21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59 moles...
Thier, R; Wiebel, F A; Bolt, H M
1999-11-01
The transformation of ethylene oxide (EO), propylene oxide (PO) and 1-butylene oxide (1-BuO) by human glutathione transferase theta (hGSTT1-1) was studied comparatively using 'conjugator' (GSTT1 + individuals) erythrocyte lysates. The relative sequence of velocity of enzymic transformation was PO > EO > 1-BuO. The faster transformation of PO compared to EO was corroborated in studies with human and rat GSTT1-1 (hGSTT1-1 and rGSTT1-1, respectively) expressed by Salmonella typhimurium TA1535. This sequence of reactivities of homologous epoxides towards GSTT1-1 contrasts to the sequence observed in homologous alkyl halides (methyl bromide, MBr; ethyl bromide, EtBr; n-propyl bromide, PrBr) where the relative sequence MeBr > EtBr > PrBr is observed. The higher reactivity towards GSTT1-1 of propylene oxide compared to ethylene oxide is consistent with a higher chemical reactivity. This is corroborated by experimental data of acid-catalysed hydrolysis of a number of aliphatic epoxides, including ethylene oxide and propylene oxide and consistent with semi-empirical molecular orbital modelings.
Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka
2014-01-22
Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.
Ball, N A
1984-09-01
A gas chromatographic (GC) method was developed for the determination of ethylene oxide and its two reaction products, ethylene chlorohydrin and ethylene glycol, in aqueous ophthalmic solutions. Propylene oxide was used as an internal standard. All three components were determined in one isothermal chromatographic analysis in less than 15 min. An extraction method for the determination of ethylene oxide residues in plastic components was also developed, and certain plastics with different ethylene oxide retention characteristics were identified.
Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou
2006-11-23
The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.
75 FR 59617 - Notification of Arrival in U.S. Ports; Certain Dangerous Cargoes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... only included residue quantities of bulk ammonium nitrate or ammonium nitrate fertilizer that remained... ammonium nitrate and propylene oxide cargoes transported on U.S. waters. After consultation with CTAC and...) Propylene oxide, alone or mixed with ethylene oxide. (9) The following bulk solids: (i) Ammonium nitrate...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) ✔ Epichlorohydrin (106898) ✔ Ethylbenzene (100414) ✔ ✔ Ethylene Dichloride (107062) ✔ Ethylene Oxide (75218... Rubber. EPI = Epichlorohydrin Rubber. EPR = Ethylene Propylene Rubber. HBR = Halobutyl Rubber. HYP...
Growth of plants fumigated with saturated and unsaturated hydrocarbon gases and their derivatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heck, W.W.; Pires, E.G.
1962-01-01
Fourteen gases were investigated for their toxicity to plant growth and development. Five of these gases (acetylene, ethylene, ethylene oxide, propylene and vinyl chloride) produced pronounced effects on the five plant species studied. The plants were fumigated at 10, 100 and 1000 ppm by each of the test gases, using a set of 10 small fumigation chambers. The effects of the five gases on squash, cotton, corn, soybean and cowpea were carefully catalogued. Both quantitative and qualitative growth data were obtained. Plant height, leaf size, flower bud number, cotyledon injury and an injury index are useful criteria for analysis ofmore » gas effects. Cowpea is the most sensitive of the plants studied, followed by cotton, squash, soybean and corn. The injurious effects of ethylene were the greatest, followed by acetylene, propylene, ethylene oxide and vinyl chloride. It is suggested that ethylene oxide acts as a true toxicant while the other four gases may be considered as physiologically active gases.« less
21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... solution. (3) α-Hydro-omega-hydroxy-poly(ox-yethylene)/poly(oxypropylene) (minimum 15 moles)/poly... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Copolymer condensates of ethylene oxide and... prescribed conditions: (a) The additive consists of one of the following: (1) α-Hydro-omega-hydroxy-poly...
24 CFR Appendix I to Subpart C of... - Specific Hazardous Substances
Code of Federal Regulations, 2010 CFR
2010-04-01
... Ketone Naptha Pentane Propylene Oxide Toluene Vinyl Acetate Xylene Hazardous Gases Acetaldehyde Butadiene Butane Ethene Ethylene Ethylene Oxide Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (LPG... Commercial/Industrial Facilities,” by Rolf Jensen and Associates, Inc., April 1982) [49 FR 5105, Feb. 10...
21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... cloud point of 9 °C-12 °C in 10 percent aqueous solution. (3) α-Hydro-omega-hydroxy-poly(ox-yethylene... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Copolymer condensates of ethylene oxide and... following: (1) α-Hydro-omega-hydroxy-poly (oxyethylene) poly(oxypropylene)-(55-61 moles)poly(oxyethylene...
21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... cloud point of 9 °C-12 °C in 10 percent aqueous solution. (3) α-Hydro-omega-hydroxy-poly(ox-yethylene... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Copolymer condensates of ethylene oxide and... following: (1) α-Hydro-omega-hydroxy-poly (oxyethylene) poly(oxypropylene)-(55-61 moles)poly(oxyethylene...
21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... cloud point of 9 °C-12 °C in 10 percent aqueous solution. (3) α-Hydro-omega-hydroxy-poly(ox-yethylene... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Copolymer condensates of ethylene oxide and... following: (1) α-Hydro-omega-hydroxy-poly (oxyethylene) poly(oxypropylene)-(55-61 moles)poly(oxyethylene...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Chlorine T Dimethylamine F+T Ethane F Ethyl chloride F+T Ethylene F Ethylene oxide F+T Methyl-acetylene and propadiene (mixtures) F Methyl bromide F+T Methyl chloride F+T Propane F Propylene F Sulphur dioxide T Vinyl...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Chlorine T Dimethylamine F+T Ethane F Ethyl chloride F+T Ethylene F Ethylene oxide F+T Methyl-acetylene and propadiene (mixtures) F Methyl bromide F+T Methyl chloride F+T Propane F Propylene F Sulphur dioxide T Vinyl...
Injectible bodily prosthetics employing methacrylic copolymer gels
Mallapragada, Surya K.; Anderson, Brian C.
2007-02-27
The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.
pH-sensitive methacrylic copolymer gels and the production thereof
Mallapragada, Surya K [Ames, IA; Anderson, Brian C [Lake Bluff, IA
2007-05-15
The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.
Ensign, S A
1996-01-01
The inducible nature of the alkene oxidation system of Xanthobacter strain Py2 has been investigated. Cultures grown with glucose as the carbon source did not contain detectable levels of alkene monooxygenase or epoxidase, two key enzymes of alkene and epoxide metabolism. Upon addition of propylene to glucose-grown cultures, alkene monooxygenase and epoxidase activities increased and after an 11-h induction period reached levels of specific activity comparable to those in propylene-grown cells. Addition of chloramphenicol or rifampin prevented the increase in the enzyme activities. Comparison of the banding patterns of proteins present in cell extracts revealed that polypeptides with molecular masses of 43, 53, and 57 kDa accumulate in propylene-grown but not glucose-grown cells. Pulse-labeling of glucose-grown cells with [35S]methionine and [35S]cysteine revealed that the 43-, 53-, and 57-kDa proteins, as well as two additional polypeptides with molecular masses of 12 and 21 kDa, were newly synthesized upon exposure of cells to propylene or propylene oxide. The addition to glucose-grown cells of a variety of other aliphatic and chlorinated alkenes and epoxides, including ethylene, vinyl chloride (1-chloroethylene), cis- and trans-1,2-dichloroethylene, 1-chloropropylene, 1,3-dichloropropylene, 1-butylene, trans-2-butylene, isobutylene, ethylene oxide, epichlorohydrin (3-chloro-1,2-epoxypropane), 1,2-epoxybutane, cis- and trans-2,3-epoxybutane, and isobutylene oxide stimulated the synthesis of the five propylene-inducible polypeptides as well as increases in alkene monooxygenase and epoxidase activities. In contrast, acetylene, and a range of aliphatic and chlorinated alkanes, did not stimulate the synthesis of the propylene-inducible polypeptides or the increase in alkene monooxygenase and epoxidase activities. PMID:8572713
Ensign, S A; Hyman, M R; Arp, D J
1992-01-01
Propylene-grown Xanthobacter cells (strain Py2) degraded several chlorinated alkenes of environmental concern, including trichloroethylene, 1-chloroethylene (vinyl chloride), cis- and trans-1,2-dichloroethylene, 1,3-dichloropropylene, and 2,3-dichloropropylene. 1,1-Dichloroethylene was not degraded efficiently, while tetrachloroethylene was not degraded. The role of alkene monooxygenase in catalyzing chlorinated alkene degradations was established by demonstrating that glucose-grown cells which lack alkene monooxygenase and propylene-grown cells in which alkene monooxygenase was selectively inactivated by propyne were unable to degrade the compounds. C2 and C3 chlorinated alkanes were not oxidized by alkene monooxygenase, but a number of these compounds were inhibitors of propylene and ethylene oxidation, suggesting that they compete for binding to the enzyme. A number of metabolites enhanced the rate of degradation of chlorinated alkenes, including propylene oxide, propionaldehyde, and glucose. Propylene stimulated chlorinated alkene oxidation slightly when present at a low concentration but became inhibitory at higher concentrations. Toxic effects associated with chlorinated alkene oxidations were determined by measuring the propylene oxidation and propylene oxide-dependent O2 uptake rates of cells previously incubated with chlorinated alkenes. Compounds which were substrates for alkene monooxygenase exhibited various levels of toxicity, with 1,1-dichloroethylene and trichloroethylene being the most potent inactivators of propylene oxidation and 1,3- and 2,3-dichloropropylene being the most potent inactivators of propylene oxide-dependent O2 uptake. No toxic effects were seen when cells were incubated with chlorinated alkenes anaerobically, indicating that the product(s) of chlorinated alkene oxidation mediates toxicity. PMID:1444418
NASA Astrophysics Data System (ADS)
Wood, I.; Martini, M. F.; Albano, J. M. R.; Cuestas, M. L.; Mathet, V. L.; Pickholz, M.
2016-04-01
The aim of this work is to understand the interactions of the poloxamer Pluronic F127, with lipid bilayers and its ability to self-associate in an aqueous environment. Molecular dynamics simulations at the coarse-grain scale were performed to address the behavior of single Pluronic F127 and shorter poloxamers unimers in palmitoyl-oleoyl-phosphatidyl-choline model membranes. According to the initial conditions and the poly-ethylene oxide/poly-propylene oxide composition, in water phase the unimer chain collapses into a coil conformation or adopts an interphacial U-shaped - or membrane spanning - distribution. A combination of poly-propylene oxide length, and the poly-ethylene oxide ability to cover poly-propylene oxide, is determinant for the conformation adopted by the unimer in each phase. Results of the simulations showed molecular evidence of strong interaction between Pluronic F127 and model membranes both in stable U-shaped and span conformations. The knowledge of this interaction could contribute to improve drug permeation. Additionally, we investigated the aggregation of one hundred Pluronic F127 unimers in water forming a micelle-like structure, suitable to be used as drug delivery system models.
NASA Astrophysics Data System (ADS)
Rivaton, A.; Cambon, S.; Gardette, J.-L.
2005-01-01
This paper is devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing under oxygen atmosphere of ethylene-propylene-diene monomer (EPDM) and ethylene-propylene rubber (EPR) films containing the same molar ratio of ethylene/propylene. IR and UV-Vis analysis showed that radiooxidation produces a complex mixture of different products and provokes the consumption of the diene double bond. The radiochemical yields of formation of ketones, carboxylic acids, hydroperoxides and alcohols were determined by combining IR analysis with derivatisation reactions and chemical titration. The contributions of secondary and tertiary structures of these two types of -OH groups were separated. Esters and γ-lactones were formed in low concentration. The oxidation products distribution in irradiated films was determined by micro-FTIR spectroscopy. Crosslinking was evaluated by gel fraction methods. In complement, the gas phase composition was analysed by mass spectrometry.
40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants
Code of Federal Regulations, 2011 CFR
2011-07-01
... Hexachloroethane 71432 Benzene (including benzene from gasoline) 75014 Vinyl chloride 75070 Acetaldehyde 75092 Methylene chloride (Dichloromethane) 75218 Ethylene oxide 75558 1,2-Propylenimine (2-Methyl aziridine) 75569 Propylene oxide 77781 Dimethyl sulfate 79061 Acrylamide 79447 Dimethyl carbamoyl chloride 79469 2...
Dielectric Properties of Generation 3 Pamam Dendrimer Nanocomposites
NASA Astrophysics Data System (ADS)
Ristić, Sanja; Mijović, Jovan
2008-08-01
Broadband dielectric relaxation spectroscopy (DRS) was employed to study molecular dynamics of blends composed of generation 3 poly(amidoamine) (PAMAM) dendrimers with ethylenediamine core and amino surface groups and four linear polymers: poly(propylene oxide)—PPO, two block copolymers, poly(propylene oxide)/poly(ethylene oxide)—PPO/PEO with different mol ratios (29/6 and 10/31) and poly(ethylene oxide)—PEO. The results were generated over a broad range of frequency. Dielectric spectra of dendrimers in PPO matrix reveal slight shift of normal and segmental processes to higher frequency with increasing concentration of dendrimers. In the 29PPO/6PEO matrix, no effect of concentration on the average relaxation time for normal and segmental processes was observed. In the 10PPO/31PEO matrix the relaxation time of the segmental process increases with increasing dendrimer concentration, while in the PEO matrix, local processes in dendrimers slow down. A detailed analysis of the effect of concentration of dendrimers and morphology of polymer matrix on the dielectric properties of dendrimer nanocomposites will be presented.
2008-02-07
22 nm) were prepared by reducing a Au salt, and encapsulating the Au nanoparticles formed in a polymer33 . A variety of high area oxides (TiO 2, ZnO ...Morphologies Utilizing a Combinatorial Electrochemistry Methodology. Ph. D. dissertation, Chemical Engineering, University of California, Santa Barbara (2004
Stolnik, S; Heald, C R; Garnett, M G; Illum, L; Davis, S S
2005-01-01
The adsorption behaviour of a tetrafunctional copolymer of poly (ethylene oxide)-poly (propylene oxide) ethylene diamine (commercially available as Poloxamine 908) and a diblock copolymer of poly (lactic acid)-poly (ethylene oxide) (PLA/PEG 2:5) onto a model colloidal drug carrier (156 nm sized polystyrene latex) is described. The adsorption isotherm, hydrodynamic thickness of the adsorbed layers and enthalpy of the adsorption were assessed. The close similarity in the conformation of the poly (ethylene oxide) (PEO) chains (molecular weight 5,000 Da) in the adsorbed layers of these two copolymers was demonstrated by combining the adsorption data with the adsorbed layer thickness data. In contrast, the results from isothermal titration microcalorimetry indicated a distinct difference in the interaction of the copolymers with the polystyrene colloid surface. Poloxamine 908 adsorption to polystyrene nanoparticles is dominated by an endothermic heat effect, whereas, PLA/PEG 2:5 adsorption is entirely an exothermic process. This difference in adsorption behaviour could provide an explanation for differences in the biodistribution of Poloxamine 908 and PLA/PEG 2:5 coated polystyrene nanoparticles observed in previous studies. A comparison with the interaction enthalpy for several other PEO-containing copolymers onto the same polystyrene colloid was made. The results demonstrate the importance of the nature of the anchoring moiety on the interaction of the adsorbing copolymer with the colloid surface. An endothermic contribution is found when an adsorbing molecule contains a poly (propylene oxide) (PPO) moiety (e.g. Poloxamine 908), whilst the adsorption is exothermic (i.e. enthalpy driven) for PEO copolymers with polylactide (PLA/PEG 2:5) or alkyl moieties.
Topchieva, I N; Sorokina, E M; Kurganov, B I; Zhulin, V M; Makarova, Z G
1996-06-01
A new method of formation of non-covalent adducts based on an amphiphilic diblock copolymer of ethylene and propylene oxides with molecular mass of 2 kDa and alpha-chymotrypsin (ChT) under high pressure, has been developed. The composition of the complexes corresponds to seven polymer molecules per one ChT molecule in the pressure range of 1.1 to 400 MPa. The complexes fully retain the catalytic activity. Kinetic constants (Km and kcat) for enzymatic hydrolysis of N-benzoyl-L-tyrosine ethyl ester catalyzed by the complexes are identical with the corresponding values for native ChT. Analysis of kinetics of thermal inactivation of the complexes revealed that the constant of the rate of the slow inactivation step is markedly lower than for ChT.
75 FR 5553 - Federal Motor Vehicle Safety Standards; Motor Vehicle Brake Fluids
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... Vehicle Brake Fluids, so that brake fluids would be tested with ethylene, propylene, and diene terpolymer.... SUPPLEMENTARY INFORMATION: Table of Contents I. Background II. Testing With Ethylene, Propylene, and Diene... test procedures and devices. II. Testing With Ethylene, Propylene, and Diene Terpolymer Rubber This...
A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography.
Ehlers, Alexandra; Morris, Cory; Krasowski, Matthew D
2013-12-01
A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard. The method employed a single-step derivitization using phenylboronic acid, was linear to 200 mg/dL and had a lower limit of quantitation of 1 mg/dL suitable for clinical analyses. The analytical method described allows for laboratories with HS-GC instrumentation to analyze ethanol, methanol, isopropanol, ethylene glycol, and propylene glycol on a single instrument with rapid switch-over from alcohols to glycols analysis. In addition to the novel HS-GC method, a retrospective analysis of patient specimens containing ethylene glycol and propylene glycol was also described. A total of 36 patients ingested ethylene glycol, including 3 patients who presented with two separate admissions for ethylene glycol toxicity. Laboratory studies on presentation to hospital for these patients showed both osmolal and anion gap in 13 patients, osmolal but not anion gap in 13 patients, anion but not osmolal gap in 8 patients, and 1 patient with neither an osmolal nor anion gap. Acidosis on arterial blood gas was present in 13 cases. Only one fatality was seen; this was a patient with initial serum ethylene glycol concentration of 1282 mg/dL who died on third day of hospitalization. Propylene glycol was common in patients being managed for toxic ingestions, and was often attributed to iatrogenic administration of propylene glycol-containing medications such as activated charcoal and intravenous lorazepam. In six patients, propylene glycol contributed to an abnormally high osmolal gap. The common presence of propylene glycol in hospitalized patients emphasizes the importance of being able to identify both ethylene glycol and propylene glycol by chromatographic methods.
Surfactant seed coating - a strategy to improve turfgrass establishment on water repellent soils
USDA-ARS?s Scientific Manuscript database
Turfgrass managers can experience poor seeding success when trying to establish golf course greens and sports fields on water repellent soils. Nonionic soil surfactant formulations based on ethylene oxide-propylene oxide (EO/PO) block copolymers are commonly used to treat water repellent soils. Rece...
USDA-ARS?s Scientific Manuscript database
Turfgrass managers can experience poor seeding success when trying to establish golf course greens and sports fields in water repellent soils. Nonionic soil surfactant formulations are commonly used to treat water repellent soils and subsequently increase water reserves for seed germination and plan...
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D
2010-05-28
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.
NASA Astrophysics Data System (ADS)
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M.; Graham, Matthew J.; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z. D.
2010-05-01
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with β-cyclodextrin (β-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state C13 NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the β-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in C13 solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after β-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of β-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that β-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using H1 NMR, and a 3:1 (PO unit to β-CD) was found for all inclusion complexes, which indicated that the number of threaded β-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the β-CD in the inclusion complex formed a channel-like structure that is different from the pure β-CD crystal structure.
Ethylene-Propylene Terpolymer Rubber Processing by Electron Beam Irradiation
NASA Astrophysics Data System (ADS)
Manaila, Elena N.; Zuga, Maria Daniela T.; Martin, Diana I.; Craciun, Gabriela D.; Ighigeanu, Daniel I.; Matei, Constantin I.
2007-04-01
The investigations on the cross-linking by accelerated electrons of 6.23 MeV in lowly unsaturated elastomers of EPDM (ethylene-propylene terpolymer rubber) type are presented. Two rubber blends based EPDM were prepared and irradiated at different doses up to 250kGy: blend A - based on EPDM maleinized with polyethylene, zinc oxide, plasticizers, filler, and blend B - based on EPDM / PE (50 % EPDM and 50% polyethylene). Blends were prepared on a laboratory electrically heated rubber mill at temperatures of 150-160°C to enable the polyethylene (PE) melting to be reached. Plates of 150 × 150 × 2 mm were obtained in a laboratory electrical press at 170°C.
Evaluation of some antioxidants in radiation vulcanized ethylene-propylene diene (EPDM) rubber
NASA Astrophysics Data System (ADS)
Abdel-Aziz, M. M.; Basfar, A. A.
2001-12-01
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been used to study the oxidation of γ-ray vulcanized ethylene-propylene diene rubber (EPDM) stabilized with various types of antioxidants. The antioxidants used were pentaerythrityl tetrakis(3,5-di-tert-butyl(-4-hydroxyphenyl))propionate (Irganox 1010), Irganox 1035, Irganox 1520D, as primary antioxidants; Irganox B561 and Irganox B900, as synergistic blends; hindered amine light stabilizer (HALS), i.e. Tinuvin 622 LD; N-isopropyl- N-phenyl- p-phenylene diamine (IPPD) and trimethyl quinoline (TMQ) and their mixtures. The measurements were carried out under atmospheric conditions. The effects of antioxidant type and its selected concentration were determined and mechanism of reaction proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Rajput, A.M.
1997-06-01
Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas at 700--850 C in the presence of steam and limited oxygen yields ethylene and propylene with appreciable conversion and high selectivity but with almost no coke or tarlike product formation. In this process, the exothermic oxidative hydrocarbon conversion reactions are coupled directly with the endothermic cracking of C{sub 2+}-hydrocarbons by their simultaneous occurrence. Hence, the process operates in a most energy-efficient and safe (or nonhazardous) manner and also can be made almost thermoneutral or mildly endothermic/exothermic, thus requiring little or no external energy for the hydrocarbon conversion reactions.
Zhao, Fang; Xie, Dinghai; Zhang, Guangzhao; Pispas, Stergios
2008-05-22
Poly(isoprene)-block-poly(ethylene oxide) (PI-b-PEO) diblock copolymers form micelles in water. The introduction of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) triblock copolymer leads to the formation of mixed micelles through hydrophobic interaction. The dimension of the mixed micelles varies with the weight ratio (r) of PEO-b-PPO-b-PEO to PI-b-PEO. By use of laser light scattering, we have investigated the temperature dependence of the structural evolution of the micelles at different r. At r<10, the size of the mixed micelles decreases with temperature. At r>10, due to the excessive PEO-b-PPO-b-PEO chains in solution, as temperature increases, the mixed micelles aggregate into larger micelle clusters.
Propylene glycol intoxication in a dog.
Claus, Melissa A; Jandrey, Karl E; Poppenga, Robert H
2011-12-01
To describe the clinical course, treatment, and outcome of a dog with propylene glycol intoxication. An adult castrated male Australian cattle dog presented to an emergency clinic for an acute onset of ataxia and disorientation after roaming a construction site unsupervised. He tested positive for ethylene glycol using a point-of-care test kit. Treatment for ethylene glycol intoxication included intermittent intravenous boluses of 20% ethanol and hemodialysis. Predialysis and postdialysis blood samples were submitted to the toxicology lab to assess for both ethylene and propylene glycol. The patient tested negative for ethylene glycol and positive for propylene glycol at 1100 mg/dL predialysis and 23 mg/dL postdialysis. The dog made a full recovery. To the authors' knowledge, this is the first report of documented propylene glycol intoxication in a dog, as well as the first report to describe hemodialysis as treatment for propylene glycol intoxication in a dog. © Veterinary Emergency and Critical Care Society 2011.
Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho
2017-10-04
We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.
Development of a Cold Sterilant for Field Medical Use.
1996-11-01
Dental Devices Using STERIS 20C at Use Dilution and Manual Soak Technique .............. 1086 Akron Rubber Development Laboratory Report 32918...simulated reuse protocol with lot P-2 of 25 months of age , a number of positives (i.e. sterilization failures) were noted, in particular for the...Ethylene propylene ELASTOMERS Brass Ethylene propylene diene Ethylene propylene diene ( EPDM ) ( EPDM ) Brass 360 Polyamide RTV 133 Nickel-plated Cooper
Jeong, Keuk Min; Hong, Yeo Joo; Saha, Prosenjit; Park, Seong Ho; Kim, Jin Kuk
2014-11-01
In this study, a composite has been prepared by mixing waste rubber, such as ethylene-propylene-diene-monomer and low-density poly ethylene foaming, with supercritical carbon dioxide. In order to optimise the foaming process of the waste ethylene-propylene-diene-monomer-low-density poly ethylene composite, the variations of pressure and temperature on the foamed Microcell formation were studied. As indicated in scanning electron microscope photographs, the most uniform microcellular pattern was found at 200 bar and 100 °C using 30% by weight of waste ethylene-propylene-diene-monomer. Carbon dioxide could not be dissolved uniformly during foaming owing to extensive cross-linking of the waste ethylene-propylene-diene-monomer used for the composite. As a result the presence of un-uniform microcells after foaming were observed in the composite matrix to impart inferior mechanical properties of the composite. This problem was solved with uniform foaming by increasing the cross-link density of low-density poly ethylene using 1.5 parts per hundred dicumyl peroxide that enhances composite tensile and compressive strength up to 57% and 15%, respectively. The composite has the potential to be used as a foaming mat for artificial turf. © The Author(s) 2014.
Kim, Mihee; Vala, Milan; Ertsgaard, Christopher T; Oh, Sang-Hyun; Lodge, Timothy P; Bates, Frank S; Hackel, Benjamin J
2018-06-12
Poloxamer 188 (P188), a poly(ethylene oxide)- b-poly(propylene oxide)- b-poly(ethylene oxide) triblock copolymer, protects cell membranes against various external stresses, whereas poly(ethylene oxide) (PEO; 8600 g/mol) homopolymer lacks protection efficacy. As part of a comprehensive effort to elucidate the protection mechanism, we used surface plasmon resonance (SPR) to obtain direct evidence of binding of the polymers onto supported lipid bilayers. Binding kinetics and coverage of P188 and PEO were examined and compared. Most notably, PEO exhibited membrane association comparable to that of P188, evidenced by comparable association rate constants and coverage. This result highlights the need for additional mechanistic understanding beyond simple membrane association to explain the differential efficacy of P188 in therapeutic applications.
Mixed solvent electrolytes for ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Deligiannis, Fotios (Inventor); Halpert, Gerald (Inventor)
1991-01-01
The present invention comprises an improved electrolyte for secondary lithium-based cells as well as batteries fabricated using this electrolyte. The electrolyte is a lithium containing salt dissolved in a non-aqueous solvent, which is made from a mixture of ethylene carbonate, ethylene propylene diene terpolymer, 2-methylfuran, and 2-methyltetrahydrofuran. This improved, mixed solvent electrolyte is more conductive than prior electrolytes and much less corrosive to lithium anodes. Batteries constructed with this improved electrolyte utilize lithium or lithium alloy anodes and cathodes made of metal chalcogenides or oxides, such as TiS.sub.2, NbSe.sub.3, V.sub.6 O.sub.13, V.sub.2 O.sub.5, MoS.sub.2, MoS.sub.3, CoO.sub.2, or CrO.sub.2, dissolved in a supporting polymer matrix, like EPDM. The preferred non-aqueous solvent mixture comprises approximately 5 to 30 volume percent ethylene carbonate, approximately 0.01 to 0.1 weight percent ethylene propylene diene terpolymer, and approximately 0.2 to 2 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The most preferred solvent comprises approximately 10 to 20 volume percent ethylene carbonate, about 0.05 weight percent ethylene propylene diene terpolymer, and about 1.0 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The concentration of lithium arsenic hexafluoride can range from about 1.0 to 1.8 M; a concentration 1.5 M is most preferred. Secondary batteries made with the improved electrolyte of this invention have lower internal impedance, longer cycle life, higher energy density, low self-discharge, and longer shelf life.
Radiochemical ageing of EPDM elastomers. 3. Mechanism of radiooxidation
NASA Astrophysics Data System (ADS)
Rivaton, A.; Cambon, S.; Gardette, J.-L.
2005-01-01
The preceding paper of this series was devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing of EPDM (77.9% ethylene, 21.4% propylene, 0.7% diene) and EPR (76.6% ethylene, 23.4% propylene) films irradiated under oxygen atmosphere using 60Co gamma rays. The double bond of the diene was observed to be consumed with a high radiochemical yield. The oxidation and reticulation rates were observed to be higher in the case of EPDM than in EPR. Accumulation of the major oxidation products in both polymers was shown to occur in the order of decreasing concentrations: hydroperoxides, ketones, carboxylic acids and alcohols, peroxides. On the basis of the analysis of the oxidation products formed in EPDM and EPR, and taking into account their relative concentrations, the mechanisms accounting for the EPDM γ-degradation under oxygen atmosphere are proposed in the present paper. Two main processes are involved in the EPDM radiooxidation. The random γ-radiolysis of the polymer provides a constant source of macroalkyl radicals mainly formed on ethylene units. The secondary radicals so formed are likely to initiate a selective oxidation of the polymer through free-radicals reactions involving the abstraction of labile hydrogen atoms. In particular, the hydroperoxides decomposition and the consumption of the ENB moieties, this latter being the most oxidisable site and the source of crosslinking, may result from hydrogen abstraction by radical species.
Schupp, Thomas; Austin, Tom; Eadsforth, Charles V; Bossuyt, Bart; Shen, Summer M; West, Robert J
"Polyalkylene glycol" is the name given to a broad class of synthetic organic chemicals which are produced by polymerization of one or more alkylene oxide (epoxide) monomers, such as ethylene oxide (EO) and propylene oxide (PO), with various initiator substances which possess amine or alcohol groups. A generalization of this polymerization reaction is illustrated in Fig. 1.
Zhu, Jiping; Feng, Yong-Lai; Aikawa, Bio
2004-11-01
An analytical method for ethylene glycol and propylene glycols has been developed for measuring airborne levels of these chemicals in non-occupational environments such as residences and office buildings. The analytes were collected on charcoal tubes, solvent extracted, and analyzed by gas chromatography-mass spectrometry using a positive chemical ionization technique. The method had a method detection limit of 0.07 microg m(-3) for ethylene glycol and 0.03 microg m(-3) for 1,2- and 1,3-propylene glycols, respectively, based on a 1.44 m3 sampling volume. Indoor air samples of several residential homes and other indoor environments have been analyzed. The median concentrations of ethylene glycol and 1,2-propylene glycol in nine residential indoor air samples were 53 microg m(-3) and 13 microg m(-3) respectively with maximum values of 223 microg m(-3) and 25 microg m(-3) detected for ethylene glycol and 1,2-propylene glycol respectively. The concentrations of these two chemicals in one office and two laboratories were at low microg m(-3) levels. The maximum concentration of 1,3-propylene glycol detected in indoor air was 0.1 microg m(-3).
Kinetic and mechanistic study of bimetallic Pt-Pd/Al 2O 3 catalysts for CO and C 3H 6 oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazlett, Melanie J.; Moses-Debusk, Melanie; Parks, III, James E.
2016-09-21
Low temperature combustion (LTC) diesel engines are being developed to meet increased fuel economy demands. However, some LTC engines emit higher levels of CO and hydrocarbons and therefore diesel oxidation catalyst (DOC) efficiency will be critical. Here, CO and propylene oxidation were studied, as representative LTC exhaust components, over model bimetallic Pt-Pd/γ-Al 2O 3 catalysts. During CO oxidation tests, monometallic Pt suffered the most extensive inhibition which was correlated to a greater extent of dicarbonyl species formation. Pd and Pd-rich bimetallics were inhibited by carbonate formation at higher temperatures. The 1:1 and 3:1 Pt:Pd bimetallic catalysts did not form themore » dicarbonyl species to the same extent as the monometallic Pt sample, and therefore did not suffer from the same level of inhibition. Similarly they also did not form carbonates to as large an extent as the Pd-rich samples and were therefore not as inhibited from this intermediate surface species at higher temperature. The Pd-rich samples were relatively poor propylene oxidation catalysts; and partial oxidation product accumulation deactivated these catalysts. Byproducts observed include acetone, ethylene, acetaldehyde, acetic acid, formaldehyde and CO. For CO and propylene co-oxidation, the onset of propylene oxidation was not observed until complete CO oxidation was achieved, and the bimetallics showed higher activity. In conclusion, this was again related to less extensive poisoning, less dicarbonyl species formation and less overall partial oxidation product accumulation.« less
2006-02-01
Synthesis and Small-Angle X-ray Scattering Investigations of Ureido- Pyrimidone Hydrogen Bonding Star and Linear Poly(ethylene-co-propylene)s...Scattering Investigations of Ureido- Pyrimidone Hydrogen Bonding Star and Linear Poly(ethylene-co-propylene)s Frederick L. Beyer Weapons and...control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) February 2006 2 . REPORT TYPE Interim 3. DATES
Establishment of a Vaporous Hydrogen Peroxide Bio-Decontamination Capability
2007-02-01
of Colorado at Denver and Health Sciences Center. There he utilised mass spectrometry to investigate the biochemical pathways involved in lipid... techniques (NMR, GC). Since then she has worked in a variety of areas including: (a) computer simulation of vapour dispersion for early warning to...to inactivate biological agents such as B. anthracis and these include beta-propiolactone, chlorine dioxide, ethylene oxide, propylene oxide, ozone
[Ethylene glycol and propylene glycol ethers - Reproductive and developmental toxicity].
Starek-Świechowicz, Beata; Starek, Andrzej
2015-01-01
Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively) are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
The Causes of Blistering in Boat Building Materials
1986-08-01
acrylate units (MET) Ethylene glycol (MET) Propylene glycol (MET) Neopentyl glycol (NET) Maleic acid or anhydride (unsaturated) (NET) lumaric acid...PROPYLENE GLYCOL OPA ORTHOPHTHALIC ACID VINYL - URETHANE BASED POLYESTER IqPG NEOPENTYL GLYCOL RESIN EG - ETHYLENE GLYCOL TMPD - 22,, - TRiMETHY...IPA Isophthalic acid WSN Low molecular weight water soluble material NPG Neopentyl glycol OPA Orthophthalio acid PG Propylene glycol MEKP Hethyl
Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.
Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger
2016-05-01
Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand." © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nabih, Nermeen; Schiller, Renate; Lieberwirth, Ingo; Kockrick, Emanuel; Frind, Robert; Kaskel, Stefan; Weiss, Clemens K.; Landfester, Katharina
2011-04-01
Cerium(IV) oxide nanoparticles were synthesized using an inverse miniemulsion technique with cerium nitrate hexahydrate as precursor. The resulting nanocrystallites are as small as 5 nm with a specific surface area of 158 m2 g - 1 after calcination at 400 °C. With the addition of cetyltrimethylammonium bromide (CTAB) or (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)) triblock copolymers (PEO-PPO-PEO) as template in the miniemulsion droplets, the specific surface area can be increased up to 255 m2 g - 1. The miniemulsions were characterized by dynamic light scattering (DLS) and the obtained oxides were examined by x-ray diffraction (XRD), nitrogen sorption (BET and BJH), and transmission electron microscopy (TEM). The catalytic activity of the resulting ceria was investigated for the temperature-programmed oxidation (TPO) of methane.
Effect of microstructure on the thermo-oxidation of solid isotactic polypropylene-based polyolefins
Hoyos, Mario; Tiemblo, Pilar; Gómez-Elvira, José Manuel
2008-01-01
In the present work we aim to clarify the role of the microstructure and the crystalline distribution from the thermo-oxidation of solid isotactic PP (iPP) and ethylene-propylene (EP) copolymers. The effects of the content and quality of the isotacticity interruptions, together with the associated average isotactic length, on the induction time (ti) as well as on the activation energy (Eact) of the thermo-oxidation are analysed. Both parameters have been found to change markedly at an average isotactic length (n1) of 30 propylene units. While ti reaches a minimum when n1 is approximately 30 units, Eact increases quasi-exponentially as the number of units decreases from 30. This variation can be explained in terms of changes induced in the crystalline interphase, i.e. local molecular dynamics, which are closely linked to the initiation of the thermo-oxidation of isotactic PP-based polyolefins. PMID:27877971
High-temperature flat-conductor cable
NASA Technical Reports Server (NTRS)
Rigling, W. S.
1976-01-01
Temperature limit of 25-conductor signal cable and 3-conductor power cable, fabricated using woven and roll laminated technique, increased from 200 C to 350 C when polyimide/fluorinated ethylene propylene or polytetrafluoroethylene insulation films and fluorinated ethylene propylene as adhesive medium is applied.
Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald
2017-11-03
A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.
Singh, Prabhat K; Kumbhakar, Manoj; Pal, Haridas; Nath, Sukhendu
2008-07-03
Effect of electrostatic interaction on the location of a solubilized molecular probe with ionic character in a supramolecular assembly composed of a triblock copolymer, P123 ((ethylene oxide) 20-(propylene oxide) 70-(ethylene oxide) 20) and a cosurfactant cetyltrimethylammonium chloride (CTAC) in aqueous medium has been studied using steady-state and time-resolved fluorescence measurements. Coumarin-343 dye in its anionic form has been used as the molecular probe. In the absence of the surfactant, CTAC, the probe C343 prefers to reside at the surface region of the P123 micelle, showing a relatively less dynamic Stokes' shift, as a large part of the Stokes' shift is missed in the present measurements due to faster solvent relaxation at micellar surface region. As the concentration of CTAC is increased in the solution, the percentage of the total dynamic Stokes' shift observed from time-resolved measurements gradually increases until it reaches a saturation value. Observed results have been rationalized on the basis of the mixed micellar structure of the supramolecular assembly, where the hydrocarbon chain of the CTAC surfactant dissolves into the nonpolar poly(propylene oxide) (PPO) core of the P123 micelle and the positively charged headgroup of CTAC resides at the interfacial region between the central PPO core and the surrounding hydrated poly(ethylene oxide) (PEO) shell or the corona region. The electrostatic attraction between the anionic probe molecule and the positively charged surface of the PPO core developed by the presence of CTAC results in a gradual shift of the probe in the deeper region of the micellar corona region with an increase in the CTAC concentration, as clearly manifested from the solvation dynamics results.
A catalyst-free, temperature controlled gelation system for in-mold fabrication of microgels.
Krüger, Andreas J D; Köhler, Jens; Cichosz, Stefan; Rose, Jonas C; Gehlen, David B; Haraszti, Tamás; Möller, Martin; De Laporte, Laura
2018-06-19
Anisometric microgels are prepared via thermal crosslinking using an in-mold polymerization technique. Star-shaped poly(ethylene oxide-stat-propylene oxide) polymers, end-modified with amine and epoxy groups, form hydrogels, of which the mechanical properties and gelation rate can be adjusted by the temperature, duration of heating, and polymer concentration. Depending on the microgel stiffness, the rod-shaped microgels self-assemble into ordered or disordered structures.
Energy Optimization Audit at Humphreys Engineer Center
2008-09-01
EPDM (ethylene propylene diene M- class [ rubber ]). Doors There are three pairs of doors to the interior terrace (Figure 6) and exit with a high...System EISA Energy Independence and Security Act EPAct Energy Policy Act EPDM EPDM (ethylene propylene diene M-class [ rubber ]) ERDC Engineer
Rahman, Masoud; Yu, Erick; Forman, Evan; ...
2014-08-20
Triblock copolymers comprised of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, or trade name Pluronic) interact with lipid bilayers to increase their permeability. Here we demonstrate a novel application of Pluronic L61 and L64 as modification agents in tailoring the release rate of a molecular indicator species from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer-coated superparamagnetic Fe 3O 4/mesoporous silica coreshell nanoparticles. Lastly, we show there is a direct relationship between Pluronic concentration and the indicator molecule release, suggesting Pluronic may be useful for the controlled release of drugs from lipid bilayer-coated carriers.
Jäger, Alessandro; Jäger, Eliézer; Syrová, Zdeňka; Mazel, Tomas; Kováčik, Lubomír; Raška, Ivan; Höcherl, Anita; Kučka, Jan; Konefal, Rafal; Humajova, Jana; Poučková, Pavla; Štěpánek, Petr; Hrubý, Martin
2018-04-11
Polyester-based nanostructures are widely studied as drug-delivery systems due to their biocompatibility and biodegradability. They are already used in the clinic. In this work, we describe a new and simple biodegradable and biocompatible system as the Food and Drug Administration approved polyesters (poly-ε-caprolactone, polylactic acid, and poly(lactic- co-glycolic acid)) for the delivery of the anticancer drug paclitaxel (PTX) as a model drug. A hydrophobic polyester, poly(propylene succinate) (PPS), was prepared from a nontoxic alcohol (propylene glycol) and monomer from the Krebs's cycle (succinic acid) in two steps via esterification and melt polycondensation. Furthermore, their amphiphilic block copolyester, poly(ethylene oxide monomethyl ether)- block-poly(propylene succinate) (mPEO- b-PPS), was prepared by three steps via esterification followed by melt polycondensation and the addition of mPEO to the PPS macromolecules. Analysis of the in vitro cellular behavior of the prepared nanoparticle carriers (NPs) (enzymatic degradation, uptake, localization, and fluorescence resonance energy-transfer pair degradation studies) was performed by fluorescence studies. PTX was loaded to the NPs of variable sizes (30, 70, and 150 nm), and their in vitro release was evaluated in different cell models and compared with commercial PTX formulations. The mPEO- b-PPS copolymer analysis displays glass transition temperature < body temperature < melting temperature, lower toxicity (including the toxicity of their degradation products), drug solubilization efficacy, stability against spontaneous hydrolysis during transport in bloodstream, and simultaneous enzymatic degradability after uptake into the cells. The detailed cytotoxicity in vitro and in vivo tumor efficacy studies have shown the superior efficacy of the NPs compared with PTX and PTX commercial formulations.
Starrett, David A.; Laties, George G.
1991-01-01
When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A+) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening. PMID:16668073
Oxidized starch solutions for environmentally friendly aircraft deicers.
Plahuta, Joseph M; Teel, Amy L; Ahmad, Mushtaque; Beutel, Mark W; Rentz, Jeremy A; Watts, Richard J
2011-09-01
Deicers currently used for aircraft deicing, including ethylene glycol and propylene glycol, pose significant threats to surface waters, as a result of high biochemical oxygen demand (BOD) and toxicity to aquatic organisms. Oxidized starch may provide a less toxic deicer with lower BOD. The freezing point depression of starch formulations oxidized using hydrogen peroxide and catalysts (i.e., catalyzed hydrogen peroxide [H2O2] propagations-CHP) was 28 degrees C, and viscosities similar to those of commercial deicers were achieved after post-treatment with granular activated carbon. The most effective oxidized starch formulation exerted a 5-day BOD up to 6 times lower than glycol deicers (103 versus 400 to 800 g O2/L). Toxicity to Ceriodaphnia dubia for this formulation (48-hour lethal concentration, 50% [LC50] of 2.73 g/L) was greater than pure propylene glycol (13.1 g/ L), but lower than propylene glycol deicer formulations (1.02 g/L). Organic acids were identified by gas chromatography/mass spectrometry as the primary constituents in the oxidized starch solution. The proposed deicing system would provide effective deicing while exerting minimal environmental effects (e.g., lower toxicity to aquatic organisms and lower BOD). Furthermore, these deicers could be made from waste starch, promoting sustainability.
