Sample records for ethylene polymers

  1. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene oxide polymer. 172.770 Section 172.770....770 Ethylene oxide polymer. The polymer of ethylene oxide may be safely used as a foam stabilizer in fermented malt beverages in accordance with the following conditions. (a) It is the polymer of ethylene...

  2. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  3. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  4. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene oxide polymer. 172.770 Section 172.770... CONSUMPTION Other Specific Usage Additives § 172.770 Ethylene oxide polymer. The polymer of ethylene oxide may... conditions. (a) It is the polymer of ethylene oxide having a minimum viscosity of 1,500 centipoises in a 1...

  5. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated. Ethylene polymer, chlorosulfonated as...

  6. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Ethylene polymer, chloro-sulfonated is produced by chloro-sulfonation of a carbon tetrachloride solution of... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...

  7. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...

  8. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...

  9. 21 CFR 177.2210 - Ethylene polymer, chloro-sulfonated.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene polymer, chloro-sulfonated. 177.2210... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles Intended for Repeated Use § 177.2210 Ethylene polymer, chloro-sulfonated...

  10. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol diglycidyl...

  11. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol diglycidyl...

  12. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol diglycidyl...

  13. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol diglycidyl...

  14. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of poly-ethylene-polyamine and... New Uses for Specific Chemical Substances § 721.7260 Polymer of poly-ethylene-polyamine and alkanediol... chemical substance identified generically as polymer of polyethylenepolyamine and alkanediol diglycidyl...

  15. Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers

    DOEpatents

    Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.

    2001-01-01

    Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.

  16. Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries.

    PubMed

    Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won

    2017-12-13

    Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.

  17. pH-sensitive methacrylic copolymer gels and the production thereof

    DOEpatents

    Mallapragada, Surya K [Ames, IA; Anderson, Brian C [Lake Bluff, IA

    2007-05-15

    The present invention provides novel gel forming methacrylic blocking copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol)methyl ether polymer. The polymers may be used for drug and gene delivery, protein separation, as structural supplements, and more.

  18. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  19. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  20. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  1. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  2. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymer of disodium maleate, allyl... New Uses for Specific Chemical Substances § 721.7000 Polymer of disodium maleate, allyl ether, and... substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  3. Transient Current Behaviour of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2011-07-01

    Transient current behaviour of pristine Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid crystal polymer which is a copolymer of poly ethylene terephthalate and poly p-hydroxybenzoic acid referred as PET/x.PHB polymer liquid crystals have been studied at different biasing electric fields ranging from 13 kV/cm to 104.3 kV/cm and at temperatures 120° C and 250° C for molar ratio x =0.8.

  4. Phenolic Polymer Solvation in Water and Ethylene Glycol, II: Ab Initio Computations.

    PubMed

    Bauschlicher, Charles W; Bucholz, Eric W; Haskins, Justin B; Monk, Joshua D; Lawson, John W

    2017-04-06

    Ab initio techniques are used to study the interaction of ethylene glycol and water with a phenolic polymer. The water bonds more strongly with the phenolic OH than with the ring. The phenolic OH groups can form hydrogen bonds between themselves. For more than one water molecule, there is a competition between water-water and water-phenolic interactions. Ethylene glycol shows the same effects as those of water, but the potential energy surface is further complicated by CH 2 -phenolic interactions, different conformers of ethylene glycol, and two OH groups on each molecule. Thus, the ethylene glycol-phenolic potential is more complicated than the water-phenolic potential. The results of the ab initio calculations are compared to those obtained using a force field. These calibration studies show that the water system is easier to describe than the ethylene glycol system. The calibration studies confirm the reliability of force fields used in our companion molecular dynamics study of a phenolic polymer in water and ethylene solutions.

  5. Injectible bodily prosthetics employing methacrylic copolymer gels

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.

    2007-02-27

    The present invention provides novel block copolymers as structural supplements for injectible bodily prosthetics employed in medical or cosmetic procedures. The invention also includes the use of such block copolymers as nucleus pulposus replacement materials for the treatment of degenerative disc disorders and spinal injuries. The copolymers are constructed by polymerization of a tertiary amine methacrylate with either a (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) polymer, such as the commercially available Pluronic.RTM. polymers, or a poly(ethylene glycol) methyl ether polymer.

  6. 76 FR 32188 - Certain New Chemicals; Receipt and Status Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ...,11,14- additive. heptaphenyl. P-11-0096 12/08/10 03/07/11 AOC LLC (S) Polymer (S) 1,4- component for benzenedicarboxy laminating of lic acid, 1,4- fiberglass dimethyl ester, reinforced polymer with 1,4- plastic parts... products with ethylene glycol, polymers with 1,4- cyclohexanedimet hanol, diethylene glycol, ethylene...

  7. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    NASA Astrophysics Data System (ADS)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  8. Decoupling of ion conductivity from segmental dynamics in oligomeric ethylene oxide functionalized oxanorbornene dicarboximide homopolymers

    DOE PAGES

    Adams, Marisa; Richmond, Victoria; Smith, Douglas; ...

    2017-03-24

    Here, in order to design more effective solid polymer electrolytes, it is important to decouple ion conductivityfrom polymer segmental motion. To that end, novel polymers based on oxanorbornene dicarboximidemonomers with varying lengths of oligomeric ethylene oxide side chains have been synthesized usingring opening metathesis polymerization. These unique polymers have a fairly rigid and bulky backboneand were used to investigate the decoupling of ion motion from polymer segmental dynamics. Ionconductivity was measured using broadband dielectric spectroscopy for varying levels of added lithiumsalt. The conductivity data demonstrate six to seven orders of separation in timescale of ion conductivityfrom polymer segmental motion formore » polymers with shorter ethylene oxide side chains. However,commensurate changes in the glass transition temperatures T g reduce the effect of decoupling in ionconductivity and lead to lower conductivity at ambient conditions. These results suggest that both anincrease in decoupling and a reduction in T g might be required to develop solid polymer electrolytes withhigh ion conductivity at room temperature.« less

  9. Surface eroding, liquid injectable polymers based on 5-ethylene ketal ε-caprolactone.

    PubMed

    Babasola, Oladunni Iyabo; Amsden, Brian G

    2011-10-10

    Liquid, injectable hydrophobic polymers are potentially useful as depot systems for localized drug delivery. Low molecular weight polymers of 5-ethylene ketal ε-caprolactone and copolymers of this monomer with D,L-lactide were prepared and their properties assessed with respect to their suitability for this purpose. The polymers were amorphous and of low viscosity, and the viscosity was adjustable by choice of initiator and/or by copolymerizing with D,L-lactide. Lower viscosity polymers were attained by using 350 Da methoxy poly(ethylene glycol) as an initiator in comparison to octan-1-ol, while copolymerization with D,L-lactide increased viscosity. The initiator used had no significant effect on the rate of mass loss in vitro, and copolymers with D,L-lactide (DLLA) degraded faster than 5-ethylene ketal ε-caprolactone (EKC) homopolymers. For the EKC-based polymers, a nearly constant degradation rate was observed. This finding was attributed to the hydrolytic susceptibility of the EKC-EKC ester linkage, which was comparable to that of DLLA-DLLA, coupled with a higher molecular weight of the water-soluble degradation product and the low initial molecular weight of the EKC-based polymers. Cytotoxicity of the hydrolyzed EKC monomer to 3T3 fibroblast cells was comparable to that of ε-caprolactone, suggesting that polymers prepared from EKC may be well tolerated upon in vivo implantation.

  10. New Development of Polymer-Based Cotton for Breathable Material

    USDA-ARS?s Scientific Manuscript database

    Recently, we converted the poly (ethylene oxide) dibromide to poly (ethylene oxide) diazides and reacted to study cycloaddition polymerization with bisphenol-A dipropargyl ether to produce elastomers compatible with cotton (Polymer Preprints, 2005, 46(1), 737-738). The reactants were characterized w...

  11. The Insulation of Copper Wire by the Electrostatic Coating Process.

    DTIC Science & Technology

    1983-06-30

    fluorinated ethylene propylene), ECFTE (ethylene- chlorotrifluoro ethylene), and PFA (perfluoroalkoxy resin). Another material of interest with good...Fluoroplastics - Fluoroplastics are a family of polymers with the general paraffin structure that have some or all of the hydrogen replaced by fluorine ...ETFE (ethylene-tetrafluoroethylene copolymer), PFA (perfluoroalkoxy resin), ECTFE (ethylene-chlorotrifluoroethylene), and FEP ( fluorinated ethylene

  12. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    PubMed

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  13. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene/1,3-phenylene oxyethylene isophthalate... Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer. Ethylene/1, 3-phenylene... polymers complying with § 177.1630. (a) Identity. For the purpose of this section, ethylene/1,3-phenylene...

  14. Local Structure and Ion Transport in Glassy Poly(ethylene oxide styrene) Copolymers

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Mays, Jimmy; Sokolov, Alexei P.; Winey, Karen I.

    2014-03-01

    Polymer electrolytes have attracted attention for a wide variety of applications in energy production such as lithium-ion batteries and fuel cells. The concept of free volume provides important information about ion mobility and chain dynamics in the polymer matrix. Researchers have recently demonstrated that ion transport in glassy polymer can be improved by designing a system with high free volume. We have studied the effect of temperature and humidity on the intermolecular correlations of poly(ethylene oxide styrene-block-styrene) (PEOSt- b-St) block copolymer and poly(ethylene oxide styrene) (PEOSt) homopolymer using in situ multi-angle x-ray scattering across a wide range of scattering angles (q = 0.007-1.5 Å-1) . An increase in backbone-to-backbone distance is observed, indicating an increase in free volume between different polymer main chains. Structural characterization of the polymer segments will be discussed together with conductivity and dielectric results to better understand the ion transport mechanism in the local environment of the polymer system. Department of Chemistry, University of Tennessee.

  15. Poly(ethylene oxide) surfactant polymers.

    PubMed

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.

  16. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene oxide polymer. 172.770 Section 172.770 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN...

  17. Osmotic pressure driven protein release from viscous liquid, hydrophobic polymers based on 5-ethylene ketal ε-caprolactone: potential and mechanism.

    PubMed

    Babasola, Iyabo Oladunni; Zhang, Wei; Amsden, Brian G

    2013-11-01

    In this study, the potential of low molecular weight, viscous liquid polymers based on 5-ethylene ketal ε-caprolactone for localized delivery of proteins via an osmotic pressure release mechanism was investigated. Furthermore, the osmotic release mechanism from viscous liquid polymers was elucidated. 5-Ethylene ketal ε-caprolactone was homopolymerized or copolymerized with D,L-lactide (DLLA) by ring-opening polymerization. Polymer hydrophobicity was adjusted by choice of initiator; hydrophobic polymers were prepared by initiating with octan-1-ol, while more hydrophilic polymers were prepared by initiating with 350 g/mol methoxy poly(ethylene glycol) (PEG). Particles consisting of bovine serum albumin (BSA) as a model protein drug were co-lyophilized with trehalose at 50:50 and 10:90 (w/w) ratios and were mixed into the polymers at 1% and/or 5% (w/w) particle loading. The release and mechanism of release of BSA from the polymers were assessed in vitro. BSA was released in a sustained manner, with a near zero-order release profile and with minimal burst effect for 5-80 days depending on the polymer's hydrophilicity; the release was faster from the PEG initiated polymers than from the octan-1-ol initiated polymers. Increasing the particle loading from 1% to 5% (w/w) resulted in a more noticeable burst effect, but did not significantly increase the mass fraction release rate. This release behavior was determined to proceed as follows. Release from the polymer was triggered by the water activity gradient between the surrounding aqueous medium and the saturated solution, which forms when water is absorbed from the surrounding medium to dissolve a given particle. The generated pressure initiates swelling around the particle/polymer interface and creates a superhydrated polymer region through which the solute is transported by convection, at a rate determined by the osmotic pressure generated. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Synthesis and characterization of poly(L-alanine)-block-poly(ethylene glycol) monomethyl ether as amphiphilic biodegradable co-polymers.

    PubMed

    Zhang, Guolin; Ma, Jianbiao; Li, Yanhong; Wang, Yinong

    2003-01-01

    Di-block co-polymers of poly(L-alanine) with poly(ethylene glycol) monomethyl ether (MPEG) were synthesized as amphiphilic biodegradable co-polymers. The ring-opening polymerization of N-carboxy-L-alanine anhydride (NCA) in dichloromethane was initiated by amino-terminated poly(ethylene glycol) monomethyl ether (MPEG-NH2, M(n) = 2000) to afford poly(L-alanine)-block-MPEG. The weight ratio of two blocks in the co-polymers could be altered by adjusting the feeding ratio of NCA to MPEG-NH2. Their chemical structures were characterized on the basis of infrared spectrometry and nuclear magnetic resonance. According to circular dichroism measurement, the poly(L-alanine) chain on the co-polymers in an aqueous medium had a alpha-helix conformation. Two melting points from MPEG block and poly(L-alanine), respectively, could be observed in differential scanning calorimetry curves of the co-polymers, suggesting that a micro-domain phase separation appeared in their bulky states. The co-polymers could take up some water and the capacity was dependent on the ratio of poly(L-alanine) block to MPEG. Such co-polymers might be useful in drug-delivery systems and other biomedical applications.

  19. Design of Hybrid Solid Polymer Electrolytes: Structure and Properties

    NASA Technical Reports Server (NTRS)

    Bronstein, Lyudmila M.; Karlinsey, Robert L.; Ritter, Kyle; Joo, Chan Gyu; Stein, Barry; Zwanziger, Josef W.

    2003-01-01

    This paper reports synthesis, structure, and properties of novel hybrid solid polymer electrolytes (SPE's) consisting of organically modified aluminosilica (OM-ALSi), formed within a poly(ethylene oxide)-in-salt (Li triflate) phase. To alter the structure and properties we fused functionalized silanes containing poly(ethylene oxide) (PEO) tails or CN groups.

  20. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    PubMed

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    PubMed

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  2. Thiourea incorporated poly(ethylene oxide) as transparent gel polymer electrolyte for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Pavithra, Nagaraj; Velayutham, David; Sorrentino, Andrea; Anandan, Sambandam

    2017-06-01

    A new series of transparent gel polymer electrolytes are prepared by adding various weight percent of thiourea coupled with poly(ethylene oxide) for the application of dye-sensitized solar cells. Coupling of thiourea in the presence of iodine undergoes dimerization reaction to produce formamidine disulfide. Fourier Transform Infrared spectroscopy shows that the interactions of thiourea and formamidine disulfide with electronegative ether linkage of poly(ethylene oxide) results in conformational changes of gel polymer electrolytes. Electrochemical impedance spectroscopy and linear sweep voltammetry experiments reveal an increment in ionic conductivity and tri-iodide diffusion coefficient, for thiourea modified gel polymer electrolytes. Finally, the prepared electrolytes are used as a redox mediator in dye-sensitized solar cells and the photovoltaic properties were studied. Apart from transparency, the gel polymer electrolytes with thiorurea show higher photovoltaic properties compared to bare gel polymer electrolyte and a maximum photocurrent efficiency of 7.17% is achieved for gel polymer electrolyte containing 1 wt% of thiourea with a short circuit current of 11.79 mA cm-2 and open circuit voltage of 834 mV. Finally, under rear illumination, almost 90% efficiency is retained upon compared to front illumination.

  3. Terahertz spectroscopic analysis of crystal orientation in polymers

    NASA Astrophysics Data System (ADS)

    Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi

    2018-05-01

    Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.

  4. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers...

  5. Miscibility of poly(lactic acid) and poly(ethylene oxide) solvent polymer blends and nanofibers made by solution blow spinning

    USDA-ARS?s Scientific Manuscript database

    The miscibility of blends of poly(lactic acid) (PLA) and poly(ethylene oxide) (PEO) was studied in polymer solutions by dilute solution viscometry and in solution blow spun nanofibers by microscopy (SEM, TEM) and by thermal and spectral analysis. Three blends of PLA and PEO were solution blended in...

  6. Ethylene sensing by silver(I) salt-impregnated luminescent films

    USDA-ARS?s Scientific Manuscript database

    Luminescent oligomer /polymer films impregnated with Ag(I) salts are effective sensors for small gas molecules such as ethylene. Films composed of various Ag(I) salts (i.e. AgBF4, AgSbF6, AgB(C6F5)4, AgClO4 and AgOTf) and polymers (i.e. poly(vinylphenylketone) (PVPK), polystyrene (PS) or oligomers (...

  7. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts.

    PubMed

    Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2016-11-09

    We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.

  9. Synthesis of ethylene maleic anhydride copolymer containing fungicides and evaluation of their effect for wood decay resistance

    Treesearch

    George C. Chen

    2008-01-01

    The aim of the present study was to combat wood decay based on the approach controlled-release biocides from polymers. The possibility of introducing polymer-bonded fungicides into the cell lumens was investigated. The synthesis of ethylene maleic anhydride copolymer containing pentachlorophenol (penta) and 8-hydroxy quinoline (8HQ) in N, N dimethyl formamide is...

  10. Highly filled biocomposites based on ethylene-vinyl acetate copolymer and wood flour

    NASA Astrophysics Data System (ADS)

    Shelenkov, P. G.; Pantyukhov, P. V.; Popov, A. A.

    2018-05-01

    Recently, there is a great interest in the world to biodegradable materials based on synthetic polymers in a composition with natural fillers. Highly filled polymer composite materials based on various grades of synthetic block copolymer of ethylene vinyl acetate with wood flour were under investigation. Five grades of ethylene-vinyl acetate copolymer differing in the content of vinyl acetate groups and a melt flow index were used in this work in order to find the best one for highly filled biocomposites. Wood flour content in biocomposites was 50, 60, 70 weight %. The rheological and physico-mechanical characteristics of the resulting biocomposites were studied.

  11. 78 FR 68027 - Notification of Proposed Production Activity, Revlon Consumer Products Corporation, Subzone 93G...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ..., lauric acid, potassium sorbate, ethylene brassylate, copper gluconate, octinoxate, phenylenediamine..., cellulose, agarose, polymers, PVC, methyl methacrylate, and ethylene terapthalate (duty rate ranges from...

  12. Optical data storage and metallization of polymers

    NASA Technical Reports Server (NTRS)

    Roland, C. M.; Sonnenschein, M. F.

    1991-01-01

    The utilization of polymers as media for optical data storage offers many potential benefits and consequently has been widely explored. New developments in thermal imaging are described, wherein high resolution lithography is accomplished without thermal smearing. The emphasis was on the use of poly(ethylene terephthalate) film, which simultaneously serves as both the substrate and the data storage medium. Both physical and chemical changes can be induced by the application of heat and, thereby, serve as a mechanism for high resolution optical data storage in polymers. The extension of the technique to obtain high resolution selective metallization of poly(ethylene terephthalate) is also described.

  13. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference. Copies...

  14. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... their characteristic infrared spectra. (ii) Viscosity. Poly-1-butene resins and the butene/ethylene copolymers have an intrinsic viscosity 1.0 to 3.2 as determined by ASTM method D1601-78, “Standard Test Method for Dilute Solution Viscosity of Ethylene Polymers,” which is incorporated by reference. Copies...

  15. Long-Life and High-Power Binder-Free Cathode Based on One-Step Synthesis of Radical Polymers with Multi-Pendant Groups.

    PubMed

    Chen, Yaoguang; Zhang, Yangfan; Liu, Xiu; Fan, Xuliang; Bai, Bing; Yang, Kang; Liang, Zhongxin; Zhang, Zishou; Mai, Kancheng

    2018-05-16

    The main bottlenecks for the widespread application of radical polymers in organic radical batteries are poor cycling stability, due to the dissolution of radical polymers into the electrolyte, and the low efficiency of multi-step synthesis strategies. Herein, a kind of electrolyte-resistant radical polymer bearing multi-pendant groups (poly(ethylene-alt-TEMPO maleate) (PETM)) is designed and synthesized through a one-step esterification reaction to graft 4-hydroxy-2,2,6,6-teramethylpiperidinyl-1-oxy into the commercially available poly(ethylene-alt-maleic anhydride). Interestingly, PETM is hardly soluble in the ethylene carbonate/dimethyl carbonate/ethyl methyl carbonate-based electrolyte, showing an extremely low solubility of 0.59 mg mL -1 , but is easily soluble in tetrahydrofuran and N-Methyl pyrrolidone. The derived binder-free PETM cathode exhibits nearly 100% utilization of the grafted nitroxide radicals (88 mA h g -1 ) and excellent rate capability with almost invariant capacitance from 10 C to 40 C. Significantly, the PETM cathodes retain 94% of the initial capacity after 1000 cycles, outperforming most reported radical polymer-based cathodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  17. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in

    2016-07-28

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamicsmore » of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.« less

  18. Low-Cost and High-Impact Environmental Solutions for Military Composite Structures

    DTIC Science & Technology

    2005-12-15

    moduli of UPE polymers are considerably increased when neopentyl glycol is used as the polyol instead of ethylene glycol in the formulations [56...general purpose unsaturated polyester based on phthalic anhydride, ethylene glycol , and maleic anhydride. The VIAPAL 570G was a colorless solid in the...modulus. In this case, the neopentyl center of the Bisphenol A backbone of the VE 828 polymer may be responsible for increased modulus values. The

  19. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2017-04-01

    We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.

  20. Dielectric spectroscopy of PMMA-LiClO4 based polymer electrolyte plasticized with ethylene carbonate EC

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2018-04-01

    Dielectric spectroscopy covering the frequency range 0.01 Hz - 2 MHz for PMMA-LiClO4 based polymer electrolyte embedded with different concentration of ethylene carbonate (x = 0, 20 and 40 wt%) has been analyzed using Havrilliak-Negami formalism. The reciprocal temperature dependence of inverse relaxation time obtained from the analysis of dielectric spectra follows Vogel-Tammann-Fulcher behaviour. The shape parameters obtained from this analysis change with ethylene carbonate concentrations. From the fits of the experimental result using Kohlrausch-Williams-Watts function. We have obtained stretched exponent β which indicates that the relaxation is highly non-exponential. The decay function obtained from electric modulus data is highly asymmetric.

  1. Effect of ethylene glycol doping on performance of PEDOT:PSS/µT-n-Si heterojunction solar cell

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Nakra, Rohan; Sivaiah, B.; Sardana, Sanjay K.; Prathap, P.; Rauthan, C. M. S.; Srivastava, Sanjay K.

    2018-05-01

    This study reports effect of co-solvent doping in poly (3, 4-ethyelenedioxythiophene):poly(dimethyl sulfoxide) (PEDOT:PSS) over the performance of Ag/PEDOT:PSS/µT-n-Si/In:Ga architecture based solar cell. PEDOT:PSS polymer is doped with varying concentration of ethylene glycol (EG). At 10% (volume) concentration performance of the device is highest with 4.69% power conversion efficiency. At higher or lower concentrations of ethylene glycol device performance deteriorates with sharp decline in short-circuit current density. Improvement in conductivity of the PEDOT:PSS polymer due to addition of co-solvent is the reason behind improvement in the performance of the device efficiency.

  2. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  3. Synthesis and characterization of amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) for drug delivery.

    PubMed

    Li, Hongchun; Niu, Yongsheng

    2018-08-01

    A novel amphiphilic block polymer poly(ethylene glycol)-poly(propylene carbonate)-poly(ethylene glycol) (PEG-PPC-PEG) was synthesized via the dicyclohexylcarbodiimide condensation reaction of double PEG-bis-amine and HOOC-PPC-COOH. The obtained copolymer was characterized by NMR to determine its structure. Using the PEG-PPC-PEG as the carrier and using doxorubicin (DOX) as a model drug, DOX-loaded nanoparticles with core shell structure were synthesized by self-assembly in water. The nanoparticles properties such as particle size, drug loading, encapsulation efficiency (EE) and drug release behavior were investigated as a function of the hydrophobic block length of PPC segments and compared with each other. The results showed that the EE was up to 88.8%. Nanoparticles were found to have a certain effect on the controlled release of DOX. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conditions: (a) The additive is an addition polymer of ethylene oxide and water with a mean molecular weight of 200 to 9,500. (b) It contains no more than 0.2 percent total by weight of ethylene and diethylene... ethylene and diethylene glycols if its mean molecular weight is below 350, when tested by the analytical...

  5. Polymer Coatings Reduce Electro-osmosis

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  6. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis.

    PubMed

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen

    2017-11-01

    It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.

  7. Thermomechanical Properties, Antibiotic Release, and Bioactivity of a Sterilized Cyclodextrin Drug Delivery System

    PubMed Central

    Halpern, Jeffrey M.; Gormley, Catherine A.; Keech, Melissa; von Recum, Horst A.

    2014-01-01

    Various local drug delivery devices and coatings are being developed as slow, sustained release mechanism for drugs, yet the polymers are typically not evaluated after commercial sterilization techniques. We examine the effect that commercial sterilization techniques have on the physical, mechanical, and drug delivery properties of polyurethane polymers. Specifically we tested cyclodextrin-hexamethyl diisocyanate crosslinked polymers before and after autoclave, ethylene oxide, and gamma radiation sterilization processes. We found that there is no significant change in the properties of polymers sterilized by ethylene oxide and gamma radiation compared to non-sterilized polymers. Polymers sterilized by autoclave showed increased tensile strength (p<0.0001) compared to non-sterilized polymers . In the release of drugs, which were loaded after the autoclave sterilization process, we observed a prolonged release (p<0.05) and a prolonged therapeutic effect (p<0.05) but less drug loading (p<0.0001) compared to non-sterilized polymers. The change in the release profile and tensile strength in polymers sterilized by autoclave was interpreted as being caused by additional crosslinking from residual, unreacted, or partially-reacted crosslinker contained within the polymer. Autoclaving therefore represents additional thermo-processing to modify rate and dose from polyurethanes and other materials. PMID:24949201

  8. Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.

    PubMed

    Zhaoxin, L; Fujimura, T

    2000-12-01

    The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.

  9. Effects of Terminal Sterilization on PEG-Based Bioresorbable Polymers Used in Biomedical Applications.

    PubMed

    Bhatnagar, Divya; Dube, Koustubh; Damodaran, Vinod B; Subramanian, Ganesan; Aston, Kenneth; Halperin, Frederick; Mao, Meiyu; Pricer, Kurt; Murthy, N Sanjeeva; Kohn, Joachim

    2016-10-01

    The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight ( M w ) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.

  10. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems.

    PubMed

    Schneider, Christian; Langer, Robert; Loveday, Donald; Hair, Dirk

    2017-09-28

    The potential for use of polymers in controlled drug delivery systems has been long recognized. Since their appearance in the literature, a wide range of degradable and non-degradable polymers have been demonstrated in drug delivery devices. The significance and features of ethylene-vinyl acetate (EVA) copolymers in initial research and development led to commercial drug delivery systems. This review examines the breadth of EVA use in drug delivery, and will aid the researcher in locating key references and experimental results, as well as understanding the features of EVA as a highly versatile, biocompatible polymer for drug delivery devices. Topics will include. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. PEO based polymer composite with added acetamide, NaI/I2 as gel polymer electrolyte for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, B.; Padma suvarna, R.; Giribabu, L.; Raghavender, M.; kumar, V. Ramesh

    2018-02-01

    Poly (ethylene oxide) (PEO) based gel polymer electrolytes (GPEs) with added acetamide, NaI/I2 have been prepared for dye-sensitized solar cells application (DSSC). The Dye-sensitized solar cell investigated the performance of the optimized gel polymer electrolyte. GPEs synthesized by adding up of acetamide with different wt% in poly (ethylene oxide) (PEO) and poly (ethylene glycol) dimethyl ether (PEGDME) with NaI/I2. A maximum power conversion efficiency of 5.92% is achieved for PEO/PEGDME with 10 wt% acetamide in the photovoltaic performance under 100 mW/cm2 illumination and it exhibits maximum ionic conductivity (σ = 2.81×10-3 S/cm) among all electrolytes, compared to PEO without acetamide (η = 4.35%). The gain in open circuit voltage (Voc) was observed for GPEs due to the decrease in the recombination effect and electron lifetime increases by the addition of acetamide on the PEO. The fill factor (FF) is increased due to the growth in the ionic conductivity and amorphous nature of the GPE increases by the addition of acetamide on the PEO.

