular poly(ethylene oxide) (PEO) are presented. It is proposed that PEO/cofactor complexes form in the aqueous phase and adsorb onto the surfaces of the target colloidal particles. Flocculation will occur if PEO/cofactor complex on one particle will bind to adsorbed complex on a second particle; i.e., if the complexes are sticky. The proposed mechanism was illustrated by flocculation experiments with precipitated calcium carbonate, very high molecular weight PEO, and a polypeptide cofactor called PEY1 which was a 1:1 random copolymer of l-glycine and l-tyrosine. Independent measurements of the PEO/PEY1 complex properties, in the absence of calcium carbonate, were used to support the mechanism. In order for PEO/PEY1 complexes to be sticky, they must simultaneously have unbound PEY1 and polymer segments. With time the complexes deactivate (i.e., lose their stickiness) by a reconfiguration process which results in elimination of either unbound PEY1 or PEO segments.

  4. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  5. Li ion conductors based on laponite/poly(ethylene oxide) composites

    SciTech Connect

    Doeff, M.M.; Reed, J.S.

    1997-11-01

    Synthesis and characterization of single ion conducting poly(ethylene oxide) (PEO)/Li-laponite nanocomposites are reported. The amount of PEO that can be intercalated into laponite, a synthetic hectorite with high surface area, ranges from about 0.7g/g Li-laponite when the polymer average molecular weight is 1,000 or above, to about 1 g/g for oligomers of average molecular weight 500. The interlayer spacing increases from about 10 {angstrom} in the dry clay to 20--24 {angstrom} in the nanocomposites, depending upon polymer molecular weight, and the average particle size increases proportionally, but is still in the sub-micron range. AC impedance measurements on the clear, slightly brittle, self-supporting films indicate that the nanocomposite conductivity is greatly enhanced over that of the dry clay. A maximum of about 10{sup {minus}6} S/cm at 80 C is obtained for materials containing a slight excess of polymer, and conductivities of nanocomposites containing PEO were generally higher than that of those containing oxymethylene linked polyethylene glycol (amorphous PEOs). Suggestions for further improving conductivity and mechanical properties of these novel materials are presented.

  6. Photopolymerization-induced crystallization and phase separation in poly(ethylene oxide)/triacrylate blends

    SciTech Connect

    Park, Soo Jeoung; Kyu, Thein

    2008-12-28

    The present article describes experimental and theoretical investigations of miscibility and crystallization behavior of blends of poly(ethylene oxide) (PEO) and triacrylate monomer (TA) using differential scanning calorimetry and optical microscopy. The PEO/TA blends manifested a single T{sub g} varying systematically with composition suggestive of a miscible character in their amorphous states. Moreover, there occurs melting point depression of PEO crystals with increasing TA. A phase diagram was subsequently established that exhibited a solid+liquid coexistence region bound by the liquidus and solidus lines, followed by an upper critical solution temperature (UCST) at a lower temperature. The emerging phase morphology was investigated to verify the coexistence regions. Upon photopolymerization in the isotropic melt above the melting point depression curve, both the UCST and the melting temperatures move upward and eventually surpass the reaction temperature, resulting in phase separation as well as crystallization of PEO driven by the changing supercooling, i.e., the thermodynamic driving force. Of particular interest is the interplay between photopolymerization-induced phase separation and crystallization, which eventually determines the final phase morphology of the PEO/TA blend such as crystalline lamellae, sheaf, or spherulites in isotropic liquid, phase separated domains, and viscous fingering liquids.

  7. Photopolymerization-induced crystallization and phase separation in poly(ethylene oxide)/triacrylate blends.

    PubMed

    Park, Soo Jeoung; Kyu, Thein

    2008-12-28

    The present article describes experimental and theoretical investigations of miscibility and crystallization behavior of blends of poly(ethylene oxide) (PEO) and triacrylate monomer (TA) using differential scanning calorimetry and optical microscopy. The PEO/TA blends manifested a single T(g) varying systematically with composition suggestive of a miscible character in their amorphous states. Moreover, there occurs melting point depression of PEO crystals with increasing TA. A phase diagram was subsequently established that exhibited a solid+liquid coexistence region bound by the liquidus and solidus lines, followed by an upper critical solution temperature (UCST) at a lower temperature. The emerging phase morphology was investigated to verify the coexistence regions. Upon photopolymerization in the isotropic melt above the melting point depression curve, both the UCST and the melting temperatures move upward and eventually surpass the reaction temperature, resulting in phase separation as well as crystallization of PEO driven by the changing supercooling, i.e., the thermodynamic driving force. Of particular interest is the interplay between photopolymerization-induced phase separation and crystallization, which eventually determines the final phase morphology of the PEO/TA blend such as crystalline lamellae, sheaf, or spherulites in isotropic liquid, phase separated domains, and viscous fingering liquids.

  8. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  9. Ethylene oxide dose and dose-rate effects in the mouse dominant-lethal test

    SciTech Connect

    Generoso, W.M.; Cain, K.T.; Hughes, L.A.; Sega, G.A.; Braden, P.W.; Gosslee, D.G.; Shelby, M.D.

    1986-01-01

    In the dose-response study, male mice were exposed by inhalation to ethylene oxide (EtO) for 4 consecutive days. Mice were exposed for 6 hr per day to 300 ppm, 400 ppm, or 500 ppm EtO for a daily total of 1800, 2400, or 3000 ppm X hr (total exposures of 7200, 9600 and 12,000 ppm X hr), respectively. In the dose-rate study, mice were given a total exposure of 1800 ppm X hr per day, also for 4 consecutive days, delivered either at 300 ppm in 6 hr, 600 ppm in 3 hr, or 1200 ppm in 1.5 hr. Quantitation of dominant-lethal responses was made on matings involving sperm exposed as late spermatids and early spermatozoa, the most sensitive stages to EtO. In the dose-response study, a dose-related increase in dominant-lethal mutations was observed, the dose-response curve proved to be nonlinear. In the dose-rate study, increasing the exposure concentrations resulted in increased dominant-lethal responses.

  10. Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers.

    PubMed

    Rieger, Katrina A; Schiffman, Jessica D

    2014-11-26

    Due to the persistent spread of antibiotic resistance, commercial antibiotic treatments are proving ineffective. Cinnamaldehyde (CA), a volatile essential oil, eradicates pathogens non-specifically. However, the ability to incorporate essential oils into nanofiber mats has not yet been demonstrated, and, only six studies have electrospun two immiscible phases. Here, CA (0.5 and 5.0%) was incorporated into chitosan/poly(ethylene oxide) (PEO) solutions that were successfully electrospun into mats with ∼ 50 nm fiber diameters. Solid-state NMR results corroborated with release studies wherein the 5.0% CA mats released a statistically higher amount of CA-liquid (545% more) and CA-vapor (279% more) than the 0.5% CA mats. In time dependent cytotoxicity studies, the intrinsic antibacterial activity of chitosan along with the quick release of CA enabled high inactivation rates against Escherichia coli and Pseudomonas aeruginosa. For the first time we have demonstrated chitosan/CA/PEO nanofiber mats can serve as CA delivery vehicles that potentially eradicate pseudomonas infections.

  11. On the Electrical Conductivity of Poly(vinylchloride)/poly(ethylene Oxide) Blends

    NASA Astrophysics Data System (ADS)

    Nasr, G. M.; El-Wahab, S. M. Abd; El-Athem, A. Abd

    2013-03-01

    Physical blending of different polymers is a very popular, simple and economical method of preparing composite with desirable and useful properties. The electrical conductivity of blends of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films has been measured by studying the I-V characteristics at room temperature and temperature dependence of the sample conductivity. The results are presented in the form of I-V characteristics and analysis has been made by interpretation of Poole Frenkel, Fowler-Nordheim and Schottky-Richardson plots. The analysis of these results suggests that Schottky - Richardson mechanism are primarily responsible for the observed conduction. Meanwhile, the percolation concentration of PEO in PVC matrix was found to be round 10%. Furthermore, the mechanism of electrical transport in this system is examined in temperature range 300-350K. The temperature dependence of conductivity gives evidence for the charge carriers transport mechanism via the occurred agreement of experimental results with the employed hopping models.

  12. Ethylene oxide does not extinguish the osteoinductive capacity of demineralized bone. A reappraisal in rats.

    PubMed

    Zhang, Q; Cornu, O; Delloye, C

    1997-04-01

    We examined the influence of ethylene oxide (EO) and gamma irradiation on the osteoinductive capacity of demineralized bone. Demineralized bone powder prepared from Wistar rats was exposed to EO (55 degrees C or 40 degrees C) or gamma irradiation (25 KGy) or was preserved in ethanol. Sterilely-prepared bones served as controls. The powder was packed in a gelatin capsule and implanted for 6 weeks in muscles of 6-week-old female rats. Exposure of demineralized bone particles to EO 55 degrees C resulted in an almost complete loss of osteoinductivity. Irradiated bones lost about 40% of their osteoinductive capacity, while sterilization with EO at 40 degrees C resulted in only a slight alteration of the osteoinductivity, as assessed by the recovered weight ratio, calcium content, alkaline phosphatase activity measurements and histomorphometry. Ethanol treatment had no influence on the new bone yield when compared to controls. As EO exposure at 40 degrees C is a true sterilization procedure, it can be recommended in a clinical setting for its small effect on osteoinductive capacity as assessed experimentally in rats.

  13. Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers.

    PubMed

    Korehei, Reza; Kadla, John F

    2014-01-16

    Phage therapy is a potentially beneficial approach to food preservation and storage. Sustained delivery of bacteriophage can prevent bacterial growth on contaminated food surfaces. Using coaxial electrospinning bacteriophage can be encapsulated in electrospun fibers with high viability. The resulting bio-based electrospun fibers may have potential as a food packaging material. In the present work, T4 bacteriophage (T4 phage) was incorporated into core/shell electrospun fibers made from poly(ethylene oxide) (PEO), cellulose diacetate (CDA), and their blends. Fibers prepared using PEO as the shell polymer showed an immediate burst release of T4 phage upon submersion in buffer. The blending of CDA with PEO significantly decreased the rate of phage release, with no released T4 phage being detected from the solely CDA fibers. Increasing the PEO molecular weight increased the electrospun fiber diameter and viscosity of the releasing medium, which resulted in a relatively slower T4 phage release profile. SEM analyses of the electrospun fiber morphologies were in good agreement with the T4 phage release profiles. Depending on the PEO/CDA ratio, the post-release electrospun fiber morphologies varied from discontinuous fibers to minimally swollen fibers. From these results it is suggested that the T4 phage release mechanism is through solvent activation/polymer dissolution in the case of the PEO fibers and/or by diffusion control from the PEO/CDA blend fibers.

  14. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups.

    PubMed Central

    Kuhl, T L; Leckband, D E; Lasic, D D; Israelachvili, J N

    1994-01-01

    The use of liposomes as drug delivery systems has been limited by their rapid clearance from circulation by the mononuclear phagocyte system. Recent studies have found that circulation times can be greatly enhanced by incorporating a small amount of modified lipids whose headgroups are derivatized with a bulky water soluble polymeric chain of poly ethylene oxide. We report here a systematic study using the Surface Forces Apparatus to measure directly the interactions between two phosphatidyl ethanolamine lipid bilayers, exposing this polymeric headgroup at different concentrations in the bilayer. We found that the force becomes repulsive at all separations and that the thickness of the steric barrier could be controlled easily by adjusting the concentration of the modified lipids. Equilibrium force profiles were measured that were reversible and largely insensitive to changes in electrolyte concentration and temperature. The results have enabled the Dolan and Edwards theory for the steric forces of low coverage polymer surfaces and the Alexander de Gennes theory for high coverage surfaces to be tested, and both were found to apply. We conclude that these simple theories can be used to model the interactions of surprisingly short segments and, hence, apply to such systems as lipids with bulky headgroups and liposomes containing a sterically stabilizing polymer. PMID:8061197

  15. Shape and Mechanical Control of Poly(ethylene oxide) Based Polymersome with Polyoxometalates via Hydrogen Bond.

    PubMed

    Jing, Benxin; Wang, Xiaofeng; Wang, Haitao; Qiu, Jie; Shi, Yi; Gao, Haifeng; Zhu, Yingxi

    2017-02-23

    Polymersomes are self-assembled vesicles of amphiphilic block copolymers and have been explored for wide applications from drug delivery to micro/nanoreactors. As polymersomes are soft and highly deformable, their shape instability due to osmolarity difference across polymer membranes and low elasticity could conversely limit their practical use. Instead of selecting particular polymer chemical reactions to enhance the mechanical properties, we have employed inorganic polyoxometalate (POM) clusters as simple physical cross-linkers to control the shape and mechanical stability of polymersomes in aqueous suspensions. Robust spherical shape with enhanced elastic and bending moduli of POM-dressed poly(ethylene oxide) (PEO) based polymersomes is achieved. We have accounted for the hydrogen bonding between POM and PEO blocks for the adsorption and stabilization of POMS on polymersomes, whose interaction strength could also be tuned by mixing solvents of hydrogen bond donors or receptors with water. The stimuli-responsive properties of POMs are introduced in POM-dressed polymersomes upon the interaction of POMs with PEO blocks in aqueous media. As POM can be used as nanomedicines, catalysts, and other functional nanomaterials, POM-dressed polymersomes with significant shape and mechanical reinforcement could broaden the applications of PEO-based polymersomes and other PEO-tethered nanocolloids.

  16. The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.

    2016-09-01

    Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.

  17. Radiation and ethylene oxide terminal sterilization experiences with drug eluting stent products.

    PubMed

    Lambert, Byron J; Mendelson, Todd A; Craven, Michael D

    2011-12-01

    Radiation and ethylene oxide terminal sterilization are the two most frequently used processes in the medical device industry to render product within the final sterile barrier package free from viable microorganisms. They are efficacious, safe, and efficient approaches to the manufacture of sterile product. Terminal sterilization is routinely applied to a wide variety of commodity healthcare products (drapes, gowns, etc.) and implantable medical devices (bare metal stents, heart valves, vessel closure devices, etc.) along with products used during implantation procedures (catheters, guidewires, etc.). Terminal sterilization is also routinely used for processing combination products where devices, drugs, and/or biologics are combined on a single product. High patient safety, robust standards, routine process controls, and low-cost manufacturing are appealing aspects of terminal sterilization. As the field of combination products continues to expand and evolve, opportunity exists to expand the application of terminal sterilization to new combination products. Material compatibility challenges must be overcome to realize these opportunities. This article introduces the reader to terminal sterilization concepts, technologies, and the related standards that span different industries (pharmaceutical, medical device, biopharmaceuticals, etc.) and provides guidance on the application of these technologies. Guidance and examples of the application of terminal sterilization are discussed using experiences with drug eluting stents and bioresorbable vascular restoration devices. The examples provide insight into selecting the sterilization method, developing the process around it, and finally qualifying/validating the product in preparation for regulatory approval and commercialization. Future activities, including new sterilization technologies, are briefly discussed.

  18. Scaling law of poly(ethylene oxide) chain permeation through a nanoporous wall.

    PubMed

    Choudhury, Rudra Prosad; Galvosas, Petrik; Schönhoff, Monika

    2008-10-23

    This paper presents a study of the permeation of poly(ethylene oxide) (PEO) chains through the nanoporous wall of hollow polymeric capsules prepared by self-assembly of polyelectrolytes. We employ the method of pulsed field gradient (PFG) NMR diffusion to distinguish chains in different sites, i.e., in the capsule interior and free chains in the dispersion, by their respective diffusion coefficient. From a variation of the observation time, the time scale of the molecular exchange between both sites and thus the permeation rate constant is extracted from a two-site exchange model. Permeation rate constants show two different regimes with a different dependence on chain length. This suggests a transition between two different mechanisms of permeation as the molecular weight is increased. In either regime, the permeation time can be described by a scaling law tau approximately N (b) , with b = (4)/ 3 for short chains and b = (1)/ 3 for long chains. We discuss these exponents, which clearly differ from the theoretical predictions for chain translocation.

  19. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains.

    PubMed

    Zardalidis, George; Mars, Julian; Allgaier, Jürgen; Mezger, Markus; Richter, Dieter; Floudas, George

    2016-10-04

    The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < Me), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > Me undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.

  20. Surface dilational moduli of poly (ethylene oxide), poly (methyl methacrylate), and their blend films.

    PubMed

    Kato, Satoaki; Kawaguchi, Masami

    2012-10-15

    Surface dilational moduli of poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA), and compatible PEO/PMMA blend films spread at the air-water interface were investigated as a function of surface concentration. The surface dilational modulus of an expanded PEO film increased as the surface concentration increased to 0.4 mg/m(2), which corresponds to the limiting surface area of PEO. After peaking at this value, the surface dilational modulus decreased with an increase in the PEO concentration. Lissajous orbits of PEO films exhibited positive hysteresis loops for all surface concentration ranges. On the other hand, the surface dilational modulus of a condensed PMMA film steeply increased as the surface concentration increased. Lissajous orbits of PMMA films changed from positive hysteresis loops to negative loops at the surface concentration at which the surface pressure reached in the plateau region. The magnitude of the surface dilational modulus of PMMA was larger than that of PEO at a fixed surface concentration. The surface dilational moduli of the PEO/PMMA blend films increased with the total surface concentration and their magnitudes were less than those of the individual PMMA films and larger than those of the individual PEO films at fixed surface concentrations. Lissajous orbits of the PEO/PMMA blend films also changed from positive hysteresis loops to negative loops beyond the surface concentration at which the plateau surface pressure of PEO was attained.

  1. Surface studies of gas sensing metal oxides.

    PubMed

    Batzill, Matthias; Diebold, Ulrike

    2007-05-21

    The relation of surface science studies of single crystal metal oxides to gas sensing applications is reviewed. Most metal oxide gas sensors are used to detect oxidizing or reducing gases and therefore this article focuses on surface reduction processes and the interaction of oxygen with these surfaces. The systems that are discussed are: (i) the oxygen vacancy formation on the surface of the ion conductor CeO(2)(111); (ii) interaction of oxygen with TiO(2) (both adsorption processes and the incorporation of oxygen into the TiO(2)(110) lattice are discussed); (iii) the varying surface composition of SnO(2)(101) and its consequence for the adsorption of water; and (iv) Cu modified ZnO(0001)-Zn surfaces and its interaction with oxygen. These examples are chosen to give a comprehensive overview of surface science studies of different kinds of gas sensing materials and to illustrate the potential that surface science studies have to give fundamental insight into gas sensing phenomena.

  2. Application of the aqueous two-phase systems of ethylene and propylene oxide copolymer-maltodextrin for protein purification.

    PubMed

    Bolognese, Belén; Nerli, Bibiana; Picó, Guillermo

    2005-01-25

    In this study, the effect of several factors that govern the partitioning behaviour of three model proteins, such as bovine serum albumin, lysozyme and trypsin was analysed in a two-phase system formed by maltodextrin and a copolymer of ethylene and propylene oxides. The protein partition coefficient (K(r)) showed to be very sensitive to temperature changes, protein molecular weight, pH medium and the lyotropic ion presence. The phase diagram obtained for these novel polymer-polymer two-phase systems shows two phases with high polymer concentrations. The maltodextrin is enriched in the bottom phase while the copolymer of ethylene and propylene oxides is found in the upper phase. Since this copolymer is thermoreactive, the upper phase can be removed and heated above the copolymer's cloud point resulting in the formation of a new two-phase system with a lower water phase, containing the target protein and an upper copolymer-rich phase. Our results show that systems formed by maltodextrin and a copolymer of ethylene and propylene oxides may be considered as an interesting alternative to be used in protein purification due to their low cost, and also because they offer a viable solution to problems of polymer removal and recycling.

  3. Crystal structure of an ethylene sorption complex of fully vacuum-dehydrated fully Ag+-exchanged zeolite X (FAU). Silver atoms have reduced ethylene to give CH2 2- carbanions at framework oxide vacancies.

    PubMed

    Lee, Young Mi; Choi, Seo Jung; Kim, Yang; Seff, Karl

    2005-11-03

    The crystal structure of an ethylene sorption complex of fully vacuum-dehydrated fully Ag(+)-exchanged zeolite X (FAU), a = 24.865(2) A, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 21 degrees C. It is very different from the ethylene complex of Ag(92)-X that had been dehydrated at 400 degrees C in flowing oxygen, as were the two dehydrated structures. The crystal was prepared by ion exchange in a flowing stream of aqueous 0.05 M AgNO(3) for 3 days, followed by dehydration at 400 degrees C and 2 x 10(-6) Torr for 2 days, followed by exposure to 300 Torr of zeolitically dry ethylene gas for 2 h at 21 degrees C. The structure was determined in this atmosphere and was refined using all data to the final error indices (based upon the 534 reflections for which F(o) > 4sigma(F(o))) R(1) = 0.062 and wR(2) = 0.135. In this structure, per unit cell, 14 Ag(+) ions were found at the octahedral site I (Ag-O = 2.611(9) A), and 32 partially reduced Ag(+) ions fill two different site I' positions deep in the sodalite cavities (Ag-O = 2.601(13) and 2.618(12) A). The sodalite cavities host two different cationic silver clusters. In about 47% of sodalite units, eight silver atoms form interpenetrating tetrahedra, Ag(8)(n+) (n = 4 is suggested), with T(d)() symmetry. The other 53% of the sodalite units host cyclo-Ag(4)(m+) (m = 2 is suggested) cations with near S(4) symmetry. These clusters are very similar to those in vacuum-dehydrated Ag(92)-X. Thirty-two Ag(+) ions fill the single 6-rings, 15 at site II' (Ag-O = 2.492(10) A), and 17 at site II (Ag-O = 2.460(9) A). The latter 17 lie in supercages where each forms a lateral pi-complex with an ethylene molecule. In turn, each C(2)H(4) molecule forms two cis electrostatic hydrogen bonds to framework oxygens. The remaining 14 Ag+ ions occupy three different II' sites. Vacuum dehydration had caused substantial decomposition: per unit cell, 30 of the 92 Ag(+) ions were reduced and 15

  4. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect

    JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2008-07-31

    The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases

  5. Development and validation of a protocol for field validation of passive dosimeters for ethylene oxide excursion limit monitoring

    SciTech Connect

    Puskar, M.A.; Szopinski, F.G.; Hecker, L.H. )

    1991-04-01

    An exposure and analysis protocol is described for the field validation of passive dosimeters for ethylene oxide (EtO) excursion limit monitoring. The protocol calls for the use of a field exposure chamber with concurrent sampling using Tedlar air-sampling bags. The bags are analyzed immediately after sampling by gas chromatography with flame ionization detection (GC-FID). The chamber design allows all monitors to be exposed for the exact same time in the field. The sampling and analysis procedure not only determines the actual concentration of EtO present during the monitor's exposure but estimates if concentrations of EtO vary from point to point in the monitor array during the exposure. In chamber operation, the accuracy of the standard generator used to calibrate the GC-FID was independently verified in the field by the standard additions method. The sampling bias of the sampling train was determined to be -3.5% in the 2.4 ppm to 14.3 ppm concentration range. To estimate the stability of collected EtO samples in Tedlar bags, the rate of EtO loss in the bags was determined to be 0.011 ppm/hr at 2.57 ppm and 0.066 ppm/hr at 8.07 ppm. Sampling bias of the passive methods by additional EtO exposure of the monitors in the closed chamber after sampling and during purging was determined to be +1.5%. The Tedlar bag sampling method with subsequent GC-FID determination demonstrated a coefficient of variation of 1.8% at 2.43 ppm.

  6. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  7. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  8. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  9. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  10. 21 CFR 868.1700 - Nitrous oxide gas analyzer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrous oxide gas analyzer. 868.1700 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1700 Nitrous oxide gas analyzer. (a) Identification. A nitrous oxide gas analyzer is a device intended to measure the concentration of nitrous...

  11. Effects of Soil on Ammonia, Ethylene, Chloroethane, and 1,1,1-Trichloroethane Oxidation by Nitrosomonas europaea†

    PubMed Central

    Hommes, Norman G.; Russell, Sterling A.; Bottomley, Peter J.; Arp, Daniel J.

    1998-01-01

    Ammonia monooxygenase (AMO) from Nitrosomonas europaea catalyzes the oxidation of ammonia to hydroxylamine and has been shown to oxidize a variety of halogenated and nonhalogenated hydrocarbons. As part of a program focused upon extending these observations to natural systems, a study was conducted to examine the influence of soil upon the cooxidative abilities of N. europaea. Small quantities of Willamette silt loam (organic carbon content, 1.8%; cation-exchange capacity, 15 cmol/kg of soil) were suspended with N. europaea cells in a soil-slurry-type reaction mixture. The oxidations of ammonia and three different hydrocarbons (ethylene, chloroethane, and 1,1,1-trichloroethane) were compared to results for controls in which no soil was added. The soil significantly inhibited nitrite production from 10 mM ammonium by N. europaea. Inhibition resulted from a combination of ammonium adsorption onto soil colloids and the exchangeable acidity of the soil lowering the pH of the reaction mixture. These phenomena resulted in a substantial drop in the concentration of NH4+ in solution (10 to 4.5 mM) and, depending upon the pH, in a reduction in the amount of available NH3 to concentrations (8 to 80 μM) similar to the Ks value of AMO for NH3 (∼29 μM). At a fixed initial pH (7.8), the presence of soil also modified the rates of oxidation of ethylene and chloroethane and changed the concentrations at which their maximal rates of oxidation occurred. The modifying effects of soil on nitrite production and on the cooxidation of ethylene and chloroethane could be circumvented by raising the ammonium concentration in the reaction mixture from 10 to 50 mM. Soil had virtually no effect on the oxidation of 1,1,1-trichloroethane. PMID:16349541

  12. The ALMA-PILS survey: First detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Lykke, J. M.; Coutens, A.; Jørgensen, J. K.; van der Wiel, M. H. D.; Garrod, R. T.; Müller, H. S. P.; Bjerkeli, P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Favre, C.; Fayolle, E. C.; Jacobsen, S. K.; Öberg, K. I.; Persson, M. V.; van Dishoeck, E. F.; Wampfler, S. F.

    2017-01-01

    Context. One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed. The unsurpassed sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA) takes the quest for discovering molecules in the warm and dense gas surrounding young stars to the next level. Aims: Our aim is to start the process of compiling an inventory of oxygen-bearing complex organic molecules toward the solar-type Class 0 protostellar binary IRAS 16293-2422 from an unbiased spectral survey with ALMA, Protostellar Interferometric Line Survey (PILS). Here we focus on the new detections of ethylene oxide (c-C2H4O), acetone (CH3COCH3), and propanal (C2H5CHO). Methods: With ALMA, we surveyed the spectral range from 329 to 363 GHz at 0.5″ (60 AU diameter) resolution. Using a simple model for the molecular emission in local thermodynamical equilibrium, the excitation temperatures and column densities of each species were constrained. Results: We successfully detect propanal (44 lines), ethylene oxide (20 lines) and acetone (186 lines) toward one component of the protostellar binary, IRAS 16293B. The high resolution maps demonstrate that the emission for all investigated species originates from the compact central region close to the protostar. This, along with a derived common excitation temperature of Tex ≈ 125 K, is consistent with a coexistence of these molecules in the same gas. Conclusions: The observations mark the first detections of acetone, propanal and ethylene oxide toward a low-mass protostar. The relative abundance ratios of the two sets of isomers, a CH3COCH3/C2H5CHO ratio of 8 and a CH3CHO/c-C2H4O ratio of 12, are comparable to previous observations toward high-mass protostars. The majority of observed abundance ratios from these results as well as those measured toward high-mass protostars are up to an order of magnitude above the predictions from chemical models. This may reflect either missing reactions or uncertain rates in the

  13. Inspecting an ethylene pipe line

    SciTech Connect

    Ramsvig, D.M. ); Duncan, J.; Zillinger, L. )

    1991-07-01

    This paper reports on the Alberta Gas Ethylene Co. (AGEC), completion of intensive internal cleaning and inspection program on their 112-mi ethylene pipe line. AGEC operates two ethylene manufacturing facilities in central Alberta, Canada. The ethylene plants are located 12.4 mi east of Red Deer, Alta., at Joffre, and supply two customers in Joffre. The remaining ethylene is shipped by the 112-mi, 12-in. line to a storage cavern near Edmonton.

  14. Dimethyl Sulfide-Dimethyl Ether and Ethylene Oxide-Ethylene Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and AB Initio Calculation

    NASA Astrophysics Data System (ADS)

    Kawashima, Yoshiyuki; Tatamitani, Yoshio; Mase, Takayuki; Hirota, Eizi

    2015-06-01

    The ground-state rotational spectra of the dimethyl sulfide-dimethyl ether (DMS-DME) and the ethylene oxide and ethylene sulfide (EO-ES) complexes were observed by Fourier transform microwave spectroscopy, and a-type and c-type transitions were assigned for the normal, 34S, and three 13C species of the DMS-DME and a-type and b-type rotational transitions for the normal, 34S, and two 13C species of the EO-ES. The observed transitions were analyzed by using an S-reduced asymmetric-top rotational Hamiltonian. The rotational parameters thus derived for the DMS-DME were found consistent with a structure of Cs symmetry with the DMS bound to the DME by two C-H(DMS)---O and one S---H-C(DME) hydrogen bonds. The barrier height V3 to internal rotation of the "free" methyl group in the DME was determined to be 915.4 (23) wn, which is smaller than that of the DME monomer, 951.72 (70) wn, and larger than that of the DME dimer, 785.4 (52) wn. For the EO-ES complex the observed data were interpreted in the terms of an antiparallel Cs geometry with the EO bound to the ES by two C-H(ES)---O and two S---H-C(EO) hydrogen bonds. We have applied a natural bond orbital (NBO) analysis to the DMS-DME and EO-ES to calculate the stabilization energy CT (= ΔEσσ*), which were closely correlated with the binding energy EB, as found for other related complexes. Y. Niide and M. Hayashi, J. Mol. Spectrosc. 220, 65-79 (2003). Y. Tatamitani, B. Liu, J. Shimada, T. Ogata, P. Ottaviani, A. Maris, W. Caminati, and J. L. Alonso, J. Am. Chem. Soc. 124, 2739-2743 (2002).

  15. ANALYSIS OF DISSOLVED METHANE, ETHANE, AND ETHYLENE IN GROUND WATER BY A STANDARD GAS CHROMATOGRAPHIC TECHNIQUE

    EPA Science Inventory

    The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent-contaminated aquifer. A simple procedure is described for the collection and subsequent analys...

  16. A novel reductive graphene oxide-based magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) polymers for the enrichment and determination of polychlorinated biphenyls in fish samples.

    PubMed

    Lin, Saichai; Gan, Ning; Zhang, Jiabin; Chen, Xidong; Cao, Yuting; Li, Tianhua

    2015-06-01

    The novel reductive graphene oxide-based magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) polymers (rGO@m-MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m-MIPs was prepared by surface molecular imprinting technique. Besides, Fe3 O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3 O4 was in situ synthesis. Different from functional monomer and cross-linker in traditional molecularly imprinted polymer, here, 3,4-dichlorobenzidine was employed as dummy molecular and poly(ethylene-co-vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography-mass spectrometry (GC-MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035-0.0070 µg l(-1) and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples.