Asiche, William O; Mitalo, Oscar W; Kasahara, Yuka; Tosa, Yasuaki; Mworia, Eric G; Owino, Willis O; Ushijima, Koichiro; Nakano, Ryohei; Yano, Kentaro; Kubo, Yasutaka
2018-03-21
Kiwifruit are classified as climacteric since exogenous ethylene (or its analogue propylene) induces rapid ripening accompanied by ethylene production under positive feedback regulation. However, most of the ripening-associated changes (Phase 1 ripening) in kiwifruit during storage and on-vine occur largely in the absence of any detectable ethylene. This ripening behavior is often attributed to basal levels of system I ethylene, although it is suggested to be modulated by low temperature. To elucidate the mechanisms regulating Phase 1 ripening in kiwifruit, a comparative transcriptome analysis using fruit continuously exposed to propylene (at 20 °C), and during storage at 5 °C and 20 °C was conducted. Propylene exposure induced kiwifruit softening, reduction of titratable acidity (TA), increase in soluble solids content (SSC) and ethylene production within 5 days. During storage, softening and reduction of TA occurred faster in fruit at 5 °C compared to 20 °C although no endogenous ethylene production was detected. Transcriptome analysis revealed 3761 ripening-related differentially expressed genes (DEGs), of which 2742 were up-regulated by propylene while 1058 were up-regulated by low temperature. Propylene exclusively up-regulated 2112 DEGs including those associated with ethylene biosynthesis and ripening such as AcACS1, AcACO2, AcPL1, AcXET1, Acβ-GAL, AcAAT, AcERF6 and AcNAC7. Similarly, low temperature exclusively up-regulated 467 DEGS including AcACO3, AcPL2, AcPMEi, AcADH, Acβ-AMY2, AcGA2ox2, AcNAC5 and AcbZIP2 among others. A considerable number of DEGs such as AcPG, AcEXP1, AcXET2, Acβ-AMY1, AcGA2ox1, AcNAC6, AcMADS1 and AcbZIP1 were up-regulated by either propylene or low temperature. Frequent 1-MCP treatments failed to inhibit the accelerated ripening and up-regulation of associated DEGs by low temperature indicating that the changes were independent of ethylene. On-vine kiwifruit ripening proceeded in the absence of any detectable endogenous ethylene production, and coincided with increased expression of low temperature-responsive DEGs as well as the decrease in environmental temperature. These results indicate that kiwifruit possess both ethylene-dependent and low temperature-modulated ripening mechanisms that are distinct and independent of each other. The current work provides a foundation for elaborating the control of these two ripening mechanisms in kiwifruit.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... products with repeating ether linkages (i.e., -R-O-R-) formed by the reaction of ethylene oxide, propylene....regulations.gov : Follow the on-line instructions for submitting comments. Email: a-and-r[email protected] http://www.regulations.gov Web site is an ``anonymous access'' system, which means the EPA will not...
Gabrielle, Brice; Lorthioir, Cédric; Lauprêtre, Françoise
2011-11-03
The possible influence of micrometric-size filler particles on the thermo-oxidative degradation behavior of the polymer chains at polymer/filler interfaces is still an open question. In this study, a cross-linked ethylene-propylene-diene (EPDM) terpolymer filled by aluminum trihydrate (ATH) particles is investigated using (1)H solid-state NMR. The time evolution of the EPDM network microstructure under thermal aging at 80 °C is monitored as a function of the exposure time and compared to that of an unfilled EPDM network displaying a similar initial structure. While nearly no variations of the topology are observed on the neat EPDM network over 5 days at 80 °C, a significant amount of chain scission phenomena are evidenced in EPDM/ATH. A specific surface effect induced by ATH on the thermodegradative properties of the polymer chains located in their vicinity is thus pointed out. Close to the filler particles, a higher amount of chain scissions are detected, and the characteristic length scale related to these interfacial regions displaying a significant thermo-oxidation process is determined as a function of the aging time.
NASA Astrophysics Data System (ADS)
Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie
2008-03-01
Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.
Mucoadhesive and thermogelling systems for vaginal drug delivery.
Caramella, Carla M; Rossi, Silvia; Ferrari, Franca; Bonferoni, Maria Cristina; Sandri, Giuseppina
2015-09-15
This review focuses on two formulation approaches, mucoadhesion and thermogelling, intended for prolonging residence time on vaginal mucosa of medical devices or drug delivery systems, thus improving their efficacy. The review, after a brief description of the vaginal environment and, in particular, of the vaginal secretions that strongly affect in vivo performance of vaginal formulations, deals with the above delivery systems. As for mucoadhesive systems, conventional formulations (gels, tablets, suppositories and emulsions) and novel drug delivery systems (micro-, nano-particles) intended for vaginal administration to achieve either local or systemic effect are reviewed. As for thermogelling systems, poly(ethylene oxide-propylene oxide-ethylene oxide) copolymer-based and chitosan-based formulations are discussed as thermogelling systems. The methods employed for functional characterization of both mucoadhesive and thermogelling drug delivery systems are also briefly described. Copyright © 2015 Elsevier B.V. All rights reserved.
Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.
Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka
2007-01-01
The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.
Sworen, John C; Smith, Jason A; Wagener, Kenneth B; Baugh, Lisa S; Rucker, Steven P
2003-02-26
The structure of random ethylene/propylene (EP) copolymers has been modeled using step polymerization chemistry. Six ethylene/propylene model copolymers have been prepared via acyclic diene metathesis (ADMET) polymerization and characterized for primary and higher level structure using in-depth NMR, IR, DSC, WAXD, and GPC analysis. These copolymers possess 1.5, 7.1, 13.6, 25.0, 43.3, and 55.6 methyl branches per 1000 carbons. Examination of these macromolecules by IR and WAXD analysis has demonstrated the first hexagonal phase in EP copolymers containing high ethylene content (90%) without the influence of sample manipulation (temperature, pressure, or radiation). Thermal behavior studies have shown that the melting point and heat of fusion decrease as the branch content increases. Further, comparisons have been made between these random ADMET EP copolymers, random EP copolymers made by typical chain addition techniques, and precisely branched ADMET EP copolymers.
Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers
Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.
2001-01-01
Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.
1982-03-01
plyethylene PVC landfill- HypalonM PE, CPE, neoprene, EPDM ,* bentqcnite ethylene propylene rubber elasticized polvoleiin 20. A94V C? (Coit" an 0*V" aid...materials include Hyralon®, butyl rubber , EPDM , CPE, neo- prene, polyethylene, polypropylene, PVC8 and elasticized polyolefin. With all of these...and animal and vegetable fats and oils (Geswein, 1975). EPDM , or etiylene propylene rubber , is a terpolymer of ethylene, propylene and a small amount
Antifungal Sealing Rings - A New Approach
1977-10-01
rubber and ethylene-propylene terpolymer are three rubbers commonly use-i -i-Elitafy-equipment and these have been shown to covulcanize with tributyltin ...are three rubbers commonly used in military equipment and these have been shown to covulcanize with tributyltin acrylate in the presence of perzx...used materials include triphenyl and tributyltin oxide, chloride, fluoride and acetate. Triphenyltin acetate, for example, is marketed as a 20% active
Li, Peng; Song, Yan; Tang, Zhihong; Yang, Guangzhi; Yang, Junhe
2014-01-01
Ordered mesoporous carbons (OMCs) have been prepared by the strategy of evaporation-induced organic-organic self-assembly method by employing a mixture of amphiphilic triblock copolymers poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) and reverse PPO-PEO-PPO as templates, with soluble in ethanol, low-molecular-weight phenolic resin as precursor, followed by carbonization. It has been found that the as prepared OMCs with porosity that combines super-micropore and small mesopore size distributed from 0.8 to 4 nm, which bridges the pore size from 2 to 3 nm and also for the diversification of the soft-templating synthesis of OMCs. Furthermore, the results showed that the OMCs obtained have mesophase transition from cylindrical p6 mm to centered rectangular c2 mm structure by simply tuning the ratio of PPO-PEO-PPO/PEO-PPO-PEO. Copyright © 2013 Elsevier Inc. All rights reserved.
Starovoytov, Oleg N; Borodin, Oleg; Bedrov, Dmitry; Smith, Grant D
2011-06-14
We have developed a quantum chemistry-based polarizable potential for poly(ethylene oxide) (PEO) in aqueous solution based on the APPLE&P polarizable ether and the SWM4-DP polarizable water models. Ether-water interactions were parametrized to reproduce the binding energy of water with 1,2-dimethoxyethane (DME) determined from high-level quantum chemistry calculations. Simulations of DME-water and PEO-water solutions at room temperature using the new polarizable potentials yielded thermodynamic properties in good agreement with experimental results. The predicted miscibility of PEO and water as a function of the temperature was found to be strongly correlated with the predicted free energy of solvation of DME. The developed nonbonded force field parameters were found to be transferrable to poly(propylene oxide) (PPO), as confirmed by capturing, at least qualitatively, the miscibility of PPO in water as a function of the molecular weight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stulii, A.A.
1983-01-01
The lack of any effect of the polyalkylene glycols on the series of properties of the fatty acid soaps was confirmed by replacing the PEG-35 in the synthetic lubricating-cooling fluid (LCF) by a polyethylene glycol with a molecular weight of 400 or 6000, a propylene oxide oligomer with a molecular weight of 700, or a copolymer of ethylene and propylene oxides (Pluronic 44, Pluriol PE-6400, Hydropol 200). Attempts to select surfactants and optimal concentrations in synthetic LCFs based on polyalkylene glycols. Indicates that of the studied soaps, those of the most interest are the triethanolamine soaps of individual C/sub 6/-C/submore » 10/ fatty acids and commercial mixed C/sub 7/-C/sub 9/ synthetic fatty acids. Finds that the polyalkylene glycols and the indicated soaps supplement each other, imparting the required set of properties to the LCF.« less
Landfill Liners and Covers: Properties and Application to Army Landfills.
1984-06-01
polymers, TPE can be seamed by heat techniques. Materials such as thermoplastic EPDM and nitrile rubber /PVC blends are still being tested to determine their...such as polyethylene (PE), polyvinyl chloride (PVC), butyl rubber , ethylene propylene diene monomer ( EPDM ), chlorinated polyethylene (CPE), and others...chlorosulfonated polyethy- lene (CSPE), chlorinated polyethylene (CPE), butyl rubber , ethylene propylene S rubber ( EPDM ), neoprene, high-density polyethylene
Recovery and purification of ethylene
Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL
2008-10-21
A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.
Chu, Wei-Cheng; Lin, Wei-Sheng; Kuo, Shiao-Wei
2016-01-01
In this study, we used diglycidyl ether bisphenol A (DGEBA) as a matrix, the ABA block copolymer poly(ethylene oxide–b–propylene oxide–b–ethylene oxide) (Pluronic F127) as an additive, and diphenyl diaminosulfone (DDS) as a curing agent to prepare flexible epoxy resins through reaction-induced microphase separation (RIMPS). Fourier transform infrared spectroscopy confirmed the existence of hydrogen bonding between the poly(ethylene oxide) segment of F127 and the OH groups of the DGEBA resin. Small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy all revealed evidence for the microphase separation of F127 within the epoxy resin. Glass transition temperature (Tg) phenomena and mechanical properties (modulus) were determined through differential scanning calorimetry and dynamic mechanical analysis, respectively, of samples at various blend compositions. The modulus data provided evidence for the formation of wormlike micelle structures, through a RIMPS mechanism, in the flexible epoxy resin upon blending with the F127 triblock copolymer. PMID:28773571
Assessment of Alternatives for Upgrading Navy Solid Waste Disposal Sites. Volume 2.
1981-08-01
chloride (PVC), butyl rubber , Hypalon, ethylene propylene diene monomer ( EPDM ) , and chlorinated polyethylene (CPE). These materials have been used...September 1976): • Butyl rubber • Chlorinated polyethylene (CPE) • Chlorosulfonate polyethylene (hypalon) • Ethylene propylene rubber ( EPDM ...CLASSIFICATION OF THIS » AGE r*T>«n D«a Eni.r.a) V • 1 . i , ... »*l«. • • ,.,. • ’in EXECUTIVE SUMMARY ASSESSMENT OF
The Insulation of Copper Wire by the Electrostatic Coating Process.
1983-06-30
fluorinated ethylene propylene), ECFTE (ethylene- chlorotrifluoro ethylene), and PFA (perfluoroalkoxy resin). Another material of interest with good...Fluoroplastics - Fluoroplastics are a family of polymers with the general paraffin structure that have some or all of the hydrogen replaced by fluorine ...ETFE (ethylene-tetrafluoroethylene copolymer), PFA (perfluoroalkoxy resin), ECTFE (ethylene-chlorotrifluoroethylene), and FEP ( fluorinated ethylene
de Villiers, Melgardt M; Caira, Mino R; Li, Jinjing; Strydom, Schalk J; Bourne, Susan A; Liebenberg, Wilna
2011-06-06
This study was initiated when it was suspected that syringe blockage experienced upon administration of a compounded rifampin suspension was caused by the recrystallization of toxic glycol solvates of the drug. Single crystal X-ray structure analysis, powder X-ray diffraction, thermal analysis and gas chromatography were used to identify the ethylene glycol in the solvate crystals recovered from the suspension. Controlled crystallization and solubility studies were used to determine the ease with which toxic glycol solvates crystallized from glycerin and propylene glycol contaminated with either ethylene or diethylene glycol. The single crystal structures of two distinct ethylene glycol solvates of rifampin were solved while thermal analysis, GC analysis and solubility studies confirmed that diethylene glycol solvates of the drug also crystallized. Controlled crystallization studies showed that crystallization of the rifampin solvates from glycerin and propylene glycol depended on the level of contamination and changes in the solubility of the drug in the contaminated solvents. Although the exact source of the ethylene glycol found in the compounded rifampin suspension is not known, the results of this study show how important it is to ensure that the drug and excipients comply with pharmacopeial or FDA standards.
[Total analysis of organic rubber additives].
He, Wen-Xuan; Robert, Shanks; You, Ye-Ming
2010-03-01
In the present paper, after middle pressure chromatograph separation using both positive phase and reversed-phase conditions, the organic additives in ethylene-propylene rubber were identified by infrared spectrometer. At the same time, by using solid phase extraction column to maintain the main component-fuel oil in organic additves to avoid its interfering with minor compounds, other organic additves were separated and analysed by GC/Ms. In addition, the remaining active compound such as benzoyl peroxide was identified by CC/Ms, through analyzing acetone extract directly. Using the above mentioned techniques, soften agents (fuel oil, plant oil and phthalte), curing agent (benzoylperoxide), vulcanizing accelerators (2-mercaptobenzothiazole, ethyl thiuram and butyl thiuram), and antiagers (2, 6-Di-tert-butyl-4-methyl phenol and styrenated phenol) in ethylene-propylene rubber were identified. Although the technique was established in ethylene-propylene rubber system, it can be used in other rubber system.
Methods of producing compounds from plant material
Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.
2006-01-03
The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.
Methods of producing compounds from plant materials
Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL
2010-01-26
The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.
Synthesis of ethylene-propylene rubber graft copolymers by borane approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, T.C.; Janvikul, W.; Bernard, R.
1994-01-01
This paper describes a new method to prepare graft copolymers which have an EP rubber backbone and several free radical polymerized polymers grafted thereto. The process involves hydroboration of commercial EPDM rubbers, such as poly(ethylene-co-propylene-co-1,4-hexadiene) and poly(ethylene-co-propylene-co-5-ethylidene-2-norbornene), with 9-borabicyclononane (9-BBN). The resulting secondary alkyl-9-BBN moieties in the EPDM copolymer were then exposed to oxygen in the presence of free radical polymerizable monomers. Under certain conditions, the selective autoxidation reaction of secondary alkyl-9-BBN took place to create desirable polymeric radicals which can in situ initiate free radical polymerization. High graft efficiency was observed with controllable copolymer compositions. The graft copolymer ofmore » EP-g-PMMA is used to show the chemistry as well as some of the physical properties.« less
Evaluation of oxidation behavior of γ-irradiated EPDM/PP compounds
NASA Astrophysics Data System (ADS)
Zaharescu, T.; Jipa, S.; Setnescu, R.; Setnescu, T.
2007-12-01
The oxidation effect of irradiation on ethylene-propylene diene terpolymer/polypropylene blends is presented. The polymer samples consisting of both materials under various ratios (20:80, 40:60, 60:40 and 80:20) were exposed to γ-irradiation ( 137Cs). The irradiation effects were assessed by two methods: oxygen uptake and IR spectroscopy (1720 cm -1 and 3350 cm -1, the characteristic bands for carbonyl and hydroxyl groups, respectively). The carbonyl and hydroxyl indexes were calculated for all formulations. From oxygen uptake investigation the kinetic parameters for thermal oxidation of irradiated samples were calculated. The contribution of each component to the progress of degradation is discussed.
Detection of OH on photolysis of styrene oxide at 193 nm in gas phase
NASA Astrophysics Data System (ADS)
Kumar, Awadhesh; SenGupta, Sumana; Pushpa, K. K.; Naik, P. D.; Bajaj, P. N.
2006-10-01
Photodissociation of styrene oxide at 193 nm in gas phase generates OH, as detected by laser-induced fluorescence technique. Under similar conditions, OH was not observed from ethylene and propylene oxides, primarily because of their low absorption cross-sections at 193 nm. Mechanism of OH formation involves first opening of the three-membered ring from the ground electronic state via cleavage of either of two C sbnd O bonds, followed by isomerization to enolic forms of phenylacetaldehyde and acetophenone, and finally scission of the C sbnd OH bond of enols. Ab initio molecular orbital calculations support the proposed mechanism.
The poisonous ingredients in antifreeze are: Ethylene glycol Methanol Propylene glycol ... For ethylene glycol: Death may occur within the first 24 hours. If the patient survives, there may be little ...
NASA Technical Reports Server (NTRS)
Morris, James F.; Lord, Albert M.
1957-01-01
Blow-out velocities were determined for JP-4 solutions containing: (1) 10 % ethylene - decaborane reaction product, (2) 10% and 20% acetylene - diborane reaction product, and (3) 5.5%, 15.7%, and 30.7% methylacetylene - diborane reaction product. These were compared with blow-out velocities for JP-4, propylene oxide, and neohexane and previously reported data for JP-4 solutions of pentaborane. For those reaction products investigated, the blow-out velocities at a fixed equivalence ratio were higher for those materials containing higher boron concentrations; that is, blow-out velocity increased in the following order: (1) methylacetylene - diborane, (2) acetylene - diborane, and (3) ethylene - decaborane reaction products.
Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors
NASA Astrophysics Data System (ADS)
Tien, Chien-Pin; Teng, Hsisheng
A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.
NASA Astrophysics Data System (ADS)
Nopteeranupharp, C.; Akkarachaneeyakorn, K.; Songsasaen, A.
2018-03-01
Dentinal hypersensitivity (DH) is one of the most human’s problems caused by the erosion of enamel. There are many methods and materials to solve this problem. Calcium phosphate is an excellent alternative for curing this symptom because of its osteoconductivity, and biocompatibility properties. The low-cost and low-toxicity calcium phosphate nanogel was fabricated by using emulsion method and characterized by using TEM, EDX, and DLS techniques. The results showed that P123 (poly (ethylene oxide)19-block-Poly (propylene oxide)69-block-poly (ethylene oxide)19) has played a major role as template and gel formation, SDS was used as a surfactant to form water-in-oil emulsion nanodroplets with circle-like shape. Moreover, the ability of synthesised organogel to occlude the exposed dentine tubules was tested on the model of human’s dentine slices. The results showed that calcium phosphate composite organogel can be efficiently occluded on dentine slice, characterized by SEM technique, after 1 day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F; Dai, Sheng; Guo, Bingkun
Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol formaldehyde as a carbon precursor in the presence of triblock ethylene oxide propylene oxide ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from 0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m2 g 1 after fluorination as calculated from nitrogen adsorption isotherms at 196more » C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CFx batteries.« less
Anomalous Micellization of Pluronic Block Copolymers
NASA Astrophysics Data System (ADS)
Leonardi, Amanda; Ryu, Chang Y.
2014-03-01
Poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, commercially known as Pluronics, are a unique family of amphiphilic triblock polymers, which self-assemble into micelles in aqueous solution. These copolymers have shown promise in therapeutic, biomedical, cosmetic, and nanotech applications. As-received samples of Pluronics contain low molecular weight impurities (introduced during the manufacturing and processing), that are ignored in most applications. It has been observed, however, that in semi-dilute aqueous solutions, at concentrations above 1 wt%, the temperature dependent micellization behavior of the Pluronics is altered. Anomalous behavior includes a shift of the critical micellization temperature and formation of large aggregates at intermediate temperatures before stable sized micelles form. We attribute this behavior to the low molecular weight impurities that are inherent to the Pluronics which interfere with the micellization process. Through the use of Dynamic Light Scattering and HPLC, we compared the anomalous behavior of different Pluronics of different impurity levels to their purified counterparts.
Unlike heterodimerization reactions of ethylene and vinylarenes, no such synthetically useful reactions using propylene are known. We find that propylene reacts with various vinylarenes in the presence of catalytic amounts of [(allyl)NiBr]2, triphen...
Progress in Characterizing Thermal Degradation of Ethylene-Propylene Rubber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Huang, Qian; Childers, Matthew I.
Ethylene-propylene rubber (EPR) is one of the two most common nuclear cable insulation materials. A large fraction of EPR-insulated cables in use in the nuclear industry were manufactured by The Okonite Company. Okoguard® is the name of the medium voltage thermoset EPR manufactured by The Okonite Company. Okoguard® has been produced with silane-treated clay filler and the characteristic pink color since the 1970’s. EPR is complex material that undergoes simultaneous reactions during thermal aging including oxidative and thermal cleavage and oxidative and thermal crosslinking. This reaction complexity makes precise EPR service life prediction from accelerated aging using approaches designed formore » single discreet reactions such as the Arrhenius approach problematic. Performance data and activation energies for EPR aged at conditions closer to service conditions will improve EPR lifetime prediction. In this report pink Okoguard® EPR insulation material has been thermally aged at elevated temperatures. A variety of characterization techniques have been employed to track material changes with aging. It was noted that EPR aged significant departure in aging behavior seemed to occur at accelerated aging temperatures between 140°C and 150°C at around 20 days of exposure. This may be due to alternative degradation mechanisms being accessed at this higher temperature and reinforces the need to perform accelerated aging for Okoguard® EPR service life prediction at temperatures below 150°C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Y.; Hagiwara, M.; Kasai, N.
1982-09-01
As a continuation of a series of the studies on the flame and ..gamma..-radiation resistant modification of ethylene-propylene-diene rubber (EPDM), condensed bromoacenaphthylene (con-BACN) as a newly developed flame retardant was synthesized and its effects on the radiation resistance of EPDM were investigated. The radiation resistance evaluated by measuring tensile properties of irradiated sheets of 2 mm thick was found improved greatly by adding con-BACN together with ordinary rubber ingredients but decreased by decabromodiphenylether (DBDPE) that has bromins in aromatic rings as con-BACN. When EPDM sheets of 1 mm thick were irradiated in oxygen at a dose rate of 1 Xmore » 10/sup 5/ rad/h, the weight swelling ratio increased with increasing dose, indicating that oxidative main chain scission is predominant under the irradiation conditions. On the other hand, crosslinking was shown to be predominant in nitrogen. From the results of the swelling experiments with different additives, it was concluded that DBDPE accelerates both the main chain scission in oxygen and the crosslinking in nitrogen. In contrast to this, con-BACN reduced the chain scission in oxygen. This observation was accounted by the assumption that the influence of the oxidative chain scission is partly compensated by the concurrent crosslinking which takes place through additions of con-BACN to substrate polymers even in the presence of oxygen.« less
Biodegradation of Ethylene Glycol by a Salt-Requiring Bacterium1
Gonzalez, Carlos F.; Taber, Willard A.; Zeitoun, M. A.
1972-01-01
A gram-negative nonmotile rod which was capable of using 1,2-14C-ethylene glycol as a sole carbon source for growth was isolated from a brine pond, Great Salt Lake, Utah. The bacterium (ATCC 27042) required at least 0.85% NaCl for growth and, although the chloride ion was replaceable by sulfate ion, the sodium ion was not replaceable by potassium ion. The maximal concentration of salt tolerated for growth was approximately 12%. The bacterium was oxidase-negative when N,N-dimethyl-p-phenylenediamine was used and weakly positive when N,N,N′,N′-tetramethyl-p-phenylenediamine was used. It grows on many sugars but does not ferment them, it does not have an exogenous vitamin requirement, and it possesses a guanine plus cytosine ratio of 64.3%. Incorporation of ethylene glycol carbon into cell and respired CO2 was quantitated by use of radioactive ethylene glycol and a force-aerated fermentor. Glucose suppressed ethylene glycol metabolism. Cells grown on ethylene and propylene glycol respired ethylene glycol in a Warburg respirometer more rapidly than cells grown on glucose. Spectrophotometric evidence was obtained for oxidation of glycolate to glyoxylate by a dialyzed cell extract. PMID:4568254
Li, Jie; Lin, Yue; Yao, Hehua; Yuan, Changfu; Liu, Jin
2014-07-01
A tunable polysiloxane thin-film electrolyte for all-solid-state lithium-ion batteries was developed. The polysiloxane was synthesized by hydrosilylation of polymethylhydrosiloxane with cyclic [(allyloxy)methyl]ethylene ester carbonic acid and vinyl tris(2-methoxyethoxy)silane. (1) H NMR spectroscopy and gel-permeation chromatography demonstrated that the bifunctional groups of the cyclic propylene carbonate (PC) and combed poly(ethylene oxide) (PEO) were well grafted on the polysiloxane. At PC/PEO=6:4, the polysiloxane-based electrolyte had an ionic conductivity of 1.55 × 10(-4) and 1.50 × 10(-3) S cm(-1) at 25 and 100 °C, respectively. The LiFePO4 /Li batteries fabricated with the thin-film electrolyte presented excellent cycling performance in the temperature range from 25 to 100 °C with an initial discharge capacity at a rate of 1 C of 88.2 and 140 mA h g(-1) at 25 and 100 °C, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).
Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan
2017-06-05
Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.
Posada, John A; Patel, Akshay D; Roes, Alexander; Blok, Kornelis; Faaij, André P C; Patel, Martin K
2013-05-01
The aim of this study is to present and apply a quick screening method and to identify the most promising bioethanol derivatives using an early-stage sustainability assessment method that compares a bioethanol-based conversion route to its respective petrochemical counterpart. The method combines, by means of a multi-criteria approach, quantitative and qualitative proxy indicators describing economic, environmental, health and safety and operational aspects. Of twelve derivatives considered, five were categorized as favorable (diethyl ether, 1,3-butadiene, ethyl acetate, propylene and ethylene), two as promising (acetaldehyde and ethylene oxide) and five as unfavorable derivatives (acetic acid, n-butanol, isobutylene, hydrogen and acetone) for an integrated biorefinery concept. Copyright © 2012 Elsevier Ltd. All rights reserved.
Krishna, Lekshmi; Jayabalan, Muthu
2009-12-01
Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.
FERMENTATION OF ETHYLENE GLYCOL BY CLOSTRIDIUM GLYCOLICUM, SP. N1
Gaston, Lamont W.; Stadtman, E. R.
1963-01-01
Gaston, Lamont W. (National Heart Institute, National Institutes of Health, Bethesda, Md.) and E. R. Stadtman. Fermentation of ethylene glycol by Clostridium glycolicum, sp. n. J. Bacteriol. 85:356–362. 1963.—An anaerobic organism which utilizes ethylene glycol as a source of energy and carbon has been isolated from mud. It is a long (5 μ), slender, motile, gram-positive, spore-forming rod, with peritrichous flagellae. It grows well from 22 to 37 C at pH 7.4 to 7.6, and ferments glucose, fructose, sorbitol, dulcitol, and cellulose. It does not reduce nitrates, form indole, or cause hemolysis or proteolysis except for a slight attack on coagulated egg albumin. Fifteen amino acids and the vitamins biotin and pantothenate are required for optimal growth on ethylene glycol. Analogues other than propylene glycol do not support growth. Ethylene glycol and propylene glycol are stoichiometrically converted to equal amounts of the respective acid and alcohol. PMID:13946772
Li, Hongchun; Niu, Yongsheng
2018-08-01
A novel amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) (PEG-PPC-PEG) was synthesized via the dicyclohexylcarbodiimide condensation reaction of double PEG-bis-amine and HOOC-PPC-COOH. The obtained copolymer was characterized by NMR to determine its structure. Using the PEG-PPC-PEG as the carrier and using doxorubicin (DOX) as a model drug, DOX-loaded nanoparticles with core shell structure were synthesized by self-assembly in water. The nanoparticles properties such as particle size, drug loading, encapsulation efficiency (EE) and drug release behavior were investigated as a function of the hydrophobic block length of PPC segments and compared with each other. The results showed that the EE was up to 88.8%. Nanoparticles were found to have a certain effect on the controlled release of DOX. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia
2016-10-01
A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation.
Wang, Cong; Gao, Yibo; Gao, Xinghua; Wang, Hua; Tian, Jingxuan; Wang, Li; Zhou, Bingpu; Ye, Ziran; Wan, Jun; Wen, Weijia
2016-01-01
A highly efficient photochromic hydrogel was successfully fabricated via casting precursor, which is based on amorphous tungsten oxide and poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide). Under simulated solar illumination, the hydrogel has a rapid and controlled temperature increasing ratio as its coloration degree. Localized electrons in the amorphous tungsten oxide play a vital role in absorption over a broad range of wavelengths from 400 nm to 1100 nm, encompassing the entire visible light and infrared regions in the solar spectrum. More importantly, the material exhibits sustainable released H2O2 induced by localized electrons, which has a synergistic effect with the rapid surface temperature increase. The amount of H2O2 released by each film can be tuned by the light irradiation, and the film coloration can indicate the degree of oxidative stress. The ability of the H2O2-releasing gels in vitro study was investigated to induce apoptosis in melanoma tumor cells and NIH 3T3 fibroblasts. The in vivo experimental results indicate that these gels have a greater healing effect than the control in the early stages of tumor formation. PMID:27775086
NASA Astrophysics Data System (ADS)
Calmet, J. F.; Carlin, F.; Nguyen, T. M.; Bousquet, S.; Quinot, P.
2002-03-01
In this paper, correlations between the elongation at break and the oxidation of chlorosulfonated polyethylene and ethylene propylene rubber (EPR) polymers in instrumentation and control cables irradiated at different dose rates are brought to evidence. During irradiation, the following phenomena are observed: an increase of oxygen consumption, a degradation of the mechanical properties and a reduction of the oxidation induction time (OIT) measured for EPR. A correlation between the mechanical properties and the OIT of the EPR has only been established in the case of irradiation at low dose rate. This reveals a difference in the oxidative degradation process at low and high dose rates. This study shows the possibility to assess the ageing of electric cables installed inside nuclear power plants by OIT measurements.
Studies on formation of unconfined detonable vapor cloud using explosive means.
Apparao, A; Rao, C R; Tewari, S P
2013-06-15
Certain organic liquid fuels like hydrocarbons, hydrocarbon oxides, when dispersed in air in the form of small droplets, mix with surrounding atmosphere forming vapor cloud (aerosol) and acquire explosive properties. This paper describes the studies on establishment of conditions for dispersion of fuels in air using explosive means resulting in formation of detonable aerosols of propylene oxide and ethylene oxide. Burster charges based on different explosives were evaluated for the capability to disperse the fuels without causing ignition. Parameters like design of canister, burster tube, burster charge type, etc. have been studied based on dispersion experiments. The detonability of the aerosol formed by the optimized burster charge system was also tested. Copyright © 2013 Elsevier B.V. All rights reserved.
77 FR 28493 - Propylene Oxide; Tolerance Actions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-15
... pine nuts for both the fumigant propylene oxide and the reaction product from the use of propylene... oxide and the reaction product from the use of propylene oxide, known as propylene chlorohydrin. Also... Pistachio 300 Plum, prune, dried 2.0 (2) Tolerances are established for residues of the reaction product...
Tribological Behavior of Aqueous Copolymer Lubricant in Mixed Lubrication Regime.
Ta, Thi D; Tieu, A Kiet; Zhu, Hongtao; Zhu, Qiang; Kosasih, Prabouno B; Zhang, Jie; Deng, Guanyu
2016-03-02
Although a number of experiments have been attempted to investigate the lubrication of aqueous copolymer lubricant, which is applied widely in metalworking operations, a comprehensive theoretical investigation at atomistic level is still lacking. This study addresses the influence of loading pressure and copolymer concentration on the structural properties and tribological performance of aqueous copolymer solution of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) at mixed lubrication using a molecular dynamic (MD) simulation. An effective interfacial potential, which has been derived from density functional theory (DFT) calculations, was employed for the interactions between the fluid's molecules and iron surface. The simulation results have indicated that the triblock copolymer is physisorption on iron surface. Under confinement by iron surfaces, the copolymer molecules form lamellar structure in aqueous solution and behave differently from its bulk state. The lubrication performance of aqueous copolymer lubricant increases with concentration, but the friction reduction is insignificant at high loading pressure. Additionally, the plastic deformation of asperity is dependent on both copolymer concentration and loading pressure, and the wear behavior shows a linear dependence of friction force on the number of transferred atoms between contacting asperities.
Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films
NASA Astrophysics Data System (ADS)
Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.
2014-03-01
Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.
Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong
2016-03-01
A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chu, Wei-Cheng; Chiang, Shih-Fan; Li, Jheng-Guang; Kuo, Shiao-Wei
2013-01-01
After blending the triblock copolymer, poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (PEO-b-PPO-b-PEO) with novolac-type phenolic resin, Fourier transform infrared spectroscopy revealed that the ether groups of the PEO block were stronger hydrogen bond acceptors for the OH groups of phenolic resin than were the ether groups of the PPO block. Thermal curing with hexamethylenetetramine as the curing agent resulted in the triblock copolymer being incorporated into the phenolic resin, forming a nanostructure through a mechanism involving reaction-induced microphase separation. Mild pyrolysis conditions led to the removal of the PEO-b-PPO-b-PEO triblock copolymer and formation of mesoporous phenolic resin. This approach provided a variety of composition-dependent nanostructures, including disordered wormlike, body-centered-cubic spherical and disorder micelles. The regular mesoporous novolac-type phenolic resin was formed only at a phenolic content of 40–60 wt %, the result of an intriguing balance of hydrogen bonding interactions among the phenolic resin and the PEO and PPO segments of the triblock copolymer. PMID:28788378
Controlling block copolymer phase behavior using ionic surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, D.; Aswal, V. K.
2016-05-23
The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO{sub 26}PO{sub 39}EO{sub 26})] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle–surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at highermore » temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, P.W.
The anaesthetic effect of carbon monoxide, carbon dioxide, propylene, butylene, ethylene, and acetylene, when mixed with oxygen, was tested on ten different species of insects and centipedes. The lowest concentrations found to cause anaesthesia are given in per cent by volume as follows: propylene, for centipede, 30; katydid, 75; rose chafer, 60. Carbon monoxide, for centipede, 81.5; katydid, 89, rose chafer, 85. Butylene, for centipede, 5; katydid, 10; rose chafer, 40. Ethylene or acetylene, for centipede, katydid, and rose chafer, 100. Carbon dioxide, for rose chafer, 30. Ethylene was the most effective plant anaesthetic, 0.0005 per cent stopping growth movementsmore » of tomato and sunflower plants as shown by motion pictures; 0.001 per cent stopped elongation of sweet pea seedlings, while 0.00001 per cent retarded elongation nearly 50 per cent. The degree of retardation in growth from ethylene gas varied with the concentration and the plant species. Acetylene and propylene were about equally effective as plant anaesthetics. Both were approximately 10 times as effective as carbon monoxide. Mimosa pudica lost its capacity to respond to external stimuli while being exposed to 0.25 per cent of carbon monoxide, but became normal again upon being removed from the gas. 3 references, 4 tables.« less
Relative toxicities of pure propylene and ethylene glycol and formulated deicers on plant species
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuFresne, D.L.; Pillard, D.A.
1994-12-31
Propylene and ethylene glycol deicers are commonly used at airports in the US and other countries to remove and retard the accumulation of snow and ice on aircraft. Deicers may not only enter water bodies without treatment, due to excessive storm-related flow, but also may expose terrestrial organisms to high concentrations through surface runoff. Most available toxicity data are for aquatic vertebrates and invertebrate species; this study examined effects on terrestrial and aquatic plants. Terrestrial plant species included both a monocot (rye grass, Lolium perenne) and a dicot (lettuce, Lactuca saliva). Aquatic species included a single cell alga (Selenastrum capricomutum),more » and an aquatic macrophyte (duckweed, Lemna minor). Glycol deicers were obtained in the formulated mixtures used on aircraft. Pure ethylene and propylene glycol were obtained from Sigma{reg_sign}. Parameters measured included germination, root and shoot length, survival, and growth. Formulated deicers, like those used at airports, were generally more toxic than pure chemicals, based on glycol concentration. This greater toxicity of formulated deicers is consistent with results of tests using animal species.« less
Triblock copolymer-mediated synthesis of catalytically active gold nanostructures
NASA Astrophysics Data System (ADS)
Santos, Douglas C.; de Souza, Viviane C.; Vasconcelos, Diego A.; Andrade, George R. S.; Gimenez, Iara F.; Teixeira, Zaine
2018-04-01
The design of nanostructures based on poly(ethylene oxide)-poly(propylene)-poly(ethylene oxide) (PEO-PPO-PEO) and metal nanoparticles is becoming an important research topic due to their multiple functionalities in different fields, including nanomedicine and catalysis. In this work, water-soluble gold nanoparticles have been prepared through a green aqueous synthesis method using Pluronic F127 as both reducing and stabilizing agents. The size dependence (varying from 2 to 70 nm) and stability of gold nanoparticles were systematically studied by varying some parameters of synthesis, which were the polymer concentration, temperature, and exposure to UV-A light, being monitored by UV-Vis spectroscopy and TEM. Also, an elaborated study regarding to the kinetic of formation (nucleation and growth) was presented. Finally, the as-prepared Pluronic-capped gold nanoparticles have shown excellent catalytic activity towards the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride, in which a higher catalytic performance was exhibited when compared with gold nanoparticles prepared by classical reduction method using sodium citrate. [Figure not available: see fulltext.
Small, F J; Ensign, S A
1995-01-01
Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of propylene and propylene oxide by propylene-grown cells supported the fixation of 14CO2 into cell material, and the time course of 14C fixation correlated with the time course of propylene and propylene oxide degradation. The degradation of glucose and propionaldehyde by propylene-grown or glucose-grown cells did not support significant 14CO2 fixation. With propylene oxide as the substrate, the concentration dependence of 14CO2 fixation exhibited saturation kinetics, and at saturation, 0.9 mol of CO2 was fixed per mol of propylene oxide consumed. Cultures grown with propylene in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. No specific label incorporation was observed when cells were cultured with glucose or n-propanol as a carbon source. The depletion of CO2 from cultures grown with propylene, but not glucose or n-propanol, inhibited bacterial growth. We propose that propylene oxide metabolism in Xanthobacter strain Py2 proceeds by terminal carboxylation of an isomerization intermediate, which, in the absence of CO2, is released as acetone. PMID:7592382
Chaudhari, Mangesh I.; You, Xinli; Pratt, Lawrence R.; ...
2015-11-24
Ethylene carbonate (EC) and propylene carbonate (PC) are widely used solvents in lithium (Li)-ion batteries and supercapacitors. Ion dissolution and diffusion in those media are correlated with solvent dielectric responses. Here, we use all-atom molecular dynamics simulations of the pure solvents to calculate dielectric constants and relaxation times, and molecular mobilities. The computed results are compared with limited available experiments to assist more exhaustive studies of these important characteristics. As a result, the observed agreement is encouraging and provides guidance for further validation of force-field simulation models for EC and PC solvents.
Reactivity of nonaqueous organic electrolytes towards lithium
NASA Technical Reports Server (NTRS)
Shen, D. H.; Subbarao, S.; Deligiannis, F.; Huang, C.-K.; Halpert, G.
1990-01-01
The successful operation of an ambient temperature secondary lithium cell is primarily dependent on the stability of the electrolyte towards lithium. The lithium electrode on open circuit must be inert towards the electrolyte to achieve a long shelf life. The reactivity of tetrahydrofuran and 2-methyltetrahydrofuran based electrolytes with additives such as 2-methylfuran, ethylene carbonate, propylene carbonate, and 3-methylsulfolane was investigated by microcalorimetry and ac impedance spectroscopy techniques. Also the stability of electrolytes by open circuit stand tests was studied. Addition of ethylene carbonate and 2-methylfuran additives was found to improve the stability of tetrahydrofuran and 2-methyltetrahydrofuran based electrolytes. Long term microcalorimetry and ac impedance data clearly confirmed the higher stability of ethylene carbonate/2-methyltetrahydrofuran electrolyte compared to the 2-methyltetrahydrofuran and propylene carbonate/2-methyltetrahydrofuran electrolytes.
Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V
2013-03-10
Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell response modifiers to complement their role as efficient nanocarriers for cancer chemotherapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Shih-Hong; Hou, Sheng-Shu; Kuo, Ping-Lin; Teng, Hsisheng
2013-09-11
Using gel polymer electrolytes (GPEs) for lithium-ion batteries usually encounters the drawback of poor mechanical integrity of the GPEs. This study demonstrates the outstanding performance of a GPE consisting of a commercial membrane (Celgard) incorporated with a poly(ethylene oxide)-co-poly(propylene oxide) copolymer (P(EO-co-PO)) swelled by a liquid electrolyte (LE) of 1 M LiPF6 in carbonate solvents. The proposed GPE stably holds LE with an amount that is three times that of the Celgard-P(EO-co-PO) composite. This GPE has a higher ionic conductivity (2.8×10(-3) and 5.1×10(-4) S cm(-1) at 30 and -20 °C, respectively) and a wider electrochemical voltage range (5.1 V) than the LE-swelled Celgard because of the strong ion-solvation power of P(EO-co-PO). The active ion-solvation role of P(EO-co-PO) also suppresses the formation of the solid-electrolyte interphase layer. When assembling the GPE in a Li/LiFePO4 battery, the P(EO-co-PO) network hinders anionic transport, producing a high Li+ transference number of 0.5 and decreased the polarization overpotential. The Li/GPE/LiFePO4 battery delivers a discharge capacity of 156-135 mAh g(-1) between 0.1 and 1 C-rates, which is approximately 5% higher than that of the Li/LE/LiFePO4 battery. The IR drop of the Li/GPE/LiFePO4 battery was 44% smaller than that of the Li/LE/LiFePO4. The Li/GPE/LiFePO4 battery is more stable, with only a 1.2% capacity decay for 150 galvanostatic charge-discharge cycles. The advantages of the proposed GPE are its high stability, conductivity, Li+ transference number, and mechanical integrity, which allow for the assembly of GPE-based batteries readily scalable to industrial levels.