  12. Application of partition technology to particle electrophoresis

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Harris, J. Milton; Karr, Laurel J.; Bamberger, Stephan; Matsos, Helen C.; Snyder, Robert S.

    1989-01-01

    The effects of polymer-ligand concentration on particle electrophoretic mobility and partition in aqueous polymer two-phase systems are investigated. Polymer coating chemistry and affinity ligand synthesis, purification, and analysis are conducted. It is observed that poly (ethylene glycol)-ligands are effective for controlling particle electrophoretic mobility.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yong; Desseaux, Solenne; Aden, Bethany

    We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less

  14. Stretchable and flexible thermoelectric polymer composites

    NASA Astrophysics Data System (ADS)

    Slobodian, P.; Riha, P.; Matyas, J.; Olejnik, R.

    2018-03-01

    Polymer composites were manufactured from pristine and oxidized multi-walled carbon nanotubes and ethylene-octene copolymer. The composites had thermoelectric properties and exhibit thermoelectric effect, that is, the conversion of temperature differences into electricity. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy of the multi-walled carbon nanotubes in ethylene-octene copolymer matrix showed that the oxidation with HNO3 or KMnO4 enhanced its p-type electrical conductivity and that the thermoelectric power increase was proportional to the formation of new oxygen-containing functional groups on the surface of carbon nanotubes.

  15. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  16. Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer.

    PubMed

    Wu; Timmons; Jen; Molock

    2000-10-01

    The pulsed plasma polymerization of low molecular weight molecules containing only one (ethylene oxide vinyl ether) and two (diethylene oxide vinyl ether) ethylene oxide units were investigated. The surface density of EO units retained in the polymer films increases sharply with decreasing average power input during deposition, particularly at very low plasma duty cycles. The protein adsorption properties of these plasma synthesized polymer were investigated using 125I-labeled albumin and fibrinogen. Surprisingly effective, non-fouling surfaces were observed with films synthesized from the monomer containing two ethylene oxide units; however, the monomer containing only one EO unit gave surfaces that were not particularly effective in preventing protein adsorptions. The results obtained show that ultra short chain length PEO modified surfaces can be biologically non-fouling. This, in turn, has interesting consequences in terms of trying to identify the basic reason for the effectiveness of EO units in preventing biomolecule adsorptions on surfaces.

  17. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis

    PubMed Central

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen

    2017-01-01

    Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612

  18. Removal of fumonisin B1 and B2 from model solutions and red wine using polymeric substances.

    PubMed

    Carrasco-Sánchez, Verónica; Kreitman, Gal Y; Folch-Cano, Christian; Elias, Ryan J; Laurie, V Felipe

    2017-06-01

    Fumonisins are a group of mycotoxins found in various foods whose consumption is known to be harmful for human health. In this study, we evaluated the ability of three polymers (Polyvinylpolypyrrolidone, PVPP; a resin of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate, PVP-DEGMA-TAIC; and poly(acrylamide-co-ethylene glycol-dimethacrylate), PA-EGDMA) to remove fumonisin B 1 (FB1) and fumonisin B 2 (FB2) from model solutions and red wine. Various polymer concentrations (1, 5 and 10mgmL -1 ) and contact times (2, 8 and 24h) were tested, with all polymers exhibiting fumonisin removal capacities (monitored by LC-MS). The impact of all polymers on polyphenol removal was also assessed. PA-EGDMA showed to be the most promising polymer, removing 71% and 95% of FB 1 , and FB 2 , respectively, with only a 22.2% reduction in total phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fluorescent Pressure Response of Protein-Nanocluster Polymer Composites

    DTIC Science & Technology

    2016-05-01

    composites as pressure sensitive indicators of brain damage. The PNC composites are made up of protein coated gold nanoclusters and a styrene- ethylene ...styrene- ethylene /butylene-styrene (SEBS):mineral oil composites that were developed as a brain tissue surrogate at ARL. Finally, we would like to...allowing us to use solid samples and create a model for brain damage. To this end, we used styrene- ethylene /butylene-styrene (SEBS) as the matrix to

  20. Determination of ammonia in ethylene using ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Cross, J. H.; Limero, T. F.; Lane, J. L.; Wang, F.

    1997-01-01

    A simple procedure to analyze ammonia in ethylene by ion mobility spectrometry is described. The spectrometer is operated with a silane polymer membrane., 63Ni ion source, H+ (H2O)n reactant ion, and nitrogen drift and source gas. Ethylene containing parts per billion (ppb) (v/v) concentrations of ammonia is pulled across the membrane and diffuses into the spectrometer. Preconcentration or preseparation is unnecessary, because the ethylene in the spectrometer has no noticeable effect on the analytical results. Ethylene does not polymerize in the radioactive source. Ethylene's flammability is negated by the nitrogen inside the spectrometer. Response to ammonia concentrations between 200 ppb and 1.5 ppm is near linear, and a detection limit of 25 ppb is calculated.

  1. 40 CFR 180.960 - Polymers; exemptions from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... moles of ethylene oxide 9014-92-026401-47-8 1, 2-Ethanediamine, polymer with methyl oxirane and oxirane...(oxyethylene) content averages 30 moles None α-(p-Nonylphenyl)-ω-hydroxypoly(oxyethylene) sulfate, and its...

  2. Targeted conjugation of breast anticancer drug tamoxifen and its metabolites with synthetic polymers.

    PubMed

    Sanyakamdhorn, S; Agudelo, D; Bekale, L; Tajmir-Riahi, H A

    2016-09-01

    Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.

    PubMed

    Han, Mengwei; Espinosa-Marzal, Rosa M

    2017-09-07

    We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.

  4. Identification of Poly(ethylene glycol) and Poly(ethylene glycol)-Based Detergents Using Peptide Search Engines.

    PubMed

    Ahmadi, Shiva; Winter, Dominic

    2018-06-05

    Poly(ethylene glycol) (PEG) is one of the most common polymer contaminations in mass spectrometry (MS) samples. At present, the detection of PEG and other polymers relies largely on manual inspection of raw data, which is laborious and frequently difficult due to sample complexity and retention characteristics of polymer species in reversed-phase chromatography. We developed a new strategy for the automated identification of PEG molecules from tandem mass spectrometry (MS/MS) data using protein identification algorithms in combination with a database containing "PEG-proteins". Through definition of variable modifications, we extend the approach for the identification of commonly used PEG-based detergents. We exemplify the identification of different types of polymers by static nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS) analysis of pure detergent solutions and data analysis using Mascot. Analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs of a PEG-contaminated sample by Mascot identified 806 PEG spectra originating from four PEG species using a defined set of modifications covering PEG and common PEG-based detergents. Further characterization of the sample for unidentified PEG species using error-tolerant and mass-tolerant searches resulted in identification of 3409 and 3187 PEG-related MS/MS spectra, respectively. We further demonstrate the applicability of the strategy for Protein Pilot and MaxQuant.

  5. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and...

  6. Dependence of Ion Dynamics on the Polymer Chain Length in Poly(ethylene oxide)-Based Polymer Electrolytes.

    PubMed

    Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas

    2015-06-04

    It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.

  7. Applications of ethylene vinyl acetate as an encapsulation material for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Coulbert, C. D.; Liang, R. H.; Gupta, A.; Willis, P.; Baum, B.

    1983-01-01

    Terrestrial photovoltaic modules must undergo substantial reductions in cost in order to become economically attractive as practical devices for large scale production of electricity. Part of the cost reductions must be realized by the encapsulation materials that are used to package, protect, and support the solar cells, electrical interconnects, and other ancillary components. As many of the encapsulation materials are polymeric, cost reductions necessitate the use of low cost polymers. The performance and status of ethylene vinyl acetate, a low cost polymer that is being investigated as an encapsulation material for terrestrial photovoltaic modules, are described.

  8. Poly(ethylene oxide) functionalization

    DOEpatents

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  9. Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).

    PubMed

    Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan

    2017-06-05

    Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.

  10. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    PubMed

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  12. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛ

  13. Adsorption of poly(ethylene succinate) chain onto graphene nanosheets: A molecular simulation.

    PubMed

    Kelich, Payam; Asadinezhad, Ahmad

    2016-09-01

    Understanding the interaction between single polymer chain and graphene nanosheets at local and global length scales is essential for it underlies the mesoscopic properties of polymer nanocomposites. A computational attempt was then performed using atomistic molecular dynamics simulation to gain physical insights into behavior of a model aliphatic polyester, poly(ethylene succinate), single chain near graphene nanosheets, where the effects of the polymer chain length, graphene functionalization, and temperature on conformational properties of the polymer were studied comparatively. Graphene functionalization was carried out through extending the parameters set of an all-atom force field. The results showed a significant conformational transition of the polymer chain from three-dimensional statistical coil, in initial state, to two-dimensional fold, in final state, during adsorption on graphene. The conformational order, overall shape, end-to-end separation statistics, and mobility of the polymer chain were found to be influenced by the graphene functionalization, temperature, and polymer chain length. Furthermore, the polymer chain dynamics mode during adsorption on graphene was observed to transit from normal diffusive to slow subdiffusive mode. The findings from this computational study could shed light on the physics of the early stages of aliphatic polyester chain organization induced by graphene. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Radical graft polymerization of an Allyl Monomer onto Hydrophilic Polymers and their antibacterial nanofibrous membranes

    USDA-ARS?s Scientific Manuscript database

    Hydrophilic poly (vinyl alcohol-co-ethylene) (PVA-co-PE) copolymers with 27 mol %, 32 mol % and 44 mol % ethylene were functionalized by melt radical graft copolymerization with 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) using reactive extrusion. This functionalization imparts antibacterial pr...

  15. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    PubMed

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  16. Studies of Plasticized-Polymer Electrolytes Containing Mixed Zn(II) and Li(I)

    DTIC Science & Technology

    1992-06-12

    iIIIII1iIIII!I 14. SUBJECT TERMS 15. tdUMnnrri . 9 poly(ethylene glycol) ( PEG ), poly(ethylene glycol dimethyl ether) (PEGDME), 16. PRICE CODE...glycol) ( PEG ) and poly(ethylene glycol dimethyl ether) (PEGDME). The addition of salts to either PEO or plasticized-PEO strongly influences the...were found to depend on salt concentration. Td varied from 385 to 3350 C as the zinc content was increased from 0 to 100%. Thus the overall thermal

  17. Shape-Persistent, Thermoresponsive Polypeptide Brushes Prepared by Vapor Deposition Surface-Initiated Ring-Opening Polymerization of α-Amino Acid N -Carboxyanhydrides

    DOE PAGES

    Shen, Yong; Desseaux, Solenne; Aden, Bethany; ...

    2015-04-20

    We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less

  18. Review on the targeted conjugation of anticancer drugs doxorubicin and tamoxifen with synthetic polymers for drug delivery.

    PubMed

    Sanyakamdhorn, S; Agudelo, D; Tajmir-Riahi, H A

    2017-08-01

    In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug-polymer were examined. Structural analysis showed that drug-polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30-55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.

  19. Cell-polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer.

    PubMed

    Vihola, Henna; Marttila, Anna-Kaisa; Pakkanen, Jukka S; Andersson, Mirja; Laukkanen, Antti; Kaukonen, Ann Marie; Tenhu, Heikki; Hirvonen, Jouni

    2007-10-01

    Cell-polymer interactions of thermosensitive poly(N-isopropylacrylamide) (PNIPAM) or poly(N-vinylcaprolactam) (PVCL) coated particles with RAW264.7 macrophages and intestinal Caco-2 cells were evaluated. Nanosized particles were prepared by modifying the surface of fluorescent polystyrene (FPS) particles with the thermosensitive polymer gels or with poly(ethylene oxide) (PEO)-macromonomer grafts. The particles were characterized by IR-spectroscopy for functional groups, light scattering for size distribution and zeta-potential for surface charge. Effects of temperature and polymer coating/grafting on the cellular interactions were evaluated by cell association/uptake and visualized by confocal scanning microscope. PEO and PNIPAM inhibited the polymer-cell contact by steric repulsion, evidenced by weak attachment of the particles. PVCL-coated FPS was adsorbed on the cells more strongly, especially at 37 degrees C, because of more hydrophobic nature at higher temperatures. The results suggest feasibility of the PNIPAM and PVCL for biotechnological/pharmaceutical applications, as the cell-particle interactions may be modified by size, surface charge, hydrophobicity, steric repulsion and temperature.

  20. The role of inserted polymers in polymeric insulation materials: insights from QM/MD simulations.

    PubMed

    Li, Chunyang; Zhao, Hong; Zhang, Hui; Wang, Ying; Wu, Zhijian; Han, Baozhong

    2018-02-28

    In this study, we performed a quantum chemical molecular dynamics (QM/MD) simulation to investigate the space charge accumulation process in copolymers of polyethylene (PE) with ethylene acrylic acid (EAA), ethylene vinyl acetate (EVA), styrene-ethylene-butadiene-styrene (SEBS), and black carbon (BC). We predicted that BC, especially branched BC, would possess the highest electron affinity and is identified as the most promising filler in power cable insulation. Following incorporations of 0-4 high-energy electrons into the composites, branched BC exhibited the highest stability and almost all electrons were trapped by it. Therefore, PE was protected efficiently and BC can be considered as an efficient filler for high voltage cables and an inhibitor of tree formation. On the contrary, although EAA, EVA, and SEBS can trap high-energy electrons, the latter can be supersaturated in composites of EAA, EVA, and SEBS with PE. The inserted polymers was unavoidably destroyed following C-H and C-O bond cleavage, which results from the interactions and charge transfer between PE and inserted polymers. The content effects of -COOH, benzene, and -OCOCH 3 groups on the electron trapping, mobility and stability of PE were also investigated systematically. We hope this knowledge gained from this work will be helpful in understanding the role of inserted polymers and the growth mechanisms of electrical treeing in high voltage cable insulation.

  1. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    PubMed

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  2. Study of montmorillonite nanoparticles and electron beam irradiation interaction of ethylene vinyl acetate (EVA)/de-vulcanized waste rubber thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Bee, Soo-Tueen; Sin, Lee Tin; Hoe, Tie Teck; Ratnam, C. T.; Bee, Soo Ling; Rahmat, A. R.

    2018-05-01

    The purpose of this work was to investigate the effects of montmorillonite (MMT) loading level and electron beam irradiation on the physical-mechanical properties and thermal stability of ethylene vinyl acetate (EVA)- devulcanised waste rubber blends. The addition of MMT particles has significantly increased the d-spacing and interchain separation of deflection peak (0 0 2) of MMT particles. This indicates that MMT particles have effectively intercalated in polymer matrix of EVA-devulcanised waste rubber blends. Besides, the application of electron beam irradiation dosages <150 kGy could also significantly induce the effective intercalation effect of MMT particles in polymer matrix by introducing crosslinking networks. The increasing of electron beam irradiation dosages up to 250 kGy has gradually increased the gel content of all EVA-devulcanized rubber blends by inducing the formation of crosslinking networks in polymer matrix. Also, the tensile strength of all EVA-devulcanized waste rubber blends was gradually increased when irradiated up to 150 kGy. This is due to the occurrence of crosslinking networks by irradiation could significantly provide reinforcement effect to polymer matrix by effectively transferring the stress applied on polymer matrix throughout the whole polymer matrix.

  3. Poly(ethylene oxide) Chains Are Not ``Hydrophilic'' When They Exist As Polymer Brush Chains

    NASA Astrophysics Data System (ADS)

    Lee, Hoyoung; Kim, Dae Hwan; Witte, Kevin N.; Ohn, Kimberly; Choi, Je; Kim, Kyungil; Meron, Mati; Lin, Binhua; Akgun, Bulent; Satija, Sushil; Won, You-Yeon

    2012-02-01

    By using a combined experimental and theoretical approach, a model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated. The polymer segment density profiles of the PEO brush in the direction normal to the air-water interface under various grafting density conditions were determined from combined X-ray and neutron reflectivity data. In order to achieve a theoretically sound analysis of the reflectivity data, we developed a new data analysis method that uses the self-consistent field theoretical modeling as a tool for predicting expected reflectivity results for comparison with the experimental data. Using this new data analysis method, we discovered that the effective Flory-Huggins interaction parameter of the PEO brush chains is significantly greater than that corresponding to the theta condition, suggesting that contrary to what is more commonly observed for PEO in normal situations, the PEO chains are actually not ``hydrophilic'' when they exist as polymer brush chains, because of the many body interactions forced to be effective in the brush situation.

  4. Plasmid DNA partitioning and separation using poly(ethylene glycol)/poly(acrylate)/salt aqueous two-phase systems.

    PubMed

    Johansson, Hans-Olof; Matos, Tiago; Luz, Juliana S; Feitosa, Eloi; Oliveira, Carla C; Pessoa, Adalberto; Bülow, Leif; Tjerneld, Folke

    2012-04-13

    Phase diagrams of poly(ethylene glycol)/polyacrylate/Na(2)SO(4) systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coli can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coli homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na(2)SO(4)-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. 40 CFR 63.482 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation operated in a batch mode. Block polymer means a polymer where the polymerization is controlled... frequent block average values. Continuous unit operation means a unit operation operated in a continuous... (EPM) result from the polymerization of ethylene and propylene and contain a saturated chain of the...

  6. 40 CFR 63.482 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation operated in a batch mode. Block polymer means a polymer where the polymerization is controlled... frequent block average values. Continuous unit operation means a unit operation operated in a continuous... (EPM) result from the polymerization of ethylene and propylene and contain a saturated chain of the...

  7. 40 CFR 63.482 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation operated in a batch mode. Block polymer means a polymer where the polymerization is controlled... frequent block average values. Continuous unit operation means a unit operation operated in a continuous... (EPM) result from the polymerization of ethylene and propylene and contain a saturated chain of the...

  8. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  9. Highly active self-immobilized FI-Zr catalysts in a PCP framework for ethylene polymerization.

    PubMed

    Li, He; Xu, Bo; He, Jianghao; Liu, Xiaoming; Gao, Wei; Mu, Ying

    2015-12-04

    A series of zirconium-based porous coordination polymers (PCPs) containing FI catalysts in the frameworks have been developed and studied as catalysts for ethylene polymerization. These PCPs exhibit good catalytic activities and long life times, producing polyethylenes with high molecular weights and bimodal molecular weight distribution in the form of particles.

  10. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1345...-hydroxyethoxy)benzene moieties. (b) Specifications—(1) Density. Ethylene/1,3-phenylene oxyethylene isophthalate/terephthalate copolymer identified in paragraph (a) of this section has a density of 1.33±0.02 grams per cubic...

  11. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    PubMed

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  12. Effect of oxidation agent on wood biomass in ethylene vinyl acetate conductive polymer: tensile properties, tensile fracture surface and electrical properties

    NASA Astrophysics Data System (ADS)

    Hanif, M. P. M.; Supri, A. G.; Rozyanty, A. R.; Tan, S. J.

    2017-10-01

    The wood fiber (WF) type of Pulverised Wood Filler obtained by combustion process at temperature under 700 °C for 3 hours was characterized and coated with ferric chloride (FeCl3) by ethanol solution. Both carbonized wood fiber (CWF) and carbonized wood fiber-ferric chloride (CWF-FeCl3) were used as filler in ethylene vinyl acetate (EVA) conductive polymer. The filler was coated with FeCl3 to enhance the properties of the CWF to achieve progressive mechanical and electrical properties. The CWF and CWF-FeCl3 loading were varied from 2.5 to 10.0 wt%. EVA/CWF and EVA/CWF-FeCl3 conductive polymer were processed by using Brabender Plasticoder at 160 °C with 50 rpm rotor speed for 10 min. The mechanical properties were investigated by tensile testing and the tensile fractured surface of conductive polymers was analyzed by scanning electron microscopy (SEM) analysis. Then, the electrical conductivity of conductive polymer was determined by four-point probe I-V measurement system. The EVA/CWF-FeCl3 conductive polymer showed greater electrical conductivity and tensile strength but lower elongation at break than EVA/CWF conductive polymer. SEM morphology displayed rougher surface between CWF-FeCl3 and EVA phases compared to EVA/CWF conductive polymer.

  13. Comparison between Cellulose Nanocrystal and Cellulose Nanofibril Reinforced Poly(ethylene oxide) Nanofibers and Their Novel Shish-Kebab-Like Crystalline Structures

    Treesearch

    Xuezhu Xu; Haoran Wang; Long Jiang; Xinnan Wang; Scott A. Payne; J.Y. Zhu; Ruipeng Li

    2014-01-01

    Poly(ethylene oxide) (PEO) nanofiber mats were produced by electrospinning. Biobased cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) as reinforcement nanofillers were also added to the polymer to produce composite nanofiber mats. The effects of the two cellulose nanofillers on the rheological properties of the PEO solutions and the microstructure,...

  14. ESCA Study of Poly (Vinylidene Fluoride) Tetrafluoroethylene - Ethylene Copolymer and Polyethylene Exposed to Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of poly(vinylidene fluoride) (PVDF), tetrafluoroethylene-ethylene copolymer (TFE/ET) and polyethylene (PE) exposed to atomic oxygen (O(P-3)), in or out of the glow of a radio-frequency O2 plasma, were compared. ESCA spectra of PE films exposed to (O(P-3)) in low Earth orbit (LEO) on the STS-8 Space Shuttle were also examined. Apart from O(P-3)-induced surface recession (etching), the various polymer films exhibited surface oxidation, which proceeded towards equilibrium saturation oxygen levels. The maximum surface oxygen uptakes for in-glow or out-of-glow exposures were in the order: PE greater than TFE/ET greater than PVDF; for PE itself, the oxygen uptakes were in the order: in glow greater than out of glow greater than LEO. Given prior ESCA data on poly(vinyl fluoride) and polytetrafluoroethylene films exposed to O(P-3), the extent of surface oxidation is seen to decrease regularly with increase in fluorine substitution in a family of ethylene-type polymers. (Keywords: ESCA; poly(vinylidene fluoride); tetrafluoroethylene ethylene copolymer; polyethylene; atomic oxygen; radio-frequency oxygen plasma; low Earth orbit)

  15. Will ethylene oxide sterilization influence the application of novel Cu/LDPE nanocomposite intrauterine devices?

    PubMed

    Xia, Xianping; Wang, Yun; Cai, Shuizhou; Xie, Changsheng; Zhu, Changhong

    2009-01-01

    Copper/low-density polyethylene (Cu/LDPE) nanocomposite intrauterine device (IUD) is an implanted medicinal device that must be sterilized before use. Sterilization processes act either chemically or physically, leading to a lethal change in the structure or function of organic macromolecules in microorganisms. Given the nature of their action, sterilization might also attack the macromolecules of polymers by the same mechanisms, resulting in changes in surface functional groups and in the internal structure of the polymer. If sterilization leads to changes in surface functional groups and in the internal structure of the LDPE matrix, which will influence the mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs, potential clinical application will be limited. Therefore, it is necessary to study the influence of ethylene oxide sterilization on the potential clinical application of novel Cu/LDPE nanocomposite IUDs. The influence of ethylene oxide sterilization on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs was studied using differential scanning calorimetry, attenuated total reflection Fourier transform infrared spectroscopy, tensile testing and absorbance measurement. Ethylene oxide sterilization did not have any influence on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite intrauterine devices. Ethylene oxide sterilization will not affect the potential application of novel Cu/LDPE nanocomposite IUDs.

  16. Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO(4). II. Dynamical properties.

    PubMed

    Siqueira, Leonardo J A; Ribeiro, Mauro C C

    2006-12-07

    The dynamical properties of the polymer electrolyte poly(ethylene oxide) (PEO)LiClO(4) have been investigated by molecular dynamics simulations. The effect of changing salt concentration and temperature was evaluated on several time correlation functions. Ionic displacements projected on different directions reveal anisotropy in short-time (rattling) and long-time (diffusive) dynamics of Li(+) cations. It is shown that ionic mobility is coupled to the segmental motion of the polymeric chain. Structural relaxation is probed by the intermediate scattering function F(k,t) at several wave vectors. Good agreement was found between calculated and experimental F(k,t) for pure PEO. A remarkable slowing down of polymer relaxation is observed upon addition of the salt. The ionic conductivity estimated by the Nernst-Einstein equation is approximately ten times higher than the actual conductivity calculated by the time correlation function of charge current.

  17. Electrospraying and Electrospinning of Polymers for Biomedical Applications. Poly(Lactic-Co-Glycolic Acid) and Poly(Ethylene-Co-Vinylacetate). Appendix 2

    NASA Technical Reports Server (NTRS)

    Stitzel, Joel D.; Bowlin, Gary L.; Mansfield, Kevin; Wnek, Gary E.; Simpson, David G.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. Specific attention is given here to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options. Of particular interest is the ability to generate polymer fibers of sub-micron dimensions using electrospinning, down to about 0.05 microns (50 nm), a size range that has been traditionally difficult to access. In our work, poly(lactic-co-glycolic acid), PLA/PGA, poly(lactic acid) PLA, and poly(ethylene-co-vinylacetate) (PEVA) have been deposited from solutions in methylene chloride or chloroform by electrospraying or electrospinning to afford morphologically tailored materials for tissue engineering and related applications. Low solution concentrations tend to favor electrostatic spraying ('electro-aerosolization') while higher concentrations lead to spinning on fibrous mats. Preliminary observations of muscle cell growth on PLA electrospun mats are reported.

  18. Poly(cyclohexylethylene)- block-poly(ethylene oxide) block polymers for metal oxide templating

    DOE PAGES

    Schulze, Morgan W.; Sinturel, Christophe; Hillmyer, Marc A.

    2015-09-01

    A series of poly(cyclohexylethylene)- block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation producesmore » an ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.« less

  19. Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhizhen; Xu, Kaiqi; Rong, Xiaohui; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan

    2017-12-01

    Solid electrolytes with high ionic conductivity and excellent electrochemical stability are of prime significance to enable the application of solid-state batteries in energy storage and conversion. In this study, solid composite polymer electrolytes (CPEs) based on sodium bis(trifluorosulfonyl) imide (NaTFSI) and poly (ethylene oxide) (PEO) incorporated with active ceramic filler (NASICON) are reported for the first time. With the addition of NASICON fillers, the thermal stability and electrochemical stability of the CPEs are improved. A high conductivity of 2.8 mS/cm (at 80 °C) is readily achieved when the content of the NASICON filler in the composite polymer reaches 50 wt%. Furthermore, Na3V2(PO4)3/CPE/Na solid-state batteries using this composite electrolyte display good rate and excellent cycle performance.

  20. Integrated antimicrobial and nonfouling zwitterionic polymers.

    PubMed

    Mi, Luo; Jiang, Shaoyi

    2014-02-10

    Zwitterionic polymers are generally viewed as a new class of nonfouling materials. Unlike their poly(ethylene glycol) (PEG) counterparts, zwitterionic polymers have a broader chemical diversity and greater freedom for molecular design. In this Minireview, we highlight recent microbiological applications of zwitterionic polymers and their derivatives, with an emphasis on several unique molecular strategies to integrate antimicrobial and nonfouling properties. We will also discuss our insights into the bacterial nonfouling performance of zwitterionic polymers and one example of engineering zwitterionic polymer derivatives for antimicrobial wound-dressing applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Design of Polymers with Semiconductor, NLO and Structural Properties.