  17. Mocvd of Tin Oxide for Gas Sensors.

    NASA Astrophysics Data System (ADS)

    Weglicki, Peter Stanislaw

    1990-01-01

    Available from UMI in association with The British Library. Requires signed TDF. Thin films of a wide variety of materials can be produced using an assortment of physical and chemical techniques. Such techniques are reviewed and compared, with particular reference to the deposition of tin oxide films. In the present study, MOCVD (Metal organic chemical vapour deposition) was used to grow thin films of tin oxide from dibutyltin diacetate precursor on a variety of substrates. A series of reactor prototypes were developed in accordance with specific requirements of reproducibility and process control. The evolution of the designs leading to the final working system is detailed. The theory of MOCVD is given with particular reference to the reactor used in this project. The effects of various deposition parameters on tin oxide film growth rates were investigated, and the results are discussed with reference to the deposition kinetics in the system. Films were characterised by optical interferometry, optical and electron microscopy, X-ray diffraction, Rutherford backscattering and electrical measurements. The films were generally uniform, conducting and polycrystalline, and were comprised of very small grains, resulting in a high density. A specific application of metal oxide materials is in solid state gas sensors, which are available in various forms and operate according to different mechanisms. These are compared and a detailed account is given on the theory of operation of surface conductivity modulated devices. The application of such devices based on tin oxide in thin film form was investigated in the present work. The prepared sensor samples were comprised of very small grains, resulting in a high density. The observation that preferred (310) orientation occured in thicker films, can be attributed to dendritic growth. The sensors generally showed response to numerous reducing gas ambients, although there was evidence of a degree of selectivity against methane

  18. Pharmacokinetics of Polymersomes Composed of Poly(Butadiene-Ethylene Oxide); Healthy versus Tumor-Bearing Mice.

    PubMed

    Wang, G; de Kruijff, R M; Abou, D; Ramos, N; Mendes, E; Franken, L E; Wolterbeek, H T; Denkova, A G

    2016-02-01

    Vesicles composed of block copolymers (i.e., polymersomes) are one of the most versatile nano-carriers for medical purposes due to their tuneable physicochemical properties and the possibility to encapsulate simultaneously hydrophobic and hydrophilic substances, allowing, for instance, the combination of therapy and imaging. In cancer treatment, these vesicles need to remain long enough in the blood stream to be sufficiently taken up by tumors. Here, we have investigated the biodistribution and the pharmacokinetics of polymersomes, composed of poly(butadiene-b-ethylene oxide) having dimensions around 80 nm. The polymersomes have been radiolabeled with ¹¹¹In via the so-called active loading method achieving a loading efficiency of 92.9 ± 0.9% with radionuclide retention in mouse serum of more than 95% at 24 h. The optimized ¹¹¹In containing polymersomes have been intravenously administered in healthy and tumor bearing mice for pharmacokinetic determination using microSPECT (Single Photon Emission Computed Tomography). In healthy mice these polymersomes have been found to exhibit relatively long blood circulation (> 6 h), low liver uptake (6 ± 1.5%ID/g, 48 h p.i.) and elevated spleen uptake (188 ± 30%ID/g). The blood circulation in tumor bearing mice is dramatically reduced (< 1.5 h) most likely due to elevated splenic filtration, clearly indicating the importance of in vivo studies in diseased mice. Finally, the polymersomes have been injected subcutaneously in tumor bearing mice revealing retention of 77% in the mice, primarily accumulated at the site of injection, up to 48 hours after administration.

  19. Complement activation on poly(ethylene oxide)-like RFGD-deposited surfaces

    PubMed Central

    Szott, Luisa Mayorga; Stein, M. Jeanette; Ratner, Buddy D.; Horbett, Thomas A.

    2010-01-01

    Non-specific protein adsorption, particularly fibrinogen (Fg), is thought to be an initiating step in the foreign body response (FBR) to biomaterials by promoting phagocyte attachment. In previous studies, we therefore prepared radio frequency glow discharge (RFGD) polyethylene oxide (PEO)-like tetraglyme coatings (CH3O(CH2CH2O)4CH3) adsorbing less than 10 ng/cm2 Fg and showed that they had the expected low monocyte adhesion in vitro. However, when these were implanted in vivo, many adherent inflammatory cells and a fibrous capsule were found, suggesting the role of alternative proteins, such as activated complement proteins, in the FBR to these materials. We therefore investigated complement interactions with the tetraglyme surfaces. First, because of its well known role in complement C3 activation, we measured the hydroxyl group (-OH) content of tetraglyme, but found it to be very low. Second, we measured C3 adsorption to tetraglyme from plasma. Low amounts of C3 adsorbed on tetraglyme, though it displayed higher binding strength than the control surfaces. Finally, complement activation was determined by measuring C3a and SC5b-9 levels in serum after incubating with tetraglyme, as well as other surfaces that served as positive and negative controls, namely poly(vinyl alcohol) hydrogels, Silastic sheeting, and poly(ethylene glycol) self-assembled monolayers with different end groups. Despite displaying low hydroxyl group concentration, relatively high C3a and SC5b-9 levels were found in serum exposed to tetraglyme, similar to the values due to our positive control, PVA. Our results support the conclusion that complement activation by tetraglyme is a possible mechanism involved in the FBR to these biomaterials. PMID:21105163

  20. Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide.

    PubMed

    Almeida, A; Brabant, L; Siepmann, F; De Beer, T; Bouquet, W; Van Hoorebeke, L; Siepmann, J; Remon, J P; Vervaet, C

    2012-11-01

    The aim of the present study was to evaluate the importance of matrix flexibility of hot-melt extruded (HME) ethylene vinyl acetate (EVA) matrices (with vinyl acetate (VA) contents of 9%, 15%, 28% and 40%), through the addition of hydrophilic polymers with distinct swelling capacity. Polyethylene oxide (PEO 100K, 1M and 7M) was used as swelling agent and metoprolol tartrate (MPT) as model drug. The processability via HME and drug release profiles of EVA/MPT/PEO formulations were assessed. Solid state characteristics, porosity and polymer miscibility of EVA/PEO matrices were evaluated by means of DSC, X-ray tomography and Raman spectroscopy. The processability via HME varied according to the VA content: EVA 40 and 28 were extruded at 90°C, whereas higher viscosity EVA grades (EVA 15 and 9) required a minimum extrusion temperature of 110°C to obtain high-quality extrudates. Drug release from EVA matrices depended on the VA content, PEO molecular weight and PEO content, matrix porosity as well as pore size distribution. Interestingly, the interplay of PEO leaching, matrix swelling, water influx and changes in matrix porosity influenced drug release: EVA 40- and 28-based matrices extruded with PEO of higher MW accelerated drug release, whereas for EVA 15- and 9-based matrices, drug release slowed down. These differences were related to the distinct polymer flexibility imposed by the VA content (lower VA content presents higher crystallinity and less free movement of the amorphous segments resulting in a higher rigidity). In all cases, diffusional mass transport seems to play a major role, as demonstrated by mathematical modeling using an analytical solution of Fick's second law. The bioavailability of EVA 40 and 28 matrices in dogs was not significantly different, independent of PEO 7M concentration.

  1. Nonfouling poly(ethylene oxide) layers end-tethered to polydopamine.

    PubMed

    Pop-Georgievski, Ognen; Verreault, Dominique; Diesner, Mark-Oliver; Proks, Vladimír; Heissler, Stefan; Rypáček, František; Koelsch, Patrick

    2012-10-09

    Nonfouling surfaces capable of reducing protein adsorption are highly desirable in a wide range of applications. Coating of surfaces with poly(ethylene oxide) (PEO), a water-soluble, nontoxic, and nonimmunogenic polymer, is most frequently used to reduce nonspecific protein adsorption. Here we show how to prepare dense PEO brushes on virtually any substrate by tethering PEO to polydopamine (PDA)-modified surfaces. The chain lengths of hetero-bifunctional PEOs were varied in the range of 45-500 oxyethylene units (M(n) = 2000-20,000). End-tethering of PEO chains was performed through amine and thiol headgroups from reactive polymer melts to minimize excluded volume effects. Surface plasmon resonance (SPR) was applied to investigate the adsorption of model protein solutions and complex biologic medium (human blood plasma) to the densely packed PEO brushes. The level of protein adsorption of human serum albumin and fibrinogen solutions was below the detection limit of the SPR measurements for all PEO chains end-tethered to PDA, thus exceeding the protein resistance of PEO layers tethered directly on gold. It was found that the surface resistance to adsorption of lysozyme and human blood plasma increased with increasing length and brush character of the PEO chains end-tethered to PDA with a similar or better resistance in comparison to PEO layers on gold. Furthermore, the chain density, thickness, swelling, and conformation of PEO layers were determined using spectroscopic ellipsometry (SE), dynamic water contact angle (DCA) measurements, infrared reflection-absorption spectroscopy (IRRAS), and vibrational sum-frequency-generation (VSFG) spectroscopy, the latter in air and water.

  2. Extraction of americium in different oxidation states in a two-phase aqueous system based on poly(ethylene glycol)

    SciTech Connect

    Molochnikova, N.P.; Frenkel', B.F.; Myasoedov, B.F.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.

    1987-09-01

    The extraction of americium in different states of oxidation was studied in a two-phase aqueous system based on poly(ethylene glycol). Conditions were found for the quantitative extraction of americium (III) and americium (V) from solutions of ammonium sulfate in the pH range of 3-5 and in the presence of arsenazo III. The composition of the complexes of americium with the reagent was determined; americium (III) reacts with arsenazo III in solutions of ammonium sulfate to form complexes with the composition of MeR and Me/sub 2/R. Characteristics of the absorption spectra of complexes of americium (III) and (V) with arsenazo III in ammonium sulfate solutions and in extracts based on aqueous solutions of poly(ethylene glycol) were found. The molar extinction coefficients of complexes of americium with arsenazo III were determined in these solutions.

  3. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants.

    PubMed

    Gibbs, Daniel J; Conde, Jorge Vicente; Berckhan, Sophie; Prasad, Geeta; Mendiondo, Guillermina M; Holdsworth, Michael J

    2015-09-01

    The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling.

  4. Rapid analysis of dissolved methane, ethylene, acetylene and ethane using partition coefficients and headspace-gas chromatography.

    PubMed

    Lomond, Jasmine S; Tong, Anthony Z

    2011-01-01

    Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.

  5. Oxidation-Responsive and "Clickable" Poly(ethylene glycol) via Copolymerization of 2-(Methylthio)ethyl Glycidyl Ether.

    PubMed

    Herzberger, Jana; Fischer, Karl; Leibig, Daniel; Bros, Matthias; Thiermann, Raphael; Frey, Holger

    2016-07-27

    Poly(ethylene glycol) (PEG) is a widely used biocompatible polymer. We describe a novel epoxide monomer with methyl-thioether moiety, 2-(methylthio)ethyl glycidyl ether (MTEGE), which enables the synthesis of well-defined thioether-functional poly(ethylene glycol). Random and block mPEG-b-PMTEGE copolymers (Mw/Mn = 1.05-1.17) were obtained via anionic ring opening polymerization (AROP) with molecular weights ranging from 5 600 to 12 000 g·mol(-1). The statistical copolymerization of MTEGE with ethylene oxide results in a random microstructure (rEO = 0.92 ± 0.02 and rMTEG E = 1.06 ± 0.02), which was confirmed by in situ (1)H NMR kinetic studies. The random copolymers are thermoresponsive in aqueous solution, with a wide range of tunable transition temperatures of 88 to 28 °C. In contrast, mPEG-b-PMTEGE block copolymers formed well-defined micelles (Rh ≈ 9-15 nm) in water, studied by detailed light scattering (DLS and SLS). Intriguingly, the thioether moieties of MTEGE can be selectively oxidized into sulfoxide units, leading to full disassembly of the micelles, as confirmed by detection of pure unimers (DLS and SLS). Oxidation-responsive release of encapsulated Nile Red demonstrates the potential of these micelles as redox-responsive nanocarriers. MTT assays showed only minor effects of the thioethers and their oxidized derivatives on the cellular metabolism of WEHI-164 and HEK-293T cell lines (1-1000 μg·mL(-1)). Further, sulfonium PEG polyelectrolytes can be obtained via alkylation or alkoxylation of MTEGE, providing access to a large variety of functional groups at the charged sulfur atom.

  6. Wear reduction in ceramic bearings by surface generated pyrolytic carbon continuously replenished by ethylene gas

    NASA Technical Reports Server (NTRS)

    Lauer, J. L.; Davis, L. C.

    1993-01-01

    Sliding tests with a pin-on-disc tribometer and both sliding and rolling tests with a modified four-ball tester at bulk temperatures of about 500 C and contact pressures of about 2.2 GPa have demonstrated up to 80% reductions of friction and wear with silicon nitride surfaces when a stream of ethylene is directed into the conjunction region. The effects are even more pronounced when the ethylene is prenucleated by a flow over a coil of nichrome wire electrically heated to about 800 C and located about 30 cm upstream of the exit nozzle. Steel and Ni-plated steel are lubricated by this method even more efficiently at lower temperatures.

  7. FT-IR spectra of 90 K films of simple, mixed, and double clathrate hydrates of trimethylene oxide, methyl chloride, carbon dioxide, tetrahydrofuran, and ethylene oxide containing decoupled D/sub 2/O

    SciTech Connect

    Fleyfel, F.; Devlin, J.P.

    1988-02-11

    The spectroscopic investigation of clathrate hydrates prepared by using low-temperature thin-film techniques has been extended to several new gases. These gases have included a highly polar gas (trimethylene oxide or TMO) the simple hydrate of which grows readily from a vapor beam at 120 K, a slightly less polar gas (methyl chloride) the simple hydrate of which grows if the vapor beam is incident onto a crystalline clathrate hydrate base at 125 K, and a nonpolar gas (carbon dioxide) which apparently can only be enclathrated as the mixed hydrate by using a highly polar help gas (e.g., ethylene oxide (EtO)). These structure I hydrates as well as the structure II hydrate of tetrahydrofuran have been prepared under conditions of temperature/base-doping such that no mobile protons exist during the deposit. As a result, it has been possible to isolate intact D/sub 2/O molecules in the water network of the crystalline hydrates. The guest-molecule spectra, all obtained at 90 K, show (a) the apparent generality of the rule that guest-molecule stretching-mode frequencies decrease with an increase in cage size and (b) that the effective size of the structure I small cage increases as the size of the molecule occupying the large cage increases.

  8. Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites.

    PubMed

    Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María Del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel

    2015-01-01

    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity.

  9. Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside.

    PubMed

    Lin, Yingchao; Yang, Lei; Paul, Matthew; Zu, Yuangang; Tang, Zhonghua

    2013-12-01

    Both ethylene and nitric oxide (NO) are involved in modulating seed germination in adverse environments. However, the mechanisms by which they interact and affect germination have not been explained. In this study, the relationship between ethylene and NO during germination of Arabidopsis seed under salinity was analysed. Application of exogenous 1-aminocyclopropane-1-carboxylate (ACC, a precursor of ethylene biosynthesis) or sodium nitroprusside (SNP, an NO donor) largely overcame the inhibition of germination induced by salinity. The effects of ACC and SNP were decreased by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), a specific NO scavenger, or by aminoisobutyric acid (AIB), an inhibitor of ethylene biosynthesis, indicating that ethylene and NO interact during germination under salinity. Further, we demonstrated that ACC increased NO production and that SNP greatly induced the expression of the ACS2 gene involved in ethylene synthesis in Arabidopsis seeds germinating under salinity stress, suggesting that each substance influences the production of the other. Application of exogenous ACC increased germination under oxidative stress induced by hydrogen peroxide (H2O2) while SNP had a much smaller effect on wild-type Arabidopsis (Col-0) and no effect on the ethylene insensitive mutant (ein3-1) seeds, respectively. This shows that NO increased germination under salinity indirectly through H2O2 acting via the ethylene pathway. The endogenous concentration of H2O2 was increased by salinity in germinating seeds but was decreased by exogenous ACC, which stimulated germination ultimately. To explain all these results and the regulation of germination of Arabidopsis seed under salinity we propose a model involving ethylene, NO and H2O2 interaction.

  10. Ethylene mediates brassinosteroid-induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis.

    PubMed

    Shi, Chenyu; Qi, Cheng; Ren, Hongyan; Huang, Aixia; Hei, Shumei; She, Xiaoping

    2015-04-01

    Brassinosteroids (BRs) are essential for plant growth and development; however, whether and how they promote stomatal closure is not fully clear. In this study, we report that 24-epibrassinolide (EBR), a bioactive BR, induces stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering a signal transduction pathway including ethylene synthesis, the activation of Gα protein, and hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) production. EBR initiated a marked rise in ethylene, H(2)O(2) and NO levels, necessary for stomatal closure in the wild type. These effects were abolished in mutant bri1-301, and EBR failed to close the stomata of gpa1 mutants. Next, we found that both ethylene and Gα mediate the inductive effects of EBR on H(2)O(2) and NO production. EBR-triggered H(2)O(2) and NO accumulation were canceled in the etr1 and gpa1 mutants, but were strengthened in the eto1-1 mutant and the cGα line (constitutively overexpressing the G protein α-subunit AtGPA1). Exogenously applied H(2)O(2) or sodium nitroprusside (SNP) rescued the defects of etr1-3 and gpa1 or etr1 and gpa1 mutants in EBR-induced stomatal closure, whereas the stomata of eto1-1/AtrbohF and cGα/AtrbohF or eto1-1/nia1-2 and cGα/nia1-2 constructs had an analogous response to H(2)O(2) or SNP as those of AtrbohF or Nia1-2 mutants. Moreover, we provided evidence that Gα plays an important role in the responses of guard cells to ethylene. Gα activator CTX largely restored the lesion of the etr1-3 mutant, but ethylene precursor ACC failed to rescue the defects of gpa1 mutants in EBR-induced stomatal closure. Lastly, we demonstrated that Gα-activated H(2)O(2) production is required for NO synthesis. EBR failed to induce NO synthesis in mutant AtrbohF, but it led to H(2)O(2) production in mutant Nia1-2. Exogenously applied SNP rescued the defect of AtrbohF in EBR-induced stomatal closure, but H(2)O(2) did not reverse the lesion of EBR-induced stomatal closure in Nia1-2. Together, our

  11. Process for selected gas oxide removal by radiofrequency catalysts

    DOEpatents

    Cha, C.Y.

    1993-09-21

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  12. Fluorosilane compounds with oligo(ethylene oxide) substituent as safe electrolyte solvents for high-voltage lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jinglun; Mai, Yongjin; Luo, Hao; Yan, Xiaodan; Zhang, Lingzhi

    2016-12-01

    Two fluorosilanes with oligo(ethylene oxide) unites were synthesized through hydrosilylation of chlorosilane with allyl substituted oligo(ethylene oxide) ether followed by fluorination with potassium fluoride. The synthesized fluorosilane compounds exhibited lower viscosity, higher dielectric constant and higher oxidation potential, compared with their non-fluorination counterparts. Difluoro(3-(2-(2-methoxyethoxy)ethoxy)propyl)methylsilane (DFSM2), one of the two compounds, was evaluated as high-voltage and thermal stable electrolyte co-solvent with the conventional carbonate-based electrolytes. Using an optimized electrolyte of 1M LiPF6 in EC/DFSM2/EMC (2/3/5 in vol.) with addition of 5 wt% fluoroethylene carbonate (FEC), high-voltage LiCoO2(LCO)/graphite full cell displayed outstanding cycling stability of 92.5% capacity retention after 135 cycles at 4.4 V upper cutoff voltage. Characterized by differential scanning calorimetry (DSC) analysis, the DFSM2-based electrolyte demonstrated higher thermal stability with lithiated graphite anode and delithiated LCO cathode, thus better safety feature compared with the conventional electrolyte.

  13. V{sub 2}O{sub 5} xerogel-poly(ethylene oxide) hybrid material: Synthesis, characterization, and electrochemical properties

    SciTech Connect

    Guerra, Elidia M.; Ciuffi, Katia J.; Oliveira, Herenilton P. . E-mail: herepo@ffclrp.usp.br

    2006-12-15

    In this work, we report the synthesis, characterization, and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) (PEO) hybrid materials obtained by varying the average molecular weight of the organic component as well as the components' ratios. The materials were characterized by X-ray diffraction, ultraviolet/visible and infrared spectroscopies, thermogravimetric analysis, scanning electron microscopy, electron paramagnetic resonance, and cyclic voltammetry. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved, with increase in the interplanar spacing, giving evidence of a low-crystalline structure. We found that the electrochemical behaviour of the hybrid materials is quite similar to that found for the V{sub 2}O{sub 5} xerogel alone, and we verified that PEO leads to stabilization and reproducibility of the Li{sup +} electrochemical insertion/de-insertion into the V{sub 2}O{sub 5} xerogel structure, which makes these materials potential components of lithium ion batteries. - Graphical abstract: The synthesis, structural and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) hybrid materials have been described. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved. The cy voltammetry technique demonstrated that PEO intercalation provides an improvement in the electrochemical properties, mainly with respect to the lithium electroinsertion process into the oxide matrix.

  14. Dimethyl Sulfide-Dimethyl Ether and Ethylene Oxide-Ethylene Sulfide Complexes Investigated by Fourier Transform Microwave Spectroscopy and Ab Initio Calculation.

    PubMed

    Kawashima, Yoshiyuki; Tatamitani, Yoshio; Mase, Takayuki; Hirota, Eizi

    2015-10-22

    The ground-state rotational spectra of the dimethyl sulfide-dimethyl ether (DMS-DME) and the ethylene oxide-ethylene sulfide (EO-ES) complexes were observed by Fourier transform microwave spectroscopy, and a-type and c-type transitions were assigned for the normal, (34)S, and three (13)C species of the DMS-DME and a-type and b-type transitions for the normal, (34)S, and two (13)C species of the EO-ES complexes. The transition frequencies measured for both the complexes were analyzed by using an S-reduced asymmetric-top rotational Hamiltonian. The rotational parameters thus derived for the DMS-DME were found to be consistent with a structure of Cs symmetry with the DMS bound to the DME by two C-H(DMS)···O and one S···H-C(DME) hydrogen bonds. Some high-Ka lines were found to be split, and we have interpreted these splittings in terms of internal rotations of the two methyl groups of the DMS and of the "free", i.e., outer group, of the DME. Some forbidden transitions were also observed in cases where Ka = 3 levels were involved, for the DMS-DME complex in the internal-rotation E state. The barrier height, V3, to internal rotation of the CH3 in the DME thus derived is smaller than that of the DME monomer, while the V3 of the CH3 groups in the DMS is nearly the same as that of the DMS monomer. For the EO-ES complex, the observed data were interpreted in terms of an antiparallel structure of Cs symmetry with the EO bound to the ES by two C-H(ES)···O and two S···H-C(EO) hydrogen bonds. An attempt was also made to observe a-type transitions of the DMS dimer without success. We have applied a natural bond orbital analysis to the DMS-DME and EO-ES to calculate the stabilization energy CT (= ΔEσσ*), which was correlated closely with the binding energy as found for other related complexes.

  15. Experimental analysis of stabilizing effects of carbon nanotubes (CNTs) on thermal oxidation of poly(ethylene glycol)-CNT composites

    NASA Astrophysics Data System (ADS)

    Yamane, Shogo; Ata, Seisuke; Chen, Liang; Sato, Hiroaki; Yamada, Takeo; Hata, Kenji; Mizukado, Junji

    2017-02-01

    In this work, the thermal stabilization of poly(ethylene glycol) (PEG) by super-growth carbon nanotubes (SGCNTs) is studied by analyzing degraded compounds via high-resolution matrix-assisted laser diffusion ionization time-of-flight mass spectroscopy and IR techniques. SGCNTs successfully suppress the thermal oxidation of PEG, and the components of the degraded compounds change upon addition of SGCNTs to PEG. The SGCNTs quench mainly the RO radical generated by the initial chain scission of the Csbnd O bond of PEG, resulting in the suppression of the intermolecular proton abstraction.

  16. Morphology of poly(ethylene oxide) dissolved in a room temperature ionic liquid: a small angle neutron scattering study.

    PubMed

    Triolo, Alessandro; Russina, Olga; Keiderling, Uwe; Kohlbrecher, Joachim

    2006-02-02

    Solutions of deuterated poly(ethylene oxide) (d-PEO) in 1-butyl-3-methyl imidazolium tetrafluoroborate ([bmim][BF4]), a prototype room-temperature ionic liquid (RTIL), have been studied at room temperature over a range of polymer concentrations, using small angle neutron scattering (SANS), characterizing the conformation of PEO dissolved in RTILs. [bmim][BF4] behaves as a good solvent for d-PEO, which organizes in this solvent in non entangled random coils. These findings will help in optimizing the designing of microemulsions in these potentially environmentally friendly solvents.

  17. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings1[OPEN

    PubMed Central

    Melo, Nielda K.G.; Bianchetti, Ricardo E.; Oliveira, Paulo M.R.; Demarco, Diego

    2016-01-01

    The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants. PMID:26829981

  18. Effects of ethylene oxide and ethylene inhalation on DNA adducts, apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver.

    PubMed

    Rusyn, Ivan; Asakura, Shoji; Li, Yutai; Kosyk, Oksana; Koc, Hasan; Nakamura, Jun; Upton, Patricia B; Swenberg, James A

    2005-09-28

    Ethylene oxide (EO) is an important industrial chemical that is classified as a known human carcinogen (IARC, Group 1). It is also a metabolite of ethylene (ET), a compound that is ubiquitous in the environment and is the most used petrochemical. ET has not produced evidence of cancer in laboratory animals and is "not classifiable as to its carcinogenicity to humans" (IARC, Group 3). The mechanism of carcinogenicity of EO is not well characterized, but is thought to involve the formation of DNA adducts. EO is mutagenic in a variety of in vitro and in vivo systems, whereas ET is not. Apurinic/apyrimidinic sites (AP) that result from chemical or glycosylase-mediated depurination of EO-induced DNA adducts could be an additional mechanism leading to mutations and chromosomal aberrations. This study tested the hypothesis that EO exposure results in the accumulation of AP sites and induces changes in expression of genes for base excision DNA repair (BER). Male Fisher 344 rats were exposed to EO (100 ppm) or ET (40 or 3000 ppm) by inhalation for 1, 3 or 20 days (6h/day, 5 days a week). Animals were sacrificed 2h after exposure for 1, 3 or 20 days as well as 6, 24 and 72 h after a single-day exposure. Experiments were performed with tissues from brain and spleen, target sites for EO-induced carcinogenesis, and liver, a non-target organ. Exposure to EO resulted in time-dependent increases in N7-(2-hydroxyethyl)guanine (7-HEG) in brain, spleen, and liver and N7-(2-hydroxyethyl)valine (7-HEVal) in globin. Ethylene exposure also induced 7-HEG and 7-HEVal, but the numbers of adducts were much lower. No increase in the number of aldehydic DNA lesions, an indicator of AP sites, was detected in any of the tissues between controls and EO-, or ET-exposed animals, regardless of the duration or strength of exposure. EO exposure led to a 3-7-fold decrease in expression of 3-methyladenine-DNA glycosylase (Mpg) in brain and spleen in rats exposed to EO for 1 day. Expression of 8

  19. Gas chromatography with mass spectrometry for the quantification of ethylene glycol ethers in different household cleaning products.

    PubMed

    Pastor-Belda, Marta; Campillo, Natalia; Hernández-Córdoba, Manuel; Viñas, Pilar

    2016-06-01

    A rapid and simple procedure is reported for the determination of six ethylene glycol ethers in cleaning products and detergents using gas chromatography with mass spectrometry. The analytes were extracted from 2.0 g samples in acetonitrile (3 mL) and the extract was submitted to a clean-up step by QuEChERS method, using a mixture containing 0.3 g magnesium sulfate, 0.15 g primary/secondary amine, and 0.05 g C18 . The clean acetonitrile extract (1 μL) was injected into the chromatographic system. No matrix effect was observed, so the quantification of the samples was carried out against external standards. Detection limits were in the range 3.0-27 ng/g for the six ethylene glycol ethers. The recoveries obtained, using the optimized procedure, were in the 89.4-118% range, with relative standard deviations lower than 14%. Twenty-three different household cleaning products, including glass cleaner, degreaser, floor, softeners, and clothes and dishwashing detergents, were analyzed. Large interindividual variations were observed between samples and compounds.

  20. Gas Generation from Actinide Oxide Materials

    SciTech Connect

    George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

    2000-12-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

  1. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Joseph Helble; Balaji Krishnakumar

    2006-07-31

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 3 results for the experimental and modeling tasks. Experiments have been completed on the effects of chlorine. However, the experiments with sulfur dioxide and NO, in the presence of water, suggest that the wet-chemistry analysis system, namely the impingers, is possibly giving erroneous results. Future work will investigate this further and determine the role of reactions in the impingers on the oxidation results. The solid-phase experiments have not been completed and it is anticipated that only preliminary work will be accomplished during this study.

  2. Block copolymers of the type poly(caprolactone)-b-poly(ethylene oxide) for the preparation and stabilization of nanoemulsions.

    PubMed

    Chausson, Mickael; Fluchère, Ann-Sophie; Landreau, Emmanuel; Aguni, Youssef; Chevalier, Yves; Hamaide, Thierry; Abdul-Malak, Nabil; Bonnet, Isabelle

    2008-10-01

    Block copolymers poly(caprolactone)-block-poly(ethylene oxide) are promising non-ionic macromolecular surfactants for the stabilization of emulsions because they display a stronger adsorption and provide an increased long-term stability. But such amphiphilic copolymers should also allow the fabrication of the suspensions according to the emulsification process used. An evaluation of such block copolymers was done regarding the nanoprecipitation and the miniemulsion polymerization processes that both afford aqueous suspensions of nanoparticles. Both the fabrication and the long-term stability were investigated. It was found that the emulsification by means of the nanoprecipitation process was successful when the amphiphilic block copolymer was added into the organic phase. The studies on the structure-activity relationships have shown that a minimum length of the poly(ethylene oxide) block was necessary in order to ensure both the long-term colloidal stability of the suspensions and the instantaneous stability during the preparation process. The length of the hydrophobic block was a parameter of less relevance, but a minimum length was required for the copolymers to be soluble in the organic phase. The miniemulsion polymerization process using block copolymer emulsifiers could be adapted to the incorporation of large loads of vitamin E acetate used as a hydrophobe stabilizer.

  3. Preparation and solution behavior of a thermoresponsive diblock copolymer of poly(ethyl glycidyl ether) and poly(ethylene oxide).

    PubMed

    Ogura, Michihiro; Tokuda, Hiroyuki; Imabayashi, Shin-ichiro; Watanabe, Masayoshi

    2007-08-28

    A thermoresponsive diblock copolymer, poly(ethyl glycidyl ether)-block-poly(ethylene oxide) (PEGE-b-PEO), is synthesized by successive anionic ring-opening polymerization of ethyl glycidyl ether and ethylene oxide using 2-phenoxyethanol as a starting material, and its solution behavior is elucidated in water. In a dilute 1 wt % solution, the temperature-dependent alteration in the polymer hydrodynamic radius (RH) is measured in the temperature range between 5 and 45 degrees C by pulse-gradient spin-echo NMR and dynamic light scattering. The RH value increased with temperature in two steps, where the first step at 15 degrees C corresponds to the core-shell micelle formation and the second step at 40 degrees C corresponds to the aggregation of the core-shell micelles. The formation of the core-shell micelles is supported by the solubilization of a dye (1,6-diphenyl-1,3,5-hexatriene) in the hydrophobic core, which is recognized for a copolymer solution in the temperature range between 20 and 40 degrees C. In this temperature range, the core-shell micelles and the unimers coexist and the fraction of the former gradually increases with increasing temperature, suggesting equilibrium between the micelles and the unimers. In the concentrated regime (40 wt % solution), the solution forms a gel and the small-angle X-ray scattering measurements reveal the successive formation of hexagonal and lamellar liquid crystal phases with increasing temperature.

  4. Health-hazard-evaluation report HETA 87-243-292-1876, Santa Barbara Cottage Hospital, Santa Barbara, California. [Ethylene oxide exposures

    SciTech Connect

    Daniels, W.; Gunter, B.