Effect of gamma irradiation on ethylene propylene diene terpolymer rubber composites
NASA Astrophysics Data System (ADS)
Abou Zeid, M. M.; Rabie, S. T.; Nada, A. A.; Khalil, A. M.; Hilal, R. H.
2008-01-01
Composites of ethylene propylene dine terpolymer rubber (EPDM), high density polyethylene (HDPE) and ground tire rubber powder (GTR) at different ratios were subjected to gamma irradiation at various doses up to 250 kGy. The physical, mechanical and thermal properties were investigated as a function of irradiation dose and blend composition. Gamma irradiation led to a significant improvement in the properties for all blend compositions. The results indicate that the improvement in properties is inversely proportional to the substituted ratio of GTR, attributed to the development of an interfacial adhesion between GTR and blend components. The results were confirmed by examining the fracture surfaces by scanning electron microscopy.
NASA Technical Reports Server (NTRS)
Jones, J. S.; Sharon, J. A.; Mohammed, J.; Hemker, K. J.
2012-01-01
Multi-layer insulation panels from the Hubble Space Telescope have been recovered after 19.1 years of on-orbit service and micro-tensile experiments have been performed to characterize the effect of space exposure on the mechanical response of the outermost layer. This outer layer, 127 m thick fluorinated ethylene propylene with a 100 nm thick vapor deposited aluminum reflective coating, maintained significant tensile ductility but exhibited a degradation of strength that scales with severity of space exposure. This change in properties is attributed to damage from incident solar flux, atomic oxygen damage, and thermal cycling.
NASA Astrophysics Data System (ADS)
Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk
2015-11-01
We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.
Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Long; Li, Zhenjun; Smith, R. Scott
2014-10-09
The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapesmore » and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.« less
Neimann, Karine; Neumann, Ronny; Rabion, Alain; Buchanan, Robert M.; Fish, Richard H.
1999-07-26
The biomimetic, methane monooxygenase enzyme (MMO) precatalyst, [Fe(2)O(eta(1)-H(2)O)(eta(1)-OAc)(TPA)(2)](3+) (TPA = tris[(2-pyridyl)methyl]amine), 1, formed in situ at pH 4.2 from [Fe(2)O(&mgr;-OAc)(TPA)(2)](3+), 2, was embedded in an amorphous silicate surface modified by a combination of hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide). The resulting catalytic assembly was found to be a biomimetic model for the MMO active site within a hydrophobic macroenvironment, allowing alkane functionalization with tert-butyl hydroperoxide (TBHP)/O(2) in an aqueous reaction medium (pH 4.2). For example, cyclohexane was oxidized to a mixture of cyclohexanone, cyclohexanol, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 3:1:2. The balance between poly(ethylene oxide) and poly(propylene oxide), tethered on the silica surface, was crucial for maximizing the catalytic activity. The silica-based catalytic assembly showed reactivity somewhat higher in comparison to an aqueous micelle system utilizing the surfactant, cetyltrimethylammonium hydrogen sulfate at its critical micelle concentration, in which functionalization of cyclohexane with TBHP/O(2) in the presence of 1 was also studied at pH 4.2 and was found to provide similar products: cyclohexanol, cyclohexanone, and cyclohexyl-tert-butyl peroxide, in a ratio of approximately 2:3:1. Moreover, the mechanism for both the silica-based catalytic assembly and the aqueous micelle system was found to occur via the Haber-Weiss process, in which redox chemistry between 1 and TBHP provides both the t-BuO(*)() and t-BuOO(*)()( )()radicals. The t-BuO(*)()( )()radical initiates the C-H functionalization reaction to form the carbon radical, followed by O(2) trapping, to provide cyclohexyl hydroperoxide, which produces the cyclohexanol and cyclohexanone in the presence of 1, whereas the coupling product emanates from t-BuOO(*)() and cyclohexyl radicals. A discussion concerning both approaches for alkane functionalization in water will be presented.
Teng, Minmin; Wang, Hongtao; Li, Fengting; Zhang, Bingru
2011-03-01
Mesoporous polyvinylpyrrolidone (PVP)/SiO(2) composite nanofiber membranes functionalized with thioether groups have been fabricated by a combination method of sol-gel process and electrospinning. The precursor sol was synthesized by one-step co-condensation of tetraethyl orthosilicate (TEOS) and 1,4-bis(triethoxysilyl)propane tetrasulfide (BTESPTS, (CH(3)CH(2)O)(3)Si(CH(2))(3)S-S-S-S(CH(2))(3)Si-(OCH(2)CH(3))(3)), with the triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123, EO(20)PO(70)EO(20)) as template. After the addition of PVP, nanofiber membranes were prepared by electrospinning. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), N(2) adsorption-desorption isotherms, and an Elementar Vario EL analyzer. The composites were used as highly selective adsorbents for Hg(2+) due to the modification with thioether groups (-S-), and were conveniently separated from the waste water. The composite could be regenerated through acidification. Copyright © 2010 Elsevier Inc. All rights reserved.
Wu, Xiabing; You, Linjun; Di, Bin; Hao, Weiqiang; Su, Mengxiang; Gu, Yu; Shen, Lingling
2013-07-19
Novel chiral core-shell silica microspheres with trans-(1R,2R)-diaminocyclohexane (DACH) moiety bridged in the mesoporous shell were synthesized using layer-by-layer method. The chiral mesoporous shell around the nonporous silica core was formed by the co-condensation of N,N'-bis-[(triethoxysilyl)propyl]-trans-(1R,2R)-bis-(ureido)-cyclohexane (DACH-BS) and tetraethoxysilane (TEOS) using octadecyltrimethylammonium chloride (C18TMACl) and triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (P123) as the templates. The functionalized core-shell silica microspheres were characterized and tested as chiral stationary phases for high performance liquid chromatography (HPLC). R/S-1,1'-bi-2,2'-naphthol, R/S-6,6'-dibromo-1,1'-bi-2-naphthol and R/S-1,1'-bi-2,2'-phenanthrol were enantioseparated rapidly on the column packed with the DACH core-shell silica particles. Moreover, the column packed with core-shell particles exhibited better performance than the column packed with the DACH functionalized periodic mesoporous organosilicas. Copyright © 2013 Elsevier B.V. All rights reserved.
The Production and Recovery of C2-C4 Olefins from Syngas.
ERIC Educational Resources Information Center
Murchison, C. B.; And Others
1986-01-01
Discusses reacting coal-derived hydrogen and carbon monoxide (syngas) at relatively high selectivity to ethylene, propylene, and butenes over novel catalysts. In addition, data are given which illustrate a unique ethylene removal step which is compatible with operating the olefin synthesis at low conversion. (JN)
Lou, Shuo; Wang, Junzheng; Yin, Xiaohong; Qu, Wenxiu; Song, Yuexiao; Xin, Feng; Qaraah, Fahim Abdo Ali
2018-06-18
Monodisperse patchy silica nanoparticles (PSNPs) less than 100 nm are prepared based on the seed-regrowth method using a poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO-type block copolymer as a surface modifier. Well-defined patches are controllably synthesized through area-selective deposition of silica onto the surface of seeds. After colloidal PSNPs are further modified with trimethylchlorosilane, the advancing and receding contact angles of water for PSNPs are 168 ± 2° and 167 ± 2°, respectively. The superhydrophobic and transparent coatings on the various types of substrates are obtained by a simple drop-casting procedure. Additionally, almost the same superhydrophobicity can be achieved by using colloidal PSNPs via redispersing the powder of superhydrophobic PSNPs in ethanol.
Water and UV degradable lactic acid polymers
Bonsignore, Patrick V.; Coleman, Robert D.
1996-01-01
A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.
Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s.
Zgoła-Grześkowiak, Agnieszka; Grześkowiak, Tomasz; Zembrzuska, Joanna; Łukaszewski, Zenon
2006-07-01
The biodegradation of poly(ethylene glycol)s (PEGs) and poly(propylene glycol)s (PPGs), both being major by-products of non-ionic surfactants biodegradation, was studied under the conditions of the River Water Die-Away Test. PEGs were isolated from a water matrix using solid-phase extraction with graphitized carbon black sorbent, then derivatized with phenyl isocyanate and determined by HPLC with UV detection. PPGs were isolated from a water matrix by liquid-liquid extraction with chloroform, then derivatized with naphthyl isocyanate and determined by HPLC with fluorescence detection. The primary biodegradation of both PEGs and PPGs reached approximately 99% during the test. The tests show different biodegradation pathways of PEG and PPG. During PEG biodegradation, their chains are shortened leading to the formation of ethylene glycol and diethylene glycol. During PPG biodegradation, no short-chained biodegradation products were found.
76 FR 79146 - Propylene Oxide; Proposed Tolerance Actions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... and pine nuts for both the fumigant propylene oxide and the reaction product from the use of propylene..., prune, dried 2.0 (2) Tolerances are established for residues of the reaction product, propylene...
Irradiation and measurements of fluorinated ethylene-propylene-A on silicon solar cells in vacuum
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Broder, J. D.
1975-01-01
Silicon monoxide (SiO) coated silicon solar cells covered with fluorinated ethylene-propylene-A (FEP-A) were irradiated by 1-MeV electrons in vacuum. The effect of irradiation on the light transmittance of FEP-A was checked by measuring the short-circuit current of the cells while in vacuum after each dose increment, immediately after the irradiation, and again after a minimum elapsed time of 16 hr. The results indicated no apparent loss in transmission due to irradiation of FEP-A and no delamination from the SiO surface while the cells were in vacuum, but embrittlement of FEP-A occurred at the accumulated dose.
NASA Astrophysics Data System (ADS)
Li, Jiang; Guo, Meng-fei; Lv, Xiang; Liu, Yang; Xi, Kun; Guan, Yi-wen
2018-04-01
In this study, a dense particles erosion test motor which can simulate the erosion state of a solid rocket motor under high acceleration was developed. Subsequently, erosion experiments were carried out for the ethylene propylene diene monomer composite insulation and the microstructure of the char layer analysed. A turning point effect was found from the influence of the particle impact velocity on the ablation rate, and three erosion modes were determined according to the micro-morphology of the char layer. A reasonable explanation for the different structures of the char layer in the three modes was presented based on the formation mechanism of the compact/loose structure of the char layer.
NASA Astrophysics Data System (ADS)
Huang, Yugang; Luo, Weiang; Ye, Guodong
2015-02-01
A new polypeptide-based copolymer brush composed of poly (γ-propargyl-L-glutamate)-block-poly (propylene oxide)-block-poly (γ-propargyl-L-glutamate) backbone (PPLG-b-PPO-b-PPLG) and oligo (ethylene glycol) (PEG) side-chain was synthesized by combination of N-carboxyanhydride ring-opening polymerization and click chemistry. Nearly 100% grafting efficiency was achieved by copper-catalyzed azide-alkyne Huisgen 1,3-dipolar cycloaddition (CuAAc) reaction. The α-helical conformation adopted by the grafted polypeptide blocks in water was relatively stable and showed a reversible change in a heating-cooling circle from 5 to 70 °C. It displayed weak stability against elevated temperature but still reversible changes in the presence of 0.47 M NaCl. The brushes were amphiphilic and could self-assemble into thermo-sensitive micelles in water. Big micelles could break into small micelles upon heating due to the improved solubility.
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel
2017-04-01
We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.
NASA Technical Reports Server (NTRS)
Brinza, David E.; Stiegman, A. E.; Staszak, Paul R.; Laue, Eric G.; Liang, Ranty H.
1992-01-01
Examination of fluorinated ethylene propylene (FEP) copolymer specimens recovered from the Long Duration Exposure Facility (LDEF) provides evidence for degradation attributed to extended solar vacuum ultraviolet (VUV) irradiation. Scanning electron microscope (SEM) images of sheared FEP film edges reveal the presence of a highly embrittled layer on the exposed surface of specimens obtained from the trailing edge of the LDEF. Similar images obtained for leading edge and control FEP films do not exhibit evidence for such an embrittled layer. Laboratory VUV irradiation of FEP films is found to produce a damage layer similar to that witnessed in the LDEF trailing edge films. Spectroscopic analyses of irradiated films provide data to advance a photochemical mechanism for degradation.
Acharya, H; Bhowmick, Anil K
2007-01-01
Ethylene propylene diene terpolymer (EPDM)/MgAl layered double hydroxide (LDH) nanocomposites have been synthesized by solution intercalation using organically modified LDH (DS-LDH). The molecular level dispersion of LDH nanolayers has been verified by the disappearance of basal XRD peak of DS-LDH in the composites. The internal structures, of the nanocomposite with the dispersion nature of LDH particles in EPDM matrix have been studied by TEM and AFM. Thermogravimetric analysis (TGA) shows thermal stability of nanocomposites improved by ≈40 °C when 10% weight loss was selected as point of comparison. The degradation for pure EPDM is faster above 380 °C while in case of its nanocomposites, it is much slower.
Water and UV degradable lactic acid polymers
Bonsignore, P.V.; Coleman, R.D.
1994-11-01
A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.
Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers
McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...
2014-12-11
Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [ mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small anglemore » x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less
Water and UV degradable lactic acid polymers
Bonsignore, P.V.; Coleman, R.D.
1996-10-08
A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.
NASA Astrophysics Data System (ADS)
Tinguely, Jean-Claude; Solarska, Renata; Braun, Artur; Graule, Thomas
2011-04-01
A new approach for the large-scale production of flexible photoelectrodes for dye-sensitized solar cells (DSSCs) is presented by roll-to-roll coating of a titanium dioxide nanodispersion containing the block copolymer 'Pluronic®' (PEOx-PPOy-PEOx, PEO: poly(ethylene oxide), PPO: poly(propylene oxide)). Functional DSSCs were assembled and the different coating procedures compared with respect to their solar power conversion efficiency. It is shown that the binder 'Pluronic' can be removed at processing temperatures as low as 140 °C, thus aiding achievement of sufficient adhesion to the ITO-PET support, higher porosity of the TiO2 layer and decreased crack appearance. Further optimization of this method is particularly promising when combined with other known low-temperature methods.
Water and UV degradable lactic acid polymers
Bonsignore, Patrick V.; Coleman, Robert D.
1994-01-01
A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.
Environmental Aspects of Aircraft and Airfield Deicing - An Air Force Perspective
2010-11-01
e l l e n c e COD of Aircraft Deicers ADF Kg O2/Kg compd Ethylene glycol 1.14 T Propylene glycol 1.47 T Isopropyl alcohol 2.11 T Neopentyl glycol ...showed that commercial airports use about 25 million gallons of Aircraft Deicing Fluid (ADF) annually, of which 22.1 M (88%) is Propylene Glycol (PG...S e r v i c e - E x c e l l e n c e AF Aircraft Deicing Overview 70% (107) of bases reported using aircraft deicers Propylene Glycol (PG), AMS 1424
Prediction of packaging seal life using thermoanalytical techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.
1997-11-01
In this study, Thermogravimetric Analysis (TGA) has been used to study silicone, Viton and Ethylene Propylene (EPDM) rubber. The studies have shown that TGA accurately predicts the relative order of thermo-oxidative stability of these three materials from the calculated activation energies. As expected, the greatest thermal stability was found in silicone rubber followed by Viton and EPDM rubber. The calculated lifetimes for these materials were in relatively close agreement with published values. The preliminary results also accurately reflect decreased thermal stability and lifetime for EPDM rubber exposed to radiation and chemicals. These results suggest TGA provides a rapid method tomore » evaluate material stability.« less
Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.
Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A
2014-03-14
Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.
Translations on Eastern Europe, Political, Sociological, and Military Affairs, Number 1446.
1977-09-14
general designer was national enterprise Chemoprojekt Litvinov, and both the international and national ethylene pipelines on the territory of the CSR ...Gradually the related units in the CSR for production of polypropylene at Litvinov and for PVC production at Neratovice were also put into operation...Deliveries of propylene from the GDR are designed for production of polypropylene, oxoalcohols and epichlorhydride in the CSR . The propylene supply
NASA Astrophysics Data System (ADS)
Geng, Hongquan; Song, Hua; Qi, Jun; Cui, Daxiang
2011-12-01
We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic- co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy.
Brain delivery of proteins via their fatty acid and block copolymer modifications
Yi, Xiang; Kabanov, Alexander V.
2014-01-01
It is well known that hydrophobic small molecules penetrate cell membranes better than hydrophilic molecules. Amphiphilic molecules that dissolve both in lipid and aqueous phases are best suited for membrane transport. Transport of biomacromolecules across physiological barriers, e.g. the blood-brain barrier, is greatly complicated by the unique structure and function of such barriers. Two decades ago we adopted a simple philosophy that to increase protein delivery to the brain one needs to modify this protein with hydrophobic moieties. With this general idea we began modifying proteins (antibodies, enzymes, hormones, etc.) with either hydrophobic fatty acid residues or amphiphilic block copolymer moieties, such as poy(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (pluronics or poloxamers) and more recently, poly(2-oxasolines). This simple approach has resulted in impressive successes in CNS drug delivery. We present a retrospective overview of these works initiated in the Soviet Union in 1980s, and then continued in the United States and other countries. Notably some of the early findings were later corroborated by brain pharmacokinetic data. Industrial development of several drug candidates employing these strategies has followed. Overall modification by hydrophobic fatty acids residues or amphiphilic block copolymers represents a promising and relatively safe strategy to deliver proteins to the brain. PMID:24160902
76 FR 17611 - Propylene Oxide; Proposed Pesticide Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
...: This document proposes to amend the propylene oxide tolerance on ``nut, tree, group 14'' to ``nutmeat... ``nut, tree, group 14'' to read ``nutmeat, processed, except peanuts.'' A final rule published in the... the propylene oxide tolerance by replacing ``nutmeat, processed, except peanuts'' with ``nut, tree...
76 FR 38036 - Propylene Oxide; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
... regulation amends the propylene oxide tolerance on ``nut, tree, group 14'' to ``nutmeat, processed, except... propylene oxide tolerance (40 CFR 180.491) on ``nut, tree, group 14'' to read ``nutmeat, processed, except...) on ``nut, tree, group 14'' to read ``nutmeat, processed, except peanuts.'' IV. Statutory and...
NASA Astrophysics Data System (ADS)
De Paz-Simon, Héloïse; Chemtob, Abraham; Croutxé-Barghorn, Céline; Rigolet, Séverinne; Michelin, Laure; Vidal, Loïc; Lebeau, Bénédicte
2014-11-01
In view of their technological impact in materials chemistry, a simplified and more efficient synthetic route to mesoporous films is highly sought. We report, herein, a smart UV-mediated approach coupling in a one-stage process sol-gel photopolymerization and photoinduced template decomposition/ablation to making mesoporous silica films. Performed at room temperature with a solvent-free solution of silicate precursor and amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer, the synthesis relies on photoacid generation to induce the fast formation (≈10 min) of mesostructured silica/surfactant domains. Continuation of UV exposure for three additional hours enables subsequent and complete photodegradation of the polyether copolymer, resulting in ordered or disordered mesoporous silica film. One of the most attractive features is that the one-step procedure relies on a continuous illumination provided by the same conventional medium-pressure Hg-Xe arc lamp equipped with a 254 nm reflector to enhance the emission of energetic photons <300 nm. In addition to X-ray diffraction and transmission electron microscopy, time-resolved Fourier transform infrared spectroscopy has proved to be a powerful in situ technique to probe the different chemical transformations accompanying irradiation. Photocalcination strengthens the inorganic network, while allowing to preserve a higher fraction of residual silanol groups compared with thermal calcination. A polyether chain degradation mechanism based on oxygen reactive species-mediated photo-oxidation is proposed.
Morphological studies on block copolymer modified PA 6 blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poindl, M., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Bonten, C., E-mail: marcus.poindl@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de
Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymermore » was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.« less
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.
1975-01-01
Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.
Studying radiolytic ageing of nuclear power plant electric cables with FTIR spectroscopy.
Levet, A; Colombani, J; Duponchel, L
2017-09-01
Due to the willingness to extend the nuclear power plants length of life, it is of prime importance to understand long term ageing effect on all constitutive materials. For this purpose gamma-irradiation effects on insulation of instrumentation and control cables are studied. Mid-infrared spectroscopy and principal components analysis (PCA) were used to highlight molecular modifications induced by gamma-irradiation under oxidizing conditions. In order to be closer to real world conditions, a low dose rate of 11Gyh -1 was used to irradiate insulations in full cable or alone with a dose up to 58 kGy. Spectral differences according to irradiation dose were extracted using PCA. It was then possible to observe different behaviors of the insulation constitutive compounds i.e. ethylene vinyl acetate (EVA), ethylene propylene diene monomer (EPDM) and aluminium trihydrate (ATH). Irradiation of insulations led to the oxidation of their constitutive polymers and a modification of filler-polymer ratio. Moreover all these modifications were observed for insulations alone or in full cable indicating that oxygen easily diffuses into the material. Spectral contributions were discussed considering different degradation mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Presidential Green Chemistry Challenge: 2006 Academic Award
Presidential Green Chemistry Challenge 2006 award winner, Professor Galen J. Suppes, developed a process to convert waste glycerin from biodiesel production into propylene glycol to replace ethylene glycol in antifreeze.
Fromme, H; Nitschke, L; Boehmer, S; Kiranoglu, M; Göen, T
2013-03-01
Glycol ethers are a class of semi-volatile substances used as solvents in a variety of consumer products like cleaning agents, paints, cosmetics as well as chemical intermediates. We determined 11 metabolites of ethylene and propylene glycol ethers in 44 urine samples of German residents (background level study) and in urine samples of individuals after exposure to glycol ethers during cleaning activities (exposure study). In the study on the background exposure, methoxyacetic acid and phenoxyacetic acid (PhAA) could be detected in each urine sample with median (95th percentile) values of 0.11 mgL(-1) (0.30 mgL(-1)) and 0.80 mgL(-1) (23.6 mgL(-1)), respectively. The other metabolites were found in a limited number of samples or in none. In the exposure study, 5-8 rooms were cleaned with a cleaner containing ethylene glycol monobutyl ether (EGBE), propylene glycol monobutyl ether (PGBE), or ethylene glycol monopropyl ether (EGPE). During cleaning the mean levels in the indoor air were 7.5 mgm(-3) (EGBE), 3.0 mgm(-3) (PGBE), and 3.3 mgm(-3) (EGPE), respectively. The related metabolite levels analysed in the urine of the residents of the rooms at the day of cleaning were 2.4 mgL(-1) for butoxyacetic acid, 0.06 mgL(-1) for 2-butoxypropionic acid, and 2.3 mgL(-1) for n-propoxyacetic acid. Overall, our study indicates that the exposure of the population to glycol ethers is generally low, with the exception of PhAA. Moreover, the results of the cleaning scenarios demonstrate that the use of indoor cleaning agents containing glycol ethers can lead to a detectable internal exposure of residents. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kwak, Eung-Bum; Choi, Nak-Sam
The degradation behaviors of EPDM (ethylene-propylene diene monomer) rubbers used for automotive radiator hoses subjected to thermo-oxidative and electrochemical stresses were studied. As a result of the thermo-oxidative aging tests, the IRHD (international rubber hardness degrees) hardness of the rubber specimens increased, while their elongation at break decreased much. A slight increase in crosslink density indicated that changes in the properties were caused by the concentration of carbonyl groups in the skin layer. For the electrochemical degradation (ECD), the weight of rubber specimens increased whereas their elongation and hardness much decreased because water solution penetrated into the skin part. There was little change in crosslink density. Formation of many chain scissions and thus microvoid networks in the skin layer induced the swelling behavior leading to a linear reduction of hardness versus the weight increase.
Cucchiarini, Magali
2018-01-01
Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have been broadly explored for controlled drug delivery in different regenerative medicine approaches. The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO copolymers as gene delivery systems is a powerful emerging strategy to improve the performance of classical gene transfer vectors. This review summarizes the state of art of the application of PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as gene delivery systems in different regenerative medicine approaches. PMID:29518011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F.; Brown, Suree S.; Adcock, Jamie
Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 °C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol–formaldehyde as a carbon precursor in the presence of triblock ethylene oxide–propylene oxide–ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from ~0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m² g⁻¹ after fluorination as calculated from nitrogen adsorption isotherms at -196 °C. Furthermore, the materialsmore » exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CF x batteries.« less
Natural circular dichroism in non-resonant x-ray emission
NASA Astrophysics Data System (ADS)
Vahtras, Olav; Ågren, Hans; Carravetta, Vincenzo
1997-03-01
The possibility of observing natural circular dichroism in non-resonant x-ray emission spectroscopy is investigated by means of simulations of the chiral molecules twisted ethylene, propylene oxide and trans-1, 2-dimethylcyclopropane, in a two-step model and at the SCF level, with or without relaxation of the core-hole states. We observe both a chemical and an element dependence of the phenomenon and also an effect of electron relaxation. However, the latter is much less crucial than for circular dichroism in x-ray absorption. The calculations indicate that, at least for the decay of the carbon core-hole states, the effect could be detectable with the present or soon to be available experimental equipment.
A low-cost efficient and durable low-temperature solar collector
NASA Astrophysics Data System (ADS)
Odonnell, T. P.
The considered collector utilizes a material made of ethylene-propylene-diene-monomer (EPDM). This material has been used in solar systems to heat domestic water, pools, spas, and homes by radiant energy. EPDM or ethylene propylene rubber compounds are synthetic elastomers. EPDM elastomers combine superior ozone, good heat and oxygen resistance, and very good low temperature properties to produce a compound with excellent overall age resistance. The material is extruded into 4.4 inch wide mats. Each mat has six small tubes alternating with thin webbing. The absorber mat will adhere to any clean building surface with the use of thermosetting construction-grade mastic adhesive. Carbon black contained in the mat material acts to increase the solar absorptivity. Their low cost makes the elastomers commercially very attractive. The efficiency and durability of the material are discussed.
Hydrogen and hydrocarbon diffusion flames in a weightless environment
NASA Technical Reports Server (NTRS)
Haggard, J. B., Jr.; Cochran, T. H.
1973-01-01
An experimental investigation was performed on laminar hydrogen-, ethylene-, and propylene-air diffusion burning in a weightless environment. The flames burned on nozzles with radii ranging from 0.051 to 0.186 cm with fuel Reynolds numbers at the nozzle exit from 9 to 410. Steady-state diffusion flames existed in a weightless environment for all the fuels tested. A correlation was obtained for their axial length as a function of Schmidt number, Reynolds numbers, and stoichiometric mole fraction. The maximum flame radii were correlated with the ratio of nozzle radius to average fuel velocity. The flames of ethylene and propylene on nozzles with radii 0.113 or larger appeared to be constantly changing color and/or length throughout the test. No extinguishment was observed for any of the gases tested within the 2.2 seconds of weightlessness.
NASA Astrophysics Data System (ADS)
Pecault, Isabelle Tovena
2017-11-01
High-power laser facilities, such as Laser MegaJoule, are currently being operated for inertial confinement fusion experiments. Emission of volatile organic compounds (VOC) and moreover semivolatile organic compounds (SVOCs) from seals in laser environment is of tremendous importance for the optics lifetime and laser performance. That is why all the seals were screening in the same conditions: 48 h at 30°C and three successive cycle of 1.5 h at 50°C. This paper focuses on the qualification test performed on three seals: two ethylene propylene diene monomer (EPDM) and one fluoropolymer (FPM). It is shown that the molded and the extruded EPDM do not outgas the same amount neither the same molecules whereas EPDM and FPM outgas nearly the same level of phthalates.
Effects of pitfall trap preservative on collections of carabid beetles (Coleoptera: Carabidae)
McCravy, K.W.; Willand, J.E.
2007-01-01
Effects of six pitfall trap preservatives (5% acetic acid solution, distilled water, 70% ethanol, 50% ethylene glycol solution, 50% propylene glycol solution, and 10% saline solution) on collections of carabid beetles (Coleoptera: Carabidae) were studied in a west-central Illinois deciduous forest from May to October 2005. A total of 819 carabids, representing 33 species and 19 genera, were collected. Saline produced significantly fewer captures than did acetic acid, ethanol, ethylene glycol, and propylene glycol, while distilled water produced significantly fewer captures than did acetic acid. Significant associations between numbers of captures and treatment were seen in four species: Amphasia interstitialis (Say), Calathus opaculus LeConte, Chlaenius nemoralis Say, and Cyclotrachelus sodalis (LeConte). Results of this study suggest that type of preservative used can have substantial effects on abundance and species composition of carabids collected in pitfall traps.
Combined effects of microwaves, electron beams and polyfunctional monomers on rubber vulcanization.
Manaila, Elena; Martin, Diana; Stelescu, Daniela Zuga; Craciun, Gabriela; Ighigeanu, Daniel; Matei, Constantin
2009-01-01
This paper presents comparative results obtained by conventional vulcanization with benzoyl peroxide (CV-BP), separate electron beam vulcanization (EB-V) and simultaneous electron beam and microwave vulcanization (EB+MW-V) applied to two kind of rubber samples: EVA (ethylene vinyl acetate) rubber-sample (EVA-sample) and EPDM (ethylene-propylene terpolymer) rubber-sample (EPDM-sample). The EVA-samples contain 61.54% EVA Elvax 260, 30.77% carbon black, 1.85% TAC (triallylcyanurate) polyfunctional monomer and 5.84% filler (zinc oxide, stearic acid, polyethylene glycol and antioxidant). The EPDM-samples contain 61.54% EPDM Nordel 4760, 30.77% carbon black, 1.85% TMPT (trimethylopropane trimethacrylate) polyfunctional monomer and 5.84% filler (zinc oxide, stearic acid, polyethylene glycol and antioxidant). The rubber samples designed for different vulcanization methods were obtained from raw rubber mixtures, as compressed sheets of 2 mm in the polyethylene foils to minimize oxidation. For EB and EB + MW treatments the sheets were cut in rectangular shape 0.15 x 0.15 m2. The physical properties of samples obtained by CV-BP EV-Vand EB + MW-V methods were evaluated by measuring the tearing strength, residual elongation, elongation at break, tensile strength, 300% modulus, 100% modulus, elasticity and hardness. The obtained results demonstrate an improvement of rubber several properties obtained by EB and EB + MW processing as compared to classical procedure using benzoyl peroxide.
Role of hydration and water coordination in micellization of Pluronic block copolymers.
Šturcová, Adriana; Schmidt, Pavel; Dybal, Jiří
2010-12-15
Raman, attenuated total reflectance FTIR, near-infrared spectroscopy, and DFT calculations have been used in a study of aqueous solutions of three tri-block copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) or PEO-PPO-PEO with commercial names Pluronic PE6200, PE6400 and F68. It is shown that the process of micellization as a response to increased temperature is reflected in the hydroxyl stretching region of infrared and Raman spectra, which contains information both about restructuring of water and changes of polymer chains in polymer/water aggregates. Raman spectra exhibit differences between individual Pluronics even at temperatures below the critical micellization temperature (CMT). According to the attenuated total reflection (ATR) FTIR spectra, the same five water coordination types defined by the number of donated/accepted hydrogen bonds are present in interacting water as in bulk water. It indicates that models considering mixed states of water with different hydrogen bonding environments provide appropriate descriptions of bound water both below and above the CMT. Above the CMT, aggregate hydration increases in the order PE6400 < PE6200 < F68, although that does not fully correspond to the EO/PO ratio, and points to the differences in microstructure of aggregates formed by each copolymer. This study relates nanoscale phenomena (hydrophobic and hydrophilic hydration) with the mesoscale phenomenon of micellization. Copyright © 2010 Elsevier Inc. All rights reserved.
Prameela, G K S; Phani Kumar, B V N; Pan, A; Aswal, V K; Subramanian, J; Mandal, A B; Moulik, S P
2015-11-11
The influence of the water soluble non-ionic tri-block copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E2P16E2 (L31) on the microstructure and self-aggregation dynamics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution was investigated using cloud point (CP), isothermal titration calorimetry (ITC), high resolution nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and small-angle neutron scattering (SANS) measurements. CP provided the thermodynamic information on the Gibbs free energy, enthalpy, entropy and heat capacity changes pertaining to the phase separation of the system at elevated temperature. The ITC and NMR self-diffusion measurements helped to understand the nature of the binding isotherms of SDS in the presence of L31 in terms of the formation of mixed aggregates and free SDS micelles in solution. EPR analysis provided the micro-viscosity of the spin probe 5-DSA in terms of rotational correlation time. The SANS study indicated the presence of prolate ellipsoidal mixed aggregates, whose size increased with the increasing addition of L31. At a large [L31], SANS also revealed the progressive decreasing size of the ellipsoidal mixed aggregates of SDS-L31 into nearly globular forms with the increasing SDS addition. Wrapping of the spherical SDS micelles by L31 was also corroborated from (13)C NMR and SANS measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Paz-Simon, Héloïse; Chemtob, Abraham, E-mail: abraham.chemtob@uha.fr; Croutxé-Barghorn, Céline
2014-11-01
In view of their technological impact in materials chemistry, a simplified and more efficient synthetic route to mesoporous films is highly sought. We report, herein, a smart UV-mediated approach coupling in a one-stage process sol-gel photopolymerization and photoinduced template decomposition/ablation to making mesoporous silica films. Performed at room temperature with a solvent-free solution of silicate precursor and amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer, the synthesis relies on photoacid generation to induce the fast formation (≈10 min) of mesostructured silica/surfactant domains. Continuation of UV exposure for three additional hours enables subsequent and complete photodegradation of the polyether copolymer, resulting inmore » ordered or disordered mesoporous silica film. One of the most attractive features is that the one-step procedure relies on a continuous illumination provided by the same conventional medium-pressure Hg-Xe arc lamp equipped with a 254 nm reflector to enhance the emission of energetic photons <300 nm. In addition to X-ray diffraction and transmission electron microscopy, time-resolved Fourier transform infrared spectroscopy has proved to be a powerful in situ technique to probe the different chemical transformations accompanying irradiation. Photocalcination strengthens the inorganic network, while allowing to preserve a higher fraction of residual silanol groups compared with thermal calcination. A polyether chain degradation mechanism based on oxygen reactive species-mediated photo-oxidation is proposed.« less
Maihom, Thana; Sawangphruk, Montree; Probst, Michael; Limtrakul, Jumras
2018-02-28
The aerobic epoxidation of propylene over the metal-organic framework Fe 3 (btc) 2 (btc = 1,3,5-benzentricarboxylate) as catalyst has been investigated by means of density functional calculations. The mechanisms of the reaction towards propylene oxide, carbonylic products (acetone and propanal) and a pi-allyl radical were investigated to assess the efficiency of Fe 3 (btc) 2 for the selective formation of propylene oxide. Propylene oxide and carbonylic products are formed on Fe 3 (btc) 2 by proceeding via propyleneoxy intermediates in the first step. Subsequently, the intermediates can then either be transformed to propylene oxide by way of ring closure of the intermediate or to the carbonylic compounds of propanal and acetone via 1,2-hydride shift. The results show that the formation of propylene oxide is favored over the formation of carbonylic products mainly due to the activation barriers being 2-3 times smaller. The activation barriers for the formation of the propyleneoxy intermediates on the Fe 3 (btc) 2 catalyst for the first and second reaction cycle are also lower than the barriers obtained for the formation of the pi-allyl radical that acts as the precursor to combustion products. On the basis of these computational results, we therefore expect a high catalytic selectivity of the Fe 3 (btc) 2 catalyst with respect to the formation of propylene oxide. We also compared the catalytic activities of Fe 3 (btc) 2 and Cu 3 (btc) 2 . The activation energy of the rate-determining step is almost 2 times lower for Fe 3 (btc) 2 than that for Cu 3 (btc) 2 , due to a larger charge transfer from the catalytic site to the O 2 molecule in the case of Fe 3 (btc) 2 .
Lu, Yang; Chen, Bo; Yu, Miao; Han, Juan; Wang, Yun; Tan, Zhenjiang; Yan, Yongsheng
2016-11-01
Smart polymer aqueous two phase flotation system (SPATPF) is a new separation and enrichment technology that integrated the advantages of the three technologies, i.e., aqueous two phase system, smart polymer and flotation sublation. Ethylene oxide and propylene oxide copolymer (EOPO)-(NH4)2SO4 SPATPF is a pretreatment technique, and it is coupled with high-performance liquid chromatography to analyze the trace ciprofloxacin and lomefloxacin in real food samples. The optimized conditions of experiment were determined in the multi-factor experiment by using response surface methodology. The flotation efficiency of lomefloxacin and ciprofloxacin was 94.50% and 98.23% under the optimized conditions. The recycling experimentsshowed that the smart polymer EOPO could use repeatedly, which will reduce the cost in the future application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ingram, Malcolm D; Imrie, Corrie T; Stoeva, Zlatka; Pas, Steven J; Funke, Klaus; Chandler, Howard W
2005-09-08
We demonstrate the use of activation energy versus activation volume "master plots" to explore ion transport in typical fragile glass forming systems exhibiting non-Arrhenius behavior. These systems include solvent-free salt complexes in poly(ethylene oxide) (PEO) and low molecular weight poly(propylene oxide) (PPO) and molten 2Ca(NO3)2.3KNO3 (CKN). Plots showing variations in apparent activation energy EA versus apparent activation volume VA are straight lines with slopes given by M = DeltaEA/DeltaVA. A simple ion transport mechanism is described where the rate determining step involves a dilatation (expressed as VA) around microscopic cavities and a corresponding work of expansion (EA). The slopes of the master plots M are equated to internal elastic moduli, which vary from 1.1 GPa for liquid PPO to 5.0 GPa for molten CKN on account of differing intermolecular forces in these materials.
NASA Astrophysics Data System (ADS)
Khattak, Abraiz; Amin, Muhammad; Iqbal, Muhammad; Abbas, Naveed
2018-02-01
Micro and nanocomposites of ethylene propylene diene monomer (EPDM) are recently studied for different characteristics. Study on life estimation and effects of multiple stresses on its dielectric strength and backbone scission and oxidation is also vital for endorsement of these composites for high voltage insulation and other outdoor applications. In order to achieve these goals, unfilled EPDM and its micro and nanocomposites are prepared at 23 phr micro silica and 6 phr nanosilica loadings respectively. Prepared samples are energized at 2.5 kV AC voltage and subjected for a long time to heat, ultraviolet radiation, acid rain, humidity and salt fog in accelerated manner in laboratory. Dielectric strength, leakage current and intensity of saturated backbone and carbonyl group are periodically measured. Loss in dielectric strength, increase in leakage current and backbone degradation and oxidation were observed in all samples. These effects were least in the case of EPDM nanocomposite. The nanocomposite sample also demonstrated longest shelf life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, L.M.
1979-05-01
This report reviews aspects of production, use, environmental exposure and biological effects of ethylene glycol, two isomers of propylene glycol (1,2- and 1,3-propanediol) and four isomers of butylene glycol (1,3-, 1,4-, 2,3-, and 1,2- butanediol). Annual production of ethylene glycol is about 3.7 billion pounds for use primarily in antifreeze and polyester fiber. About 0.5 billion pounds of 1,2-propanediol are produced per year for use in polyester resins, food, pharmaceuticals, and cellophane. Annual domestic demand for 1,4-butanediol is about 0.2 billion pounds for use in the production of tetra-hydrofuran and acetylenic chemicals. The other title glycols are of less importancemore » commercially. The major source of environmental contamination by ethylene glycol and 1,2-propanediol is likely from the disposal of spent antifreeze and de-icing fluids. However, limited monitoring data make it difficult to adequately assess environmental exposure to the glycols. The glycols are capable of being degraded by a variety of acclimated and unacclimated soil, water, and sewage microorganisms. In humans, ethylene glycol intoxication, usually as a result of accidental ingestion of antifreeze, may result in nausea, hypertension, tachycardia, cardiopulmonary failure, renal impairment, coma and death. 1,2-Propanediol is a GRAS food additive of low toxicity. 1,3-Butanediol has been studied as a source of dietary energy. Few studies are available on 1,2-, 2,3- and 1,4-butanediol or on 1,3-propanediol.« less
Performance Characteristics of Lithium Ion Polymeric Electrolyte Cells
NASA Technical Reports Server (NTRS)
Shen, D.; Nagasubramanian, G.; Huang, C-K.; Surampudi, S.; Halpert, G.
1994-01-01
A series of polyacrylonitrile-based (PAN) electrolytes containing LiAsF6 and a number of solvent mixtures including ethylene carbonate (EC) + propylene carbonate (PC) were prepared, electrochemically evaluated and used as electrolyte in the polymer cells.
Hydrazine-Compatible Elastomer
NASA Technical Reports Server (NTRS)
Markles, O., F.; Dye, T. G.
1982-01-01
Hydrazine hardly reacts with ethylene propylene diene monomer, even at high temperatures. According to report to tests, EPDM is most hydrazine-compatible material among elastomers. Has strong potential as valve-seat and O-ring seal with hydrazine, especially at high temperatures.
NASA Astrophysics Data System (ADS)
Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.
2011-01-01
Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.
Kumar, P V Anil; Anilkumar, S; Varughese, K T; Thomas, Sabu
2012-01-15
Polymer membranes were prepared by blending high density polyethylene (HDPE) with ethylene propylene diene terpolymer rubber (EPDM). These blend membranes were evaluated for the selective separation of n-hexane from acetone. The flux and selectivity of the membranes were determined both as a function of the blend composition and feed mixture composition. Results showed that polymer blending method could be very useful to develop new membranes with improved selectivity. Pervaporation properties could be optimized by adjusting the blend composition. The effects of blend ratio, feed composition, and penetrant size on the pervaporation process were analyzed. The permeation properties have been explained on the basis of interaction between the membrane and solvents and blend morphology. Flux increases with increasing alkane content in the feed composition. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stiegman, A. E.; Brinza, David E.; Laue, Eric G.; Anderson, Mark S.; Liang, Ranty H.
1992-01-01
A micrographic investigation is reported of samples of the fluorinated ethylene propylene (FEP) Teflon thermal-blanketing materials recovered from the Long-Duration Exposure Facility (LDEF) satellite. The samples are taken from the trailing edge and row 8 which correspond to exposures to vacuum UV (VUV) and VUV + atomic O, respectively. Data are taken from SEM and IR-spectra observations, and the LDEF leading-edge FEP shows a high degree of erosion, roughening, and sharp peaks angled in the direction of the flow of atomic O. The trailing edge sample influenced primarily by VUV shows a hard brittle layer and some cracked mosaic patterns. Comparisons to a reference sample suggest that the brittle layer is related to exposure to VUV and is removed by atomic-O impingement. Polymers that are stable to VUV radiation appear to be more stable in terms of atomic oxygen.