    DTIC Science & Technology

    1991-04-22

    polymer thin films. + 14 KV Needle electrod Polymer layer ITO electrode Substrate Heater and temperature control unit The second harmonic coefficients of...the solubily and processability through utilization of derivitization and precursor routes we have been able to form the first optical quality films...ethylene spacer, and therefore 14 possesses a great degree of solubility in organic solvents, necessary for the fabrication of optical quality thin films

  2. Poly(ethylene glycol)s in Semidilute Regime: Radius of Gyration in the Bulk and Partitioning into a Nanopore

    DOE PAGES

    Gurnev, Philip A.; Stanley, Christopher B.; Aksoyoglu, M. Alphan; ...

    2017-03-09

    In this work, using two approaches, small-angle neutron scattering (SANS) from bulk solutions and nanopore conductance-fluctuation analysis, we studied structural and dynamic features of poly(ethylene glycol) (PEG) water/salt solutions in the dilute and semidilute regimes. SANS measurements on PEG 3400 at the zero-average contrast yielded the single chain radius of gyration (R g) over 1–30 wt %. We observed a small but statistically reliable decrease in R g with increasing PEG concentration: at 30 wt % the chain contracts by a factor of 0.94. Analyzing conductance fluctuations of the α-hemolysin nanopore in the mixtures of PEG 200 with PEG 3400,more » we demonstrated that polymer partitioning into the nanopore is mostly due to PEG 200. Specifically, for a 1:1 wt/wt mixture the smaller polymer dominates to the extent that only about 1/25 of the nanopore volume is taken by the larger polymer. In conclusion, these findings advance our conceptual and quantitative understanding of nanopore polymer partitioning; they also support the main assumptions of the recent “polymers-pushing-polymers” model.« less

  3. Effect of O/W process parameters on Crataegus azarolus L nanocapsule properties.

    PubMed

    Esmaeili, Akbar; Rahnamoun, Soraya; Sharifnia, Fariba

    2013-05-29

    Nanocapsules have many applications in the drug, cosmetic, fragrance, and food industries. In this study, Crataegus azarolus L. nanocapsules were prepared by a modified emulsion diffusion technique. In this technique a shell was first made from the polyester triblock copolymer poly(ethylene glycol)-poly(butylene adipate)-poly(ethylene glycol) (PEG-PBA-PEG) and then olive oil was set as the core of the nanocapsule by a method known as the polymer deposition solvent evaporation method. Varying amounts of C. azarolus extract, polymer, and olive oil were mixed in acetone and then added to water on a shaker. Finally, the acetone was removed by vacuuming. The size of the prepared nanocapsules were measured with a particle size analysis report (PSAR) and identified by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR). Our experiments showed that the size of the nanocapsules depends on the preparation conditions, i.e., the ratio of polymer to oil and concentrations of polymer and plant extract. A ratio of 1:0.25 polymer to oil was shown to be more suitable for the formation of smaller nanocapsules of C. azarolus.

  4. Effect of O/W process parameters on Crataegus azarolus L nanocapsule properties

    PubMed Central

    2013-01-01

    Background Nanocapsules have many applications in the drug, cosmetic, fragrance, and food industries. In this study, Crataegus azarolus L. nanocapsules were prepared by a modified emulsion diffusion technique. Methods In this technique a shell was first made from the polyester triblock copolymer poly(ethylene glycol)-poly(butylene adipate)-poly(ethylene glycol) (PEG-PBA-PEG) and then olive oil was set as the core of the nanocapsule by a method known as the polymer deposition solvent evaporation method. Varying amounts of C. azarolus extract, polymer, and olive oil were mixed in acetone and then added to water on a shaker. Finally, the acetone was removed by vacuuming. Results The size of the prepared nanocapsules were measured with a particle size analysis report (PSAR) and identified by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR). Conclusions Our experiments showed that the size of the nanocapsules depends on the preparation conditions, i.e., the ratio of polymer to oil and concentrations of polymer and plant extract. A ratio of 1:0.25 polymer to oil was shown to be more suitable for the formation of smaller nanocapsules of C. azarolus. PMID:23718829

  5. Landfill Liners and Covers: Properties and Application to Army Landfills.

    DTIC Science & Technology

    1984-06-01

    polymers, TPE can be seamed by heat techniques. Materials such as thermoplastic EPDM and nitrile rubber /PVC blends are still being tested to determine their...such as polyethylene (PE), polyvinyl chloride (PVC), butyl rubber , ethylene propylene diene monomer ( EPDM ), chlorinated polyethylene (CPE), and others...chlorosulfonated polyethy- lene (CSPE), chlorinated polyethylene (CPE), butyl rubber , ethylene propylene S rubber ( EPDM ), neoprene, high-density polyethylene

  6. A Compendium of Thermoplastic Polymer Pyrograms

    DTIC Science & Technology

    2002-07-01

    poly(ethylene)........................................................................... 3 Figure 2 . Pyrogram of a sample of high density poly(ethylene... 2 -methylphenol and 3 -methylphenol (12.09 min and 12.46 min), 3,5-dimethylphenyl 4-hydroxy- 2 -methylphenyl ether (26.35 min). 5.00 10.00 15.00 20.00...hydroxybenzaldehyde (17.13), biphenyl (17.74 min), diphenylether (18.05 min), hydroxybenzoic acid (19.51 min), 2 -hydroxybiphenyl (19.64 min), dibenzofuran

  7. Effects of sterilization on poly(ethylene glycol) hydrogels.

    PubMed

    Kanjickal, Deenu; Lopina, Stephanie; Evancho-Chapman, M Michelle; Schmidt, Steven; Donovan, Duane

    2008-12-01

    The past few decades have witnessed a dramatic increase in the development of polymeric biomaterials. These biomaterials have to undergo a sterilization procedure before implantation. However, many sterilization procedures have been shown to profoundly affect polymer properties. Poly(ethylene glycol) hydrogels have gained increasing importance in the controlled delivery of therapeutics and in tissue engineering. We evaluated the effect of ethylene oxide (EtO), hydrogen peroxide (H(2)O(2)), and gamma sterilization of poly(ethylene glycol) hydrogels on properties relevant to controlled drug delivery and tissue engineering. We observed that the release of cyclosporine (CyA) (an immunosuppressive drug that is effective in combating tissue rejection following organ transplantation) was significantly affected by the type of sterilization. However, that was not the case with rhodamine B, a dye. Hence, the drug release characteristics were observed to be dependent not only on the sterilization procedure but also on the type of agent that needs to be delivered. In addition, differences in the swelling ratios for the sterilized and unsterilized hydrogels were statistically significant for 1:1 crosslinked hydrogels derived from the 8000 MW polymer. Significant differences were also observed for gamma sterilization for 1:1 crosslinked hydrogels derived from the 3350 MW polymer and also the 2:1 crosslinked hydrogels derived from the 8000 MW polymer. Atomic force microscopy (AFM) studies revealed that the roughness parameter for the unsterilized and EtO-sterilized PEG hydrogels remained similar. However, a statistically significant reduction of the roughness parameter was observed for the H(2)O(2) and gamma-sterilized samples. Electron spin resonance (ESR) studies on the unsterilized and the sterilized samples revealed the presence of the peroxy and the triphenyl methyl carbon radical in the samples. The gamma and the H(2)O(2)-sterilized samples were observed to have a much higher concentration of the radical pecies when compared with the EtO and the unsterilized samples. (c) 2008 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  8. Polymer solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawczyk, Gerhard Erich; Miller, Kevin Michael

    2011-07-26

    There is provided a method of making a polymer solution comprising polymerizing one or more monomer in a solvent, wherein said monomer comprises one or more ethylenically unsaturated monomer that is a multi-functional Michael donor, and wherein said solvent comprises 40% or more by weight, based on the weight of said solvent, one or more multi-functional Michael donor.

  9. Tailor-Made Electrospun Multilayer Composite Polymer Electrolytes for High-Performance Lithium Polymer Batteries.

    PubMed

    Lim, Du-Hyun; Haridas, Anupriya K; Figerez, Stelbin Peter; Raghavan, Prasanth; Matic, Aleksandar; Ahn, Jou-Hyeon

    2018-09-01

    A novel tailor-made multilayer composite polymer electrolyte, consisting of two outer layers of electrospun polyacrylonitrile (PAN) and one inner layer of poly(vinyl acetate) (PVAc)/poly(methyl methacrylate) (PMMA)/poly(ethylene oxide) (PEO) fibrous membrane, was prepared using continuous electrospinning. These membranes, which are made up of fibers with diameters in the nanometer range, were stacked in layers to produce interconnected pores that result in a high porosity. Gel polymer electrolytes (GPEs) were prepared by entrapping a liquid electrolyte (1 M LiPF6 in ethylene carbonate/dimethyl carbonate) in the membranes. The composite membranes exhibited a high electrolyte uptake of 450-510%, coupled with an improved room temperature ionic conductivity of up to 4.72 mS cm-1 and a high electrochemical stability of 4.6 V versus Li/Li+. Electrochemical investigations of a composite membrane of PAN-PVAc-PAN, with a LiFePO4 cathode synthesized in-house, showed a high initial discharge capacity of 145 mAh g-1, which corresponds to 85% utilization of the active material, and displayed stable cycle performance.

  10. Measurements of Attractive Forces between Proteins and End-Grafted Poly(Ethylene Glycol) Chains

    NASA Astrophysics Data System (ADS)

    Sheth, S. R.; Leckband, D.

    1997-08-01

    The surface force apparatus was used to measure directly the molecular forces between streptavidin and lipid bilayers displaying grafted Mr 2,000 poly(ethylene glycol) (PEG). These measurements provide direct evidence for the formation of relatively strong attractive forces between PEG and protein. At low compressive loads, the forces were repulsive, but they became attractive when the proteins were pressed into the polymer layer at higher loads. The adhesion was sufficiently robust that separation of the streptavidin and PEG uprooted anchored polymer from the supporting membrane. These interactions altered the properties of the grafted chains. After the onset of the attraction, the polymer continued to bind protein for several hours. The changes were not due to protein denaturation. These data demonstrate directly that the biological activity of PEG is not due solely to properties of simple polymers such as the excluded volume. It is also coupled to the competitive interactions between solvent and other materials such as proteins for the chain segments and to the ability of this material to adopt higher order intrachain structures.

  11. Deterred drug abuse using superabsorbent polymers.

    PubMed

    Mastropietro, David J; Muppalaneni, Srinath; Omidian, Hossein

    2016-11-01

    This study aimed to determine whether selected superabsorbent polymers (SAPs) could be used as a suitable alternative to thwart extraction, filtration, and syringeability attempts for abuse. Many abuse-deterrent formulations (ADFs) rely on high molecular weight polymers such as poly(ethylene oxide) to provide crush and extraction resistance. However, these polymers suffer from slow dissolution kinetics, and are susceptible to a variety of abuse conditions. Several commercially available SAPs were evaluated for swelling behavior in extraction solvents, and tableting properties. Post-compaction abuse properties were evaluated by recoverable volume and syringeability after solvent extraction. Drug release and percent drug extraction were conducted using tramadol HCl as a model drug. Certain SAPs had the ability to rapidly imbibe solvent and effectively stop extraction processes in a variety of solvents, including water and water/alcohol mixtures. Tablets containing SAP and drug showed no effect on drug release in vitro. SAPs possess adequate properties for tableting, and maintain their high and fast swelling properties after compaction. The fast and extensive interactions of SAPs with aqueous medium are a major advantage over non-crosslinked high molecular weight viscosifying agents such as poly(ethylene oxide).

  12. Molecularly uniform poly(ethylene glycol) certified reference material

    NASA Astrophysics Data System (ADS)

    Takahashi, Kayori; Matsuyama, Shigetomo; Kinugasa, Shinichi; Ehara, Kensei; Sakurai, Hiromu; Horikawa, Yoshiteru; Kitazawa, Hideaki; Bounoshita, Masao

    2015-02-01

    A certified reference material (CRM) for poly(ethylene glycol) with no distribution in the degree of polymerization was developed. The degree of polymerization of the CRM was accurately determined to be 23. Supercritical fluid chromatography (SFC) was used to separate the molecularly uniform polymer from a standard commercial sample with wide polydispersity in its degree of polymerization. Through the use of a specific fractionation system coupled with SFC, we are able to obtain samples of poly(ethylene glycol) oligomer with exact degrees of polymerization, as required for a CRM produced by the National Metrology Institute of Japan.

  13. Ionic Liquids as a Medium for Ionic Chain Polymerizations: An Environmentally Responsible Approach to Macromolecular Synthesis with Controlled Architecture

    DTIC Science & Technology

    2004-09-16

    published in non peer-reviewed journals: 1. Gross, SM, Hamilton JL. "Polymer Gels for Use in Lithium Polymer Batteries", Nebraska Academy of Science...a process for the anionic polymerization of styrene and methyl methacrylate in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ...Current polymer electrolyte composites used for these applications typically comprise polyethers with ethylene carbonate solvents containing lithium

  14. Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge and Overdischarge Abuse

    DTIC Science & Technology

    2012-11-16

    hexafluorophosphate EC: ethylene carbonate DEC: diethyl carbonate DMC: dimethyl carbonate PC: propylene carbonate     2    2. Introduction  Lithium -ion...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--12-9455 Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Performance Loss of Lithium Ion Polymer Batteries Subjected to Overcharge and

  15. Rapid Polymer Transport in a Single Nanometer-Scale Pore

    NASA Astrophysics Data System (ADS)

    Kasianowicz, J. J.

    1998-03-01

    Protein ion channels are nanometer-scale pores that control the transport of ions and polymers across cell membranes. We compared the ability of charged and nonelectrolyte linear polymers to partition into a single channel reconstituted into a planar lipid bilayer membrane. The entry of each polymer (e.g. monodisperse length single-stranded homopolymeric RNA1 or poly(ethylene glycol)2,3) into the pore caused characteristic transient decreases in the channel's ionic conductance. The ionic current blockades yield detailed information about the physical properties of the polymers and the pore. The biological and technological significance of the results will be discussed.

  16. Investigation of Tb 3+ ion fluorescence properties in γ-irradiated poly(ethylene oxide)-TbCl 3 blended systems

    NASA Astrophysics Data System (ADS)

    Cho, Myung D.; Okamoto, Yoshiyuki

    1995-05-01

    Degradation of polymers by γ-irradiation using Tb 3+ ion as a fluorescence probe was investigated. When poly(ethylene oxide) blended with TbCl 3 films were γ-irradiated in air, the fluorescence intensity of Tb 3+ was found to be greatly increased and the molecular weights of PEO were decreased. These results suggest that radiolysis caused chain degradation of PEO and produced carbonyl groups at the end of the cleaved polymer chain. The chromophore moiety produced transfers energy to Tb 3+ ion located within the non-irradiative energy trasfer distance. It is suggested that blended films of PEO with Tb 3+ may be used as convenient and fast detectors of γ-irradiation doses.

  17. Chelate-modified polymers for atmospheric gas chromatography

    NASA Technical Reports Server (NTRS)

    Christensen, W. W.; Mayer, L. A.; Woeller, F. H. (Inventor)

    1980-01-01

    Chromatographic materials were developed to serve as the stationary phase of columns used in the separation of atmospheric gases. These materials consist of a crosslinked porous polymer matrix, e.g., a divinylbenzene polymer, into which has been embedded an inorganic complexed ion such as N,N'-ethylene-bis-(acetylacetoniminato)-cobalt (2). Organic nitrogenous bases, such as pyridine, may be incorporated into the chelate polymer complexes to increase their chromatographic utility. With such materials, the process of gas chromatography is greatly simplified, especially in terms of time and quantity of material needed for a gas separation.

  18. Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water

    NASA Astrophysics Data System (ADS)

    Kaboudin, Babak; Khanmohammadi, Hamid; Kazemi, Foad

    2017-12-01

    Sulfonated polystyrene microsphere were functionalized using ethylene diamine to introduce amine groups to the polymer chains. The amine functionalized polymers were used as a support for gold nanoparticles. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, EDS, CHN and atomic absorption spectroscopy. The polymer supported gold nanoparticles was found to be an efficient catalyst for the oxidation of alcohols in water.

  19. Biodegradable starch-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  20. Apparatus for and method of producing monodisperse submicron polymer powders from solution

    DOEpatents

    Noid, Donald W.; Otaigbe, Joshua U.; Barnes, Michael D.; Sumpter, Bobby G.; Kung, Chung-Yi

    2002-01-01

    This invention describes a method of producing polymer powders from solution in a compatible solvent using a new device referred to as a microdroplets on demand generator (MODG). The embodiment of this invention is the MODG apparatus and its relevance as a method to extensive application in materials science and technology. Proof of concept is demonstrated using poly(ethylene) glycol polymer microparticles generated with the MODG and captured in a microparticle levitation device.

  1. Development of Biodegradable and Injectable Macromers Based on Poly(Ethylene Glycol) and Diacid Monomers

    PubMed Central

    Kim, Jinku; Yaszemski, Michael J.; Lu, Lichun

    2010-01-01

    Novel biodegradable injectable poly(ethylene glycol) (PEG) based macromers were synthesized by reacting low molecular weight PEG (MW: 200) and dicarboxylic acids such as sebacic acid or terephthalic acid. Chemical structures of the resulting polymers were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy characterizations. Differential scanning calorimetry (DSC) showed that these polymers were completely amorphous above room temperature. After photopolymerization, dynamic elastic shear modulus of the crosslinked polymers was up to 1.5 MPa and compressive modulus was up to 2.2 MPa depending on the polymer composition. The in vitro degradation study showed that mass losses of these polymers were gradually decreased over 23 weeks of period in simulated body fluid. By incorporating up to 30 wt% of 2-hydroxyethyl methylmethacrylate (HEMA) into the crosslinking network, the dynamic elastic modulus and compressive modulus was significantly increased up to 7.2 MPa and 3.2 MPa, respectively. HEMA incorporation also accelerated degradation as indicated by significantly higher mass loss of up to 27% after 20 weeks of incubation. Cytocompatability studies using osteoblasts and neural cells revealed that cell metabolic activity on these polymers with or without HEMA was close to the control tissue culture polystyrene. The PEG based macromers developed in this study may be useful as scaffolds or cell carriers for tissue engineering applications. PMID:18655146

  2. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties.

    PubMed

    Costa, Luciano T; Ribeiro, Mauro C C

    2006-05-14

    Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.

  3. In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries.

    PubMed

    Zhang, Jianjun; Wen, Huijie; Yue, Liping; Chai, Jingchao; Ma, Jun; Hu, Pu; Ding, Guoliang; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan

    2017-01-01

    Sodium ion battery is one of the promising rechargeable batteries due to the low-cost and abundant sodium sources. In this work, a monolithic sodium ion battery based on a Na 3 V 2 (PO 4 ) 3 cathode, MoS 2 layered anode, and polyether-based polymer electrolyte is reported. In addition, a new kind of polysulfonamide-supported poly(ethylene glycol) divinyl ether based polymer electrolyte is also demonstrated for monolithic sodium ion battery via in situ preparation. The resultant polymer electrolyte exhibits relatively high ionic conductivity (1.2 mS cm -1 ) at ambient temperature, wide electrochemical window (4.7 V), and favorable mechanical strength (25 MPa). Moreover, such a monolithic Na 3 V 2 (PO 4 ) 3 /MoS 2 sodium ion battery using this polymer electrolyte delivers outstanding rate capability (up to 10 C) and superior cyclic stability (84%) after 1000 cycles at 0.5 C. What is more essential, such a polymer electrolyte based soft-package monolithic sodium ion cell can still power a red light emitting diode lamp and run finite times without suffering from any internal short-circuit failures, even in the case of a bended and wrinkled state. Considering these aspects, this work no doubt provides a new approach for the design of a high-performance polymer electrolyte toward monolithic sodium ion battery with exceptional rate capability and high safety. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparison of retention models for polymers 1. Poly(ethylene glycol)s.

    PubMed

    Bashir, Mubasher A; Radke, Wolfgang

    2006-10-27

    The suitability of three different retention models to predict the retention times of poly(ethylene glycol)s (PEGs) in gradient and isocratic chromatography was investigated. The models investigated were the linear (LSSM) and the quadratic solvent strength model (QSSM). In addition, a model describing the retention behaviour of polymers was extended to account for gradient elution (PM). It was found that all models are suited to properly predict gradient retention volumes provided the extraction of the analyte specific parameters is performed from gradient experiments as well. The LSSM and QSSM on principle cannot describe retention behaviour under critical or SEC conditions. Since the PM is designed to cover all three modes of polymer chromatography, it is therefore superior to the other models. However, the determination of the analyte specific parameters, which are needed to calibrate the retention behaviour, strongly depend on the suitable selection of initial experiments. A useful strategy for a purposeful selection of these calibration experiments is proposed.

  5. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  6. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp3 boron-based solid single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong

    2016-02-01

    The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.

  7. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. Themore » structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.« less

  8. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. Themore » structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.« less

  9. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less

  10. Important property of polymer spheres for the preparation of three-dimensionally ordered macroporous (3DOM) metal oxides by the ethylene glycol method: the glass-transition temperature.

    PubMed

    Sadakane, Masahiro; Sasaki, Keisuke; Nakamura, Hiroki; Yamamoto, Takashi; Ninomiya, Wataru; Ueda, Wataru

    2012-12-21

    We demonstrate that the glass-transition temperature (T(g)) of a polymer sphere template is a crucial factor in the production of three-dimensionally ordered macroporous (3DOM) materials. Metal nitrate dissolved in ethylene glycol-methanol was infiltrated into the void of a face-centered, close-packed colloidal crystal of poly(methyl methacrylate) (PMMA)-based spheres. The metal nitrate reacts with EG to form a metal oxalate (or metal glycoxylate) solid (nitrate oxidation) in the void of the template when the metal nitrate-EG-PMMA composite is heated. Further heating converts metal oxalate to metal oxide and removes PMMA to form 3DOM materials. We investigated the effect of T(g) of PMMA templates and obtained clear evidence that the solidification temperature of the metal precursor solution (i.e., nitration oxidation temperature) should be lower than the T(g) of the polymer spheres to obtain a well-ordered 3DOM structure.

  11. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA).

    PubMed

    Brancher, Luiza R; Nunes, Maria Fernanda de O; Grisa, Ana Maria C; Pagnussat, Daniel T; Zeni, Mára

    2016-01-15

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  12. Unlocking Chain Exchange in Highly Amphiphilic Block Polymer Micellar Systems: Influence of Agitation.

    PubMed

    Murphy, Ryan P; Kelley, Elizabeth G; Rogers, Simon A; Sullivan, Millicent O; Epps, Thomas H

    2014-11-18

    Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene- b -ethylene oxide) or pure poly(butadiene- b -ethylene oxide- d 4 ) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air-water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies.

  13. Comparison of Different Ion Mobility Setups Using Poly (Ethylene Oxide) PEO Polymers: Drift Tube, TIMS, and T-Wave

    NASA Astrophysics Data System (ADS)

    Haler, Jean R. N.; Massonnet, Philippe; Chirot, Fabien; Kune, Christopher; Comby-Zerbino, Clothilde; Jordens, Jan; Honing, Maarten; Mengerink, Ynze; Far, Johann; Dugourd, Philippe; De Pauw, Edwin

    2018-01-01

    Over the years, polymer analyses using ion mobility-mass spectrometry (IM-MS) measurements have been performed on different ion mobility spectrometry (IMS) setups. In order to be able to compare literature data taken on different IM(-MS) instruments, ion heating and ion temperature evaluations have already been explored. Nevertheless, extrapolations to other analytes are difficult and thus straightforward same-sample instrument comparisons seem to be the only reliable way to make sure that the different IM(-MS) setups do not greatly change the gas-phase behavior. We used a large range of degrees of polymerization (DP) of poly(ethylene oxide) PEO homopolymers to measure IMS drift times on three different IM-MS setups: a homemade drift tube (DT), a trapped (TIMS), and a traveling wave (T-Wave) IMS setup. The drift time evolutions were followed for increasing polymer DPs (masses) and charge states, and they are found to be comparable and reproducible on the three instruments. [Figure not available: see fulltext.

  14. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    PubMed

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  15. Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium diclofenac

    PubMed Central

    Tawfeek, Hesham M.

    2013-01-01

    The aim of this study was to synthesize and evaluate novel biodegradable polyesters namely; poly(ethylene glycol)-Poly(glycerol adipate-co-ω-pentadecalactone), PEG-PGA-co-PDL-PEG, and poly(ethylene glycol methyl ether)-Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL-PEGme as an alternative sustained release carrier for lung delivery compared with non-PEG containing polymer PGA-co-PDL. The co-polymers were synthesized through lipase catalysis ring opening polymerization reaction and characterized using GPC, FT-IR, 1H-NMR and surface contact angle. Furthermore, microparticles containing a model hydrophilic drug, sodium diclofenac, were prepared via spray drying from a modified single emulsion and characterized for their encapsulation efficiency, geometrical particle size, zeta potential, tapped density, primary aerodynamic diameter, amorphous nature, morphology, in vitro release and the aerosolization performance. Microparticles fabricated from mPEG-co-polymer can be targeted to the lung periphery with an optimum in vitro deposition. Furthermore, a significantly higher in vitro release (p > 0.05, ANOVA/Dunnett’s) was observed with the PEG and mPEG-co-polymers compared to PGA-co-PDL. In addition, these co-polymers have a good safety profile upon testing on human bronchial epithelial, 16HBE14o- cell lines. PMID:24227959

  16. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    DOE PAGES

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; ...

    2012-01-06

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T 1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T 1 values along with the presence of minima in T 1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similarmore » activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less

  17. Radiochemical ageing of EPDM elastomers. 3. Mechanism of radiooxidation

    NASA Astrophysics Data System (ADS)

    Rivaton, A.; Cambon, S.; Gardette, J.-L.

    2005-01-01

    The preceding paper of this series was devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing of EPDM (77.9% ethylene, 21.4% propylene, 0.7% diene) and EPR (76.6% ethylene, 23.4% propylene) films irradiated under oxygen atmosphere using 60Co gamma rays. The double bond of the diene was observed to be consumed with a high radiochemical yield. The oxidation and reticulation rates were observed to be higher in the case of EPDM than in EPR. Accumulation of the major oxidation products in both polymers was shown to occur in the order of decreasing concentrations: hydroperoxides, ketones, carboxylic acids and alcohols, peroxides. On the basis of the analysis of the oxidation products formed in EPDM and EPR, and taking into account their relative concentrations, the mechanisms accounting for the EPDM γ-degradation under oxygen atmosphere are proposed in the present paper. Two main processes are involved in the EPDM radiooxidation. The random γ-radiolysis of the polymer provides a constant source of macroalkyl radicals mainly formed on ethylene units. The secondary radicals so formed are likely to initiate a selective oxidation of the polymer through free-radicals reactions involving the abstraction of labile hydrogen atoms. In particular, the hydroperoxides decomposition and the consumption of the ENB moieties, this latter being the most oxidisable site and the source of crosslinking, may result from hydrogen abstraction by radical species.

  18. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.

    PubMed

    Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D

    2007-01-01

    Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.

  19. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel.

    PubMed

    Nitzsche, Roy; Budzinski, Maik; Gröngröft, Arne

    2016-01-01

    Lignocellulose biorefineries are distinguished by an explicitly integrative, multi-functional concept that transforms biomass into multiple products, using a variety of conversion and separation processes. This study focuses on the technical design and economic evaluation of a lignocellulose biorefinery, that converts 400,000tDM/a (≙250MW) of beech wood into chemicals and fuel. A model was simulated with Aspen Plus® including the process steps pre-treatment, enzymatic hydrolysis, alcoholic fermentation, dehydration and biogas generation and upgrading. Mass and energy balances showed that 61,600t/a polymer-grade ethylene, 58,520tDM/a organosolv lignin, 38,400t/a biomethane and 90,800tDM/a hydrolysis lignin can be produced with a total energy efficiency of 87.1%. A discounted cash flow analysis indicated that the heat integrated biorefinery concept is not yet profitable. However, the economic results are greatly sensitive regarding various assumptions, in particular in terms of the prices for beech wood, ethylene and organosolv lignin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Theoretical Insight into Dispersion of Silica Nanoparticles in Polymer Melts.