    1988-02-01

    In response to a request from the Santa Barbara Cottage Hospital, Santa Barbara, California, an evaluation was made of possible health hazards. Attention was directed in particular to waste anesthetic gases and vapors in the Outpatient Surgery Center and the main operating rooms. A second concern was ethylene oxide (EtO) exposures from a gas sterilizer, and samples were taken during operation of this equipment. Personal and area air samples were collected during surgery and analyzed for nitrous oxide (N/sub 2/0), halogenated anesthetic agents, and methyl methacrylate. Only two samples exceeded the NIOSH REL of 25 ppm for N/sub 2/O. Eight samples exceeded the NIOSH REL of 0.5/ppm for halogenated anesthetics used in combination with N/sub 2/O. The Outpatient Surgery Center had only about half the recommended number of air changes per hour. Contaminant concentrations are maintained below the environmental criteria in most samples, but a potential for overexposure to N/sub 2/O and forane exists. The authors recommend improving general ventilation at the facility, work practices, exposure monitoring, equipment maintenance, and the use of scavenging systems for waste gases.

  5. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  6. Separation of parent homopolymers from polystyrene-b-poly(ethylene oxide)-b-polystyrene triblock copolymers by means of liquid chromatography: 1. comparison of different methods.

    PubMed

    Rollet, Marion; Pelletier, Bérengère; Altounian, Anaïs; Berek, Dusan; Maria, Sébastien; Beaudoin, Emmanuel; Gigmes, Didier

    2014-03-04

    Separation of parent homopolymers, polystyrene and poly(ethylene oxide), from the triblock copolymer polystyrene-b-poly(ethylene oxide)-b-polystyrene was investigated by means of liquid chromatography techniques. Overall suitability was evaluated and compared for size exclusion chromatography, (SEC), liquid chromatography under critical conditions of enthalpic interactions (LC CC), and liquid chromatography under limiting conditions of desorption (LC LCD). Among these techniques, LC LCD was the only one able to fully separate block copolymers from both their parent homopolymers in one single run. The efficiency of the separation was proven by (1)H NMR analysis of previously collected fractions.

  7. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole.

    PubMed

    Lee, Shou-Lun; Shih, Hsuan-Ting; Chi, Yu-Chou; Li, Yeung-Pin; Yin, Shih-Jiun

    2011-05-30

    Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1M sodium phosphate buffer, at pH 7.5 and 25°C, containing 0.5 mM NAD(+) and varied concentrations of substrate. K(M) values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12-57 mM, for methanol to be 2.0-3500 mM, for ethylene glycol to be 4.3-2600mM, and for isopropanol to be 0.73-3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for V(max) for the toxic alcohols were much less than that of the K(M) across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (K(is)) for the whole family being 0.062-960 μM and the intercept inhibition constants (K(ii)), 33-3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives.

  8. Lenghty reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs.

    PubMed

    Figueroa-Ochoa, Edgar B; Villar-Alvarez, Eva M; Cambón, Adriana; Mistry, Dharmista; Llovo, José; Attwood, David; Barbosa, Silvia; Soltero, J F Armando; Taboada, Pablo

    2016-08-20

    In this work, we present a detailed study of the potential application of polymeric micelles and gels of four different reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) copolymers (BOnEOmBOn, where n denotes the respective block lengths), specifically BO8EO90BO8, BO14EO378BO14, BO20EO411BO20 and BO21EO385BO21, as effective drug transport nanocarriers. In particular, we tested the use of this kind of polymeric nanostructures as reservoirs for the sustained delivery of the antifungals griseofulvin and fluconazole for oral and topical administration. Polymeric micelles and gels formed by these copolymers were shown to solubilize important amounts of these two drugs and to have a good stability in physiologically relevant conditions for oral or topical administration. These polymeric micellar nanocarriers were able to release drugs in a sustained manner, being the release rate slower as the copolymer chain hydrophobicity increased. Different sustained drug release profiles were observed depending on the medium conditions. Gel nanocarriers were shown to display longer sustained release rates than micellar formulations, with the existence of a pulsatile-like release mode under certain solution conditions as a result of their inner network structure. Certain bioadhesive properties were observed for the polymeric physical gels, being moderately tuned by the length and hydrophobicity of the polymeric chains. Furthermore, polymeric gels and micelles showed activity against the yeast Candida albicans and the mould demartophytes (Trichophyton rubrum and Microsporum canis) and, thus, may be useful for the treatment of different cutaneous fungal infections.

  9. Ethylene update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gaseous plant hormone ethylene is required for many aspects of plant growth, development and responses to the environment. Potato tubers produce low amounts of ethylene and are highly sensitive to ethylene in the atmosphere. Several responses of potato tubers to endogenous and exogenous ethylene...

  10. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  11. Non-invasive topical drug delivery to spinal cord with carboxyl-modified trifunctional copolymer of ethylene oxide and propylene oxide.

    PubMed

    Kamalov, Marat I; Lavrov, Igor A; Yergeshov, Abdulla A; Siraeva, Zulfira Y; Baltin, Maxim E; Rizvanov, Albert A; Kuznetcova, Svetlana V; Petrova, Natalia V; Savina, Irina N; Abdullin, Timur I

    2016-04-01

    In this study the effect of oxidative modification on micellar and drug delivery properties of copolymers of ethylene oxide (EO) and propylene oxide (PO) was investigated. Carboxylated trifunctional copolymers were synthesized in the reaction with chromium(VI) oxide. We found that carboxylation significantly improved the uniformity and stability of polymeric micelles by inhibiting the microphase transition. The cytotoxicity of copolymers was studied in relation to their aggregative state on two cell types (cancer line vs. primary fibroblasts). The accumulation of rhodamine 123 in neuroblastoma SH-SY5Y cells was dramatically increased in the presence of the oxidized block copolymer with the number of PO and EO units of 83.5 and 24.2, respectively. The copolymer was also tested as an enhancer for topical drug delivery to the spinal cord when applied subdurally. The oxidized copolymer facilitated the penetration of rhodamine 123 across spinal cord tissues and increased its intraspinal accumulation. These results show the potential of using oxidized EO/PO based polymers for non-invasive delivery of protective drugs after spinal cord injury.

  12. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane.

    PubMed

    Li, Jie; Lin, Yue; Yao, Hehua; Yuan, Changfu; Liu, Jin

    2014-07-01

    A tunable polysiloxane thin-film electrolyte for all-solid-state lithium-ion batteries was developed. The polysiloxane was synthesized by hydrosilylation of polymethylhydrosiloxane with cyclic [(allyloxy)methyl]ethylene ester carbonic acid and vinyl tris(2-methoxyethoxy)silane. (1) H NMR spectroscopy and gel-permeation chromatography demonstrated that the bifunctional groups of the cyclic propylene carbonate (PC) and combed poly(ethylene oxide) (PEO) were well grafted on the polysiloxane. At PC/PEO=6:4, the polysiloxane-based electrolyte had an ionic conductivity of 1.55 × 10(-4) and 1.50 × 10(-3)  S cm(-1) at 25 and 100 °C, respectively. The LiFePO4 /Li batteries fabricated with the thin-film electrolyte presented excellent cycling performance in the temperature range from 25 to 100 °C with an initial discharge capacity at a rate of 1 C of 88.2 and 140 mA h g(-1) at 25 and 100 °C, respectively.

  13. Oxidation and haem loss kinetics of poly(ethylene glycol)-conjugated haemoglobin (MP4): dissociation between in vitro and in vivo oxidation rates.

    PubMed

    Vandegriff, Kim D; Malavalli, Ashok; Minn, Charles; Jiang, Eva; Lohman, Jeff; Young, Mark A; Samaja, Michele; Winslow, Robert M

    2006-11-01

    Haemoglobin-based oxygen carriers can undergo oxidation of ferrous haemoglobin into a non-functional ferric form with enhanced rates of haem loss. A recently developed human haemoglobin conjugated to maleimide-activated poly(ethylene glycol), termed MP4, has unique physicochemical properties (increased molecular radius, high oxygen affinity and low cooperativity) and lacks the typical hypertensive response observed with most cell-free haemoglobin solutions. The rate of in vitro MP4 autoxidation is higher compared with the rate for unmodified SFHb (stroma-free haemoglobin), both at room temperature (20-22 degrees C) and at 37 degrees C (P<0.001). This appears to be attributable to residual catalase activity in SFHb but not MP4. In contrast, MP4 and SFHb showed the same susceptibility to oxidation by reactive oxygen species generated by a xanthine-xanthine oxidase system. Once fully oxidized to methaemoglobin, the rate of in vitro haem loss was five times higher in MP4 compared with SFHb in the fast phase, which we assign to the beta subunits, whereas the slow phase (i.e. haem loss from alpha chains) showed similar rates for the two haemoglobins. Formation of MP4 methaemoglobin in vivo following transfusion in rats and humans was slower than predicted by its first-order in vitro autoxidation rate, and there was no appreciable accumulation of MP4 methaemoglobin in plasma before disappearing from the circulation. These results show that MP4 oxidation and haem loss characteristics observed in vitro provide information regarding the effect of poly(ethylene glycol) conjugation on the stability of the haemoglobin molecule, but do not correspond to the oxidation behaviour of MP4 in vivo.

  14. Miscibility of poly(lactic acid) and poly(ethylene oxide) solvent polymer blends and nanofibers made by solution blow spinning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The miscibility of blends of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) was studied in polymer solutions by dilute solution viscometry and in solution blow spun nanofibers by microscopy (SEM, TEM) and by thermal and spectral analysis. Three blends of PLA and PEO were solution blended in...

  15. Composite poly(ethylene oxide) electrolytes plasticized by N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide for lithium batteries.

    PubMed

    Wetjen, Morten; Navarra, Maria Assunta; Panero, Stefania; Passerini, Stefano; Scrosati, Bruno; Hassoun, Jusef

    2013-06-01

    We report a new class of quaternary polymer electrolyte membranes that comprise poly(ethylene oxide) (PEO), lithium trifluoromethanesulfonylimide (LiTFSI), N-alkyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrA,4 TFSI) as an ionic liquid, and a SiO₂ filler. The results of differential scanning calorimetry indicate that the addition of SiO₂ and different ionic liquids induces a decrease in the PEO melting enthalpy, which thereby increases the ionic conductivity and the Li transference number. The electrochemical stability is proved by using impedance spectroscopy and cyclic voltammetry. Galvanostatic cycling of Li/LiFePO₄ cells, which comprise the quaternary polymer electrolytes, revealed their superior performance compared to conventional PEO-Li salt electrolytes. In the course of this investigation, a synergistic effect of the combined ionic liquid-ceramic filler modification could be proved at temperatures close to 50 °C.

  16. Novel poly(ethylene oxide)-b-poly(propylene oxide) copolymer-glucose conjugate by the microwave-assisted ring opening of a sugar lactone.

    PubMed

    Glisoni, Romina J; Sosnik, Alejandro

    2014-11-01

    In this work, we investigated for the first time the conjugation of gluconolactone to a poly(ethylene oxide)-poly(propylene oxide) block copolymer by a microwave-assisted ring opening reaction. The glucosylated copolymer was obtained with high yield (90%). A conjugation extent of approximately 100% was achieved within 15 min. The modification reduced the critical micellar concentration and increased the size of the micelles. The agglutination of the modified polymeric micelles by a soluble lectin that binds glucose confirmed the recognizability of the modified nanocarrier. Finally, the solubilization of darunavir, an anti-HIV protease inhibitor, showed a sharp increase of the aqueous solubility from 91 microgram/mL to 14.2 and 18.9 mg/mL for 10% w/v pristine and glucosylated polymeric micelles, respectively.

  17. NTP Toxicology and Carcinogenesis Studies of Ethylene Oxide (CAS No. 75-21-8) in B6C3F1 Mice (Inhalation Studies).

    PubMed

    1987-11-01

    Ethylene oxide is a major industrial chemical used primarily as an intermediate in the manufacture of other chemicals; e.g., ethylene glycol, a major component of automotive and other antifreeze products. Exposure to ethylene oxide is greatest in the health care industry, where an estimated 75,000 workers are potentially exposed. Ethylene oxide was nominated for toxicology and carcinogenesis studies in B6C3F1 mice because of its extensive production; the potential for human exposure in the workplace, from medical devices, or from food; the positive results of genetic toxicology assays; and the previous use of only F344/N rats in inhalation carcinogenicity studies. Two inhalation studies reported in 1984 by Snellings et al. and by Lynch et al. demonstrated carcinogenic responses in F344/N rats. Results were similar in both studies and consisted of increased incidences of mononuclear cell leukemia, peritoneal mesotheliomas, and primary brain tumors. Experimental Design: Toxicology and carcinogenesis studies of ethylene oxide (greater than 99% pure) were conducted by exposing groups of 50 B6C3F1 mice of each sex to air containing 0, 50, or 100 ppm ethylene oxide, 6 hours per day, 5 days per week for 102 weeks. These doses were selected because, in 14-week studies, all mice exposed at 600 ppm died within 1 week, and all mice exposed at 400 ppm died by week 4. Rhinitis was observed in both sexes exposed at 200, 400, and 600 ppm as was renal tubular degeneration in both sexes at 100, 200, and 400 ppm. The latter effects observed at 100 ppm were slight and deemed not to be life threatening in 2-year studies. Two-Year Studies: Survival of exposed and control mice was comparable in the 2-year studies (male: control, 28/50; low dose, 31/50; high dose, 34/50; female: 25/50; 24/50;31/50). Final mean body weights in exposed mice were 95%-102% of those of the controls. No compound-related clinical signs were observed. Those neoplastic lesions that occurred at elevated incidences

  18. Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites

    PubMed Central

    Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel

    2015-01-01

    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity. PMID:26177024

  19. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    SciTech Connect

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert; Larsen, Ross E.; Chen, Fangliang

    2016-04-18

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristine and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.

  20. Poly(oligo(ethylene glycol) methyl ether methacrylate) Brushes on High-κ Metal Oxide Dielectric Surfaces for Bioelectrical Environments.

    PubMed

    Joh, Daniel Y; McGuire, Felicia; Abedini-Nassab, Roozbeh; Andrews, Joseph B; Achar, Rohan K; Zimmers, Zackary; Mozhdehi, Darush; Blair, Rebecca; Albarghouthi, Faris; Oles, William; Richter, Jacob; Fontes, Cassio M; Hucknall, Angus M; Yellen, Benjamin B; Franklin, Aaron D; Chilkoti, Ashutosh

    2017-02-15

    Advances in electronics and life sciences have generated interest in "lab-on-a-chip" systems utilizing complementary metal oxide semiconductor (CMOS) circuitry for low-power, portable, and cost-effective biosensing platforms. Here, we present a simple and reliable approach for coating "high-κ" metal oxide dielectric materials with "non-fouling" (protein- and cell-resistant) poly(oligo(ethylene glycol) methyl ether methacrylate (POEGMA) polymer brushes as biointerfacial coatings to improve their relevance for biosensing applications utilizing advanced electronic components. By using a surface-initiated "grafting from" strategy, POEGMA films were reliably grown on each material, as confirmed by ellipsometric measurements and X-ray photoelectron spectroscopy (XPS) analysis. The electrical behavior of these POEGMA films was also studied to determine the potential impact on surrounding electronic devices, yielding information on relative permittivity and breakdown field for POEGMA in both dry and hydrated states. We show that the incorporation of POEGMA coatings significantly reduced levels of nonspecific protein adsorption compared to uncoated high-κ dielectric oxide surfaces as shown by protein resistance assays. These attributes, combined with the robust dielectric properties of POEGMA brushes on high-κ surfaces open the way to incorporate this protein and cell resistant polymer interface into CMOS devices for biomolecular detection in a complex liquid milieu.

  1. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  2. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  3. Gas chromatographic/nitrogen-phosphorus detection method for determination of ethylene thiourea in finished drinking waters: collaborative study.

    PubMed

    Longbottom, J E; Edgell, K W; Erb, E J; Lopez-Avila, V

    1993-01-01

    A joint U.S. Environmental Protection Agency (USEPA)-AOAC interlaboratory method validation study was conducted on USEPA National Pesticide Survey (NPS) Method 6, "Determination of Ethylene Thiourea (ETU) in Finished Drinking Water by Gas Chromatography with a Nitrogen-Phosphorus Detector." The purpose of the study was to determine and compare the mean recoveries and precision for determination of ETU in reagent water and finished drinking waters. The study design was based on Youden's nonreplicate plan for collaborative tests of analytical methods. The waters were spiked with ETU at 6 concentrations levels, prepared as 3 Youden pairs. In the method, the test water is extracted by passing the sample through an absorbent matrix type tube. ETU is recovered from the tube with methylene chloride, the extract is solvent-exchanged to ethyl acetate, and an aliquot of each extract is analyzed by gas chromatography using a nitrogen-phosphorus detector. Twelve laboratories participated in the study. Data were analyzed using a USEPA computer program, which measured recovery and precision for ETU and compared the performance of the method between the 2 water types. Over the concentration range tested, the mean percent recoveries of ETU were 82-92% in reagent water and 85-98% in finished drinking water. The range of the between-laboratory relative standard deviations (RSDR) for the 6 concentrations was 5-24% in reagent water, but was only 4-9% in finished drinking water. The range of the within-laboratory relative standard deviations (RSDr) was 6-14% for reagent water and 6-10% for finished drinking water. Results for the 2 water matrixes showed no statistically significant differences.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Preventing Oxidation Near Gas/Tungsten-Arc Welds

    NASA Technical Reports Server (NTRS)

    Reed, K. J.

    1987-01-01

    Auxiliary argon jets create more nearly complete nonoxidizing atmosphere. Pyramid-shaped cup directs stream of additional argon over weld. Gas supplements provided by automatic welding machine so oxidation more completely suppressed.

  5. One-step sonochemical synthesis of a graphene oxide-manganese oxide nanocomposite for catalytic glycolysis of poly(ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Park, Gle; Bartolome, Leian; Lee, Kyoung G.; Lee, Seok Jae; Kim, Do Hyun; Park, Tae Jung

    2012-06-01

    Ultrasound-assisted synthesis of a graphene oxide (GO)-manganese oxide nanocomposite (GO-Mn3O4) was conducted without further modification of GO or employing secondary materials. With the GO nanoplate as a support, potassium permanganate oxidizes the carbon atoms in the GO support and gets reduced to Mn3O4. An intensive ultrasound method could reduce the number of reaction steps and temperature, enhance the reaction rate and furthermore achieve a Mn3O4 phase. The composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The coverage and crystallinity of Mn3O4 were controlled by changing the ratio of permanganate to GO dispersion. The synthesized nanocomposite was used as a catalyst for poly(ethylene terephthalate) (PET) depolymerization into its monomer, bis(2-hydroxylethyl) terephthalate (BHET). The highest monomer yield of 96.4% was obtained with the nanocomposite containing the lowest amount of Mn3O4, while PET glycolysis with the Mn3O4 without GO yielded 82.7% BHET.Ultrasound-assisted synthesis of a graphene oxide (GO)-manganese oxide nanocomposite (GO-Mn3O4) was conducted without further modification of GO or employing secondary materials. With the GO nanoplate as a support, potassium permanganate oxidizes the carbon atoms in the GO support and gets reduced to Mn3O4. An intensive ultrasound method could reduce the number of reaction steps and temperature, enhance the reaction rate and furthermore achieve a Mn3O4 phase. The composite was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The coverage and crystallinity of Mn3O4 were controlled by changing the ratio of permanganate to GO dispersion. The synthesized nanocomposite was used as a catalyst for poly(ethylene

  6. Satellite observations of ethylene

    NASA Astrophysics Data System (ADS)

    Dolan, W.; Payne, V.; Kulawik, S. S.; Bowman, K. W.

    2015-12-01

    Ethylene (C2H4) is a trace gas commonly associated with boreal fire plumes and the petrochemical industry. It has a short lifetime (~1-2 days) in the troposphere due to its reaction with OH. Chemical destruction of ethylene in the atmosphere leads to the production of ozone precursors such as carbon monoxide (CO) and formaldehyde. The Tropospheric Emission Spectrometer (TES) is a Fourier Transform Spectrometer aboard the Aura satellite that measures thermal infrared radiances with high spectral resolution. Trace gas products retrieved routinely from TES spectra include O3, CO, H2O, HDO, CH4, NH3, HCOOH, CH3OH, with OCS and PAN to be included in the next data release. The TES spectra also includes a wealth of untapped information about other trace gasses including ethylene. Ethylene was first observed in TES spectra by Alvarado et al. (2011), though it has yet to be developed into an operational product. Our study focuses on the detection and initial quantitative estimates of ethylene in TES special observations taken in support of the 2008 ARCTAS mission. Initial observations of HCN in the spectra may provide a way to distinguish between fire plume and petrochemical derived ethylene. Results indicate a correlation between ethylene and CO in fresh fire plumes but not in older plumes, consistent with the gas's short lifetime. The approach adopted here to detect ethylene in the TES 2008 ARCTAS special observations can easily be expanded to larger datasets, including those from other thermal infrared sounders as well as to other trace gases.

  7. Two dimensional electron gas at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Janicka, Karolina

    2011-12-01

    Extraordinary phenomena can occur at the interface between two oxide materials. A spectacular example is a formation of a two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 interface. In this dissertation the properties of the 2DEG are investigated from first principles. The spatial extent of the 2DEG formed at the SrTiO3/LaAlO 3 n-type interface is studied. It is shown that the confinement of the 2DEG is controlled by metal induced gap states formed in the band gap of SrTiO 3. The confinement width is then determined by the attenuation length of the metal induced gap states into SrTiO3 which is governed by the lowest decay rate evanescent states of bulk SrTiO3 which in turn can be found from the complex band structure of bulk SrTiO3. Magnetic properties of the 2DEG formed at the n-type interface of the SrTiO3/LaAlO3 superlattices are investigated. It is found that for a thin SrTiO3 film the interface is ferromagnetic but for a thicker SrTiO3 film the magnetic moment decreases and eventually disappears. This is a result of delocalization of the 2DEG that spreads over thicker SrTiO3 film which leads to violation of the Stoner criterion. Further, it is shown that inclusion of the Hubbard U interaction enhances the Stoner parameter and stabilizes the magnetism. The effect of the 2DEG and the polar interfaces for the thin film ferroelectricity is investigated using both first principles and model calculations. Using a TiO2-terminated BaTiO3 film with LaO monolayers at the two interfaces it is shown that the intrinsic electric field produced by the polar interface forces ionic displacements in BaTiO3 to produce the electric polarization directed into the interior of the BaTiO 3 layer. This creates a ferroelectric dead layer near the interfaces that is non-switchable and thus detrimental to ferroelectricity. It is found that the effect is stronger for a larger effective ionic charge at the interface and longer screening length due to a stronger intrinsic electric

  8. The monooxidation of ethylene with hydrogen peroxide on the per-FTPhPFe3+OH/Al2O3 biomimetic

    NASA Astrophysics Data System (ADS)

    Nasirova, U. V.; Gasanova, L. M.; Nagiev, T. M.

    2010-06-01

    The gas-phase monooxidation of ethylene by hydrogen peroxide on a biomimetic heterogeneous catalyst (per-FTPhPFe3+OH/Al2O3) was studied under comparatively mild conditions. The biomimetic oxidation of ethylene with hydrogen peroxide was shown to be coherently synchronized with the decomposition of H2O2. Depending on reaction medium conditions, one of two desired products was formed, either ethanol or acetaldehyde. The kinetics and probable mechanism of ethylene transformation were studied.

  9. Controlled pilot oxidizer for a gas turbine combustor

    DOEpatents

    Laster, Walter R.; Bandaru, Ramarao V.

    2010-07-13

    A combustor (22) for a gas turbine (10) includes a main burner oxidizer flow path (34) delivering a first portion (32) of an oxidizer flow (e.g., 16) to a main burner (28) of the combustor and a pilot oxidizer flow path (38) delivering a second portion (36) of the oxidizer flow to a pilot (30) of the combustor. The combustor also includes a flow controller (42) disposed in the pilot oxidizer flow path for controlling an amount of the second portion delivered to the pilot.

  10. Development of Iron-Chelating Poly(ethylene terephthalate) Packaging for Inhibiting Lipid Oxidation in Oil-in-Water Emulsions.

    PubMed

    Johnson, David R; Tian, Fang; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-05-27

    Foods such as bulk oils, salad dressings, and nutritionally fortified beverages that are susceptible to oxidative degradation are often packaged in poly(ethylene terephthalate) (PET) bottles with metal chelators added to the food to maintain product quality. In the present work, a metal-chelating active packaging material is designed and characterized, in which poly(hydroxamic acid) (PHA) metal-chelating moieties were grafted from the surface of PET. Biomimetic PHA groups were grafted in a two-step UV-initiated process without the use of a photoinitiator. Surface characterization of the films by attenuated total reflective Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) suggested successful grafting and conversion of poly(hydroxyethyl acrylate) (PHEA) to PHA chelating moieties from the surface of PET. Colorimetric (ferrozine) and inductively coupled plasma mass spectroscopy (ICP-MS) assays demonstrated the ability of PET-g-PHA to chelate iron in a low-pH (3.0) environment containing a competitive metal chelator (citric acid). Lipid oxidation studies demonstrated the antioxidant activity of PET-g-PHA films in inhibiting iron-promoted oxidation in an acidified oil-in-water (O/W) emulsion model system (pH 3.0). Particle size and ζ-potential analysis indicated that the addition of PET-g-PHA films did not affect the physical stability of the emulsion system. This work suggests that biomimetic chelating moieties can be grafted from PET and effectively inhibit iron-promoted degradation reactions, enabling removal of metal-chelating additives from product formulations.

  11. Highly Asymmetric Phase Diagram of a Poly(1,2-octylene oxide)-Poly(ethylene oxide) Diblock Copolymer System Comprising a Brush-Like Poly(1,2-octylene oxide) Block.

    PubMed

    Hamley, Ian W; O'Driscoll, Ben M D; Lotze, Gudrun; Moulton, Claire; Allgaier, Jürgen; Frielinghaus, Henrich

    2009-12-16

    The phase diagram of a series of poly(1,2-octylene oxide)-poly(ethylene oxide) (POO-PEO) diblock copolymers is determined by small-angle X-ray scattering. The Flory-Huggins interaction parameter was measured by small-angle neutron scattering. The phase diagram is highly asymmetric due to large conformational asymmetry that results from the hexyl side chains in the POO block. Non-lamellar phases (hexagonal and gyroid) are observed near f(PEO)  = 0.5, and the lamellar phase is observed for f(PEO)  ≥ 0.5.

  12. Root and shoot gas exchange respond additively to moderate ozone and methyl jasmonate without induction of ethylene: ethylene is induced at higher O3 concentrations

    PubMed Central

    Grantz, D.A.; Vu, H.-B.

    2012-01-01

    The available literature is conflicting on the potential protection of plants against ozone (O3) injury by exogenous jasmonates, including methyl jasmonate (MeJA). Protective antagonistic interactions of O3 and MeJA have been observed in some systems and purely additive effects in others. Here it is shown that chronic exposure to low to moderate O3 concentrations (4–114 ppb; 12 h mean) and to MeJA induced additive reductions in carbon assimilation (A n) and root respiration (R r), and in calculated whole plant carbon balance. Neither this chronic O3 regime nor MeJA induced emission of ethylene (ET) from the youngest fully expanded leaves. ET emission was induced by acute 3 h pulse exposure to much higher O3 concentrations (685 ppb). ET emission was further enhanced in plants treated with MeJA. Responses of growth, allocation, photosynthesis, and respiration to moderate O3 concentrations and to MeJA appear to be independent and additive, and not associated with emission of ET. These results suggest that responses of Pima cotton to environmentally relevant O3 are not mediated by signalling pathways associated with ET and MeJA, though these pathways are inducible in this species and exhibit a synergistic O3×MeJA interaction at very high O3 concentrations. PMID:22563119

  13. Ultrafast response sensor to formaldehyde gas based on metal oxide.

    PubMed

    Choi, N-J; Lee, H-K; Moon, S E; Kim, J; Yang, W S

    2014-08-01

    Thick film semiconductor gas sensors based on indium oxide were fabricated on Si substrate. The sensing materials on Si substrate were characterized using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), and so on. They were very fine and uniform and we found out that particle sizes were about 20~30 nm through XRD analysis. Gas responses of fabricated sensors were measured in a chamber where gas flow was controlled by mass flow controller (MFC). Their resistance changes were monitored in real time by using data acquisition board and personal computer. Gas response characteristics were examined for formaldehyde (HCHO) gas which was known as the cause of sick building syndrome. Particularly, the sensors showed responses to formaldehyde gas at sub ppm (cf, standard of natural environment in building is about 80 ppb by ministry of environment in Korea), as a function of operating temperatures and gas concentrations. Also, we investigated sensitivity, repetition, selectivity, response speed and reproducibility of the sensors. The lowest detection limit is HCHO 25 ppb and sensitivity at 800 ppb is over 25% at 350 °C operating temperature. The response time (8 s) and recovery time (15 s) to HCHO gas at 200 ppb were very fast compared to other commercial products in flow type measurement condition. Repetition measurement was very good with ±3% in full measurement range. The fabricated metal oxide gas sensor showed good performance to HCHO gas and proved that it could be adaptable to indoor environment in building.

  14. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    SciTech Connect

    Nurhadini, Arcana, I Made

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  15. Health hazard evaluation report HETA 84-198-1560, Division of Public Health Laboratories, State of Ohio, Columbus, Ohio. [Ethylene oxide and organic-solvent vapors

    SciTech Connect

    Behrens, V.; Burroughs, G.E.

    1985-02-01

    Breathing-zone and environmental samples were analyzed for ethylene oxide and organic-solvent vapors at the Public Health Laboratory, State of Ohio, Columbus, Ohio, on March 26 and 27, 1984. The evaluation was requested because of employee complaints of mucous membrane and skin irritation while they poured gonorrhea culture media into petri dishes that had been sterilized with ethylene oxide. The authors conclude that the environmental cause of the health problems cannot be determined due to the lack of symptoms on the days of the survey. Without taking measurements on the exact day when conspicuous symptoms occur, it is difficult to determine the source of the problem. General recommendations include checking the general air circulation in the media laboratory and encouraging employees to wear gloves that protect hands and wrists while pouring culture media.

  16. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    NASA Astrophysics Data System (ADS)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  17. Effect of the nature of the counterion on the interaction between cesium and tetraalkylammonium dodecylsulfates and poly(ethylene oxide) or poly(vinylpyrolidone).

    PubMed

    Benrraou, Mohamed; Bales, Barney; Zana, Raoul

    2003-11-15

    The interaction between poly(ethylene oxide) or poly(vinylpyrrolidone) and cesium and tetraalkylammonium (tetramethyl to tetrabutyl ammonium) dodecylsulfate has been investigated by means of electrical conductivity measurements to determine the critical aggregation concentration (cac) of the surfactants in the presence of polymer. The cac values were compared to the values of the critical micellization concentration (cmc) of the surfactants in the absence of polymer. The value of the cac/cmc ratio increased with the radius of the counterion in the sequence: Na(+)ethylene oxide) or poly(vinylpyrrolidone).

  18. Effect of Low Temperature Ethylene Oxide and Electron Beam Sterilization on the In Vitro and In Vivo Function of Reconstituted Extracellular Matrix-Derived Scaffolds

    PubMed Central

    Proffen, Benedikt L.; Perrone, Gabriel S.; Fleming, Braden C.; Sieker, Jakob T.; Kramer, Joshua; Hawes, Michael L.; Murray, Martha M.