NASA Astrophysics Data System (ADS)
Seguchi, Tadao; Tamura, Kiyotoshi; Ohshima, Takeshi; Shimada, Akihiko; Kudoh, Hisaaki
2011-02-01
Radiation and thermal degradation of ethylene-propylene rubber (EPR) and crosslinked polyethylene (XLPE) as cable insulation materials were investigated by evaluating tensile properties, gel-fraction, and swelling ratio, as well as by the infrared (FTIR) analysis. The activation energy of thermal oxidative degradation changed over the range 100-120 °C for both EPR and XLPE. This may be attributed to the fact that the content of an antioxidant used as the stabilizer for polymers decreases by evaporation during thermal ageing at high temperatures. The analysis of antioxidant content and oxidative products in XLPE as a model sample showed that a small amount of antioxidant significantly reduced the extent of thermal oxidation, but was not effective for radiation induced oxidation. The changes in mechanical properties were well reflected by the degree of oxidation. A new model of polymer degradation mechanisms was proposed where the degradation does not take place by chain reaction via peroxy radical and hydro-peroxide. The role of the antioxidant in the polymer is the reduction of free radical formation in the initiation step in thermal oxidation, and it could not stop radical reactions for either radiation or thermal oxidation.
Cui, Xiangzhi; Hua, Zile; Wei, Chenyang; Shu, Zhu; Zhang, Liangxia; Chen, Hangrong; Shi, Jianlin
2013-02-01
A meostructured WO(3)/C composite with crystalline framework and high electric conductivity has been synthesized by a new in situ carbonization-replication route using the block copolymer (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) present in situ in the pore channels of mesoporous silica template as carbon source. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, thermogravimetry differential thermal analysis, and N(2) adsorption techniques were adopted for the structural characterization. Cyclic voltammetry, chronoamperometry, and single-cell test for hydrogen electrochemical oxidation were adopted to characterize the electrochemical activities of the mesoporous WO(3)/C composite. The carbon content and consequent electric conductivity of these high-surface-area (108-130 m(2) g(-1)) mesostructured WO(3)/C composite materials can be tuned by variation of the duration of heat treatment, and the composites exhibited high and stable electrochemical catalytic activity. The single-cell test results indicated that the mesostructured WO(3)/C composites showed clear electrochemical catalytic activity toward hydrogen oxidation at 25 °C, which makes them potential non-precious-metal anode catalysts in proton exchange membrane fuel cell. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Balaji, Ananad Bellam; Ratnam, Chantara Thevy; Khalid, Mohammad; Walvekar, Rashmi
2018-03-01
The effect of electron beam radiation on ethylene-propylene diene terpolymer/polypropylene blends is studied as an attempt to develop radiation sterilizable polypropylene/ethylene-propylene diene terpolymer blends suitable for medical devices. The polypropylene/ethylene-propylene diene terpolymer blends with mixing ratios of 80/20, 50/50, 20/80 were prepared in an internal mixer at 165°C and a rotor speed of 50 rpm/min followed by compression molding. The blends and the individual components were radiated using 3.0 MeV electron beam accelerator at doses ranging from 0 to 100 kGy in air and room temperature. All the samples were tested for tensile strength, elongation at break, hardness, impact strength, and morphological properties. After exposing to 25 and 100 kGy radiation doses, 50% PP blend was selected for in vivo studies. Results revealed that radiation-induced crosslinking is dominating in EPDM dominant blends, while radiation-induced degradation is prevailing in PP dominant blends. The 20% PP blend was found to be most compatible for 20-60 kGy radiation sterilization. The retention in impact strength with enhanced tensile strength of 20% PP blend at 20-60 kGy believed to be associated with increased compatibility between PP and EPDM along with the radiation-induced crosslinking. The scanning electron micrographs of the fracture surfaces of the PP/EPDM blends showed evidences consistent with the above contentation. The in vivo studies provide an instinct that the radiated blends are safe to be used for healthcare devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lei; Yin, Chunrong; Mehmood, Faisal
2013-11-21
Sub-nanometer Ag aggregates on alumina supports have been found to be active toward direct propylene epoxidation to propylene oxide by molecular oxygen at low temperatures, with a negligible amount of carbon dioxide formation (Science 328, p. 224, 2010). In this work, we computationally and experimentally investigate the origin of the high reactivity of the sub-nanometer Ag aggregates. Computationally, we study O 2 dissociation and propylene epoxidation on unsupported Ag 19 and Ag 20 clusters, as well as alumina-supported Ag 19. The O 2 dissociation and propylene epoxidation apparent barriers at the interface between the Ag aggregate and the alumina supportmore » are calculated to be 0.2 and 0.2~0.4 eV, respectively. These barriers are somewhat lower than those on sites away from the interface. The mechanism at the interface is similar to what was previously found for the silver trimer on alumina and can account for the high activity observed for the direct oxidation of propylene on the Ag aggregates. The barriers for oxygen dissociation on these model systems both at the interface and on the surfaces are small compared to crystalline surfaces, indicating that availability of oxygen will not be a rate limiting step for the aggregates, as in the case of the crystalline surfaces. Experimentally, we investigate Ultrananocrystalline Diamond (UNCD)-supported silver aggregates under reactive conditions of propylene partial oxidation. The UNCD-supported Ag clusters are found to be not measurably active toward propylene oxidation, in contrast to the alumina supported Ag clusters. This suggests that the lack of metal-oxide interfacial sites of the Ag-UNCD catalyst, limits the epoxidation catalytic activity. This combined computational and experimental study shows the importance of the metal-oxide interface as well as the non-crystalline nature of the alumina-supported sub-nanometer Ag aggregate catalysts for propylene epoxidation.« less
Stabilization effects of naringenin and caffeic acid on γ-irradiatedEPDM
NASA Astrophysics Data System (ADS)
Zaharescu, T.; Jipa, S.; Mantsch, A.; Henderson, D.
2013-03-01
The stabilization of ethylene-propylene diene rubber (EPDM) with naringenin and caffeic acid is studied. The selected concentrations were 0.25, 0.50 and 1 phr. The degradation was performed by γ-irradiation. The protective effect of these antioxidants was investigated by isothermal chemiluminescence at 170 °C and FTIR spectroscopy. The synergetic action of these compounds and metallic selenium was also revealed. The exceptional contribution provided by these phenolic stabilizers is characterized by three kinetic parameters: initial CL intensity, oxidation induction time and maximum period of degradation. The radiation stability of stabilized EPDM is efficiently depicted by induction periods which are the minimum 6times longer for unirradiated samples and 2-50 times longer for 50 kGy-irradiated specimens than pristineEPDM.
A study of the UV and VUV degradation of FEP
NASA Technical Reports Server (NTRS)
George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.
1993-01-01
UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.
Samal, Alaka; Das, Dipti P; Madras, Giridhar
2018-02-13
The same copper phosphate catalysts were synthesized by obtaining the methods involving solid state as well as liquid state reactions in this work. And then the optimised p-n hybrid junction photocatalysts have been synthesized following the same solid/liquid reaction pathways. The synthesized copper phosphate photocatalyst has unique rod, flower, caramel-treat-like morphology. The Mott-Schottky behavior is in accordance with the expected behavior of n-type semiconductor and the carrier concentration was calculated using the M-S analysis for the photocatalyst. And for the p-n hybrid junction of 8RGO-Cu 3 (PO 4 ) 2 -PA (PA abbreviated for photoassisted synthesis method), 8RGO-Cu 3 (PO 4 ) 2 -EG(EG abbreviated for Ethylene Glycol based synthesis method), 8RGO-Cu 3 (PO 4 ) 2 -PEG (PEG abbreviated for Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol based synthesis method)the amount of H 2 synthesized was 7500, 6500 and 4500 µmol/h/g, respectively. The excited electrons resulting after the irradiation of visible light on the CB of p-type reduced graphene oxide (RGO) migrate easily to n-type Cu 3 (PO 4 ) 2 via. the p-n junction interfaces and hence great charge carrier separation was achieved.
Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister
2010-02-02
The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.
Su, Zheng; Wen, Qing; Xu, Yunjie
2006-05-24
The 1:1 molecular adduct of propylene oxide and water (PO-H(2)O) was studied using Fourier transform microwave spectroscopy and high level ab initio methods. Two distinct structural conformers with the water molecule acting as a proton donor were detected experimentally: one with the water on the same side as the methyl group with respect to the ether ring, i.e., syn-PO-H(2)O, the other with the water molecule binding to the O-atom from the opposite side of the methyl group, i.e., anti-PO-H(2)O. The nonbonded hydrogen is entgegen to the ether ring in both conformers. Rotational spectra of four isotopic species, namely PO-H(2)O, PO-DOH, PO-HOD, and PO-D(2)O, were recorded for the two conformers. The hydrogen bond parameters: r(O(epoxy)...H), angle(ring-O(epoxy)...H), and angle(O(epoxy)...H-O) are 1.908 A, 112 degrees, and 177 degrees for syn-PO-H(2)O, and 1.885 A, 104.3 degrees, and 161.7 degrees for anti-PO-H(2)O, respectively. The experimental results suggest that the hydrogen bond in syn-PO-H(2)O is stronger and the monomer subunits are more rigidly locked in their positions than in the ethylene oxide-water adduct. The stabilizing effect of the methyl group to the intermolecular hydrogen bond is discussed in terms of the experimentally estimated binding energies, the structural parameters, and the ab initio calculations.
LINERS FOR SANITARY LANDFILLS AND CHEMICAL AND HAZARDOUS WASTE DISPOSAL SITES
This report lists addresses of sanitary landfills and chemical and hazardous waste disposal sites and holding ponds with some form of impermeable lining. Liners included are polyethylene, polyvinyl chloride, Hypalon R, ethylene propylene diene monomer, butyl rubber, conventional ...
New Linear and Star-Shaped Thermogelling Poly([R]-3-hydroxybutyrate) Copolymers.
Barouti, Ghislaine; Liow, Sing Shy; Dou, Qingqing; Ye, Hongye; Orione, Clément; Guillaume, Sophie M; Loh, Xian Jun
2016-07-18
The synthesis of multi-arm poly([R]-3-hydroxybutyrate) (PHB)-based triblock copolymers (poly([R]-3-hydroxybutyrate)-b-poly(N-isopropylacrylamide)-b-[[poly(methyl ether methacrylate)-g-poly(ethylene glycol)]-co-[poly(methacrylate)-g-poly(propylene glycol)
ERIC Educational Resources Information Center
Betker, Edward
1998-01-01
Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)
Integrated process and dual-function catalyst for olefin epoxidation
Zhou, Bing; Rueter, Michael
2003-01-01
The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.
Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe
2018-05-09
The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.
Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M
2013-07-07
A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.
Liu, Hui; Wang, Kai; Yang, Cangjie; Huang, Shuo; Wang, Mingfeng
2017-09-01
Polymeric micelles loaded with multiple therapeutic modalities are important to overcome challenges such as drug resistance and improve the therapeutic efficacy. Here we report a new polymer micellar drug carrier that integrates chemotherapy and photothermal therapy in a single platform. Specifically, a narrow bandgap poly(dithienyl-diketopyrrolopyrrole) (PDPP) polymer was encapsulated together with a model anticancer drug doxorubicin (DOX) in the hydrophobic cores of polymeric micelles formed by Pluronic F127, an amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. The PDPP polymer served as an organic photothermal agent that absorbs near-infrared light (700-1000nm) and transforms into heat efficiently. The dual functional micelles co-loaded with PDPP and DOX in the hydrophobic compartment showed good colloidal stability after being stored at 4°C at least over two months, and remained visibly stable after 808-nm laser irradiation. The loaded DOX had negligible effect on the size and photothermal property of the micelles. The release of DOX from the micelles could be enhanced by the "breathing" effect of shrinking/swelling of the micelles induced by the temperature change, owing to the thermosensitive nature of the F127 polymers. Importantly, the ternary F127/PDPP/DOX micelles under 808-nm laser irradiation showed enhanced cytotoxicity against cancer cells such as HeLa cells, compared to F127 micelles containing single modality of either PDPP or DOX only. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Wagner, Norman J.; Porcar, Lionel
2015-05-15
The rheology and three-dimensional microstructure of a concentrated viscoelastic solution of the triblock copolymer poly(ethylene oxide){sub 106}-poly(propylene oxide){sub 68}-poly(ethylene oxide){sub 106} (Pluronic F127) in the protic ionic liquid ethylammonium nitrate are measured by small angle neutron scattering (SANS) under flow in three orthogonal planes. This solution's shear-thinning viscosity is due to the formation of two-dimensional hexagonal close-packed (HCP) sliding layer structure. Shear-melting of the crystalline structure is observed without disruption of the self-assembled micelles, resulting in a change in flow properties. Spatially resolved measurements in the 1–2 plane reveal that both shear-melting and sliding are not uniform across the Couettemore » gap. Melting and recrystallization of the HCP layers occur cyclically during a single large amplitude oscillatory shear (LAOS) cycle, in agreement with the “stick-slip” flow mechanism proposed by Hamley et al. [Phys. Rev. E 58, 7620–7628 (1998)]. Analysis of 3D “structural” Lissajous curves show that the cyclic melting and sliding are direct functions of the strain rate amplitude and show perfect correlation with the cyclic stress response during LAOS. Both viscosity and structural order obey the Delaware–Rutgers rule. Combining rheology with in situ spatiotemporally resolved SANS is demonstrated to elucidate the structural origins of the nonlinear rheology of complex fluids.« less
Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie
2013-09-05
This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.
EVALUATION OF SINK EFFECTS ON VOCS FROM A LATEX PAINT
The sink strength of two common indoor materials, a carpet and a gypsum board, was evaluated by environmental chamber tests with four volatile organic compounds (VOCs): propylene glycol, ethylene glycol, 2-(2-butoxyethoxy)ethanol (BEE), and texanol. These oxygenated compounds rep...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... natural gas liquids (NGLs), propylene, and ethylene between the United States and Canada. Lines 16, 18 and... maintenance at the borders of the United States, of facilities for the exportation or importation of liquid...
Thermal Insulation Chemical Composition and Method of Manufacture.
conditions in high temperature solid propellant gas generators can be formed of an ethylene propylene, diene monomer ( EPDM )-neoprene rubber binders containing...silica powder filler and aramid fibers. The specific chemical constituents include EPDM elastomer, 2 Chlorobutadiene 1,3 elastomer, Silica hydrate
Surface characterisation of ethylene propylene diene rubber upon exposure to aqueous acidic solution
NASA Astrophysics Data System (ADS)
Mitra, Susanta; Ghanbari-Siahkali, Afshin; Kingshott, Peter; Hvilsted, Søren; Almdal, Kristoffer
2006-07-01
Two types of pure ethylene propylene diene rubbers were exposed to two different acids for varying period of time. Surface characterisation was carried out using X-ray photoelectron spectroscopy (XPS). Two EPDM rubbers selected for this study were comparable in co-monomer compositions but significantly different with respect to molar mass and the presence of long chain branching. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were exposed in two different acidic solutions, viz. chromosulphuric (Cr (VI)/H 2SO 4) and sulphuric acid (H 2SO 4) (20%, v/v) at ambient temperature from 1 to 12 weeks. XPS analysis indicated that several oxygenated species were formed on the surface of both rubbers after exposure. It was postulated from the XPS analyses that both aqueous acidic solutions attacked the olefinic double bonds (C dbnd C) of ENB. Furthermore, 20% Cr (VI)/H 2SO 4 also attacked the allylic carbon-hydrogen (C sbnd H) bonds of ENB resulting in more oxygenated species on the surface compared to 20% H 2SO 4 under identical conditions. Cr (VI) in the 20% Cr (VI)/H 2SO 4 was found to play an important role in alteration of surface chemistry. Studies using a model system consisting of EPDM mixed with Cr (VI) and Cr (III) salts revealed that the change of oxidation state from Cr (VI) to Cr (III) as a consequence of direct involvement of Cr (VI) in the chemical alteration of EPDM surfaces. Interestingly, the presence of long chain branching and molar mass did not significantly influence the chemical processes owing to the acid treatment.
Federal Register notice: Propylene Oxide; Testing Requirements
This final rule promulgated under section 4(a) of the Toxic Substances Control Act (TSCA) requires manufacturers and processors of propylene oxide (CAS No. 75-58-9) to test this chemical for developmental toxicity.
NASA Technical Reports Server (NTRS)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.
2017-01-01
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.
NASA Astrophysics Data System (ADS)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.
2017-02-01
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.
Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.
Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J
2003-12-15
A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.
Vian, Alex M; Higgins, Adam Z
2014-02-01
Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.
Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study.
Leggesse, Ermias Girma; Lin, Rao Tung; Teng, Tsung-Fan; Chen, Chi-Liang; Jiang, Jyh-Chiang
2013-08-22
This paper reports an in-depth mechanistic study on the oxidative decomposition of propylene carbonate in the presence of lithium salts (LiClO4, LiBF4, LiPF6, and LiAsF6) with the aid of density functional theory calculations at the B3LYP/6-311++G(d,p) level of theory. The solvent effect is accounted for by using the implicit solvation model with density method. Moreover, the rate constants for the decompositions of propylene carbonate have been investigated by using transition-state theory. The shortening of the original carbonyl C-O bond and a lengthening of the adjacent ethereal C-O bonds of propylene carbonate, which occurs as a result of oxidation, leads to the formation of acetone radical and CO2 as a primary oxidative decomposition product. The termination of the primary radical generates polycarbonate, acetone, diketone, 2-(ethan-1-ylium-1-yl)-4-methyl-1,3-dioxolan-4-ylium, and CO2. The thermodynamic and kinetic data show that the major oxidative decomposition products of propylene carbonate are independent of the type of lithium salt. However, the decomposition rate constants of propylene carbonate are highly affected by the lithium salt type. On the basis of the rate constant calculations using transition-state theory, the order of gas volume generation is: [PC-ClO4](-) > [PC-BF4](-) > [PC-AsF6](-) > [PC-PF6](-).
NASA Astrophysics Data System (ADS)
Hany, Sara; Skaf, Mira; Aouad, Samer; Gennequin, Cédric; Labaki, Madona; Abi-Aad, Edmond; Aboukaïs, Antoine
2018-03-01
Three different types of Ag2+ ions ("a", "b", and "c") have been identified and examined by electron paramagnetic resonance (EPR) on 10% wt Ag/CeO2 prepared by impregnation method. One of them, Ag2+(b), behaves differently than the two others, Ag2+(a) and Ag2+(c), under redox atmospheres. The fact that, in reducing conditions (vacuum, propylene, hydrogen, and carbon black), Ag2+(a) and Ag2+(c) species were more easily reduced than Ag2+(b) ones, could not explain the catalytic performance and stability of this latter species compared to the first ones in the reaction of total oxidation of propylene. The EPR technique evidenced that Ag2+(b) species form, upon propene oxidation, a cluster. This cluster is composed of two parallel electron spins (dimer) and three nuclear spins (trimer). It seems that before propylene oxidation, Ag2+(b) clusters were ferromagnetic. This ferromagnetic character of Ag2+(b) species may explain their better catalytic performance, in propylene oxidation, than those of Ag2+(a) and Ag2+(c) ones.
Understanding Roofing Systems.
ERIC Educational Resources Information Center
Michelsen, Ted
2001-01-01
Reviews the various types of multi- and single-ply roofing commonly used today in educational facilities. Roofing types described involve built-up systems, modified bitumen systems; ethylene propylene diene terpolymer roofs; and roofs of thermoplastic, metal, and foam. A description of the Roofing Industry Educational Institute is included. (GR)
Code of Federal Regulations, 2012 CFR
2012-07-01
... operation operated in a batch mode. Block polymer means a polymer where the polymerization is controlled... frequent block average values. Continuous unit operation means a unit operation operated in a continuous... (EPM) result from the polymerization of ethylene and propylene and contain a saturated chain of the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operation operated in a batch mode. Block polymer means a polymer where the polymerization is controlled... frequent block average values. Continuous unit operation means a unit operation operated in a continuous... (EPM) result from the polymerization of ethylene and propylene and contain a saturated chain of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation operated in a batch mode. Block polymer means a polymer where the polymerization is controlled... frequent block average values. Continuous unit operation means a unit operation operated in a continuous... (EPM) result from the polymerization of ethylene and propylene and contain a saturated chain of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hongyang; Chu, Benjamin; Hsiao, Benjamin S.
Fluorinated ionic liquid (F-IL), 1-(3-perfluorooctylpropyl)-3-methylimidazolium bis(perfluoroethylsufonyl)amine, had been successfully prepared and employed to modify multi-wall carbon nanotubes (MWCNTs) for improving the processability of fluoro-ethylene-propylene (FEP). The thermally decomposed temperature of F-IL was higher than 350 °C measured by thermal gravimetric analysis (TGA) which indicated that the fluorinated ionic liquid could be suitable for melting blend with FEP (blending at 290 °C) by a twin-screw extruder. Through “cation-π” interaction between the imidazolium cation of F-IL and the graphene surface of MWCNTs, MWCNTs can be modified with F-IL and used as nanofillers to improve the dispersity of MWCNTs in fluorocopolymer FEP verifiedmore » by SEM images of the FEP nanocomposite. The structural characterization and mechanical property of FEP nanocomposite during the deformation were investigated by tensile experiments and simultaneous time-resolved wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques.« less
Detection of Carbon Monoxide Using Polymer-Carbon Composite Films
NASA Technical Reports Server (NTRS)
Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.
2011-01-01
A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M., E-mail: Reggie.Hudson@nasa.gov
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal andmore » acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.« less
Song, Hyon-Min; Zink, Jeffrey I
2018-04-10
Seedless synthesis of Pd nanorods and their self-assembly into the layered smectic ordering are described. Aqueous Pluronic triblock copolymers (14.3-35.7%) are used as a soft template along with cetyltrimethylammonium bromide for inducing one-dimensional growth of Pd nanorods. Pluronic triblock copolymers are probably the most used polymer surfactants, and they are composed of poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO triblocks. Neither pH adjustment nor AgNO 3 and other additives, such as poly(vinyl pyrrolidone) and ethylene glycol, are required to obtain Pd nanorods. Sonochemical synthesis at 43 °C, followed by thermal annealing for 1 h at 65 °C produces Pd nanorods with the aspect ratio from 3.1 (17.9%, Pluronic L-64) to 6.7 (35.7%, Pluronic P-123). Two-dimensional self-assembly of the nanorods is observed, and both nematic ordering between the mesogens and smectic ordering between the layers is identified. Micellar hydrophobic PPO with hydrated PEO coronas are known to self-assemble into many crystalline orders, including cubic, hexagonal, lamellar, and inverse hexagonal mesophases, which extend into cylindrical micelles with increasing temperature. Relatively small size of Pluronic copolymers with regard to general polymers, but rather large size of their micelles and their tendency to organize into crystalline mesophases are thought to contribute to the anisotropic growth of Pd nanorods.
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.
2009-01-01
Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen depletion (from 21 to 19.5 %), for testing the "64/36" surrogate fuel in Langley s Arc-Heated Scramjet Test Facility for HIFiRE engine designs. The FS results show a generally small (< 4 %) "nitric oxide enhancement" effect, relative to clean air, for up to 3 % NO (freestream Mach number up to 7 in Arc Jet testing). However, a progressively large "oxygendeficiency weakening" effect develops. For 3 % NO, a net weakening of 26 % in FS is derived for the "64/36" fuel vs. air. The corresponding net weakening for pure ethylene is 20 %. A number of practical recommendations regarding facility test effects are offered.
Comprehensive two-dimensional liquid chromatographic analysis of poloxamers.
Malik, Muhammad Imran; Lee, Sanghoon; Chang, Taihyun
2016-04-15
Poloxamers are low molar mass triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), having number of applications as non-ionic surfactants. Comprehensive one and two-dimensional liquid chromatographic (LC) analysis of these materials is proposed in this study. The separation of oligomers of both types (PEO and PPO) is demonstrated for several commercial poloxamers. This is accomplished at the critical conditions for one of the block while interaction for the other block. Reversed phase LC at CAP of PEO allowed for oligomeric separation of triblock copolymers with regard to PPO block whereas normal phase LC at CAP of PPO renders oligomeric separation with respect to PEO block. The oligomeric separation with regard to PEO and PPO are coupled online (comprehensive 2D-LC) to reveal two-dimensional contour plots by unconventional 2D IC×IC (interaction chromatography) coupling. The study provides chemical composition mapping of both PEO and PPO, equivalent to combined molar mass and chemical composition mapping for several commercial poloxamers. Copyright © 2016 Elsevier B.V. All rights reserved.
Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie
2000-01-01
Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.
Zhao, Xiaobin; Courtney, James M
2009-07-01
In this article, a novel approach for the surface modification of polymeric biomaterials by the utilization of supramolecules was studied. The supramolecules selected were cyclodextrin inclusion complexes (CICs). The biomaterial selected for surface modification was plasticized poly (vinyl chloride) (PVC-P). Results indicate that when the CICs were blended into PVC-P, they tend to migrate and "anchor" on the surface to achieve a remarkable protein-resistant surface, with improved blood compatibility. In comparison with a physical mixture of cyclodextrins and a "guest" molecule, such as poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO and PPO-PEO-PPO for PVC-P modification, CICs modified PVC-P are more consistent in processing and achieve reproducible surface characteristics. Based on this study, a novel "anchor modification" was proposed regarding CICs modified surface. This "anchor modification" is likely to reduce plasticizer extraction from PVC-P and also can be utilized for the modification of polymers other than PVC-P.
Integrated Risk Information System (IRIS)
Propylene oxide ; CASRN 75 - 56 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef
E-cigarette liquids: Constancy of content across batches and accuracy of labeling.
Etter, Jean-François; Bugey, Aurélie
2017-10-01
To assess whether bottles of refill liquids for e-cigarettes were filled true to label, whether their content was constant across two production batches, and whether they contained impurities. In 2013, we purchased on the Internet 18 models from 11 brands of e-liquids. We purchased a second sample of the same models 4months later. We analyzed their content in nicotine, anabasine, propylene glycol, glycerol, ethylene glycol and diethylene glycol, and tested their pH. The median difference between the nicotine value on the labels and the nicotine content in the bottles was 0.3mg/mL (range -5.4 to +3.5mg/mL, i.e. -8% to +30%). For 82% of the samples, the actual nicotine content was within 10% of the value on the labels. All models contained glycerol (median 407mg/mL), and all but three models contained propylene glycol (median 650mg/mL). For all samples, levels of anabasine, ethylene glycol and diethylene glycol were below our limits of detection. The pH of all the e-liquids was alkaline (median pH=9.1; range 8.1 to 9.9). The measured content of two batches of the same model varied by a median of 0% across batches for propylene glycol, 1% for glycerol, 0% for pH, and 0.5% for nicotine (range -15% to +21%; 5th and 95th percentiles: -15% and +10%). The nicotine content of these e-liquids matched the labels on the bottles, and was relatively constant across production batches. The content of propylene glycol and glycerol was also stable across batches, as was the pH. Copyright © 2017. Published by Elsevier Ltd.
Selective tuning of the self-assembly and gelation of a hydrophilic poloxamine by cyclodextrins.
González-Gaitano, Gustavo; da Silva, Marcelo A; Radulescu, Aurel; Dreiss, Cécile A
2015-05-26
Complexes formed between cyclodextrins (CDs) and polymers - pseudopolyrotaxanes (PPRs) - are the starting point of a multitude of supramolecular structures, which are proposed for a wide range of biomedical and technological applications. In this work, we investigate the complexation of a range of cyclodextrins with Tetronic T1307, a four-arm block copolymer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) with a pH-responsive central ethylene diamine spacer, and its impact on micellization and the sol-gel transition. At low concentrations, small-angle neutron scattering (SANS) combined with dynamic light scattering (DLS) measurements show the presence of spherical micelles with a highly hydrated shell and a dehydrated core. Increasing the temperature leads to more compact micelles and larger aggregation numbers, whereas acidic conditions induce a shrinking of the micelles, with fewer unimers per micelle and a more hydrated corona. At high concentrations, T1307 undergoes a sol-gel transition, which is suppressed at pH below the pKa,1 (4.6). SANS data analysis reveals that the gels result from a random packing of the micelles, which have an increasing aggregation number and increasingly dehydrated shell and hydrated core with the temperature. Native CDs (α, β, γ-CD) can complex T1307, resulting in the precipitation of a PPR. Instead, modified CDs compete with micellization to an extent that is critically dependent on the nature of the substitution. (1)H and ROESY NMR combined with SANS demonstrate that dimethylated β-CD can thread onto the polymer, preferentially binding to the PO units, thus hindering self-aggregation by solubilizing the hydrophobic block. The various CDs are able to modulate the onset of gelation and the extent of the gel phase, and the effect correlates with the ability of the CDs to disrupt the micelles, with the exception of a sulfated sodium salt of β-CD, which, while not affecting the CMT, is able to fully suppress the gel phase.
Properties and characteristics of dual-modified rice starch based biodegradable films.
Woggum, Thewika; Sirivongpaisal, Piyarat; Wittaya, Thawien
2014-06-01
In this study, the dual-modified rice starch was hydroxypropylated with 6-12% of propylene oxide followed by crosslinking with 2% sodium trimetaphosphate (STMP) and a mixture of 2% STMP and 5% sodium tripolyphosphate (STPP). Increasing the propylene oxide concentrations in the DMRS yielded an increase in the molar substitution (MS) and degree of substitution (DS). However, the gelatinization parameters, paste properties, gel strength and paste clarity showed an inverse trend. The biodegradable films from the DMRS showed an increase the tensile strength, elongation at break and film solubility, while the transparency value decreased when the concentration of propylene oxide increased. However the water vapor permeability of the films did not significantly change with an increase in the concentration of propylene oxide. In addition, it was found that DMRS films crosslinked with 2% STMP demonstrated higher tensile strength, transparency value and lower water vapor permeability than the DMRS films crosslinked with a mixture of 2% STMP and 5% STPP. The XRD analysis of the DMRS films showed a decrease in crystallinity when the propylene oxide concentrations increased and the crystallinity of DMRS films with 2% STMP were higher than the DMRS films with a mixture of 2% STMP and 5% STPP. Copyright © 2014 Elsevier B.V. All rights reserved.
2010-04-01
PAB 17 2.5.2 PAB/SPC Mixtures 17 2.5.3 PAB/SPC Mixtures with Ethylene Carbonate 19 2.5.4 Peroxydone/PAB Mixtures 19 2.5.4.1 Chem Agent Testing 19...Effect of Surfactant and Ethylene Carbonate (EC) Penetrant on Decontamination of HD on CARC Painted Panels 20 5. Effect of Surfactant, Alone, on...previous peroxide-based decontaminants7 (i.e., Triton® X-100 (non-ionic surfactant) and propylene carbonate [PC]) could not be used. However, there
Chen, Shu; Li, Ying; Guo, Chen; Wang, Jing; Ma, Junhe; Liang, Xiangfeng; Yang, Liang-Rong; Liu, Hui-Zhou
2007-12-04
In this study, temperature-responsive magnetite/polymer nanoparticles were developed from iron oxide nanoparticles and poly(ethyleneimine)-modified poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer. The particles were characterized by TEM, XRD, DLS, VSM, FTIR, and TGA. A typical product has an approximately 20 nm magnetite core and an approximately 40 nm hydrodynamic diameter with a narrow size distribution and is superparamagnetic with large saturation magnetization (51.34 emu/g) at room temperature. The most attractive feature of the nanoparticles is their temperature-responsive volume-transition property. DLS results indicated that their average hydrodynamic diameter underwent a sharp decrease from 45 to 25 nm while evaluating the temperature from 20 to 35 degrees C. The temperature-dependent evolution of the C-O stretching band in the FTIR spectra of the aqueous nanoparticles solution revealed that thermo-induced self-assembly of the immobilized block copolymers occurred on the magnetite solid surfaces, which is accompanied by a conformational change from a fully extended state to a highly coiled state of the copolymer. Consequently, the copolymer shell could act as a temperature-controlled "gate" for the transit of guest substance. The uptake and release of both hydrophobic and hydrophilic model drugs were well controlled by switching the transient opening and closing of the polymer shell at different temperatures. A sustained release of about 3 days was achieved in simulated human body conditions. In primary mouse experiments, drug-entrapped magnetic nanoparticles showed good biocompatibility and effective therapy for spinal cord damage. Such intelligent magnetic nanoparticles are attractive candidates for widespread biomedical applications, particularly in controlled drug-targeting delivery.
Copolymers from photochemical thiol-ene polycondensation of fatty dienes with alkyl dithiols
USDA-ARS?s Scientific Manuscript database
Photochemical thiol-ene polycondensation of unsaturated monomers based on renewable 9-decenoic acid with various alkyl dithiols readily afforded copolymers in high yield. Monomers were prepared by acid-catalyzed condensation of 9-decenoic acid with diols such as ethylene glycol, 1,2-propylene glycol...
Laser Processing for Interconnect Technology
1992-02-27
2.1 0.0002 - available in film ethylene- - insoluble propylene (FEP) Perfluoroalkoxy ( PFA ) Teflon AF Amorphous DuPont 1.9 0.0002 - soluble form...t,) where the pulse is sorption coefficient, hv is the photon energy, and f is the a maximum at the surface at time t0. The distance marker fraction
New reaction conditions and stereochemical control elements for heterodimerization between ethylene (or propylene) and functionalized vinyl arenes are highlighted (see equation). For example, an enantioselective version of the hydrovinylation reaction uses [{(allyl)NiBr}...
Isakau, Henadz; Robert, Marielle; Shingel, Kirill I
2009-04-05
The paper describes the development and validation of a new derivatization-free liquid chromatography method for simultaneous determination of propylene glycol and formaldehyde in the formulations containing formaldehyde-releasing preservative. Highly swollen hydrogel made of poly(ethylene glycol)-protein conjugates was taken as a model formulation for integration of the propylene glycol and the diazolydinyl urea as formaldehyde releaser. The method is shown to be simple and selective and, more importantly, allows determining an existing level of formaldehyde at the moment of analysis instead of all available formaldehyde that might be released during chemical derivatization. After liquid extraction the propylene glycol (PG) and formaldehyde (FA) amounts are determined chromatographically on a Shodex SH 1011 ligand-exchange column using 0.01 M sulfuric acid mobile phase, a flow rate of 1.0 ml/min and RI detection. The assay is validated showing good linearity, precision, and accuracy. The limits of detection of formaldehyde and propylene glycol in the analyzed solutions were estimated to be 25 ng and 87 ng, respectively. This analytical assay is considered useful for product stability studies and in developing new formaldehyde releaser-containing formulations where the concentration of formaldehyde is a presumable subject of labeling requirements. This method can also provide a rapid and convenient alternative to gas chromatography method of propylene glycol quantification.
Hu, Michael Z.; Lai, Peng
2015-09-22
Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed tomore » explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.« less
Gu, Xiaochen; Kasichayanula, Sreeneeranj; Fediuk, Daryl J; Burczynski, Frank J
2004-05-01
The permeation behaviours of the insect repellent N,N-diethyl-m-toluamide (DEET) and the sunscreen oxybenzone were assessed in a series of in-vitro diffusion studies, using piglet skin and poly (dimethylsiloxane) (PDMS) membrane. The transmembrane permeability of DEET and oxybenzone across piglet skin and PDMS membrane was dependent on dissolving vehicles and test concentrations. An enhanced permeation increase across piglet skin was found for DEET and oxybenzone when both compounds were present in the same medium (DEET: 289% in propylene glycol, 243% in ethanol and 112% in poly(ethylene glycol) (PEG-400); oxybenzone: 139% in PEG-400, 120% in propylene glycol and 112% in ethanol). Permeation enhancement was also observed in PDMS membrane (DEET: 207% in ethanol, 124% in PEG-400 and 107% in propylene glycol; oxybenzone: 254% in PEG-400, 154% in ethanol and 105% in propylene glycol). PDMS membrane was found to be a suitable candidate for in-vitro diffusion evaluations. This study shows that the permeations of the insect repellent DEET and the sunscreen oxybenzone were synergistically enhanced when they were applied simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
YU,KUI; BRINKER,C. JEFFREY; HURD,ALAN J.
2000-11-22
Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore,more » templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through EISA. It is believed that the present system is the first to yield amphiphile/silica films with regular and reverse mesophases, as well as curved multi-bilayer mesostructures, through EISA. The ready formation of the diblock/silica films with multi-bilayer vesicular mesostructures is discussed.« less
Quantifying residues from postharvest fumigation of almonds and walnuts with propylene oxide
USDA-ARS?s Scientific Manuscript database
A novel analytical approach, involving solvent extraction with methyl tert-butyl ether (MTBE) followed by gas chromatography (GC), was developed to quantify residues that result from the postharvest fumigation of almonds and walnuts with propylene oxide (PPO). Verification and quantification of PPO,...
Analytical Prediction of Lower Leg Injury in a Vehicular Mine Blast Event
2010-01-01
the spring constant of the tibia is nearly arbitrary; the spring constant of the boot assumes a hard ethylene propylene diene monomer ( EPDM ) rubber ...the sole of the boot. The significantly lower spring constant of the EPDM rubber in the sole compared to the bone structures greatly diminished the
78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... integral part of its composition, the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...
A facile one-pot high-yield protocol is described for the preparation of β- and γ-hydroxy sulfides directly from diaryliodonium salts, potassium thiocyanate, and ethane-1,2-diol (ethylene glycol)/propane-1,3-diol (β-propylene glycol) without the need for any addit...
A facile one-pot high-yield protocol is described for the preparation of β- and γ-hydroxy sulfides directly from diaryliodonium salts, potassium thiocyanate, and ethane-1,2-diol (ethylene glycol)/propane-1,3-diol (β-propylene glycol) without the need for any additional catalyst o...
Macko, Tibor; Pasch, Harald; Brüll, Robert
2006-05-19
The adsorption of polyethylene and polypropylene on zeolites depends on the nature of zeolite, the solvent as well as the molar mass of the polymer sample. For example, linear polyethylene is strongly retained on zeolite SH-300 from decalin, while isotactic, syndiotactic or atactic polypropylene is fully eluted in this system. On the other hand, polypropylene is retained on zeolite CBV-780 from diphenylether, while linear polyethylene is eluted. These differences in the elution behaviour have been utilised for selective removal of either linear polyethylene or polypropylene from blends of both polymers. The desorption of the retained polymer is difficult, or at times impossible. However, the selected adsorption systems have complimentary character, i.e. either one or second component is eluted or fully retained. Thus these sorbent/solvent systems, identified herein, are the first isocratic chromatographic systems, which enable selectively to remove polyethylene or polypropylene from their mixture. Moreover, decalin/SH-300 enables the removal of both linear and branched polyethylene from mixtures with random ethylene/propylene copolymers (polyethylene fully retained, ethylene/propylene copolymers eluted).
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuFresne, D.L.; Pillard, D.A.
1995-12-31
Ethylene and propylene glycol deicers are commonly used at airports in the US and other countries to both remove snow and ice from aircraft, and to retard the accumulation of those materials. Snow and ice often pile up at airports during the winter and are then flushed into the storm sewer system during warmer temperatures or rainfall. Some of this water containing deicers may enter waterbodies without prior treatment, While previous studies have investigated the effects of deicers on aquatic animals and algae, data are not available on the effects on aquatic macrophytes, Glycol deicers were obtained in the formulatedmore » mixtures used on aircraft; pure ethylene and propylene glycol were obtained from Sigma{reg_sign}. Duckweed (Lemna minor) fronds were exposed to various concentrations of pure and formulated glycol mixtures. The number of fronds at test termination and chlorophyll concentration (measured using a spectrophotometer) were the measured endpoints. Based upon glycol concentration, the formulated products were more toxic than the pure material. These results are consistent with results seen in other animal and plant studies.« less
Chen, Yukun; Xu, Chuanhui; Cao, Liming; Wang, Yanpeng; Fang, Liming
2013-06-27
Polypropylene (PP)/ethylene-propylene-diene monomer (EPDM)/zinc dimethacrylate (ZDMA) blend (EPDM/PP ratio of 30/70) with remarkable extensibility was successfully prepared via peroxide dynamic vulcanization. The uniaxial tensile properties, crystallization behavior, structure, and morphology during stretching were investigated. The tensile process study showed that the PP/EPDM/ZDMA blend exhibited the rubbery-like behavior with an elongation beyond 600%. The ZDMA graft-product domain increased the compatibility and interfacial adhesion between rubber and PP phases, while it reduced the crystallinity of the PP phase. On the basis of TEM and SEM analyses, we found that the cross-linked rubber particles could be elongated and oriented along the tensile direction, whereas the ZDMA graft-product domain "encapsulated" rubber phase together, acting as a "bridge" between elongated rubber phases and the PP phase during uniaxial stretching. The stress could be effectively transferred from the PP phase to the numerous elongated rubber phases due to the excellent compatibility and interfacial adhesion between rubber and PP phases, resulting in the rubbery-like behavior.
Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends
NASA Astrophysics Data System (ADS)
Giller, Carl; Roland, Mike
2013-03-01
At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli. Office of Naval Research
Ruperti, Benedetto; Cattivelli, Luigi; Pagni, Silvana; Ramina, Angelo
2002-03-01
Ethylene-responsive genes from peach (Prunus persica, L. Batsch) were isolated by differential screening of a cDNA library constructed from abscission zones in which cell separation had been evoked by treatment with the ethylene analogue propylene. DNA and deduced protein sequences of four selected clones, termed Prunus persica Abscission zone (PpAz), revealed homology to thaumatin-like proteins (PpAz8 and PpAz44), to proteins belonging to the PR4 class of pathogenesis-related (PR) proteins (PpAz89), and to fungal and plant beta-D-xylosidases (PpAz152). Expression analyses conducted on embrioctomized and CEPA-treated fruitlets as well as on fruit explants have shown that PpAz8, PpAz44 and PpAz89 are preferentially transcribed in the cells of the fruit abscission zone rather than in the non-zone tissues. The PpAz152 transcript showed a different accumulation pattern being consistently and promptly induced by wounding and only slightly stimulated by propylene. By contrast, a complex pattern of transcript accumulation was found for the four genes in response to the wounding of leaves and during organ development and senescence. Based on this evidence, the existence of multiple regulatory pathways underlying the differential expression of the four PpAz genes in the different tissues and physiological processes is hypothesized.