    PubMed

    Wei, Zhaoyang; Hou, Yaqi; Ning, Nanying; Zhang, Liqun; Tian, Ming; Mi, Jianguo

    2015-07-30

    Silica nanoparticles dispersed in polystyrene, poly(methyl methacrylate), and poly(ethylene oxide) melts have been investigated using a density functional approach. The polymers are regarded as coarse-grained semiflexible chains, and the segment sizes are represented by their Kuhn lengths. The particle-particle and particle-polymer interactions are calculated with the Hamaker theory to reflect the relationship between particles and polymer melts. The effects of particle volume fraction and size on the particle dispersion have been quantitatively determined to evaluate their dispersion/aggregation behavior in these polymer melts. It is shown that theoretical predictions are generally in good agreement with the corresponding experimental results, providing the reasonable verification of particle dispersion/agglomeration and polymer depletion.

  1. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates.

    PubMed

    Lee, Hyukjin; Lee, Kang Dae; Pyo, Kyung Bo; Park, Sung Young; Lee, Haeshin

    2010-03-16

    We report on catechol-grafted poly(ethylene) glycol (PEG-g-catechol) for the preparation of nonfouling surfaces on versatile substrates including adhesion-resistant PTFE. PEG-g-catechol was prepared by the step-growth polymerization of PEO to which dopamine, a mussel-derived adhesive molecule, was conjugated. The immersion of substrates into an aqueous solution of PEG-g-catechol resulted in robust PEGylation on versatile surfaces of noble metals, oxides, and synthetic polymers. Surface PEGylation was unambiguously confirmed by various surface analytical tools such as ellipsometry, goniometry, infrared spectroscopy, and X-ray photoelectron spectroscopy. Contrary to existing PEG derivatives that are difficult-to-modify synthetic polymer surfaces, PEG-g-catechol can be considered to be a new class of PEGs for the facile surface PEGylation of various types of surfaces.

  2. Multiscale Modeling of Thermal Conductivity of Polymer/Carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Frankland, Sarah-Jane V.; Hinkley, Jeffrey A.; Gates, Thomas S.

    2010-01-01

    Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between nanoparticles and amorphous and crystalline polymer matrices. Bulk thermal conductivities of the nanocomposites were then estimated using an established effective medium approach. To study functionalization, oligomeric ethylene-vinyl alcohol copolymers were chemically bonded to a single wall carbon nanotube. The results, in a poly(ethylene-vinyl acetate) matrix, are similar to those obtained previously for grafted linear hydrocarbon chains. To study the effect of noncovalent functionalization, two types of polyethylene matrices. -- aligned (extended-chain crystalline) vs. amorphous (random coils) were modeled. Both matrices produced the same interfacial thermal resistance values. Finally, functionalization of edges and faces of plate-like graphite nanoparticles was found to be only modestly effective in reducing the interfacial thermal resistance and improving the composite thermal conductivity

  3. Using [superscript 1]H NMR Spectra of Polymers and Polymer Products to Illustrate Concepts in Organic Chemistry

    ERIC Educational Resources Information Center

    Harrell, Mary L.; Bergbreiter, David E.

    2017-01-01

    The use of [superscript 1]H NMR spectroscopy to analyze the number-average molecular weight of a methoxy poly(ethylene glycol) (MPEG) and an acetate derivative of this MPEG is described. These analyses illustrate NMR principles associated with the chemical shift differences of protons in different environments, NMR integration, and the effect of…

  4. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry

    PubMed Central

    Reiner, Joseph E.; Kasianowicz, John J.; Nablo, Brian J.; Robertson, Joseph W. F.

    2010-01-01

    Nanometer-scale pores have demonstrated potential for the electrical detection, quantification, and characterization of molecules for biomedical applications and the chemical analysis of polymers. Despite extensive research in the nanopore sensing field, there is a paucity of theoretical models that incorporate the interactions between chemicals (i.e., solute, solvent, analyte, and nanopore). Here, we develop a model that simultaneously describes both the current blockade depth and residence times caused by individual poly(ethylene glycol) (PEG) molecules in a single α-hemolysin ion channel. Modeling polymer-cation binding leads to a description of two significant effects: a reduction in the mobile cation concentration inside the pore and an increase in the affinity between the polymer and the pore. The model was used to estimate the free energy of formation for K+-PEG inside the nanopore (≈-49.7 meV) and the free energy of PEG partitioning into the nanopore (≈0.76 meV per ethylene glycol monomer). The results suggest that rational, physical models for the analysis of analyte-nanopore interactions will develop the full potential of nanopore-based sensing for chemical and biological applications. PMID:20566890

  5. Determining equilibrium osmolarity in poly(ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage.

    PubMed

    Sircar, S; Aisenbrey, E; Bryant, S J; Bortz, D M

    2015-01-07

    We present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory. Numerical studies on equilibrium polymer volume fraction and net osmolarity (difference in the solute concentration across the gel) show a complex interplay between ionic bath concentrations, pH, cross-link fraction and the average charge per monomer. Generally speaking, swelling is aided due to a higher average charge per monomer (or a higher particle fraction of ChS, the charged component of the polymer), low solute concentration in the bath, a high pH or a low cross-link fraction. A peculiar case arises at higher values of cross-link fraction, where it is observed that increasing the average charge per monomer leads to gel deswelling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Thermal aging of interfacial polymer chains in ethylene-propylene-diene terpolymer/aluminum hydroxide composites: solid-state NMR study.

    PubMed

    Gabrielle, Brice; Lorthioir, Cédric; Lauprêtre, Françoise

    2011-11-03

    The possible influence of micrometric-size filler particles on the thermo-oxidative degradation behavior of the polymer chains at polymer/filler interfaces is still an open question. In this study, a cross-linked ethylene-propylene-diene (EPDM) terpolymer filled by aluminum trihydrate (ATH) particles is investigated using (1)H solid-state NMR. The time evolution of the EPDM network microstructure under thermal aging at 80 °C is monitored as a function of the exposure time and compared to that of an unfilled EPDM network displaying a similar initial structure. While nearly no variations of the topology are observed on the neat EPDM network over 5 days at 80 °C, a significant amount of chain scission phenomena are evidenced in EPDM/ATH. A specific surface effect induced by ATH on the thermodegradative properties of the polymer chains located in their vicinity is thus pointed out. Close to the filler particles, a higher amount of chain scissions are detected, and the characteristic length scale related to these interfacial regions displaying a significant thermo-oxidation process is determined as a function of the aging time.

  7. Poly(organo phosphazene) nanoparticles surface modified with poly(ethylene oxide).

    PubMed

    Vandorpe, J; Schacht, E; Stolnik, S; Garnett, M C; Davies, M C; Illum, L; Davis, S S

    1996-10-05

    The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.

  8. Surface-initiated polymerization within mesoporous silica spheres for the modular design of charge-neutral polymer particles.

    PubMed

    Müllner, Markus; Cui, Jiwei; Noi, Ka Fung; Gunawan, Sylvia T; Caruso, Frank

    2014-06-03

    We report a templating approach for the preparation of functional polymer replica particles via surface-initiated polymerization in mesoporous silica templates. Subsequent removal of the template resulted in discrete polymer particles. Furthermore, redox-responsive replica particles could be engineered to disassemble in a reducing environment. Particles, made of poly(methacryloyloxyethyl phosphorylcholine) (PMPC) or poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), exhibited very low association to human cancer cells (below 5%), which renders the reported charge-neutral polymer particles a modular and versatile class of highly functional carriers with potential applications in drug delivery.

  9. Solid electrolytes

    DOEpatents

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  10. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  11. Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology.

    PubMed

    Jeong, Keuk Min; Hong, Yeo Joo; Saha, Prosenjit; Park, Seong Ho; Kim, Jin Kuk

    2014-11-01

    In this study, a composite has been prepared by mixing waste rubber, such as ethylene-propylene-diene-monomer and low-density poly ethylene foaming, with supercritical carbon dioxide. In order to optimise the foaming process of the waste ethylene-propylene-diene-monomer-low-density poly ethylene composite, the variations of pressure and temperature on the foamed Microcell formation were studied. As indicated in scanning electron microscope photographs, the most uniform microcellular pattern was found at 200 bar and 100 °C using 30% by weight of waste ethylene-propylene-diene-monomer. Carbon dioxide could not be dissolved uniformly during foaming owing to extensive cross-linking of the waste ethylene-propylene-diene-monomer used for the composite. As a result the presence of un-uniform microcells after foaming were observed in the composite matrix to impart inferior mechanical properties of the composite. This problem was solved with uniform foaming by increasing the cross-link density of low-density poly ethylene using 1.5 parts per hundred dicumyl peroxide that enhances composite tensile and compressive strength up to 57% and 15%, respectively. The composite has the potential to be used as a foaming mat for artificial turf. © The Author(s) 2014.

  12. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  13. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. II. Dynamical properties.

    PubMed

    Costa, Luciano T; Ribeiro, Mauro C C

    2007-10-28

    Dynamical properties of polymer electrolytes based on poly(ethylene oxide) (PEO) and ionic liquids of 1-alkyl-3-methylimidazolium cations were calculated by molecular dynamics simulations with previously proposed models [L. T. Costa and M. C. Ribeiro, J. Chem. Phys. 124, 184902 (2006)]. The effect of changing the ionic liquid concentration, temperature, and the 1-alkyl-chain lengths, [1,3-dimethylimidazolium]PF(6) and [1-butyl-3-methylimidazolium]PF(6) ([dmim]PF(6) and [bmim]PF(6)), was investigated. Cation diffusion coefficient is higher than those of anion and oxygen atoms of PEO chains. Ionic mobility in PEO[bmim]PF(6) is higher than in PEO[dmim]PF(6), so that the ionic conductivity kappa of the former is approximately ten times larger than the latter. The ratio between kappa and its estimate from the Nernst-Einstein equation kappa/kappa(NE), which is inversely proportional to the strength of ion pairs, is higher in ionic liquid polymer electrolytes than in polymer electrolytes based on inorganic salts with Li(+) cations. Calculated time correlation functions corroborate previous evidence from the analysis of equilibrium structure that the ion pairs in ionic liquid polymer electrolytes are relatively weak. Structural relaxation at distinct spatial scales is revealed by the calculation of the intermediate scattering function at different wavevectors. These data are reproduced with stretched exponential functions, so that temperature and wavevector dependences of best fit parameters can be compared with corresponding results for polymer electrolytes containing simpler ions.

  14. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2008-03-13

    We have performed atomistic molecular dynamics simulations of an anionic sodium dodecyl sulfate (SDS) micelle and a nonionic poly(ethylene oxide) (PEO) polymer in aqueous solution. The micelle consisted of 60 surfactant molecules, and the polymer chain lengths varied from 20 to 40 monomers. The force field parameters for PEO were adjusted by using 1,2-dimethoxymethane (DME) as a model compound and matching its hydration enthalpy and conformational behavior to experiment. Excellent agreement with previous experimental and simulation work was obtained through these modifications. The simulated scaling behavior of the PEO radius of gyration was also in close agreement with experimental results. The SDS-PEO simulations show that the polymer resides on the micelle surface and at the hydrocarbon-water interface, leading to a selective reduction in the hydrophobic contribution to the solvent-accessible surface area of the micelle. The association is mainly driven by hydrophobic interactions between the polymer and surfactant tails, while the interaction between the polymer and sulfate headgroups on the micelle surface is weak. The 40-monomer chain is mostly wrapped around the micelle, and nearly 90% of the monomers are adsorbed at low PEO concentration. Simulations were also performed with multiple 20-monomer chains, and gradual addition of polymer indicates that about 120 monomers are required to saturate the micelle surface. The stoichiometry of the resulting complex is in close agreement with experimental results, and the commonly accepted "beaded necklace" structure of the SDS-PEO complex is recovered by our simulations.

  15. Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile

    PubMed Central

    Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413

  16. A ligand exchange strategy for one-pot sequential synthesis of (hyperbranched polyethylene)-b-(linear polyketone) block polymers.

    PubMed

    Zhang, Zhichao; Ye, Zhibin

    2012-08-18

    Upon the addition of an equimolar amount of 2,2'-bipyridine, a cationic Pd-diimine complex capable of facilitating "living" ethylene polymerization is switched to catalyze "living" alternating copolymerization of 4-tertbutylstyrene and CO. This unique chemistry is thus employed to synthesize a range of well-defined treelike (hyperbranched polyethylene)-b-(linear polyketone) block polymers.

  17. Dynamics of Lithium Polymer Electrolytes using X-ray Photon Correlation Spectroscopy and Rheology

    NASA Astrophysics Data System (ADS)

    Oparaji, Onyekachi; Narayanan, Suresh; Sandy, Alec; Hallinan, Daniel, Jr.

    Polymer electrolytes are promising materials for high energy density rechargeable batteries. Battery fade can be caused by structural evolution in the battery electrode and loss of electrode/electrolyte adhesion during cycling. Both of these effects are dependent on polymer mechanical properties. In addition, cycling rate is dictated by the ion mobility of the polymer electrolyte. Lithium ion mobility is expected to be strongly coupled to polymer dynamics. Therefore, we investigate polymer dynamics as a function of salt concentration using X-ray Photon Correlation Spectroscopy (XPCS) and rheology. We report the influence of lithium salt concentration on the structural relaxation time (XPCS) and stress relaxation time (rheology) of high molecular weight poly(styrene - ethylene oxide) block copolymer membranes.

  18. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  19. Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering-A comparison with traditional techniques.

    PubMed

    Wagner, Michael; Pietsch, Christian; Tauhardt, Lutz; Schallon, Anja; Schubert, Ulrich S

    2014-01-17

    In the field of nanomedicine, cationic polymers are the subject of intensive research and represent promising carriers for genetic material. The detailed characterization of these carriers is essential since the efficiency of gene delivery strongly depends on the properties of the used polymer. Common characterization methods such as size exclusion chromatography (SEC) or mass spectrometry (MS) suffer from problems, e.g. missing standards, or even failed for cationic polymers. As an alternative, asymmetrical flow field-flow fractionation (AF4) was investigated. Additionally, analytical ultracentrifugation (AUC) and (1)H NMR spectroscopy, as well-established techniques, were applied to evaluate the results obtained by AF4. In this study, different polymers of molar masses between 10 and 120kgmol(-1) with varying amine functionalities in the side chain or in the polymer backbone were investigated. To this end, some of the most successful gene delivery agents, namely linear poly(ethylene imine) (LPEI) (only secondary amines in the backbone), branched poly(ethylene imine) (B-PEI) (secondary and tertiary amino groups in the backbone, primary amine end groups), and poly(l-lysine) (amide backbone and primary amine side chains), were characterized. Moreover, poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2-(amino)ethyl methacrylate) (PAEMA), and poly(2-(tert-butylamino)ethyl methacrylate) (PtBAEMA) as polymers with primary, secondary, and tertiary amines in the side chain, have been investigated. Reliable results were obtained for all investigated polymers by AF4. In addition, important factors for all methods were evaluated, e.g. the influence of different elution buffers and AF4 membranes. Besides this, the correct determination of the partial specific volume and the suppression of the polyelectrolyte effect are the most critical issues for AUC investigations. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Predicting protein instability in sustained protein delivery systems using spectral-phase interference.

    PubMed

    Seidel, Nina; Sitterberg, Johannes; Vornholt, Wolfgang; Bakowsky, Udo; Keusgen, Michael; Kissel, Thomas

    2012-02-01

    Biodegradable and non-biodegradable polymers represent promising materials for sustained protein delivery systems. However, structural protein instabilities due to interactions with the polymer surface are often observed. Aim of the present study was to analyze and predict these instabilities by determination of adsorption pattern and extent via biomolecular interaction analysis. A new optical method based on spectral-phase interference successfully demonstrated its suitability for this new application scope. It was characterized in terms of sensitivity, reproducibility and dynamic range using bovine serum albumin (BSA) as model compound. For protein-polymer interaction studies, materials with different wettabilities and zeta potential were selected and successfully applied on the sensor chip: Glass, poly(styrene), poly(lactic acid), poly(lactic-co-glycolic acid), and poly(ethylene carbonate). Concentration dependent adsorption curves revealed two principal adsorption patterns based on the connection between BSA spreading and supply rate. This connection was stronger influenced by polymer hydrophobicity than surface charge. Association, dissociation and binding rate constants in the range from 0.15 to 34.19 × 10(-6) M were obtained. Atomic force microscopy images of the films before and after adsorption confirmed the previous elaborated model. Poly(ethylene carbonate) emerged as highly promising biomaterial for protein delivery due to its favorable adsorption behavior based on low polymer-protein interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Novel lectin-modified poly(ethylene-co-vinyl acetate) mucoadhesive nanoparticles of carvedilol: preparation and in vitro optimization using a two-level factorial design.

    PubMed

    Varshosaz, Jaleh; Moazen, Ellaheh

    2014-08-01

    Carvedilol used in cardiovascular diseases has systemic bioavailability of 25-35%. The objective of this study was production of lectin-modified poly(ethylene-co-vinyl acetate) (PEVA) as mucoadhesive nanoparticles to enhance low oral bioavailability of carvedilol. Nanoparticles were prepared by the emulsification-solvent evaporation method using a two-level factorial design. The studied variables included the vinyl acetate content of the polymer, drug and polymer content. Surface modification of PEVA nanoparticles with lectin was carried out by the adsorption method and coupling efficiency was determined using the Bradford assay. Mucoadhesion of nanoparticles was studied on mucin. The particle size, polydispersity index, zeta potential, drug loading and drug release from nanoparticles were studied. The morphology of nanoparticles and crystalline status of the entrapped drug were studied by SEM, DSC and XRD tests, respectively. Results showed the most effective factor on particle size and zeta potential was the interaction of polymer and drug content while, drug loading efficiency and mucoadhesion were more affected by the interaction of polymer type and drug content. Drug concentration was the most effective variable on the drug release rate. The drug was in amorphous state in nanoparticles. The optimum nanoparticles obtained by 45 mg of copolymer contained 12% vinyl acetate/4.3 ml of organic phase and drug concentration of 37.5 wt% of polymer.

  2. A Donor-Acceptor Conjugated Polymer with Alternating Isoindigo Derivative and Bithiophene Units for Near-Infrared Modulated Cancer Thermo-Chemotherapy.

    PubMed

    Li, Dong-Dong; Wang, Jun-Xia; Ma, Yan; Qian, Hai-Sheng; Wang, Dong; Wang, Li; Zhang, Guobing; Qiu, Longzhen; Wang, Yu-Cai; Yang, Xian-Zhu

    2016-08-03

    Conjugated polymers containing alternating donor/acceptor units have strong and sharp absorbance peaks in near-infrared (NIR) region, which could be suitable for photothermal therapy. However, these polymers as photothermal transducers are rarely reported because of their water insolubility, which limits their applications for cancer therapy. Herein, we report the donor-acceptor conjugated polymer PBIBDF-BT with alternating isoindigo derivative (BIBDF) and bithiophene (BT) units as a novel photothermal transducer, which exhibited strong near-infrared (NIR) absorbance due to its low band gap (1.52 eV). To stabilize the conjugated polymer physiological environments, we utilized an amphiphilic copolymer, poly(ethylene glycol)-block-poly(hexyl ethylene phosphate) (mPEG-b-PHEP), to stabilize PBIBDF-BT-based nanoparticles (PBIBDF-BT@NPPPE) through a single emulsion method. The obtained nanoparticles PBIBDF-BT@NPPPE showed great stability in physiological environments and excellent photostability. Moreover, the PBIBDF-BT@NPPPE exhibited high photothermal conversion efficiency, reaching 46.7%, which is relatively high compared with those of commonly used materials for photothermal therapy. Accordingly, in vivo and in vitro experiments demonstrated that PBIBDF-BT@NPPPE exhibits efficient photothermal anticancer efficacy. More importantly, PBIBDF-BT@NPPPE could simultaneously encapsulate other types of therapeutic agents though hydrophobic interactions with the PHEP core and achieve NIR-triggered intracellular drug release and a synergistic combination therapy of thermo-chemotherapy for the treatment of cancer.

  3. Thermoswitchable Janus Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes.

    PubMed

    Niu, Xiaoqin; Ran, Fen; Chen, Limei; Lu, Gabriella Jia-En; Hu, Peiguang; Deming, Christopher P; Peng, Yi; Rojas-Andrade, Mauricio D; Chen, Shaowei

    2016-05-03

    Well-defined thermoswitchable Janus gold nanoparticles with stimuli-responsive hydrophilic polymer brushes were fabricated by combining ligand exchange reactions and the Langmuir technique. Stimuli-responsive polydi(ethylene glycol) methyl ether methacrylate was prepared by addition-fragmentation chain-transfer polymerization. The polymer brushes were then anchored onto the nanoparticle surface by interfacial ligand exchange reactions with hexanethiolate-protected gold nanoparticles, leading to the formation of a hydrophilic (polymer) hemisphere and a hydrophobic (hexanethiolate) one. The resulting Janus nanoparticles showed temperature-switchable wettability, hydrophobicity at high temperatures, and hydrophilicity at low temperatures, due to thermally induced conformational transition of the polymer ligands. The results further highlight the importance of interfacial engineering in the deliberate functionalization of nanoparticle materials.

  4. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability.

    PubMed

    Welsch, Nicole; Lyon, L Andrew

    2017-01-01

    We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.

  5. Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability

    PubMed Central

    Lyon, L. Andrew

    2017-01-01

    We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties. PMID:28719648

  6. Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush.

    PubMed

    Wang, Hua; Zhang, Heng; Yuan, Shiling; Liu, Chengbu; Xu, Zhen

    2014-06-01

    The adsorption of the anionic surfactant, sodium dodecylsulfate (SDS) in poly(ethylene oxide) (PEO) brush was studied by molecular dynamics simulations. Our simulations revealed that surfactant can adsorb in polymer brush as micellar aggregates and the polymer would reside at the hydrocarbon-water interface of SDS micelles. This association between surfactant and polymer was mainly driven by the hydrophobic interaction between the polymer and surfactant tails. In the simulation, with the increasing of surfactant concentration, a plateau value representing saturated adsorption was observed. The height of polymer brush was mainly affected by the adsorbed surfactant at low grafting density of polymer; however, it was primarily controlled by the grafting density at high grafting density. Our conclusions at the molecular level were in close agreement with experiment about the adsorption of surfactant in polymer brushes.

  7. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles.

    PubMed

    Geng, Yan; Discher, Dennis E

    2005-09-21

    Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation-induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly(ethylene oxide)-block-polycaprolactone. Such worm micelles spontaneously shorten to generate spherical micelles, triggered by polycaprolactone hydrolysis, with distinct mechanism and kinetics from that which occurs in bulk material.

  8. Liquid Viscosity and Density Measurement with Flexural-Plate-Wave Sensors

    DTIC Science & Technology

    1996-04-01

    capillary-viscometer-measured viscosity in Fig. 4. "The data from solutions of poly(ethylene glycol), having average molecular weights 3350 and 15,000...have seen similar results for the FPW-measured viscosity of salmon-sperm DNA solutions. 25 glycerol WA " PEG 3,350 H-4 . e! 2 PEG 15,000 IK- ,,,," HEC...number of aqueous solutions of the polymers poly(ethylene glycol) ( PEG ) and hydroxyethyl cellulose (HEC). The response of the FPW sensor (vertical axis

  9. Selective removal of polyethylene or polypropylene from their blends based on difference in their adsorption behaviour.

    PubMed

    Macko, Tibor; Pasch, Harald; Brüll, Robert

    2006-05-19

    The adsorption of polyethylene and polypropylene on zeolites depends on the nature of zeolite, the solvent as well as the molar mass of the polymer sample. For example, linear polyethylene is strongly retained on zeolite SH-300 from decalin, while isotactic, syndiotactic or atactic polypropylene is fully eluted in this system. On the other hand, polypropylene is retained on zeolite CBV-780 from diphenylether, while linear polyethylene is eluted. These differences in the elution behaviour have been utilised for selective removal of either linear polyethylene or polypropylene from blends of both polymers. The desorption of the retained polymer is difficult, or at times impossible. However, the selected adsorption systems have complimentary character, i.e. either one or second component is eluted or fully retained. Thus these sorbent/solvent systems, identified herein, are the first isocratic chromatographic systems, which enable selectively to remove polyethylene or polypropylene from their mixture. Moreover, decalin/SH-300 enables the removal of both linear and branched polyethylene from mixtures with random ethylene/propylene copolymers (polyethylene fully retained, ethylene/propylene copolymers eluted).

  10. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate) (EVA)

    PubMed Central

    Brancher, Luiza R.; Nunes, Maria Fernanda de O.; Grisa, Ana Maria C.; Pagnussat, Daniel T.; Zeni, Mára

    2016-01-01

    This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate) (EVA) to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm) with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite. PMID:28787851

  11. Effects of Congo red on the drag reduction properties of poly(ethylene oxide) in aqueous solution based on drop impact images.

    PubMed

    Alkschbirs, Melissa I; Bizotto, Vanessa C; de Oliveira, Marcelo G; Sabadini, Edvaldo

    2004-12-21

    The presence of very small amounts (ppm) of high-MW polymers in solution produces high levels of drag reduction in a turbulent flow. This phenomenon, often termed as the Toms effect, is highly dependent not only on MW, but also on the flexibility of the macromolecular chain. The Toms effect can be studied through the images of the structures produced after the drop impact against shallow solution surfaces. The splash structures composed of crown, cavity, and Rayleigh jet are highly dependent on the elongational properties of the solution. This work presents the effects of Congo red on the drag reduction properties of poly(ethylene oxide) in aqueous solutions through the analysis of splash structures. Results obtained in this analysis indicate that Congo red molecules act as physical cross-linking agents, decreasing the polymer elasticity and its drag reduction capacity. It was observed that the maximum height of the Rayleigh jet can be used as a sensitive parameter to the complexation between the dye and the polymer molecules.

  12. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    NASA Astrophysics Data System (ADS)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  13. Preparation of protein- and cell-resistant surfaces by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide).

    PubMed

    Bonduelle, Colin V; Lau, Woon M; Gillies, Elizabeth R

    2011-05-01

    The functionalization of surfaces with poly(ethylene oxide) (PEO) is an effective means of imparting resistance to the adsorption of proteins and the attachment and growth of cells, properties that are critical for many biomedical applications. In this work, a new hyperthermal hydrogen induced cross-linking (HHIC) method was explored as a simple one-step approach for attaching PEO to surfaces through the selective cleavage of C-H bonds and subsequent cross-linking of the resulting carbon radicals. In order to study the effects of the process on the polymer, PEO-coated silicon wafers were prepared and the effects of different treatment times were investigated. Subsequently, using an optimized treatment time and a modified butyl polymer with increased affinity for PEO, the technique was applied to butyl rubber surfaces. All of the treated surfaces exhibited significantly reduced protein adsorption and cell growth relative to control surfaces and compared favorably with surfaces that were functionalized with PEO using conventional chemical methods. Thus HHIC is a simple and effective means of attaching PEO to non-functional polymer surfaces.

  14. Effect of nanochitosan and succinonitrile on the AC ionic conductivity of plasticized nanocomposite solid polymer electrolytes (PNCSPE)

    NASA Astrophysics Data System (ADS)

    Karuppasamy, K.; Vani, C. Vijil; Nichelson, A.; Balakumar, S.; Shajan, X. Sahaya

    2013-06-01

    In the present study, the filler chitosan was converted into nanochitosan by ionotropic gelation method. Plasticized nanocomposite solid polymer electrolytes (PNCSPE) composed of poly ethylene oxide as host polymer, LiBOB (lithium bis(oxalatoborate)) as salt, SN as plasticizer and nanochitosan as filler were prepared by membrane hot-press technique. Succinonitrile and nanochitosan incorporation in PEO-LiBOB matrix enhanced the room temperature ionic conductivity. The highest ionic conductivities were found to be in the order of 10-3.2 S/cm.