    2015-01-01

    Reconstituted extracellular matrix (ECM) -derived scaffolds are commonly utilized in preclinical tissue engineering studies as delivery vehicles for cells and growth factors. Translation into clinical use requires identifying a sterilization method that effectively removes bacteria but doesn’t harm scaffold function. To determine effectiveness of sterilization and impact on ECM scaffold integrity and function low temperature ethylene oxide and 15kGy electron beam irradiation techniques were evaluated. Scaffold sterility was assessed in accordance to United States Pharmacopeia Chapter 71. Scaffold matrix degradation was determined in vitro using enzymatic resistance tests and gel electrophoresis. Scaffold mechanics including elastic modulus, yield stress and collapse modulus were tested. Lastly, 14 Yorkshire pigs underwent ACL transection and bio-enhanced ACL repair using sterilized scaffolds. Histologic response of ligament, synovium and lymph nodes was compared at 4, 6, and 8 weeks. Ethylene oxide as well as electron beam irradiation yielded sterile scaffolds. Scaffold resistance to enzymatic digestion and protein integrity slightly decreased after electron beam irradiation while ethylene oxide altered scaffold matrix. Scaffold elastic modulus and yield stress were increased after electron beam treatment, while collapse modulus was increased after ethylene oxide treatment. No significant changes in ACL dimensions, in vivo scaffold resorption rate, or histologic response of synovium, ligament and lymph nodes with either terminal sterilization technique were detectable. In conclusion, this study identifies two methods to terminally sterilize an ECM scaffold. In vitro scaffold properties were slightly changed without significantly influencing the biologic responses of the surrounding tissues in vivo. This is a critical step toward translating new tissue engineering strategies to clinical trials. PMID:26088294

  19. Nanoporous palladium with sub-10 nm dendrites by electrodeposition for ethanol and ethylene glycol oxidation

    NASA Astrophysics Data System (ADS)

    Cherevko, Serhiy; Kulyk, Nadiia; Chung, Chan-Hwa

    2011-12-01

    High surface area Pd foams with roughness factors of more than 1000 and a specific surface area of 60 m2 g-1 are obtained by electrodeposition. The foams are composed of dendrites with branches on the 10 nm scale. The resulting electrodes show high activity towards the oxidation of C2 alcohols.High surface area Pd foams with roughness factors of more than 1000 and a specific surface area of 60 m2 g-1 are obtained by electrodeposition. The foams are composed of dendrites with branches on the 10 nm scale. The resulting electrodes show high activity towards the oxidation of C2 alcohols. Electronic supplementary information (ESI) available: Details of the experimental conditions, additional SEM images, CVs, pseudo-steady-state curves, and summary table. See DOI: 10.1039/c1nr11316j

  20. Investigations on Poly (ethylene oxide) (PEO) - blend based solid polymer electrolytes for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Koduru, H. K.; Iliev, M. T.; Kondamareddy, K. K.; Karashanova, D.; Vlakhov, T.; Zhao, X.-Z.; Scaramuzza, N.

    2016-10-01

    Polymer blend electrolytes based on Polyethylene oxide (PEO) and polyvinyl pyrrolidone (PVP), complexed with NaIO4 salt and Graphene oxide (GO) are investigated in the present report. The electrolytes are prepared by a facile solution cast technique. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) are employed to study the influence of ion-polymer interactions on the micro structural properties of blend electrolytes. Measurements of electrical conductivity of the blend polymer complexes have been performed by using complex impedance spectroscopy in the frequency range 1 Hz - 1 MHz and within the temperature range 303 K - 343 K.A study on electrical conductivity properties of GO doped ‘salt complexed electrolyte’ systems is presented.

  1. Charge transport and glassy dynamics of poly(ethylene oxide)-based single-ion conductors under geometrical confinement

    NASA Astrophysics Data System (ADS)

    Runt, James; Iacob, Ciprian

    2015-03-01

    Segmental and local dynamics as well as charge transport are investigated in a series of poly(ethylene oxide)-based single-ion conductors (ionomers) with varying counterions (Li +, Na +) confined in uni-directional nanoporous silica membranes. The dynamics are explored over a wide frequency and temperature range by broadband dielectric relaxation spectroscopy. Slowing of segmental dynamics and a decrease in dc conductivity (strongly coupled with segmental relaxation) of the confined ionomers are associated with surface effects - resulting from interfacial hydrogen bonding between the host nanoporous silica membrane and the guest ionomers. These effects are significantly reduced or eliminated upon pore surface modification through silanization. The primary transport properties for the confined ionomers decrease by about one decade compared to the bulk ionomer. A model assuming reduced mobility of an adsorbed layer at the pore wall/ionomer interface is shown to provide a quantitative explanation for the decrease in effective transport quantities in non-silanized porous silica membranes. Additionally, the effect of confinement on ion aggregation in ionomers by using X-ray scattering will also be discussed. Supported by the National Science Foundation, Polymers Program.

  2. Synthesis of silica chemically bonded with poly(ethylene oxide) 4-arm, amine-terminated for copper cation removal.

    PubMed

    Kurczewska, Joanna; Schroeder, Grzegorz

    2010-12-01

    Chemically modified silica containing a poly(ethylene oxide) 4-arm, amine-terminated unit has been obtained in the multi-step synthesis. The synthesized material was characterized by elemental, thermogravimetric analysis and infrared spectroscopy. The surface morphology was analyzed by scanning electron microscopy. The support studied was applied for selective extraction of copper(II) [Cu(II)] from water solutions. The influence of different parameters (pH, amount of the support studied, and contact time) on the copper extraction was investigated. At the optimum conditions, the copper extraction was approximately 90%, significantly greater than that of the other coexisting ions--nickel(II) [Ni(II)], cobalt(II) [Co(II)], and manganese(II) [Mn(II)]. The exception was calcium(II) [Ca(II)], which reached 30% of the extraction percentage. The solid support retained its properties after treatment with different organic and inorganic solvents. The recovery of adsorbed Cu(II) ions was approximately 97%. The sorbent studied can be applied effectively for the pre-concentration of a low level of Cu(II) in the different water samples.

  3. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    SciTech Connect

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2012-01-06

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.

  4. Surfactant-assisted intercalation of high molecular weight poly(ethylene oxide) into vanadyl phosphate di-hydrate

    SciTech Connect

    Ferreira, Joao Paulo L.; Oliveira, Herenilton P.

    2012-03-15

    Graphical abstract: CuK{sub {alpha}} X-ray diffraction patterns of the VOPO{sub 4}/PEO (A) e VOPO{sub 4}/CTA (B) and VOPO{sub 4}/CTA/PEO (C). Highlights: Black-Right-Pointing-Pointer VOPO{sub 4}/PEO has been synthesized by using CTAB, thereby improving PEO intercalation. Black-Right-Pointing-Pointer The d-spacing increase from 1.30 nm (VOPO{sub 4}/PEO) to 2.94 nm (VOPO{sub 4}/CTA/PEO). Black-Right-Pointing-Pointer This strategy was viable for intercalation of PEO with high molecular weight. -- Abstract: A high molecular weight poly(ethylene oxide)/layered vanadyl phosphate di-hydrate intercalation compound was synthesized via the surfactant-assisted approach. Results confirmed that surfactant molecules were replaced with the polymer, while the lamellar structure of the matrix was retained, and that the material presents high specific surface area. In addition, intercalation produced a more thermally stable polymer as evidenced by thermal analysis.

  5. Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane.

    PubMed

    Shariful, Md Islam; Sharif, Sazzad Bin; Lee, Jacky Jia Li; Habiba, Umma; Ang, Bee Chin; Amalina, Muhammad Afifi

    2017-02-10

    In this study, chitosan/poly (ethylene oxide) nanofibres were fabricated at different chitosan:PEO weight ratio by electrospinning process. The effects of chitosan/PEO composition onto adsorption capability for Cu(II), Zn(II) and Pb(II) ions were studied. Formation of beadless fibres were achieved at 60:40 chitosan:PEO ratio. Average fiber diameter, maximum tensile strength and the specific surface area of the beadless fibres were found to be 115±31nm, 1.58MPa and 218m(2)/g, respectively. Chitosan/PEO composition that produced beadless fibres tend to possess higher hydrophilicity and maximum specific surface area. These characteristics lead the beadless fibres to the maximum adsorption capability. Adsorption equilibrium data were analysed by Langmuir and Freundlich isotherm. Freundlich isotherm showed the better fit with the experimental data and proved the existence of the monolayer adsorption conditions. The maximum adsorption capacity of the beadless fibres for Cu(II), Zn(II) and Pb(II) ions were found to be 120, 117 and 108mgg(-1), respectively.

  6. Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery.

    PubMed

    Lee, Sueun; Saito, Kyohei; Lee, Hye-Ra; Lee, Min Jae; Shibasaki, Yuji; Oishi, Yoshiyuki; Kim, Byeong-Su

    2012-04-09

    We report the synthesis of a well-defined hyperbranched double hydrophilic block copolymer of poly(ethylene oxide)-hyperbranched-polyglycerol (PEO-hb-PG) to develop an efficient drug delivery system. In specific, we demonstrate the hyperbranched PEO-hb-PG can form a self-assembled micellar structure on conjugation with the hydrophobic anticancer agent doxorubicin, which is linked to the polymer by pH-sensitive hydrazone bonds, resulting in a pH-responsive controlled release of doxorubicin. Dynamic light scattering, atomic force microscopy, and transmission electron microscopy demonstrated successful formation of the spherical core-shell type micelles with an average size of about 200 nm. Moreover, the pH-responsive release of doxorubicin and in vitro cytotoxicity studies revealed the controlled stimuli-responsive drug delivery system desirable for enhanced efficiency. Benefiting from many desirable features of hyperbranched double hydrophilic block copolymers such as enhanced biocompatibility, increased water solubility, and drug loading efficiency as well as improved clearance of the polymer after drug release, we believe that double hydrophilic block copolymer will provide a versatile platform to develop excellent drug delivery systems for effective treatment of cancer.

  7. Poly(ethylene oxide) irradiated in the solid state, melt and aqueous solution—a DSC and WAXD study

    NASA Astrophysics Data System (ADS)

    Jurkin, Tanja; Pucić, Irina

    2012-09-01

    Interactions of the aggregate state of poly(ethylene oxide), PEO, and γ-irradiation conditions (total dose, atmosphere) on its thermal and crystalline properties were investigated by DSC and WAXD taking into account sample molecular mass and form. In PEO irradiated in the solid state and in the presence of oxygen, chain scission dominated over concurrent crosslinking up to 200 kGy, particularly in PEO powders, due to a large surface being in contact with air. In solid samples the degree of crystallinity and crystallite size increased with the dose up to 50 kGy, probably not just due to partial crystallization upon degradation of amorphous phase, but to recrystallization of broken tie molecules. The least changes in crystallinity and phase transformation temperatures occurred in solid films. A substantial decrease in crystallinity and transformation temperatures without the initial crystallinity increase was achieved in samples that were amorphous on irradiation, at temperatures above the PEO melting temperature and in aqueous solutions. Radiation crosslinking of the PEO aqueous solution in an inert atmosphere is the most suitable way to obtain a lower degree of crystallinity and phase transformation temperatures while preserving mechanical properties.

  8. Increased bioavailability of primaquine using poly(ethylene oxide) matrix extended-release tablets administered to beagle dogs

    PubMed Central

    Bertol, C D; Oliveira, P R; Kuminek, G; Rauber, G S; Stulzer, H K; Silva, M A S

    2011-01-01

    Primaquine (PQ) is used for the radical cure of Plasmodium vivax malaria and can cause serious side effects in some individuals. The development of an extended-release dosage with poly(ethylene oxide) as a hydrophilic polymer has been investigated to improve drug efficacy and tolerability. The aim of this study was to evaluate in vivo a new extended-release formulation of PQ (60 mg). The formulation was administered to beagle dogs and plasma PQ concentrations were compared to a conventional immediate-release formulation of PQ (60 mg). The evaluation was carried out using a validated high-performance liquid chromatography method using solid-phase extraction. Total PQ exposure in beagle dogs was 2.2 times higher (area under curve of 12 193 versus 5678 ng h/ml) and the elimination half-life of PQ was a 19-fold greater (12.95 hours versus 0.68 hours) with the extended-release tablets compared with the immediate-release tablets. These findings suggest that the extended-release formulation of PQ merits further evaluation for the treatment of P. vivax malaria and/or chemoprophylaxis. PMID:22185941

  9. A comparison of united atom, explicit atom, and coarse-grained simulation models for poly(ethylene oxide).

    PubMed

    Chen, Chunxia; Depa, Praveen; Sakai, Victoria García; Maranas, Janna K; Lynn, Jeffrey W; Peral, Inmaculada; Copley, John R D

    2006-06-21

    We compare static and dynamic properties obtained from three levels of modeling for molecular dynamics simulation of poly(ethylene oxide) (PEO). Neutron scattering data are used as a test of each model's accuracy. The three simulation models are an explicit atom (EA) model (all the hydrogens are taken into account explicitly), a united atom (UA) model (CH(2) and CH(3) groups are considered as a single unit), and a coarse-grained (CG) model (six united atoms are taken as one bead). All three models accurately describe the PEO static structure factor as measured by neutron diffraction. Dynamics are assessed by comparison to neutron time of flight data, which follow self-motion of protons. Hydrogen atom motion from the EA model and carbon/oxygen atom motion from the UA model closely follow the experimental hydrogen motion, while hydrogen atoms reinserted in the UA model are too fast. The EA and UA models provide a good description of the orientation properties of C-H vectors measured by nuclear magnetic resonance experiments. Although dynamic observables in the CG model are in excellent agreement with their united atom counterparts, they cannot be compared to neutron data because the time after which the CG model is valid is greater than the neutron decay times.

  10. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2012-01-01

    Nuclear magnetic resonance spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and quasi-elastic neutron scattering experiments.

  11. Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Bing-Xing; Shi, Jia-Hua; Pramoda, K. P.; Goh, Suat Hong

    2007-03-01

    Phenoxy (poly(hydroxyether of bisphenol-A), also known as poly(bisphenol-A-co-epichlorohydrin)) was grafted onto multiwalled carbon nanotubes (MWNTs) by a reactive blending process. Reactions between terminal glycidyl groups of phenoxy and carboxylic acid groups of acidified MWNTs resulted in the grafting of phenoxy chains onto MWNTs. The mechanical properties of composites of poly(ethylene oxide) (PEO) and phenoxy-grafted MWNTs were studied. The miscibility between PEO and phenoxy enabled the good dispersion of nanotubes in the PEO matrix as evidenced by polarized optical microscopy and transmission electron microscopy. The spherulite size of PEO progressively decreased with increasing amount of phenoxy-grafted MWNTs added. At an optimal MWNT content of 1.5 wt%, the addition of phenoxy-grafted MWNTs led to increases of storage modulus, Young's modulus, yield stress, tensile strength, ultimate strain, and toughness of PEO by 113, 228, 166, 442, 1240, and 4080%, respectively. Such simultaneous increases in stiffness, strength, ductility and toughness of a polymer by an additive are rather uncommon.

  12. Contribution toward comprehension of contact angle values on single polydimethylsiloxane and poly(ethylene oxide) polymer networks.

    PubMed

    Bouteau, Murielle; Cantin, Sophie; Fichet, Odile; Perrot, Françoise; Teyssié, Dominique

    2010-11-16

    The large application ranges of polydimethylsiloxane (PDMS) and poly(ethylene oxide) (PEO) based materials justify the importance of controlling polymer surface properties including morphology and wettability behavior. However, it appears that the reported contact angle values of PDMS surfaces show significant scattering which cannot always be interpreted in terms of sole chemical data. In addition, few values are reported concerning pure PEO surfaces, since the polymer generally swells in the presence of water. Thus, in order to correlate surface properties with sample preparation, several single PDMS and PEO polymer networks were synthesized with varying cross-linkers and different cross-linking densities. First, the sample surface topography was systematically analyzed by atomic force microscopy (AFM). It was proven that the removal process of the polymer film from the mold plays a significant role in surface topography according to the vitreous or rubbery state of the given polymer network at room temperature irrespective of mold surface treatment. AFM-scale smooth surfaces can be obtained for all the samples by removing them systematically from the mold at a temperature below the α-relaxation temperature. Dynamic water contact angles were then measured and the values analyzed as a function of cross-linker nature and cross-linking density.

  13. Poly(ethylene oxide)-Assisted Macromolecular Self-Assembly of Lignin in ABS Matrix for Sustainable Composite Applications

    DOE PAGES

    Akato, Kokouvi M.; Tran, Chau D.; Chen, Jihua; ...

    2015-11-05

    Here we report the compatibilization of biomass-derived lignin polymer in acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS was blended with lignin in different concentrations, and blends with 10 wt % PEO (relative to lignin) were prepared. The relative tensile strength improved slightly at low lignin content but diminished rapidly as the lignin content was increased. However, the inclusion of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic mechanical analysis showed that PEO plasticized the hard phase and thus lowered the activation energy (Ea) for its relaxationmore » but caused stiffening of the soft phase and increased its Ea. Microscopy revealed that incorporating lignin in ABS led to the statistical dispersion of discrete lignin domains (300–1000 nm) which, after PEO addition, were reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially renewable ABS resins showed shear-thinning behavior and reduced viscosity compared to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol % chopped carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of reinforced ABS materials reportedly used in 3D printing applications. In conclusion, this approach could lower the cost of ABS while reducing its carbon footprint.« less

  14. Synthesis and Gelation Characteristics of Photo-Crosslinkable Star Poly(ethylene oxide-co-lactide-glycolide acrylate) Macromonomers

    PubMed Central

    Moeinzadeh, Seyedsina; Khorasani, Saied Nouri; Ma, Junyu; He, Xuezhong; Jabbari, Esmaiel

    2011-01-01

    Viability of encapsulated cells in situ crosslinkable macromonomers depends strongly on the minimum concentration of polymerization initiators and monomers required for gelation. Novel 4-arm poly(ethylene oxide-co-lactide-glycolide acrylate) (SPELGA) macromonomers were synthesized and characterized with respect to gelation, sol fraction, degradation, and swelling in aqueous solution. SPELGA macromonomers were crosslinked in the absence of N-vinyl-2-pyrrolidone (NVP) monomer to produce a hydrogel network with a shear modulus of 27±4 kPa. The shear modulus of the gels increased by 170-fold as the macromonomer concentration was increased from 10 to 25 wt%. Sol fraction ranged between 8–18%. Addition of only 0.4 mol% NVP to the polymerization mixture increased modulus by 2.2-fold from 27±4 (no NVP) to 60±10 kPa. The higher modulus was attributed to the dilution effect of polymer chains in the sol, by delaying the onset of diffusion-controlled reaction, and cross-propagation of the growing chains with network-bound SPELGA acrylates. Degradation of SPELGA gels depended on water content and density of hydrolytically degradable ester groups. PMID:21927508

  15. Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions.

    PubMed

    Acuña, Sergio M; Bastías, José M; Toledo, Pedro G

    2017-01-01

    The net interaction between a probe tip coated with bovine serum albumin (BSA) protein and a flat substrate coated with poly(ethylene oxide) (PEO) polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI) of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling.

  16. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya D.; Archer, Randall B.; Damin, Craig A.; Mendoza-Cruz, Rubén; Rhodes, Christopher P.

    2017-03-01

    Rechargeable magnesium batteries provide the potential for lower cost and improved safety compared with lithium-ion batteries, however obtaining cathode materials with highly reversible Mg-ion capacities is hindered by the high polarizability of divalent Mg-ions and slow solid-state Mg-ion diffusion. We report that incorporating poly(ethylene oxide) (PEO) between the layers of hydrated vanadium pentoxide (V2O5) xerogels results in significantly improved reversible Mg-ion capacities. X-ray diffraction and high resolution transmission electron microscopy show that the interlayer spacing between V2O5 layers was increased by PEO incorporation. Vibrational spectroscopy supports that the polymer interacts with the V2O5 lattice. The V2O5-PEO nanocomposite exhibited a 5-fold enhancement in Mg-ion capacity, improved stability, and improved rate capabilities compared with V2O5 xerogels. The Mg-ion diffusion coefficient of the nanocomposite was increased compared with that of V2O5 xerogels which is attributed to enhanced Mg-ion mobility due to the shielding interaction of PEO with the V2O5 lattice. This study shows that beyond only interlayer spacing, the nature of interlayer interactions of Mg-ions with V2O5, PEO, and H2O are key factors that affect Mg-ion charge transport and storage in layered materials. The design of layered materials with controlled interlayer interactions provides a new approach to develop improved cathodes for magnesium batteries.

  17. ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends.

    PubMed

    Sim, L H; Gan, S N; Chan, C H; Yahya, R

    2010-08-01

    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO(4)) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO(4) were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO(4) blends reveal that Li(+) ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the nu(C-O-C) and omega(CH(2)) of PEO confirm the coordination between PEO and Li(+) ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li(+)-PAc complexes suggests that LiClO(4) does not enhance the compatibility of PAc/PEO blend.

  18. ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends

    NASA Astrophysics Data System (ADS)

    Sim, L. H.; Gan, S. N.; Chan, C. H.; Yahya, R.

    2010-08-01

    The interaction behaviours between components of polyacrylate (PAc)/poly(ethylene oxide) (PEO) and lithium perchlorate (LiClO 4) were investigated in detail by Attenuated Total Reflectance (ATR)-Fourier Transformed Infrared (FTIR) spectroscopy. Solution cast films of the PAc/PEO and PAc/PEO/LiClO 4 were examined. No obvious shifting of the characteristic ether and ester group stretching modes of PEO and PAc was observed, indicating incompatibility of the binary PAc/PEO blend. The spectroscopic studies on the PAc/PEO/LiClO 4 blends reveal that Li + ions coordinate individually to the polymer components at the ether oxygen of PEO and the C-O of the ester group of PAc. Frequency changes observed on the ν(C-O-C) and ω(CH 2) of PEO confirm the coordination between PEO and Li + ions resulting in crystallinity suppression of PEO. The absence of experimental evidence on the formation of PEO-Li +-PAc complexes suggests that LiClO 4 does not enhance the compatibility of PAc/PEO blend.

  19. Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly(ethylene oxide).

    PubMed

    Mengistu Lemma, Solomon; Bossard, Frédéric; Rinaudo, Marguerite

    2016-10-26

    Electrospinning was employed to obtain chitosan nanofibers from blends of chitosans (CS) and poly(ethylene oxide) (PEO). Blends of chitosan (MW (weight-average molecular weight) = 102 kg/mol) and PEO (M (molecular weight) = 1000 kg/mol) were selected to optimize the electrospinning process parameters. The PEO powder was solubilized into chitosan solution at different weight ratios in 0.5 M acetic acid. The physicochemical changes of the nanofibers were determined by scanning electron microscopy (SEM), swelling capacity, and nuclear magnetic resonance (NMR) spectroscopy. For stabilization, the produced nanofibers were neutralized with K₂CO₃ in water or 70% ethanol/30% water as solvent. Subsequently, repeated washings with pure water were performed to extract PEO, potassium acetate and carbonate salts formed in the course of chitosan nanofiber purification. The increase of PEO content in the blend from 20 to 40 w% exhibited bead-free fibers with average diameters 85 ± 19 and 147 ± 28 nm, respectively. Their NMR analysis proved that PEO and the salts were nearly completely removed from the nanostructure of chitosan, demonstrating that the adopted strategy is successful for producing pure chitosan nanofibers. In addition, the nanofibers obtained after neutralization in ethanol-aqueous solution has better structural stability, at least for six months in aqueous solutions (phosphate buffer (PBS) or water).

  20. Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell.

    PubMed

    Judez, Xabier; Zhang, Heng; Li, Chunmei; González-Marcos, José Antonio; Zhou, Zhi-Bin; Armand, Michel; Rodriguez-Martinez, Lide Mercedes

    2017-04-13

    Solid polymer electrolytes (SPEs) comprising lithium bis(fluorosulfonyl)imide (Li[N(SO2F)2], LiFSI) and poly(ethylene oxide) (PEO) have been studied as electrolyte material and binder for the Li-S polymer cell. The LiFSI-based Li-S all solid polymer cell can deliver high specific discharge capacity of 800 mAh gsulfur-1 (i.e., 320 mAh gcathode-1), high areal capacity of 0.5 mAh cm-2 and relatively good rate capability. The cycling performances of Li-S polymer cell with LiFSI are significantly improved compared to with those with conventional LiTFSI (Li[N(SO2CF3)2]) salt in the polymer membrane, due to the improved stability of the Li anode/electrolyte interphases formed in the LiFSI-based SPEs. These results suggest that the LiFSI-based SPEs are attractive electrolyte materials for solid-state Li-S batteries.

  1. Preparation of Pure and Stable Chitosan Nanofibers by Electrospinning in the Presence of Poly(ethylene oxide)

    PubMed Central

    Mengistu Lemma, Solomon; Bossard, Frédéric; Rinaudo, Marguerite

    2016-01-01

    Electrospinning was employed to obtain chitosan nanofibers from blends of chitosans (CS) and poly(ethylene oxide) (PEO). Blends of chitosan (MW (weight-average molecular weight) = 102 kg/mol) and PEO (M (molecular weight) = 1000 kg/mol) were selected to optimize the electrospinning process parameters. The PEO powder was solubilized into chitosan solution at different weight ratios in 0.5 M acetic acid. The physicochemical changes of the nanofibers were determined by scanning electron microscopy (SEM), swelling capacity, and nuclear magnetic resonance (NMR) spectroscopy. For stabilization, the produced nanofibers were neutralized with K2CO3 in water or 70% ethanol/30% water as solvent. Subsequently, repeated washings with pure water were performed to extract PEO, potassium acetate and carbonate salts formed in the course of chitosan nanofiber purification. The increase of PEO content in the blend from 20 to 40 w% exhibited bead-free fibers with average diameters 85 ± 19 and 147 ± 28 nm, respectively. Their NMR analysis proved that PEO and the salts were nearly completely removed from the nanostructure of chitosan, demonstrating that the adopted strategy is successful for producing pure chitosan nanofibers. In addition, the nanofibers obtained after neutralization in ethanol-aqueous solution has better structural stability, at least for six months in aqueous solutions (phosphate buffer (PBS) or water). PMID:27792192

  2. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly(ethylene oxide) Diblock Copolymers in an Ionic Liquid

    SciTech Connect

    Simone, Peter M.; Lodge, Timothy P.

    2010-03-16

    Concentrated solutions of poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymers were prepared using the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMI][TFSI] as the solvent. The self-assembled microstructures adopted by the copolymer solutions have been characterized using small-angle X-ray scattering. Lyotropic mesophase transitions were observed, with a progression from hexagonally packed cylinders of PEO, to lamellae, to hexagonally packed cylinders of PS upon increasing [EMI][TFSI] content. The change in lamellar domain spacing with ionic liquid concentration was found to be comparable to that reported for other block copolymers in strongly selective solvents. The ionic conductivity of the concentrated PS-PEO/[EMI][TFSI] solutions was measured via impedance spectroscopy, and ranged from 1 x 10{sup -7} to 1 x 10{sup -3} S/cm at temperatures from 25-100 C. Additionally, the ionic conductivity of the solutions was found to increase with both ionic liquid concentration and molecular weight of the PEO blocks. The ionic conductivity of PEO homopolymer/[EMI][TFSI] solutions was also measured in order to compare the conductivity of the PS-PEO solutions to the expected limit for a lamellar sample with randomly oriented microstructure grains.

  3. Prediction of acetaminophen's solubility in poly(ethylene oxide) at room temperature using the Flory-Huggins theory.

    PubMed

    Yang, Min; Wang, Peng; Gogos, Costas

    2013-01-01

    Solid dispersion technologies such as hot-melt extrusion and spray drying are often used to enhance the solubility of poorly soluble drugs. The biggest challenge associated with solid dispersion systems is that amorphous drugs may phase-separate from the polymeric matrix and recrystallize during storage. A more fundamental understanding of drug-polymer mixtures is needed for the industry to embrace the solid dispersion technologies. In this study, a theoretical model based on Flory-Huggins lattice theory was utilized to predict the solubility of a model drug acetaminophen (APAP) in a semi-crystalline polymer poly(ethylene oxide) (PEO) at 300 K. The interaction parameter χ was calculated to be -1.65 from the depression of drug's melting temperature determined from rheological and differential scanning calorimetry analysis. The equilibrium solubility in amorphous PEO was estimated to be 11.7% at 300 K. Assuming no APAP molecules dissolve in the crystalline part of PEO, the adjusted theoretical solubility is around 2.3% considering PEO being 80% crystalline. The solubility of APAP in PEG 400 was calculated to be 14.6% by using the same χ value, close to the experimental measurement 17.1%. The drug's solubility could be altered noticeably by the change of both χ and polymer molecular weight. The study also suggests that the depression of drug's melting point is a good indicator for preliminary polymer screening. The polymer that reduces the melting point the most is likely to be most miscible with the drug.

  4. Controlled protein release from electrospun biodegradable fiber mesh composed of poly(epsilon-caprolactone) and poly(ethylene oxide).

    PubMed

    Kim, Taek Gyoung; Lee, Doo Sung; Park, Tae Gwan

    2007-06-29

    A blend mixture of poly(epsilon-caprolactone) (PCL) and poly(ethylene oxide) (PEO) was electrospun to produce fibrous meshes that could release a protein drug in a controlled manner. Various biodegradable polymers, such as poly(l-lactic acid) (PLLA), poly(epsilon-caprolactone) (PCL), and poly(d,l-lactic-co-glycolic acid) (PLGA) were dissolved, along with PEO and lysozyme, in a mixture of chloroform and dimethylsulfoxide (DMSO). The mixture was electrospun to produce lysozyme loaded fibrous meshes. Among the polymers, the PCL/PEO blend meshes showed good morphological stability upon incubation in the buffer solution, resulting in controlled release of lysozyme over an extended period with reduced initial bursts. With varying the PCL/PEO blending ratio, the release rate of lysozyme from the corresponding meshes could be readily modulated. The lysozyme release was facilitated by increasing the amount of PEO, indicating that entrapped lysozyme was mainly released out by controlled dissolution of PEO from the blend meshes. Lysozyme released from the electrospun fibers retained sufficient catalytic activity.

  5. Poly(ethylene oxide)-bonded stationary phase for separation of inorganic anions in capillary ion chromatography.

    PubMed

    Linda, Roza; Lim, Lee Wah; Takeuchi, Toyohide

    2013-06-14

    A tosylated-poly(ethylene oxide) (PEO) reagent was reacted with primary amino groups of an aminopropylsilica packing material (TSKgel NH2-60) in acetonitrile to form PEO-bonded stationary phase. The reaction was a single and simple step reaction. The prepared stationary phase was able to separate inorganic anions. The retention behavior of six common inorganic anions on the prepared stationary phase was examined under various eluent conditions in order to clarify its separation/retention mechanism. The elution order of the tested anions was iodate, bromate, bromide, nitrate, iodide, and thiocyanate, which was similar as observed in common ion chromatography. The retention of inorganic anions could be manipulated by ion exchange interaction which is expected that the eluent cation is coordinated among the PEO chains and it works as the anion-exchange site. Cations and anions of the eluent therefore affected the retention of sample anions. We demonstrated that the retention of the analyte anions decreased with increasing eluent concentration. The repeatability of retention time for the six anions was satisfactory on this column with relative standard deviation values from 1.1 to 4.3% when 10mM sodium chloride was used as the eluent. Compared with the unmodified TSKgel NH2-60, the prepared stationary phase retained inorganic anions more strongly and the selectivity was also improved. The present stationary phase was applied for the determination of inorganic anions contained in various water samples.