Liu, Qi; Mu, Daobin; Wu, Borong; Wang, Lei; Gai, Liang; Wu, Feng
2017-02-22
The solid-electrolyte interface (SEI) film in a sodium-ion battery is closely related to capacity fading and cycling stability of the battery. However, there are few studies on the SEI film of sodium-ion batteries and the mechanism of SEI film formation is unclear. The mechanism for the reduction of ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), ethylene sulfite (ES), 1,3-propylene sulfite (PS), and fluorinated ethylene carbonate (FEC) is studied by DFT. The reaction activation energies, Gibbs free energies, enthalpies, and structures of the transition states are calculated. It is indicated that VC, ES, and PS additives in the electrolyte are all easier to form organic components in the anode SEI film by one-electron reduction. The priority of one-electron reduction to produce organic SEI components is in the order of VC>PC>EC; two-electron reduction to produce the inorganic Na 2 CO 3 component is different and follows the order of EC>PC>VC. Two-electron reduction for sulfites ES and PS to form inorganic Na 2 SO 3 is harder than that of carbonate ester reduction. It is also suggested that the one- and two-electron reductive decomposition pathway for FEC is more feasible to produce inorganic NaF components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ripening-Related Gene from Avocado Fruit 1
McGarvey, Douglas J.; Sirevåg, Reidun; Christoffersen, Rolf E.
1992-01-01
Fruit ripening involves a series of changes in gene expression regulated by the phytohormone ethylene. AVOe3, a ripening-related gene in avocado fruit (Persea americana Mill. cv Hass), was characterized with regard to its ethylene-regulated expression. The AVOe3 mRNA and immunopositive protein were induced in mature fruit within 12 hours of propylene treatment. The AVOe3 mRNA levels reached a maximum 1 to 2 days before the ethylene climacteric, whereas the immunopositive protein continued to accumulate. RNA selected by the pAVOe3 cDNA clone encoded a polypeptide with molecular mass of 34 kilodaltons, corresponding to the molecular mass of the AVOe3 protein determined by immunoblots. The protein was soluble, remaining in solution at 100,000 gravity and eluted as a monomer on gel filtration. Because of its pattern of induction and relationship to an ethylene-related gene of tomato, the possible involvement of AVOe3 in ethylene biosynthesis is discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:16668676
APC implementation in Chandra Asri - ethylene plant
NASA Astrophysics Data System (ADS)
Sidiq, Mochamad; Mustofa, Ali
2017-05-01
Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer
Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.
1991-01-01
??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.
Summary Review of the Health Effects Associated with Propylene: Health Issue Assessment
Propylene's major use is as a starting material in the manufacture of polypropylene, acrylonitrile, propylene oxide, and as a component in fuel. Ambient concentrations in urban areas of the United States range from about 1 to 10 ppb, with rural air levels being an order of magnit...
McCluskey, Susan V; Sztajnkrycer, Matthew D; Jenkins, Donald A; Zietlow, Scott P; Berns, Kathleen S; Park, Myung S
2014-01-01
Tranexamic acid has recently been demonstrated to decrease all-cause mortality and deaths due to hemorrhage in trauma patients. The optimal administration of tranexamic acid is within one hour of injury, but not more than three hours from the time of injury. To aid with timely administration, a premixed solution of 1 gram tranexamic acid and 0.9% sodium chloride was proposed to be stocked as a medication in both the aeromedical transport helicopters and Emergency Department at Mayo Clinic Hospital--Rochester Saint Marys Campus. Since no published stability data exists for tranexamic acid diluted with 0.9% sodium chloride, this study was undertaken to determine the stability of tranexamic acid diluted with 0.9% sodium chloride while being stored in two types of containers. Stability was determined through the use of a stability-indicating high-performance liquid reverse phase chromatography assay, pH, and visual tests. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 65 mL were studied at predetermined intervals for 90 days in ethylene/propylene copolymer plastic containers, protected from light, and at both controlled room and refrigerated temperatures. Tranexamic acid solutions of 1 gram in 0.9% sodium chloride 50 mL were studied at predetermined intervals for 180 days in clear Type 1 borosilicate glass vials sealed with intact elastomeric, Flourotec-coated stoppers, stored protected from light at controlled room temperature. Solutions stored in the ethylene/propylene copolymer plastic containers at both storage temperatures maintained at least 98% of initial potency throughout the 90-day study period. Solutions stored in glass vials at controlled room temperature maintained at least 92% of initial potency throughout the 180-day study period. Visual and pH tests revealed stable, clear, colorless, and particulate-free solutions throughout the respective study periods.
46 CFR 154.1725 - Ethylene oxide.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e) of...
Code of Federal Regulations, 2011 CFR
2011-07-01
...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced Me esters of reduced polymd. oxidized...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...
Code of Federal Regulations, 2012 CFR
2012-07-01
...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced Me esters of reduced polymd. oxidized...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...
Code of Federal Regulations, 2014 CFR
2014-07-01
...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced Me esters of reduced polymd. oxidized...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...
Code of Federal Regulations, 2013 CFR
2013-07-01
...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced Me esters of reduced polymd. oxidized...)-, polymers with 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethylcyclohexane, propylene glycol and reduced...
21 CFR 172.770 - Ethylene oxide polymer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...
21 CFR 172.770 - Ethylene oxide polymer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...
21 CFR 172.770 - Ethylene oxide polymer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...
Biological production of organic compounds
Yu, Jianping; Wang, Bo; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael
2018-03-13
Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.
Controlled release of ibuprofen by meso-macroporous silica
NASA Astrophysics Data System (ADS)
Santamaría, E.; Maestro, A.; Porras, M.; Gutiérrez, J. M.; González, C.
2014-02-01
Structured meso-macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (EO19PO39EO19) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption-desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso-macroporous materials. The effect of the materials’ properties on IBU drug loading and release was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system.
Prameela, G K S; Phani Kumar, B V N; Aswal, V K; Mandal, Asit Baran
2013-10-28
The influence of water-insoluble nonionic triblock copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E6P39E6 with molecular weight 2800, on the microstructure and self-aggregation dynamics of anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D2O) were investigated using high resolution nuclear magnetic resonance (NMR) and small-angle neutron scattering (SANS) measurements. Variable concentration and temperature proton ((1)H), carbon ((13)C) NMR chemical shifts, (1)H self-diffusion coefficients, (1)H spin-lattice and spin-spin relaxation rates data indicate that the higher hydrophobic nature of copolymer significantly influenced aggregation characteristics of SDS. The salient features of the NMR investigations include (i) the onset of mixed micelles at lower SDS concentrations (<3 mM) relative to the copolymer-free case and their evolution into SDS free micelles at higher SDS concentrations (~30 mM), (ii) disintegration of copolymer-SDS mixed aggregate at moderate SDS concentrations (~10 mM) and still binding of a copolymer with SDS and (iii) preferential localization of the copolymer occurred at the SDS micelle surface. SANS investigations indicate prolate ellipsoidal shaped mixed aggregates with an increase in SDS aggregation number, while a contrasting behavior in the copolymer aggregation is observed. The aggregation features of SDS and the copolymer, the sizes of mixed aggregates and the degree of counterion dissociation (α) extracted from SANS data analysis corroborate reasonably well with those of (1)H NMR self-diffusion and sodium ((23)Na) spin-lattice relaxation data.
Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang
2015-06-25
The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.
Zhao, Shan; Li, Yanbao; Li, Dongxu
2011-02-01
Mesoporous bioactive glasses (MBGs) of the CaO-SiO(2)-P(2)O(5) system containing relatively high P(2)O(5) contents (10-30 mol%) were prepared from a sol-gel. An evaporation-induced self-assembly (EISA) technique was used with poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (EO(20)-PO(70)-EO(20), P123) acting as a template. The structural, morphological and textural properties of MBGs were investigated by small-angle X-ray diffraction (SAXRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and a N(2) sorption/desorption technique. SAXRD and TEM results display the reduced long-range ordering of mesopores with increasing P(2)O(5) content. N(2) sorption/desorption analysis shows that all three samples exhibit a type IV isotherm with type H1 hysteresis loops, characteristic of independent cylindrical slim pore channels and this material has a Barret-Joyner-Halenda (BJH) model pore size of ~4 nm and BET specific surface area ~430 m(2)/g. NMR results indicate a more condensed framework for samples with 30 mol% P(2)O(5) than samples with 10 mol% P(2)O(5). For in vitro bioactivity tests where samples were soaked in simulated body fluid (SBF), samples with 30 mol% P(2)O(5) showed higher crystallinity than those with lower P(2)O(5) contents Silicon concentration increased in SBF solution during the soaking period, which indicates MBGs can be degradable in SBF solution.
Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures
NASA Astrophysics Data System (ADS)
Liu, Jingling; Kim, Yong-Tae; Kwon, Young-Uk
2015-05-01
Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.
NASA Astrophysics Data System (ADS)
Savko, M. A.; Aksenova, N. A.; Akishina, A. K.; Khasanova, O. V.; Glagolev, N. N.; Rumyantseva, V. D.; Zhdanova, K. A.; Spokoinyi, A. L.; Solov'eva, A. B.
2017-11-01
The solubilization of hydrophobic porphyrin photosensitizers (PPSes) to obtain corresponding water-soluble forms is an important line of modern antimicrobial photodynamic therapy. It is shown that a triblock copolymer of ethylene and propylene oxides, Pluronic F-127, one of the most nontoxic and effective polymer surface active substances (SASes), can be used for the conversion of hydrophobic tetraphenylporphyrin (TPP) and monosubstituted and tetrasubstituted hydroxy, amino, and nitro TPPs into water-soluble forms. It is found that Pluronic has a substantially higher solubilizing affinity (defined as the minimum molar concentration of an SAS required for the complete migration of porphyrin with a specific molar concentration to the aqueous phase) toward monosubstituted TPPs than to corresponding tetrasubstituted porphyrins. It is shown that with Pluronic in the organic phase, the activity of tetraphenylporphyrin in a test reaction of the oxidation of anthracene is higher than that of its monosubstituted and tetrasubstituted derivatives. In an aqueous medium, the activity of solubilized mono derivatives of TPP is comparable to that of unsubstituted TPP and is higher than the activity of the corresponding tetra derivatives of TPP.
The internalization of fluorescence-labeled PLA nanoparticles by macrophages.
Li, Fengjuan; Zhu, Aiping; Song, Xiaoli; Ji, Lijun; Wang, Juan
2013-09-10
Rhodamine B (RhB)-labeled PLA nanoparticles were prepared through surface grafting copolymerization of glycidyl methacrylate (GMA) onto PLA nanoparticles during the emulsion/evaporation process. RhB firstly interacts with sodium dodecyl sulfate (SDS) through electrostatic interaction to form hydrophobic complex (SDS-RhB). Due to the high-affinity of SDS-RhB with GMA, hydrophilic RhB can be successfully combined into PLA nanoparticles. The internalization of RhB-labeled PLA nanoparticles by macrophages was investigated with fluorescence microscope technology. The effects of the PLA nanoparticle surface nature and size on the internalization were investigated. The results indicate that the PLA particles smaller than 200 nm can avoid the uptake of phagocytosis. The bigger PLA particles (300 nm) with polyethylene glycol (PEG) surface showed less internalization by macrophage compared with those with poly(ethylene oxide-propylene oxide) copolymer (F127) or poly(vinyl alcohol) (PVA) surface. The "stealth" function of PEG on the PLA nanoparticles from internalization of macrophages due to the low protein adsorption is revealed by electrochemical impedance technology. Copyright © 2013 Elsevier B.V. All rights reserved.
Formulation of Poloxamers for Drug Delivery
Bodratti, Andrew M.; Alexandridis, Paschalis
2018-01-01
Poloxamers, also known as Pluronics®, are block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which have an amphiphilic character and useful association and adsorption properties emanating from this. Poloxamers find use in many applications that require solubilization or stabilization of compounds and also have notable physiological properties, including low toxicity. Accordingly, poloxamers serve well as excipients for pharmaceuticals. Current challenges facing nanomedicine revolve around the transport of typically water-insoluble drugs throughout the body, followed by targeted delivery. Judicious design of drug delivery systems leads to improved bioavailability, patient compliance and therapeutic outcomes. The rich phase behavior (micelles, hydrogels, lyotropic liquid crystals, etc.) of poloxamers makes them amenable to multiple types of processing and various product forms. In this review, we first present the general solution behavior of poloxamers, focusing on their self-assembly properties. This is followed by a discussion of how the self-assembly properties of poloxamers can be leveraged to encapsulate drugs using an array of processing techniques including direct solubilization, solvent displacement methods, emulsification and preparation of kinetically-frozen nanoparticles. Finally, we conclude with a summary and perspective. PMID:29346330
New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.
Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon
2011-10-18
Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Oremland, R. S.; Des Marais, D. J.
1983-01-01
The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.
Ceo2 Based Catalysts for the Treatment of Propylene in Motorcycle’s Exhaust Gases
Pham, Phuong Thi Mai; Le Minh, Thang; Nguyen, Tien The; Van Driessche, Isabel
2014-01-01
In this work, the catalytic activities of several single metallic oxides were studied for the treatment of propylene, a component in motorcycles’ exhaust gases, under oxygen deficient conditions. Amongst them, CeO2 is one of the materials that exhibit the highest activity for the oxidation of C3H6. Therefore, several mixtures of CeO2 with other oxides (SnO2, ZrO2, Co3O4) were tested to investigate the changes in catalytic activity (both propylene conversion and CO2 selectivity). Ce0.9Zr0.1O2, Ce0.8Zr0.2O2 solid solutions and the mixtures of CeO2 and Co3O4 was shown to exhibit the highest propylene conversion and CO2 selectivity. They also exhibited good activities when tested under oxygen sufficient and excess conditions and with the presence of co-existing gases (CO, H2O). PMID:28788253
Hilf, Jeannette; Schulze, Patricia; Seiwert, Jan; Frey, Holger
2014-01-01
Multi-arm star copolymers based on a hyperbranched poly(propylene oxide) polyether-polyol (hbPPO) as a core and poly(propylene carbonate) (PPC) arms are synthesized in two steps from propylene oxide (PO), a small amount of glycidol and CO2 . The PPC arms are prepared via carbon dioxide (CO2 )/PO copolymerization, using hbPPO as a multifunctional macroinitiator and the (R,R)-(salcy)CoOBzF5 catalyst. Star copolymers with 14 and 28 PPC arms, respectively, and controlled molecular weights in the range of 2700-8800 g mol(-1) are prepared (Mw /Mn = 1.23-1.61). Thermal analysis reveals lowered glass transition temperatures in the range of -8 to 10 °C for the PPC star polymers compared with linear PPC, which is due to the influence of the flexible polyether core. Successful conversion of the terminal hydroxyl groups with phenylisocyanate demonstrates the potential of the polycarbonate polyols for polyurethane synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Filser, Johannes Georg; Artati, Anna; Li, Qiang; Pütz, Christian; Semder, Brigitte; Klein, Dominik; Kessler, Winfried
2015-11-05
The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
21 CFR 172.770 - Ethylene oxide polymer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene oxide polymer. 172.770 Section 172.770....770 Ethylene oxide polymer. The polymer of ethylene oxide may be safely used as a foam stabilizer in fermented malt beverages in accordance with the following conditions. (a) It is the polymer of ethylene...
21 CFR 880.6860 - Ethylene oxide gas sterilizer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO) to...
46 CFR 151.50-12 - Ethylene oxide.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at a...
Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A
2012-11-20
A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabelnick, A.M.; Capitano, A.T.; Kane, S.M.
2000-01-12
The oxidation of propylene preabsorbed on the Pt(111) surface has been characterized in oxygen pressures up to 0.02 Torr using fluorescence yield near-edge spectroscopy (FYNES) and temperature-programmed fluorescence yield near-edge spectroscopy (TP-FYNES) above the carbon K edge. During oxidation of adsorbed propylene, a stable intermediate was observed and characterized using these soft X-ray methods. A general in situ method for determining the stoichiometry of carbon-containing reaction intermediate species has been developed and demonstrated for the first time. Total carbon concentration measured during temperature-programmed reaction studies clearly indicates a reaction intermediate is formed in the 300 K temperature range with amore » surface concentration of 0.55 x 10{sup 15} carbon atoms/cm{sup 2}. By comparing the intensity of the C-H {sigma}* resonance at the magic angle with the intensity in the carbon continuum, the stoichiometry of this intermediate can be determined unambiguously. Based on calibration with molecular propylene (C{sub 3}H{sub 6}) and propylidyne (C{sub 3}H{sub 5}), the intermediate has a C{sub 3}H{sub 5} stoichiometry for oxygen pressures up to 0.02 Torr. A set of normal and glancing angle FYNES spectra above the carbon K edge was used to characterize the bonding and structure of this intermediate. Spectra of known coverages of adsorbed propylene and propylidyne served as standards. The spectra of di-{sigma} propylene, propylidyne, and the intermediate were curve fit as a group with consistent energies and widths of all primary features. Based on this procedure, the intermediate is 1,1,2-tri-{sigma} 1-methylvinyl. The stoichiometry and temperature stability range of the 1-methylvinyl intermediate formed in oxygen pressures up to 0.02 Torr is identical with the stoichiometry and stability of the same intermediate formed during oxidation of preadsorbed propylene by excess coadsorbed atomic oxygen.« less
21 CFR 880.6100 - Ethylene oxide gas aerator cabinet.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas aerator cabinet. 880.6100... Miscellaneous Devices § 880.6100 Ethylene oxide gas aerator cabinet. (a) Identification. An ethyene oxide gas... required to remove residual ethylene oxide (ETO) from wrapped medical devices that have undergone ETO...
Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, DA; Bertolani, SJ; Siegel, JB
Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.
Biocatalytic conversion of ethylene to ethylene oxide using an engineered toluene monooxygenase.
Carlin, D A; Bertolani, S J; Siegel, J B
2015-02-11
Mutants of toluene o-xylene monooxygenase are demonstrated to oxidize ethylene to ethylene oxide in vivo at yields of >99%. The best mutant increases ethylene oxidation activity by >5500-fold relative to the native enzyme. This is the first report of a recombinant enzyme capable of carrying out this industrially significant chemical conversion.
Ethylene glycol (antifreeze) poisoning in a free-ranging polar bear
Amstrup, Steven C.; Gardner, Craig L.; Myers, Kevin C.; Oehme, Frederick W.
1989-01-01
The bright, fluorescent pink-colored remains of a polar bear were found on an Alaskan island with the gravel and snow adjacent to the bear colored bright purple. Traces of fox urine and feces found nearby were also pink. The punk and purple colors were due to rhodamine B, and ethylene glycol (EG) was present in the soil under the carcass. Evidence is given to suggest the bear consumed a mixture of rhodamine B and EG commonly used to mark roads and runways during snow and ice periods. Such wildlife losses could be prevented by substituting propylene glycol for the EG in such mixtures.
Method for Improving Acoustic Impedance of Epoxy Resins
2010-06-11
neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect acoustic...different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A
Waste Minimization in Circuit Board Manufacturing by PARMOD(TM) Technology
1998-06-24
a foil package in air or in a plastic syringe. Thermogravimetric Analysis (TGA) Ink samples were evaluated using thermogravimetric analysis in...DTA Differential Thermal Analysis FEP Fluorinated Ethylene Propylene (Teflon®) FTIR Fourier Transform Infrared spectroscopy MOD Metallo-Organic...Decomposition ROM Reactive Organic Medium SEM Scanning Electron Microscopy TGA Thermal Gravimetry Analysis Torr Unit of pressure (one mm mercury
New formaldehyde base disinfectants.
NASA Technical Reports Server (NTRS)
Trujillo, R.; Lindell, K. F.
1973-01-01
Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.
Association of a multifunctional ionic block copolymer in a selective solvent
Etampawala, Thusitha N.; Aryal, Dipak; Osti, Naresh C.; ...
2016-11-14
The self-assembly of multiblock copolymers in solutions is controlled by a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interaction of the individual blocks with the solvent. The current study elucidates the association of pentablock copolymers in a mixture of selective solvents which are good for the hydrophobic segments and poor for the hydrophilic blocks using small angle neutron scattering (SANS). The pentablock consists of a center block of randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability. We find that the pentablock forms ellipsoidal core-shellmore » micelles with the sulfonated polystyrene in the core and Gaussian decaying chains of swollen poly-ethylene-r-propylene and poly-t-butyl styrene tertiary in the corona. With increasing solution concentration, the size of the micelle, the thickness of the corona, and the aggregation number increase, while the solvent fraction in the core decreases. As a result, in dilute solution the micelle increases in size as the temperature is increased, however, temperature effects dissipate with increasing solution concentration.« less
Hložek, Tomáš; Bursová, Miroslava; Čabalaa, Radomír
2014-12-01
A simple, cost effective, and fast gas chromatography method with flame ionization detection (GC-FID) for simultaneous measurement of ethylene glycol, 1,2-propylene glycol and glycolic acid was developed and validated for clinical toxicology purposes. This new method employs a relatively less used class of derivatization agents - alkyl chloroformates, allowing the efficient and rapid derivatization of carboxylic acids within seconds while glycols are simultaneously derivatized by phenylboronic acid. The entire sample preparation procedure is completed within 10 min. To avoid possible interference from naturally occurring endogenous acids and quantitation errors 3-(4-chlorophenyl) propionic acid was chosen as an internal standard. The significant parameters of the derivatization have been found using chemometric procedures and these parameters were optimized using the face-centered central composite design. The calibration dependence of the method was proved to be quadratic in the range of 50-5000 mg mL(-1), with adequate accuracy (92.4-108.7%) and precision (9.4%). The method was successfully applied to quantify the selected compounds in serum of patients from emergency units. Copyright © 2014 Elsevier B.V. All rights reserved.
Jin, Xiaohong; Xu, Yan; Yang, Xuhong; Chen, Xiuling; Wu, Minghu; Guan, Jianguo; Feng, Lianshun
2017-01-01
A new class of ethylene/propylene-1H-1,2,3-triazole-4-methylene-tethered isatincoumarin hybrids 8a-j, integrating three anti-tuberculosis pharmacophores coumarin, isatin and 1,2,3- triazole was designed and synthesized. These hybrids were assessed for their in vitro anti-TB activity against MTB H37Rv and MDRTB, as well as anti-bacterial activity against Gram-positive and Gram-negative strains, and cytotoxicity in VERO cell line. The results showed that all hybrids with acceptable cytotoxicity (CC50: 64-512 µg/mL) exhibited weak to moderate anti-microbial activity. The most active hybrid 8i with MIC of 50 µg/mL against MTB H37Rv and MDR-TB, also has excellent cytotoxicity profile (CC50: 128 µg/mL). The resistance index of hybrid 8i was 1, indicating that hybrid 8i has no cross-resistance with the first-line anti-TB agent. Thus, hybrid 8i could act as a lead for further optimization. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
2000-02-01
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
Simulation of ethane steam cracking with severity evaluation
NASA Astrophysics Data System (ADS)
Rosli, M. N.; Aziz, N.
2016-11-01
Understanding the influence of operating parameters towards cracking severity is paramount in ensuring optimum operation of an ethylene plant. However, changing the parameters in an actual plant for data collection can be dangerous. Thus, a simulation model for ethane steam cracking furnace is developed using ASPEN Plus for the assessment. The process performance is evaluated with cracking severity factors and main product yields. Three severity factors are used for evaluation due to their ease of measurement, which are methane yield (Ymet), Ethylene-Ethane Ratio (EER) and Propylene-Ethylene Ratio (PER). The result shows that cracking severity is primarily influenced by reactor temperature. Operating the furnace with coil outlet temperature ranging between 850°C to 950°C and steam-to-hydrocarbon ratio of 0.3 to 0.5 has led to optimum main product yield.
Conversion of 1,2-Propylene Glycol on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Long; Li, Zhenjun; Smith, R. Scott
2014-07-17
We have studied the reactions of 1,2-propylene glycol (1,2-PG), DOCH(CH3)CH2OD, on partially reduced, hydroxylated and oxidized TiO2(110) surfaces using temperature programmed desorption. On reduced TiO2(110), propylene, propanal, and acetone are identified as primary carbon-containing products. While the propylene formation channel dominates at low 1,2-PG coverages, all of the above-mentioned products are observed at high coverages. The carbon-containing products are accompanied by the formation of D2O and D2. The observation of only deuterated products shows that the source of hydrogen (D) is from the 1,2-PG hydroxyls. The role of bridging oxygen vacancy (VO) sites was further investigated by titrating them viamore » hydroxylation and oxidation. The results show that hydroxylation does not change the reactivity because the VO sites are regenerated at 500 K, which is a temperature lower than the 1,2-PG product formation temperature. In contrast, surface oxidation causes significant changes in the product distribution, with increased acetone and propanal formation and decreased propylene formation. Additionally D2 is completely eliminated as an observed product at the expense of D2O formation.« less
Yu, Shann S; Scherer, Randy L; Ortega, Ryan A; Bell, Charleson S; O'Neil, Conlin P; Hubbell, Jeffrey A; Giorgio, Todd D
2011-02-27
Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative environments, smart theranostic applications combining drug delivery with imaging of platform localization are within reach. The modular design of these USPIO nanoclusters enables future development of platforms for imaging and drug delivery targeted towards proteolytic activity in tumors and in advanced atherosclerotic plaques.
40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.
Code of Federal Regulations, 2010 CFR
2010-07-01
... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...
21 CFR 872.3410 - Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or....3410 Ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive. (a) Identification. An ethylene oxide homopolymer and/or carboxymethylcellulose sodium denture adhesive is a device...
Ethylene oxide sterilisation--is it safe?
Gillespie, E H; Jackson, J M; Owen, G R
1979-01-01
Tests show that ethylene oxide penetrates and can sterilise long narrow tubes in a hospital ethylene oxide steriliser. Residual ethylene oxide levels in plastic tubing after sterilisation have been estimated. Although initially the levels were very high, storage for four days at room temperature reduced them to a safe level. If adequate controls of the sterilising process and storage are carried out, sterilisation by ethylene oxide is considered to be safe for new plastics and clean equipment. Images Figure PMID:512032
Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun
2015-03-21
Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.
21 CFR 872.3450 - Ethylene oxide homopolymer and/or karaya denture adhesive.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide homopolymer and/or karaya denture... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3450 Ethylene oxide homopolymer and/or karaya denture adhesive. (a) Identification. Ethylene oxide homopolymer and/or karaya...
49 CFR 173.323 - Ethylene oxide.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Ethylene oxide. 173.323 Section 173.323... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.323 Ethylene oxide. (a) For packaging ethylene oxide in non-bulk packagings, silver mercury or any of its alloys or copper may not be used in any...
O-Ring Installation for Underwater Components and Applications
1982-04-15
cure is effected and the heat source removed. AGING -- To undergo changes in physical properties with age or lapse of time. AIR CHECKS -- Surface...the use of heat and pressure, resulting in greatly increased strength and elasticity of rubber -like materials. VULCANIZING AGENT -- A material that...Cross Section Dia -- Diameter EP, EPM, EPDM -- Ethylene-Propylene Rubber F or ’F -- Degrees Fahrenheit FED -- Federal Specification FPM -- Fluorocarbon
Method for Improving Acoustic Impedance of Epoxy Resins
2010-06-21
include neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect...a different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...an epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A
2012-02-21
Testing and Materials °C Celsius DiEGME Diethylene Glycol Monomethyl Ether EPDM Ethylene Propylene Diene Monomer FARE Forward Area Refueling...urethane class AU, polyether urethane class EU, EPDM , Viton®, fluorosilicone class FQ, polytetrafluoroethylene (PTFE), polyolefin and polyester...sleeve Material not provided AAFARS 4720-00-540-1368 Hose, nonmetallic Material not provided AAFARS 4720-01-218-6958 Hose, preformed Rubber
Waterproofing Underground Concrete Structures
1990-01-01
include Rubberized Asphalt with 42 Polyethylene Cover, Vulcanized Rubbers such as EPDM , Butyl, and Neoprene, Thermoplastics such as PVC, CPE, HDPE, and...welding. However., PVC sheets tend to shrink excessively and become brittle with increasing age . The rubber sheets that are used most often in...underground concrete structures are Butyl rubber and Ethylene. Propylene Diene Monomer ( EPDM ). The adhesives with which they must be sealed are not quite as
Development of Improved LOX-Compatible Laminated Gasket Composite
1966-08-01
Braided Teflon 2. Bleached fluorocarbon felt 3. Teflon and asbestos fibers 4. Teflon and ceramic fibers 5. Teflon and glass fibers 6. Viton A and asbestos 7...fluorinated ethylene- propylene (Teflon FEP), polychlorotrifluoroethylene films (Aclar - Kel F), and fluorocarbon elastomers (Viton A - Fluorel, etc...2nd 10th CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE FILLED FLUOROCARBON GLASS FILLED TEFLON FLUOROCARBON LAMINATE ELASTOMER Figure 21
Real-time and accelerated outdoor endurance testing of solar cells
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Anagnostou, E.
1978-01-01
Materials for solar-cell module construction have been studied on the basis of limited real-time outdoor exposure evaluations. The materials tested included transmission samples, sub-modules, and actual solar cells. The results suggest that glass, fluorinated ethylene propylene, and perfluoroalkoxy are good materials for the covering or encapsulation of solar-cell modules. In all cases, dirt accumulation and cleanability are important factors.
Hydrocarbon polymeric binder for advanced solid propellant
NASA Technical Reports Server (NTRS)
Potts, J. E. (Editor); Ashcraft, A. C., Jr.; Wise, E. W.
1971-01-01
The results of curing vinyl alcohol terpolymers of ethylene, propylene and vinyl acetate are reported for an average functionality of 1.24 when reacted with an equivalent amount of diisocynate, and saturated polyisoprene derivative is described having terminal methyl ester functionality. The development is reported of two hydroxy-telechelic polyisoprenes prepared by DEAB initiated free radical polymerization followed by LiAlH4 reduction of the end groups.
Combining CO 2 reduction with propane oxidative dehydrogenation over bimetallic catalysts
Gomez, Elaine; Kattel, Shyam; Yan, Binhang; ...
2018-04-11
In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, Casey J.; Hassan Beyzavi, M.; Klet, Rachel C.
Reaction of styrene oxide with sodium cyanoborohydride and a catalytic amount of Hf-NU-1000 yields the anti-Markovnikov product, 2-phenylethanol, with over 98% regioselectivity. On the other hand, propylene oxide is ring opened in a Markovnikov fashion to form 2-propanol with 95% regioselectivity. Both styrene oxide and propylene oxide failed to react with sodium cyanoborohydride without the addition of Hf-NU-1000 indicative of the crucial role of Hf-NU-1000 as a catalyst in this reaction. To the best of our knowledge, this is the first report of the use of a metal-organic framework material as a catalyst for ring-opening of epoxides with hydrides.
Investigations into the mechanical and physical behavior of thermoplastic elastomers
NASA Astrophysics Data System (ADS)
Wright, Kathryn Janelle
This thesis describes investigations into the physical and mechanical characteristics of two commercial thermoplastic elastomer (TPE) systems. Both systems studied exhibit elastomeric behavior similar to more traditional crosslinked elastomers; however, in these TPEs non-conventional polymer architectures and morphologies are used to produce their elastomeric behavior. The two TPEs of interest are ethylene-propylene random copolymers and dynamically vulcanized blends of ethylene-propylene-diene monomer (EPDM) and isotactic polypropylene (iPP). Very few studies have examined the mechanical behavior of these materials in terms of their composition and morphology. As such, the primary goal of this research is to both qualitatively and quantitatively understand the influence of composition and morphology on mechanical behavior. In additional very little information is available that compares their performance with that of crosslinked elastomers. As a result, the secondary goal is to qualitatively compare the mechanical responses of these TPEs with that of their more traditional counterparts. The ethylene-propylene copolymers studied have very high comonomer contents and exhibit slow crystallization kinetics. Their morphology consists of nanoscale crystallites embedded in an amorphous rubbery matrix. These crystallites act as physical crosslinks that allow for elasticity. Slow crystallization causes subsequent changes in mechanical behavior that take place over days and even weeks. Physical responses (e.g., density, crystallization kinetics, and crystal structure) of five copolymer compositions are investigated. Mechanical responses (e.g., stiffness, ductility, yielding, and reversibility) are also examined. Finally, the influence of morphology on deformation is studied using in situ analytical techniques. The EPDM/iPP blends are dynamically vulcanized which produces a complex morphology consisting of chemically crosslinked EPDM domains embedded within a semicrystalline iPP matrix. Six compositions are investigated as a function of three parameters: major volume fraction, iPP molecular weight, and EPDM cure state. The influence of these parameters on morphology and resulting mechanical behavior is examined. This work culminates in the development of a morphological model to describe the steady-state reversibility of these EPDM/iPP blends. The model is then evaluated in terms of composition and cure state.
40 CFR 63.360 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions Standards... subpart does not apply to ethylene oxide sterilization operations at stationary sources such as hospitals... sterilization chamber vents at sources using less than 1 ton of ethylene oxide that increase their ethylene...
46 CFR 154.1730 - Ethylene oxide: Loading and off loading.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide: Loading and off loading. 154.1730... Operating Requirements § 154.1730 Ethylene oxide: Loading and off loading. (a) The master shall ensure that before ethylene oxide is loaded into a cargo tank: (1) The tank is thoroughly clean, dry, and free of...
40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2013-0276; FRL-9385-2] Ethylene Oxide; Receipt of... ethylene oxide (CAS No. 75-21-8) to sterilize the interior surfaces of enclosed animal isolator units to... APHIS has requested the EPA Administrator to issue a quarantine exemption for the use of ethylene oxide...
40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...
Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery
NASA Astrophysics Data System (ADS)
Christy, Maria; Arul, Anupriya; Zahoor, Awan; Moon, Kwang Uk; Oh, Mi Young; Stephan, A. Manuel; Nahm, Kee Suk
2017-02-01
The choice of electrolyte solvent is expected to play a key role in influencing the lithium-oxygen battery performance. The electrochemical performances of three electrolytes composed of lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) salt and different solvents namely, ethylene carbonate/propylene carbonate (EC/PC), tetra ethylene glycol dimethyl ether (TEGDME) and dimethyl sulfoxide (DMSO) are investigated by assembling lithium oxygen cells. The electrolyte composition significantly varied the specific capacity of the battery. The choice of electrolyte also influences the overpotential, cycle life, and rechargeability of the battery. Electrochemical impedance spectra, cyclic voltammetry, and chronoamperometry were utilized to determine the reversible reactions associated with the air cathode.
Oxidation of Ethylene Glycol by a Salt-Requiring Bacterium
Caskey, William H.; Taber, Willard A.
1981-01-01
Bacterium T-52, cultured on ethylene glycol, readily oxidized glycolate and glyoxylate and exhibited elevated activities of ethylene glycol dehydrogenase and glycolate oxidase. Labeled glyoxylate was identified in reaction mixtures containing [14C]-ethylene glycol, but no glycolate was detected. The most likely pathway of ethylene glycol catabolism by bacterium T-52 is sequential oxidation to glycolate and glyoxylate. PMID:16345810
NASA Astrophysics Data System (ADS)
Krechmer, J.; Pagonis, D.; Ziemann, P. J.; Jimenez, J. L.
2015-12-01
Environmental "smog" chambers have played an integral role in atmospheric aerosol research for decades. Recently, many works have demonstrated that the loss of gas-phase material to fluorinated ethylene propylene (FEP) chamber walls can have significant effects on secondary organic aerosol (SOA) yield results. The effects of gas-wall partitioning on highly oxidized species is still controversial, however. In this work we performed a series of experiments examining the losses of oxidized gas-phase compounds that were generated in-situ in an environmental chamber. The loss of species to the walls was measured using three chemical ionization mass spectrometry techniques: proton-transfer-reaction (PTR), nitrate (NO3-) ion, and iodide (I-). Many oxidized species have wall loss timescales ranging between 15 to 45 minutes and scale according to the molecule's estimated saturation concentration c* and functional groups. By comparing results of the different techniques, and in particular by the use of the "wall-less" NO3- source, we find that measuring species with high chamber wall-loss rates is complicated by the use of a standard ion-molecule reaction (IMR) region, as well as long Teflon sampling lines, which can be important sinks for gas-phase species. This effect is observed even for semi-volatile species and could have significant effects on ambient sampling techniques that make highly time-resolved measurements using long sampling lines, such as eddy covariance measurements.
Direct Epoxidation of Propylene over Stabilized Cu + Surface Sites on Ti Modified Cu 2O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X.; Kattel, S.; Xiong, K.
2015-07-17
Direct propylene epoxidation by O 2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate the feasibility to tune the epoxidation selectivity by generating highly dispersed and stabilized Cu + active sites in a TiCuO x mixed oxide. The TiCuO x surface anchors the key surface intermediate, oxametallacycle, leading to higher selectivity for epoxidation of propylene.
Melt compounding with graphene to develop functional, high-performance elastomers
NASA Astrophysics Data System (ADS)
Araby, Sherif; Zaman, Izzuddin; Meng, Qingshi; Kawashima, Nobuyuki; Michelmore, Andrew; Kuan, Hsu-Chiang; Majewski, Peter; Ma, Jun; Zhang, Liqun
2013-04-01
Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer—ethylene-propylene-diene monomer rubber (EPDM)—using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment.
NASA Astrophysics Data System (ADS)
Cohen, Yachin; Granite, Meirav; Pyckhout-Hintzen, Wim; Radulescu, Aurel
2010-03-01
Amphiphilic block copolymers are particularly useful in dispersing single-walled carbon nanotubes (SWCNT) in water. Small-angle neutron scattering measurements conducted at different D2O/H2O content of the dispersing medium provide quantitative information on the adsorption density and conformation of the polymer interacting with the nanotube surface. Data is presented on Pluronic F108 - (EO)132(PO)50(EO)132 and F127 (EO)100(PO)65(EO)100, where EO-ethylene oxide and PO-propylene oxide, well below the critical micellization temperature of the polymer. A dense coating of the PPO blocks on the nanotube surface is determined with the PEO chains extended from the cylindrical core-shell structure. The data from the two Pluronic systems show minimal scattering at about 70% D2O in the dispersing water, which exhibit a q -1 power law of the scattering vector (q ). This indicates near matching of the polymer chains at a surprisingly high scattering length density. The model fit required considerations of tight association of water molecules around PEO chains and slight isotopic selectivity.
Non-destructive evaluation of polyolefin thermal aging using infrared spectroscopy
NASA Astrophysics Data System (ADS)
Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.
2017-04-01
Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for nondestructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to track oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.
Non-Destructive Evaluation of Polyolefin Thermal Aging Using Infrared Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Leonard S.; Shin, Yongsoon; Simmons, Kevin L.
Fourier transform infrared (FTIR) spectroscopy is an information-rich method that reveals chemical bonding near the surface of polymer composites. FTIR can be used to verify composite composition, identify chemical contaminants and expose composite moisture content. Polymer matrix changes due to thermal exposure including loss of additives, chain scission, oxidation and changes in crystallinity may also be determined using FTIR spectra. Portable handheld instruments using non-contact reflectance or surface contact attenuated total reflectance (ATR) may be used for non-destructive evaluation (NDE) of thermal aging in polymer and composite materials of in-service components. We report the use of ATR FTIR to trackmore » oxidative thermal aging in ethylene-propylene rubber (EPR) and chlorinated polyethylene (CPE) materials used in medium voltage nuclear power plant electrical cable insulation and jacketing. Mechanical property changes of the EPR and CPE materials with thermal degradation for correlation with FTIR data are tracked using indenter modulus (IM) testing. IM is often used as a local NDE metric of cable jacket health. The FTIR-determined carbonyl index was found to increase with IM and may be a valuable NDE metric with advantages over IM for assessing cable remaining useful life.« less
Freitas, Flavio S; de Freitas, Jilian N; Ito, Bruno I; De Paoli, Marco-A; Nogueira, Ana F
2009-12-01
Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.
Kamalov, Marat I; Đặng, Trinh; Petrova, Natalia V; Laikov, Alexander V; Luong, Duong; Akhmadishina, Rezeda A; Lukashkin, Andrei N; Abdullin, Timur I
2018-04-01
A new self-assembled formulation of methylprednisolone succinate (MPS) based on a carboxylated trifunctional block copolymer of ethylene oxide and propylene oxide (TBC-COOH) was developed. TBC-COOH and MPS associated spontaneously at increased concentrations in aqueous solutions to form almost monodisperse mixed micelles (TBC-COOH/MPS) with a hydrodynamic diameter of 19.6 nm, zeta potential of -27.8 mV and optimal weight ratio ∼1:6.3. Conditions for the effective formation of TBC-COOH/MPS were elucidated by comparing copolymers and glucocorticoids with different structure. The micellar structure of TBC-COOH/MPS persisted upon dilution, temperature fluctuations and interaction with blood serum components. TBC-COOH increased antiradical activity of MPS and promoted its intrinsic cytotoxicity in vitro attributed to enhanced cellular availability of the mixed micelles. Intracellular transportation and hydrolysis of MPS were analyzed using optimized liquid chromatography tandem mass spectrometry with multiple reaction monitoring which showed increased level of both MPS and methylprednisolone in neuronal cells treated with the formulated glucocorticoid. Our results identify TBC-COOH/MPS as an advanced in situ prepared nanoformulation and encourage its further investigation for a potential local glucocorticoid therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, I.
Singapore`s Economic Development Board (EDB) will team up with Mobil and Exxon in separate feasibility studies for the country`s third steam cracker project. Mobil recently announced it had signed a memorandum of understanding with EDB and Jurong Town Corp. to study a Smore » $$1.5-billion project for an 800,000-m.t./year ethylene plant for completion in about 2001. Exxon now intends to launch its own parallel study, with EDB also involved. {open_quotes}Both feasibility studies will be carried out separately and at the same time,{close_quotes} an EDB spokesperson tells CW. {open_quotes}EDB, as a developmental agency, will provide Mobil and Exxon with the necessary facilitation and support.{close_quotes} Exxon`s original plan had been to study a slightly smaller cracker, with capacity of about 650,000 m.t./year. Both companies are involved in aromatics production in Singapore. Both cracker studies are expected to take 12-15 months to complete. Sources do not rule out the possibility of Mobil and Exxon then teaming up for the project or both US majors going ahead with their own plants. {open_quotes}Exxon Chemical is being considered as a possible partner in the third plant,{close_quotes} confirms EDB assistant managing director Gong Wee Lik. {open_quotes}More petrochemical complexes could be built if conditions remain favorable-there`s no reason to stop at three,{close_quotes} he adds. Singapore`s second ethylene plant, a joint venture involving Shell and a Japanese consortium, is already under construction and is scheduled to start production in 1997. Its initial planned capacity is for 428,000 m.t./year of ethylene and 214,000 m.t./year of propylene. The plant will be built on Pulau Ayer Merbau, which is the site of the existing S$$2-billion complex built in 1984 and producing 450,000 m.t./year of ethylene and 225,000 m.t./year of propylene.« less
NMR investigation of gaseous SF6 confinement into EPDM rubber.
Neutzler, Sven; Terekhov, Maxim; Hoepfel, Dieter; Oellrich, Lothar Rainer
2005-02-01
The confinement process of gaseous sulphurhexafluoride (SF6) in ethylene-propylene-diene (EPDM) rubber was investigated by spectroscopic and spatially resolved NMR techniques. A strong elongation of T1 relaxation time of SF6 and a decrease of the diffusion coefficient were found. A possible explanation may be the strong restriction of molecular mobility due to interactions between SF6 and active centers of the EPDM.