  15. Use of amphiphilic triblock copolymers for enhancing removal efficiency of organic pollutant from contaminated media

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hyup; Lee, Byungsun; Son, Intae; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Wu, Jong-Pyo; Kim, Younguk

    2015-11-01

    We have studied amphiphilic triblock copolymers poly(ethylene glycol)- b-poly(propylene glycol)- b-poly(ethylene glycol) (PEG- b-PPG- b-PEG) and poly(propylene glycol)- b-poly(ethylene glycol)- b-poly(propylene glycol) (PPG- b-PEG- b-PPG) as possible substitutes for sodium dodecyl sulfate as anionic surfactants for the removal of hydrophobic contaminants. The triblock copolymers were compared with sodium dodecyl sulfate in terms of their abilities to remove toluene as hydrophobic contaminant in fuel, and the effects of polymer structure, PEG content, and concentration were studied. The PEG- b-PPG- b-PEG copolymer containing two hydrophilic PEG blocks was more effective for the removal of hydrophobic contaminant at extremely high concentration. We also measured the removal capabilities of the triblock copolymers having various PEG contents and confirmed that removal capability was greatest at 10% PEG content regardless of polymer structure. As with sodium dodecyl sulfate, the removal efficiency of a copolymer has a positive correlation with its concentration. Finally, we proposed the amphiphilic triblock copolymer of PPG- b-PEG- b-PPG bearing 10% PEG content that proved to be the most effective substitute for sodium dodecyl sulfate.

  16. Chemically specific coarse-grained models to investigate the structure of biomimetic membranes

    DOE PAGES

    Kowalik, Ma?gorzata; Schantz, Allen B.; Naqi, Abdullah; ...

    2017-11-29

    Biomimetic polymer/protein membranes are promising materials for DNA sequencing, sensors, drug delivery and water purification. These self-assembled structures are made from low molecular weight amphiphilic block copolymers (N hydrophobic < 40 for a diblock copolymer), including poly(ethylene oxide)–1,2-polybutadiene (EO–1,2-BD) and poly(ethylene oxide)–poly(ethyl ethylene) (EO–EE). To examine these membranes' nanoscale structure, we developed a coarse-grained molecular dynamics (CG MD) model for EO–1,2-BD and assembled a CG MD model for EO–EE using parameters from two published force fields. We observe that the polymers' hydrophobic core blocks are slightly stretched compared to the random coil configuration seen at higher molecular weights. We alsomore » observe an increase in the interdigitation of the hydrophobic leaflets with increasing molecular weight (consistent with literature). The hydration level of the EO corona (which may influence protein incorporation) is higher for membranes with a larger area/chain, regardless of whether EE or 1,2-BD forms the hydrophobic block. Our results provide a molecular-scale view of membrane packing and hydrophobicity, two important properties for creating polymer–protein biomimetic membranes.« less

  17. Chemically specific coarse-grained models to investigate the structure of biomimetic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalik, Ma?gorzata; Schantz, Allen B.; Naqi, Abdullah

    Biomimetic polymer/protein membranes are promising materials for DNA sequencing, sensors, drug delivery and water purification. These self-assembled structures are made from low molecular weight amphiphilic block copolymers (N hydrophobic < 40 for a diblock copolymer), including poly(ethylene oxide)–1,2-polybutadiene (EO–1,2-BD) and poly(ethylene oxide)–poly(ethyl ethylene) (EO–EE). To examine these membranes' nanoscale structure, we developed a coarse-grained molecular dynamics (CG MD) model for EO–1,2-BD and assembled a CG MD model for EO–EE using parameters from two published force fields. We observe that the polymers' hydrophobic core blocks are slightly stretched compared to the random coil configuration seen at higher molecular weights. We alsomore » observe an increase in the interdigitation of the hydrophobic leaflets with increasing molecular weight (consistent with literature). The hydration level of the EO corona (which may influence protein incorporation) is higher for membranes with a larger area/chain, regardless of whether EE or 1,2-BD forms the hydrophobic block. Our results provide a molecular-scale view of membrane packing and hydrophobicity, two important properties for creating polymer–protein biomimetic membranes.« less

  18. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  19. Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes.

    PubMed

    Zheng, Xiaoli; Xu, Qun

    2010-07-29

    In this work, we provided a comparison study of morphology and crystallization behavior of polyethylene (PE) and poly(ethylene oxide) (PEO) on single-walled carbon nanotubes (SWNTs) with assistance of supercritical CO(2). The resulting polymer/SWNT nanohybrids were characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide-angle X-ray diffraction, and differential scanning calorimetry. SWNT small bundles were decorated by PE lamellar crystals, forming nanohybrid "shish-kebab" (NHSK) structure, whereas SWNTs were only wrapped by a thin amorphous polymer coating in the case of PEO. The varying morphologies of the nanohybrids were found to depend on the molecular conformation and the interactions between polymer chains and SWNTs. Nonisothermal experiments showed that SWNTs provided heterogeneous nucleation sites for PE crystallization, while the NHSK structure hindered polymer chain diffusion and crystal growth. Also, SWNTs played antinucleation effect on PEO. In addition, the formation mechanism analysis indicated that PE chains preferred to form a homogeneous coating along the tube axis before proceeding to kebab crystal growth. The purpose of this work is to enlarge the area of theoretical understanding of introducing precisely hierarchical structures on carbon nanotubes, which are important for functional design in nanodevice applications.

  20. Understanding Melt-Memory of Commercial Polyolefins

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina

    Self-nucleation (SN) or controlling self-generated seeds in a polymer melt is an avenue to increase the rate of solidification of semicrystalline polymers of commercial relevance. Self-nuclei are remains in the melt of the segmental self-assembly to form polymer crystallites providing a path to enhance primary crystal nucleation. SN has been extensively studied in homopolymers such as iPP. Recently, a strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. The melt memory is associated with clusters or seeds that remain in the melt from the copolymer's sequence length partitioning. Cooling from progressively lower self-seeded melt temperatures, ethylene copolymers with a broad inter-chain comonomer composition (1 - 15 mol%) display first the expected accelerated crystallization, followed by a decrease in the rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. This unusual inversion of the crystallization rate was postulated to arise from the onset of liquid-liquid phase separation (LLPS) between comonomer-rich and comonomer-poor components of the broad copolymer. The UCST type phase diagram of these commercial copolymers has been documented via SANS using a blend of components, some deuterated, to reproduce the broad distribution. Furthermore, the components that contribute to LLPS have been identified by the crystallization behavior of molar mass fractions. The influence of long chain branching on the topology of copolymer melts has been analyzed using model 3-arm stars hydrogenated polybutadienes. The effect of melt viscosity on strength of melt memory is also evident when SN data of random ethylene copolymers are compared with those of propylene-ethylene copolymers. The strong dependence of melt viscosity on melt memory, and a critical threshold crystallinity level to observe the effect of melt memory on crystallization rate, support the kinetic nature of the SN phenomenon. Support from NSF, DMR-1105129 and DMR-1607786 is gratefully acknowledged.

  1. A Novel Method of Measuring the Phase Behavior and Rheology of Polyethylene Solutions Using a Multi-Pass Rheometer

    NASA Astrophysics Data System (ADS)

    Lee, Karen; Lacombe, Y.; Cheluget, E.

    2008-07-01

    The Advanced SCLAIRTECH™ Technology process is used to manufacture Linear Low Density Polyethylene using solution polymerization. In this process ethylene is polymerized in an inert solvent, which is subsequently evaporated and recycled. The reactor effluent in the process is a polymer solution containing the polyethylene product, which is separated from the solvent and unconverted ethylene/co-monomer before being extruded and pelletized. The design of unit operations in this process requires a detailed understanding of the thermophysical properties, phase behaviour and rheology of polymer containing streams at high temperature and pressure, and over a wide range of composition. This paper describes a device used to thermo-rheologically characterize polymer solutions under conditions prevailing in polymerization reactors, downstream heat exchangers and attendant phase separation vessels. The downstream processing of the Advanced SCLAIRTECH™ Technology reactor effluent occurs at temperatures and pressures near the critical point of the solvent and co-monomer mixture. In addition, the process trajectory encompasses regions of liquid-liquid and liquid-liquid-vapour co-existence, which are demarcated by a `cloud point' curve. Knowing the location of this phase boundary is essential for the design of downstream devolatilization processes and for optimizing operating conditions in existing plants. In addition, accurate solution rheology data are required for reliable equipment sizing and design. At NOVA Chemicals, a robust high-temperature and high-pressure-capable version of the Multi-Pass Rheometer (MPR) is used to provide data on solution rheology and phase boundary location. This sophisticated piece of equipment is used to quantify the effects of solvent types, comonomer, and free ethylene concentration on the properties of the reactor effluent. An example of the experimental methodology to characterize a polyethylene solution with hexane solvent, and the ethylene dosing technique developed for the MPR will be described. ™Advanced SCLAIRTECH is a trademark of NOVA Chemicals.

  2. Interfacial Connection Mechanisms in Calcium-Silicate-Hydrates/Polymer Nanocomposites: A Molecular Dynamics Study.

    PubMed

    Zhou, Yang; Hou, Dongshuai; Manzano, Hegoi; Orozco, Carlos A; Geng, Guoqing; Monteiro, Paulo J M; Liu, Jiaping

    2017-11-22

    Properties of organic/inorganic composites can be highly dependent on the interfacial connections. In this work, molecular dynamics, using pair-potential-based force fields, was employed to investigate the structure, dynamics, and stability of interfacial connections between calcium-silicate-hydrates (C-S-H) and organic functional groups of three different polymer species. The calculation results suggest that the affinity between C-S-H and polymers is influenced by the polarity of the functional groups and the diffusivity and aggregation tendency of the polymers. In the interfaces, the calcium counterions from C-S-H act as the coordination atoms in bridging the double-bonded oxygen atoms in the carboxyl groups (-COOH), and the Ca-O connection plays a dominant role in binding poly(acrylic acid) (PAA) due to the high bond strength defined by time-correlated function. The defective calcium-silicate chains provide significant numbers of nonbridging oxygen sites to accept H-bonds from -COOH groups. As compared with PAA, the interfacial interactions are much weaker between C-S-H and poly(vinyl alcohol) (PVA) or poly(ethylene glycol) (PEG). Predominate percentage of the -OH groups in the PVA form H-bonds with inter- and intramolecule, which results in the polymer intertwining and reduces the probability of H-bond connections between PVA and C-S-H. On the other hand, the inert functional groups (C-O-C) in poly(ethylene glycol) (PEG) make this polymer exhibit unfolded configurations and move freely with little restrictions. The interaction mechanisms interpreted in this organic-inorganic interface can give fundamental insights into the polymer modification of C-S-H and further implications to improving cement-based materials from the genetic level.

  3. The Production of Solid Dosage Forms from Non-Degradable Polymers.

    PubMed

    Major, Ian; Fuenmayor, Evert; McConville, Christopher

    2016-01-01

    Non-degradable polymers have an important function in medicine. Solid dosage forms for longer term implantation require to be constructed from materials that will not degrade or erode over time and also offer the utmost biocompatibility and biostability. This review details the three most important non-degradable polymers for the production of solid dosage forms - silicone elastomer, ethylene vinyl acetate and thermoplastic polyurethane. The hydrophobic, thermoset silicone elastomer is utilised in the production of a broad range of devices, from urinary catheter tubing for the prevention of biofilm to intravaginal rings used to prevent HIV transmission. Ethylene vinyl acetate, a hydrophobic thermoplastic, is the material of choice of two of the world's leading forms of contraception - Nuvaring® and Implanon®. Thermoplastic polyurethane has such a diverse range of building blocks that this one polymer can be hydrophilic or hydrophobic. Yet, in spite of this versatility, it is only now finding utility in commercialised drug delivery systems. Separately then one polymer has a unique ability that differentiates it from the others and can be applied in a specific drug delivery application; but collectively these polymers provide a rich palette of material and drug delivery options to empower formulation scientists in meeting even the most demanding of unmet clinical needs. Therefore, these polymers have had a long history in controlled release, from the very beginning even, and it is pertinent that this review examines briefly this history while also detailing the state-of-the-art academic studies and inventions exploiting these materials. The paper also outlines the different production methods required to manufacture these solid dosage forms as many of the processes are uncommon to the wider pharmaceutical industry.

  4. Coordination Chemistry Inside Polymeric Nanoreactors: Interparticle Metal Exchange and Ionic Compound Vectorization in Phosphine-Functionalized Amphiphilic Polymer Latexes.

    PubMed

    Chen, Si; Gayet, Florence; Manoury, Eric; Joumaa, Ahmad; Lansalot, Muriel; D'Agosto, Franck; Poli, Rinaldo

    2016-04-25

    Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  6. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.

    PubMed

    Krishna, Lekshmi; Jayabalan, Muthu

    2009-12-01

    Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.

  7. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups.

    PubMed

    Neradovic, D; Soga, O; Van Nostrum, C F; Hennink, W E

    2004-05-01

    Block copolymers of poly(ethylene glycol) (PEG) as a hydrophilic block and N-isopropylacrylamide (PNIPAAm) or poly (NIPAAm-co-N-(2-hydroxypropyl) methacrylamide-dilactate) (poly(NIPAAm-co-HPMAm-dilactate)) as a thermosensitive block, are able to self-assemble in water into nanoparticles above the cloud point (CP) of the thermosensitive block. The influence of processing and the formulation parameters on the size of the nanoparticles was studied using dynamic light scattering. PNIPAAm-b-PEG 2000 polymers were not suitable for the formation of small and stable particles. Block copolymers with PEG 5000 and 10000 formed relatively small and stable particles in aqueous solutions at temperatures above the CP of the thermosensitive block. Their size decreased with increasing molecular weight of the thermosensitive block, decreasing polymer concentration and using water instead of phosphate buffered saline as solvent. Extrusion and ultrasonication were inefficient methods to size down the polymeric nanoparticles. The heating rate of the polymer solutions was a dominant factor for the size of the nanoparticles. When an aqueous polymer solution was slowly heated through the CP, rather large particles (> or = 200 nm) were formed. Regardless the polymer composition, small nanoparticles (50-70 nm) with a narrow size distribution were formed, when a small volume of an aqueous polymer solution below the CP was added to a large volume of heated water. In this way the thermosensitive block copolymers rapidly pass their CP ('heat shock' procedure), resulting in small and stable nanoparticles.

  8. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  9. Shifting of the melting point for semi-crystalline polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Arinstein, A.; Liu, Y.; Rafailovich, M.; Zussman, E.

    2011-02-01

    The depression of melting temperature as a function of the diameter of electrospun semi-crystalline polymer nanofibers is discussed. Due to fast solvent evaporation during nanofiber electrospinning, there occurs the fixation of topological structure of the polymer matrix corresponding to chain entanglement of the initial concentration of the semi-dilute solution. The resulting level of chain entanglement is lower than that in polymer bulk at equilibrium. This difference results in an addition to the entropy jump corresponding to the polymer's melting, and accounts for the observed shift in melting temperature in as-spun fibers. The proposed concept is found to be in good agreement with experimental results obtained for as-spun poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE) fibers.

  10. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Substances identified in § 175.300(b)(3) (xxv), (xxvii), (xxx), and (xxxiii) of this chapter, and colorants... § 175.300(b)(3)(xxv), (xxvii), (xxxiii), and (xxx) of this chapter and colorants for polymers used in...

  11. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), (xxvii), (xxx), and (xxxiii) of this chapter, and colorants used in accordance with § 178.3297 of this... (xxx) of this chapter and colorants for polymers used in accordance with the provisions of § 178.3297...

  12. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), (xxvii), (xxx), and (xxxiii) of this chapter, and colorants used in accordance with § 178.3297 of this... (xxx) of this chapter and colorants for polymers used in accordance with the provisions of § 178.3297...

  13. 21 CFR 177.1350 - Ethylene-vinyl acetate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), (xxvii), (xxx), and (xxxiii) of this chapter, and colorants used in accordance with § 178.3297 of this... (xxx) of this chapter and colorants for polymers used in accordance with the provisions of § 178.3297...

  14. Performance Characteristics of Lithium Ion Polymeric Electrolyte Cells

    NASA Technical Reports Server (NTRS)

    Shen, D.; Nagasubramanian, G.; Huang, C-K.; Surampudi, S.; Halpert, G.

    1994-01-01

    A series of polyacrylonitrile-based (PAN) electrolytes containing LiAsF6 and a number of solvent mixtures including ethylene carbonate (EC) + propylene carbonate (PC) were prepared, electrochemically evaluated and used as electrolyte in the polymer cells.

  15. Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film

    PubMed Central

    Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862

  16. Conductivity and dielectric behaviour of PEO-based solid nanocomposite polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ibrahim, Suriani; Mohd Yasin, Siti Mariah; Nee, Ng Meng; Ahmad, Roslina; Johan, Mohd Rafie

    2012-03-01

    In this research, thin films of poly(ethylene oxide) (PEO) blend with lithium hexafluorophosphate (LiPF) salt and ethylene carbonate (EC) as plasticiser and carbon nanotube (CNT) as filler, are prepared using solution casting method. The conductivity and dielectric response of the nanocomposite polymer electrolyte systems are studied within the broad frequency range of 5 Hz-5 MHz and within a temperature range of 298-373 K. The conductivity-temperature plots are observed to be of Arrhenius nature. The dielectric behaviour is analysed using the dielectric permittivity (ɛr and ɛi), loss tangent (tanδ) and electric modulus (Mi and Mr) of the samples. It is observed that the dielectric permittivity rises sharply towards low frequencies due to electrode polarisation effects. The maxima of the loss tangent (tanδ) shifts towards higher frequencies and the height of the peak increases with increasing temperature.

  17. Separation of n-hexane/acetone mixtures by pervaporation using high density polyethylene/ethylene propylene diene terpolymer rubber blend membranes.

    PubMed

    Kumar, P V Anil; Anilkumar, S; Varughese, K T; Thomas, Sabu

    2012-01-15

    Polymer membranes were prepared by blending high density polyethylene (HDPE) with ethylene propylene diene terpolymer rubber (EPDM). These blend membranes were evaluated for the selective separation of n-hexane from acetone. The flux and selectivity of the membranes were determined both as a function of the blend composition and feed mixture composition. Results showed that polymer blending method could be very useful to develop new membranes with improved selectivity. Pervaporation properties could be optimized by adjusting the blend composition. The effects of blend ratio, feed composition, and penetrant size on the pervaporation process were analyzed. The permeation properties have been explained on the basis of interaction between the membrane and solvents and blend morphology. Flux increases with increasing alkane content in the feed composition. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Effects of Silica Nanostructures in Poly(ethylene oxide)-Based Composite Polymer Electrolytes.

    PubMed

    Mohanta, Jagdeep; Anwar, Shahid; Si, Satyabrata

    2016-06-01

    The present work describes the synthesis of some poly(ethylene oxide)-based nanocomposite polymer electrolyte films using various silica nanostructures as the inorganic filler by simple solution mixing technique, in which the nature of the silica nanostructures play a vital role in modulating their electrochemical performances at room temperature. The silica nanostructures are prepared by ammonical hydrolysis of tetraethyl orthosilicate following the modified St6ber method. The resulting films are characterized by X-ray diffraction and differential scanning calorimeter to study their crystallinity. Room temperature AC impedance spectroscopy is utilized to determine the Li+ ion conductivity of the resulting films. The observed conductivity values of various NCPE films depend on the nature of silica filling as well as on their surface characteristics and also on the varying PEO-Li+ ratio, which is observed to be in the order of 10(-7)-10(-6) S cm(-1).

  19. Thermorheological characteristics and comparison of shape memory polymers fabricated by novel 3D printing technique

    NASA Astrophysics Data System (ADS)

    Hassan, Rizwan Ul; Jo, Soohwan; Seok, Jongwon

    The feasibility of fabrication of shape memory polymers (SMPs) was investigated using a customized 3-dimensional (3D) printing technique with an excellent resolution that could be less than 100 microns. The thermorheological effects of SMPs were adjusted by contact and non-contact triggering, which led to the respective excellent shape recoveries of 100% and 99.89%. Thermogravimetric analyses of SMPs resulted in a minor weight loss, thereby revealing good thermal stability at higher temperatures. The viscoelastic properties of SMPs were measured using dynamic mechanical analyses, exhibiting increased viscous and elastic characteristics. Mechanical strength, thermal stability and viscoelastic properties, of the two SMPs were compared [di(ethylene) glycol dimethacrylate (DEGDMA) and poly (ethylene glycol) dimethacrylate (PEGDMA)] to investigate the shape memory behavior. This novel 3D printing technique can be used as a promising method for fabricating smart materials with increased accuracy in a cost-effective manner.

  20. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    PubMed

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution.

    PubMed

    Kumar, B V N Phani; Priyadharsini, S Umayal; Prameela, G K S; Mandal, Asit Baran

    2011-08-01

    The present work was undertaken with a view to understand the influence of a model non-ionic tri-block copolymer PEO-PPO-PEO (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) with molecular weight 5800 i.e., P123 [(EO)(20)-(PO)(70)-(EO)(20)] on the self-aggregation characteristics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D(2)O) using NMR chemical shift, self-diffusion and nuclear spin-relaxation as suitable experimental probes. In addition, polymer diffusion has been monitored as a function of SDS concentration. The concentration-dependent chemical shift, diffusion data and relaxation data indicated the significant interaction of polymeric micelles with SDS monomers and micelles at lower and intermediate concentrations of SDS, whereas the weak interaction of the polymer with SDS micelles at higher concentrations of SDS. It has been observed that SDS starts aggregating on the polymer at a lower concentration i.e., critical aggregation concentration (cac=1.94 mM) compared to polymer-free situation, and the onset of secondary micelle concentration (C(2)=27.16 mM) points out the saturation of the 0.2 wt% polymer or free SDS monomers/micelles at higher concentrations of SDS. It has also been observed that the parameter cac is almost independent in the polymer concentrations of study. The TMS (tetramethylsilane) has been used as a solubilizate to measure the bound diffusion coefficient of SDS-polymer mixed system. The self-diffusion data were analyzed using two-site exchange model and the obtained information on aggregation dynamics was commensurate with that inferred from chemical shift and relaxation data. The information on slow motions of polymer-SDS system was also extracted using spin-spin and spin-lattice relaxation rate measurements. The relaxation data points out the disintegration of polymer network at higher concentrations of SDS. The present NMR investigations have been well corroborated by surface tension and conductivity measurements. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes

    PubMed Central

    Chen, Yipei; Li, Yuzhuo; Shen, Wenjia; Li, Kun; Yu, Lin; Chen, Qinghua; Ding, Jiandong

    2016-01-01

    In treatment of diabetes, it is much desired in clinics and challenging in pharmaceutics and material science to set up a long-acting drug delivery system. This study was aimed at constructing a new delivery system using thermogelling PEG/polyester copolymers. Liraglutide, a fatty acid-modified antidiabetic polypeptide, was selected as the model drug. The thermogelling polymers were presented by poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic acid) (PCGA-PEG-PCGA) and poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA). Both the copolymers were soluble in water, and their concentrated solutions underwent temperature-induced sol-gel transitions. The drug-loaded polymer solutions were injectable at room temperature and gelled in situ at body temperature. Particularly, the liraglutide-loaded PCGA-PEG-PCGA thermogel formulation exhibited a sustained drug release manner over one week in both in vitro and in vivo tests. This feature was attributed to the combined effects of an appropriate drug/polymer interaction and a high chain mobility of the carrier polymer, which facilitated the sustained diffusion of drug out of the thermogel. Finally, a single subcutaneous injection of this formulation showed a remarkably improved glucose tolerance of mice for one week. Hence, the present study not only developed a promising long-acting antidiabetic formulation, but also put forward a combined strategy for controlled delivery of polypeptide. PMID:27531588

  3. A catalyst-free, temperature controlled gelation system for in-mold fabrication of microgels.

    PubMed

    Krüger, Andreas J D; Köhler, Jens; Cichosz, Stefan; Rose, Jonas C; Gehlen, David B; Haraszti, Tamás; Möller, Martin; De Laporte, Laura

    2018-06-19

    Anisometric microgels are prepared via thermal crosslinking using an in-mold polymerization technique. Star-shaped poly(ethylene oxide-stat-propylene oxide) polymers, end-modified with amine and epoxy groups, form hydrogels, of which the mechanical properties and gelation rate can be adjusted by the temperature, duration of heating, and polymer concentration. Depending on the microgel stiffness, the rod-shaped microgels self-assemble into ordered or disordered structures.

  4. Synthesis and Properties of Highly Dispersed Ionic Silica–Poly(ethylene oxide) Nanohybrids

    PubMed Central

    2013-01-01

    We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent. PMID:23351113

  5. Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Fukutake, Naoyuki; Miyoshi, Nozomi; Takasawa, Yuya; Urakawa, Tatsuya; Gowa, Tomoko; Okamoto, Kazumasa; Oshima, Akihiro; Tagawa, Seiichi; Washio, Masakazu

    2010-06-01

    Micro- and nano-scale fabrications of various fluorinated polymers were demonstrated by direct maskless etching using a focused ion beam (FIB). The etching rates of perfluorinated polymers, such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoroalkoxyvinylether) (PFA), were about 500-1000 times higher than those of partially fluorinated polymers, such as poly(tetrafluoroethylene-co-ethylene) (ETFE) and poly(vinilydene-fluoride) (PVdF). Controlled high quality and high aspect-ratio nanostructures of spin-coated cross-linked PTFE were obtained without solid debris. The height and diameter of the fibers were about 1.5 µm and 90 nm, respectively. Their aspect ratio was about 17.

  6. Micro- and Nano-Scale Fabrication of Fluorinated Polymers by Direct Etching Using Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Naoyuki Fukutake,; Nozomi Miyoshi,; Yuya Takasawa,; Tatsuya Urakawa,; Tomoko Gowa,; Kazumasa Okamoto,; Akihiro Oshima,; Seiichi Tagawa,; Masakazu Washio,

    2010-06-01

    Micro- and nano-scale fabrications of various fluorinated polymers were demonstrated by direct maskless etching using a focused ion beam (FIB). The etching rates of perfluorinated polymers, such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-co-perfluoroalkoxyvinylether) (PFA), were about 500-1000 times higher than those of partially fluorinated polymers, such as poly(tetrafluoroethylene-co-ethylene) (ETFE) and poly(vinilydene-fluoride) (PVdF). Controlled high quality and high aspect-ratio nanostructures of spin-coated cross-linked PTFE were obtained without solid debris. The height and diameter of the fibers were about 1.5 μm and 90 nm, respectively. Their aspect ratio was about 17.

  7. Apolipoprotein nanodiscs with telodendrimer

    DOEpatents

    Luo, Juntao; He, Wei; Lam, Kit S.; Henderson, Paul; Coleman, Matthew; Cheng, R. Holland; Xing, Li

    2017-05-09

    The present invention provides a nanodisc with a membrane scaffold protein. The nanodisc includes a membrane scaffold protein, a telodendrimer and a lipid. The membrane scaffold protein can be apolipoprotein. The telodendrimer has the general formula PEG-L-D-(R).sub.n, wherein D is a dendritic polymer; L is a bond or a linker linked to the focal point group of the dendritic polymer; each PEG is a poly(ethylene glycol) polymer; each R is and end group of the dendritic polymer, or and end group with a covalently bound hydrophobic group, hydrophilic group, amphiphilic compound, or drug; and subscript n is an integer from 2 to 20. Cell free methods of making the nanodiscs are also provided.