  6. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents

    SciTech Connect

    Kohler, Nathan J.; Fryxell, Glen E.; Zhang, Miqin

    2004-06-16

    A trifluoroethylester-terminal poly (ethylene glycol) (PEG) silane was synthesized and self-assembled on iron oxide nanoparticles. The nanoparticle system thus prepared has the flexibility to conjugate with cell targeting agents having either carboxylic and amine terminal groups for a number of biomedical applications, including magnetic resonance imaging (MRI) and controlled drug delivery. The trifluoroethylester silane was synthesized by modifying a PEG diacid to form the corresponding bistrifluoroethylester (TFEE), followed by a reaction with 3-aminopropyltriethoxysilane (APS). The APS coupled with PEG chains confers the stability of PEG self-assembled monolayers (SAMs) and increases the PEG packing density on nanoparticles by establishing hydrogen bonding between the carbonyl and amine groups present within the monolayer structure. The success of the synthesis of the PEG TEFE silane was confirmed with 1H NMR and Fourier transform infrared spectroscopy (FTIR). The conjugating flexibility of the PEG TEFE was demonstrated with folic acid having carboxylic acid groups and amine terminal groups respectively and confirmed by FTIR. TEM analysis showed the dispersion of nanoparticles before and after they were coated with PEG and folic acid.

  7. Poly(ethylene oxide)-Assisted Macromolecular Self-Assembly of Lignin in ABS Matrix for Sustainable Composite Applications

    SciTech Connect

    Akato, Kokouvi M.; Tran, Chau D.; Chen, Jihua; Naskar, Amit K.

    2015-11-05

    Here we report the compatibilization of biomass-derived lignin polymer in acrylonitrile butadiene styrene (ABS) thermoplastic matrix without loss of mechanical properties via poly(ethylene oxide) (PEO)-mediated macromolecular self-assembly. ABS was blended with lignin in different concentrations, and blends with 10 wt % PEO (relative to lignin) were prepared. The relative tensile strength improved slightly at low lignin content but diminished rapidly as the lignin content was increased. However, the inclusion of PEO as an interfacial adhesion promoter helped avoid deleterious effects. Dynamic mechanical analysis showed that PEO plasticized the hard phase and thus lowered the activation energy (Ea) for its relaxation but caused stiffening of the soft phase and increased its Ea. Microscopy revealed that incorporating lignin in ABS led to the statistical dispersion of discrete lignin domains (300–1000 nm) which, after PEO addition, were reduced to smaller interconnected particles (200–500 nm). The lignin-extended partially renewable ABS resins showed shear-thinning behavior and reduced viscosity compared to neat ABS. The preferred lignin-loaded compositions reinforced with 20 vol % chopped carbon fibers exhibited mechanical performances (77–80 MPa) equivalent to those of reinforced ABS materials reportedly used in 3D printing applications. In conclusion, this approach could lower the cost of ABS while reducing its carbon footprint.

  8. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams.

    PubMed

    Haryanto; Singh, Deepti; Huh, Pil Ho; Kim, Seong Cheol

    2016-01-01

    A microporous hydrogel scaffold was developed from hyperbranched poly(glycidol) (HPG) and poly(ethylene oxide) (PEO) using electron beam (e-beam) induced cross-linking for tissue engineering applications. In this study, HPG was synthesized from glycidol using trimethylol propane as a core initiator and cross-linked hydrogels were made using 0, 10, 20, and 30% HPG with respect to PEO. The effects of %-HPG on the swelling ratio, cross-linking density, mechanical properties, morphology, degradation, and cytotoxicity of the hydrogel scaffolds were then investigated. Increasing the HPG content increased the pore size of the hydrogel scaffold, as well as the porosity, elongation at break, degree of degradation and swelling ratio. In contrast, the presence of HPG decreased the cross-linking density of the hydrogel. There was no significant difference in compressive modulus and tensile strength of all compositions. The pore size of hydrogel scaffolds could be easily tailored by controlling the content of HPG in the polymer blend. Evaluation of the cytotoxicity demonstrated that HPG/PEO hydrogel scaffold has potential for use as a matrix for cellular attachment and proliferation. These results indicate that cross-linked HPG/PEO hydrogel can function as a potential material for tissue engineering scaffolds. Moreover, a facile method to prepare hydrogel microporous scaffolds for tissue engineering by e-beam irradiation was developed.

  9. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    DOE PAGES

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; ...

    2012-01-06

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies formore » motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less

  10. Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions

    PubMed Central

    Bastías, José M.; Toledo, Pedro G.

    2017-01-01

    The net interaction between a probe tip coated with bovine serum albumin (BSA) protein and a flat substrate coated with poly(ethylene oxide) (PEO) polymer was measured directly on approach in water and electrolyte solutions using AFM. The approach force curve between the two surfaces was monotonically repulsive in water and in electrolyte solutions. At pH ~5, slightly above the isoelectric point (pI) of BSA, and at large distances, the force was dominated by electrostatic repulsion between the oxygen atoms of the incoming protein with those belonging to the ether groups of PEO. Such repulsive force and range decreased in NaCl. Under physiological conditions, pH 6, BSA is definitely charged and the electrostatic repulsion with ether groups in PEO appears at larger separation distances. Interestingly, at pH 4, below the pI of BSA, the repulsion decreased because of an attractive, although weak, electrostatic force that appeared between the ether groups in PEO and the positively charged amino groups of BSA. However, for all solution conditions, once compression of PEO begun, the net repulsion was always dominated by short-range polymeric steric repulsion and repulsive enthalpy penalties for breaking PEO-water bonds. Results suggest that PEO in mushroom conformation may also be effective in reducing biofouling. PMID:28296940

  11. Influence of oligo(ethylene oxide) substituents on pyrrolidinium-based ionic liquid properties, Li(+) solvation and transport.

    PubMed

    von Zamory, Jan; Giffin, Guinevere A; Jeremias, Sebastian; Castiglione, Franca; Mele, Andrea; Paillard, Elie; Passerini, Stefano

    2016-08-03

    The presence of oligoether functional groups in the cations of ionic liquids has a significant effect on Li(+) coordination. In this work, a series of N-alkoxylether-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids were synthesized to investigate the effect of the number of ether units on Li(+) coordination and transport. The nature of Li(+) coordination was elucidated through the combination of Raman spectroscopy and heteronuclear Overhauser effect NMR spectroscopy. The presence of a simple ether in the cation side chain results in improved physical properties as compared to N-alkyl-N-methyl pyrrolidinium-based ionic liquids, but does not significantly affect Li(+) coordination possibly due to steric effects of the pyrrolidinium ring. Increasing the number of ethylene oxide units in the side chain results in the progressive displacement of IL anions in the first Li(+) solvation shell by IL cations due to the preferential coordination of Li(+) by the ether oxygen atoms. The apparent transference number of the IL cation decreases and that of the IL anion increases with increasing side chain length. Unfortunately, this does not result in an increase in the Li transference. Nonetheless, the results of this study have important implications for electrolyte systems where the desolvation of the metal cation from the IL anions is the limiting factor in the charge transport mechanism.

  12. Interaction of poly(ethylene oxide) with the sodium dodecyl sulfate micelle interface studied with nitroxide spin probes

    SciTech Connect

    Kang, Y.S.; Kevan, L. )

    1994-08-04

    Electron spin resonance (ESR) line widths of 5-, 7-, 12-, and 16-doxylstearic acid (x-DSA) and tempo nitroxides versus the concentration of poly(ethylene oxide) (PEO) in sodium dodecyl sulfate (SDS) micelles show different trends. The ESR line widths of 5-, 7-, and 16-DSA increase with increasing concentration of PEO, which is interpreted as due to increasing viscosity in the environment of the nitroxide spin probe. The tempo and 12-DSA line widths were independent of the concentration of PEO. The line width showed the highest value for 5-DSA and the lowest value of tempo. The line width of x-DSA decreases from 5-DSA to a minimum value for 12-DSA and then increases somewhat for 16-DSA. This is interpreted as bending of the alkyl chain to provide different locations for the nitroxide moiety relative to the micelle interface. The relative distances of the nitroxide moiety of [chi]-DSA from deuterated water at the SDS micelle interface was measured by deuterium electron spin echo modulation. The distances increased from 5-DSA to 12-DSA and then decreased for 16-DSA. The interpretation of the DSR line width trend is supported by the deuterium modulation depth trend. 28 refs., 5 figs., 2 tabs.

  13. The impact of four ethylene oxide-propylene oxide block copolymers on the surface tension of dispersions of soils and minerals in water

    NASA Astrophysics Data System (ADS)

    Hagenhoff, Kerstin; Dong, Jingfeng; Chowdhry, Babur; Torres, Luis; Leharne, Stephen

    A comprehensive series of aqueous solutions of four ethylene oxide-propylene oxide-ethylene oxide block copolymers (EPE) of varying concentrations have been prepared. The EPE molecules are amphiphilic with the P blocks providing the hydrophobic segment of the molecules and the E blocks providing the hydrophilic parts. The surface tension of these solutions has been measured and compared with the surface tension of dispersions of soils (a clay soil and a sandy soil) and minerals (quartz-silica sand, bentonite and kaolinite) in the same aqueous solutions. It is observed that all the block copolymers reduce the surface tension of water; the extent to which it is reduced is determined by the surface activity of the EPE block copolymer, which in turn is related to the balance between the sizes of the P and E blocks. It is further observed that the in the presence of soil the surface tension increases as a result of block copolymer adsorption to the soil/water interface. The extent of adsorption appears to be related to the texture of the soil - the clay soil used in this investigation adsorbs more block copolymer than the sandy soil. In the presence of the mineral phases the surface tension reductions are variable. With bentonite the EPE block copolymers are completely adsorbed at low EPE concentrations as shown by surface tension values that are the same as those measured for pure water. Adsorption to kaolinite is limited and once the adsorption sites have been filled the surface tension of the aqueous phase is approaches the surface tension of the same solution without the presence of bentonite. On the other hand the silica sand is a poor adsorbent. Adsorption to the mineral phases is also dependent upon the relative hydrophobicity of the block copolymer. The more hydrophobic (as inferred by the critical micelle concentration) the copolymer the less readily it is adsorbed by the mineral phases. Thus relatively hydrophobic EPE block copolymers produce a relatively

  14. Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ε-caprolactone) (PEO-PPO-PCL) copolymers.

    PubMed

    Xu, Lifang; Zhang, Zhiqing; Wang, Fang; Xie, Dongdong; Yang, Shan; Wang, Tao; Feng, Lijuan; Chu, Chengchai

    2013-03-01

    Amphiphilic triblock copolymers of PEO-PPO-PCL with various block compositions have been synthesized by ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) initiated by the OH group of methoxy-poly(ethylene oxide)-poly(propylene oxide) (Me-PEO-PPO). Their structures were confirmed by Fourier transform infrared (FT-IR) measurements, and their self-assembly in aqueous solution was studied using fluorescence spectroscopy, transmission electron microscopy (TEM), UV-vis spectra, differential scanning calorimetry (DSC), and surface tension. For the copolymers studied in this paper, the critical aggregation concentrations (CAC) ranged from 5×10(3) to 2 mg/L. The critical micelle concentrations (CMC) decreased with increasing PCL block length, and the downtrend was more significant in the short PCL block length. All of the three copolymers were capable of solubilizing hydrophobic molecules (pyrene) in aqueous solution and copolymers with a longer PCL block exhibited a stronger solubilizing ability. The TEM images showed that the size and morphology of the aggregations could be tuned by varying the compositions or the concentration.

  15. Phase behavior in blends of ethylene oxide-propylene oxide copolymer and poly(ether sulfone) studied by modulated-temperature DSC and NMR relaxometry.

    PubMed

    Van Lokeren, Luk; Gotzen, Nicolaas-Alexander; Pieters, Ronny; Van Assche, Guy; Biesemans, Monique; Willem, Rudolph; Van Mele, Bruno

    2009-01-01

    The state diagram of a blend consisting of a copolymer containing ethylene oxide and propylene oxide, P(EO-ran-PO), and poly(ether sulfone), PES, is constructed by using modulated-temperature differential scanning calorimetry (MTDSC), T(2) NMR relaxometry, and light scattering. The apparent heat capacity signal in MTDSC is used for the characterization of polymer miscibility and morphology development. T(2) NMR relaxometry is used to detect the onset of phase separation, which is in good agreement with the onset of phase separation in the apparent heat capacity from MTDSC and the cloud-point temperature as determined from light scattering. The coexistence curve can be constructed from T(2) values at various temperatures by using a few blends with well-chosen compositions. These T(2) values also allow the detection of the boundary between the demixing zones with and without interference of partial vitrification and are in good agreement with stepwise quasi-isothermal MTDSC heat capacity measurements. Important interphases are detected in the heterogeneous P(EO-ran-PO)/PES blends.

  16. Characterization and Antimicrobial Activity of N-Methyl-2-pyrrolidone-loaded Ethylene Oxide-Propylene Oxide Block Copolymer Thermosensitive Gel

    PubMed Central

    Phaechamud, T.; Mahadlek, J.; Charoenteeraboon, J.; Choopun, S.

    2012-01-01

    The purpose of this study is to investigate the effects of N-methyl-2-pyrrolidone on the thermosensitive properties of aqueous ethylene oxide-propylene oxide block copolymer (Lutrol® F127) system. Due to the aqueous solubility enhancement and biocompatibility, N-methyl-2-pyrrolidone is an interesting solubilizer for the poorly water soluble drugs to be incorporated in the Lutrol® F127 system. Effect of N-methyl-2-pyrrolidone on physicochemical properties of Lutrol® F127 system was investigated using appearance, pH, gelation, gel melting temperature and rheology. The antimicrobial activity of the thermosensitive N-methyl-2-pyrrolidone gel was also tested. Lower N-methyl-2-pyrrolidone amount (≤30%w/w) could shift the sol-gel transition to a lower temperature but the gel-sol transition was shifted to a higher temperature. Higher N-methyl-2-pyrrolidone (≥40%w/w) could shift both sol-gel and gel-sol transitions of the system to a lower temperature. The amount of N-methyl-2-pyrrolidone >60% w/w could reverse the phase of the Lutrol® F127 system to non-newtonian flow at 4° and Newtonian flow at high temperature. Aqueous Lutrol® F127 system containing N-methyl-2-pyrrolidone exhibited antimicrobial activities against Staphylococcus aureus, Escherichia coli and Candida albicans with the N-methyl-2-pyrrolidone in a dose-dependent manner. PMID:23798774

  17. Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response.

    PubMed

    Mur, Luis A J; Laarhoven, Lucas J J; Harren, Frans J M; Hall, Michael A; Smith, Aileen R

    2008-11-01

    C(2)H(4) is associated with plant defense, but its role during the hypersensitive response (HR) remains largely uncharacterized. C(2)H(4) production in tobacco (Nicotiana tabacum) following inoculation with HR-eliciting Pseudomonas syringae pathovars measured by laser photoacoustic detection was biphasic. A first transient rise (C(2)H(4)-I) occurred 1 to 4 h following inoculation with HR-eliciting, disease-forming, and nonpathogenic strains and also with flagellin (flg22). A second (avirulence-dependent) rise, at approximately 6 h (C(2)H(4)-II), was only seen with HR-eliciting strains. Tobacco leaves treated with the C(2)H(4) biosynthesis inhibitor, aminoethoxyvinylglycine, suggested that C(2)H(4) influenced the kinetics of a HR. Challenging salicylate hydroxylase-expressing tobacco lines and tissues exhibiting systemic acquired resistance suggested that C(2)H(4) production was influenced by salicylic acid (SA). Disrupted expression of a C(2)H(4) biosynthesis gene in salicylate hydroxylase tobacco plants implicated transcriptional control as a mechanism through which SA regulates C(2)H(4) production. Treating leaves to increase oxidative stress or injecting with SA initiated monophasic C(2)H(4) generation, but the nitric oxide (NO) donor sodium nitroprusside initiated biphasic rises. To test whether NO influenced biphasic C(2)H(4) production during the HR, the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester was coinoculated with the avirulent strain of P. syringae pv phaseolicola into tobacco leaves. The first transient C(2)H(4) rise appeared to be unaffected by N(G)-nitro-L-arginine methyl ester, but the second rise was reduced. These data suggest that NO and SA are required to generate the biphasic pattern of C(2)H(4) production during the HR and may influence the kinetics of HR formation.

  18. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Ravishankara, A. R.

    2015-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  19. Novel membrane technology for green ethylene production.

    SciTech Connect

    Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L.

    2008-01-01

    Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side

  20. Portable Apparatus for Electrochemical Sensing of Ethylene

    NASA Technical Reports Server (NTRS)

    Manoukian, Mourad; Tempelman, Linda A.; Forchione, John; Krebs, W. Michael; Schmitt, Edwin W.

    2007-01-01

    A small, lightweight, portable apparatus based on an electrochemical sensing principle has been developed for monitoring low concentrations of ethylene in air. Ethylene has long been known to be produced by plants and to stimulate the growth and other aspects of the development of plants (including, notably, ripening of fruits and vegetables), even at concentrations as low as tens of parts per billion (ppb). The effects are magnified in plant-growth and -storage chambers wherein ethylene can accumulate. There is increasing recognition in agriculture and related industries that it is desirable to monitor and control ethylene concentrations in order to optimize the growth, storage, and ripening of plant products. Hence, there are numerous potential uses for the present apparatus in conjunction with equipment for controlling ethylene concentrations. The ethylene sensor is of a thick-film type with a design optimized for a low detection limit. The sensor includes a noble metal sensing electrode on a chip and a hydrated solid-electrolyte membrane that is held in contact with the chip. Also located on the sensor chip are a counter electrode and a reference electrode. The sensing electrode is held at a fixed potential versus the reference electrode. Detection takes place at active-triple-point areas where the sensing electrode, electrolyte, and sample gas meet. These areas are formed by cutting openings in the electrolyte membrane. The electrode current generated from electrochemical oxidation of ethylene at the active triple points is proportional to the concentration of ethylene. An additional film of the solid-electrolyte membrane material is deposited on the sensing electrode to increase the effective triple-point areas and thereby enhance the detection signal. The sensor chip is placed in a holder that is part of a polycarbonate housing. When fully assembled, the housing holds the solid-electrolyte membrane in contact with the chip (see figure). The housing includes

  1. Durable zinc oxide-containing sorbents for coal gas desulfurization

    DOEpatents

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  2. Measurements of Gas-Wall Partitioning of Oxidized Species in Environmental Smog Chambers and Teflon Sampling Lines

    NASA Astrophysics Data System (ADS)

    Krechmer, J.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L.

    2015-12-01

    Environmental "smog" chambers have played an integral role in atmospheric aerosol research for decades. Recently, many works have demonstrated that the loss of gas-phase material to fluorinated ethylene propylene (FEP) chamber walls can have significant effects on secondary organic aerosol (SOA) yield results. The effects of gas-wall partitioning on highly oxidized species is still controversial, however. In this work we performed a series of experiments examining the losses of oxidized gas-phase compounds that were generated in-situ­ in an environmental chamber. The loss of species to the walls was measured using three chemical ionization mass spectrometry techniques: proton-transfer-reaction (PTR), nitrate (NO3-) ion, and iodide (I-). Many oxidized species have wall loss timescales ranging between 15 to 45 minutes and scale according to the molecule's estimated saturation concentration c* and functional groups. By comparing results of the different techniques, and in particular by the use of the "wall-less" NO3- source, we find that measuring species with high chamber wall-loss rates is complicated by the use of a standard ion-molecule reaction (IMR) region, as well as long Teflon sampling lines, which can be important sinks for gas-phase species. This effect is observed even for semi-volatile species and could have significant effects on ambient sampling techniques that make highly time-resolved measurements using long sampling lines, such as eddy covariance measurements.

  3. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    PubMed Central

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions. PMID:26791572

  4. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic ‑EO‑ based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm‑1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  5. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    NASA Astrophysics Data System (ADS)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  6. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries.

    PubMed

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-21

    Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm(-1) are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li(+)), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  7. Analysis of Microorganisms by Oxidative and Non-Oxidative Pyrolysis Gas Chromatography Ion Trap Mass Spectrometry.

    DTIC Science & Technology

    1992-04-01

    Bacillus subtilis, Bacillus pumilus , Bacillus lichenformis, and Bacillus amyloliquefaciens by Pyrolysis-gas Liquid Chromatography, Deoxyribonucleic...FIGURES Number Page 1. Curie point pyrolysis GC-ITD data for Bacillus subtilis ................... 16 2. Total Ion Chromatograms for Bacillus subtilis...under oxidative and non-oxidative pyrolysis conditions ................................... 17 3. Total Lipid Mass Spectra for Bacillus subtilis under

  8. Crystalline structure of the poly(ethylene oxide)--p-nitrophenol complex; 2: Fourier transform infrared spectroscopy

    SciTech Connect

    Damman, P.; Point, J.J. . Service de Chimie-Physique et Thermodynamique)

    1994-07-04

    The authors have previously reported the existence of a crystalline compound made of poly(ethylene oxide) (PEO) and p-nitrophenol (pnp). From x-ray fiber patterns on stretched and spherulitic samples of this complex, a triclinic unit cell (a = 1.172 nm, b = 0.555 nm, c = 1.557 nm, [alpha] = 90.7[degree], [beta] = 87.1[degree], and [gamma] = 104.0[degree]) was deduced; the unit cell contains 6 PEO monomeric units and 4 pnp molecules, in agreement with the stoichiometry deduced from the phase diagram. The aim of this paper is to elucidate the conformation of the PEO chains and the mutual arrangement of the PEO and pnp molecules in the unit cell. To carry out this, the authors studied the dichroism of the IR bands of pnp in two differently oriented samples, namely, in stretched samples and in spherulites. The benzene rings are found to be perpendicular to the c crystallographic parameter (chain axis), and the 1--4 axis of pnp is found to be parallel to the a* reciprocal parameter. These observations completely determine the orientation of the pnp molecules in the unit cell. The conformation of the polymeric chains in the complex is not helical as in pure PEO. From the C[sub 2h] factor group of the PEO molecules, deduced from the FTIR observations, and the normal mode analysis of hydrogenated and deuterated PEO, they propose the (t[sub 2]gt[sub 2]gt[sub 3]t[sub 2]g[prime]t[sub 2]g[prime]t[sub 3]) glide type conformation. In conclusion, it appears that in the PEO--pnp complex a stack of pnp molecules stabilizes the surrounding PEO molecules in this new conformation.

  9. Spontaneous crystallinity loss of drugs in the disordered regions of poly(ethylene oxide) in the presence of water.

    PubMed

    Marsac, Patrick J; Romary, Daniel P; Shamblin, Sheri L; Baird, Jared A; Taylor, Lynne S

    2008-08-01

    The physical stability of active pharmaceutical ingredients (APIs) formulated in the crystalline state may be compromised in the presence of excipients. In the present study, it is shown that at high relative humidity, several model crystalline drugs compacted into a matrix of poly(ethylene oxide) (PEO) may dissolve into the disordered regions of the polymer. The purpose of this project is to identify both the physicochemical properties of the API and the polymer which may lead to such a transformation and the mechanism of transformation. Crystalline drugs and PEO were physically mixed, compressed into tablets, and stored in a dessicator at 94% RH. The physical state of the drug and the polymer were determined using Raman spectroscopy and X-ray powder diffraction. The solubility of each drug in PEG 400 was measured by ultraviolet spectroscopy, the thermal properties of each compound were measured using differential scanning calorimetry, and the amount of water sorbed into these systems from the vapor phase was determined by gravimetric analysis. A spontaneous loss of crystallinity was observed for many of the model drugs when stored at high relative humidity and in the presence of PEO. In the absence of PEO, no changes in the crystalline material were observed. However, the structure of PEO was dramatically altered when exposed to high relative humidity. Specifically, it was found that PEO undergoes a very slow deliquescence increasing the disordered fraction of the polymer which facilitates the "dissolution" of the crystalline drug into these disordered regions. The degree of transformation, estimated from Raman spectroscopy, was found to qualitatively correlate with the aqueous solubility of the compounds. It can be concluded that for the systems studied here, the phase stability of the polymer was compromised at high relative humidity and the polymer underwent deliquescence. The equilibrium phase of several of the crystalline drugs studied here was then altered

  10. Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Buraidah, M. H.; Teo, L. P.; Au Yong, C. M.; Shah, Shahan; Arof, A. K.

    2016-07-01

    Chitosan and poly(ethylene oxide) powders have been mixed in different weight ratios. To each mixture, a fixed amount of ammonium iodide has been added. All mixtures have been dissolved in 1% acetic acid solution to form polymer blend electrolyte films by the solution cast technique. X-ray diffraction indicates that the polymer blend electrolytes are amorphous. Fourier transform infrared spectroscopy shows shifting of the amine, carboxamide and Csbnd Osbnd C bands to lower wavenumbers indicating the occurrence of complexation. Electrochemical impedance spectroscopy has been used to study the electrical properties of the samples. The ionic conductivity for 55 wt.% chitosan-45 wt.% NH4I electrolyte system is 3.73 × 10-7 S cm-1 at room temperature and is increased to 3.66 × 10-6 S cm-1 for the blended film (16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I film. Dye-sensitized solar cells (DSSCs) have been fabricated by sandwiching the polymer electrolyte between the TiO2/dye photoelectrode and Pt counter electrode. DSSCs fabricated exhibits short-circuit current density (Jsc) of 2.71 mA cm-2, open circuit voltage (Voc) of 0.58 V and efficiency of 0.78% with configuration ITO/TiO2/N3 dye/(16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I(+I2)/Pt/ITO and Jsc of 2.84 mA cm-2, Voc of 0.58 V and efficiency of 1.13% with configuration ITO/TiO2 + Ag nanoparticles/N3 dye/(16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH4I(+I2)/Pt/ITO.

  11. Nitric oxide mediates strigolactone signaling in auxin and ethylene-sensitive lateral root formation in sunflower seedlings

    PubMed Central

    Bharti, Niharika; Bhatla, Satish C

    2015-01-01

    Strigolactones (SLs) play significant role in shaping root architecture whereby auxin-SL crosstalk has been observed in SL-mediated responses of primary root elongation, lateral root formation and adventitious root (AR) initiation. Whereas GR24 (a synthetic strigolactone) inhibits LR and AR formation, the effect of SL biosynthesis inhibitor (fluridone) is just the opposite (root proliferation). Naphthylphthalamic acid (NPA) leads to LR proliferation but completely inhibits AR development. The diffusive distribution of PIN1 in the provascular cells in the differentiating zone of the roots in response to GR24, fluridone or NPA treatments further indicates the involvement of localized auxin accumulation in LR development responses. Inhibition of LR formation by GR24 treatment coincides with inhibition of ACC synthase activity. Profuse LR development by fluridone and NPA treatments correlates with enhanced [Ca2+]cyt in the apical region and differentiating zones of LR, indicating a critical role of [Ca2+] in LR development in response to the coordinated action of auxins, ethylene and SLs. Significant enhancement of carotenoid cleavage dioxygenase (CCD) activity (enzyme responsible for SL biosynthesis) in tissue homogenates in presence of cPTIO (NO scavenger) indicates the role of endogenous NO as a negative modulator of CCD activity. Differences in the spatial distribution of NO in the primary and lateral roots further highlight the involvement of NO in SL-modulated root morphogenesis in sunflower seedlings. Present work provides new report on the negative modulation of SL biosynthesis through modulation of CCD activity by endogenous nitric oxide during SL-modulated LR development. PMID:26076049

  12. Interchain coupled chain dynamics of poly(ethylene oxide) in blends with poly(methyl methacrylate): Coupling model analysis

    NASA Astrophysics Data System (ADS)

    Ngai, K. L.; Wang, Li-Min

    2011-11-01

    Quasielastic neutron scattering and molecular dynamics simulation data from poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends found that for short times the self-dynamics of PEO chain follows the Rouse model, but at longer times past tc = 1-2 ns it becomes slower and departs from the Rouse model in dependences on time, momentum transfer, and temperature. To explain the anomalies, others had proposed the random Rouse model (RRM) in which each monomer has different mobility taken from a broad log-normal distribution. Despite the success of the RRM, Diddens et al. [Eur. Phys. Lett. 95, 56003 (2011)] extracted the distribution of friction coefficients from the MD simulations of a PEO/PMMA blend and found that the distribution is much narrower than expected from the RRM. We propose a simpler alternative explanation of the data by utilizing alone the observed crossover of PEO chain dynamics at tc. The present problem is just a special case of a general property of relaxation in interacting systems, which is the crossover from independent relaxation to coupled many-body relaxation at some tc determined by the interaction potential and intermolecular coupling/constraints. The generality is brought out vividly by pointing out that the crossover also had been observed by neutron scattering from entangled chains relaxation in monodisperse homopolymers, and from the segmental α-relaxation of PEO in blends with PMMA. The properties of all the relaxation processes in connection with the crossover are similar, despite the length scales of the relaxation in these systems are widely different.

  13. Self-assembly in poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer template directed synthesis of Linde type A zeolite.

    PubMed

    Bonaccorsi, Lucio; Calandra, Pietro; Kiselev, Mikhail A; Amenitsch, Heinz; Proverbio, Edoardo; Lombardo, Domenico

    2013-06-11

    We describe the hydrothermal synthesis of zeolite Linde type A (LTA) submicrometer particles using a water-soluble amphiphilic block copolymer of poly(dimethylsiloxane)-b-poly(ethylene oxide) as a template. The formation and growth of the intermediate aggregates in the presence of the diblock copolymer have been monitored by small-angle X-ray scattering (SAXS) above the critical micellar concentration at a constant temperature of 45 °C. The early stage of the growth process was characterized by the incorporation of the zeolite LTA components into the surface of the block copolymer micellar aggregates with the formation of primary units of 4.8 nm with a core-shell morphology. During this period, restricted to an initial time of 1-3 h, the core-shell structure of the particles does not show significant changes, while a subsequent aggregation process among these primary units takes place. A shape transition of the SAXS profile at the late stage of the synthesis has been connected with an aggregation process among primary units that leads to the formation of large clusters with fractal characteristics. The formation of large supramolecular assemblies was finally verified by scanning electron microscopy, which evidenced the presence of submicrometer aggregates with size ranging between 100 and 300 nm, while X-ray diffraction confirmed the presence of crystalline zeolite LTA. The main finding of our results gives novel insight into the mechanism of formation of organic-inorganic mesoporous materials based on the use of a soft interacting nanotemplate as well as stimulates the investigation of alternative protocols for the synthesis of novel hybrid materials with new characteristics and properties.

  14. Crystallization of poly(ethylene oxide) with acetaminophen--a study on solubility, spherulitic growth, and morphology.

    PubMed

    Yang, Min; Gogos, Costas

    2013-11-01

    A simple, sensitive, efficient, and novel method analyzing the number of spherulitic nuclei was proposed to estimate the solubility of a model drug acetaminophen (APAP) in poly(ethylene oxide) (PEO). At high crystallization temperature (323 K), 10% APAP-PEO had the same low number of spherulitic nuclei as pure PEO, indicating that APAP and PEO were fully miscible. At low crystallization temperature (303 K), the number of nuclei for 10% APAP-PEO was significantly higher, suggesting that APAP was oversaturated and therefore recrystallized and acted as a nucleating agent. Based on the results obtained, the solubility of APAP in PEO is possibly between the concentration of 0.1% and 1% at 303 K. The spherulitic growth rate G of PEO was found to decrease with increasing APAP concentration, suggesting that APAP is most likely functioning as a chemical defect and is either rejected from or included in the PEO crystals during chain folding. APAP could possibly locate in the inter-spherulitic, inter-fibrillar, inter-lamellar, or intra-lamellar regions of PEO. At 323 K, the morphology of 10% APAP-PEO is more dendritic than spherulitic with large unfilled space in between dendrites and spherulites, which is a sign of one or the combination of the four modes of segregation. An extensive spherulitic nucleation and growth kinetics study using the classical theoretical relationships, for example, the Hoffman-Lauritzen (HL) and Avrami theories, was conducted. Both microscopic and differential scanning calorimetric (DSC) analysis yielded similar values for the nucleation constant Kg as well as the fold surface free energy σe and work of chain folding q. The values of σe and q increased with APAP concentration, indicating that the chain folding of PEO was hindered by APAP.