NASA Astrophysics Data System (ADS)
Ryzhikova, I. G.; Bauman, N. A.; Volkov, A. M.; Kazakov, Yu. M.; Volfson, S. I.
2014-05-01
The study concerned the effect of molecular-mass characteristics and Mooney viscosity of the initial EPDM rubber on the changes in the structure, impact strength and rheological properties of PP/EPDM blends as a result of their modification in a melt under the action of organic peroxide and peroxide-trimethylolpropane triacrylate (TMPTA) system.
Thin Film Composite Materials, Phase 2
1987-01-01
were Kevlar coated with silicone, EPDM , or neoprene rubber , with the following results: 1. Tensile testing of coated Kevlar fabric is very difficult...Monte, CA, but the samples were not large enough for our testing program. e. EPDM . This is a rubber compound which consists of ;n ethylene propylene...materials. 2. A method was developed for measuring water vapor permeability. Neoprene and EPDM are promising as coatings with good water resistance; however
2009-09-30
combustion chamber. Kevlar®-filled ethylene-propylene-diene rubber ( EPDM ) is the baseline insulation material for solid rocket motor cases. A novel...filled EPDM is the industry standard for this application. Since the elastic modulus of rubbers is low, they also act as absorbers during...Santoprene® thermoplastic rubber is already demonstrating their performance capability to replace EPDM in automotive weather seal applications [18]. An
Mesoepitaxy: A Universal Route to Oriented Materials
1993-06-14
naphthoic acid) (VecuaZ, Hoechst-Celanese], a perfluorinated copolymer of ethylene and propylene (FEP TI00, Du Pont], poly(butylene terephthalate) (PBT...189 meV). In ferences are evident in the vibronic character of the ab- addition, the zero-phonon emission line, now at 2.09 eV, sorption and emission...the ab- sorption spectra is disorder-induced localization. To model the photoluminescence spectrum, we con- Qualitatively, the disordered -,r-electron
Proceedings of the Workshop on High Temperature Superconductivity
1989-11-01
such magnetic excitations in neutron scattering studies of UPt3 and measured a corresponding Debye energy owc = 2 K, in excellent agreement with the...procedure of Budhani et al. Propylene carbonate has been found to be a suitable vehicle for direct painting, while poly (ethylene glycol methyl ether ...through neutron irradiation and chemical means will also be discussed. Specifically, results of comparative studies on the kinetics of flux motion in
Detectability of Delaminations in Solid Rocket Motors with Embedded Stress Sensors
2011-10-14
composite grain of hydroxyl-terminated polybutadiene/ammonium perchlorate (HTPB/AP). The insulation layer is ethylene propylene diene monomer ( EPDM ...The temperature-dependent mechanical properties of HTPB/AP and EPDM were obtained from in-house testing at AFRL/RZSM (Edwards AFB). The motor case is...temperature (DBST) sensors and Greg Yandek of AFRL/RZSM for the data collection of EPDM insulation material. Distribution A: Approved for public
Ultra-Low Permeability Polymeric Encapsulants for Acoustic Applications
2006-05-10
polyurethane, tend to exhibit greater water permeability than those that are vulcanizates, such as butyl rubber, EPDM (ethylene propylene diene monomer) rubber...water permeation is a critical concern, hydrophobic, non-polar polymers such as EPDM and butyl rubber are typically used. These materials are vulcanizates...Their non-polar nature makes it difficult to bond anything else strongly to them. Thus, most EPDM and butyl rubber boots are secured to the underlying
Experimental Polyvinyl Chloride (PVC) Roofing: Field Test Results.
1987-02-01
construction. These were the single-ply membranes of the ethylene-propylene-diene monomer ( EPDM ) and polyvinyl chloride (PVC) types, and the sprayed-in-place...polyurethane foam (PUF) with an elastomeric coating. EPDM and PUF roofs were constructed in 19802 and the PVC roofs were completed during summer 1983...faced isocyanu- rate foam board in two layers . Roofing systems were installed loose-laid and ballasted. Specific membrane materials were Plymouth
NASA Astrophysics Data System (ADS)
Shoushtari Zadeh Naseri, Aida; Jalali-Arani, Azam
2015-10-01
Rubber blends based on (styrene-butadiene rubber (SBR)/ethylene-propylene-diene monomer (EPDM)) with and without organoclay (OC) were prepared through a melt mixing process. The concentration ratio of the rubber phases (EPDM/SBR; 50/50 wt%) and the amount of the OC were kept constant. The samples were then vulcanized by means of gamma radiation using a Co-60 gamma source as well as sulfur cure system. The effect of absorbed dose on the formation of the crosslinks was confirmed by the Fourier transform infrared spectroscopy (FTIR). The effects of absorbed dose, sulfur cure system and OC on the gel content, and crosslink density were evaluated by the chemical tests. Applying the Charlesby-Pinner equation to estimate the radiation chemical yield, revealed that the use of OC in the blend caused 20% reduction in the degradation/crosslinking ratio. Employing the swelling test data, some thermodynamic parameters were determined. Using field emission scanning electron microscopy (FE-SEM) to investigate microstructure of the samples revealed a more homogeneous structure and also an increase in compatibility of the blend components in the sample cured by the irradiation in comparison to that cured by the sulfur curing system.
The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry.
Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco
2016-08-25
A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified with furfurylamine to graft furan groups to the rubber backbone. These pendant furan groups are then cross-linked with a bis-maleimide via a Diels-Alder coupling reaction. Both reactions can be performed under a broad range of experimental conditions and can easily be applied on a large scale. The material properties of the resulting Diels-Alder cross-linked rubbers are similar to a peroxide-cured ethylene/propylene/diene rubber (EPDM) reference. The cross-links break at elevated temperatures (> 150 °C) via the retro-Diels-Alder reaction and can be reformed by thermal annealing at lower temperatures (50-70 °C). Reversibility of the system was proven with infrared spectroscopy, solubility tests and mechanical properties. Recyclability of the material was also shown in a practical way, i.e., by cutting a cross-linked sample into small parts and compression molding them into new samples displaying comparable mechanical properties, which is not possible for conventionally cross-linked rubbers.
Silane cross-linkable ethylene-propylene elastomer compositions prepared by reactive processing
NASA Astrophysics Data System (ADS)
Kozawa, Eiji; Nakajima, Yasuo; Kim, Jae Kyung
2015-05-01
Thermoplastic Elastomers (TPEs) have received attention as the alternative materials of EPDM due to an advantage for mass production. In recent years, by the progress of polymerization technology, Ethylene-propylene Elastomer (EP), one of the TPEs, is beginning to be applied to many products because of its good properties as rubber. However, as much as a complete replacement for EPDM, it is not provided with sufficient properties. In such circumstance, we found that EP's performance properties can be further enhanced via chemical modification such as cross-linking. The advent of a newer technique, involving the grafting of organo-functional silane onto the polymer chain in the reaction extrusion process is more attractive due to various industrial advantages. Although the functionalization of the EP by silane grafting through reactive processing is very useful, the silane grafting process of EP has a difficulty. It is most likely a consequence of the nature of the PP chain scission (β-scission), which is the dominant reaction in PP when subjected to free radicals at elevated temperature during processing. Therefore, the objective of our current work is to investigate a reactive extrusion process for the silane cross-linkable EP while minimizing the degradation, as well as evaluate the properties of the modified polymer.
Corsi, S R; Booth, N L; Hall, D W
2001-07-01
Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Sessler, Gerhard M.; Ma, Xingchen; Xue, Yuan; Wu, Liming
2018-06-01
Wavy fluorinated ethylene propylene (FEP) electret films with negative charges were prepared by a patterning method followed by a corona charging process. The thermal stability of these films was characterized by the surface potential decay with annealing time at elevated temperatures. The results show that thermally stable electret films can be made by corona charging followed by pre-aging treatment. Vibration energy harvesters having a very simple sandwich structure, consisting of a central wavy FEP electret film and two outside metal plates, were designed and their performance, including the resonance frequency, output power, half power bandwidth, and device stability, was investigated. These harvesters show a broad bandwidth as well as high output power. Their performance can be further improved by using a wavy-shaped counter electrode. For an energy harvester with an area of 4 cm2 and a seismic mass of 80 g, the output power referred to 1 g (g is the gravity of the earth), the resonance frequency, and the 3 dB bandwidth are 1.85 mW, 90 Hz, and 24 Hz, respectively. The output power is sufficient to power some electronic devices. Such devices may be embedded in shoe soles, carpets or seat cushions where the flexibility is required and large force is available.
[Determination of ethylene glycol in biological fluids--propylene glycol interferences].
Gomółka, Ewa; Cudzich-Czop, Sylwia; Sulka, Adrianna
2013-01-01
Many laboratories in Poland do not use gas chromatography (GC) method for determination of ethylene glycol (EG) and methanol in blood of poisoned patients, they use non specific spectrophotometry methods. One of the interfering substances is propylene glycol (PG)--compound present in many medical and cosmetic products: drops, air freshens, disinfectants, electronic cigarettes and others. In Laboratory of Analytical Toxicology and Drug Monitoring in Krakow determination of EG is made by GC method. The method enables to distinguish and make resolution of (EG) and (PG) in biological samples. In the years 2011-2012 in several serum samples from diagnosed patients PG was present in concentration from several to higher than 100 mg/dL. The aim of the study was to estimate PG interferences of serum EG determination by spectrophotometry method. Serum samples containing PG and EG were used in the study. The samples were analyzed by two methods: GC and spectrophotometry. Results of serum samples spiked with PG with no EG analysed by spectrophotometry method were improper ("false positive"). The results were correlated to PG concentration in samples. Calculated cross-reactivity of PG in the method was 42%. Positive results of EG measured by spectrophotometry method must be confirmed by reference GC method. Spectrophotometry method shouldn't be used for diagnostics and monitoring of patients poisoned by EG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Joshua L.; Borodin, Oleg; Seo, D. M.
2014-12-01
Combined computational/Raman spectroscopic analyses of ethylene carbonate (EC) and propylene carbonate (PC) solvation interactions with lithium salts are reported. It is proposed that previously reported Raman analyses of (EC)n-LiX mixtures have utilized faulty assumptions. In the present studies, density functional theory (DFT) calculations have provided corrections in terms of both the scaling factors for the solvent's Raman band intensity variations and information about band overlap. By accounting for these factors, the solvation numbers obtained from two different EC solvent bands are in excellent agreement with one another. The same analysis for PC, however, was found to be quite challenging. Commerciallymore » available PC is a racemic mixture of (S)- and (R)-PC isomers. Based upon the quantum chemistry calculations, each of these solvent isomers may exist as multiple conformers due to a low energy barrier for ring inversion, making deconvolution of the Raman bands daunting and inherently prone to significant error. Thus, Raman spectroscopy is able to accurately determine the extent of the EC...Li+ cation solvation interactions using the provided methodology, but a similar analysis of PC...Li+ cation solvation results in a significant underestimation of the actual solvation numbers.« less
Transition metal-free olefin polymerization catalyst
Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng
2001-01-01
Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).
Corsi, S.R.; Booth, N.L.; Hall, D.W.
2001-01-01
Aircraft and runway deicers are used during cold weather at many of the world's airports to facilitate safe air travel. Propylene glycol-, ethylene glycol-, and urea-based deicers are known to have very high biochemical oxygen demand. At General Mitchell International Airport (GMIA) in Milwaukee, Wisconsin, USA, deicer application, water chemistry, and dissolved oxygen (DO) data were collected for two deicing seasons in order to evaluate and define premanagement water quality parameters prior to the implementation of a glycol management program. Calculations using stream-monitoring data during a controlled release of deicer provided an estimate of 0.8/d for the first-order decay rate constant, substantially higher than published laboratory test results. For eight precipitation events with deicing activities, between 2.4 and 99% of propylene and ethylene glycol applied to aircraft was delivered directly to receiving streams. The percentage of glycol runoff during an event increased with increasing storm-flow volume. Elevated concentrations of glycol and biochemical oxygen demand were measured downstream from the airport. However, the frequency of low DO concentrations in the receiving streams is comparable with that at an upstream reference site. This is possibly due to slowed bacteria metabolism at low water temperatures, short travel times, and dilution from downstream tributaries.
NASA Technical Reports Server (NTRS)
Stiegman, A. E.; Brinza, David E.; Anderson, Mark S.; Minton, Timothy K.; Laue, Eric G.; Liang, Ranty H.
1991-01-01
Samples of fluorinated ethylene propylene copolymer thermal blanketing material, recovered from the Long Duration Exposure Facility (LDEF), were investigated to determine the nature and the extent of degradation due to exposure to the low-Earth-orbit environment. Samples recovered from the ram-facing direction of LDEF, which received vacuum-ultraviolet (VUV) radiation and atomic-oxygen impingement, and samples from the trailing edge, which received almost exclusively VUV exposure, were investigated by scanning electron microscopy and atomic force microscopy. The most significant result of this investigation was found on samples that received only VUV exposure. These samples possessed a hard, embrittled surface layer that was absent from the atomic-oxygen exposed sample and from unexposed control samples. This surface layer is believed to be responsible for the 'synergistic' effect between VUV and atomic oxygen. Overall, the investigation revealed dramatically different morphologies for the two samples. The sample receiving both atomic-oxygen and VUV exposure was deeply eroded and had a characteristic 'rolling' surface morphology, while the sample that received only VUV exposure showed mild erosion and a surface morphology characterized by sharp high-frequency peaks. The morphologies observed in the LDEF samples, including the embrittled surface layer, were successfully duplicated in the laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Y.; Hagiwara, M.
1982-09-01
Bromoacenaphthylenes and their condensates as flame-retardant reagents were synthesized by bromination of acenaphthylene using ZnCl/sub 2/ - CF/sub 3/COOH or FeCl/sub 3/ as catalysts and subsequent dehydrobromination. The chief components were identified as bromoacenaphthylene monomers when ZnCl/sub 2/ - CF/sub 3/COOH were used, and as their condensates (mostly trimers) in the case of FeCl/sub 3/. Their performance as flame-retardant reagents for ethylene-propylene-diene terpolymer (EPDM) was evaluated by measuring the oxygen index of finished compounds, and flammability by a vertical flammability test based on UL-94-VO. Both the monomers and the condensates demonstrated high flame-retardant effectiveness. The high efficiency was attributed tomore » their excellent dispersity in the base polymer and their characteristic thermal decomposition behavior. In thermal gravimetric analysis (TGA), they decomposed in a very wide range of temperature (ca.200-560/sup 0/C), which covers the decomposition range of EPDM. This was attributed to the existence of bromines of different thermal stabilities in one molecule. This paper is a part of a series of studies to develop new flame retardants which can give high flame retardancy as well as stabilty against ionizing radiation to EPDM.« less
Learn about ethylene oxide, which can raise your risk of lymphoma and leukemia. Exposure may occur through industrial emissions, tobacco smoke, and the use of products sterilized with ethylene oxide, such as certain medical products or cosmetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Elaine; Kattel, Shyam; Yan, Binhang
In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less
Acetic acid and aromatics units planned in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alperowicz, N.
1993-01-27
The Shanghai Wujing Chemical Complex (SWCC; Shanghai) is proceeding with construction of an acetic acid plant. The 100,000-m.t./year until will use BP Chemicals carbonylation technology, originally developed by Monsanto. John Brown has been selected by China National Technical Import Corp. (CNTIC) to supply the plant, Chinese sources say. The UK contractor, which competed against Mitsui Engineering Shipbuilding (Tokyo) and Lurgi (Frankfurt), has built a similar plant for BP in the UK, although using different technology. The new plant will require 54,000 m.t./year of methanol, which is available onsite. Carbon monoxide will be delivered from a new plant. The acetic acidmore » unit will joint two other acetic plants in China supplied some time ago by Uhde (Dortmund). SWCC is due to be integrated with two adjacent complexes to form Shanghai Pacific Chemical. Meanwhile, four groups are competing to supply a UOP-process aromatics complex for Jilin Chemical Industrial Corp. They are Toyo Engineering, Lurgi, Lucky/Foster Wheeler, and Eurotechnica. The complex will include plants with annual capacities for 115,000 m.t. of benzene, 90,000 m.t. of ortho-xylene, 93,000 m.t. of mixed xylenes, and 20,000 m.t. of toluene. The plants will form part of a $2-billion petrochemical complex based on a 300,000-m.t./year ethylene plant awarded last year to a consortium of Samsung Engineering and Linde. Downstream plants will have annual capacities for 120,000 m.t. of linear low-density polyethylene, 80,000 m.t. of ethylene oxide, 100,000 m.t. of ethylene glycol, 80,000 m.t. of phenol, 100,000 m.t. of acrylonitrile, 20,000 m.t. of sodium cyanide, 40,000 m.t. of phthalic anhydride, 40,000 m.t. of ethylene propylene rubber, 20,000 m.t. of styrene butadiene styrene, and 30,000 m.t. of acrylic fiber.« less
Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K
NASA Technical Reports Server (NTRS)
Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.
Sim, Hwansu; Kim, Chanho; Bok, Shingyu; Kim, Min Ki; Oh, Hwisu; Lim, Guh-Hwan; Cho, Sung Min; Lim, Byungkwon
2018-06-18
Silver (Ag) nanowires (NWs) are promising building blocks for flexible transparent electrodes, which are key components in fabricating soft electronic devices such as flexible organic light emitting diodes (OLEDs). Typically, Ag NWs have been synthesized using a polyol method, but it still remains a challenge to produce high-aspect-ratio Ag NWs via a simple and rapid process. In this work, we developed a modified polyol method and newly found that the addition of propylene glycol to ethylene glycol-based polyol synthesis facilitated the growth of Ag NWs, allowing the rapid production of long Ag NWs with high aspect ratios of about 2000 in a high yield (∼90%) within 5 min. Transparent electrodes fabricated with our Ag NWs exhibited performance comparable to that of an indium tin oxide-based electrode. With these Ag NWs, we successfully demonstrated the fabrication of a large-area flexible OLED with dimensions of 30 cm × 15 cm using a roll-to-roll process.
Space shuttle seal material and design development for earth storable propellant systems
NASA Technical Reports Server (NTRS)
1973-01-01
The results of a program to investigate and characterize seal materials suitable for space shuttle storable propellant systems are given. Two new elastomeric materials were identified as being potentially superior to existing state-of-the art materials for specific sealing applications. These materials were AF-E-124D and AF-E-411. AF-E-124D is a cured perfluorinated polymer suitable for use with dinitrogen tetroxide oxidizer, and hydrazine base fuels. AF-E-411 is an ethylene propylene terpolymer material for hydrazine base fuel service. Data are presented relative to low and high temperature characteristics as well as propellant exposure effects. Types of data included are: mechanical properties, stress strain curves, friction and wear characteristics, compression set and permeability. Sealing tests with a flat poppet-seal valve were conducted for verification of sealing capability. A bibliography includes over 200 references relating to seal design or materials and presents a concise tabulation of the more useful seal design data sources.
Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.
LaMontagne, A D; Kelsey, K T
2001-03-01
This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts.
46 CFR 151.50-12 - Ethylene oxide.
Code of Federal Regulations, 2013 CFR
2013-10-01
... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3) Cargo...
46 CFR 151.50-12 - Ethylene oxide.
Code of Federal Regulations, 2011 CFR
2011-10-01
... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3) Cargo...
46 CFR 151.50-12 - Ethylene oxide.
Code of Federal Regulations, 2012 CFR
2012-10-01
... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3) Cargo...
46 CFR 151.50-12 - Ethylene oxide.
Code of Federal Regulations, 2014 CFR
2014-10-01
... oxide shall be carried in fixed, independent, pressure vessel type cargo tanks, designed, constructed... temperature below 70 °F. (3) When ethylene oxide is to be transported at or near atmospheric pressure, the... handling ethylene oxide. (2) Cargo tanks shall meet the requirements of Class I pressure vessels. (3) Cargo...
Kumbhakar, Manoj; Ganguly, Rajib
2007-04-19
Dynamic Stokes' shift and fluorescence anisotropy measurements of coumarin 153 (C153) and coumarin 151 (C151) as fluorescence probes have been carried out to understand the influence of electrolytes (NaCl and LiCl) on the hydration behavior of aqueous (ethylene oxide)100-(propylene oxide)70-(ethylene oxide)100 (EO100-PO70-EO100, F127) block copolymer micelles. A small blue shift in the fluorescence spectra of C153 has been observed in presence of electrolytes due to the dehydration of the oxyethylene chains in the PEO-PPO region, although fluorescence spectra of C151 remain unaltered. The close vicinity of bulk water for C151 probably negates the effect of dehydration in the PEO region. Fluorescence anisotropy measurements indicate a gradual increase in microviscosity with electrolyte concentrations. The partial collapse of copolymer blocks in the presence of electrolytes has been suggested as a reason for the increase in microviscosity along with the strong hydration of ions in the corona region. The interplay between the ion hydration and the mechanically trapped water content, and specific interaction of ions, such as complexation of Li+ ions with the copolymer block, is found to control solvation dynamics in the corona region. In addition to that, it has been established that Na+ ions reside deep into the corona region whereas Li+ ions prefer to reside closer to the surface. Owing to its higher lyotropicity, LiCl influences the corona hydration to a greater extent than NaCl and sets in micelle-micelle interaction above the 2 M LiCl concentration, as reflected in the saturation of solvation time constants. The formation of larger clusters of F127 micelles above 2 M LiCl has been confirmed by dynamic light scattering measurements; however, such cluster formation is not evident with NaCl.
Kumar, B V N Phani; Priyadharsini, S Umayal; Prameela, G K S; Mandal, Asit Baran
2011-08-01
The present work was undertaken with a view to understand the influence of a model non-ionic tri-block copolymer PEO-PPO-PEO (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) with molecular weight 5800 i.e., P123 [(EO)(20)-(PO)(70)-(EO)(20)] on the self-aggregation characteristics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D(2)O) using NMR chemical shift, self-diffusion and nuclear spin-relaxation as suitable experimental probes. In addition, polymer diffusion has been monitored as a function of SDS concentration. The concentration-dependent chemical shift, diffusion data and relaxation data indicated the significant interaction of polymeric micelles with SDS monomers and micelles at lower and intermediate concentrations of SDS, whereas the weak interaction of the polymer with SDS micelles at higher concentrations of SDS. It has been observed that SDS starts aggregating on the polymer at a lower concentration i.e., critical aggregation concentration (cac=1.94 mM) compared to polymer-free situation, and the onset of secondary micelle concentration (C(2)=27.16 mM) points out the saturation of the 0.2 wt% polymer or free SDS monomers/micelles at higher concentrations of SDS. It has also been observed that the parameter cac is almost independent in the polymer concentrations of study. The TMS (tetramethylsilane) has been used as a solubilizate to measure the bound diffusion coefficient of SDS-polymer mixed system. The self-diffusion data were analyzed using two-site exchange model and the obtained information on aggregation dynamics was commensurate with that inferred from chemical shift and relaxation data. The information on slow motions of polymer-SDS system was also extracted using spin-spin and spin-lattice relaxation rate measurements. The relaxation data points out the disintegration of polymer network at higher concentrations of SDS. The present NMR investigations have been well corroborated by surface tension and conductivity measurements. Copyright © 2011 Elsevier Inc. All rights reserved.
TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Kwiatos, Klaudia; Kadlubowski, Slawomir; Dudek, Mariusz
2017-07-01
This work reports the first results obtained using a new 3D radiochromic gel dosimeter. The dosimeter is an aqueous physical gel matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127, PEO-PPO-PEO) doped with a representative of tetrazolium salts, 2, 3, 5-triphenyltetrazolium chloride (TTC). There were several reasons for the choice of Pluronic as a gel forming substrate: (i) the high degree of transparency and colourlessness; (ii) the possibility of gel dosimeter preparation at both high and low temperatures due to the phase behaviour of Pluronic; (iii) the broad temperature range over which the TTC-Pluronic dosimeter is stable; and (iv) the non-toxicity of Pluronic. A reason for the choice of TTC was its ionising radiation-induced transformation to water-insoluble formazan, which was assumed to impact beneficially on the spatial stability of the dose distribution. If irradiated, the TTC-Pluronic gels become red but transparent in the irradiated part, while the non-irradiated part remains crystal clear. The best obtained composition is characterised by <4 Gy dose threshold, a dose sensitivity of 0.002 31 (Gy × cm)-1, a large linear dose range of >500 Gy and a dynamic dose response much greater than 500 Gy (7.5% TTC, 25% Pluronic F-127, 50 mmol dm-3 tetrakis). Temporal and spatial stability studies revealed that the TTC-Pluronic gels (7.5% TTC, 25% Pluronic F-127) were stable for more than one week. The addition of compounds boosting the gels’ dose performance caused deterioration of the gels’ temporal stability but did not impact the stability of the 3D dose distribution. The proposed method of preparation allows for the repeatable manufacture of the gels. There were no differences observed between gels irradiated fractionally and non-fractionally. The TTC-Pluronic dose response might be affected by the radiation source dose rate—this, however, requires further examination.
Causes and Control of Corrosion in Buried-Conduit Heat Distribution Systems
1991-07-01
rubber , and foamed plastics such as polyurethanic anld phenolic) nominally contain 10 to 500 ppmn soluble chloide.’ Further, insulation can also become...pressure ratings. A maximum P X T limitation exists for all gasket materials. For example, the maximum temperature and pressure ratings for an EPDM ...ethylene propylene diene monomer) rubber material are, respectively, 3() ’F and 150 psi. The material, however, cannot be expected to perform
1979-05-01
polyethylene (PE), polyvinyl chloride (PVC), butyl rubber , Hyalon (a registered trademark of Dupont), ethylene propylene diene monomer ( EPDM ), chlorinated...studies are explained in part by the following factors: age of the landfill and corresponding state of stabilization; composition of the solid waste, the...an active anaerobic population of methane formers. The removal of organics resulted in a more rapid stabilization or " aging " of the experimental
Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge and Overdischarge Abuse
2012-11-16
hexafluorophosphate EC: ethylene carbonate DEC: diethyl carbonate DMC: dimethyl carbonate PC: propylene carbonate 2 2. Introduction Lithium -ion...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--12-9455 Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge and
Fabrication methods for low impedance lithium polymer electrodes
Chern, T.S.; MacFadden, K.O.; Johnson, S.L.
1997-12-16
A process is described for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.
Fabrication methods for low impedance lithium polymer electrodes
Chern, Terry Song-Hsing; MacFadden, Kenneth Orville; Johnson, Steven Lloyd
1997-01-01
A process for fabricating an electrolyte-electrode composite suitable for high energy alkali metal battery that includes mixing composite electrode materials with excess liquid, such as ethylene carbonate or propylene carbonate, to produce an initial formulation, and forming a shaped electrode therefrom. The excess liquid is then removed from the electrode to compact the electrode composite which can be further compacted by compression. The resulting electrode exhibits at least a 75% lower resistance.
Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Final Report)
EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Hea...
40 CFR 63.366 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions... subject to these emissions standards subsequently increases its use of ethylene oxide within any... amount of ethylene oxide used during the previous consecutive 12-month period in the initial notification...
Evaluating OSHA's ethylene oxide standard: exposure determinants in Massachusetts hospitals.
LaMontagne, A D; Kelsey, K T
2001-01-01
OBJECTIVES: This study sought to identify determinants of workplace exposures to ethylene oxide to assess the effect of the Occupational Safety and Health Administration's (OSHA's) 1984 ethylene oxide standard. METHODS: An in-depth survey of all hospitals in Massachusetts that used ethylene oxide from 1990 through 1992 (96% participation, N = 90) was conducted. Three types of exposure events were modeled with logistic regression: exceeding the 8-hour action level, exceeding the 15-minute excursion limit, and worker exposures during unmeasured accidental releases. Covariates were drawn from data representing an ecologic framework including direct and indirect potential exposure determinants. RESULTS: After adjustment for frequencies of ethylene oxide use and exposure monitoring, a significant inverse relation was observed between exceeding the action level and the use of combined sterilizer-aerators, an engineering control technology developed after the passage of the OSHA standard. Conversely, the use of positive-pressure sterilizers that employ ethylene oxide gas mixtures was strongly related to both exceeding the excursion limit and the occurrence of accidental releases. CONCLUSIONS: These findings provide evidence of a positive effect of OSHA's ethylene oxide standard and specific targets for future prevention and control efforts. PMID:11236406
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions Standards... Section 63.362—Standards for Ethylene Oxide Commercial Sterilizers and Fumigators Existing and new sources.... Each owner or operator of a sterilization source using 1 ton shall reduce ethylene oxide emissions to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions Standards... used to facilitate off-gassing of ethylene oxide at a sterilization facility. Aeration room vent means the point(s) through which the evacuation of ethylene oxide-laden air from an aeration room occurs...
75 FR 54387 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
... previously approved collection. Title of Collection: Standard on Ethylene Oxide (29 CFR 1910.1047). OMB... requirements contained in the Standard. The information collection requirements specified in Ethylene Oxide... ethylene oxide. The principal information collection requirements in the EtO Standard include conducting...
Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y
1995-01-01
Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.
NASA Astrophysics Data System (ADS)
Aprilliani, F.; Warsiki, E.; Iskandar, A.
2018-03-01
Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrens, V.; Burroughs, G.E.; Crandall, M.
1985-07-01
Environmental and breathing-zone samples were analyzed for nitrous oxide, halogenated anesthetic gases, and ethylene-oxide at Porter Memorial Hospital, Valparaiso, Indiana in April, 1984. The evaluation was requested by the Indiana Occupational Safety and Health Administration to investigate the exposure of operating room personnel to anesthetic gases and central supply employees to ethylene-oxide. The authors conclude that some of the operating room personnel are overexposed to halogenated anesthetic gases and nitrous-oxide. Recommendations include performing better maintenance of the anesthesia equipment, improving the work practices of the anesthesiologists, and periodically checking the ethylene-oxide sterilizer system for leaks.
Maleknia, S; Brodbelt, J; Pope, K
1991-05-01
The reactive and dissociative behavior of molybdenum and tungsten oxide cluster ions has been studied in the gas phase using a triple quadrupole mass spectrometer. Cluster ions (MO3) n (-) were formed via a simple thermal desorption/electron capture negative ionization method, and their structures were characterized by collision-activated dissociation (CAD). Typically, the clusters fragment by losses of neutral (MO3) units. Reactions of the oxide cluster ions with ethylene oxide, cyclohexene oxide, ethylene sulfide cyclohexene sulfide, 2,3-butanedione, and 2,4-pentanedione were examined, and product ions were characterized by CAD. The clusters react with ethylene oxide by addition of ethylene oxide or net addition of oxygen, whereas the clusters react with ethylene sulfide via net addition of one or two sulfur atoms. Reactions of the clusters with the diones result in addition of one or two dione units, in some cases with dehydration.
Evaluation of activated sludge for biodegradation of propylene glycol as an aircraft deicing fluid.
Delorit, Justin D; Racz, LeeAnn
2014-04-01
Aircraft deicing fluid used at airport facilities is often collected for treatment or disposal in order to prevent serious ecological threats to nearby surface waters. This study investigated lab scale degradation of propylene glycol, the active ingredient in a common aircraft deicing fluid, by way of a laboratory-scale sequencing batch reactor containing municipal waste water treatment facility activated sludge performing simultaneous organic carbon oxidation and nitrification. The ability of activated sludge to remove propylene glycol was evaluated by studying the biodegradation and sorption characteristics of propylene glycol in an activated sludge medium. The results indicate sorption may play a role in the fate of propylene glycol in AS, and the heterotrophic bacteria readily degrade this compound. Therefore, a field deployable bioreactor may be appropriate for use in flight line applications.
Ethylene Epoxidation with Nitrous Oxide over Fe-BTC Metal-Organic Frameworks: A DFT Study.
Maihom, Thana; Choomwattana, Saowapak; Wannakao, Sippakorn; Probst, Michael; Limtrakul, Jumras
2016-11-04
The epoxidation of ethylene with N 2 O over the metal-organic framework Fe-BTC (BTC=1,3,5-benzentricarboxylate) is investigated by means of density functional calculations. Two reaction paths for the production of ethylene oxide or acetaldehyde are systematically considered in order to assess the efficiency of Fe-BTC for the selective formation of ethylene oxide. The reaction starts with the decomposition of N 2 O to form an active surface oxygen atom on the Fe site of Fe-BTC, which subsequently reacts with an ethylene molecule to form an ethyleneoxy intermediate. This intermediate can then be selectively transformed either by 1,2-hydride shift into the undesired product acetaldehyde or into the desired product ethylene oxide by way of ring closure of the intermediate. The production of ethylene oxide requires an activation energy of 5.1 kcal mol -1 , which is only about one-third of the activation energy of acetaldehyde formation (14.3 kcal mol -1 ). The predicted reaction rate constants for the formation of ethylene oxide in the relevant temperature range are approximately 2-4 orders of magnitude higher than those for acetaldehyde. Altogether, the results suggest that Fe-BTC is a good candidate catalyst for the epoxidation of ethylene by molecular N 2 O. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
29 CFR 1926.1147 - Ethylene oxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Ethylene oxide. 1926.1147 Section 1926.1147 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Ethylene oxide. Note: The requirements applicable to construction work under this section are identical to...
29 CFR 1915.1047 - Ethylene oxide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Ethylene oxide. 1915.1047 Section 1915.1047 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1047 Ethylene oxide. Note: The requirements applicable to shipyard employment under this section...
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista
2015-01-01
To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450
Synthesis and energy applications of oriented metal oxide nanoporous films
NASA Astrophysics Data System (ADS)
Wu, Qingliu
This dissertation mainly addresses the synthesis of well-ordered mesoporous titania thin films by dip coating with PEO-PPO-PEO triblock copolymer surfactant template P123. Because P123 is composed of poly(ethylene oxide) [PEO] and poly(propylene oxide) [PPO] blocks, concentrations of ingredients are adjusted to tune the films' wall thickness, pore size and mesophase. Structural changes are consistent with partitioning of species among PEO blocks, PPO blocks, and the PEO/PPO interface. Titanates localize near PEO and increase wall thickness (by 5 nm to 7 nm). Depending on aging temperature, PPG either swells the PPO cores (when it is hydrophobic) or introduces large (>200 nm) voids (when it is hydrophilic but phase separates during heating). 1-butanol localizes at the PEO/PPO interface to favor a 3D hexagonal mesostructure. In another approach, anodizing Ti foils yields vertically aligned titania nanotubes arrays with exceptional stabilities as anodes in lithium ion batteries; they maintain capacities of 130-230 mAhg-1 over 200 cycles. No microstructural changes are induced by battery cycling and good electrical contact is maintained. A diffusion induced stress model suggests that thin-walled nanotubes arrays should be stable under testing conditions, and that ordered hexagonal columnar pore arrays should have both high charge/discharge rates and low stress development. KEY WORDS: materials synthesis, porous, thin film, alternative energy, self-assembly
NASA Astrophysics Data System (ADS)
Mimira, Tokio; Umeda, Tomohiro; Musha, Yoshiro; Itatani, Kiyoshi
2013-12-01
A novel hemostatic agent was prepared using phosphoryl oligosaccharides of calcium (POs-Ca), hydroxyapatite (Ca10(PO4)6(OH)2; HAp) obtained by the hydrolysis of POs-Ca or sugar-containing HAp (s-HAp; 60.3 mass% calcium-deficient HAp and 39.5 mass% organic materials, Ca/P ratio = 1.56) and thermoplastic resin (the mixture of random copolymer of ethylene oxide/propylene oxide (EPO) and polyethylene oxide (EO); EPO : EO : water = 25 : 15 : 60 (mass ratio); 25EPO-15EO). The gel formed by mixing 25EPO-15EO with water (25EPO-15EO/water mass ratio: 0.20) was flash frozen at -80°C, freeze-dried at -50°C for 15 h and then ground using mixer. The consistency conditions of hemostats mixed with POs-Ca or s-HAp were optimized for the practical uses. The mean stanching times of hemostats were: s-HAp/25EPO-15EO (8.2 h; s-HAp/25EPO-15EO = 0.20) > 25EPO-15EO (5.3 h) > POs-Ca/25EPO-15EO (4.7 h; POs-Ca/25EPO-15EO = 0.20). The gentamicin, a typical antibiotic agent, loaded s-HAp/25EPO-15EO composite hemostat showed the steady state releasing in phosphate buffered saline till 10 h immersion at 37.0°C.
2011-01-01
Background Drug and contrast agent delivery systems that achieve controlled release in the presence of enzymatic activity are becoming increasingly important, as enzymatic activity is a hallmark of a wide array of diseases, including cancer and atherosclerosis. Here, we have synthesized clusters of ultrasmall superparamagnetic iron oxides (USPIOs) that sense enzymatic activity for applications in magnetic resonance imaging (MRI). To achieve this goal, we utilize amphiphilic poly(propylene sulfide)-bl-poly(ethylene glycol) (PPS-b-PEG) copolymers, which are known to have excellent properties for smart delivery of drug and siRNA. Results Monodisperse PPS polymers were synthesized by anionic ring opening polymerization of propylene sulfide, and were sequentially reacted with commercially available heterobifunctional PEG reagents and then ssDNA sequences to fashion biofunctional PPS-bl-PEG copolymers. They were then combined with hydrophobic 12 nm USPIO cores in the thin-film hydration method to produce ssDNA-displaying USPIO micelles. Micelle populations displaying complementary ssDNA sequences were mixed to induce crosslinking of the USPIO micelles. By design, these crosslinking sequences contained an EcoRV cleavage site. Treatment of the clusters with EcoRV results in a loss of R2 negative contrast in the system. Further, the USPIO clusters demonstrate temperature sensitivity as evidenced by their reversible dispersion at ~75°C and re-clustering following return to room temperature. Conclusions This work demonstrates proof of concept of an enzymatically-actuatable and thermoresponsive system for dynamic biosensing applications. The platform exhibits controlled release of nanoparticles leading to changes in magnetic relaxation, enabling detection of enzymatic activity. Further, the presented functionalization scheme extends the scope of potential applications for PPS-b-PEG. Combined with previous findings using this polymer platform that demonstrate controlled drug release in oxidative environments, smart theranostic applications combining drug delivery with imaging of platform localization are within reach. The modular design of these USPIO nanoclusters enables future development of platforms for imaging and drug delivery targeted towards proteolytic activity in tumors and in advanced atherosclerotic plaques. PMID:21352596
Corsi, S R; Hall, D W; Geis, S W
2001-07-01
Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.
Corsi, Steven; Hall, David W.; Geis, Steven W.
2001-01-01
Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox® were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.
40 CFR 63.365 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide... amount of ethylene oxide, for the duration of the first evacuation under normal operating conditions (i.e., sterilization pressure and temperature). (i) The amount of ethylene oxide loaded into the sterilizer (Wc) shall...
Code of Federal Regulations, 2010 CFR
2010-07-01
... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...
Zhang, Zhihong; Smart, Tristan J; Choi, Hwanho; Hardy, Florence; Lohans, Christopher T; Abboud, Martine I; Richardson, Melodie S W; Paton, Robert S; McDonough, Michael A; Schofield, Christopher J
2017-05-02
Ethylene is important in industry and biological signaling. In plants, ethylene is produced by oxidation of 1-aminocyclopropane-1-carboxylic acid, as catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase. Bacteria catalyze ethylene production, but via the four-electron oxidation of 2-oxoglutarate to give ethylene in an arginine-dependent reaction. Crystallographic and biochemical studies on the Pseudomonas syringae ethylene-forming enzyme reveal a branched mechanism. In one branch, an apparently typical 2-oxoglutarate oxygenase reaction to give succinate, carbon dioxide, and sometimes pyrroline-5-carboxylate occurs. Alternatively, Grob-type oxidative fragmentation of a 2-oxoglutarate-derived intermediate occurs to give ethylene and carbon dioxide. Crystallographic and quantum chemical studies reveal that fragmentation to give ethylene is promoted by binding of l-arginine in a nonoxidized conformation and of 2-oxoglutarate in an unprecedented high-energy conformation that favors ethylene, relative to succinate formation.
Environmental Compliance Assessment and Management Program (ECAMP), South Carolina Supplement
1994-04-01
Carbaryl 63252 25.00 Carbon Disulfide 75150 150.00 Carbon Tetrachloride 56235 150.00. Carbonyl Sulfide 463581 12250.00 Catechol 120809 297.00...7.50 Propoxur H4261 2.50 Propylene Dichloride 78875 1750.00 1.2 Propylene Oxide 75569 250.00 Propylenimine (1.2-) 75558 23.35 Pyrethrin 1 121211 25(X
Environmental Compliance Assessment System (ECAS). South Carolina Supplement. U.S. Army
1994-04-01
Cyanamide. 156627 2.50 Captan 133062 25.00 Carbaryl 63252 25.00 Carbon Disulfide 75150 150.00 Carbon Tetrachloride 56235 150.00. Carbonyl Sulfide...1120714 + b-Propiolactone 57578 7.50 Propoxur 114261 2.50 Propylene Dichloride 78875 1750.00 1,2 Propylene Oxide 75569 250.00 Propylenimine (1,2
Toxicity of Pyrolysis Gases from Elastomers
NASA Technical Reports Server (NTRS)
Hilado, Carlos J.; Kosola, Kay L.; Solis, Alida N.; Kourtides, Demetrius A.; Parker, John A.
1977-01-01
The toxicity of the pyrolysis gases from six elastomers was investigated. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acryltonitrile rubber exhibited the greatest toxicity under these test conditions; carbon monoxide was not found in sufficient concentrations to be the primary cause of death.
Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures
NASA Astrophysics Data System (ADS)
Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos
2015-02-01
The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.
Corrosion Chemistry in Inhibited HDA.
1980-11-30
mg HF. 200 B.1 Teflon PFA Reactor 201 (xviii) .. .. - i LIST OF MICROGRAPHS Micrograph Follows Page 4.1 A1/HDA x 1,000 80 4.2 A1/0.4 Wt % PF5 x 2,000...Ethylene Propylene copolymer Teflon PTFE Polytetrafluoroethylene Teflon PFA Perfluoroalkoxy fluorocarbon resin Spectroscopy IR (ir) Infra-red UV...fluoroplastic apparatus (to avoid any possible contamination by the reaction products of HF with glass). Iron powder (0.3g) was placed in a PFA screw-cap
Incorporation of High Energy Materials Into High Density Polymers
1987-09-21
and the pure graft copolymer was isolated by selective solvent extraction. 5 f. Isolation of pure Qraft copolymers. The isolation of pure EPDM -g-PS...characterized, such as EPDM -g-PST and EPDM -g-PMST. Two methods of synthesis were successful: a macromonomer (a polymer containing a polymerizab head group) was...copolymerized with ethylene and propylene to lead to the final product, and chlorination of a commercial EPDM allowed the chlorinated sites to serve as
Díez-Pascual, Ana M; Díez-Vicente, Angel L
2017-09-01
Antibacterial and biocompatible SnO 2 nanorods have been easily synthesized through a hydrothermal process with the aid of a cationic surfactant, and incorporated as nanoreinforcements in poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) copolymer crosslinked with N-vinyl-pyrrolidone (NVP) by sonication and thermal curing. The nanorods were randomly and individually dispersed inside the P(PF-co-EG) network, and noticeably increased the thermal stability, hydrophilicity, degree of crystallinity, protein absorption capability as well as stiffness and strength of the matrix, whilst decreased its level of porosity and biodegradation rate. More importantly, the resulting nanocomposites retained adequate rigidity and strength after immersion in a simulated body fluid (SBF) at 37°C. They also exhibited biocide action against Gram-positive and Gram-negative bacteria; their antibacterial effect was strong under UV-light illumination whilst in dark conditions was only moderate. Further, they did not cause toxicity on human dermal fibroblasts. The friction coefficient and wear rate strongly decreased with increasing nanorod loading under both dry and SBF conditions; the greatest drops in SBF were about 18-fold and 13-fold, respectively, compared to those of the copolymer network. These novel biomaterials are good candidates to be applied in the field of soft-tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Almeida, T. S.; Palma, L. M.; Leonello, P. H.; Morais, C.; Kokoh, K. B.; De Andrade, A. R.