  8. Engineering biofunctional magnetic nanoparticles for biotechnological applications

    NASA Astrophysics Data System (ADS)

    Moros, Maria; Pelaz, Beatriz; López-Larrubia, Pilar; García-Martin, Maria L.; Grazú, Valeria; de La Fuente, Jesus M.

    2010-09-01

    Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology.Synthesis and characterization of magnetic nanoparticles with excellent size control are showed here. Their functionalization using an amphiphilic polymer is also described. This strategy allows the stabilization of magnetic nanoparticles in aqueous solvents and in addition, the polymer shell serves as a platform to incorporate relevant biomolecules, such as poly(ethylene glycol) and a number of carbohydrates. Nanoparticles functionalized with carbohydrates show the ability to avoid unspecific interactions between proteins present in the working medium and the nanoparticles, so can be used as an alternative to poly(ethylene glycol) molecules. Results confirm these nanoparticles as excellent contrast agents for magnetic resonance imaging. Changes in the spin-spin transversal relaxation times of the surrounding water protons due to nanoparticle aggregation demonstrates the bioactivity of these nanoparticles functionalized with carbohydrates. To finish with, nanoparticle toxicity is evaluated by means of MTT assay. The obtained results clearly indicate that these nanoparticles are excellent candidates for their further application in nanomedicine or nanobiotechnology. Electronic supplementary information (ESI) available: Chemical, physical and magnetic characterization; R2 maps; stability of NPs at different conditions; size of glucose NPs in the presence of Concanavalin A; MTT assays of the samples are shown in figures S1-S10. Table S1 represents the hydrodynamic size of PMAO NPs after being washed with different solvents. See DOI: 10.1039/c0nr00104j

  9. X-ray photoelectron study of Si+ ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Tsvetkova, T.; Balabanov, S.; Bischoff, L.; Krastev, V.; Stefanov, P.; Avramova, I.

    2010-11-01

    X-ray photoelectron spectroscopy was used to characterize different polymer materials implanted with low energy Si+ ions (E=30 keV, D= 1.1017 cm-2). Two kinds of polymers were studied - ultra-high-molecular-weight poly-ethylene (UHMWPE), and poly-methyl-methacrylate (PMMA). The non-implanted polymer materials show the expected variety of chemical bonds: carbon-carbon, carbon being three- and fourfold coordinated, and carbon-oxygen in the case of PMMA samples. The X-ray photoelectron and Raman spectra show that Si+ ion implantation leads to the introduction of additional disorder in the polymer material. The X-ray photoelectron spectra of the implanted polymers show that, in addition to already mentioned bonds, silicon creates new bonds with the host elements - Si-C and Si-O, together with additional Si dangling bonds as revealed by the valence band study of the implanted polymer materials.

  10. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  11. EPDM polymers with intermolecular asymmetrical molecular weight, crystallinity and diene distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, S.; Cheremishinoff, N.P.; Kresge, E.N.

    1993-12-31

    Rapid extrusion of EPDM elastomers require low viscosity and thus low molecular weights for the polymer. Efficient vulcanization of these elastomers requires network perfection and thus high molecular weights for the polymer. The benefits of these apparently mutually exclusive goals is important in uses of EPDM elastomers which require extrusion of profiles which are later cured. This paper shows that by introducing simultaneously asymmetry in the distribution of molecular weights, crystallinity and vulcanizable sites these apparently contradictory goals can be resolved. While these polymers cannot be made from a single Ziegler polymerization catalyst, the authors show the synthesis of thesemore » model EPDM polymers by blending polymers with very different molecular weights, ethylene and ENB contents. These blends can be rapidly extruded without melt fracture and can be cured to vulcanizates which have excellent tensile properties.« less

  12. Nanostructure of propylammonium nitrate in the presence of poly(ethylene oxide) and halide salts

    NASA Astrophysics Data System (ADS)

    Stefanovic, Ryan; Webber, Grant B.; Page, Alister J.

    2018-05-01

    Nanoscale structure of protic ionic liquids is critical to their utility as molecular electrochemical solvents since it determines the capacity to dissolve salts and polymers such as poly(ethylene oxide) (PEO). Here we use quantum chemical molecular dynamics simulations to investigate the impact of dissolved halide anions on the nanostructure of an archetypal nanostructured protic ionic liquid, propylammonium nitrate (PAN), and how this impacts the solvation of a model PEO polymer. At the molecular level, PAN is nanostructured, consisting of charged/polar and uncharged/nonpolar domains. The charged domain consists of the cation/anion charge groups, and is formed by their electrostatic interaction. This domain solvophobically excludes the propyl chains on the cation, which form a distinct, self-assembled nonpolar domain within the liquid. Our simulations demonstrate that the addition of Cl- and Br- anions to PAN disrupts the structure within the PAN charged domain due to competition between nitrate and halide anions for the ammonium charge centre. This disruption increases with halide concentration (up to 10 mol. %). However, at these concentrations, halide addition has little effect on the structure of the PAN nonpolar domain. Addition of PEO to pure PAN also disrupts the structure within the charged domain of the liquid due to hydrogen bonding between the charge groups and the terminal PEO hydroxyl groups. There is little other association between the PEO structure and the surrounding ionic liquid solvent, with strong PEO self-interaction yielding a compact, coiled polymer morphology. Halide addition results in greater association between the ionic liquid charge centres and the ethylene oxide components of the PEO structure, resulting in reduced conformational flexibility, compared to that observed in pure PAN. Similarly, PEO self-interactions increase in the presence of Cl- and Br- anions, compared to PAN, indicating that the addition of halide salts to PAN decreases its utility as a molecular solvent for polymers such as PEO.

  13. Formation of porous networks on polymeric surfaces by femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Assaf, Youssef; Kietzig, Anne-Marie

    2017-02-01

    In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.

  14. The properties of neutron shielding and flame retardant of EVA polymer after modified by EB accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Guo-hui; He, Man-li; Jiang, Dan-feng; He, Fan; Chang, Shu-quan; Dai, Yao-dong

    2017-11-01

    According to the requirements for neutron shielding and flame retardant properties of some nuclear devices, a new kind of polymer composite materials based on ethylene and vinyl acetate (EVA) polymer have been studied. EVA is the copolymer of ethylene and vinyl acetate, It can be used as materials for applications due to its flexibility, good processability, and low cost. Insulating EVA can be used for cable sheath, automotive sound damping and many other appication. Boron nitride (BN), zinc borate (ZB), magnesium hydroxide (MH) and EVA consisted the compounds with the properties of neutron shielding and flame retardant. With increasing of the contents of BN and ZB, the neutron shielding performance of materials increased up to 33.08%. With the increasing contents of MH and ZB as flame retardant, oxygen index of material have been improved. The elongation at break and tensile strength of material decreased with the increasing of filler powders. Sheet E was chosen and modified by electron beam accelerator in different doses. After modification by electron beam irradiation the sheets showed varying degrees of transformation in the OI, neutron shielding rate and mechanical properties.

  15. Selection of new Kynar-based electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Christie, Alasdair M.; Christie, Lynn; Vincent, Colin A.

    New electrolyte solution compositions have been identified for use in lithium-ion batteries after gelling with an appropriate quantity of Kynar polymer. Since the Li + conducting medium is largely the liquid electrolyte component, the assessment of these solutions as suitable lithium-ion cell candidates were investigated before adding the polymer. Selected electrolyte solutions were then used in the preparation of polymer gels. The specific conductivities of Kynar-based gels were determined as a function of salt concentration and polymer concentration. Optimised self-supporting polymer films, based on mixtures of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and lithium hexafluorophosphate (LiPF 6) or lithium tetrafluoroborate (LiBF 4), showed good high current density cycling performance when used as separators in coke and Li 1- xMn 2O 4 (spinel) half-cells.

  16. Electrochemical characteristics of Li/LiMn 2O 4 cells using gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Ko, Jang-Myoun; Chun, Jong-Han

    Gel polymer electrolytes composed of acrylonitrile-methylmethacrylate (AM) copolymer and 1 M LiClO 4-ethylene carbonate (EC)/propylene carbonate (PC) are prepared. The ionic conductivity reaches 1.9×10 -3 S cm -1 in a gel polymer electrolyte with 20 wt.% of AM copolymer and 80 wt.% of LiClO 4-EC/PC at room temperature. These systems showed no solvent exudation from the matrix polymer due to enhanced compatibility between AM copolymer and organic liquid electrolyte. A Li/gel polymer electrolyte/LiMn 2O 4 cell has a reversible capacity of 132 mAh g -1 in the voltage range of 3.0-4.3 V at the C/5 rate and shows good cycling performance with a coulombic efficiency >99%.

  17. The preparation of nanosized polyethylene particles via novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/CNTs/AlEt3

    NASA Astrophysics Data System (ADS)

    Wang, J.; Guo, J. P.; Yi, J. J.; Huang, Q. G.; Li, H. M.; Li, Y. F.; Gao, K. J.; Yang, W. T.

    2014-08-01

    This paper reports the preparation of coral-shaped topological morphology nascent polyethylene (PE) particles promoted by the novel heterogeneous non-metallocene catalyst (m-CH3PhO)TiCl3/carbon nanotubes (CNTs), with AlEt3 used as a cocatalyst. Scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM) and inductively coupled plasma (ICP) emission spectroscopy were used to determine the morphology of the catalyst particles and the content of (m-CH3PhO)TiCl3. The carbon nanotube surface was treated with Grignard Reagent prior to reacting with (m-CH3PhO)TiCl3. The catalyst system could effectively catalyze ethylene polymerization and ethylene with 1- hexene copolymerization, the catalytic activity could reach up to 5.8 kg/((gTi)h). Morphology of the obtained polymer particles by SEM and HR-TEM technique revealed that the nascent polyethylene particles looked like coral shape in micro-size. The multiwalled carbon nanotubes (MWCNTs) supported catalysts polymerized ethylene to form polymer nanocomposite in situ. The microscopic examination of this nanocomposite revealed that carbon nanoparticles in PE matrix had a good distribution and the cryogenically fractured surface was ductile-like when polymerization time was 2 min.

  18. Thermal analysis and evolution of shape loss phenomena during polymer burnout in powder metal processing

    NASA Astrophysics Data System (ADS)

    Enneti, Ravi Kumar

    2005-07-01

    Powder metallurgy technology involves manufacturing of net shape or near net shape components starting from metal powders. Polymers are used to provide lubrication during shaping and handling strength to the shaped component. After shaping, the polymers are removed from the shaped components by providing thermal energy to burnout the polymers. Polymer burnout is one of the most critical step in powder metal processing. Improper design of the polymer burnout cycle will result in formation of defects, shape loss, or carbon contamination of the components. The effect of metal particles on polymer burnout and shape loss were addressed in the present research. The study addressing the effect of metal powders on polymer burnout was based on the hypothesis that metal powders act to catalyze polymer burnout. Thermogravimetric analysis (TGA) on pure polymer, ethylene vinyl acetate (EVA), and on admixed powders of 316L stainless steel and 1 wt. % EVA were carried out to verify the hypothesis. The effect of metal powders additions was studied by monitoring the onset temperature for polymer degradation and the temperature at which maximum rate of weight loss occurred from the TGA data. The catalytic behavior of the powders was verified by varying the particle size and shape of the 316L stainless powder. The addition of metal particles lowered the polymer burnout temperatures. The onset temperature for burnout was found to be sensitive to the surface area of the metal particle as well as the polymer distribution. Powders with low surface area and uniform distribution of polymer showed a lower burnout temperature. The evolution of shape loss during polymer burnout was based on the hypothesis that shape loss occurs during the softening of the polymer and depends on the sequence of chemical bonding in the polymer during burnout. In situ observation of shape loss was carried out on thin beams compacted from admixed powders of 316L stainless steel and 1 wt. % ethylene vinyl acetate (EVA). The results showed that shape loss primarily occurs by viscous creep during the softening of the polymer. At the onset of burnout of EVA, a recovery in shape loss was observed. The recovery occurred primarily during the first stage burnout of EVA and was attributed to the formation of polyethylene co-polyacetylene which forms with a carbon double bond. The in situ strength was also found to increase during the formation of polyethylene co-polyacetylene. No recovery of shape loss was observed during burnout of polymers (polyethylene and polypropylene) which convert to yield hydrocarbons without forming carbon double bonds. (Abstract shortened by UMI.)

  19. Incorporation of High Energy Materials Into High Density Polymers

    DTIC Science & Technology

    1987-09-21

    and the pure graft copolymer was isolated by selective solvent extraction. 5 f. Isolation of pure Qraft copolymers. The isolation of pure EPDM -g-PS...characterized, such as EPDM -g-PST and EPDM -g-PMST. Two methods of synthesis were successful: a macromonomer (a polymer containing a polymerizab head group) was...copolymerized with ethylene and propylene to lead to the final product, and chlorination of a commercial EPDM allowed the chlorinated sites to serve as

  20. Theranostic nanoparticles for the treatment of cancer

    NASA Astrophysics Data System (ADS)

    Moore, Thomas Lee

    The main focus of this research was to evaluate the ability of a novel multifunctional nanoparticle to mediate drug delivery and enable a non-invasive approach to measure drug release kinetics in situ for the treatment of cancer. These goals were approached by developing a nanoparticle consisting of an inorganic core (i.e. gadolinium sulfoxide doped with europium ions or carbon nanotubes). This was coated with an external amphiphilic polymer shell comprised of a biodegradable polyester (i.e. poly(lactide) or poly(glycolide)), and poly(ethylene glycol) block copolymer. In this system, the inorganic core mediates the imaging aspect, the relatively hydrophobic polyester encapsulates hydrophobic anti-cancer drugs, and poly(ethylene glycol) stabilizes the nanoparticle in an aqueous environment. The synthesis of this nanoparticle drug delivery system utilized a simple one-pot room temperature ring-opening polymerization that neglected the use of potentially toxic catalysts and reduced the number of washing steps. This functionalization approach could be applied across a number of inorganic nanoparticle platforms. Coating inorganic nanoparticles with biodegradable polymer was shown to decrease in vitro and in vivo toxicity. Nanoparticles could be further coated with multiple polymer layers to better control drug release characteristics. Finally, loading polymer coated radioluminescent nanoparticles with photoactive drugs enabled a mechanism for measuring drug concentration in situ. The work presented here represents a step forward to developing theranostic nanoparticles that can improve the treatment of cancer.

  1. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.

    PubMed

    Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M

    2014-01-14

    The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.

  2. Effects of salt and nanoparticles on the segmental motion of poly(ethylene oxide) in its crystalline and amorphous phases: 2H and 7Li NMR studies.

    PubMed

    Vogel, M; Herbers, C; Koch, B

    2008-09-11

    We use (2)H NMR to investigate the segmental motion of poly(ethylene oxide) (PEO) in neat and nanocomposite materials that do and do not contain salt. Specifically, in addition to a neat low-molecular-weight PEO, we study mixtures of this polymer with TiO 2 nanoparticles and LiClO 4. To characterize the polymer dynamics over a wide range of time scales, we combine (2)H NMR spin-lattice relaxation, line-shape, and stimulated-echo analyses. The results consistently show that the presence of nanoparticles hardly affects the behavior of the polymer, while addition of salt leads to substantial changes; e.g., it reduces the crystallinity. For neat PEO and a PEO-TiO 2 mixture, stimulated-echo spectroscopy enables measurement of rotational correlation functions for the crystalline phase. Analysis of the decays allows us to determine correlation times, to demonstrate the existence of a nonexponential relaxation, which implies a high complexity of the polymer dynamics in the crystal, and to show that the reorientation can be described as a large-angle jump. For a PEO-TiO 2-LiClO 4 mixture, we use (2)H and (7)Li NMR to study the polymer and the lithium dynamics, respectively. Analysis of the (7)Li spin-lattice relaxation reveals a high lithium ionic mobility in this nanocomposite polymer electrolyte. The (7)Li stimulated-echo decay is well described by a stretched exponential extending over about 6 orders of magnitude, indicating that a broad and continuous distribution of correlation times characterizes the fluctuations of the local lithium ionic environments.

  3. A new metalation complex for organic synthesis and polymerization reactions

    NASA Technical Reports Server (NTRS)

    Hirshfield, S. M.

    1971-01-01

    Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.

  4. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  5. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives.

    PubMed

    Lin, Xiaojie; Ishihara, Kazuhiko

    2014-01-01

    Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.

  6. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

    PubMed Central

    Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels

    2015-01-01

    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments. PMID:26322715

  7. Influence of carbon nanotubes on the optical properties of plasticized solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ibrahim, Suriani; Yasin, Siti Mariah Mohd; Johan, Mohd Rafie

    2013-07-01

    Polyethylene oxide (PEO) based solid polymer electrolyte films complexed with lithium hexafluorophosphate (LiPF6), ethylene carbonate (EC) and carbon nanotubes (CNTs) are prepared by solution-casting technique. The complexation of doping materials with polymer is confirmed by X-ray diffraction and infrared studies. The incorporation of LiPF6, EC and CNTs into the host polymer shows a significant increase in conductivity of 10-10 and 10-3 S cm-1. The optical properties such as direct and indirect band gaps are investigated for pure and doped polymer films within a wavelength range of 200-400 nm. It is found that the energy gaps and band edge values shift towards lower energies upon doping. It is shown that LiPF6, EC and CNTs are responsible for the formation of defects in polymer electrolytes, which increases the degree of disorder in the films.

  8. Microscopic Chain Motion in Polymer Nanocomposites with Dynamically Asymmetric Interphases

    PubMed Central

    Senses, Erkan; Faraone, Antonio; Akcora, Pinar

    2016-01-01

    Dynamics of the interphase region between matrix and bound polymers on nanoparticles is important to understand the macroscopic rheological properties of nanocomposites. Here, we present neutron scattering investigations on nanocomposites with dynamically asymmetric interphases formed by a high-glass transition temperature polymer, poly(methyl methacrylate), adsorbed on nanoparticles and a low-glass transition temperature miscible matrix, poly(ethylene oxide). By taking advantage of selective isotope labeling of the chains, we studied the role of interfacial polymer on segmental and collective dynamics of the matrix chains from subnanoseconds to 100 nanoseconds. Our results show that the Rouse relaxation remains unchanged in a weakly attractive composite system while the dynamics significantly slows down in a strongly attractive composite. More importantly, the chains disentangle with a remarkable increase of the reptation tube size when the bound polymer is vitreous. The glassy and rubbery states of the bound polymer as temperature changes underpin the macroscopic stiffening of nanocomposites. PMID:27457056

  9. Magnetic modulation of release of macromolecules from polymers.

    PubMed Central

    Hsieh, D S; Langer, R; Folkman, J

    1981-01-01

    Sustained-release systems were made by incorporating bovine serum albumin and magnetic steel beads in an ethylene-vinyl acetate copolymer matrix. When exposed to aqueous medium, the polymer matrix released the albumin slowly and continuously. Application of an oscillating magnetic field increased the release rate by as much as 100%. Intervals of 6-hr periods of magnetic exposure and nonexposure were alternated over a 5-day period, resulting in corresponding increases and decreases in release and establishing a pattern of modulated sustained release. Images PMID:6940193

  10. Preparation, characterization and properties of polymer-layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Fonseca, Claudia Alencar

    Nanocomposites are a relatively new class of composites, that in the polymer area typically consist of particle-filled polymers where at least one dimension of the dispersed particles is in the nanometer range. Amongst all potential nanocomposite precursors, those based on clay and layered silicates have been more widely investigated. These nanocomposites exhibit markedly improved mechanical, thermal, optical and physico-chemical properties when compared to conventional (microscale) composites. In the present work, properties of nanocomposites of Ethylene Methacrylic Acid copolymers and organically modified Montmorillonite formed from the melt was investigated. Nanocomposites of Poly(vinyl alcohol) and Montmorillonite formed from solution was also studied.

  11. Precisely Controlled Ultrathin Conjugated Polymer Films for Large Area Transparent Transistors and Highly Sensitive Chemical Sensors.

    PubMed

    Khim, Dongyoon; Ryu, Gi-Seong; Park, Won-Tae; Kim, Hyunchul; Lee, Myungwon; Noh, Yong-Young

    2016-04-13

    A uniform ultrathin polymer film is deposited over a large area with molecularlevel precision by the simple wire-wound bar-coating method. The bar-coated ultrathin films not only exhibit high transparency of up to 90% in the visible wavelength range but also high charge carrier mobility with a high degree of percolation through the uniformly covered polymer nanofibrils. They are capable of realizing highly sensitive multigas sensors and represent the first successful report of ethylene detection using a sensor based on organic field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ferulic Acid-Based Polymers with Glycol Functionality as a Versatile Platform for Topical Applications.

    PubMed

    Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E

    2015-09-14

    Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products.

  13. Cell adhesion pattern created by OSTE polymers.

    PubMed

    Liu, Wenjia; Li, Yiyang; Ding, Xianting

    2017-04-24

    Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry thiol-ene (OSTE) polymers to create heterogeneity on the surface by utilizing 3D printing and soft-lithography. By choosing two OSTE polymers with different functional groups, we create a pattern where only parts of the surface can facilitate cell adhesion. We also study the hydrophilic property of OSTE polymers by mixing poly(ethylene glycol) (PEG) directly with pre-polymers and plasma treatments afterwards. Moreover, we investigate the effect of functional groups' excess ratio and hydrophilic property on the cell adhesion ability of OSTE polymers. The results show that the cell adhesion ability of OSTE materials can be tuned within a wide range by the coupling effect of functional groups' excess ratio and hydrophilic property. Meanwhile, by mixing PEG with pre-polymers and undergoing oxygen plasma treatment afterward can significantly improve the hydrophilic property of OSTE polymers.

  14. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  15. Evaluation of novophalt as an additive in asphalt.

    DOT National Transportation Integrated Search

    1991-01-01

    Novophalt, which is an ethylene vinyl acetate polymer, was used as an asphalt additive in a test section in an attempt to determine whether it is useful in the prevention of rutting. A special blending unit was required to blend the asphalt cement an...

  16. Surface Plasmon Resonance Study of the Binding of PEO-PPO-PEO Triblock Copolymer and PEO Homopolymer to Supported Lipid Bilayers.

    PubMed

    Kim, Mihee; Vala, Milan; Ertsgaard, Christopher T; Oh, Sang-Hyun; Lodge, Timothy P; Bates, Frank S; Hackel, Benjamin J

    2018-06-12

    Poloxamer 188 (P188), a poly(ethylene oxide)- b-poly(propylene oxide)- b-poly(ethylene oxide) triblock copolymer, protects cell membranes against various external stresses, whereas poly(ethylene oxide) (PEO; 8600 g/mol) homopolymer lacks protection efficacy. As part of a comprehensive effort to elucidate the protection mechanism, we used surface plasmon resonance (SPR) to obtain direct evidence of binding of the polymers onto supported lipid bilayers. Binding kinetics and coverage of P188 and PEO were examined and compared. Most notably, PEO exhibited membrane association comparable to that of P188, evidenced by comparable association rate constants and coverage. This result highlights the need for additional mechanistic understanding beyond simple membrane association to explain the differential efficacy of P188 in therapeutic applications.

  17. Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: Correlating solution rheology to nanofiber formation.

    PubMed

    Rieger, Katrina A; Birch, Nathan P; Schiffman, Jessica D

    2016-03-30

    Electrospinning hydrophilic nanofiber mats that deliver hydrophobic agents would enable the development of new therapeutic wound dressings. However, the correlation between precursor solution properties and nanofiber morphology for polymer solutions electrospun with or without hydrophobic oils has not yet been demonstrated. Here, cinnamaldehyde (CIN) and hydrocinnamic alcohol (H-CIN) were electrospun in chitosan (CS)/poly(ethylene oxide) (PEO) nanofiber mats as a function of CS molecular weight and degree of acetylation (DA). Viscosity stress sweeps determined how the oils affected solution viscosity and chain entanglement (Ce) concentration. Experimentally, the maximum polymer:oil mass ratio electrospun was 1:3 and 1:6 for CS/PEO:CIN and:H-CIN, respectively; a higher chitosan DA increased the incorporation of H-CIN only. The correlations determined for electrospinning plant-derived oils could potentially be applied to other hydrophobic molecules, thus broadening the delivery of therapeutics from electrospun nanofiber mats. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Clonazepam release from bioerodible hydrogels based on semi-interpenetrating polymer networks composed of poly(epsilon-caprolactone) and poly(ethylene glycol) macromer.

    PubMed

    Cho, C S; Han, S Y; Ha, J H; Kim, S H; Lim, D Y

    1999-04-30

    Poly(ethylene glycol)(PEG) macromers terminated with acrylate groups and semi-interpenetrating polymer networks (SIPNs) composed of poly(epsilon-caprolactone)(PCL) and PEG macromer were synthesized to obtain a bioerodible hydrogel. Polymerization of PEG macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Glass transition temperature (Tg) and melting temperature (Tm) of PEG networks and PCL in the SIPNs were inner-shifted, indicating an interpenetration of PCL and PEG chains. Water content in the SIPNs increased with increasing PEG weight fraction due to the hydrophilicity of PEG. The amount of clonazepam (CNZ) released from the SIPNs increased with higher content in the SIPNs, lower drug loading, lower concentration of PEG macromer during the SIPNs preparation, and higher molecular weight of PEG. In particular, a combination with low PEG content and low CNZ solubility in water led to long-term constant release from these matrices in vitro and in vivo. Copyright.

  19. The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.

    2016-09-01

    Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.

  20. Novel differential refractometry study of the enzymatic degradation kinetics of poly(ethylene oxide)-b-poly(epsilon-caprolactone) particles dispersed in water.

    PubMed

    Lam, HiuFung; Gong, Xiangjun; Wu, Chi

    2007-02-22

    A poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer was micronized into small micelle-like particles (approximately 80 nm) via dialysis-induced microphase inversion. The enzymatic biodegradation of the PCL portion of these particles in water was in situ investigated inside a recently developed novel differential refractometer. Using this refractometry method, we were able to monitor the real-time biodegradation via the refractive index change (Deltan) of the dispersion because Deltan is directly proportional to the particle mass concentration. We found that the degradation rate is proportional to either the polymer or enzyme concentration. Our results directly support previous speculation on the basis of the light-scattering data that the biodegradation follows the first-order kinetics for a given enzyme concentration. This study not only leads to a better understanding of the enzymatic biodegradation of PCL, but also demonstrates a novel, rapid, noninvasive, and convenient way to test the degradability of polymers.

  1. Dielectric Properties of Generation 3 Pamam Dendrimer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ristić, Sanja; Mijović, Jovan

    2008-08-01

    Broadband dielectric relaxation spectroscopy (DRS) was employed to study molecular dynamics of blends composed of generation 3 poly(amidoamine) (PAMAM) dendrimers with ethylenediamine core and amino surface groups and four linear polymers: poly(propylene oxide)—PPO, two block copolymers, poly(propylene oxide)/poly(ethylene oxide)—PPO/PEO with different mol ratios (29/6 and 10/31) and poly(ethylene oxide)—PEO. The results were generated over a broad range of frequency. Dielectric spectra of dendrimers in PPO matrix reveal slight shift of normal and segmental processes to higher frequency with increasing concentration of dendrimers. In the 29PPO/6PEO matrix, no effect of concentration on the average relaxation time for normal and segmental processes was observed. In the 10PPO/31PEO matrix the relaxation time of the segmental process increases with increasing dendrimer concentration, while in the PEO matrix, local processes in dendrimers slow down. A detailed analysis of the effect of concentration of dendrimers and morphology of polymer matrix on the dielectric properties of dendrimer nanocomposites will be presented.

  2. Certification and uncertainty evaluation of the certified reference materials of poly(ethylene glycol) for molecular mass fractions by using supercritical fluid chromatography.