  15. Complex Transformations between Bicontinuous Cubic and Cylinder Phases in a Polystyrene-block-Poly(ethylene oxide) Diblock Copolymer

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Sun, Lu; Ge, Qing; Quirk, Roderic P.; Cheng, Stephen Z. D.; Hsiao, Benjamin S.; Sics, Igors; Avila-Orta, Carlos

    2004-03-01

    Complex phase transformations between bicontinuous cubic and hexagonal cylinder (Hex) phases in a polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer were investigated using small angle X-ray scattering (SAXS), transmission electron microscope (TEM), rheology, and polarized light microscope (PLM). The sample exhibited a typical double gyroid (G) phase, together with a minority plumbers nightmare (P) phase which was only ˜6 vol.% as calculated from the SAXS scattering intensities for each phase. These two bicontinuous cubic phases had the same unit cell dimensions. Under a large-amplitude reciprocating shear, the bicontinuous cubic sample transformed into a single-crystal Hex phase. Annealing this sample at 150 ^oC for 40 min, the Hex phase partially transformed into well-oriented G and P twin structures, as evidenced by two-dimensional synchrotron SAXS experiments. Epitaxial phase transformation relationships between the Hex/G and Hex/P phases were identified. The phase transformations were further confirmed by rheology study and PLM observations. The P phase was metastable with respect to the G phase, and it disappeared when the sample was heated above the order-disorder transition temperature and annealed at 150 ^oC. The mechanism of the Hex arrow G transformation was investigated by TEM. Generally, in a hexagonal cell, three cylinders evolved into left-handed helices, while the other three formed right-handed helices. An intermediate five-fold junction was speculated to facilitate the phase transformation. The Hex -> G phase transformation was observed to follow a nucleation and growth mechanism, and the phase transition zone was less than one unit cell.

  16. Interchain coupled chain dynamics of poly(ethylene oxide) in blends with poly(methyl methacrylate): coupling model analysis.

    PubMed

    Ngai, K L; Wang, Li-Min

    2011-11-21

    Quasielastic neutron scattering and molecular dynamics simulation data from poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends found that for short times the self-dynamics of PEO chain follows the Rouse model, but at longer times past t(c) = 1-2 ns it becomes slower and departs from the Rouse model in dependences on time, momentum transfer, and temperature. To explain the anomalies, others had proposed the random Rouse model (RRM) in which each monomer has different mobility taken from a broad log-normal distribution. Despite the success of the RRM, Diddens et al. [Eur. Phys. Lett. 95, 56003 (2011)] extracted the distribution of friction coefficients from the MD simulations of a PEO/PMMA blend and found that the distribution is much narrower than expected from the RRM. We propose a simpler alternative explanation of the data by utilizing alone the observed crossover of PEO chain dynamics at t(c). The present problem is just a special case of a general property of relaxation in interacting systems, which is the crossover from independent relaxation to coupled many-body relaxation at some t(c) determined by the interaction potential and intermolecular coupling/constraints. The generality is brought out vividly by pointing out that the crossover also had been observed by neutron scattering from entangled chains relaxation in monodisperse homopolymers, and from the segmental α-relaxation of PEO in blends with PMMA. The properties of all the relaxation processes in connection with the crossover are similar, despite the length scales of the relaxation in these systems are widely different.

  17. Vanadium oxide based materials: Synthesis, characterization and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Ayesh, Samar I.

    In recent years, the demand for gas sensors based on safety and process control requirements has been expanding. The reason for such demand sterns from environmental and safety concerns since the toxic gases released from automobile exhausts and chemical plants can directly or indirectly pollute our environment and affect our health. Among the chemicals studied, nitrogen oxide (NOx) gases are among the most dangerous air pollutants. Transition metal oxide clusters (or polyoxometalates) provide an exciting opportunity for the design and synthesis of a new generation of materials for efficient NOx sensing. Polyoxometalates are an important and fast emerging class of compounds that exhibit many remarkable properties. Chapter 1 provides introduction and background of chemical sensors. It describes the need for gas sensors and the current status of research in the area of NOx gas sensors in particular. A description of polyoxmetalates and their relevance as potential novel gas sensor materials is also given. Chapter 2 describes the synthesis and characterization by FTIR spectroscopy, elemental analysis, thermogravimetric analysis, manganometric titration, bond valence sum calculation, temperature dependent magnetic properties studies, electron paramagnetic resonance, and complete single crystal X-ray diffraction analysis of newly prepared vanadium oxide based-systems that have been discovered during the course of this work. First, the system containing arrays of decavanadates networked by extensive hydrogen bonding with cyclic nitrogen bases are described. This is followed by the mixed-valence vanadium oxide cluster, [VV 13VIV3O42(Cl)]-7, containing a hitherto unknown vanadium oxide framework structure. Finally the synthesis of 3D-framework materials is described. These compounds have highly symmetrical closely related three-dimensional framework structures consisting vanadium oxide shells {V18O42(XO4)} linked via heterometallic atoms {M' = Cd, Zn} into three

  18. [Hydrogen and oxidative stress injury--from an inert gas to a medical gas].

    PubMed

    Zhang, Qiao-li; Du, Jun-bao; Tang, Chao-shu

    2011-04-18

    Oxidative stress is intensive cellular oxidation caused by redundant reactive oxygen species (ROS) or free radicals. Redundant ROS causes DNA fracture, lipid peroxidation and protein inactivation, thus leading to severe cell damage. Recent studies have shown that hydrogen is a good anti-oxidant. It selectively reduces the hydroxyl radical, the most cytotoxic of ROS; however, it does not react with other ROS, which play physiological roles. As a result, it could protect tissues against oxidative stress injuries, such as ischemia/reperfusion injury of the heart, liver and intestine, cisplatin nephrotoxicity, sepsis and colon inflammation. As a medical gas, hydrogen may have a prospect for far-reaching clinical application.

  19. Metal-oxide Nanowires for Toxic Gas Detection

    SciTech Connect

    Devineni, D. P.; Stormo, S.; Kempf, W.; Schenkel, J.; Behanan, R.; Lea, Alan S.; Galipeau, David W.

    2007-01-02

    The feasibility of using Electric field enhanced oxidation (EFEO) to fabricate metal-oxide nanowires for sensing toxic gases was investigated. The effects of fabrication parameters such as film thickness, ambient relative humidity, atomic force microscope (AFM) tip bias voltage, force, scan speed and number of scans on the growth of nanowires were determined. The chemical composition of indium-oxide nanowires was verified using Auger electron spectroscopy. It was found that oxygen to indium ration was 1.69, 1.72, 1.71 and 1.84 at depths of 0, 1.3, 2.5, and 3.8 nm, which was near the 1.5:1 expected for stoichiometric indium-oxide film. Future work will include characterizing the electrical and gas sensing properties of the metal-oxide nanowires.

  20. Influence of poly(ethylene oxide)-based copolymer on protein adsorption and bacterial adhesion on stainless steel: modulation by surface hydrophobicity.

    PubMed

    Yang, Yi; Rouxhet, Paul G; Chudziak, Dorota; Telegdi, Judit; Dupont-Gillain, Christine C

    2014-06-01

    The aim of the present work is to study the adhesion of Pseudomonas NCIMB 2021, a typical aerobic marine microorganism, on stainless steel (SS) substrate. More particularly, the potential effect on adhesion of adsorbed poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer is investigated. Bacterial attachment experiments were carried out using a modified parallel plate flow chamber, allowing different surface treatments to be compared in a single experiment. The amount of adhering bacteria was determined via DAPI staining and fluorescence microscopy. X-ray photoelectron spectroscopy (XPS) was used to characterize the surface chemical composition of SS and hydrophobized SS before and after PEO-PPO-PEO adsorption. The adsorption of bovine serum albumin (BSA), a model protein, was investigated to test the resistance of PEO-PPO-PEO layers to protein adsorption. The results show that BSA adsorption and Pseudomonas 2021 adhesion are significantly reduced on hydrophobized SS conditioned with PEO-PPO-PEO. Although PEO-PPO-PEO is also found to adsorb on SS, it does not prevent BSA adsorption nor bacterial adhesion, which is attributed to different PEO-PPO-PEO adlayer structures on hydrophobic and hydrophilic surfaces. The obtained results open the way to a new strategy to reduce biofouling on metal oxide surfaces using PEO-PPO-PEO triblock copolymer.

  1. Effect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applications.

    PubMed

    Barrera, Carola; Herrera, Adriana P; Bezares, Nayla; Fachini, Estevão; Olayo-Valles, Roberto; Hinestroza, Juan P; Rinaldi, Carlos

    2012-07-01

    The size, charge, and stability of colloidal suspensions of magnetic nanoparticles with narrow size distribution and grafted with poly(ethylene glycol)-silane of different molecular weights were studied in water, biological buffers, and cell culture media. X-ray photoelectron spectroscopy provided information on the chemical nature of the nanoparticle surface, indicating the particle surfaces consisted of a mixture of amine groups and grafted polymer. The results indicate that the exposure of the amine groups on the surface decreased as the molecular weight of the polymer increased. The hydrodynamic diameters correlated with PEG graft molecular weight and were in agreement with a distributed density model for the thickness of a polymer shell end-grafted to a particle core. This indicates that the particles obtained consist of single iron oxide cores coated with a polymer brush. Particle surface charge and hydrodynamic diameter were measured as a function of pH, ionic strength, and in biological buffers and cell culture media. DLVO theory was used to analyze the particle stability considering electrostatic, magnetic, steric, and van der Waals interactions. Experimental results and colloidal stability theory indicated that stability changes from electrostatically mediated for a graft molecular weight of 750 g/mol to sterically mediated at molecular weights of 1000 g/mol and above. These results indicate that a graft molecular weight above 1000 g/mol is needed to produce particles that are stable in a wide range of pH and ionic strength, and in cell culture media.

  2. Filler effect of ionic liquid attached titanium oxide on conducting property of poly(ethylene oxide)/poly(methyl methacrylate) composite electrolytes.

    PubMed

    Lee, Lyungyu; Kim, Ick-Jun; Yang, Sunhye; Kim, Seok

    2014-10-01

    Composite polymer electrolytes (CPEs) were prepared by containing blend of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) as a host polymer, propylene carbonate as a plasticizer, and LiClO4 as a salt. By an addition of a various content of ionic liquid attached TiO2 (IL-TiO2) to above electrolytes, the effects were studied. As a result, by increasing the IL-TiO2 content, the crystallinity of PEO was decreased and the ionic conductivity was increased. The ionic conductivity of CPEs was dependent on the content of IL-TiO2 and showed the highest value of 1.05 x 10(-4) S/cm at 9 wt.%. However, when IL-TiO2 content exceeds 9 wt.%, the ionic conductivity was decreased due to the slow ionic transport due to immiscibility or aggregation of the IL-TiO2 filler within the polymer film matrix.

  3. Catalysts for oxidation of mercury in flue gas

    DOEpatents

    Granite, Evan J.; Pennline, Henry W.

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  4. Lactosylated poly(ethylene oxide)-poly(propylene oxide) block copolymers for potential active targeting: synthesis and physicochemical and self-aggregation characterization

    NASA Astrophysics Data System (ADS)

    Cuestas, María L.; Glisoni, Romina J.; Mathet, Verónica L.; Sosnik, Alejandro

    2013-01-01

    Aiming to develop polymeric self-assembly nanocarriers with potential applications in active drug targeting to the liver, linear and branched poly(ethylene oxide)-poly(propylene oxide) amphiphiles were conjugated to lactobionic acid (LA), a disaccharide of galactose and gluconic acid, by the conventional Steglich esterification reaction. The conjugation was confirmed by ATR/FT-IR, 1H-NMR, and 13C-NMR spectroscopy. Elemental analysis and MALDI-TOF mass spectrometry were employed to elucidate the conjugation extent and the final molecular weight, respectively. The critical micellar concentration (CMC), the size and size distribution and zeta potential of the pristine and modified polymeric micelles under different conditions of pH and temperature were characterized by dynamic light scattering (DLS). Conjugation with LA favored the micellization process, leading to a decrease of the CMC with respect to the pristine counterpart, this phenomenon being independent of the pH and the temperature. At 37 °C, micelles made of pristine copolymers showed a monomodal size distribution between 12.8 and 24.4 nm. Conversely, LA-conjugated micelles showed a bimodal size pattern that comprised a main fraction of relatively small size (11.6-22.2 nm) and a second one with remarkably larger sizes of up to 941.4 nm. The former corresponded to single micelles, while the latter would indicate a secondary aggregation phenomenon. The spherical morphology of LA-micelles was visualized by transmission electron microscopy (TEM). Finally, to assess the ability of the LA-conjugated micelles to interact with lectin-like receptors, samples were incubated with concanavalin A at 37 °C and the size and size distribution were monitored by DLS. Findings indicated that regardless of the relatively weak affinity of this vegetal lectin for galactose, micelles underwent agglutination probably through the interaction of a secondary site in the lectin with the gluconic acid unit of LA.

  5. Effects of ions on partitioning of serum albumin and lysozyme in aqueous two-phase systems containing ethylene oxide/propylene oxide co-polymers.

    PubMed

    Johansson, H O; Lundh, G; Karlström, G; Tjerneld, F

    1996-08-13

    Aqueous two-phase systems composed of ethylene oxide/propylene oxide random co-polymers, EO30/PO70 or Ucon (EO50/PO50), in the top phase and dextran T500 in the bottom phase, have been studied. The cloud point diagram for EO30/PO70 in water solution was determined. EO30/PO70 has a cloud point of 32 degrees C at a concentration of 10% (w/w). The phase diagram for the system EO30/PO70-dextran T500-water was determined. Salt effects have been studied on the partitioning of two model proteins, bovine serum albumin and hen egg white lysozyme, in EO30/PO70-dextran and Ucon-dextran systems. Ions with different hydrophobicity, i.e., with different position in the Hofmeister or lyotropic series, were investigated with reference to their effect on protein partition. The counterion hydrophobicity was shown to have a strong influence on the partitioning of BSA and lysozyme. Most extreme partitioning was obtained with hydrophobic (chaotropic) ions like CIO4- and I-. A comparison of protein partitioning between PEG-dextran and EO30/PO70-dextran has been done. A more extreme protein partitioning was obtained in the EO30/PO70-dextran containing system. Temperature-induced phase separation was studied with EO30/PO70 at 45 degrees C. Both BSA and lysozyme were completely partitioned to the water phase formed above the cloud point of EO30/PO70. Model calculations, based on Flory-Huggins theory of polymer solutions, have been done which could reproduce the salt effect on the protein partitioning in aqueous-two phase system.

  6. An advanced oxidation process using ionized gas for wastewater treatment.

    PubMed

    Lee, Eun Ju; Chung, Paul Gene; Kwak, Dong Heui; Kim, Lee Hyung; Kim, Min Jeong

    2010-01-01

    This study on removing non-degradable materials in wastewater focused primarily on advanced oxidation methods such as ozone, ozone/UV and ozone/H2O2. Wastewater treatment using an ionized gas from plasma has been actively progressing. The ionized gas involves reactive species such as O2+, O2- cluster, O radical and OH radical. Since the ionized gas method has such outstanding characteristics as relatively simple structures, non-calorification, non-toxicity and low electricity consumption, it evidently of interest as a new process. A series of experiments were conducted to demonstrate the feasibility of ionized gas as a useful element for the diminution of nondegradable organic matters. On the other hand, a large amount of organic matters were changed to hydrophilic and the compounds containing aromatic functional group gradually decreased. The results implied that the ionized gas has been able to degrade the non-biodegradable organic matters. Therefore, the oxidation process by using an ionized gas process could be considered as an effective alternative unit in water and wastewater treatment plants.

  7. Defective, Porous TiO2 Nanosheets with Pt Decoration as an Efficient Photocatalyst for Ethylene Oxidation Synthesized by a C3N4 Templating Method.

    PubMed

    Pan, Xiaoyang; Chen, Xuxing; Yi, Zhiguo

    2016-04-27

    We report herein a C3N4 templating method for successfully synthesizing defective, porous TiO2 nanosheets with Pt decoration as an efficient photocatalyst for C2H4 oxidation. During the synthetic procedure, C3N4 not only acts as a 2D template to direct synthesize porous TiO2 nanosheets (TiO2-NS) but also facilitates oxygen vacancy formation on TiO2. The resultant TiO2-NS shows enhanced UV and visible-light photoactivities toward C2H4 oxidation as compared to blank TiO2 (TiO2-B) prepared without C3N4 template. Subsquently, Pt nanoparticles are homogeneously decorated onto the surface of TiO2-NS. The as-obtained Pt-TiO2-NS exhibits efficient photocatalytic activity and stability toward ethylene oxidation.

  8. Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation

    SciTech Connect

    Isaacman-VanWertz, Gabriel; Yee, Lindsay D.; Kreisberg, Nathan M.; Wernis, Rebecca; Moss, Joshua A.; Hering, Susanne V.; de Sa, Suzanne; Martin, Scot T.; Alexander, Mikaela L.; Palm, Brett B.; Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas; Jimenez, Jose L.; Riva, Matthieu; Surratt, Jason D.; Viegas, Juarez; Manzi, Antonio; Edgerton, Eric S.; Baumann, K.; Souza, Rodrigo A.; Artaxo, Paulo; Goldstein, Allen H.

    2016-08-23

    Exchange of atmospheric organic compounds between gas and particle phases is important in the production and chemistry of particle-phase mass but is poorly understood due to a lack of simultaneous measurements in both phases of individual compounds. Measurements of particle- and gas phase organic compounds are reported here for the southeastern United States and central Amazonia. Polyols formed from isoprene oxidation contribute 8% and 15% on average to particle-phase organic mass at these sites but are also observed to have substantial gas-phase concentrations contrary to many models that treat these compounds as nonvolatile. The results of the present study show that the gas-particle partitioning of approximately 100 known and newly observed oxidation products is not well explained by environmental factors (e.g., temperature). Compounds having high vapor pressures have higher particle fractions than expected from absorptive equilibrium partitioning models. These observations support the conclusion that many commonly measured biogenic oxidation products may be bound in low-volatility mass (e.g., accretion products, inorganic organic adducts) that decomposes to individual compounds on analysis. However, the nature and extent of any such bonding remains uncertain. Similar conclusions are reach for both study locations, and average particle fractions for a given compound are consistent within similar to 25% across measurement sites.

  9. Cryotherapy gas--to use nitrous oxide or carbon dioxide?

    PubMed

    Maiti, H; Cheyne, M F; Hobbs, G; Jeraj, H A

    1999-02-01

    Cryotherapy is regularly used in our clinic for treating genital warts. Nitrous oxide was used as the cryogenic gas. Following a health and safety review it was decided to monitor the nitrous oxide levels in the treatment room under different conditions. The Occupational Exposure Standard for nitrous oxide is 100 parts per million (PPM) (8-h time weighted average) and an indicative short-term exposure limit of 300 PPM (15-min reference period). High levels of gas were detected, especially when the exhaust was not vented to the outside. Venting of the gas to the outside could also present a hazard to adjacent areas. The situation was considered to be unacceptable and carbon dioxide was proposed as an alternative. The Occupational Exposure Standard for carbon dioxide is 5000 PPM (8-h time weighted average) and a short-term limit of 15,000 PPM (15-min reference period). Carbon dioxide levels were found to be within the Occupational Exposure Standard. There is no noticeable difference in the cryogenic efficacy of the 2 gases. Carbon dioxide is, therefore, a safer alternative. It also offers significant savings when compared with nitrous oxide.

  10. Effect of oxy-combustion flue gas on mercury oxidation.

    PubMed

    Fernández-Miranda, Nuria; Lopez-Anton, M Antonia; Díaz-Somoano, Mercedes; Martínez-Tarazona, M Rosa

    2014-06-17

    This study evaluates the effect of the gases present in a typical oxy-coal combustion atmosphere on mercury speciation and compares it with the mercury speciation produced in conventional air combustion atmospheres. The work was performed at laboratory scale at 150 °C. It was found that the minor constituents (SO2, NOx, and HCl) significantly modify the percentages of Hg(2+) in the gas. The influence of these species on mercury oxidation was demostrated when they were tested individually and also when they were blended in different gas compositions, although the effect was different to the sum of their individual effects. Of the minor constituents, NOx were the main species involved in oxidation of mercury. Moreover, it was found that a large concentration of H2O vapor also plays an important role in mercury oxidation. Around 50% of the total mercury was oxidized in atmospheres with H2O vapor concentrations typical of oxy-combustion conditions. When the atmospheres have similar concentrations of SO2, NO, NO2, HCl, and H2O, the proportion of Hg(0)/Hg(2+) is similar regardless of whether CO2 (oxy-fuel combustion) or N2 (air combustion) are the main components of the gas.

  11. Custom-made morphologies of ZnO nanostructured films templated by a poly(styrene-block-ethylene oxide) diblock copolymer obtained by a sol-gel technique.

    PubMed

    Sarkar, Kuhu; Rawolle, Monika; Herzig, Eva M; Wang, Weijia; Buffet, Adeline; Roth, Stephan V; Müller-Buschbaum, Peter

    2013-08-01

    Zinc oxide (ZnO) nanostructured films are synthesized on silicon substrates to form different morphologies that consist of foamlike structures, wormlike aggregates, circular vesicles, and spherical granules. The synthesis involves a sol-gel mechanism coupled with an amphiphilic diblock copolymer poly(styrene-block-ethylene oxide), P(S-b-EO), which acts as a structure-directing template. The ZnO precursor zinc acetate dihydrate (ZAD) is incorporated into the poly(ethylene oxide) block. Different morphologies are obtained by adjusting the weight fractions of the solvents and ZAD. The sizes of the structure in solution for different sol-gels are probed by means of dynamic light scattering. Thin-film samples with ZnO nanostructures are prepared by spin coating and solution casting followed by a calcination step. On the basis of various selected combinations of weight fractions of the ingredients used, a ternary phase diagram is constructed to show the compositional boundaries of the investigated morphologies. The evolution and formation mechanisms of the morphologies are addressed in brief. The surface morphologies of the ZnO nanostructures are studied with SEM. The inner structures of the samples are probed by means of grazing incidence small-angle X-ray scattering to complement the SEM investigations. XRD measurements confirm the crystallization of the ZnO in the wurtzite phase upon calcination of the nanocomposite film in air. The optical properties of ZnO are analyzed by FTIR and UV/Vis spectroscopy.

  12. Release of bacteriocins from nanofibers prepared with combinations of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO).

    PubMed

    Heunis, Tiaan; Bshena, Osama; Klumperman, Bert; Dicks, Leon

    2011-01-01

    Plantaricin 423, produced by Lactobacillus plantarum, and bacteriocin ST4SA produced by Enterococcus mundtii, were electrospun into nanofibers prepared from different combinations of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO) dissolved in N,N-dimethylformamide (DMF). Both peptides were released from the nanofibers with a high initial burst and retained 88% of their original antimicrobial activity at 37 °C. Nanofibers have the potential to serve as carrier matrix for bacteriocins and open a new field in developing controlled antimicrobial delivery systems for various applications.

  13. [Production of soy bean inoculants. Behavior of supports based on peat from Tierra del Fuego sterilized by vapor and ethylene oxide].

    PubMed

    Balatti, A P; Mazza, L A

    1979-01-01

    The survival of Rhizobium japonicum was studied in neutralized and sterilized peats from Ushuaia and Rio Grande. The carriers were sterilized by ethylene oxide and by autoclaving. Similar counts for Rhizobium (5 x 10(8) cel/g) were obtained in peat-cultures sterilized by both methods, after eight months. A good nodulation and nitrogen fixation capacity was observed with inoculated soybean plants. Using the strain Rhizobium japonicum E-45, no appreciable difference in symbiotic effectiveness was found between the inoculants prepared with the two peats.

  14. Hybridization of Zinc Oxide Tetrapods for Selective Gas Sensing Applications.

    PubMed

    Lupan, O; Postica, V; Gröttrup, J; Mishra, A K; de Leeuw, N H; Carreira, J F C; Rodrigues, J; Ben Sedrine, N; Correia, M R; Monteiro, T; Cretu, V; Tiginyanu, I; Smazna, D; Mishra, Y K; Adelung, R

    2017-02-01

    In this work, the exceptionally improved sensing capability of highly porous three-dimensional (3-D) hybrid ceramic networks toward reducing gases is demonstrated for the first time. The 3-D hybrid ceramic networks are based on doped metal oxides (MexOy and ZnxMe1-xOy, Me = Fe, Cu, Al) and alloyed zinc oxide tetrapods (ZnO-T) forming numerous junctions and heterojunctions. A change in morphology of the samples and formation of different complex microstructures is achieved by mixing the metallic (Fe, Cu, Al) microparticles with ZnO-T grown by the flame transport synthesis (FTS) in different weight ratios (ZnO-T:Me, e.g., 20:1) followed by subsequent thermal annealing in air. The gas sensing studies reveal the possibility to control and change/tune the selectivity of the materials, depending on the elemental content ratio and the type of added metal oxide in the 3-D ZnO-T hybrid networks. While pristine ZnO-T networks showed a good response to H2 gas, a change/tune in selectivity to ethanol vapor with a decrease in optimal operating temperature was observed in the networks hybridized with Fe-oxide and Cu-oxide. In the case of hybridization with ZnAl2O4, an improvement of H2 gas response (to ∼7.5) was reached at lower doping concentrations (20:1), whereas the increase in concentration of ZnAl2O4 (ZnO-T:Al, 10:1), the selectivity changes to methane CH4 gas (response is about 28). Selectivity tuning to different gases is attributed to the catalytic properties of the metal oxides after hybridization, while the gas sensitivity improvement is mainly associated with additional modulation of the electrical resistance by the built-in potential barriers between n-n and n-p heterojunctions, during adsorption and desorption of gaseous species. Density functional theory based calculations provided the mechanistic insights into the interactions between different hybrid networks and gas molecules to support the experimentally observed results. The studied networked materials and

  15. Thermally reduced kaolin-graphene oxide nanocomposites for gas sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Renyun; Alecrim, Viviane; Hummelgård, Magnus; Andres, Britta; Forsberg, Sven; Andersson, Mattias; Olin, Håkan

    2015-01-01

    Highly sensitive graphene-based gas sensors can be made using large-area single layer graphene, but the cost of large-area pure graphene is high, making the simpler reduced graphene oxide (rGO) an attractive alternative. To use rGO for gas sensing, however, require a high active surface area and slightly different approach is needed. Here, we report on a simple method to produce kaolin-graphene oxide (GO) nanocomposites and an application of this nanocomposite as a gas sensor. The nanocomposite was made by binding the GO flakes to kaolin with the help of 3-Aminopropyltriethoxysilane (APTES). The GO flakes in the nanocomposite were contacting neighboring GO flakes as observed by electron microscopy. After thermal annealing, the nanocomposite become conductive as showed by sheet resistance measurements. Based on the conductance changes of the nanocomposite films, electrical gas sensing devices were made for detecting NH3 and HNO3. These devices had a higher sensitivity than thermally annealed multilayer GO films. This kaolin-GO nanocomposite might be useful in applications that require a low-cost material with large conductive surface area including the demonstrated gas sensors.

  16. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    PubMed Central

    Feng-Chen, Siyuan; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  17. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide) based polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments. Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T g) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components and relative mobilities of the polymer backbone of a suite of. lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of

  18. Absorption spectroscopy of xenon and ethylene-noble gas mixtures at high pressure: towards Bose-Einstein condensation of vacuum ultraviolet photons

    NASA Astrophysics Data System (ADS)

    Wahl, Christian; Brausemann, Rudolf; Schmitt, Julian; Vewinger, Frank; Christopoulos, Stavros; Weitz, Martin

    2016-12-01

    Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high-pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the 5p^6-5p^56s transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 158 and 180 nm wavelength are reported.

  19. Kinetics of Ethylene and Ethylene Oxide in Subcellular Fractions of Lungs and Livers of Male B6C3F1 Mice and Male Fischer 344 Rats and of Human Livers

    PubMed Central

    Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg

    2011-01-01

    Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of Vmax [nmol/(min·mg protein)] and of the apparent Michaelis constant (Km [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, Vmax values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as Vmax/Km [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO. PMID:21785163

  20. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    PubMed Central

    Fine, George F.; Cavanagh, Leon M.; Afonja, Ayo; Binions, Russell

    2010-01-01

    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition. PMID:22219672

  1. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices

    PubMed Central

    Comini, Elisabetta

    2013-01-01

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field. PMID:23955436

  2. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries.

    PubMed

    Wang, Shih-Hong; Hou, Sheng-Shu; Kuo, Ping-Lin; Teng, Hsisheng

    2013-09-11

    Using gel polymer electrolytes (GPEs) for lithium-ion batteries usually encounters the drawback of poor mechanical integrity of the GPEs. This study demonstrates the outstanding performance of a GPE consisting of a commercial membrane (Celgard) incorporated with a poly(ethylene oxide)-co-poly(propylene oxide) copolymer (P(EO-co-PO)) swelled by a liquid electrolyte (LE) of 1 M LiPF6 in carbonate solvents. The proposed GPE stably holds LE with an amount that is three times that of the Celgard-P(EO-co-PO) composite. This GPE has a higher ionic conductivity (2.8×10(-3) and 5.1×10(-4) S cm(-1) at 30 and -20 °C, respectively) and a wider electrochemical voltage range (5.1 V) than the LE-swelled Celgard because of the strong ion-solvation power of P(EO-co-PO). The active ion-solvation role of P(EO-co-PO) also suppresses the formation of the solid-electrolyte interphase layer. When assembling the GPE in a Li/LiFePO4 battery, the P(EO-co-PO) network hinders anionic transport, producing a high Li+ transference number of 0.5 and decreased the polarization overpotential. The Li/GPE/LiFePO4 battery delivers a discharge capacity of 156-135 mAh g(-1) between 0.1 and 1 C-rates, which is approximately 5% higher than that of the Li/LE/LiFePO4 battery. The IR drop of the Li/GPE/LiFePO4 battery was 44% smaller than that of the Li/LE/LiFePO4. The Li/GPE/LiFePO4 battery is more stable, with only a 1.2% capacity decay for 150 galvanostatic charge-discharge cycles. The advantages of the proposed GPE are its high stability, conductivity, Li+ transference number, and mechanical integrity, which allow for the assembly of GPE-based batteries readily scalable to industrial levels.

  3. Survey of catalysts for oxidation of mercury in flue gas.

    PubMed

    Presto, Albert A; Granite, Evan J

    2006-09-15

    Methods for removing mercury from flue gas have received increased attention because of recent limitations placed on mercury emissions from coal-fired utility boilers by the U. S. Environmental Protection Agency and various states. A promising method for mercury removal is catalytic oxidation of elemental mercury (Hg0) to oxidized mercury (Hg2+), followed by wet flue gas desulfurization (FGD). FGD cannot remove Hg0, but easily removes Hg2+ because of its solubility in water. To date, research has focused on three broad catalyst areas: selective catalytic reduction catalysts, carbon-based materials, and metals and metal oxides. We review published results for each type of catalyst and also present a discussion on the possible reaction mechanisms in each case. One of the major sources of uncertainty in understanding catalytic mercury oxidation is a lack of knowledge of the reaction mechanisms and kinetics. Thus, we propose that future research in this area should focus on two major aspects: determining the reaction mechanism and kinetics and searching for more cost-effective catalyst and support materials.