2012-10-01
The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved.
NASA Astrophysics Data System (ADS)
Wacharawichanant, S.; Ounyai, C.; Rassamee, P.
2017-07-01
The effects of propylene-ethylene copolymer (PEC or PEC3300) and clay surface modified with 25-30 wt% of trimethylstearyl ammonium (Clay-TSA) on morphology, thermal and mechanical properties of poly(lactic acid) (PLA) were investigated. The morphology analysis showed PLA/PEC3300 blends clearly demonstrated a two-phase separation of dispersed phase and the matrix phase and the addition of Clay-TSA could improve the miscibility of PLA and PEC3300 blends due to the decreased of the domain sizes of dispersed PEC3300 phase in the polymer matrix. From X-ray diffraction analysis showed the intercalation of PLA chains inside the Clay-TSA and this result implied that Clay-TSA platelets acted as an effective compatibilizer. The tensile properties showed the strain at break of PLA was improved after adding PEC3300 while Young’s modulus, tensile strength and storage modulus decreased. The addition of Clay-TSA could improve Young’s modulus of PLA/PEC3300 blends. The addition of Clay-TSA 7 phr showed the maximum of Young’s modulus of PLA/PEC3300/Clay-TSA composites. The thermal properties found that the addition of PEC3300 and Clay-TSA did not change significantly on the glass transition temperature and melting point temperature of PLA. The percent of crystallinity of PLA decreased with increasing PEC content. The thermal stability of PLA improved after adding PEC3300.
40 CFR 63.10430 - What notifications must I submit and by when?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hospital Ethylene Oxide Sterilizers Notifications... the number of ethylene oxide sterilizers, the size (volume) of each, the number of aeration units, if any, the amount of annual ethylene oxide usage at the facility, the control technique used for each...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Commercial Ethylene Oxide..., go to www.regulations.gov . Title: NESHAP for Commercial Ethylene Oxide Sterilization and Fumigation.... Respondents/Affected Entities: Owners or operator of commercial ethylene oxide sterilization and fumigation...
40 CFR 63.367 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide... subject to § 63.362 shall maintain records of ethylene oxide use on a 12-month rolling average basis... operators of a source using less than 1 ton shall maintain records of ethylene oxide use on a 12-month...
Block Copolymer Adhesion Measured by Contact Mechanics Methods
NASA Astrophysics Data System (ADS)
Falsafi, A.; Bates, S.; Tirrell, M.; Pocius, A. V.
1997-03-01
Adhesion measurements for a series of polyolefin diblocks and triblocks are presented. These materials have poly(ethylene-propylene) or poly(ethyl-ethylene) rubbery block, and semicrystalline polyethylene block as physical crosslinker. The experiments consist of compression and decompression profiles of contact area between the samples as a function of normal load, analyzed by the JKR Theory. The samples are prepared either by formation of caps from the bulk material in melting and subsequent cooling, and/or coating them in thin films on surface modified elastic foundations of polydimethylsiloxane caps. The latter minimizes the viscoelastic losses which are dominant in the bulk of material. The effect of molecular architecture and microstructure on adhesion energy and dynamics of separation, obtained from decompression experiments, is discussed in view of their influence on molecular arrangements at the contacting surfaces.
Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery.
Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao
2014-01-01
Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.
Lithium ion battery with improved safety
Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil
2006-04-11
A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.
Failure life determination of oilfield elastomer seals in sour gas/dimethyl disulfide environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennelley, K.J.; Abrams, P.I.; Vicic, J.C.
1989-01-01
Previous screening tests of various oilfield elastomers in sour gas/dimethyl disulfide environments indicated that hydrogenated nitrile (HNBR), tetrafluoroethylene-propylene (TFE/P), ethylene-propylene-diene (EPDM), and perfluorinated rubber (FFKM) elastomers may perform satisfactorily in these environments. This paper describes subsequent failure life tests conducted with the subject elastomers in the sour gas/dimethyl disulfide test environment at several elevated temperatures (> 135{degrees}C). The materials were tested in the form of O-rings (size 214), which were used to seal an autoclave containing the test environment at 14 MPa gas pressure. The results were used to extrapolate time to failure at a common reference temperature of 135{degrees}C.more » The performance of EPDM and HNBR in the sour gas/dimethyl disulfide mixture substantially exceeded a projected 20-year service life at 135{degrees}C, while FFKM and TFE/P did not.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... Extension of Public Comment Period on the Draft IRIS Carcinogenicity Assessment for Ethylene Oxide and Addition of Ethylene Oxide to October IRIS Bimonthly Meeting Agenda AGENCY: Environmental Protection Agency... Ethylene Oxide to October IRIS Bimonthly Meeting Agenda. SUMMARY: EPA is announcing an extension of the...
Preparation and Thermo-Physical Properties of Fe2O3-Propylene Glycol Nanofluids.
Shylaja, A; Manikandan, S; Suganthi, K S; Rajan, K S
2015-02-01
Iron oxide (Fe2O3) nanoparticles were prepared from ferric chloride and ferrous sulphate by precipitation reaction. Fe2O3-propylene glycol nanofluid was prepared by dispersing Fe2O3 nanoparticles in propylene glycol through stirred bead milling, shear homogenization and probe ultrasonication. The nanofluid was characterized through measurement of viscosity, particle size distribution and thermal conductivity. The interactions between Fe2O3 nanoparticles and propylene glycol on the nanoparticle surfaces lead to reduction in viscosity, the magnitude of which increases with nanoparticle concentration (0-2 vol%) at room temperature. The thermal conductivity enhancement for 2 vol% nanofluid was about 21% at room temperature, with liquid layering being the major contributor for thermal conductivity enhancement.
Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann
2015-10-01
Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Melt compounding with graphene to develop functional, high-performance elastomers.
Araby, Sherif; Zaman, Izzuddin; Meng, Qingshi; Kawashima, Nobuyuki; Michelmore, Andrew; Kuan, Hsu-Chiang; Majewski, Peter; Ma, Jun; Zhang, Liqun
2013-04-26
Rather than using graphene oxide, which is limited by a high defect concentration and cost due to oxidation and reduction, we adopted cost-effective, 3.56 nm thick graphene platelets (GnPs) of high structural integrity to melt compound with an elastomer-ethylene-propylene-diene monomer rubber (EPDM)-using an industrial facility. An elastomer is an amorphous, chemically crosslinked polymer generally having rather low modulus and fracture strength but high fracture strain in comparison with other materials; and upon removal of loading, it is able to return to its original geometry, immediately and completely. It was found that most GnPs dispersed uniformly in the elastomer matrix, although some did form clusters. A percolation threshold of electrical conductivity at 18 vol% GnPs was observed and the elastomer thermal conductivity increased by 417% at 45 vol% GnPs. The modulus and tensile strength increased by 710% and 404% at 26.7 vol% GnPs, respectively. The modulus improvement agrees well with the Guth and Halpin-Tsai models. The reinforcing effect of GnPs was compared with silicate layers and carbon nanotube. Our simple fabrication would prolong the service life of elastomeric products used in dynamic loading, thus reducing thermosetting waste in the environment.
Fan, Yong; Lu, Yan-Min; Yu, Bin; Tan, Cong-Ping; Cui, Bo
2017-09-15
Capsaicin was extracted from capsicum oleoresin using an aqueous two-phase system (ATPS) composed of an ethylene oxide-propylene oxide (EOPO) copolymer, salt and ethanol. Capsaicin was concentrated in the top polymer-rich phase. To determine the optimal conditions, the partitioning of capsaicin in the ATPS was investigated, considering a single-factor experiment including the salt concentration, polymer concentration, buffer pH, ethanol concentration, sample loading and extraction duration. Response surface methodology was applied to investigate the effects of the polymer concentration, buffer pH and sample loading on capsaicin partitioning. A capsaicin yield of 95.5% was obtained using the optimal extraction system, which consisted of 16.3% UCON 50-HB-5100/10% K 2 HPO 4 /1% ethanol, a buffer pH of 4.35 and 0.24g of capsicum oleoresin. Capsaicin was purified from the capsaicinoid extract using a two-step macroporous adsorption resin (MAR) method. After purification using non-polar MAR ADS-17, the recovery and purity of capsaicin were 83.7% and 50.3%, respectively. After purification using weakly polar MAR AB-8, the recovery and purity of capsaicin were 88.0% and 85.1%, respectively. Copyright © 2017. Published by Elsevier B.V.
Gaymalov, Zagit Z; Yang, Zhihui; Pisarev, Vladimir M; Alakhov, Valery Yu; Kabanov, Alexander V
2009-02-01
DNA vaccines can be greatly improved by polymer agents that simultaneously increase transgene expression and activate immunity. We describe here Pluronic P85 (P85), a triblock copolymer of ethylene oxide (EO) and propylene oxide (PO) EO(26)-PO(40)-EO(26). Using a mouse model we demonstrate that co-administration of a bacterial plasmid DNA with P85 in a skeletal muscle greatly increases gene expression in the injection site and distant organs, especially the draining lymph nodes and spleen. The reporter expression colocalizes with the specific markers of myocytes and keratinocytes in the muscle, as well as dendritic cells (DCs) and macrophages in the muscle, lymph nodes and spleen. Furthermore, DNA/P85 and P85 alone increase the systemic expansion of CD11c+ (DC), and local expansion of CD11c+, CD14+ (macrophages) and CD49b+ (natural killer) cell populations. DNA/P85 (but not P85) also increases maturation of local DC (CD11c+ CD86+, CD11c+ CD80 +, and CD11c+ CD40+. We suggest that DNA/P85 promotes the activation and recruitment of the antigen-presenting cells, which further incorporate, express and carry the transgene to the immune system organs.
Block ionomer complexes as prospective nanocontainers for drug delivery.
Oh, Kyung T; Bronich, Tatiana K; Bromberg, Lev; Hatton, T Alan; Kabanov, Alexander V
2006-09-28
Nanosized environmentally responsive materials are of special interest for various applications, including drug delivery. Block ionomer complexes (BIC) composed of graft-comb copolymers of Pluronic and poly(acrylic acid) (Pluronic-PAA) and a model cationic surfactant, hexadecyltrimethylammonium bromide (HTAB), were synthesized by mixing the polymer and surfactant in aqueous media. According to TEM, the resulting BIC represented spherical particles of nanoscale size (50 to 100 nm). The stability of the BIC in the aqueous dispersion depended on the lengths of the hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide) chains in Pluronic molecules as well as on the surface charge of the resulting complexes. The latter was controlled by changing the ratio of the Pluronic-PAA and HTAB in the BIC and by changing the pH due to reversible ionization of the PAA chains. The acidification of the media below pH 6.0 resulted in the appearance of a strong positive charge on the BIC, which in the intracellular environment can trigger interaction of such BIC with the cell membranes. An efficient solubilization of a model hydrophobic molecule, Sudan III, and a drug, Etoposide, in such BIC was demonstrated with the loading capacities of about 6 to 15% by weight of the dispersed complex. Overall, these BIC wield a promise as environmentally responsive nanocarriers for pharmaceuticals.
Self-assembled block copolymer-nanoparticle hybrids: interplay between enthalpy and entropy.
Sarkar, Biswajit; Alexandridis, Paschalis
2012-11-13
The dispersion of nanoparticles in ordered block copolymer nanostructures can provide control over particle location and orientation, and pave the way for engineered nanomaterials that have enhanced mechanical, electrical, or optical properties. Fundamental questions pertaining to the role of enthalpic and entropic particle-polymer interactions remain open and motivate the present work. We consider here a system of 10.6 nm silica nanoparticles (NPs) dispersed in ordered cylinders formed by hydrated poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic P105: EO(37)PO(56)EO(37)). Protonation of silica was used to vary the NP-polymer enthalpic interactions, while polar organic solvents (glycerol, DMSO, ethanol, and DMF) were used to modulate the NP-polymer entropic interactions. The introduction of deprotonated NPs in the place of an equal mass of water did not affect the lattice parameter of the PEO-PPO-PEO block copolymer hexagonal lyotropic liquid crystalline structures. However, the dispersion of protonated NPs led to an increase in the lattice parameter, which was attributed to stronger NP-polymer hydrogen bonding (enthalpic) interactions. Dispersion of protonated NPs into cylindrical structures formed by Pluronic P105 in 80/20 water/organic solvents does not influence the lattice parameter, different from the case of protonated NP in plain water. Organic solvents appear to screen the NP-polymer hydrogen bonding interactions.
Gupta, Nivika R; Torris A T, Arun; Wadgaonkar, Prakash P; Rajamohanan, P R; Ducouret, Guylaine; Hourdet, Dominique; Creton, Costantino; Badiger, Manohar V
2015-03-06
New thermo associating polymers were designed and synthesized by grafting amino terminated poly(ethylene oxide-co-propylene oxide) (PEPO) onto carboxymethyl guar (CMG) and carboxymethyl tamarind (CMT). The grafting was performed by coupling reaction between NH2 groups of PEPO and COOH groups of CMG and CMT using water-soluble EDC/NHS as coupling agents. The grafting efficiency and the temperature of thermo-association, T(assoc) in the copolymer were studied by NMR spectroscopy. The graft copolymers, CMG-g-PEPO and CMT-g-PEPO exhibited interesting thermo-associating behavior which was evidenced by the detailed rheological and fluorescence measurements. The visco-elastic properties (storage modulus, G'; loss modulus, G") of the copolymer solutions were investigated using oscillatory shear experiments. The influence of salt and surfactant on the T(assoc) was also studied by rheology, where the phenomenon of "Salting out" and "Salting in" was observed for salt and surfactant, respectively, which can give an easy access to tunable properties of these copolymers. These thermo-associating polymers with biodegradable nature of CMG and CMT can have potential applications as smart injectables in controlled release technology and as thickeners in cosmetics and pharmaceutical formulations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Demirci, Selami; Doğan, Ayşegül; Türkmen, Neşe Başak; Telci, Dilek; Rizvanov, Albert A; Şahin, Fikrettin
2017-02-01
Prostate cancer is a multistep and complicated cancer type that is regulated by androgens at the cellular level and remains the second commonest cause of death among men. Discovery and development of novel chemotherapeutic agents enabling rapid tumor cell death with minimal toxic effects to healthy tissues might greatly improve the safety of chemotherapy. The present study evaluates the anti-cancer activity of a novel heterodinuclear copper(II)Mn(II) complex (Schiff base) in combination with poly(ethylene oxide) and poly(propylene oxide) block copolymer (Pluronic) P85. We used assays for cell proliferation, apoptosis, cell migration and invasion, DNA binding and cleavage to elucidate the molecular mechanisms of action, in addition to the anti-inflammatory potency of the new combination. The combined treatment of Schiff base and P85 lead to a remarkable anti-cancer effect on prostate cancer cell lines. Cell proliferation was inhibited in Schiff base-P85 treatment. The activity of this formulation is on DNA binding and cleavage and prevents inflammation in in vitro conditions. This is the first study presenting the anti-cancer activity of the present Schiff base derivative and its combination with P85 to treat prostate cancer in vitro. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia.
Dwyer, D F; Tiedje, J M
1983-01-01
Methanogenic enrichments capable of degrading polyethylene glycol and ethylene glycol were obtained from sewage sludge. Ethanol, acetate, methane, and (in the case of polyethylene glycols) ethylene glycol were detected as products. The sequence of product formation suggested that the ethylene oxide unit [HO-(CH2-CH2-O-)xH] was dismutated to acetate and ethanol; ethanol was subsequently oxidized to acetate by a syntrophic association that produced methane. The rates of degradation for ethylene, diethylene, and polyethylene glycol with molecular weights of 400, 1,000, and 20,000, respectively, were inversely related to the number of ethylene oxide monomers per molecule and ranged from 0.84 to 0.13 mM ethylene oxide units degraded per h. The enrichments were shown to best metabolize glycols close to the molecular weight of the substrate on which they were enriched. The anaerobic degradation of polyethylene glycol (molecular weight, 20,000) may be important in the light of the general resistance of polyethylene glycols to aerobic degradation. PMID:6614903
Effect of electron beam irradiation on the properties of crosslinked rubbers
NASA Astrophysics Data System (ADS)
Banik, Indranil; Bhowmick, Anil K.
2000-05-01
Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature ( Tg) and storage modulus increased, while the elongation at the break and the loss tangent (tan δ) Tg decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy.
2007-06-01
Joint At the exit of the expansion tank, a polymeric composition of ethylene-propylene- diene terpolymer ( EPDM ) rubber was used to mate the flange of...The final connection of the detonator was cumbersome for an operator wearing thick butyl rubber gloves. The detonator wire connection was made to a...operators were required to wear PPE, including rubber gloves. The decision was made to transfer the PLC components to outside the VCS. In Phase I, the
Demonstration of Corrosion-Resistant Fire Hydrant Retrofits for Military Installations
2013-10-01
diene M-class rubber ( EPDM )/powder coated steel sleeve inserted into the top of the hy- drant barrel at the traffic breakaway allowing the seat for...The insert seat of the valve shall be made of a ethylene propylene diene M-class rubber ( EPDM )/powder coated steel sleeve in- serted into the top of...intentional water-supply contamination. The technology was installed on 90 fire hy- drants of various makes, models, and ages at Fort Leonard Wood, MO. To
Recommendations for the Revision of MIL-C-915 Outboard Cable Specifications.
1983-03-15
pressure heat 127 40 Ethylene propylene rubber Air oven 121 168 Air pressure heat 127 40 4333 131 -ML-C-915C Table XIV - Accclerated aging of specimens...terminated at the hydrophones and transducers in cable glands in which the cables are directly rubber -molded to the cable gland which is mounted to...outboard sonar system components. The cables are sealed to the connector plugs by molding a neoprene or polyurethane rubber boot to the cable jacket and to
New Stethoscope With Extensible Diaphragm.
Takashina, Tsunekazu; Shimizu, Masashi; Muratake, Torakazu; Mayuzumi, Syuichi
2016-08-25
This study compared the diagnostic efficacy of the common suspended diaphragm stethoscope (SDS) with a new extensible diaphragm stethoscope (EDS) for low-frequency heart sounds. The EDS was developed by using an ethylene propylene diene monomer diaphragm. The results showed that the EDS enhanced both the volume and quality of low-frequency heart sounds, and improved the ability of examiners to auscultate such heart sounds. Based on the results of the sound analysis, the EDS is more efficient than the SDS. (Circ J 2016; 80: 2047-2049).
A Tomographic Method for the Reconstruction of Local Probability Density Functions
NASA Technical Reports Server (NTRS)
Sivathanu, Y. R.; Gore, J. P.
1993-01-01
A method of obtaining the probability density function (PDF) of local properties from path integrated measurements is described. The approach uses a discrete probability function (DPF) method to infer the PDF of the local extinction coefficient from measurements of the PDFs of the path integrated transmittance. The local PDFs obtained using the method are compared with those obtained from direct intrusive measurements in propylene/air and ethylene/air diffusion flames. The results of this comparison are good.
Chirality recognition in the glycidol···propylene oxide complex: a rotational spectroscopic study.
Thomas, Javix; Sunahori, Fumie X; Borho, Nicole; Xu, Yunjie
2011-04-11
Chirality recognition in the hydrogen-bonded glycidol···propylene oxide complex has been studied by using rotational spectroscopy and ab initio calculations. An extensive conformational search has been performed for this binary adduct at the MP2/6-311++G(d,p) level of theory and a total of 28 homo- and heterochiral conformers were identified. The eight binary conformers, built of the two dominant glycidol monomeric conformers, g-G+ and g+G-, were predicted to be the most stable ones. Jet-cooled rotational spectra of six out of the eight conformers were observed and unambiguously assigned for the first time. The experimental stability ordering has been obtained and compared with the ab initio predictions. The relative stability of the two dominant glycidol monomeric conformers is reversed in some cases when binding to propylene oxide. The contributions of monomeric energy, deformation energy, and binary intermolecular interaction energy to the relative stability of the binary conformers are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Health Assessment Document for Ethylene Oxide
The largest single use of ethylene oxide is as an intermediate in the synthesis of ethylene glycol. However, small amounts of this epoxide are used as a sterilant or pesticide in commodities, pharmaceuticals, medical devices, tobacco, and other items, representing a considerable ...
Enantioselective complexation of chiral propylene oxide by an enantiopure water-soluble cryptophane.
Bouchet, Aude; Brotin, Thierry; Linares, Mathieu; Ågren, Hans; Cavagnat, Dominique; Buffeteau, Thierry
2011-05-20
ECD and NMR experiments show that the complexation of propylene oxide (PrO) within the cavity of an enantiopure water-soluble cryptophane 1 in NaOH solution is enantioselective and that the (R)-PrO@PP-1 diastereomer is more stable than the (S)-PrO@PP-1 diastereomer with a free energy difference of 1.7 kJ/mol. This result has been confirmed by molecular dynamics (MD) and ab initio calculations. The enantioselectivity is preserved in LiOH and KOH solutions even though the binding constants decrease, whereas PrO is not complexed in CsOH solution.
Effect of Rubber Polarity on Cluster Formation in Rubbers Cross-Linked with Diels–Alder Chemistry
2017-01-01
Diels–Alder chemistry has been used for the thermoreversible cross-linking of furan-functionalized ethylene/propylene (EPM) and ethylene/vinyl acetate (EVM) rubbers. Both furan-functionalized elastomers were successfully cross-linked with bismaleimide to yield products with a similar cross-link density. NMR relaxometry and SAXS measurements both show that the apolar EPM-g-furan precursor contains phase-separated polar clusters and that cross-linking with polar bismaleimide occurs in these clusters. The heterogeneously cross-linked network of EPM-g-furan contrasts with the homogeneous network in the polar EVM-g-furan. The heterogeneous character of the cross-links in EPM-g-furan results in a relatively high Young’s modulus, whereas the more uniform cross-linking in EVM-g-furan results in a higher tensile strength and elongation at break. PMID:29213149
Park, Gayoung; Kim, Yun Hee; Kim, Dong Soo; Ko, Young Chun
2010-05-01
Morphology and vulcanizate properties of EPDM/SBR blends were investigated. AAHR (a mixture of aliphatic and aromatic hydrocarbon resins) was used as a compatibilizer and bis(3-triethoxysilylpropyl)tetrasulfide (TESPT) was used as a coupling agent. The vulcanizate properties and the morphological studies revealed that EPDM and SBR were incompatible, and the addition of AAHR was very effective to enhance the compatibility between EPDM and SBR. The weight percent of bound rubbers was increased with increasing SBR contents. The addition of an AAHR increased the amounts of bound rubbers, and hence the vulcanizate properties such as tear strength and fatigue resistance of the EPDM/SBR blends were improved. The dynamic mechanical analysis and the morphological studies revealed that the addition of TESPT increased the weight of bound rubbers and provided better dispersion of carbon black, resulting in good mechanical properties such as tear strength and fatigue resistance of the vulcanized EPDM/SBR blends. The smaller particle of zinc oxide (i.e., 50 nm > 100 nm > 1000 nm) yielded to the better blending properties of the polymer blend.
Marques, Nívia do N; Balaban, Rosangela de C; Halila, Sami; Borsali, Redouane
2018-03-15
Graft copolymers based on carboxymethylcellulose (CMC) and thermosensitive polyetheramines (ethylene oxide/propylene oxide = 33/10 and 1/9) were prepared in water, at room temperature, by using a carbodiimide and N-hydroxysuccinimide as activators. SLS was applied to obtain M w , A 2 and R g of CMC and its derivatives. Amide linkages were evidenced by FTIR and grafting percentage was determined by 1 H NMR. TGA demonstrated that copolymers were thermally more stable than their precursors. DLS, UV-vis and rheological measurements revealed that properties were salt- and thermo-responsive and linked to the polysaccharide/polyetheramine ratio and the hydrophobicity of the graft. None of the copolymers showed cloud point temperature (Tcp) in water, but they turned turbid in saline media when heated. Copolymers exhibited thermothickening behaviour at 60 °C (>Tcp) in saline media. Below their Tcp, they showed the ability of keeping constant viscosity or even slight increase it, which was interpreted in terms of intermolecular hydrophobic associations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajan, Krishna; Roppolo, Ignazio; Bejtka, Katarzyna; Chiappone, Annalisa; Bocchini, Sergio; Perrone, Denis; Pirri, Candido Fabrizio; Ricciardi, Carlo; Chiolerio, Alessandro
2018-06-01
The present work compares the influence of different polymer matrices on the performance of planar asymmetric Resistive Switching Devices (RSDs) based on silver nitrate and Ionic Liquid (IL). PolyVinyliDene Fluoride-HexaFluoroPropylene (PVDF-HFP), PolyEthylene Oxide (PEO), PolyMethyl MethAcrylate (PMMA) and a blend of PVDF-HFP and PEO were used as matrices and compared. RSDs represent perhaps the most promising electron device to back the More than Moore development, and our approach through functional polymers enables low temperature processing and gives compatibility towards flexible/stretchable/wearable equipment. The switching mechanism in all the four sample families is explained by means of a filamentary conduction. A huge difference in the cyclability and the On/Off ratio is experienced when changing the active polymers and explained based on the polymer crystallinity degree and general morphology of the prepared nanocomposite. It is worth noting that all the RSDs discussed here present good switching behaviour with reasonable endurance. The current study displays one of the most cost-effective and effortless ways to produce an RSD based on solution-processable materials.
40 CFR 63.364 - Monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES Ethylene Oxide Emissions.... (2) Each owner or operator of an ethylene oxide sterilization facility subject to these emissions...: (1) Sample the scrubber liquor and analyze and record once per week the ethylene glycol concentration...
Health Assessment Document for Ethylene Oxide (External Review Draft)
The largest single use of ethylene oxide is an intermediate in the synthesis of ethylene glycol. However, small amounts of this epoxide are used as a sterilant or pesticide in commodities, pharmaceuticals, medical devices, tobacco, and other items, representing a considerable pot...
Solution rheology of polyelectrolytes and polyelectrolyte-surfactant systems
NASA Astrophysics Data System (ADS)
Plucktaveesak, Nopparat
The fundamental understanding of polyelectrolytes in aqueous solutions is an important branch of polymer research. In this work, the rheological properties of polyelectrolytes and polyelectrolyte/surfactant systems are studied. Various synthetic poly electrolytes are chosen with varied hydrophobicity. We discuss the effects of adding various surfactants to aqueous solutions of poly(ethylene oxide)-b-poly(propylene oxide)- b-polyethylene oxide)-g-poly(acrylic acid) (PEO-PPO-PAA) in the first chapter. Thermogelation in aqueous solutions of PEO-PPO-PAA is due to micellization caused by aggregation of poly(propylene oxide) (PPO) blocks resulting from temperature-induced dehydration of PPO. When nonionic surfactants with hydrophilic-lipophilic balance (HLB) parameter exceeding 11 or Cn alkylsulfates; n-octyl (C8), n-decyl (C 10) and n-dodecyl (C12) sulfates are added, the gelation threshold temperature (Tgel) of 1.0wt% PEO-PPO-PAA in aqueous solutions increases. In contrast, when nonionic surfactants with HLB below 11 are added, the gelation temperature decreases. On the other hand, alkylsulfates with n = 16 or 18 and poly(ethylene oxide) (PEO) do not affect the Tgel. The results imply that both hydrophobicity and tail length of the added surfactant play important roles in the interaction of PEO-PPO-PAA micelles and the surfactant. In the second chapter, the solution behavior of alternating copolymers of maleic acid and hydrophobic monomer is studied. The alternating structure of monomers with two-carboxylic groups and hydrophobic monomers make these copolymers unique. Under appropriate conditions, these carboxylic groups dissociate leaving charges on the chain. The potentiometric titrations of copolymer solutions with added CaCl2 reveal two distinct dissociation processes corresponding to the dissociation of the two adjacent carboxylic acids. The viscosity data as a function of polymer concentration of poly(isobutylene-alt-sodium maleate), poly(styrene-alt-sodium maleate) and poly(diisobutylene- alt-sodium maleate) show the polyelectrolyte behavior as predicted. However, the viscosity as a function of concentration of sodium maleate based copolymers with 1-alkenes; 1-octene (C8), 1-decene (C10), 1-dodecene (C12) and 1-hexene (C14) exhibit an abnormal scaling power, which might be caused by aggregation of the alkene tails to form micelles. In the last chapter, we report the rheological properties of aqueous solutions of poly(acrylic acid) and oppositely charged surfactant, dodecyl trimethylammonium bromide (C12TAB). The solution viscosity decreases as surfactant is added, partly because the polyelectrolyte wraps around the surface of the spherical surfactant micelles, shortening the effective chain length. The effects of polymer molecular weight, polymer concentration, and polymer charge have been studied with no added salt. The results are compared with the predictions of a simple model based on the scaling theory for the viscosity of dilute and unentangled semidilute polyelectrolyte solutions in good solvent. This model takes into account two effects of added surfactant. The effective chain length of the polyelectrolyte is shortened when a significant fraction of the chain wraps around micelles. Another effect is the change of solution ionic strength resulting from surfactant addition that further lowers the viscosity. The parameters used in this model are independently determined, allowing the model to make a quantitative prediction of solution viscosity with no adjustable parameters. The model is also applied to predict the decrease in viscosity of various polyelectrolyte/oppositely charged surfactant systems reported in literature. The results are in good agreement with experimental data, proving that our model applies to all polyelectrolytes mixed with oppositely charged surfactants that form spherical micelles.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
...-tetramethylbutyl)phenol with a range of 1-14 or 30-70 moles of ethylene oxide: if a blend of products is used, the average range number of moles of ethylene oxide reacted to produce any product that is a component of the... ethylene oxide. IV. Statutory and Executive Order Reviews This final rule establishes tolerances under...
40 CFR 63.363 - Compliance and performance provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Ethylene Oxide Emissions Standards for Sterilization Facilities § 63.363 Compliance and performance... operating limit either: (i) The maximum ethylene glycol concentration using the procedures described in § 63... initial compliance test, analyze ethylene oxide concentration data from § 63.364(e) or a continuous...
Riba Ruiz, Jordi-Roger; Canals, Trini; Cantero, Rosa
2017-01-01
Ethylene propylene diene monomer (EPDM) rubber is widely used in a diverse type of applications, such as the automotive, industrial and construction sectors among others. Due to its appealing features, the consumption of vulcanized EPDM rubber is growing significantly. However, environmental issues are forcing the application of devulcanization processes to facilitate recovery, which has led rubber manufacturers to implement strict quality controls. Consequently, it is important to develop methods for supervising the vulcanizing and recovery processes of such products. This paper deals with the supervision process of EPDM compounds by means of Fourier transform mid-infrared (FT-IR) spectroscopy and suitable multivariate statistical methods. An expedited and nondestructive classification approach was applied to a sufficient number of EPDM samples with different applied processes, that is, with and without application of vulcanizing agents, vulcanized samples, and microwave treated samples. First the FT-IR spectra of the samples is acquired and next it is processed by applying suitable feature extraction methods, i.e., principal component analysis and canonical variate analysis to obtain the latent variables to be used for classifying test EPDM samples. Finally, the k nearest neighbor algorithm was used in the classification stage. Experimental results prove the accuracy of the proposed method and the potential of FT-IR spectroscopy in this area, since the classification accuracy can be as high as 100%.
Chen, Yukun; Xu, Chuanhui; Liang, Xingquan; Cao, Liming
2013-09-12
This work demonstrates an approach of in situ reactive compatibilization between polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) by using zinc dimethacrylate (ZDMA) as a compatibilizer and, simultaneously, as a very strong reinforcing agent. With the incorporation of 7phr ZDMA in the PP/EPDM (30/70, w/w) thermoplastic vulcanizate (TPV), the tensile strength, tear strength, elongation at break, and hardness of PP/EPDM/ZDMA TPV were increased from 5.3 MPa, 31.3 kN/m, 222%, and 78 up to 11.2 MPa, 64.2 kN/m, 396%, and 83, respectively. This tremendous reinforcing as well as the compatibilization effect of the ZDMA was understood by polymerization of ZDMA and ZDMA reacted with EPDM and PP during peroxide-induced dynamic vulcanization. A peculiar phase structure that rubber particles were surrounded and "bonded" by a thick transition zone that contained numerous of nanoparticles with dimensions of about 20-30 nm was observed from transmission electron microscopy. Scanning electron microscopy results confirmed that incorporation of ZDMA reduced the size of the cross-linked EPDM particles. Moreover, we found that the compatibilized TPV showed a higher tan δ peak temperature for EPDM phase and a lower tan δ peak temperature for PP phase. The suggested method for in situ reactive compatibilization of PP and EPDM offers routes to the design of new TPV-based technical products for diversified applications.
Ghanbari-Siahkali, Afshin; Almdal, Kristoffer; Kingshott, Peter
2003-12-01
The effects of laser irradiation on changes to the surface chemistry and structure of a commercially available ethylene propylene diene monomer (EPDM) rubber sample after Raman microscopy analysis was investigated. The Raman measurements were carried out with different levels of laser power on the sample, ranging from 4.55 mW to 0.09 mW. The surface of the EPDM was analyzed before and after laser exposure using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The techniques have surface probe depths of approximately < or = 10 nm and 1 microm, respectively. Both sets of analysis show that ingredients of the blended EPDM rubber "bloom" to the surface as a result of local heating that takes place due to the absorption of laser by carbon black during the Raman analysis. Scanning electron microscopy (SEM) analysis was also performed on the Raman analyzed areas to visually illustrate the effects created due to laser light exposure (i.e., burning marks). The change in surface chemistry also occurs in regions a few millimeters from the exposed sites, indicating that the effect is quite long range. However, this phenomenon has no major influence, as far as XPS or ATR-FTIR results disclose, on the backbone structure of the rubber sample. The results indicate that precautions should be taken when analyzing complex blended polymer samples using Raman spectroscopy.
Diagnosis of toxic alcohols: limitations of present methods.
Kraut, Jeffrey A
2015-01-01
Methanol, ethylene glycol, diethylene glycol, and propylene glycol intoxications are associated with cellular dysfunction and an increased risk of death. Adverse effects can develop quickly; thus, there is a need for methods for rapidly detecting their presence. To examine the value and limitations of present methods to diagnose patients with possible toxic alcohol exposure. I searched MEDLINE for articles published between 1969 and 2014 using the terms: toxic alcohols, serum osmolality, serum osmol gap, serum anion gap, metabolic acidosis, methanol, ethylene glycol, diethylene glycol, propylene glycol, and fomepizole. Each article was reviewed for additional references. The diagnosis of toxic alcohol exposure is often made on the basis of this history and physical findings along with an increase in the serum osmol and anion gaps. However, an increase in the osmol and/or anion gaps is not always present. Definitive detection in blood requires gas or liquid chromatography, laborious and expensive procedures which are not always available. Newer methods including a qualitative colorimetric test for detection of all alcohols or enzymatic tests for a specific alcohol might allow for more rapid diagnosis. Exposure to toxic alcohols is associated with cellular dysfunction and increased risk of death. Treatment, if initiated early, can markedly improve outcome, but present methods of diagnosis including changes in serum osmol and anion gap, and use of gas or liquid chromatography have important limitations. Development of more rapid and effective tests for detection of these intoxications is essential for optimal care of patients.
Complexes of Small Chiral Molecules: Propylene Oxide and 3-BUTYN-2OL
NASA Astrophysics Data System (ADS)
Evangelisti, Luca; West, Channing; Coles, Ellie; Pate, Brooks
2017-06-01
Complexes of propylene oxide with 3-butyn-2-ol were observed in the molecular rotational spectra, and isotopologue analysis allowed for structural determination of the complexes. Using a gas mixture of 0.1% propylene oxide and 0.1% 3-butyn-2-ol in neon, the broadband rotational spectrum was measured in the 2-8 GHz frequency range using a chirped-pulse Fourier transform microwave spectrometer. Four isomers of each diastereomer pair, formed by a hydrogen bond between the two monomers, are identified in quantum chemistry study of the complex using B3LYP-D3BJ with the def2TZVP basis set. The initial measurement used racemic samples of both molecules in order to obtain all possible isomers of the complex in the pulsed jet expansion. A total of six distinct spectra were assigned in the racemic measurement - three for both the homochiral and heterochiral complex. Substitution structures for the most intense homochiral and heterochiral complexes were obtained. These complexes use the two lowest energy conformations of butynol despite conformational cooling of the monomer, resulting in a single identified isomer. This result shows that a wide range monomer conformational geometries need to be examined when performing searches for the lowest energy geometry. Analysis of the diastereomer spectra was used to develop a method for determining the enantiomeric excess of 3-butyn-2-ol and propylene oxide for use as a chiral tag, which could be used in subsequent measurements to determine enantiomeric excess. The sensitivity limits for enantiomeric excess determination and the linearity of the rotational spectroscopy signals as a function of sample enantiomeric excess will be presented.
Thweatt, W Dave; Harward, Charles N; Parrish, Milton E
2007-05-01
Acrolein and 1,3-butadiene in cigarette smoke generally are measured using two separate analytical methods, a carbonyl derivative HPLC method for acrolein and a volatile organic compound (VOC) GC/MS method for 1,3-butadiene. However, a single analytical method having improved sensitivity and real-time per puff measurement will offer more specific information for evaluating experimental carbon filtered cigarettes designed to reduce the smoke deliveries of these constituents. This paper describes an infrared technique using two lead-salt tunable diode lasers (TDLs) operating with liquid nitrogen cooling with emissions at 958.8 cm(-1) and 891.0 cm(-1) respectively for the simultaneous measurement of acrolein and 1,3-butadiene, respectively, in each puff of mainstream cigarette smoke in real time. The dual TDL system uses a 3.1l volume, 100 m astigmatic multiple pass absorption gas cell. Quantitation is based on a spectral fit that uses previously determined infrared molecular line parameters generated in our laboratory, including line positions, line strengths and nitrogen-broadened half-widths for these species. Since acrolein and ethylene absorption lines overlap and 1,3-butadiene, ethylene and propylene absorption lines overlap, the per puff deliveries of ethylene and propylene were determined since their overlapping absorption lines must be taken into account by the spectral fit. The acrolein and 1,3-butadiene total cigarette deliveries for the 1R5F Kentucky Reference cigarette were in agreement with the HPLC and GC/MS methods, respectively. The limit of detection (LOD) for 1,3-butadiene and acrolein was 4 ng/puff and 24 ng/puff, respectively, which is more than adequate to determine at which puff they break through the carbon filter. The retention and breakthrough behavior for the two primary smoke constituents depend on the cigarette design and characteristics of the carbon filter being evaluated.
NASA Astrophysics Data System (ADS)
Thweatt, W. Dave; Harward, Charles N., Sr.; Parrish, Milton E.
2007-05-01
Acrolein and 1,3-butadiene in cigarette smoke generally are measured using two separate analytical methods, a carbonyl derivative HPLC method for acrolein and a volatile organic compound (VOC) GC/MS method for 1,3-butadiene. However, a single analytical method having improved sensitivity and real-time per puff measurement will offer more specific information for evaluating experimental carbon filtered cigarettes designed to reduce the smoke deliveries of these constituents. This paper describes an infrared technique using two lead-salt tunable diode lasers (TDLs) operating with liquid nitrogen cooling with emissions at 958.8 cm -1 and 891.0 cm -1 respectively for the simultaneous measurement of acrolein and 1,3-butadiene, respectively, in each puff of mainstream cigarette smoke in real time. The dual TDL system uses a 3.1 l volume, 100 m astigmatic multiple pass absorption gas cell. Quantitation is based on a spectral fit that uses previously determined infrared molecular line parameters generated in our laboratory, including line positions, line strengths and nitrogen-broadened half-widths for these species. Since acrolein and ethylene absorption lines overlap and 1,3-butadiene, ethylene and propylene absorption lines overlap, the per puff deliveries of ethylene and propylene were determined since their overlapping absorption lines must be taken into account by the spectral fit. The acrolein and 1,3-butadiene total cigarette deliveries for the 1R5F Kentucky Reference cigarette were in agreement with the HPLC and GC/MS methods, respectively. The limit of detection (LOD) for 1,3-butadiene and acrolein was 4 ng/puff and 24 ng/puff, respectively, which is more than adequate to determine at which puff they break through the carbon filter. The retention and breakthrough behavior for the two primary smoke constituents depend on the cigarette design and characteristics of the carbon filter being evaluated.
Heterogeneous Photocatalytic Oxidation of Atmospheric Trace Contaminants
NASA Technical Reports Server (NTRS)
Ollis, David F.
1996-01-01
Heterogeneous photocatalysis involves the use of a light-activated catalyst at room temperature in order to carry out a desired reaction. In the presence of molecular oxygen, illumination of the n-type semiconductor oxide titanium dioxide (TiO2) provides for production of highly active forms of oxygen, such as hydroxyl radicals, which are able to carry out the complete oxidative destruction of simple hydrocarbons such as methane, ethane, ethylene, propylene, and carbon monoxide. This broad oxidation potential, coupled with the ability with sufficient residence time to achieve complete oxidation of simple hydrocarbon contaminants to carbon dioxide and water, indicated that heterogeneous photocatalysis should be examined for its potential for purification of spacecraft air. If a successful catalyst and photoreactor could be demonstrated at the laboratory level, such results would allow consideration of photocatalysts as a partial or complete replacement of adsorption systems, thereby allowing for reduction in lift-off weight of a portion of the life support system for the spacecraft, or other related application such as a space station or a conventional commercial aircraft. The present research was undertaken to explore this potential through achievement of the following plan of work: (a) ascertain the intrinsic kinetics of conversion of pollutants of interest in spacecraft, (b) ascertain the expected lifetime of catalysts through examination of most likely routes of catalyst deactivation and regeneration, (c) model and explore experimentally the low pressure drop catalytic monolith, a commercial configuration for automotive exhaust control, and (d) examine the kinetics of multicomponent conversions. In the recent course of this work, we have also discovered how to increase catalyst activity via halide promotion which has allowed us to achieve approximately 100% conversion of an aromatic contaminant (toluene) in a very short residence time of 5-6 milliseconds.