    PubMed

    Takahashi, Kayori; Kishine, Kana; Matsuyama, Shigetomo; Saito, Takeshi; Kato, Haruhisa; Kinugasa, Shinichi

    2008-07-01

    Poly(ethylene glycol) (PEG) is a useful water-soluble polymer that has attracted considerable interest in medical and biological science applications as well as in polymer physics. Through the use of a well-calibrated evaporative light-scattering detector coupled with high performance supercritical fluid chromatography, we are able to determine exactly not only the average mass but also all of the molecular mass fractions of PEG samples needed for certified reference materials issued by the National Metrology Institute of Japan. In addition, experimental uncertainty was determined in accordance with the Guide to the expression of uncertainty in measurement (GUM). This reference material can be used to calibrate measuring instruments, to control measurement precision, and to confirm the validity of measurement methods when determining molecular mass distributions and average molecular masses. Especially, it is suitable for calibration against both masses and intensities for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

  3. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the disordered structure observed in diblock polymer melts near the order-disorder transition. In the resulting solid PEMs, the conductivity and modulus are both high, exceeding the 1 mS/cm and approaching the 1 GPa metrics, respectively, often cited for lithium-metal batteries. In the final chapter, an alternative synthetic route to generate nanostructured PEMs is presented. This strategy relies on the formation of a thermodynamically stable network morphology exhibited by a triblock terpolymer prepared with crosslinking moieties along the backbone. Although the mechanical properties of the resulting PEM are excellent, the conductivity is found to be somewhat limited by network defects that result from the solvent-casting procedure.

  4. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers.

    PubMed

    Roach, David J; Dou, Shichen; Colby, Ralph H; Mueller, Karl T

    2013-05-21

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T(g)) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting (13)C with (1)H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) (1)H-(13)C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and (1)H spin-lattice relaxation rate measurements. Previous (1)H and (7)Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of (13)C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time (1)H-(13)C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from (1)H to (13)C nuclei, becomes similar for T≳1.1 T(g) in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the dependence of backbone dynamics on cation density (and here, cation identity as well) in these amorphous PEO-based ionomer systems.

  5. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    PubMed Central

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions. PMID:26791572

  6. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  7. Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride- co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Prasanth; Zhao, Xiaohui; Shin, Chorong; Baek, Dong-Ho; Choi, Jae-Won; Manuel, James; Heo, Min-Yeong; Ahn, Jou-Hyeon; Nah, Changwoon

    Apart from PEO based solid polymer electrolytes, tailor-made gel polymer electrolytes based on blend/composite membranes of poly(vinylidene fluoride- co-hexafluoropropylene) and polyacrylonitrile are prepared by electrospinning using 14 wt% polymer solution in dimethylformamide. The membranes show uniform morphology with an average fiber diameter of 320-490 nm, high porosity and electrolyte uptake. Polymer electrolytes are prepared by soaking the electrospun membranes in 1 M lithium hexafluorophosphate in ethylene carbonate/dimethyl carbonate. Temperature dependent ionic conductivity and their electrochemical performance are studied. The blend/composite polymer electrolytes show good ionic conductivity in the range of 10 -3 S cm -1 at ambient temperature and good electrochemical performance. All the Polymer electrolytes show an anodic stability >4.6 V with stable interfacial resistance with storage time. The prototype cell shows good charge-discharge properties and stable cycle performance with comparable capacity fade compared to liquid electrolyte under the test conditions.

  8. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  9. Controlling Molecular Ordering in Solution-State Conjugated Polymers

    DOE PAGES

    Zhu, Jiahua; Han, Youngkyu; Kumar, Rajeev; ...

    2015-07-17

    Rationally encoding molecular interactions that can control the assembly structure and functional expression in solution of conjugated polymers holds great potential for enabling optimal organic optoelectronic and sensory materials. In this work, we show that thermally-controlled and surfactant-guided assembly of water-soluble conjugated polymers in aqueous solution is a simple and effective strategy to generate optoelectronic materials with desired molecular ordering. We have studied a conjugated polymer consisting of a hydrophobic thiophene backbone and hydrophilic, thermo-responsive ethylene oxide side groups, which shows a step-wise, multi-dimensional assembly in water. By incorporating the polymer into phase-segregated domains of an amphiphilic surfactant in solution,more » we demonstrate that both chain conformation and degree of molecular ordering of the conjugated polymer can be tuned in hexagonal, micellar and lamellar phases of the surfactant solution. The controlled molecular ordering in conjugated polymer assembly is demonstrated as a key factor determining the electronic interaction and optical function.« less

  10. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi

    2016-01-01

    Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm-1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.

  11. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE PAGES

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  12. Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Ganesan, Venkat; Hanson, Benjamin; Pryamitsyn, Victor

    2014-03-01

    Recently, a number of experiments have demonstrated that addition of ceramics with nanoscale dimensions can lead to substantial improvements in the low temperature conductivity of the polymeric materials. However, the origin of such behaviors, and more generally, the manner by which nanoscale fillers impact the ion mobilities remain unresolved. In this communication, we report the results of atomistic molecular dynamics simulations which used multibody polarizable force-fields to study lithium ion diffusivities in an amorphous poly(ethylene-oxide) (PEO) melt containing well-dispersed TiO2 nanoparticles. We observed that the lithium ion diffusivities decrease with increased particle loading. Our analysis suggests that the ion mobilities are correlated to the nanoparticle-induced changes in the polymer segmental dynamics. Interestingly, the changes in polymer segmental dynamics were seen to be related to the nanoparticle's influence on the polymer conformational features. Overall, our results indicate that addition of nanoparticle fillers modify polymer conformations and the polymer segmental dynamics, and thereby influence the ion mobilities of polymer electrolytes.

  13. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition-fragmentation chain transfer polymerization.

    PubMed

    He, Peng; He, Lin

    2009-07-13

    We report here an approach to grafting DNA-polymer bioconjugates on a planar solid support using reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, a trithiocarbonate compound as the RAFT chain transfer agent (CTA) is attached to the distal point of a surface-immobilized oligonucleotide. Initiation of RAFT polymerization leads to controlled growth of polymers atop DNA molecules on the surface. Growth kinetics of poly(monomethoxy-capped oligo(ethylene glycol) methacrylate) atop DNA molecules is investigated by monitoring the change of polymer film thickness as a function of reaction time. The reaction conditions, including the polymerization temperature, the initiator concentration, the CTA surface density, and the selection of monomers, are varied to examine their impacts on the grafting efficiency of DNA-polymer conjugates. Comparing to polymer growth atop small molecules, the experimental results suggest that DNA molecules significantly accelerate polymer growth, which is speculated as a result of the presence of highly charged DNA backbones and purine/pyrimidine moieties surrounding the reaction sites.

  14. Synthesis of molecular imprinting polymers for extraction of gallic acid from urine.

    PubMed

    Bhawani, Showkat Ahmad; Sen, Tham Soon; Ibrahim, Mohammad Nasir Mohammad

    2018-02-21

    The molecularly imprinted polymers for gallic acid were synthesized by precipitation polymerization. During the process of synthesis a non-covalent approach was used for the interaction of template and monomer. In the polymerization process, gallic acid was used as a template, acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker and 2,2'-azobisisobutyronitrile as an initiator and acetonitrile as a solvent. The synthesized imprinted and non-imprinted polymer particles were characterized by using Fourier-transform infrared spectroscopy and scanning electron microscopy. The rebinding efficiency of synthesized polymer particles was evaluated by batch binding assay. The highly selective imprinted polymer for gallic acid was MIPI1 with a composition (molar ratio) of 1:4:20, template: monomer: cross-linker, respectively. The MIPI1 showed highest binding efficiency (79.50%) as compared to other imprinted and non-imprinted polymers. The highly selective imprinted polymers have successfully extracted about 80% of gallic acid from spiked urine sample.

  15. Effect of blending and nanoparticles on the ionic conductivity of solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2018-05-01

    In the present work, a polymer electrolyte blend containing polymers Poly ethylene oxide (PEO) and Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared. The polymer blend was complexed with potassium trifluoromethanesulfonate (KCF3SO3), and titanium oxide nanoparticles (TiO2) (10nm size) were dispersed in to the complex at different weight percentages. The conductivity due to ions in the blend is determined by Ac impedance measurements in the frequency range of 10Hz-1MHz. The nano composite polymer blend containing 5wt% of TiO2 shows a conductivity of 7.95×10-5Scm-1, which is almost 1.5 orders more than polymer electrolyte with PEO as a polymer. XRD studies show a decrease in the coherence length of XRD peaks on addition of nanoparticles, which is due to increase the amorphous phase in the systems. Temperature dependence conductivity studies of the systems shows that, activation energy decreases with increase in the percentage of nanoparticles in the blend.

  16. Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes

    PubMed Central

    2015-01-01

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971

  17. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    NASA Astrophysics Data System (ADS)

    Dyartanti, Endah R.; Purwanto, Agus; Widiasa, I. Nyoman; Susanto, Heru

    2016-02-01

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  18. Exploitation of knowledge databases in the synthesis of zinc(II) malonates with photo-sensitive and photo-insensitive N,N'-containing linkers.

    PubMed

    Zorina-Tikhonova, Ekaterina N; Chistyakov, Aleksandr S; Kiskin, Mikhail A; Sidorov, Aleksei A; Dorovatovskii, Pavel V; Zubavichus, Yan V; Voronova, Eugenia D; Godovikov, Ivan A; Korlyukov, Alexander A; Eremenko, Igor L; Vologzhanina, Anna V

    2018-05-01

    Photoinitiated solid-state reactions are known to affect the physical properties of coordination polymers, such as fluorescence and sorption behaviour, and also afford extraordinary architectures ( e.g. three-periodic structures with polyorganic ligands). However, the construction of novel photo-sensitive coordination polymers requires an understanding of the factors which govern the mutual disposition of reactive fragments. A series of zinc(II) malonate complexes with 1,2-bis(pyridin-4-yl)ethylene and its photo-insensitive analogues has been synthesized for the purpose of systematic analysis of their underlying nets and mutual disposition of N -donor ligands. The application of a big data-set analysis for the prediction of a variety of possible complex compositions, coordination environments and networks for a four-component system has been demonstrated for the first time. Seven of the nine compounds possess one of the highly probable topologies for their underlying nets; in addition, two novel closely related four-coordinated networks were obtained. Complexes containing 1,2-bis(pyridin-4-yl)ethylene and 1,2-bis(pyridin-4-yl)ethane form isoreticular compounds more readily than those with 4,4'-bipyridine and 1,2-bis(pyridin-4-yl)ethylene. The effects of the precursor, either zinc(II) nitrate or zinc(II) acetate, on the composition and dimensionality of the resulting architecture are discussed. For three of the four novel complexes containing 1,2-bis(pyridin-4-yl)ethylene, the single-crystal-to-single-crystal [2 + 2] cycloaddition reactions were carried out. UV irradiation of these crystals afforded either the 0D→1D or the 3D→3D transformations, with and without network changes. One of the two 3D→3D transformations was accompanied by solvent (H 2 O) cleavage.

  19. Melt Miscibility in Block Copolymers Containing Polyethylene and Substituted Polynorbornenes

    NASA Astrophysics Data System (ADS)

    Mulhearn, William; Register, Richard

    Very few polymer species exist with a sufficiently weak repulsive interaction against polyethylene (PE), characterized by a low Flory parameter χ or interaction energy density X, to be useful for preparing PE-containing block copolymers with disordered melts at high molecular weights. Most suitably miscible polymers are chemically similar to PE, such as copolymers of ethylene with a minority content of an α-olefin, and so are only marginally useful for property modification due to similar physical properties like the glass transition temperature (Tg) . However, the family of polymers consisting of substituted norbornenes prepared via ring-opening metathesis polymerization (ROMP) and subsequent hydrogenation is unique in that many of its members exhibit very low X against PE (comparable with the interaction energy between poly(ethylene-alt-propylene) and PE), and some of these also exhibit high Tg. The miscibility between PE and a substituted, hydrogenated ROMP polynobornene, or between two dissimilar hydrogenated polynorbornenes, is a strong function of the substituent appended to the norbornene monomer. The mixing thermodynamics of this polymer series are irregular, in that the interaction energies do not follow X = (δ1 - δ2)2 where δ is the solubility parameter. However, other systematic trends do apply and we develop a set of mixing rules to quantitatively describe the experimental miscibility behavior. We also investigate statistical copolymerization of two norbornene monomers as a means to continuously tune miscibility with a homopolymer of a third monomer.

  20. Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells.

    PubMed

    Liu, Hui; Wang, Kai; Yang, Cangjie; Huang, Shuo; Wang, Mingfeng

    2017-09-01

    Polymeric micelles loaded with multiple therapeutic modalities are important to overcome challenges such as drug resistance and improve the therapeutic efficacy. Here we report a new polymer micellar drug carrier that integrates chemotherapy and photothermal therapy in a single platform. Specifically, a narrow bandgap poly(dithienyl-diketopyrrolopyrrole) (PDPP) polymer was encapsulated together with a model anticancer drug doxorubicin (DOX) in the hydrophobic cores of polymeric micelles formed by Pluronic F127, an amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. The PDPP polymer served as an organic photothermal agent that absorbs near-infrared light (700-1000nm) and transforms into heat efficiently. The dual functional micelles co-loaded with PDPP and DOX in the hydrophobic compartment showed good colloidal stability after being stored at 4°C at least over two months, and remained visibly stable after 808-nm laser irradiation. The loaded DOX had negligible effect on the size and photothermal property of the micelles. The release of DOX from the micelles could be enhanced by the "breathing" effect of shrinking/swelling of the micelles induced by the temperature change, owing to the thermosensitive nature of the F127 polymers. Importantly, the ternary F127/PDPP/DOX micelles under 808-nm laser irradiation showed enhanced cytotoxicity against cancer cells such as HeLa cells, compared to F127 micelles containing single modality of either PDPP or DOX only. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The influence of polymer architecture on the assembly of poly(ethylene oxide) grafted C60 fullerene clusters in aqueous solution: a molecular dynamics simulation study.

    PubMed

    Hooper, Justin B; Bedrov, Dmitry; Smith, Grant D

    2009-03-28

    The effect of polymer architecture on the aggregation behavior of C60 fullerenes tethered with a single chain of poly(ethylene oxide) (PEO) in aqueous solution has been investigated using coarse-grained, implicit solvent molecular dynamics simulations. The PEO-grafted fullerenes were comprised of a single tether of 60 repeat units represented as a linear polymer, a three-arm star (20 repeat units/arm) or a six-arm star (10 repeat units/arm). Additionally, the influence of arm length on self-assembly of the PEO-fullerene conjugates was investigated for the three-arm stars. Self-assembly is driven by favorable fullerene-fullerene and fullerene-PEO interactions. Our simulations reveal that it should be possible to control the size and geometry of the self-assembled fullerene aggregates in water through variation of PEO architecture and PEO molecular weight. We found that aggregate size and shape could be understood qualitatively in terms of the packing parameter concept that has been employed for diblock polymer and surfactant self-assembly. Higher molecular weight PEO (longer arms) and more compact PEO (more arms for the same molecular weight) resulted in greater steric repulsion between fullerenes, engendering greater aggregate surface curvature and hence the formation of smaller, more spherically shaped aggregates. Finally, weak attractive interactions between PEO and the fullerenes were found to play an important role in determining aggregate shape, size and the dynamics of self-assembly.

  2. Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug.

    PubMed

    Fizir, Meriem; Dramou, Pierre; Zhang, Kai; Sun, Cheng; Pham-Huy, Chuong; He, Hua

    2017-11-01

    In this research, novel polymer grafted-magnetic halloysite nanotubes with norfloxacin loaded (NOR-MHNTs) and controlled-release, was achieved by surface-initiated precipitation polymerization. The magnetic halloysite nanotubes exhibited better adsorption of NOR (72.10mgg -1 ) compared with the pristine HNTs (30.80mgg -1 ). Various parameters influencing the drug adsorption of the MHNTs for NOR were studied. Polymer grafted NOR-MHNTs has been designed using flexible docking in computer simulation to choose optimal monomers. NOR-MHNTs/poly (methacrylic acid or acrylamide-co-ethylene glycol dimethacrylate) nanocomposite were synthesized using NOR-MHNTs, methacrylic acid (MAA) or acrylamide (AM), ethylene glycol dimethacrylate (EGDMA) and AIBN as nanotemplate, monomers, cross linker and initiator, respectively. The magnetic nanocomposites were characterized by FTIR, TEM, XRD and VSM. The magnetic nanocomposites show superparamagnetic property and fast magnetic response (12.09emug -1 ). The copolymerization of monomers and cross linker led to a better sustained release of norfloxacin (>60h) due to the strong interaction formed between monomers and this cationic drug. The cumulative release rate of NOR is closely related to the cross linker amount. In conclusion, combining the advantages of the high adsorption capacity and magnetic proprieties of this biocompatible clay nanotube and the advantages of polymer shell in the enhancement of controlled-sustained release of cationic drug, a novel formulation for the sustained-controlled release of bioactive agents is developed and may have considerable potential application in targeting drug delivery system. Copyright © 2017. Published by Elsevier Inc.

  3. Photochemical reactions of cyanoacetylene and dicyanoacetylene: Possible processes in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Guillemin, J. C.

    1991-01-01

    Titan has an atmosphere which is subject to dramatic chemical evolution due mainly to the dramatic effect of the UV flux from the Sun. The energetic solar photons and other particles are converting the methane-nitrogen atmosphere into the unsaturated carbon compounds observed by the Voyager probes. These same solar photons are also converting some of these unsaturated reaction products into the aerosols observed in the atmosphere which obscure the view of the surface of Titan. In particular, the photochemical reactions of cyanoacetylene, dicyanoacetylene, acetylene and ethylene may result in the formation of the higher hydrocarbons and polymers which result in the aerosols observed in Titan's atmosphere. Polymers are the principal reaction products formed by irradiation of cyanoacetylene and dicyanoacetylene. Irradiation of cyanoacetylene with 185 nm of light also yields 1,3,5-tricyanobenzene while irradiation at 254 nm yields 1,2,4-tricyanobenzene and tetracyano cyclooctatetraenes. Photolyses of mixtures of cyanoacetylene and acetylene yields mono- and di- cyanobenzenes. The 1-Cyanocyclobutene is formed from the photochemical addition of cyanoacetylene with ethylene. The photolysis of dicyanoacetylene with acetylene yields 2,3-dicyano-1,3-butadiene and 1,2-dicyanobenzene. Tetracyano cyclooctatetraene products were also observed in the photolysis of mixtures of dicyanoacetylene and acetylene with 254 nm light. The 1,2-Dicyano cyclobutene is obtained from the photolysis dicyanoacetylene and ethylene. Reaction mechanisms will be proposed to explain the observed photoproducts.

  4. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

    DOE PAGES

    Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...

    2018-10-02

    Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less

  5. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusuma, Victor A.; Macala, Megan K.; Liu, Jian

    Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less

  6. Characterization of compressibility and compactibility of poly(ethylene oxide) polymers for modified release application by compaction simulator.

    PubMed

    Yang, L; Venkatesh, G; Fassihi, R

    1996-10-01

    Poly(ethylene oxide) polymers (PEO) appear to have great potential for controlled release applications. These polymers are hydrophilic with good water solubility, low toxicity, and high swelling capacity. As part of formulation optimization for a large-scale solid dosage form production, physicomechanical characterization of PEO was undertaken using a compaction simulator. Heckel plots for all PEOs were constructed, and yield pressures (Py) at different punch velocities were calculated from the linear portion of the plots. Low Py values, increase of Py with increasing punch speed, upward curvature of the plot, and strain rate sensitivity values indicate that the densification process and consolidation mechanism for PEOs of various molecular weights (0.2 x 10(6) to 7 x 10(6)) are identical and follow plastic deformation. PEOs have a high degree of crystallinity (57-85%) and show significant axial recovery (15-25%) upon decompression and ejection. The low Py values (58-78 MPa) and low mean compaction pressures demonstrate that volume reduction (compressibility) under pressure is excellent. However, due to viscoelastic behavior and large axial expansion, tablets of relatively low tensile strength are produced. These observations suggest the need to blend PEO with highly compactible excipients in order to produce tables on a high-speed production press.

  7. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  8. Association behaviors of dodecyltrimethylammonium bromide with double hydrophilic block co-polymer poly(ethylene glycol)-block-poly(glutamate sodium).

    PubMed

    Han, Yuchun; Xia, Lin; Zhu, Linyi; Zhang, Shusheng; Li, Zhibo; Wang, Yilin

    2012-10-30

    The association behaviors of single-chain surfactant dodecyltrimethylammonium bromide (DTAB) with double hydrophilic block co-polymers poly(ethylene glycol)-b-poly(sodium glutamate) (PEG(113)-PGlu(50) or PEG(113)-PGlu(100)) were investigated using isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, ζ potential, and particle size measurements. The electrostatic interaction between DTAB and the oppositely charged carboxylate groups of PEG-PGlu induces the formation of super-amphiphiles, which further self-assemble into ordered aggregates. Dependent upon the charge ratios between DTAB and the glutamic acid residue of the co-polymer, the mixture solutions can change from transparent to opalescent without precipitation. Dependent upon the chain length of the PGlu block, the mixture of DTAB and PEG-PGlu diblocks can form two different aggregates at their corresponding electroneutral point. Spherical and rod-like aggregates are formed in the PEG(113)-PGlu(50)/DTAB mixture, while the vesicular aggregates are observed in the PEG(113)-PGlu(100)/DTAB mixture solution. Because the PEG(113)-PGlu(100)/DTAB super-amphiphile has more hydrophobic components than that of the PEG(113)-PGlu(50)/DTAB super-amphiphile, the former prefers forming the ordered aggregates with higher curvature, such as spherical and rod aggregates, but the latter prefers forming vesicular aggregates with lower curvature.

  9. Synthesis and characterization of star-shaped oligo(ethylene glycol) with tyrosine derived moieties under variation of their molecular weight.

    PubMed

    Julich-Gruner, Konstanze K; Roch, Toralf; Ma, Nan; Neffe, Axel T; Lendlein, Andreas

    2015-01-01

    Desamino tyrosine (DAT) and desamino tyrosyl tyrosine (DATT) can be used to functionalize the end groups of water soluble polymers. The phenolic groups may enable physical interactions by π- π interaction and hydrogen bonds, which might lead to the formation of a hydrogel by physical crosslinking. However, using star-shaped oligo(ethylene glycols) (sOEG) with a molecular weight of 5 kDa for functionalization with DAT or DATT resulted in the formation of surfactants and not in hydrogels.As the molecular weight of the sOEG polymer chain can have an influence on forming physical cross links, DAT(T)-fuctionalization of sOEGs with higher molecular weight was investigated, the polymers were structurally characterized and for their mechanical properties were evaluated by rheological measurements.Aqueous solutions of DAT(T)-sOEGs with 10 and 20 kDa showed lower storage and loss moduli compared to unfunctionalized sOEGs indicating also the formation of surfactants. Cell-based assays showed that all sOEG solutions did not impair cell viability and were free of endotoxins, which could otherwise induce uncontrolled immune responses.Conclusively, our data suggested that the sOEG solutions have surface active properties without inducing unwanted cellular responses, which is required e.g. in pharmaceutical applications to solubilize hydophobic substances.

  10. Effect of fibre treatments on tensile properties of ethylene vinyl acetate/natural rubber/mengkuang leaf fibre (EVA/NR/MLF) thermoplastic elastomer composites

    NASA Astrophysics Data System (ADS)

    Hashim, Faiezah; Ismail, Hanafi; Rusli, Arjulizan

    2017-07-01

    Nowadays, a great attention has been dedicated to natural fibers as reinforcement for polymer composites. Natural fibers, compared to glass fibers, exhibit better mechanical properties, such as stiffness, impact strength, flexibility and modulus. However, certain drawbacks, such as the incompatibility between fibers and polymer matrices, the tendency to form aggregates during processing and the poor resistance to moisture, reduce the use of these natural fibers as reinforcements in polymers. Several treatments and modifications are being used to improve the adhesion between fibre and matrix. In this work, the effect of bleaching treatments using hydrogen peroxide in the Mengkuang leaf fibre (MLF) was evaluated on tensile properties of Ethylene Vinyl Acetate (EVA)/Natural Rubber (NR)/MLF composites. Treated MLF were mixed with the EVA/NR blend in Haake internal mixer at 120 °C and rotor speed of 50 rpm for 10 minutes. Fibre morphology and the fibre/matrix interface ware further characterized by scanning electron microscopy (SEM). The tensile strength was increased by about 8% as compared to the composites with untreated fibers. The increased adhesion between fiber and matrix was also observed by SEM. Thus, EVA/NR/MLF composites reinforced with the treated fibres exhibited better tensile properties than untreated EVA/NR/MLF composites.

  11. New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol)-cholesterol conjugates.

    PubMed Central

    Beugin, S; Edwards, K; Karlsson, G; Ollivon, M; Lesieur, S

    1998-01-01

    Monomethoxypoly(ethylene glycol) cholesteryl carbonates (M-PEG-Chol) with polymer chain molecular weights of 1000 (M-PEG1000-Chol) and 2000 (M-PEG2000-Chol) have been newly synthesized and characterized. Their aggregation behavior in mixture with diglycerol hexadecyl ether (C16G2) and cholesterol has been examined by cryotransmission electron microscopy, high-performance gel exclusion chromatography, and quasielastic light scattering. Nonaggregated, stable, unilamellar vesicles were obtained at low polymer levels with optimal shape and size homogeneity at cholesteryl conjugate/ lipids ratios of 10 mol% M-PEG1000-Chol or 5 mol% M-PEG2000-Chol, corresponding to the theoretically predicted brush conformational state of the PEG chains. At 20 mol% M-PEG1000-Chol or 10 mol% M-PEG2000-Chol, the saturation threshold of the C16G2/cholesterol membrane in polymer is exceeded, and open disk-shaped aggregates are seen in coexistence with closed vesicles. Higher levels up to 30 mol% lead to the complete solubilization of the vesicles into disk-like structures of decreasing size with increasing PEG content. This study underlines the bivalent role of M-PEG-Chol derivatives: while behaving as solubilizing surfactants, they provide an efficient steric barrier, preventing the vesicles from aggregation and fusion over a period of at least 2 weeks. PMID:9635773

  12. Controlled Supramolecular Self-Assembly of Super-charged β-Lactoglobulin A-PEG Conjugates into Nanocapsules.

    PubMed

    Khan, Amit Kumar; Gudlur, Sushanth; de Hoog, Hans-Peter M; Siti, Winna; Liedberg, Bo; Nallani, Madhavan

    2017-09-18

    The synthesis and characterization of a new protein-polymer conjugate composed of β lactoglobulin A (βLG A) and poly(ethylene glycol) PEG is described. βLG A was selectively modified to self-assemble by super-charging via amination or succinylation followed by conjugation with PEG. An equimolar mixture of the oppositely charged protein-polymer conjugates self-assemble into spherical capsules of 80-100 nm in diameter. The self-assembly proceeds by taking simultaneous advantage of the amphiphilicity and polyelectrolyte nature of the protein-polymer conjugate. These protein-polymer capsules or proteinosomes are reminiscent of protein capsids, and are capable of encapsulating solutes in their interior. We envisage this approach to be applicable to other globular proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. P-type polymer-based Ag2S atomic switch for “tug of war” operation

    NASA Astrophysics Data System (ADS)

    Lutz, Carolin; Hasegawa, Tsuyoshi; Tsuchiya, Takashi; Adelsberger, Christoph; Hayakawa, Ryoma; Chikyow, Toyohiro

    2017-06-01

    The Ag2S gap-type atomic switch based “tug of war” device is a promising element for building a new type of CMOS free neuromorphic computer-hardware. Since Ag+ cations are reduced during operation of the device, it was thought that the gap-material should be a n-type polymer. In this study, we revealed that the polymer bithiophene-oligoethyleneoxide (BTOE) doped poly(ethylene oxide) (PEO), which was used as gap-material in the first demonstration of the “tug of war”, is a p-type polymer. For this we used impedance spectroscopy and transistor measurements. We elaborate on how the electrochemical processes in the “tug of war” devices could be explained in the case of p-type conductive gap-materials.