  4. Survey of catalysts for oxidation of mercury in flue gas

    SciTech Connect

    Albert A. Presto; Evan J. Granite

    2006-09-15

    Methods for removing mercury from flue gas have received increased attention because of recent limitations placed on mercury emissions from coal-fired utility boilers by the U. S. Environmental Protection Agency and various states. A promising method for mercury removal is catalytic oxidation of elemental mercury (Hg{sup 0}) to oxidized mercury (Hg{sup 2+}), followed by wet flue gas desulfurization (FGD). FGD cannot remove Hg{sup 0}, but easily removes Hg{sup 2+} because of its solubility in water. To date, research has focused on three broad catalyst areas: selective catalytic reduction catalysts, carbon-based materials, and metals and metal oxides. We review published results for each type of catalyst and also present a discussion on the possible reaction mechanisms in each case. One of the major sources of uncertainty in understanding catalytic mercury oxidation is a lack of knowledge of the reaction mechanisms and kinetics. Thus, we propose that future research in this area should focus on two major aspects: determining the reaction mechanism and kinetics and searching for more cost-effective catalyst and support materials. 91 refs.

  5. Protein resistance of (ethylene oxide)n monolayers at the air/water interface: effects of packing density and chain length.

    PubMed

    Liu, Guangming; Chen, Yijian; Zhang, Guangzhao; Yang, Shihe

    2007-12-14

    Protein adsorption on poly(ethylene oxide) (PEO) and oligo(ethylene oxide) (OEO) monolayers is studied at different packing densities using the Langmuir technique. In the case of a PEO monolayer, a protein adsorption minimum is revealed at sigma(-1) = 10 nm(2) for both lysozyme and fibrinogen. Manifested are two packing density regimes of steric repulsion and compressive attraction between PEO and a protein on top of the overall attraction of the protein to the air/water interface. The observed protein adsorption minimum coincides with the maximum of the surface segment density at sigma(-1) = 10 nm(2). However, OEO monolayer presents a different scenario, namely that the amount of protein adsorbed decreases monotonically with increasing packing density, indicating that the OEO chains merely act as a steric barrier to protein adsorption onto the air/water interface. Besides, in the adsorption of fibrinogen, three distinct kinetic regimes controlled by diffusion, penetration and rearrangement are recognized, whereas only the latter two were made out in the adsorption of lysozyme.

  6. Alteration in Oxidative/nitrosative imbalance, histochemical expression of osteopontin and antiurolithiatic efficacy of Xanthium strumarium (L.) in ethylene glycol induced urolithiasis.

    PubMed

    Panigrahi, Padma Nibash; Dey, Sahadeb; Sahoo, Monalisa; Choudhary, Shyam Sundar; Mahajan, Sumit

    2016-12-01

    Xanthium strumarium has traditionally been used in the treatment of urolitiasis especially by the rural people in India, but its antiurolithiatic efficacy was not explored scientifically till now. Therefore, the present study was designed to validate the ethnic practice scientifically, and explore the possible antiurolithiatic effect to rationalize its medicinal use. Urolitiasis was induced in hyperoxaluric rat model by giving 0.75% ethylene glycol (EG) for 28days along with 1% ammonium chloride (AC) for first 14days. Antiurolithiatic effect of aqueous-ethanol extract of Xanthium strumarium bur (xanthium) was evaluated based on urine and serum biochemistry, oxidative/nitrosative stress indices, histopathology, kidney calcium and calcium oxalate content and immunohistochemical expression of matrix glycoprotein, osteopontin (OPN). Administration of EG and AC resulted in hyperoxaluria, crystalluria, hypocalciuria, polyurea, raised serum urea, creatinine, erythrocytic lipid peroxidise and nitric oxide, kidney calcium content as well as crystal deposition in kidney section in lithiatic group rats. However, xanthium treatment significantly restored the impairment in above kidney function test as that of standard treatment, cystone. The up-regulation of OPN was also significantly decreased after xanthium treatment. The present findings demonstrate the curative efficacy of xanthium in ethylene glycol induced urolithiasis, possibly mediated through inhibition of various pathways involved in renal calcium oxalate formation, antioxidant property and down regulation of matrix glycoprotein, OPN. Therefore, future studies may be established to evaluate its efficacy and safety for clinical use.

  7. Poly(ethylene oxide)-silica hybrids entrapping sensitive dyes for biomedical optical pH sensors: Molecular dynamics and optical response

    NASA Astrophysics Data System (ADS)

    Fabbri, Paola; Pilati, Francesco; Rovati, Luigi; McKenzie, Ruel; Mijovic, Jovan

    2011-06-01

    Polymer-silica hybrid nanocomposites prepared by sol-gel process based on triethoxisilane-terminated poly(ethylene oxide) chains and tetraethoxysilane as silica precursor, doped with organic pH sensitive dyes, have been prepared and their suitability for use as sensors coupled with plastic optic fibers has been evaluated. Sensors were prepared by immobilizing a drop of the hybrid materials onto the tip of a multi-mode poly(methyl methacrylate) optical fiber. The performance of the optical sensor in terms of sensitivity and response time was tested in different experimental conditions, and was found to be markedly higher than analogous sensors present on the market. The very fast kinetic of the hybrid's optical response was supported by studies performed at the molecular level by broadband dielectric relaxation spectroscopy (DRS), investigated over a wide range of frequency and temperature, showing that poly(ethylene oxide) chains maintain their dynamics even when covalently bonded to silica domains, which decrease the self-association interactions and promote motions of polymer chain segments. Due to the fast response kinetic observed, these pH optical sensors result suitable for the fast-detection of biomedical parameters, i.e. fast esophageous pH-metry.

  8. Inverse gas chromatography study on the effect of humidity on the mass transport of alcohols in an ethylene-vinyl alcohol copolymer near the glass transition temperature.

    PubMed

    Cava, David; Lagarón, José M; Martínez-Giménez, Félix; Gavara, Rafael

    2007-12-21

    Inverse gas chromatography (IGC) was used to study the effect of moisture on transport properties of three low molecular weight alcohols (methanol, ethanol, and 1-butanol) through high barrier copolymers of ethylene-vinyl alcohol with an ethylene content of 38%mol (EVOH38) at 40 degrees C. The value of the partition coefficient (K) was obtained by using two approaches: (a) the fit of the slope of sorption isotherms obtained through the method of Kiselev and Yashin; and (b) the solution to the model of Romdhane and Danner obtained by using the law of moments. The second method also allowed the estimation of the diffusion coefficient (D(p)) at the different humidity conditions. None of these two methods were applicable at low values of relative humidity. With the first method, the diffusion of the permeants through the copolymer was not fast enough to allow them to reach the core of the EVOH particles used as stationary phase resulting in sorption values unrealistically low. The fit of the chromatograms obtained by using the second method also suggested questionable values of the mass transport parameters. Although the theoretical curve perfectly described the chromatogram, the low extent of the interaction and the slow diffusion resulted in interdependent values of the coefficients K and D(p), with infinite pairs of values providing the same curve profile. As the relative humidity of the carrier gas increased, the diffusivity and the sorption of the alcohols also increased, making both methods applicable. In the case of the partition coefficient, the sorption of the biggest molecules (ethanol and 1-butanol) was the most affected, the increment of K for methanol being moderate. As regards the D(p) value, methanol was the most influenced compound and 1-butanol the least. Finally, a sharp increment of the D(p) of the three alcohols was observed between 35 and 47% RH and attributed to the plasticization of the copolymer.

  9. Gas-phase oxidation of SO/sub 2/ in the ozone-olefin reactions

    SciTech Connect

    Hatakeyama, S.; Kobayashi, H.; Akimoto, H.

    1984-09-27

    Gas-phase oxidation of SO/sub 2/ in the ozone-olefin reactions was studied, and the yield of sulfuric acid aerosol was determined for various types of olefins under atmospheric pressure. No sulfur-containing compounds other than sulfuric acid was detected. Pressure dependence of the yield of H/sub 2/SO/sub 4/ was studied for the first time for trans-2-butene. The yield decreased to zero as the total pressure of air was decreased. This fact supports the contention that only a stabilized Criegee intermediate can undergo bimolecular reactions. Stabilized fractions of CH/sub 2/O0 and CH/sub 3/CHOO in the ozone reaction of ethylene and trans-2-butene under atmospheric pressure are 0.390 +/- 0.053 and 0.185 +/- 0.028, respectively. The yield of H/sub 2/SO/sub 4/ was as low as 0.052 +/- 0.013, 0.032 +/- 0.024, and 0.029 +/- 0.015 for cyclopentane, cyclohexene, and cycloheptene, respectively. The yield of H/sub 2/SO/sub 4/ for ..cap alpha..- and ..beta..-pinene was 0.125 +/- 0.040 and 0.249 +/- 0.024, respectively. The rate constant ratio of decomposition of the initially formed hot Criegee intermediate to its collisional stabilization was obtained to be (3.9 +/- 0.8) x 10/sup 18/ molecules/cm/sup 3/ for trans-2-butene.

  10. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kane, James A. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  11. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Richard, II, Roy V. (Inventor); Kanc, James A. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  12. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    PubMed Central

    Cui, Ling; Murray, Erica P.

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  13. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  14. Ethylene diamine

    Integrated Risk Information System (IRIS)

    Ethylene diamine ; CASRN 107 - 15 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  15. Observation of the Simplest Criegee Intermediate CH_2OO in the Gas-Phase Ozonolysis of Ethylene

    NASA Astrophysics Data System (ADS)

    Womack, Carrie; Martin-Drumel, Marie-Aline; Brown, Gordon G.; Field, Robert W.; McCarthy, Michael C.

    2015-06-01

    Criegee intermediates (R_1R_2COO) are understood to be critical intermediates in the ozonolysis of alkenes, but their high reactivity has traditionally made them very difficult to study directly. Although the smallest Criegee intermediates have now been generated in the laboratory using a diiodomethane photolysis scheme, numerous questions still remain about the product branching ratios of Criegee intermediates formed directly from ozonolysis. This talk will discuss our recent detection of the simplest Criegee intermediate, CH_2OO, in the ozonolysis of ethylene, using Fourier transform microwave spectroscopy and a modified pulsed nozzle. Nine other product species of the reaction were also detected, in abundances that qualitatively support the published mechanisms and rate constants.

  16. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  17. Gas sensing performance of nano zinc oxide sensors

    NASA Astrophysics Data System (ADS)

    Sharma, Shiva; Chauhan, Pratima

    2016-04-01

    We report nano Zinc Oxide (ZnO) synthesized by sol-gel method possessing the crystallite size which varies from 25.17 nm to 47.27 nm. The Scanning electron microscope (SEM) image confirms the uniform distribution of nanograins with high porosity. The Energy dispersion X-ray (EDAX) spectrum gives the atomic composition of Zn and O in ZnO powders and confirms the formation of nano ZnO particles. These factors reveals that Nano ZnO based gas sensors are highly sensitive to Ammonia gas (NH3) at room temperature, indicating the maximum response 86.8% at 800 ppm with fast response time and recovery time of 36 sec and 23 sec respectively.

  18. Miniaturized ionization gas sensors from single metal oxide nanowires.

    PubMed

    Hernandez-Ramirez, Francisco; Prades, Juan Daniel; Hackner, Angelika; Fischer, Thomas; Mueller, Gerhard; Mathur, Sanjay; Morante, Joan Ramon

    2011-02-01

    Gas detection experiments were performed with individual tin dioxide (SnO2) nanowires specifically configured to observe surface ion (SI) emission response towards representative analyte species. These devices were found to work at much lower temperatures (T≈280 °C) and bias voltages (V≈2 V) than their micro-counterparts, thereby demonstrating the inherent potential of individual nanostructures in building functional nanodevices. High selectivity of our miniaturized sensors emerges from the dissimilar sensing mechanisms of those typical of standard resistive-type sensors (RES). Therefore, by employing this detection principle (SI) together with RES measurements, better selectivity than that observed in standard metal oxide sensors could be demonstrated. Simplicity and specificity of the gas detection as well as low-power consumption make these single nanowire devices promising technological alternatives to overcome the major drawbacks of solid-state sensor technologies.

  19. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    PubMed

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  20. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    PubMed Central

    Çakır, M. Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-01-01

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively. PMID:27690048

  1. Gas analyzers to detect nitrogen and sulfur oxides in the gas effluents from heat and electric power plants

    NASA Astrophysics Data System (ADS)

    Azbukin, Alexander A.; Buldakov, Michail A.; Korolev, Boris V.; Korolkov, Vladimir A.; Matrosov, Ivan I.

    1999-11-01

    Three kinds of gas analyzers designed for continuous monitoring of the sulfer and nitrogen oxides in the exhaust gases of a power plant are described. The operation of gas analyzers is based on use of laserless UV sources and differential absorption method. High efficiency of gas analyzers developed has been demonstrated under industrial conditions.

  2. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  3. Measurement system for nitrous oxide based on amperometric gas sensor

    NASA Astrophysics Data System (ADS)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  4. Tritium Elimination System Using Tritium Gas Oxidizing Bacteria

    SciTech Connect

    Ichimasa, Michiko; Awagakubo, Sayuri; Takahashi, Miho; Tauchi, Hiroshi; Hayashi, Takumi; Kobayashi, Kazuhiro; Nishi, Masataka; Ichimasa, Yusuke

    2005-07-15

    In order to eliminate atmospheric tritium gas (HT) released from tritium handling apparatus, we proposed to use the HT oxidizing ability (hydrogenase enzyme) of bacterial strains isolated from surface soils instead of a high temperature precious metal catalyst. Among the isolated strains with high HT oxidation activity, several strains were selected to develop a tritium elimination (detritiation) system. Bioreactors were made of bacterial cells grown on agar medium on a cartridge filter and stored in a refrigerator until use. The detritiation ability of these bioreactors at room temperature was investigated during the intentional HT release experiments carried out in the Cassion Assembly for Tritium Safety Study (CATS) in TPL/JAERI. When HT contaminated air from the CATS was introduced into the biological detritiation system, in which three bioreactors were connected in series, 86% of HT in air was removed as tritiated water in these bioreactors at a flow rate of 100 cm{sup 3}/min for 2 hours.

  5. Synthesis, structural studies, and oxidation catalysis of the late-first-row-transition-metal complexes of a 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam.

    PubMed

    Jones, Donald G; Wilson, Kevin R; Cannon-Smith, Desiray J; Shircliff, Anthony D; Zhang, Zhan; Chen, Zhuqi; Prior, Timothy J; Yin, Guochuan; Hubin, Timothy J

    2015-03-02

    The first 2-pyridylmethyl pendant-armed ethylene cross-bridged cyclam ligand has been synthesized and successfully complexed to Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+) cations. X-ray crystal structures were obtained for all six complexes and demonstrate pentadentate binding of the ligand with the requisite cis-V configuration of the cross-bridged cyclam ring in all cases, leaving a potential labile binding site cis to the pyridine donor for interaction of the complex with oxidants and/or substrates. The electronic properties of the complexes were evaluated using solid-state magnetic moment determination and acetonitrile solution electronic spectroscopy, which both agree with the crystal structure determination of high-spin divalent metal complexes in all cases. Cyclic voltammetry in acetonitrile revealed reversible redox processes in all but the Ni(2+) complex, suggesting that catalytic reactivity involving electron-transfer processes is possible for complexes of this ligand. Kinetic studies of the dissociation of the ligand from the copper(II) complex under strongly acidic conditions and elevated temperatures revealed that the pyridine pendant arm actually destabilizes the complex compared to the parent cross-bridged cyclam complex. Screening for oxidation catalysis using hydrogen peroxide as the terminal oxidant for the most biologically relevant Mn(2+), Fe(2+), and Cu(2+) complexes identified the Mn(2+) complex as a potential mild oxidation catalyst worthy of continued development.

  6. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOEpatents

    Mendelsohn, Marshall H.; Livengood, C. David

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  7. Ethylene preparation and its application to physiological experiments.

    PubMed

    Zhang, Wei; Hu, Wenli; Wen, Chi-Kuang

    2010-04-01

    Ethylene is the first identified gaseous hormone regulating many aspects of plant growth and development. ACC and ethephon are two widely used chemicals replacing ethylene treatment when ethylene is not available. However, the amount of ethylene converted by ACC and ethephon is not controllable, leaving it questionable whether either treatment can mimic the effects of ethylene for experiments that are sensitive to ethylene concentration, response window, and treatment durations. Ethylene can be chemically made by ethanol dehydration; however, further purification from the dehydration products is needed. We previously reported that the ethylene gas can be easily prepared by decomposing ethephon in a buffered condition and the resulting ethylene can be used directly. Ethylene responses can be estimated by the measurement of the hypocotyl length of etiolated seedlings, or by ERF1 (Ethylene Response Factor1) expression. Although ACC of low concentrations is insufficient to induce ERF1 expression, ACC of high concentrations can replace ethylene for experiments where ethylene treatment is not feasible. However, ACC may undergo early consumption. Versatile approaches were developed so that laboratories lacking ethylene and techniques for gas handling can easily perform necessary ethylene treatments.

  8. Control of Nitrogen Oxide Emissions by Hydrogen Peroxide-Enhanced Gas-Phase Oxidation Of Nitric Oxide.

    PubMed

    Kasper, John M; Iii, Christian A Clausen; Cooper, C David

    1996-02-01

    Nitrogen oxides (NOX) and sulfur oxides (SOX) are criteria air pollutants, emitted in large quantities from fossil-fueled electric power plants. Emissions of SOX are currently being reduced significantly in many places by wet scrubbing of the exhaust or flue gases, but most of the NOX in the flue gases is NO, which is so insoluble that it is virtually impossible to scrub. Consequently, NOX control is mostly achieved by using combustion modifications to limit the formation of NOX, or by using chemical reduction techniques to reduce NOX to N2. Low NOX burners are relatively inexpensive but can only achieve about 50% reduction in NOX emissions; selective catalytic reduction (SCR) can achieve high reductions but is very expensive. The removal of NOX in wet scrubbers could be greatly enhanced by gas-phase oxidation of the NO to NO2, HNO2, and HNO3 (the acid gases are much more soluble in water than NO). This oxidation is accomplished by injecting liquid hydrogen peroxide into the flue gas; the H2O2 vaporizes and dissociates into hydroxyl radicals. The active OH radicals then oxidize the NO and NO2. This NOX control technique might prove economically feasible at power plants with existing SO2 scrubbers. The higher chemical costs for H2O2 would be balanced by the investment cost savings, compared with an alternative such as SCR. The oxidation of NOX by using hydrogen peroxide has been demonstrated in a laboratory quartz tube reactor. NO conversions of 97% and 75% were achieved at hydrogen peroxide/NO mole ratios of 2.6 and 1.6, respectively. The reactor conditions (500 °C, a pressure of one atmosphere, and 0.7 seconds residence time) are representative of flue gas conditions for a variety of combustion sources. The oxidized NOX species were removed by caustic water scrubbing.

  9. Effect of poly(ethylene oxide) on ionic conductivity and electrochemical properties of poly(vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Prasanth, Raghavan; Shubha, Nageswaran; Hng, Huey Hoon; Srinivasan, Madhavi

    2014-01-01

    Effect of poly(ethylene oxide) on the electrochemical properties of polymer electrolyte based on electrospun, non-woven membrane of PVdF is demonstrated. Electrospinning process parameters are controlled to get a fibrous membrane consisting of bead-free, uniformly dispersed thin fibers with diameter in the range of 1.5-1.9 μm. The membrane with good mechanical strength and porosity exhibits high uptake when activated with the liquid electrolyte of lithium salt in a mixture of organic solvents. The polymer gel electrolyte shows ionic conductivity of 4.9 × 10-3 S cm-1 at room temperature. Electrochemical performance of the polymer gel electrolyte is evaluated in Li/polymer electrolyte/LiFePO4 coin cell. Good performance with low capacity fading on charge-discharge cycling is demonstrated.

  10. Perovskite-type oxides La 1- xSr xMnO 3 for cathode catalysts in direct ethylene glycol alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kohei; Sugimura, Naotsugu; Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Carbon-supported La 1- xSr xMnO 3 (LSM/C) was prepared by reversible homogeneous precipitation method, and its catalytic activities for oxygen reduction under the existence of ethylene glycol (EG) were investigated by using rotating disk electrode. LSM/C exhibited the high activity for oxygen reduction irrespective with the presence of EG, indicating that EG is not oxidized by LSM/C at the cathode side in the present system. Consequently, LSM/C can serve as a cathode catalyst in alkaline direct alcohol fuel cells with no crossover problem. Performance test for fuel cells operation also supported these results and showed cathodic polarization curves were not affected by the concentration of EG supplied to anode even at 5 mol dm -3.

  11. Isothermal growth, thickening and melting of poly(ethylene-oxide) single crystals in the bulk. III. Bilayer crystals and the effect of chain ends

    NASA Astrophysics Data System (ADS)

    Kovacs, A. J.; Straupe, C.

    1980-02-01

    Growth, thickening and melting of poly(ethylene-oxide) single crystals, grown from the melt, have been investigated using three fractions of nearly the same chain length. The data are compared to and complement previous work, which is briefly recalled. The new results mainly concern the behavior of siamese twin-lamellae simultaneously grown from the same seed, modelling shish kebabs. On the other hand, the impact of a diphenyl group at one chain end is investigated in a systematic manner. The results show that these small modifications in the constitution of the crystals and in one of the chain ends give rise to rather large and often spectacular effects. The implications of these are discussed in terms of the detailed molecular conformations and mobility in the crystal lattice, in connection with current understanding of chain folding in lamellar polymer crystals.

  12. Stability of Water/Poly(ethylene oxide)43-b-poly(ε-caprolactone)14/Cyclohexanone Emulsions Involves Water Exchange between the Core and the Bulk.

    PubMed

    Flores, Mario E; Martínez, Francisco; Olea, Andrés F; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2015-12-31

    The formation of emulsions upon reverse self-association of the monodisperse amphiphilic block copolymer poly(ethylene oxide)43-b-poly(ε-caprolactone)14 in cyclohexanone is reported. Such emulsions are not formed in toluene, chloroform, or dichloromethane. We demonstrate by magnetic resonance spectroscopy the active role of the solvent on the stabilization of the emulsions. Cyclohexanone shows high affinity for both blocks, as predicted by the Hansen solubility parameters, so that the copolymer chains are fully dissolved as monomeric chains. In addition, the solvent is able to produce hydrogen bonding with water molecules. Water undergoes molecular exchange between water molecules associated with the polymer and water molecules associated with the solvent, dynamics of major importance for the stabilization of the emulsions. Association of polymeric chains forming reverse aggregates is induced by water over a concentration threshold of 5 wt %. Reverse copolymer aggregates show submicron average hydrodynamic diameters, as seen by dynamic light scattering, depending on the polymer and water concentration.

  13. Synthesis and Characterization of Luminescent Eu(TTA)3phen in a Poly(ethylene oxide) Matrix for Detecting Traces of Water

    NASA Astrophysics Data System (ADS)

    Choi, Pu-Reun; Park, Hyung-Ho; Koo, Eunhae

    2013-05-01

    The water vapor transmission rate (WVTR) is limited to 10-6 g/m2/day for flexible organic light-emitting diodes. However, it is difficult to measure permeability as low as 10-6 g/m2/day with current commercial testing methods. To address this need, a developed optochemical method which is extremely sensitive to oxygen or water shows promise. In this study, an Eu complex is synthesized and characterized as a fluorescent probe for detecting traces of water molecules. The Eu-complex film dispersed in poly(ethylene oxide) has strong red fluorescence that is easily quenched by a trace of water. Based on the photoluminescence spectra, the detection limit of the film to water appears to be below 1.0 × 10-9 g/cc. This suggests that the Eu-complex film can be used as a film sensor to measure WVTRs below 10-6 g/m2/day.

  14. WO x , SiO2, TiO2/Ti composites, fabricated by means of plasma electrolytic oxidation, as catalysts of ethanol dehydration into ethylene

    NASA Astrophysics Data System (ADS)

    Vasilyeva, M. S.; Rudnev, V. S.; Tulush, A. I.; Nedozorov, P. M.; Ustinov, A. Yu.

    2015-06-01

    WO3, SiO2, TiO2/Ti composites are fabricated and studied by means of X-ray diffraction analysis and X-ray photoelectron and IR spectroscopy. It is established that the surface of an oxide coating contains up to 2% of tungsten in the composition of WO3, SiO2, and TiO2, along with carbon compounds. Data on the catalytic activity of SiO2, TiO2/Ti and WO3, SiO2, TiO2/Ti composites in ethanol dehydration are obtained. In the case of WO3, SiO2, TiO2/Ti composites, the degree of conversion and the selectivity of ethanol transformation into ethylene at 480°C reaches 97%.

  15. How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: Experimental evaluation and correlation development

    NASA Astrophysics Data System (ADS)

    Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.

  16. Sign change of the Soret coefficient of poly(ethylene oxide) in water/ethanol mixtures observed by thermal diffusion forced Rayleigh scattering.

    PubMed

    Kita, Rio; Wiegand, Simone; Luettmer-Strathmann, Jutta

    2004-08-22

    Soret coefficients of the ternary system of poly(ethylene oxide) in mixed water/ethanol solvent were measured over a wide solvent composition range by means of thermal diffusion forced Rayleigh scattering. The Soret coefficient S(T) of the polymer was found to change sign as the water content of the solvent increases with the sign change taking place at a water mass fraction of 0.83 at a temperature of 22 degrees C. For high water concentrations, the value of S(T) of poly(ethylene oxide) is positive, i.e., the polymer migrates to the cooler regions of the fluid, as is typical for polymers in good solvents. For low water content, on the other hand, the Soret coefficient of the polymer is negative, i.e., the polymer migrates to the warmer regions of the fluid. Measurements for two different polymer concentrations showed a larger magnitude of the Soret coefficient for the smaller polymer concentration. The temperature dependence of the Soret coefficient was investigated for water-rich polymer solutions and revealed a sign change from negative to positive as the temperature is increased. Thermodiffusion experiments were also performed on the binary mixture water/ethanol. For the binary mixtures, the Soret coefficient of water was observed to change sign at a water mass fraction of 0.71. This is in agreement with experimental results from the literature. Our results show that specific interactions (hydrogen bonds) between solvent molecules and between polymer and solvent molecules play an important role in thermodiffusion for this system.

  17. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  18. Cover and startup gas supply system for solid oxide fuel cell generator

    DOEpatents

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  19. Electrospray-printed nanostructured graphene oxide gas sensors.

    PubMed

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-12-18

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  20. Gas phase oxidation downstream of a catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Anderson, D. N.

    1979-01-01

    Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.

  1. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOEpatents

    Tran, Nang T.; Gilbert, James R.

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  2. Ferroelectric control of two dimensional electron gas in oxide heterointerface

    NASA Astrophysics Data System (ADS)

    Thanh, Tra Vu; Chen, Jhih-Wei; Yeh, Chao-Hui; Chen, Yi-Chun; Wu, Chung-Lin; Lin, Jiunn Yuan; Chu, Ying-Hao

    2012-02-01

    Oxide heterointerfaces are emerging as one of the most exciting materials systems in condensed-matter science. One remarkable example is the LaAlO3 /SrTiO3 (LAO/STO) interface, a model system in which a highly mobile electron gas forms between two band insulators. Our study to manipulate the conductivity at this interface by using ferroeletricity of Pb(Zr,Ti)O3. Our transport data strongly suggests that down polarization direction depletes the conducting interface of LAO/STO. After switching the polarization direction (up), it becomes accumulation. In addition, our experiments show there is obvious the band structure changed by cross-sectional scanning tunneling microscopy and combining with X-ray photoelectron spectroscopy (XPS) measurements. The transport properties are measured to build up the connection between macroscopic properties and local electronic structures that have been applied to study this structure. Controlling the conductivity of this oxide interface suggests that this technique may not only extend more generally to other oxide systems but also open much potential to ferroelectric field effect transistors.

  3. Important property of polymer spheres for the preparation of three-dimensionally ordered macroporous (3DOM) metal oxides by the ethylene glycol method: the glass-transition temperature.

    PubMed

    Sadakane, Masahiro; Sasaki, Keisuke; Nakamura, Hiroki; Yamamoto, Takashi; Ninomiya, Wataru; Ueda, Wataru

    2012-12-21

    We demonstrate that the glass-transition temperature (T(g)) of a polymer sphere template is a crucial factor in the production of three-dimensionally ordered macroporous (3DOM) materials. Metal nitrate dissolved in ethylene glycol-methanol was infiltrated into the void of a face-centered, close-packed colloidal crystal of poly(methyl methacrylate) (PMMA)-based spheres. The metal nitrate reacts with EG to form a metal oxalate (or metal glycoxylate) solid (nitrate oxidation) in the void of the template when the metal nitrate-EG-PMMA composite is heated. Further heating converts metal oxalate to metal oxide and removes PMMA to form 3DOM materials. We investigated the effect of T(g) of PMMA templates and obtained clear evidence that the solidification temperature of the metal precursor solution (i.e., nitration oxidation temperature) should be lower than the T(g) of the polymer spheres to obtain a well-ordered 3DOM structure.

  4. Ethylene glycol blood test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  5. Participation of ethylene in gravitropism

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    In shoots of many plants, of which tomato (Lycopersicon esculentum Mill.) is an example, ethylene production is substantially increased during gravitropism. As a first step toward elucidating the role of ethylene in gravitropism, detailed time courses of ethylene production in isolated hypocotyl segments and whole plants were measured for gravistimulated and upright tomato seedlings. In the first experiment, seedlings were set upright or laid horizontal and then, at 15 min intervals, sets of hypocotyls were excised and sealed into gas tight vials. A steady long term rise in ethylene production begins after 15 min gravistimulation. It is possible that this increase is a consequence of the accumulation of indoleacetic acid (IAA) in the lower tissue of the hypocotyle. In a second kind of experiment, whole seedlings were enclosed in sealed chambers and air samples were withdrawn at 5 min intervals. Stimulated seedlings produced more ethylene than controls during the first 5 min interval, but not appreciably more during the second. This suggests the possibility that the ethylene production induced during the first 5 min occurs immediately rather than after a lag, and thus much too soon to be controlled by redistribution of IAA.

  6. Chemically Designed Molecular Interfaces in Cross-Linked Poly(ethylene glycol)/Silica Nanocomposites Reveal Strong Size-Dependent Trends in Gas Permeability

    NASA Astrophysics Data System (ADS)

    Su, Norman; Urban, Jeffrey

    2015-03-01

    Polymer nanocomposite membranes can exhibit gas separation performance that surpasses conventional polymeric membranes. While promising, the optimization of nanocomposite membranes requires a fundamental understanding of the transport mechanism and interfacial effects between the inorganic and polymer phase that is currently limited to empirical relationships. Synthesized nanocomposites often consist of poorly distributed and polydisperse inorganic nanomaterials. It is known that polymer dynamics can change drastically upon introduction of an inorganic phase, which can dramatically alter molecular transport behavior. Here, we systematically explore the role of nanoparticle sizes from 12 to 130 nm on polymer dynamics and permeability in a series of cross-linked poly(ethylene glycol)/silica nanocomposite membranes. The nanocomposites are well-dispersed and display excellent homogeneity throughout. Size-dependent broadening of the Tg indicates strong attractive interactions especially at high surface area loadings, which lead to deviations in permeability not captured by Maxwell's model. Chemical modifications of silica at this interface can yield significantly different polymer dynamics than previously observed with enhanced transport and mechanical properties.

  7. Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains.