Heterogeneous Photocatalytic Oxidation of Atmospheric Trace Contaminants
NASA Technical Reports Server (NTRS)
Ollis, David F.
1996-01-01
Heterogeneous photocatalysis involves the use of a light-activated catalyst at room temperature in order to carry out a desired reaction. In the presence of molecular oxygen, illumination of the n-type semiconductor oxide titanium dioxide (TiO2) provides for production of highly active forms of oxygen, such as hydroxyl radicals, which are able to carry out the complete oxidative destruction of simple hydrocarbons such as methane, ethane, ethylene, propylene, and carbon monoxide. This broad oxidation potential, coupled with the ability with sufficient residence time to achieve complete oxidation of simple hydrocarbon contaminants to carbon dioxide and water, indicated that heterogeneous photocatalysis should be examined for its potential for purification of spacecraft air. If a successful catalyst and photoreactor could be demonstrated at the laboratory level, such results would allow consideration of photocatalysts as a partial or complete replacement of adsorption systems, thereby allowing for reduction in lift-off weight of a portion of the life support system for the spacecraft, or other related application such as a space station or a conventional commercial aircraft. The present research was undertaken to explore this potential through achievement of the following plan of work: (a) ascertain the intrinsic kinetics of conversion of pollutants of interest in spacecraft, (b) ascertain the expected lifetime of catalysts through examination of most likely routes of catalyst deactivation and regeneration (c) model and explore experimentally the low pressure drop catalytic monolith, a commercial configuration for automotive exhaust control (d) examine the kinetics of multicomponent conversions. In the recent course of this work, we have also discovered how to increase catalyst activity via halide promotion which has allowed us to achieve approximately 100% conversion of an aromatic contaminant (toluene) in a very short residence time of 5-6 milliseconds.
The oxidation of copper catalysts during ethylene epoxidation.
Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R
2015-10-14
The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of <3%. Tests on pure Cu2O and CuO powders confirm that the oxides intrinsically exhibit partial-oxidation activity. Cu2O was found to form acetaldehyde and ethylene epoxide in roughly equal amounts (1.0% and 1.2% respectively), while CuO was found to form much less ethyl aldehyde than ethylene epoxide (0.1% and 1.0%, respectively). Metallic copper catalysts were examined in extreme dilute-O2 epoxidation conditions to try and keep the catalyst from oxidizing during the reaction. It was found that in feed of 1 part O2 to 2500 parts C2H4 (PO2 = 1.2 × 10(-4) mbar) the copper surface becomes O-terminated. The O-terminated surface was found to exhibit partial-oxidation selectivity similar to that of Cu2O. With increasing O2 concentration (>8/2500) Cu2O forms and eventually covers the surface.
Koehl, Julia; Djulic, Alma; Kirner, Veronika; Nguyen, Tach Thao; Heiser, Ingrid
2007-12-01
The signal compound ethylene and its relationships with oxidative burst and cell death were analyzed in cultured tobacco cells treated with the proteinaceous elicitor quercinin. Quercinin belongs to the protein family of elicitins and was isolated from the soil-born oak pathogen Phytophthora quercina. It was shown to induce a dose-dependent oxidative burst in tobacco cell culture in concentrations from 0.05 to 0.5 nM, and subsequently, cell death. The characteristics of quercinin-induced cell death included both membrane damage and DNA fragmentation in tobacco cell culture. At higher quercinin concentrations (2 nM), H(2)O(2) formation and ethylene biosynthesis were inhibited. Ethylene at low concentrations proved to be necessary for induction and maintenance of H(2)O(2) production in tobacco cells treated with quercinin. It was demonstrated that external addition of inhibitors of ethylene biosynthesis such as alpha-amino-oxy-acetic acid (AOA) and CoCl(2) also decreased or even inhibited the quercinin-induced oxidative burst, but did not influence cell death induction. These results demonstrate evidence for a requirement of the plant hormone ethylene for the onset of the quercinin-induced oxidative burst.
Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters.
Tong, Yaw-Chong; Chang, Shwu-Fen; Liu, Chia-Yang; Kao, Winston W-Y; Huang, Chong Heng; Liaw, Jiahorng
2007-11-01
This study evaluates the eye drop delivery of genes with cornea-specific promoters, i.e., keratin 12 (K12) and keratocan (Kera3.2) promoters, by non-ionic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles (PM) to mouse and rabbit eyes, and investigates the underlying mechanisms. Three PM-formulated plasmids (pCMV-Lac Z, pK12-Lac Z and pKera3.2-Lac Z) containing the Lac Z gene for beta-galactosidase (beta-Gal) whose expression was driven by the promoter of either the cytomegalovirus early gene, the keratin 12 gene or the keratocan gene, were characterized by critical micelle concentration (CMC), dynamic light scattering (DLS), and atomic force microscopy (AFM). Transgene expression in ocular tissue after gene delivery was analyzed by 5-bromo-4-chloro-3-indolyl-beta-D-galactoside (X-Gal) color staining, 1,2-dioxetane beta-Gal enzymatic activity measurement, and real-time polymerase chain reaction (PCR) analysis. The delivery mechanisms of plasmid-PM on mouse and rabbit corneas were evaluated by EDTA and RGD (arginine-glycine-aspartic acid) peptide. The sizes of the three plasmid-PM complexes were around 150-200 nm with unimodal distribution. Enhanced stability was found for three plasmid-PM formulations after DNase I treatment. After six doses of eye drop delivery of pK12-Lac Z-PM three times a day, beta-Gal activity was significantly increased in both mouse and rabbit corneas. Stroma-specific Lac Z expression was only found in pKera3.2-Lac Z-PM-treated animals with pretreatment by 5 mM EDTA, an opener of junctions. Lac Z gene expression in both pK12-Lac Z-PM and pKera3.2-Lac Z-PM delivery groups was decreased by RGD peptide pretreatment. Cornea epithelium- and stroma-specific gene expression could be achieved using cornea-specific promoters of keratin 12 and keratocan genes, and the gene was delivered with PM formulation through non-invasive, eye drop in mice and rabbits. The transfection mechanism of plasmid-PM may involve endocytosis and particle size dependent paracellular transport. 2007 John Wiley & Sons, Ltd
X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.
Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan
2018-03-01
The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.
Interactions of oxygen and ethylene with submonolayer Ag films supported on Ni(111).
Rettew, Robert E; Meyer, Axel; Senanayake, Sanjaya D; Chen, Tsung-Liang; Petersburg, Cole; Ingo Flege, J; Falta, Jens; Alamgir, Faisal M
2011-06-21
We investigate the oxidation of, and the reaction of ethylene with, Ni(111) with and without sub-monolayer Ag adlayers as a function of temperature. The addition of Ag to Ni(111) is shown to enhance the activity towards the ethylene epoxidation reaction, and increase the temperature at which ethylene oxide is stable on the surface. We present a systematic study of the formation of chemisorbed oxygen on the Ag-Ni(111) surfaces and correlate the presence and absence of O(1-) and O(2-) surface species with the reactivity towards ethylene. By characterizing the samples with low-energy electron microscopy (LEEM) in combination with X-ray photoelectron spectroscopy (XPS), we have identified specific growth of silver on step-edge sites and successfully increased the temperature at which the produced ethylene oxide remains stable, a trait which is desirable for catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunter, B.J.
Environmental and breathing zone samples were analyzed for ethylene-oxide at United Hospital, Grand Forks, North Dakota in January, 1985. The survey was requested by the management to determine if using ethylene-oxide for sterilization purposes posed a health risk. All employees (number not specified) in the central supply department were interviewed. These concentrations originated from an old sterilizer. The sterilizer was not normally used, but was operated on the day of the survey to stimulate a worst-case situation. None of the workers had any medical complaints. The author concludes that a health hazard due to ethylene-oxide does not exist at themore » facility. He recommends not using the old sterilizer until it has been refurbished and conducting periodic monitoring for ethylene/oxide with an infrared analyzer.« less
Processing and Properties of Fire Resistant EPDM Rubber-Based Ceramifiable Composites
NASA Astrophysics Data System (ADS)
Anyszka, Rafał; Bieliński, Dariusz M.; Pędzich, Zbigniew; Zarzecka-Napierała, Magdalena; Imiela, Mateusz; Rybiński, Przemysław
2017-10-01
Low softening point temperature glassy frit, reinforcing silica, wollastonite and dicumyl peroxide were incorporated into ethylene-propylene-diene (EPDM) rubber matrix in different amounts in order to obtain ceramifiable composites. Kinetics of vulcanization of the mixes was measured. Mechanical properties, micromorphology, thermal properties and combustibility of the vulcanizates were studied as well as compression strength of the ceramic residue obtained after heat treatment. Studies show that optimal amount of glassy frit from the point of view of ceramification effectiveness in dispersed mineral phase is 40 % wt.
Effect of heating rate on toxicity of pyrolysis gases from some elastomers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Kosola, K. L.; Solis, A. N.
1977-01-01
The effect of heating rate on the toxicity of the pyrolysis gases from six elastomers was investigated, using a screening test method. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acrylonitrile rubber exhibited the greatest toxicity under these test conditions, and carbon monoxide was not found in sufficient concentrations to be the primary cause of death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.
The goal of this project is to conceptually demonstrate techniques to repair cables that have degraded through subjection to long-term thermal and radiation exposure in nuclear power plants. In fiscal year 2014 (FY14) we focused on commercially available ethylene-propylene rubber (EPR) as the relevant test material, isolated a high surface area form of the EPR material to facilitate chemical treatment screening and charaterization, and measured chemical changes in the material due to aging and treatment using Fourier Transfrom Infrared (FTIR) spectroscopy.
Nanofluids and a method of making nanofluids for ground source heat pumps and other applications
Olson, John Melvin
2013-11-12
This invention covers nanofluids. Nanofluids are a combination of particles between 1 and 100 nanometers, a surfactant and the base fluid. The nanoparticles for this invention are either pyrogenic nanoparticles or carbon nanotubes. These nanofluids improve the heat transfer of the base fluids. The base fluid can be ethylene glycol, or propylene glycol, or an aliphatic-hydrocarbon based heat transfer fluid. This invention also includes a method of making nanofluids. No surfactant is used to suspend the pyrogenic nanoparticles in glycols.
Reflectance of polytetrafluoroethylene for xenon scintillation light
NASA Astrophysics Data System (ADS)
Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.
2010-03-01
Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (λ ≃175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.
Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Xiao; Liu, HongLing; Zhang, WenXing; Li, XueMei; Fang, Ning; Wang, XianHong; Wu, JunHua
2015-04-01
Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4 nm. The ultraviolet-visible light absorbance spectrometry (UV-vis) and photoluminescence spectrophotometry (PL) demonstrate well dispersibility and excellent optical performance of Cu-ZnO hybrid nanoparticles both in organic and aqueous solvent. The X-ray photoelectron spectroscopy (XPS) confirms Cu1+ and Cu2+ in ZnO. The observation using Sudan red (III) as probe molecule reveals that the Cu-ZnO hybrid nanoparticles possess enhanced photocatalytic activity and stability which are promising for potential applications in photocatalysis.
Liu, Miao; Liu, Xing Xing; He, Xiao Lin; Liu, Li Juan; Wu, Hao; Tang, Cai Xian; Zhang, Yong Song; Jin, Chong Wei
2017-02-01
Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
40 CFR 98.240 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... acrylonitrile, carbon black, ethylene, ethylene dichloride, ethylene oxide, or methanol, except as specified in... independently of an oxychlorination process to produce ethylene dichloride is not part of the petrochemical...
Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide.
Doskocil, Eric J
2005-02-17
Sodium oxide (NaOx) impregnated Engelhard Titanosilicate-10 (ETS-10) molecular sieve catalysts were prepared to enhance the basicity associated with ETS-10 and subsequently investigated for the cycloaddition of carbon dioxide to propylene oxide to produce propylene carbonate. For dry NaOx-modified ETS-10 catalysts that contained no adsorbed water, a maximum yield of propylene carbonate was achieved at a loading of 2.0 excess NaOx species per unit cell. However, the greatest enhancements in the rate of reaction were observed when small amounts of water were adsorbed onto the unmodified ETS-10 catalyst immediately prior to reaction. Surface-bound water appears to enhance the surface Bronsted acidity of the unmodified ETS-10 catalyst via the formation of surface -OH groups at lower water loadings, producing a surface of better-tuned acid-base bifunctional characteristics for the cycloaddition reaction. At levels of hydration greater than 12.5% by mass, the yield of propylene carbonate was further enhanced, but at a smaller rate than that observed at lower rehydration levels, which is more indicative of an enhanced transport effect. Adsorption microcalorimetry of carbon dioxide indicated that, at loadings less than 2.0 NaOx per unit cell, the total uptake of the CO2 adsorption sites required for the reaction were less than in the parent ETS-10 material. However, at higher levels of NaOx occlusion, where the total uptake and strength of the adsorption sites exceeded those observed for the as-received ETS-10 material, the cycloaddition activity of this catalyst suffered due to the reduced pore volume and surface area. It appears that precise tuning of both the surface acidity and basicity is crucial in creating an effective acid-base bifunctional ETS-10 catalyst for the cycloaddition reaction investigated.
Effect of demulsifiers on interfacial properties governing crude oil demulsification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S.; Kushnick, A.P.
1988-05-01
Crude oil is almost always produced as persistent water-in-oil emulsions which must be resolved into two separate phases before the crude can be accepted for pipelining. The water droplets are sterically stabilized by the asphaltene and resin fractions of the crude oil. These are condensed aromatic rings containing saturated carbon chains and napthenic rings as substituents, along with a distribution of heteroatoms and metals. They are capable of crosslinking at the water drop-oil interface. Chemical demulsifiers are most commonly used to separate the emulsions into water and oil phases. The demulsifiers are moderate (2,000-50,000) molecular weight polydisperse mostly nonionic blockmore » copolymers with hydrophilic and hydrophobic segments. An example (Figure 1) of the most commonly used demulsifier is the oxyalkylated alkyl phenol formaldehyde resin. The alkyl group can be butyl, amyl, or nonyl and the interfacial activity is controlled by the relative amounts of ethylene oxide (EO) and propylene oxide (PO) attached to the polar end. The purpose of this paper is to illustrate how various parameters such as interfacial tension, interfacial shear viscosity, dynamic interfacial tension gradient, dilational elasticity and demulsifier clustering affect the demulsification effectiveness. To this end, the authors have studied both crude oil as well as asphaltene stabilized ''model' water-in-oil emulsions. In this paper, some of the results of the authors' study are presented.« less
Durability test on irradiated rock-like oxide fuels
NASA Astrophysics Data System (ADS)
Kuramoto, K.; Nitani, N.; Yamashita, T.
2003-06-01
For a profitable use of Pu, Japan Atomic Energy Research Institute has been promoting researches for once-through type fuels. The strategy consists of stable rock-like oxide fuel fabrication in conventional fuel facilities followed by almost complete Pu burning in LWR and disposal of chemically stable spent fuel without further processing. Because leach rates of hazardous nuclides, such as TRU and β-emitters, that have long half-lives, are very important for the evaluation of geological safety, leaching tests in deionized water at 363 K were performed with reference to the MCC-1 method. Five irradiated fuel pellets, a single phase fuel of a yttria-stabilized zirconia (YSZ) containing UO 2 (U-YSZ), two fuels of U-YSZ particle dispersed in MgAl 2O 4 (SPI) or Al 2O 3 (COR) matrix, two homogeneous-blended fuels of U-YSZ and SPI or COR powders, were submitted to the tests. Stainless steel containers with Au coating and ethylene propylene diene monomer were used as leaching vessels and packing, respectively. The evaluated normalized leach rates of Zr, U and Pu were obviously lower than those of the other important elements and nuclides. Americium, Np and especially Y showed unexpectedly high evaluated normalized leach rates. The volatile elements, Cs and I, showed enhanced leaching within particle-dispersed type fuels because of crack formation around the particle.
Fréchette-Viens, Laurie; Hadioui, Madjid; Wilkinson, Kevin J
2017-01-15
The applicability of single particle ICP-MS (SP-ICP-MS) for the analysis of nanoparticle size distributions and the determination of particle numbers was evaluated using the rare earth oxide, La 2 O 3 , as a model particle. The composition of the storage containers, as well as the ICP-MS sample introduction system were found to significantly impact SP-ICP-MS analysis. While La 2 O 3 nanoparticles (La 2 O 3 NP) did not appear to interact strongly with sample containers, adsorptive losses of La 3+ (over 24h) were substantial (>72%) for fluorinated ethylene propylene bottles as opposed to polypropylene (<10%). Furthermore, each part of the sample introduction system (nebulizers made of perfluoroalkoxy alkane (PFA) or glass, PFA capillary tubing, and polyvinyl chloride (PVC) peristaltic pump tubing) contributed to La 3+ adsorptive losses. On the other hand, the presence of natural organic matter in the nanoparticle suspensions led to a decreased adsorptive loss in both the sample containers and the introduction system, suggesting that SP-ICP-MS may nonetheless be appropriate for NP analysis in environmental matrices. Coupling of an ion-exchange resin to the SP-ICP-MS led to more accurate determinations of the La 2 O 3 NP size distributions. Copyright © 2016 Elsevier B.V. All rights reserved.
Apparatus Circulates Sterilizing Gas
NASA Technical Reports Server (NTRS)
Cross, John H.; Schwarz, Ray P.
1991-01-01
Apparatus circulates sterilizing gas containing ethylene oxide and chlorofluorocarbon through laboratory or medical equipment. Confines sterilizing gas, circulating it only through parts to be treated. Consists of two units. One delivers ethylene oxide/chlorofluorocarbon gas mixture and removes gas after treatment. Other warms, humidifies, and circulates gas through equipment to be treated. Process provides reliable sterilization with negligible residual toxicity from ethylene oxide. Particularly suitable for sterilization of interiors of bioreactors, heart/lung machines, dialyzers, or other equipment including complicated tubing.
Theoretical investigation of the reaction of Mn+ with ethylene oxide.
Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong
2012-01-12
The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... Tanks. O Ethylene Oxide X X X Sterilization Facilities. Q Industrial Process Cooling X X Towers. R... Organic-Water Separators. WW Storage Vessels (Tanks)-- X X Control Level 2. XX Ethylene Manufacturing X X... Refractory Products X X Manufacturing. TTTTT Primary Magnesium Refining. X WWWWW Hospital Ethylene Oxide X X...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Ethylene Glycol MonobutylEther Acetate Chloroprene. Ethylene Glycol MonomethylEther Acetate Cumene (isopropylbenzene). Ethylene Glycol Dimethyl Ether Dibromoethane 1,2. Hexachlorobenzene Dichlorobenzene 1,4.... Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...
40 CFR 63.10400 - How do I demonstrate initial compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hospital Ethylene Oxide Sterilizers Initial Compliance... submitting an Initial Notification of Compliance Status certifying that you are venting the ethylene oxide...
NASA Astrophysics Data System (ADS)
Wilkerson, Daryl F.
Highly Reactive Volatile Organic Compounds (HRVOCs), in particular, the toxic ozone precursors, ethylene, propylene, butenes (1-butene, cis-2-butene, trans-2-butene) and 1, 3 butadiene found in the Houston area are the most critical in the formation of ozone. Exposure to such chemical can cause adverse health effect on the local population of the area, ranging from respiratory distress, asthma, COPD to Cancer. Urban ambient air samples were collected and analyzed from eight monitoring stations (Sites), encompassing the Houston Ship Channel (HSC), in Harris County, Texas. The data was interpreted and analyzed for changes in the concentration of air pollutants, data was collected daily (24 hours) over a time period from September 2013 to August 2014. One 40-minute sample was collected each hour and analyzed by automated gas chromatograph (Auto-GCs) on-site. A total of 70 compounds are measured hourly at each site, in this research the following chemicals were analysis for their average, seasonal and monthly concentrations: ethane, ethylene, propane, propylene, isobutane, n-butane, 1-butene, c-2-butene, t-2-butene and 1,3-butadiene. In this study, seasonal conditions in the area produced ranges from low to high concentrations of these compounds at certain locations. Two Stations had extremely high yearly average concentrations of butane and its isomers (c-2-butene, t-2-butene) and three stations, 1-butene and isobutene concentrations exceeded normal safety limits along with 1,3-butadiene. One station, in particular, close to the HSC had the highest yearly average propylene concentration. Local meteorology also promotes risk issues to the local health of persons within the area/community of interest. This research concluded that the analyzed results of ambient air samples in the urban areas surrounding the Houston Ship Channel (HSC) in Harris County, Texas posed a dual threat. The production of ozone in the daylight hours and depletion of ozone at night, as well as the continuous presence of these precursors in the atmosphere, are both harmful to mankind and toxic to the environment.
Gross, Jürgen H
2017-12-01
Basic poly(propylene glycols), commercially available under the trade name Jeffamine, are evaluated for their potential use as internal mass calibrants in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. Due to their basic amino endgroups Jeffamines are expected to deliver [M+H] + ions in higher yields than neutral poly(propylene glycols) or poly(ethylene glycols). Aiming at accurate mass measurements and molecular formula determinations by matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry, four Jeffamines (M-600, M-2005, D-400, D-230) were thus compared. As a result, Jeffamine M-2005 is introduced as a new mass calibrant for positive-ion matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry in the range of m/z 200-1200 and the reference mass list is provided. While Jeffamine M-2005 is compatible with α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxybenzoic acid, and 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile matrix, its use in combination with 2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malonitrile provides best results due to low laser fluence requirements. Applications to PEG 300, PEG 600, the ionic liquid trihexyl(tetradecyl)-phosphonium tris(pentafluoroethyl)-trifluorophosphate, and [60]fullerene demonstrate mass accuracies of 2-5 ppm.
Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Jinfeng; Li, Haiyan; Zong, Lanlan; Li, Qiuye; Wang, Xiaodong; Zhang, Min; Yang, Jianjun
2015-02-01
Lanthanum- and nitrogen-codoped TiO2 photocatalysts was synthesized using orthorhombic nanotubes titanic acid as the precursor by a simple impregnation and subsequent calcination method. The morphology, phase structure, and properties of La- and N-codoped TiO2 were well characterized by transmission electron microscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra. The La-/N-codoped TiO2 showed excellent photoactivity of propylene oxidation compared with the single-doped TiO2 and La-/N-codoped P25 TiO2 nanoparticles under visible light irradiation. The origin of the enhancement of the visible light-responsive photocatalytic activity was discussed in detail.
Irradiation effects of 12 eV oxygen ions on polyimide and fluorinated ethylene propylene
NASA Astrophysics Data System (ADS)
Majeed, R. M. A.; Purohit, V. S.; Bhoraskar, S. V.; Mandale, A. B.; Bhoraskar, V. N.
2006-08-01
Polyimide (PI) and Fluorinated Ethylene Propylene (FEP) samples (15mm x 15mm x 50 mu m ) were exposed to atomic oxygen ions of average energy similar to 12 eV and flux similar to 5x10(13) ions cm(-2) s(-1) , produced in the Electron Cyclotron Resonance (ECR) plasma. The energy and the flux of the oxygen ions at different positions in the plasma were measured by a retarding field analyzer. The fluence of the oxygen ions was varied from sample to sample in the range of similar to 5x10(16) to 2x10(17) ions cm(-2) by changing the irradiation period. The pre- and the post-irradiated samples were characterized by the weight loss, Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared (FTIR) techniques. The weight of the PI and FEP samples decreased with increasing the ion fluence. However, the erosion yield for the PI is found to be higher, by almost a factor five, when compared with that of FEP. On the surface region of irradiated samples, the concentrations of the carbon, fluorine, and oxygen and their corresponding chemical bonds have changed appreciably. Moreover, blisters and nanoglobules were also observed even at a fluence of similar to 10(17) ions cm(-2) . This oxygen ion fluence is almost two orders of magnitude lower than that of the 5 eV atomic oxygen, which a satellite encounters in the space, at the low Earth orbit, during its mission period of about 7 years.
Zhu, Xiao Fang; Zhu, Chun Quan; Wang, Chao; Dong, Xiao Ying; Shen, Ren Fang
2017-01-01
Nitric oxide (NO) and ethylene are both involved in cell wall phosphorus (P) reutilization in P-deficient rice; however, the crosstalk between them remains unclear. In the present study using P-deficient 'Nipponbare' (Nip), root NO accumulation significantly increased after 1 h and reached a maximum at 3 h, while ethylene production significantly increased after 3 h and reached a maximum at 6 h, indicating NO responded more quickly than ethylene. Irrespective of P status, addition of the NO donor sodium nitroprusside (SNP) significantly increased while the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) significantly decreased the production of ethylene, while neither the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) nor the ethylene inhibitor aminoethoxyvinylglycine (AVG) had any influence on NO accumulation, suggesting NO acted upstream of ethylene. Under P-deficient conditions, SNP and ACC alone significantly increased root soluble P content through increasing pectin content, and c-PTIO addition to the ACC treatment still showed the same tendency; however, AVG+SNP treatment had no effect, further indicating that ethylene was the downstream signal affecting pectin content. The expression of the phosphate transporter gene OsPT2 showed the same tendency as the NO-ethylene-pectin pathway. Taken together, we conclude that ethylene functions downstream of NO in cell wall P reutilization in P-deficient rice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Commercial Ethylene Oxide... Commercial Ethylene Oxide Sterilization and Fumigation Operations (Renewal). [[Page 28608
40 CFR 63.10382 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Hospital Ethylene Oxide Sterilizers Applicability and Compliance Dates § 63... ethylene oxide sterilization facility at a hospital that is an area source of hazardous air pollutant (HAP...
Seyhan, Merve; Kucharczyk, William; Yarar, U Ecem; Rickard, Katherine; Rende, Deniz; Baysal, Nihat; Bucak, Seyda; Ozisik, Rahmi
2017-01-01
The structure and properties of nanocomposites of poly(ethylene oxide), with Ag and Au nanoparticles, surface modified with a 1:1 (by volume) oleylamine/oleic acid mixture, were investigated via transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), infrared spectroscopy, dynamic mechanical analysis, and static mechanical testing. Results indicated that there was more oleylamine on Ag nanoparticles but more oleic acid on Au nanoparticles. This difference in surfactant populations on each nanoparticle led to different interfacial interactions with poly(ethylene oxide) and drastically influenced the glass transition temperature of these two nanocomposite systems. Almost all other properties were found to correlate strongly with dispersion and distribution state of Au and Ag nanoparticles, such that the property in question changed direction at the onset of agglomeration. PMID:28461744
Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method
NASA Astrophysics Data System (ADS)
Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.
2018-03-01
This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.
High ethylene to ethane processes for oxidative coupling
Chafin, R.B.; Warren, B.K.
1991-12-17
Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.
High ethylene to ethane processes for oxidative coupling
Chafin, Richard B.; Warren, Barbara K.
1991-01-01
Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin
2015-08-15
A variety of morphologically different α-MoO{sub 3} samples were prepared by hydrothermal synthesis and applied in the selective oxidation of propylene. Their catalytic performance was compared to α-MoO{sub 3} prepared by flame spray pyrolysis (FSP) and a classical synthesis route. Hydrothermal synthesis from ammonium heptamolybdate (AHM) and nitric acid at pH 1–2 led to ammonium containing molybdenum oxide phases that were completely transformed into α-MoO{sub 3} after calcination at 550 °C. A one-step synthesis of α-MoO{sub 3} rods was possible starting from MoO{sub 3}·2H{sub 2}O with acetic acid or nitric acid and from AHM with nitric acid at 180 °C.more » Particularly, if nitric acid was used during synthesis, the rod-like morphology of the samples could be stabilized during calcination at 550 °C and the following catalytic activity tests, which was beneficial for the catalytic performance in propylene oxidation. Characterization studies using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy showed that those samples, which retained their rod-like morphology during the activity tests, yielded the highest propylene conversion. - Graphical abstract: Hydrothermal synthesis from MoO{sub 3}·2H{sub 2}O in the presence of HNO{sub 3} led to rod-shaped particles which mainly expose (1 0 0) facets which are the most active surfaces. - Highlights: • Hydrothermal synthesis of MoO3 resulted in either rod or slab shaped particles depending on pH. • At pH<0 rods stable towards calcination and catalytic activity testing were formed. • Rod shaped particles had significantly higher activity than slab shaped ones. • The rod shaped particles mainly expose the (1 0 0) facets which are the most active surfaces. • Total surface area is not main determining factor for catalytic activity.« less
Darensbourg, Donald J.; Niezgoda, Sharon A.; Holtcamp, Matthew W.; Draper, Jennifer D.; Reibenspies, Joseph H.
1997-05-21
A synthetic methodology for the preparation of a large variety of eta(3)-HB(3-Phpz)(3)Cd(acetate) adducts is presented which involves replacement of toluene in the eta(3)-HB(3-Phpz)(3)Cd(acetate) solvate complex by the appropriate cyclic ether or cyclic thioether. In this manner, adducts of THF, dioxane, propylene oxide, cyclohexene oxide, and propylene sulfide were isolated. The solid-state structures of several of these complexes were determined by X-ray crystallography, revealing a six-coordinate complex where the acetate ligand is shown to be fairly symmetrically bonded to the cadmium center. In methylene chloride solution, the cyclic ether or thioether readily dissociates to afford the five-coordinate complex, as demonstrated by (113)Cd NMR. A quantitative assessment of the binding of these base adducts of eta(3)-HB(3-Phpz)(3)Cd(acetate) was determined by measuring the temperature dependence of the equilibrium constants for the five- and six-coordinate derivatives. The presence of one sharp (113)Cd resonance in this equilibrium mixture is indicative of rapid intermolecular exchange between the five- and six-coordinate complexes when compared to the chemical shift differences in these two species ( approximately 6600 Hz at 89 MHz). The order established for ether binding is THF > dioxane > propylene sulfide > cyclohexene oxide >/= propylene oxide, with DeltaH degrees and DeltaS degrees spanning the ranges -27.7 to 24.3 kJ/mol and -89.7 to -94.1 J/(mol K). The epoxide and thioepoxide adducts were shown to serve as models for the initiation step in the copolymerization of epoxides with carbon dioxide catalyzed by metal carboxylates. That is, the carboxylate ligand was shown to ring-open the epoxide or thioepoxide, subsequently affording polyethers or polythioethers with ester end groups. By way of contrast, in the presence of CO(2) and epoxides, this system led to cyclic carbonate production.
Contamination control by use of ethylene oxide
NASA Technical Reports Server (NTRS)
Stroud, R. H.; Lyle, R. G.
1972-01-01
The uses of ethylene oxide as a decontaminating agent for planetary quarantine related applications are reported. Aspects discussed include: applications and limitations, chemical and physical properties, germicidal activity, methods of applications, and effects on personnel.
Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya
In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less
NASA Astrophysics Data System (ADS)
Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla
2009-04-01
For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.
Dose-rate effects on the radiation-induced oxidation of electric cable used in nuclear power plants
NASA Astrophysics Data System (ADS)
Reynolds, A. B.; Bell, R. M.; Bryson, N. M. N.; Doyle, T. E.; Hall, M. B.; Mason, L. R.; Quintric, L.; Terwilliger, P. L.
1995-01-01
Dose-rate effects were measured for typical ethylene propylene rubber (EPR) and crosslinked polyethylene (XLPE) electric cable used in nuclear power plants. The radiation source was the 60Co Irradiation Facility at the University of Virginia. Dose rates were varied from 5 Gy/h to 2500 Gy/h. It was found that there is little or no dose-rate effect at low doses for four of the five EPR cable products tested from 2500 Gy/h down to dose rates of 5 Gy/h but perhaps a small dose-rate effect at high doses for dose rates above 340 Gy/h. A small dose-rate exists for the fifth EPR above 340 Gy/h at all doses. A dose-rate effect exists above 40 Gy/h for two of the three XLPE cable products tested, but there is no dose-rate for these XLPE's between 40 Gy/h and 5 Gy/h. These results indicate that the dose-rate effects observed are due to oxygen diffusion effects during heterogeneous aging and suggest that there is no dose-rate effect for either EPR or XLPE during homogeneous aging.
NASA Astrophysics Data System (ADS)
Raghavan, Prasanth; Manuel, James; Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Jou-Hyeon; Nah, Changwoon
Electrospun membranes of polyacrylonitrile are prepared, and the electrospinning parameters are optimized to get fibrous membranes with uniform bead-free morphology. The polymer solution of 16 wt.% in N, N-dimethylformamide at an applied voltage of 20 kV results in the nanofibrous membrane with average fiber diameter of 350 nm and narrow fiber diameter distribution. Gel polymer electrolytes are prepared by activating the nonwoven membranes with different liquid electrolytes. The nanometer level fiber diameter and fully interconnected pore structure of the host polymer membranes facilitate easy penetration of the liquid electrolyte. The gel polymer electrolytes show high electrolyte uptake (>390%) and high ionic conductivity (>2 × 10 -3 S cm -1). The cell fabricated with the gel polymer electrolytes shows good interfacial stability and oxidation stability >4.7 V. Prototype coin cells with gel polymer electrolytes based on a membrane activated with 1 M LiPF 6 in ethylene carbonate/dimethyl carbonate or propylene carbonate are evaluated for discharge capacity and cycle property in Li/LiFePO 4 cells at room temperature. The cells show remarkably good cycle performance with high initial discharge properties and low capacity fade under continuous cycling.
1995-03-15
10 200 1-Chloro-2,3-epoxypropene NA Acetonitrile NA Ethylene oxide NA Methyl methacrylate NA NA = Information not available. A library search can be...05-4 Vinyl Chloride C2H3CL 75-01-4 Xylene, total TXYLEN - 1-Chloro-2,3-epoxypropene Acetonitrile CH3CN Ethylene oxide ETOX Methyl methacrylate PLEXI...0.010 10 200 Vinyl Chloride 0.010 10 200 Xylene, total 0.010 10 200 1-Chloro-2,3-epoxypropene NA Acetonitrile NA Ethylene oxide NA Methyl methacrylate
Cao, Feng; Gao, Yahan; Wang, Meng; Fang, Lei; Ping, Qineng
2013-04-01
In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p < 0.01). In hydroxyethyl piperazine ethanesulfonic acid buffer (HEPES) of pH 7.4, except for 7c, 9a, and 9d, P(eff) of the other prodrugs containing 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (1.7-fold) exhibited significantly higher values than that of OA (p < 0.01). In inhibition studies with glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1), P(eff) of 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (2.3-fold) had significantly reduced values (p < 0.01). Compared to the apparent permeability coefficient (P(app)) of OA with Caco-2 cell monolayer, significant enhancement of the P(app) of 7a (5.27-fold), 9b (3.31-fold), 9a (2.26-fold), 7b (2.10-fold), 7c (2.03-fold), 9c (1.87-fold), and 9d (1.39-fold) was also observed (p < 0.01). Inhibition studies with Gly-Sar (1 mM) showed that P(app) of 7a, 9b, and 9c significantly reduced by 1.3-fold, 1.6-fold, and 1.4-fold (p < 0.01), respectively. These results may be attributed to PepT1-mediated transport and their differential affinity toward PepT1. According to the permeability and affinity, 7a and 9b were selected in the pharmacokinetic studies in rats. Compared with group OA, C(max) for group 7a and 9b was enhanced to 3.04-fold (p < 0.01) and 2.62-fold (p < 0.01), respectively. AUC(0→24) was improved to 3.55-fold (p < 0.01) and 3.39-fold (p < 0.01), respectively. Compared to the ethylene glycol-linked amino acid diester prodrugs of OA in our previous work, results from this study revealed that part of the propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.
Wu; Timmons; Jen; Molock
2000-10-01
The pulsed plasma polymerization of low molecular weight molecules containing only one (ethylene oxide vinyl ether) and two (diethylene oxide vinyl ether) ethylene oxide units were investigated. The surface density of EO units retained in the polymer films increases sharply with decreasing average power input during deposition, particularly at very low plasma duty cycles. The protein adsorption properties of these plasma synthesized polymer were investigated using 125I-labeled albumin and fibrinogen. Surprisingly effective, non-fouling surfaces were observed with films synthesized from the monomer containing two ethylene oxide units; however, the monomer containing only one EO unit gave surfaces that were not particularly effective in preventing protein adsorptions. The results obtained show that ultra short chain length PEO modified surfaces can be biologically non-fouling. This, in turn, has interesting consequences in terms of trying to identify the basic reason for the effectiveness of EO units in preventing biomolecule adsorptions on surfaces.
EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation.
Kondyurin, Alexey
2018-04-24
Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 10 13 to 10 16 ions/cm². The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive.
EPDM Rubber Modified by Nitrogen Plasma Immersion Ion Implantation
2018-01-01
Ethylene-propylene diene monomer rubber (EPDM) was treated by plasma immersion ion implantation (PIII) with nitrogen ions of 20 keV energy and fluence from 1013 to 1016 ions/cm2. The Fourier-transform infrared attenuated total reflection spectra, atomic force microscopy and optical microscopy showed significant structure changes of the surface. The analysis of an interface of PIII treated EPDM rubber with polyurethane binder showed a cohesive character of the adhesion joint fracture at the presence of solvent and interpreted as covalent bond network formation between the PIII treated rubber and the adhesive. PMID:29695109
1988-10-01
these types of waste are available, with only general descriptions such as "toxic pharmaceutical waste" or " rubber and plastic waste" provided. 30...liner materials (i.e., HDPE through EPDM (ethylene/propylene/diene terpolymer)) are one to two orders of magnitude better barriers to water (on a per... ages in areas where the liner had been worked on with earth-moving equipment during removal operations (Nelson, Haxo, and McGlew 1985). Natural Soil
Aging Study Of EPDM O-Ring Material For The H1616 Shipping Package - Three Year Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefek, T.; Daugherty, W.; Skidmore, E.
This is a 3-year status report for tasks carried out per Task Technical Plan SRNL-STI-2011-00506. A series of tasks/experiments were performed at the Savannah River National Laboratory (SRNL) to monitor the aging performance of ethylene propylene diene monomer (EPDM) O-rings used in the H1616 shipping package. The test data provide a technical basis to extend the annual maintenance of the H1616 shipping package to three years and to predict the life of the EPDM O-rings at the bounding service conditions.
An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures
NASA Technical Reports Server (NTRS)
Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.
2003-01-01
Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.
Extended Le Chatelier's formula for carbon dioxide dilution effect on flammability limits.
Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki
2006-11-02
Carbon dioxide dilution effect on the flammability limits was measured for various flammable gases. The obtained values were analyzed using the extended Le Chatelier's formula developed in a previous study. As a result, it has been found that the flammability limits of methane, propane, propylene, methyl formate, and 1,1-difluoroethane are adequately explained by the extended Le Chatelier's formula using a common set of parameter values. Ethylene, dimethyl ether, and ammonia behave differently from these compounds. The present result is very consistent with what was obtained in the case of nitrogen dilution.
Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same
NASA Technical Reports Server (NTRS)
Rhein, R. A.; Ingham, J. D. (Inventor)
1978-01-01
Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.
Preparation, characterization, and activity of α-Ti(HPO4)2 supported metallocene catalysts
NASA Astrophysics Data System (ADS)
Shi, Yasai; Yuan, Yuan; Xu, Qinghong; Yi, Jianjun
2016-10-01
A series of heterogeneous catalysts by loading metallocenes on surface of α-Ti(HPO4)2, a kind of solid acid, has been synthesized. Polymerization of alkenes, including ethylene and propylene, based on participation of the heterogeneous catalysts were studied and the results were compared to metallocenes supported on silica gel, α-Zr(HPO4)2 and clay. Higher catalytic activity, larger polymer molecular weight and narrow distribution of polymer molecular weight were obtained. Acidic strength of the support and its influence to metallocenes were studied to discover intrinsic factors in the polymerizations.
Abraham, Kuzhikalail M.; Alamgir, Mohamed
1993-06-15
This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwood, H.J.
1983-07-01
Thermal and hydrolytic processes that are likely to occur when hydrocarbon and fluorocarbon elastomers are subjected to geothermal conditions are discussed. Polyhydrocarbon backbones have good chemical resistance, but many cross-links present in cured polyhydrocarbons can be hydrolyzed under geothermal conditions. Perfluorinated elastomers have excellent thermal and hydrolytic stability, although they are potentially susceptible to hydrolytic degradation. The cross-links present in cured perfluorocarbon elastomers are probably also susceptible to hydrolysis under severe conditions. It seems that improvements can be made in geothermal seals if they can be cured by processes that yield chemically stable cross-links.
Learn about the NESHAP for ethylene oxide emissions for sterilization facilities. Find the rule history information, federal register citations, legal authority, and related rules as well as a rule summary.
NASA Astrophysics Data System (ADS)
Hassan, Ali; Ramzan, Naveed; Umer, Asim; Ahmad, Ayyaz; Muryam, Hina
2018-02-01
The enhancement in the convective heat transfer coefficient of the ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids were investigated. The nanofluids of different volume concentrations i-e 1%, 2.5% and 4.5% were prepared by the two step method. Cuprous oxide (Cu2O) nanoparticles were ultrasonically stirred for four hours in the ethylene glycol (EG). The experimental study has been performed through circular tube geometry in laminar flow regime at average Reynolds numbers 36, 71 and 116. The constant heat flux Q = 4000 (W/m2) was maintained during this work. Substantial enhancement was observed in the convective heat transfer coefficient of ethylene glycol (EG) base cuprous oxide (Cu2O) nanofluids than the base fluid. The maximum 74% enhancement was observed in convective heat transfer coefficient at 4.5 vol% concentration and Re = 116.
Integrated Risk Information System (IRIS)
EPA / 635 / R - 16 / 350Fc www.epa.gov / iris Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide EXECUTIVE SUMMARY ( CASRN 75 - 21 - 8 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) December 201 6 National Center for Environmental Assessment Office
The purpose of this document is to provide implementation materials to assist in conducting complete and efficient inspections at ethylene oxide commercial sterilization and fumigation operations to determine compliance with the NESHAP
Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming
2012-01-01
Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Hongfa; Mei, Donghai; Yan, Pengfei
2015-09-10
Propylene carbonate (PC) is seldom used in lithium-ion batteries (LIBs) due to its sustained co-intercalation into graphene structure and the eventual graphite exfoliation, despite potential advantages it brings, such as wider liquid range and lower cost. Here we discover that cesium cation (Cs+), originally used to suppress dendrite growth of Li metal anode, directs the formation of solid electrolyte interphase (SEI) on graphitic anode in PC-rich electrolytes through preferential solvation. Effective suppression of PC-decomposition and graphite-exfoliation was achieved when the ratio of ethylene carbonate (EC)/PC in electrolytes was so adjusted that the reductive decomposition of Cs+-(EC)m (1≤m≤2) complex precedes thatmore » of Li+-(PC)n (3≤n≤5). The interphase directed by Cs+ is stable, ultrathin and compact, leading to significant improvements in LIB performances. In a broader context, the accurate tailoring of SEI chemical composition by introducing a new solvation center represents a fundamental breakthrough in manipulating interfacial reactions processes that once were elusive.« less