    PubMed

    Feng, Wei; Zhu, Shiping; Ishihara, Kazuhiko; Brash, John L

    2006-03-01

    The objective of this work was to compare poly(ethylene glycol) (PEG) and phosphorylcholine (PC) moieties as surface modifiers with respect to their ability to inhibit protein adsorption. Surfaces were prepared by graft polymerization of the methacrylate monomers oligo(ethylene glycol) methyl ether methacrylate (OEGMA, MW 300, PEG side chains of length n=4.5) and 2-methacryloyloxyethyl phosphorylcholine (MPC, MW 295). The grafted polymers thus contained short PEG chains and PC, respectively, as side groups. Grafting on silicon was carried out using surface-initiated atom transfer radical polymerization (ATRP). Graft density was controlled via the surface density of the ATRP initiator, and chain length of the grafts was controlled via the ratio of monomer to sacrificial initiator. The grafted surfaces were characterized by water contact angle, x-ray photoelectron spectroscopy, and atomic force microscopy. The effect of graft density and chain length on fibrinogen adsorption from buffer was investigated using radio labeling methods. Adsorption to both MPC- and OEGMA-grafted surfaces was found to decrease with increasing graft density and chain length. Adsorption on the MPC and OEGMA surfaces for a given chain length and density was essentially the same. Very low adsorption levels of the order of 7 ngcm(2) were seen on the most resistant surfaces. The effect of protein size on resistance to adsorption was studied using binary solutions of lysozyme (MW 14 600) and fibrinogen (MW 340 000). Adsorption levels in these experiments were also greatly reduced on the grafted surfaces compared to the control surfaces. It was concluded that at the lowest graft density, both proteins had unrestricted access to the substrate, and the relative affinities of the proteins for the substrate (higher affinity of fibrinogen) determined the composition of the layer. At the highest graft density also, where the adsorption of both proteins was very low, no preference for one or the other

  8. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  9. Effect of ethylene glycol bis (propionitrile) ether (EGBE) on the performance and interfacial chemistry of lithium-rich layered oxide cathode

    NASA Astrophysics Data System (ADS)

    Hong, Pengbo; Xu, Mengqing; Zheng, Xiongwen; Zhu, Yunmin; Liao, Youhao; Xing, Lidan; Huang, Qiming; Wan, Huaping; Yang, Yongjun; Li, Weishan

    2016-10-01

    Ethylene glycol bis (propionitrile) ether (EGBE) is used as an electrolyte additive to improve the cycling stability and rate capability of Li/Li1.2Mn0.54Ni0.13Co0.13O2 cells at high operating voltage (4.8 V). After 150 cycles, cells with 1.0 wt% of EGBE containing electrolyte have remarkable cycling performance, 89.0% capacity retention; while the cells with baseline electrolyte only remain 67.4% capacity retention. Linear sweep voltammetry (LSV) and computation results demonstrate that EGBE preferably oxidizes on the cathode surface compared to the LiPF6/carbonate electrolyte. In order to further understand the effects of EGBE on Li1.2Mn0.54Ni0.13Co0.13O2 cathode upon cycling at high voltage, electrochemical behaviors and ex-situ surface analysis of Li1.2Mn0.54Ni0.13Co0.13O2 are investigated via electrochemical impedance spectroscopy (EIS), scanning electron spectroscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and inductive coupled plasma spectroscopy (ICP-MS). The improved cycling performance can be attributed to more stable and robust surface layer yield via incorporation of EGBE, which mitigates the oxidation of electrolyte on the cathode electrode, and also inhibits the dissolution of bulk transition metal ions as well upon cycling at high voltage.

  10. Anode materials for sour natural gas solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Danilovic, Nemanja

    Novel anode catalysts have been developed for sour natural gas solid oxide fuel cell (SOFC) applications. Sour natural gas comprises light hydrocarbons, and typically also contains H2S. An alternative fuel SOFC that operates directly on sour natural gas would reduce the overall cost of plant construction and operation for fuel cell power generation. The anode for such a fuel cell must have good catalytic and electrocatalytic activity for hydrocarbon conversion, sulfur-tolerance, resistance to coking, and good electronic and ionic conductivity. The catalytic activity and stability of ABO3 (A= La, Ce and/or Sr, B=Cr and one or more of Ti, V, Cr, Fe, Mn, or Co) perovskites as SOFC anode materials depends on both A and B, and are modified by substituents. The materials have been prepared by both solid state and wet-chemical methods. The physical and chemical characteristics of the materials have been fully characterized using electron microscopy, XRD, calorimetry, dilatometry, particle size and area, using XPS and TGA-DSC-MS. Electrochemical performance was determined using potentiodynamic and potentiostatic cell testing, electrochemical impedance analysis, and conductivity measurements. Neither Ce0.9Sr0.1VO3 nor Ce0.9 Sr0.1Cr0.5V0.5O3 was an active anode for oxidation of H2 and CH4 fuels. However, active catalysts comprising Ce0:9Sr0:1V(O,S)3 and Ce0.9Sr 0.1Cr0.5V0.5(O,S)3 were formed when small concentrations of H2S were present in the fuels. The oxysulfides formed in-situ were very active for conversion of H2S. The maximum performance improved from 50 mW cm-2 to 85 mW cm -2 in 0.5% H2S/CH4 at 850°C with partial substitution of V by Cr in Ce0.9Sr0.1V(O,S)3. Selective conversion of H2S offers potential for sweetening of sour gas without affecting the hydrocarbons. Perovskites La0.75Sr0.25Cr0.5X 0.5O3--delta, (henceforth referred to as LSCX, X=Ti, Mn, Fe, Co) are active for conversion of H2, CH4 and 0.5% H2S/CH4. The order of activity in the different fuels depends on

  11. Effect of SiO2-acryl nanohybrid coating layers on transparent conducting oxide-poly(ethylene terephthalate) superstrate.

    PubMed

    Kang, Y T; Kang, D P; Kang, D J; Chung, I D

    2013-05-01

    SiO2-acryl nanohybrid coating layers were produced by hybridizing acrylic resin and surface-modified colloidal silica (CS) nanoparticles. First, CS nanoparticles were modified with methyltrimethoxysilane (MTMS) and vinyltrimethoxysilane (VTMS) by a sol-gel process. The surface-modified CS nanoparticles were then solvent-exchanged to be homogeneous in acrylic resin. The Hybrid materials were mixed in variation with the amount of surface-modified CS nanoparticles, coated with poly(ethylene terephthalate) (PET), then finally cured by UV light to obtain a hybrid coating layer. Field emission scanning electron microscopy (FE-SEM), particle size analysis (using a Zetasizer), and atomic force microscopy (AFM) were performed to determine the morphology of the hybrid thin-films. Thermogravimetric analysis (TGA) was used to investigate the thermal properties. Fourier-transform infrared (FTIR), ultraviolet-visible (UVNis) spectroscopies, and pencil hardness were used to obtain the details of chemical structures, optical properties, and hardness, respectively. The hybrid thin films had shown to be enhanced properties compared to their urethane acrylate prepolymer (UAP) coating film.

  12. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  13. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  14. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  15. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  16. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being...

  17. Viscoelastic Properties, Ionic Conductivity, and Materials Design Considerations for Poly(styrene-b-ethylene oxide-b-styrene)-Based Ion Gel Electrolytes

    SciTech Connect

    Zhang, Sipei; Lee, Keun Hyung; Sun, Jingru; Frisbie, C. Daniel; Lodge, Timothy P.

    2013-03-07

    The viscoelastic properties and ionic conductivity of ion gels based on the self-assembly of a poly(styrene-b-ethylene oxide-b-styrene) (SOS) triblock copolymer (M{sub n,S} = 3 kDa, M{sub n,O} = 35 kDa) in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMI][TFSA]) were investigated over the composition range of 10-50 wt % SOS and the temperature range of 25-160 C. The poly(styrene) (PS) end-blocks associate into micelles, whereas the poly(ethylene oxide) (PEO) midblocks are well-solvated by this ionic liquid. The ion gel with 10 wt % SOS melts at 54 C, with the longest relaxation time exhibiting a similar temperature dependence to that of the viscosity of bulk PS. However, the actual values of the gel relaxation time are more than 4 orders of magnitude larger than the relaxation time of bulk PS. This is attributed to the thermodynamic penalty of pulling PS end-blocks through the PEO/[EMI][TFSA] matrix. Ion gels with 20-50 wt % SOS do not melt and show two plateaus in the storage modulus over the temperature and frequency ranges measured. The one at higher frequencies is that of an entangled network of PEO strands with PS cross-links; the modulus displays a quadratic dependence on polymer weight fraction and agrees with the prediction of linear viscoelastic theory assuming half of the PEO chains are elastically effective. The frequency that separates the two plateaus, {omega}{sub c}, reflects the time scale of PS end-block pull-out. The other plateau at lower frequencies is that of a congested micelle solution with PS cores and PEO coronas, which has a power law dependence on domain spacing similar to diblock melts. The ionic conductivity of the ion gels is compared to PEO homopolymer solutions at similar polymer concentrations; the conductivity is reduced by a factor of 2.1 or less, decreases with increasing PS volume fraction, and follows predictions based on a simple obstruction model. Our collective results allow the formulation

  18. Highly mobile segments in crystalline poly(ethylene oxide){sub 8}:NaPF{sub 6} electrolytes studied by solid-state NMR spectroscopy

    SciTech Connect

    Luo, Huan; Liang, Xinmiao; Wang, Liying; Zheng, Anmin; Liu, Chaoyang; Feng, Jiwen

    2014-02-21

    Two types of high-crystallinity poly(ethylene oxide)/NaPF{sub 6} electrolytes with ethylene oxide (EO)/Na molar ratios of 8:1 and 6:1, termed as PEO{sub 8}:NaPF{sub 6} and PEO{sub 6}:NaPF{sub 6} with M{sub w} = 6000 g mol{sup −1} were prepared, and their ionic conductivity, structure, and segmental motions were investigated and compared. PEO{sub 8}:NaPF{sub 6} polymer electrolyte exhibits the room-temperature ionic conductivity 7.7 × 10{sup −7} S cm{sup −1} which is about five times higher than the PEO{sub 6}:NaPF{sub 6}. By variable-temperature measurements of static powder spectra and {sup 1}H spin-lattice relaxation time in rotation frame ({sup 1}H T{sub 1ρ}), we demonstrate that crystalline segments are more highly mobile in the crystalline PEO{sub 8}:NaPF{sub 6} with higher ionic conductivity than in the PEO{sub 6}:NaPF{sub 6} with lower ionic conductivity. The large-angle reorientation motion of polymer segments in the PEO{sub 8}:NaPF{sub 6} onsets at lower temperature (∼233 K) with a low activation energy 0.31 eV that is comparable with that of the pure PEO crystal. Whereas, the large-angle reorientation motion of polymer segments in the PEO{sub 6}:NaPF{sub 6} starts around 313 K with a high activation energy of 0.91 eV. As a result of the temperature-enhanced large-angle reorientations, the {sup 13}C static powder lineshape changes markedly from a low-temperature wide pattern with apparent principal values of chemical shift δ{sub 33} < δ{sub 22} < δ{sub 11} to a high-temperature narrow pattern of uniaxial chemical shift anisotropy δ{sub 33} > δ{sub 22} (δ{sub 11}). It is suggested that the segmental motion in crystalline PEO-salt complex promotes ionic conductivity.

  19. The efficacy of antioxidant therapy against oxidative stress and androgen rise in ethylene glycol induced nephrolithiasis in Wistar rats.

    PubMed

    Naghii, M R; Jafari, M; Mofid, M; Eskandari, E; Hedayati, M; Khalagie, K

    2015-07-01

    Administration of natural antioxidants has been used to protect against nephrolithiasis. Urolithiasis was induced by ethylene glycol (EG) in Wistar rats. For 4 weeks, group 1 (control) was fed with a standard commercial diet. Group 2 received the same diet with 0.75% of EG. Group 3 received EG plus the diet and water added with antioxidant nutrients and lime juice as the dietary source of citrate (EG + AX). Group 4 same as group 3 with no EG in water. For 8 weeks, group 5 was fed the standard diet with EG in water for the first 28 days, followed by no EG. Group 6 received the diet with EG for the first 28 days, followed by discontinuation of EG and addition of antioxidant nutrients. Group 7 were provided the diet with antioxidant nutrients for 8 weeks. Group 8 received the diet with antioxidant nutrients for 4 weeks, followed by antioxidant nutrients with EG for the next 4 weeks. Blood samples were collected and kidneys were removed. The size and the mean number of crystal deposits in EG-treated groups was significantly higher than the EG-treated groups, added with antioxidant nutrients and lime juice. After 4 weeks, the mean concentration of malondialdehyde in group 2 was higher than the group 3, and significantly lower in group 4; and in groups 7 after 8 weeks, as well. After 8 weeks, supplementation developed less mean number of deposits in group 6 as compared to group 5; and in group 8, the crystal deposits was substantially less than either group 2 or group 5 (EG-treated rats). Elevated concentration of androgens (as promoters of the formation of renal calculi) as a result of EG consumption decreased following antioxidant supplementations. Results showed a beneficial effect of antioxidant and provided superior renal protection on treating and preventing stone deposition in the rat kidney.

  20. Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing

    NASA Astrophysics Data System (ADS)

    Flaten, Ellen Marie; Seiersten, Marion; Andreassen, Jens-Petter

    2010-03-01

    Long subsea tie-ins for transportation of moist gas and condensate require corrosion and hydrate control. The combination of alkalinity for corrosion mitigation and monoethylene glycol (MEG) for hydrate inhibition strongly affects the tolerance for produced formation water. The elevated alkalinity downstream of the injection point increases the risk of carbonate formation. Calcium carbonate is the most common precipitate at such conditions. Our previous findings (Flaten et al., 2009) [1] show that MEG governs calcium carbonate precipitation and promotes formation of the metastable polymorph vaterite. This paper describes crystal growth of vaterite in mixed MEG water solvent with 0-70 wt% MEG at temperatures of 40 and 70 °C in solutions with high calcium to carbonate ratios representative of the production conditions. Results of some experiments in solutions with stoichiometric amounts of the reactants are included for comparison. The growth rate of vaterite can be described by second-order kinetics in most of the investigated supersaturation range. The growth order is lower at high MEG contents and high calcium concentrations when the carbonate activity is reduced in order to maintain comparable supersaturation values. It is then probable that the low carbonate activity makes the reaction diffusion limited. MEG reduces the growth rate constant of vaterite when the reaction is second order. Increasing the MEG concentration from 0 to 50 wt%, decreases the growth rate constant kr from 1.9 to 0.7 nm/s at 40 °C and from 2.6 to 1.2 nm/s at 70 °C. The growth reduction can be explained by a change of either de-hydration or diffusion rate along the surface when the ions are incorporated into the crystal lattice. Further investigations into which of the two mechanisms that is rate determining is outside the scope of this work.

  1. Cross-sensitivity of metal oxide gas sensor to ambient temperature and humidity: Effects on gas distribution mapping

    NASA Astrophysics Data System (ADS)

    Kamarudin, K.; Bennetts, V. H.; Mamduh, S. M.; Visvanathan, R.; Yeon, A. S. A.; Shakaff, A. Y. M.; Zakaria, A.; Abdullah, A. H.; Kamarudin, L. M.

    2017-03-01

    Metal oxide gas sensors have been widely used in robotics application to perform remote and mobile gas sensing. However, previous researches have indicated that this type of sensor technology is cross-sensitive to environmental temperature and humidity. This paper therefore investigates the effects of these two factors towards gas distribution mapping and gas source localization domains. A mobile robot equipped with TGS2600 gas sensor was deployed to build gas distribution maps of indoor environment, where the temperature and humidity varies. The results from the trials in environment with and without gas source indicated that there is a strong relation between the fluctuation of the mean and variance map with respect to the variations in the temperature and humidity maps.

  2. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  3. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  4. Methylation of ethylene over Lewis-acid catalysts

    SciTech Connect

    Sekhar, M.V.C.

    1994-12-31

    As a major constituent of natural gas, methane is abundant and is a relatively inexpensive feedstock for a variety of chemicals. The use of methane as a fuel is straightforward. Consequently, over the years, considerable research has been conducted to develop technologies for its efficient utilization. Work on adsorbents for storing natural gas on-board automotive vehicles promises to expand its use considerably. Conversely, the use of methane as a chemical feedstock requires either the energy- and capital-intensive production of intermediate synthesis gas or its thermal cracking to a range of hydrocarbons. In recent years there has been a great deal of interest in processes that convert methane directly to olefins, methanol and other functionalized methane derivatives. Among the various conversion processes currently under development, the Oxidative Coupling (OC) route is the most promising. With increased attention being given to OC process, engineers have also begun outlining the corresponding reaction engineering aspects. The OC of methane rich natural gas yields a dilute olefin stream. At 25% hydrocarbon conversion, the ethylene in the dry reactor effluent is about 5%, with some propylene and other hydrocarbons. Because of the presence of large amounts of unconverted methane in the effluent, product separation is one of the main points of optimization in the existing oxidative coupling technology. Consequently, a processing scheme which does not require further separation of the product of the OC rector would be of considerable advantage. Reactions between methane and ethylene using a number of solid acids have also been reported by a number of authors in the past. However, some of these experiments were conducted at temperatures higher than ambient. In this paper we report some of the results obtained at ambient temperature as part of a screening program for developing catalyst systems for co-reacting methane with ethylene to produce higher hydrocarbons.

  5. UK emissions of the greenhouse gas nitrous oxide.

    PubMed

    Skiba, U; Jones, S K; Dragosits, U; Drewer, J; Fowler, D; Rees, R M; Pappa, V A; Cardenas, L; Chadwick, D; Yamulki, S; Manning, A J

    2012-05-05

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N(2)O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N(2)O in many countries and responsible for 75 per cent of UK N(2)O emissions. Microbial N(2)O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling.

  6. UK emissions of the greenhouse gas nitrous oxide

    PubMed Central

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  7. β-NMR measurements of lithium ion transport in thin films of pure and lithium-salt-doped poly(ethylene oxide).

    PubMed

    McKenzie, Iain; Harada, Masashi; Kiefl, Robert F; Levy, C D Philip; MacFarlane, W Andrew; Morris, Gerald D; Ogata, Shin-Ichi; Pearson, Matthew R; Sugiyama, Jun

    2014-06-04

    β-Detected nuclear spin relaxation of (8)Li(+) has been used to study the microscopic diffusion of lithium ions in thin films of poly(ethylene oxide) (PEO), where the implanted lithium ions are present in extremely low concentration, and PEO with 30 wt % LiCF3SO3 over a wide range of temperatures both above and below the glass transition temperature. Recent measurements by Do et al. [Phys. Rev. Lett. 2013, 111, 018301] found that the temperature dependence of the Li(+) conductivity was identical to that of the dielectric α relaxation and was well described by the Vogel-Fulcher-Tammann relation, implying the α relaxation dominates the Li(+) transport process. In contrast, we find the hopping of Li(+) in both samples in the high temperature viscoelastic phase follows an Arrhenius law and depends significantly on the salt content. We propose that the hopping of Li(+) between cages involves motion of the polymer but that it is only for long-range diffusion where the α relaxation plays an important role.

  8. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films.

    PubMed

    Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi

    2014-09-25

    Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.

  9. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  10. Impedance study of the interface between lithium, polyaniline, lithium-doped MnO 2 and modified poly(ethylene oxide) electrolyte

    NASA Astrophysics Data System (ADS)

    Baochen, Wang; Li, Feng; Yongyao, Xia

    1993-03-01

    Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO 2 and modified poly(ethylene oxide) (PEO) electrolyte under various conditions. The interfacial charge-transfer resistance Rct on PEO/PAn, Rct on PEO/LiMn 2O 4 increase with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance Rct on PEO/PAn is higher than Rct on PEO/LiMn 2O 4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn 2O 4 cell. The diffusion coefficients have been calculated from impedance data.

  11. Impedance study of the interfaces between lithium, polyaniline, lithium-doped MnO2 and modified poly(ethylene oxide) electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Baochen; Feng, Li; Xia, Yongyao

    1993-03-01

    Impedance study was carried out for the interfaces between lithium, polyaniline (PAn), lithium-doped MnO2 and modified poly(ethylene oxide) (PEO) electrolyte under various conditions. The interfacial charge-transfer resistances R(sub ct) on PEO/PAn, R(sub ct) on PEO/LiMn2O increas e with depth-of-discharge and decrease after the charge of the cell containing modified PEO as electrolyte. The charge-transfer resistance R(sub ct) on PEO/PAn is higher than R(sub ct) on PEO/LiMn2O4 under the same condition, since inserted species and mechanism are different for both cases. In the case of PAn, an additional charge-transfer resistance might be related to the electronic conductivity change in discharge/charge potential range, as it was evident from a voltammetry curve. With increasing cycle numbers, the charge-transfer resistance increases gradually. The impedance results also have shown that at low frequency the diffusion control is dominant in the process of the charge and discharge of Li/PEO/PAn or Li/PEO/LiMn2O4 cell. The diffusion coefficients have been calculated from impedance data.

  12. Preparation and optimization of superabsorbent hydrogel micromatrices based on poly(acrylic acid), partly sodium salt-g-poly(ethylene oxide) for modified release of indomethacin.

    PubMed

    Yuksel, Nilufer; Beba, Leyla

    2009-06-01

    The purpose of this study was to prepare modified-release dosage of indomethacin (IND) in the form of micromatrices based on a superabsorbent hydrogel (SAH), poly(acrylic acid), partly sodium salt-g-poly(ethylene oxide) (PAAc-Na-g-PEO). A soaking procedure was used for the preparation of drug-loaded hydrogel micromatrices. The amount of IND, volume of drug-loading solution, and amount of PAAc-Na-g-PEO granules used for preparing micromatrices were the independent factors. The dependent factors were the measured responses from micromatrices, that is, percent recovery, percent entrapment efficiency, and the time at which 63.2% of the drug was released (T(d), minutes). A three-factor, three-level full factorial design (33) was created to optimize formulations. Nonlinear regression analysis indicated a good correlation between the measured responses and the independent factors. Optimum responses were obtained from medium levels of IND and SAH and low level of drug-loading solution. Differential scanning calorimetry, X-ray diffraction analysis, and scanning electron micrography indicated that IND crystals are physically adsorbed into the pores and irregular spaces of the hydrogel.

  13. Nanoscale confinement effects on the relaxation dynamics in networks of diglycidyl ether of bisphenol-A and low-molecular-weight poly(ethylene oxide).

    PubMed

    Kalogeras, Ioannis M; Stathopoulos, Andreas; Vassilikou-Dova, Aglaia; Brostow, Witold

    2007-03-22

    Thermoplastic poly(ethylene oxide) (PEO) (Mw(PEO) approximately 4000) has been used to prepare thermosetting nanocomposites incorporating diglycidyl ether of bisphenol A (DGEBA) epoxy oligomer. Blends with various PEO/DGEBA weight ratios were cured using stoichiometric portions of 4,4'-diaminodiphenylmethane. The resulting semi-interpenetrating polymer networks were studied by several techniques. Nanoscale confinement effects, thermal (glass transition, melting and crystallization temperatures) and structural features of our materials are similar to those for networks with much higher Mw(PEO) and different curing agents; however, the polyether crystallization onset occurs in our case at a lower PEO concentration; shorter PEO chains organize themselves more easily into crystalline domains. Very low estimates of the k parameter of the Gordon-Taylor equation, used to fit the compositional dependences of the dielectric and calorimetric glass transition temperatures, and a strong plasticization of the motion of the glyceryl segments (beta-relaxation) in the epoxy resin were observed. These illustrate an intensified weakening in the strength of the intermolecular interactions in the modified networks, as compared to the high strength of the self-association of hydroxyls in the neat resin. The significance of hydrogen-bonding interactions between the components for obtaining structurally homogeneous thermoset-i-thermoplastic networks is discussed.

  14. The preparation and characterization of highly aligned poly(epsilon-caprolactone)/poly ethylene oxide/chitosan ultrafine fiber for the application to tissue scaffold.

    PubMed

    Nien, Yu-Hsun; Wang, Jia-Yi; Tsai, Yan-Sheng

    2013-07-01

    The purpose of this study was to fabricate poly(epsilon-caprolactone) (PCL)/poly ethylene oxid (PEO)/chitosan (CS) ultrafine fiber in both aligned and random structures using electrospinning technique and their process parameters were optimized. The aligned and random PCL/PEO/chitosan ultrafine fibers were also used as scaffold for tissue engineering and their cell affinity was investigated. In the first part, we inspected the effect of environment conditions, solution properties, process parameters on PCL/PEO/chitosan ultrafine fiber. In the second part, the apparatus of electrospinning to manufacture highly aligned PCL/PEO/chitosan ultrafine fiber was developed. The effects of process parameters such as flow rate, design of collector and rotation speed of collecting drum on the morphology of ultrafine fiber were discussed. In addition, the cross link of PCL/PEO/chitosan ultrafine fiber by cross-linking agent was examined, too. The physical properties, chemical properties, and cell affinities of the aligned PCL/PEO/chitosan ultrafine fiber with or without cross link were measured. The chemical analysis and tensile strength of the ultrafine fiber were characterized using Fourier Transfer Infared Spectrophotometer and Universal Tensile Machine, respectively. The results show that the aligned PCL/PEO/chitosan ultrafine fibrous mat had the capacity to induce cellular alignment and enhance cellular elongation.

  15. Preparation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol microspheres for highly efficient sorption of uranium(VI).

    PubMed

    Tan, Lichao; Zhang, Xiaofei; Liu, Qi; Wang, Jun; Sun, Yanbo; Jing, Xiaoyan; Liu, Jingyuan; Song, Dalei; Liu, Lianhe

    2015-04-21

    We report a facile approach for the formation of magnetic core-shell iron oxide@silica@nickel-ethylene glycol (Fe3O4@SiO2@Ni-L) microspheres. The structure and morphology of Fe3O4@SiO2@Ni-L are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen sorption isotherm. The composite possesses a high specific surface area of 382 m(2) g(-1). The obtained core/shell structure is composed of a superparamagnetic core with a strong response to external fields, which are recovered readily from aqueous solutions by magnetic separation. When used as the adsorbent for uranium(vi) in water, the as-prepared Fe3O4@SiO2@Ni-L multi-structural microspheres exhibit a high adsorption capacity, which is mainly attributed to the large specific surface area and typical mesoporous characteristics of Fe3O4@SiO2@Ni-L microspheres. This work provides a promising approach for the design and synthesis of multifunctional microspheres, which can be used for water treatment, as well as having other potential applications in a variety of biomedical fields including drug delivery and biosensors.

  16. Quantitative control of poly(ethylene oxide) surface antifouling and biodetection through azimuthally enhanced grating coupled-surface plasmon resonance sensing

    NASA Astrophysics Data System (ADS)

    Sonato, Agnese; Silvestri, Davide; Ruffato, Gianluca; Zacco, Gabriele; Romanato, Filippo; Morpurgo, Margherita

    2013-12-01

    Grating Coupled-Surface Plasmon reflectivity measurements carried out under azimuth and polarization control (GC-SPR φ ≠ 0°) were used to optimize the process of gold surface dressing with poly(ethylene oxide) (PEO) derivatives of different molecular weight, with the final goal to maximize the discrimination between specific and non-specific binding events occurring at the surface. The kinetics of surface deposition of thiol-ending PEOs (0.3, 2 and 5 kDa), introduced as antifouling layers, was monitored. Non-specific binding events upon immersion of the surfaces into buffers containing either 0.1% bovine serum albumin or 1% Goat Serum, were evaluated as a function of polymer size and density. A biorecognition event between avidin and biotin was then monitored in both buffers at selected low and high polymer surface densities and the contribution of analyte and fouling elements to the signal was precisely quantified. The 0.3 kDa PEO film was unable to protect the surface from non-specific interactions at any tested density. On the other hand, the 2 and 5 kDa polymers at their highest surface densities guaranteed full protection from non-specific interactions from both buffers. These densities were reached upon a long deposition time (24-30 h). The results pave the way toward the application of this platform for the detection of low concentration and small dimension analytes, for which both non-fouling and high instrumental sensitivity are fundamental requirements.

  17. β - NMR Measurements of Lithium Ion Transport in Thin Films of Pure and Lithium-Salt-Doped Poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Harada, Masashi; Cortie, David L.; Kiefl, Robert F.; Levy, C. D. Philip; Macfarlane, W. Andrew; McFadden, Ryan M. L.; Morris, Gerald D.; Ogata, Shin-Ichi; Pearson, Matthew R.; Sugiyama, Jun

    2015-03-01

    β - Detected nuclear spin relaxation of 8Li+ has been used to study the microscopic diffusion of lithium ions in thin films of poly(ethylene oxide) (PEO), PEO with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), PEO with lithium triflate (LiTf) and PEO with lithium trifluoroacetic acid (LiTFA) with monomer-to-salt ratios of 8.3:1. Hopping of Li + above ~ 250 K follows an Arrhenius law in all of the films. Diffusion of Li+ is fastest in pure PEO and decreases in order LiTFSI >LiTf >LiTFA. We observed the activation energy for hopping (EA) and the intrinsic hop rate (τ0-1) both increasing in order LiTFA

  18. Chemical modification of wheat protein-based natural polymers: grafting and cross-linking reactions with poly(ethylene oxide) diglycidyl ether and ethyl diamine.

    PubMed

    Kurniawan, Lusiana; Qiao, Greg G; Zhang, Xiaoqing

    2007-09-01

    Mobile poly(ethylene oxide) diglycidyl ether (PEODGE) segments were chemically grafted onto a soluble wheat protein (WP), and different network structures were formed via coupling reactions with ethyl diamine (EDA) in different PEODGE/EDA (PE) ratios. When the PE ratio was 1:1, linear PEs were the predominant segments grafted onto WP chains and the whole WP-PEODGE-EDA (WPE) system was still soluble with an increased molecular weight. Reducing the amount of EDA in the systems produced insoluble cross-linked WPE networks. The broad distribution of network structures and chain mobility resulted in a broad glass transition for the WPE materials. However, the glass transition started at lower temperatures, and the materials became flexible at room temperature. The PE segments were present in all rigid, intermediate, and mobile phases in WPE networks, while the proportion of mobile WP chains was increased as a result of the plasticization effect from the mobile PE segments. The mobility of the most mobile component lipid was also restricted to some extent when forming the cross-linked WPE networks. The study demonstrated that the formation of different network structures with PE segments could significantly improve the flexibility of WP materials, vary the solubility, and modify the mechanical performance of WP-based natural polymer materials.

  19. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization - a mass spectrometry, ion mobility and molecular modeling study.

    PubMed

    Tintaru, Aura; Chendo, Christophe; Wang, Qi; Viel, Stéphane; Quéléver, Gilles; Peng, Ling; Posocco, Paola; Pricl, Sabrina; Charles, Laurence

    2014-01-15

    Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H(+)vs Li(+)). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li(+) cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (Mn=1500gmol(-1)), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton.

  20. Conformational and Dynamic Properties of Poly(ethylene oxide) in an Ionic Liquid: Development and Implementation of a First-Principles Force Field.

    PubMed

    McDaniel, Jesse G; Choi, Eunsong; Son, Chang-Yun; Schmidt, J R; Yethiraj, Arun

    2016-01-14

    The conformational properties of polymers in ionic liquids are of fundamental interest but not well understood. Atomistic and coarse-grained molecular models predict qualitatively different results for the scaling of chain size with molecular weight, and experiments on dilute solutions are not available. In this work, we develop a first-principles force field for poly(ethylene oxide) (PEO) in the ionic liquid 1-butyl 3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) using symmetry adapted perturbation theory (SAPT). At temperatures above 400 K, simulations employing both the SAPT and OPLS-AA force fields predict that PEO displays ideal chain behavior, in contrast to previous simulations at lower temperature. We therefore argue that the system shows a transition from extended to more compact configurations as the temperature is increased from room temperature to the experimental lower critical solution temperature. Although polarization is shown to be important, its implicit inclusion in the OPLS-AA force is sufficient to describe the structure and energetics of the mixture. The simulations emphasize the difference between ionic liquids from typical solvents for polymers.