  14. Copper cladding on polymer surfaces by ionization-assisted deposition

    NASA Astrophysics Data System (ADS)

    Kohno, Tomoki; Tanaka, Kuniaki; Usui, Hiroaki

    2018-03-01

    Copper thin films were prepared on poly(ethylene terephthalate) (PET) and polyimide (PI) substrates by an ionization-assisted vapor deposition method. The films had a polycrystalline structure, and their crystallite size decreased with increasing ion acceleration voltage V a. Ion acceleration was effective in reducing the surface roughness of the films. Cross-sectional transmission electron microscopy revealed that the copper/polymer interface showed increased corrugation with increasing V a. The increase in V a also induced the chemical modification of polymer chains of the PET substrate, but the PI substrate underwent smaller modification after ion bombardment. Most importantly, the adhesion strength between the copper film and the PET substrate increased with increasing V a. It was concluded that ionization-assisted deposition is a promising technique for preparing metal clad layers on flexible polymer substrates.

  15. Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors

    NASA Astrophysics Data System (ADS)

    Tien, Chien-Pin; Teng, Hsisheng

    A single graphene sheet represents a carbon material with the highest surface area available to accommodating molecules or ions for physical and chemical interactions. Here we demonstrate in an electric double layer capacitor the outstanding performance of graphite oxide for providing a platform for double layer formation. Graphite oxide is generally the intermediate compound for obtaining separated graphene sheets. Instead of reduction with hydrazine, we incorporate graphite oxide with a poly(ethylene oxide)-based polymer and anchor the graphene oxide sheets with poly(propylene oxide) diamines. This polymer/graphite oxide composite shows in a "dry" gel-electrolyte system a double layer capacitance as high as 130 F g -1. The polymer incorporation developed here can significantly diversify the application of graphene-based materials in energy storage devices.

  16. Simultaneous improvement in ionic conductivity and flexibility of solid polymer electrolytes for thin film lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ji, Jianying

    Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of polymers, blended with poly(ethylene oxide)(PEO). The results indicated that the s-SPE with 55 wt% of SPI possesses a fully amorphous uniform structure having low Tg, in contrast with crystalline PEO-based SPE having discernable Tg and Tm. The conductivity and elasticity are both significantly improved with SPI involvement. Remarkably, this film has been elongated up to 100% without loss of ionic conductivity and 700% without mechanical damage.

  17. A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.

    PubMed

    Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya

    2014-03-17

    This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen

    An alkaline polymer electrolyte film has been prepared by a solvent-casting method. Poly(vinyl alcohol), PVA is added to improve the ionic conductivity of the electrolyte. The ionic conductivity increases from 10 -7 to 10 -2 S cm -1 at room temperature when the weight percent ratio of poly(ethylene oxide), PEO to PVA is increased from 10:0 to 5:5. The activation energy of the ionic conductivity for the PEO-PVA-KOH polymer electrolyte is 3-8 kJ mol -1. The properties of the electrolyte film are characterized by a wide variety of techniques and it is found that the film exhibits good mechanical stability and high ionic conductivity at room temperature. The application of such electrolyte films to nickel-metal-hydride (Ni-MH) batteries is examined and the electrochemical characteristics of a polymer Ni-MH battery are obtained.

  19. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel

    2018-04-01

    Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.

  20. Stretchable Light-Emitting Diodes with Organometal-Halide-Perovskite-Polymer Composite Emitters.

    PubMed

    Bade, Sri Ganesh R; Shan, Xin; Hoang, Phong Tran; Li, Junqiang; Geske, Thomas; Cai, Le; Pei, Qibing; Wang, Chuan; Yu, Zhibin

    2017-06-01

    Intrinsically stretchable light-emitting diodes (LEDs) are demonstrated using organometal-halide-perovskite/polymer composite emitters. The polymer matrix serves as a microscale elastic connector for the rigid and brittle perovskite and induces stretchability to the composite emissive layers. The stretchable LEDs consist of poly(ethylene oxide)-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as a transparent and stretchable anode, a perovskite/polymer composite emissive layer, and eutectic indium-gallium as the cathode. The devices exhibit a turn-on voltage of 2.4 V, and a maximum luminance intensity of 15 960 cd m -2 at 8.5 V. Such performance far exceeds all reported intrinsically stretchable LEDs based on electroluminescent polymers. The stretchable perovskite LEDs are mechanically robust and can be reversibly stretched up to 40% strain for 100 cycles without failure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A plasticized polymer-electrolyte-based photoelectrochemical solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, D.; Ibrahim, M.A.; Frank, A.J.

    1998-01-01

    A photoelectrochemical solar cell based on an n-GaAs/polymer-redox-electrolyte junction is reported. Di(ethylene glycol) ethyl ether acrylate containing ferrocene as a redox species and benzoin methyl ether as a photoinitiator is polymerized in situ. Propylene carbonate is used as a plasticizer to improve the conductivity of the polymer redox electrolyte. For thin (1 {micro}m) polymer electrolytes, the series resistance of the cell is negligible. However, the short-circuit photocurrent density of the cell at light intensities above 10 mW/cm{sup 2} is limited by mass transport of redox species within the polymer matrix. At a light intensity of 70 mW/cm{sup 2}, a moderatemore » light-to-electrical energy conversion efficiency (3.1%) is obtained. The interfacial charge-transfer properties of the cell in the dark and under illumination are studied.« less

  2. Understanding the surface properties and rheology of a silica suspension mediated by a comb-type poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) copolymer: effect of salinity.

    PubMed

    Yang, Dingzheng; Yan, Bin; Xiang, Li; Xu, Haolan; Wang, Xiaogang; Zeng, Hongbo

    2018-06-13

    Understanding the surface properties and rheology of colloidal suspensions in the presence of polymer additives with high salinity are of great importance in formulating construction materials and optimizing process conditions in the mining and petroleum industry. In this work, the surface properties and rheology of a model spherical silica aqueous suspension mediated by a comb-type poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) copolymer at various salt concentrations have been investigated. Adsorption measurements using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) align well with zeta potential tests and show that polymer adsorption on silica surfaces is enhanced at high salinity (i.e., 3 M NaCl) than at low salinity (i.e., 1 mM NaCl) due to the suppression of the electrical double layer. Surface Forces Apparatus (SFA) measurements reveal that for interactions between two mica surfaces (the basal plane of which has a similar structure as silica) at a high polymer concentration (e.g., 2 wt%), steric repulsion dominates in 1 mM NaCl while bridging attraction is observed in 3 M NaCl. Surface force measurements agree with rheological results on silica suspensions with 0.5 to 2 wt% of PAA/PEO addition, which shows a significant decrease in yield stress in 1 mM NaCl due to steric repulsion but an insignificant variation in yield stress in 3 M NaCl due to attractive bridging interactions. This work provides useful information regarding the surface properties and rheological properties of comb-type polymer-mediated silica suspensions under different salinity conditions, with implications on designing and processing complex colloidal suspensions with polymer additives for various applications.

  3. Polymer Stabilized Nanosuspensions Formed via Flash Nanoprecipitation: Nanoparticle Formation, Formulation, and Stability

    NASA Astrophysics Data System (ADS)

    Zhu, ZhengXi

    Nanoparticles loaded with hydrophobic components (e.g., active pharmaceutical ingredients, medical diagnostic agents, nutritional or personal care chemicals, catalysts, dyes/pigments, and substances with exceptional magnetic/optical/electronic/thermal properties) have tremendous industrial applications. The common desire is to efficiently generate nanoparticles with a desired size, size distribution, and size stability. Recently, Flash NanoPrecipition (FNP) technique with a fast, continuous, and easily scalable process has been developed to efficiently generate hydrophobe-loaded nanoparticles. This dissertation extended this technique, optimized process conditions and material formulations, and gave new insights into the mechanism and kinetics of nanoparticle formation. This dissertation demonstrated successful generation of spherical beta-carotene nanoparticles with an average diameter of 50--100 nm (90 wt% nanoparticles below 200 nm), good size stability (maintained an average diameter below 200 nm for at least one week in saline), and much higher loading (80--90 wt%) than traditional carriers, such as micelles and polymersomes (typically <20 wt%). Moreover, the nanoparticles are amorphous and expected to have a high dissolution rate and bioavailability. To give insights into the mechanism and kinetics of nanoparticle formation, much remarkable evidence supported the kinetically frozen structures of the nanoparticles rather than the thermodynamic equilibrium micelles. Time scales of the particle formation via FNP were proposed. To optimize the material formulations, either polyelectrolytes (i.e., epsilon-polylysine, branched and linear poly(ethylene imine), and chitosan) or amphiphilic diblock copolymers (i.e., polystyrene-b-poly(ethylene glycol) (PS-b-PEG), polycarprolactone-b-poly(ethylene glycol) (PCL-b-PEG), poly(lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG)) were selectively screened to study the nanoparticle size, distribution, and stability. The effect of the molecular weight of the polymers and pH were also studied. Chitosan and PLGA-b-PEG best stabilized the beta-carotene nanoparticles. Solubility of the hydrophobic drug solute in the aqueous mixture was considered to dominate the nanoparticle stability (i.e., size and morphology) in terms of Ostwald ripening and recrystallization. The lower solubility the drug is of, the greater stability the nanoparticles have. Chemically bonding drug compounds with cleavable hydrophobic moieties to form prodrugs were used to enhance their hydrophobicity and thus the nanoparticle stability. It opened a generic strategy to enhance the stability of nanoparticles formed via FNP. beta-carotene, paclitaxel, paclitaxel prodrug, betulin, hydrocortisone, and hydrocortisone prodrug as the drugs were studied. Solubility parameter (delta), and octanol/water partition coefficients (LogP), provide hydrophobicity indicators for the compounds. LogP showed a good correlation with the nanoparticle stability. An empirical rule was built to conveniently predict particle stability for randomly selected drugs. To optimize the process conditions, two-stream confined impinging jet mixer (CIJ) and four-stream confined vortex jet mixer were used. The particle size was studied by varying drug and polymer concentrations, and flow rate (corresponding to Reynolds number (Re)). To extend the FNP technique, this dissertation demonstrated successful creation of stabilized nanoparticles by integrating an in-situ reactive coupling of a hydrophilic polymer block with a hydrophobic one with FNP. The kinetics of the fast coupling reaction was studied. This dissertation also introduced polyelectrolytes (i.e., epsilon-polylysine, poly(ethylene imine), and chitosan) into FNP to electrosterically stabilize nanoparticles.

  4. Wax inhibitor based on ethylene vinyl acetate with methyl methacrylate and diethanolamine for crude oil pipeline

    NASA Astrophysics Data System (ADS)

    Anisuzzaman, S. M.; Abang, S.; Bono, A.; Krishnaiah, D.; Karali, R.; Safuan, M. K.

    2017-06-01

    Wax precipitation and deposition is one of the most significant flow assurance challenges in the production system of the crude oil. Wax inhibitors are developed as a preventive strategy to avoid an absolute wax deposition. Wax inhibitors are polymers which can be known as pour point depressants as they impede the wax crystals formation, growth, and deposition. In this study three formulations of wax inhibitors were prepared, ethylene vinyl acetate, ethylene vinyl acetate co-methyl methacrylate (EVA co-MMA) and ethylene vinyl acetate co-diethanolamine (EVA co-DEA) and the comparison of their efficiencies in terms of cloud point¸ pour point, performance inhibition efficiency (%PIE) and viscosity were evaluated. The cloud point and pour point for both EVA and EVA co-MMA were similar, 15°C and 10-5°C, respectively. Whereas, the cloud point and pour point for EVA co-DEA were better, 10°C and 10-5°C respectively. In conclusion, EVA co-DEA had shown the best % PIE (28.42%) which indicates highest percentage reduction of wax deposit as compared to the other two inhibitors.

  5. A new approach to the immobilisation of poly(ethylene oxide) for the reduction of non-specific protein adsorption on conductive substrates

    NASA Astrophysics Data System (ADS)

    Cole, Martin A.; Thissen, Helmut; Losic, Dusan; Voelcker, Nicolas H.

    2007-04-01

    Biomedical and biotechnological devices often require surface modifications to improve their performance. In most cases, uniform coatings are desired which provide a specific property or lead to a specific biological response. In the present work, we have generated pinhole-free coatings providing amine functional groups achieved by electropolymerisation of tyramine on highly doped silicon substrates. Furthermore, amine groups were used for the subsequent grafting of poly(ethylene oxide) aldehyde via reductive amination. All surface modification steps were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The results indicate that the stability and the density of amine functional groups introduced at the surface via electropolymerisation compare favourably with alternative coatings frequently used in biomedical and biotechnological devices such as plasma polymer films. Furthermore, protein adsorption on amine and poly(ethylene oxide) coatings was studied by XPS and a colorimetric assay to test enzymatic activity. The grafting of poly(ethylene oxide) under cloud point conditions on electropolymerised tyramine layers resulted in surfaces with extremely low protein fouling character.

  6. High Strength Carbide-Based Fibrous Monolith Materials for Solid Rocket Nozzles

    DTIC Science & Technology

    2008-02-19

    individual powders are blended with thermoplastic melt-extrudable polymer binders and plasticizers , using a high shear mixer (Brabender Technologie Inc...Ethylene Ethyl Acrylate, EEA DuPont MFI 1.5 and 20 DPDA 9169 NT Stearic Acid Crompton Hystrene 97 18 NF FG 65 References 1. J. B

  7. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    USDA-ARS?s Scientific Manuscript database

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  8. On the interplay between chirality and exciton coupling: a DFT calculation of the circular dichroism in π-stacked ethylene.

    PubMed

    Norman, Patrick; Linares, Mathieu

    2014-09-01

    The chirality of stacked weakly interacting π-systems was interpreted in terms of Frenkel exciton states and the formation of excitonic circular dichroism (CD) bands was monitored for ethylene stacks of varying sizes. Convergence of CD bands with respect to the system size was observed for stacks involving around 10 molecules. By means of rotation around the C-C double bond in ethylene, chirality was induced in the monomeric system and which was shown to dominate the spectral responses, even for polymer aggregates. In helical assemblies of chiral entities, there will always be a mix of excitonic and monomeric contributions to the CD signal and it is demonstrated that the complex polarization propagator approach in combination with Density Functional Theory is a suitable method to address this situation. © 2014 Wiley Periodicals, Inc.

  9. Flexible microstrip antenna based on carbon nanotubes/(ethylene-octene copolymer) thin composite layer deposited on PET substrate

    NASA Astrophysics Data System (ADS)

    Matyas, J.; Olejnik, R.; Slobodian, P.

    2017-12-01

    A most of portable devices, such as mobile phones, tablets, uses antennas made of cupper. In this paper we demonstrate possible use of electrically conductive polymer composite material for such antenna application. Here we describe the method of preparation and properties of the carbon nanotubes (CNTs)/(ethylene-octene copolymer) as flexible microstrip antenna. Carbon nanotubes dispersion in (ethylene-octene copolymer) toluene solution was prepared by ultrasound finally coating PET substrate by method of dip-coating. Main advantages of PET substrate are low weight and also flexibility. The final size of flexible microstrip antenna was 5 x 50 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with the weight of only 0.402 g. Antenna operates at three frequencies 1.66 GHz (-6.51 dB), 2.3 GHz (-13 dB) and 2.98 GHz (-33.59 dB).

  10. Synthesis of ethylene-propylene rubber graft copolymers by borane approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, T.C.; Janvikul, W.; Bernard, R.

    1994-01-01

    This paper describes a new method to prepare graft copolymers which have an EP rubber backbone and several free radical polymerized polymers grafted thereto. The process involves hydroboration of commercial EPDM rubbers, such as poly(ethylene-co-propylene-co-1,4-hexadiene) and poly(ethylene-co-propylene-co-5-ethylidene-2-norbornene), with 9-borabicyclononane (9-BBN). The resulting secondary alkyl-9-BBN moieties in the EPDM copolymer were then exposed to oxygen in the presence of free radical polymerizable monomers. Under certain conditions, the selective autoxidation reaction of secondary alkyl-9-BBN took place to create desirable polymeric radicals which can in situ initiate free radical polymerization. High graft efficiency was observed with controllable copolymer compositions. The graft copolymer ofmore » EP-g-PMMA is used to show the chemistry as well as some of the physical properties.« less

  11. Polar stationary phases based on poly(oligo ethylene glycol)diacrylates for capillary gas chromatography

    NASA Astrophysics Data System (ADS)

    Shiryaeva, V. E.; Popova, T. P.; Korolev, A. A.; Kanat'eva, A. Yu.; Kurganov, A. A.

    2017-08-01

    New stationary phases for capillary columns in GC are synthesized and studied. The phases are prepared by depositing oligo(ethylene glycol)diacrylates on the column walls and subsequent polymerization (crosslinking) in the presence of peroxide initiators. It is shown that stationary phases based on monomers with molecular weights of 10 kDa or higher exhibit separation properties similar to those of conventional stationary phases based on polyethylene glycol (PEG); however, their thermal stability is higher because they have a higher degree of crosslinking and a more ordered structure of the crosslinked polymers than the respective parameters of phases based on native PEG.

  12. Modelling of polymer photodegradation for solar cell modules

    NASA Technical Reports Server (NTRS)

    Somersall, A. C.; Guillet, J. E.

    1981-01-01

    A computer program developed to model and calculate by numerical integration the varying concentrations of chemical species formed during photooxidation of a polymeric material over time, using as input data a choice set of elementary reactions, corresponding rate constants and a convenient set of starting conditions is evaluated. Attempts were made to validate the proposed mechanism by experimentally monitoring the photooxidation products of small liquid alkane which are useful starting models for ethylene segments of polymers like EVA. The model system proved in appropriate for the intended purposes. Another validation model is recommended.

  13. Biomass process handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  14. Applications of Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Meth, Jeffrey

    Polymer nanocomposites have been developed for application in several areas. This talk will provide three vignettes of applications that have been explored. Nanoporous ceramics are free standing ceramic objects that can be used for filtration. The pore size distribution is in the proper target range for filtering viruses from medicines in solution. Filled polyimides are useful for improving the ultimate electrical properties of insulating films during corona exposure. The advantages and pitfalls of this approach will be detailed. Exfoliated laponite dispersed into ethylene copolymers reduces creep while maintaining transparency, which is applicable to packaging.

  15. Polymer-mediated formation of polyoxomolybdate nanomaterials

    NASA Astrophysics Data System (ADS)

    Wan, Quan

    A polymer-mediated synthetic pathway to a polyoxomolybdate nanomaterial is investigated in this work. Block copolymers or homopolymers containing poly(ethylene oxide) (PEO) are mixed with a MoO2(OH)(OOH) aqueous solution to form a golden gel or viscous solution. As revealed by synchrotron X-ray scattering measurements, electron microscopy, and other characterization techniques, the final dark blue polyoxomolybdate product is a highly ordered simple cubic network similar to certain zeolite structure but with a much larger lattice constant of ˜5.2 nm. The average size of the cube-like single crystals is close to 1 mum. Based on its relatively low density (˜2.2 g/cm3), the nanomaterial can be highly porous if the amount of the residual polymer can be substantially reduced. The valence of molybdenum is ˜5.7 based on cerimetric titration, representing the mixed-valence nature of the polyoxomolybdate structure. The self-assembled structures (if any) of the polymer gel do not have any correlation with the final polyoxomolybdate nanostructure, excluding the possible role of polymers being a structure-directing template. On the other hand, the PEO polymer stabilizes the precursor molybdenum compound through coordination between its ether oxygen atoms and molybdenum atoms, and reduces the molybdenum (VI) precursor compound with its hydroxyl group being a reducing agent. The rare simple cubic ordering necessitates the existence of special affinities among the polyoxomolybdate nanosphere units resulted from the reduction reaction. Our mechanism study shows that the acidified condition is necessary for the synthesis of the mixed-valence polyoxomolybdate clusters, while H2O2 content modulates the rate of the reduction reaction. The polymer degradation is evidenced by the observation of a huge viscosity change, and is likely through a hydrolysis process catalyzed by molybdenum compounds. Cube-like polyoxomolybdate nanocrystals with size of ˜40 nm are obtained by means of inversed microemulsions. Reducing agents such as di(ethylene glycol) and glycerol are utilized to synthesize various nanoscale ordering polyoxomolybdate structures. Only PEO-containing polymers are capable of producing the simple cubic polyoxomolybdate nanomaterials. Such a synthetic strategy may open up new pathways to prepare similar functional nanomaterials.

  16. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    PubMed

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  17. Role of succinonitrile in improving ionic conductivity of sodium-ion conductive polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Mohapatra, Saumya R.

    2018-05-01

    Sodium ion conducting solid polymer electrolytes were prepared using poly (ethylene oxide) (PEO) as polymer matrix, sodium perchlorate (NaClO4) as salt and succinonitrile (SN) as a plasticizer by solution casting technique. By blending a plastic crystal such as succinonitrile (SN) with PEO-NaClO4 electrolyte system, we aimed at improving the ionic conductivity by weakening the ether oxygen-Na+ interactions. The XRD and FTIR studies revealed structural and micro-structural changes in the blended electrolytes which aids in improving ionic conductivity. Also, DSC measurements showed improved segmental motion in the blended polymer electrolytes due to plasticizing effect of SN. The maximum ionic conductivity observed at room temperature is 1.13×10-5 S cm-1 merely for 7 wt. % of SN, which is one order higher than pure polymer-salt complex. The thermo-gravimetric analysis (TGA) suggests that blending of SN with polymer electrolyte had no detrimental effect on its thermal stability.

  18. On the influence of crosslinker on template complexation in molecularly imprinted polymers: a computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies.

    PubMed

    Shoravi, Siamak; Olsson, Gustaf D; Karlsson, Björn C G; Nicholls, Ian A

    2014-06-12

    Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer-crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity.

  19. Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.

    PubMed

    Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis

    2018-01-08

    We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.

  20. Structure and mechanisms underlying ion transport in ternary polymer electrolytes containing ionic liquids

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Ganesan, Venkat

    2017-02-01

    We use all atom molecular dynamics simulations to investigate the influence of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) ionic liquid on the structure and transport properties of poly(ethylene oxide) (PEO) polymer electrolytes doped with LiPF6 salt. We observe enhanced diffusivities of the Li+, PF6-, and BMIM+ ions with increasing loading of the ionic liquid. Interplay between the different ion-ion and ion-polymer interactions is seen to lead to a destabilization of the Li-PF6 coordination and increase in the strength of association between the Li+ cations and the polymer backbone. As a consequence, the polymer segmental relaxation times are shown to be only moderately affected by the addition of ionic liquids. The ionic-liquid induced changes in the mobilities of Li+ ions are seen to be correlated to polymer segmental relaxation times. However, the mobilities of BMIM+ ions are seen to be more strongly correlated to the BMIM-PF6 ion-pair relaxation times.

  1. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.

    PubMed

    D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry

    2014-05-19

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.

  2. Synthesis of light-selective poly(ethylene-co-vinyl acetate) nanofilms in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Xu, William (Zhiming)

    Due to the increased requirements of environmental protection, significant effort has been made to develop new "green" chemistry and engineering methods. Two effective approaches for "green" processes are: (1) to employ routes with fewer synthetic and separation steps, and (2) to replace volatile organic solvents with environmentally friendly solvents. Supercritical carbon dioxide (scCO2) has emerged as such a viable "green" alternative to organic solvents for several applications including extraction, polymerization, and nanotechnology, etc. In addition, it is an enabling solvent, allowing new types of chemistry and materials to be formed. In order to effectively utilize scCO2, it is required to study its effect on the relevant chemical process. This thesis focuses on the copolymerization of ethylene and vinyl acetate in scCO2, and the application of scCO2 in the synthesis of novel poly(vinyl acetate) (PVAc) and poly(ethylene-co-vinyl acetate) (PEVA) nanocomposites. Firstly, the kinetics of the process was investigated. The thermal decomposition of the free-radical initiator diethyl peroxydicarbonate (DEPDC) was monitored by in situ attenuate total reflection Fourier transform infrared spectroscopy (ATR-FTIR) in heptane, and in scCO2. The rate constant and activation energy of the thermal decomposition of DEPDC in scCO2 were determined, and a decomposition mechanism was proposed. Further, with a knowledge of the initiator kinetics, in situ ATR-FTIR was employed to monitor the initial formation of copolymers of ethylene and vinyl acetate during polymerization in scCO2. The reactivity ratios for the copolymerization of ethylene and vinyl acetate in scCO2 were determined using both the Kelen-Tudos and the non-linear least-squares methods. The potential of scCO2 was further examined to synthesize advanced and novel nanomaterials based on an understanding of the polymerization mechanism. A novel one-step synthesis route was developed for making silica-PVAc nanocomposites in scCO2, where the parallel reactions of free radical polymerization, hydrolysis/condensation, and linkage of the nanoparticles to the polymer chains, were found to take place simultaneously. This provides a new process featuring significant energy-saving, waste-reduction, and excellent distribution of nanoparticles in the polymer matrix. In addition, the incorporation of quantum dots (QDs) into a transparent polymer matrix was investigated to form light-selective nanofilms. Both CdS and CdS-ZnS core-shell QDs were synthesized, then functionalized with a methoxysilane group, and finally used to synthesize novel QD-PVAc and QD-PEVA nanocomposites in scCO2. The synthesized QD-PEVA nanofilms displayed significant absorption in the ultraviolet and violet regions of the electromagnetic spectrum, while providing a characteristic emission in the region from orange to red light. These materials have significant potential in green houses, and solar absorber films. Key words. supercritical CO2, initiator, thermal decomposition, kinetics, mechanism, ATR-FTIR, reactivity ratios, ethylene, vinyl acetate, silica, nanocomposite, one-pot synthesis, light-selective, nanofilm, quantum dots.

  3. Polyplex formation between four-arm poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA in gene delivery.

    PubMed

    He, E; Yue, C Y; Simeon, F; Zhou, L H; Too, H P; Tam, K C

    2009-12-01

    Amphiphilic polyelectrolytes comprising cationic and uncharged hydrophilic segments condensed negatively charged DNA to form a core-shell structure stabilized by a layer of hydrophilic corona chains. At physiological pH, four-arm star-shaped poly(ethylene oxide)-b-poly(2-(diethylamino)ethyl methacrylate) (four-arm PEO-b-PDEAEMA) block copolymer possessed positively charged amine groups that interacted with negatively charged plasmid DNA to form polymer/DNA complexes. The mechanism and physicochemical properties of the complex formation were investigated at varying molar ratio of amine groups on polymer chains and phosphate group on plasmid DNA segments (N/P ratio). The capability of the star block copolymer to condense DNA was demonstrated through gel electrophoresis and ethidium bromide exclusion assay. In the absence of salt, the hydrodynamic radius of polyplexes was about 94 nm at low polymer/DNA ratio, and it decreased to about 34 nm at large N/P ratios, forming a compact spherical structure with a weighted average molecular weight of 4.39 +/- 0.22 x 10(6) g/mol. Approximately 15 polymeric chains were required to condense a plasmid DNA. The addition of monovalent salt to the polyplexes significantly altered the size of the complexes, which would have an impact on cell transfection. Because of the electrostatic interaction induced by the diffusion of small ions, the polyplex increased in size to about 53 nm with a less compact structure. In vitro cytotoxicty of polymer and polymer/pDNA complexes were evaluated, and the polyplexes exhibited low toxicity at low N/P ratios. At N/P ratio of 4.5, the four-arm PEO-b-PDEAEMA showed the highest level of transfection in Neuro-2A cells. These observations showed that the star-shaped multi-arm polymers offers interesting properties in self-association and condensation ability for plasmid DNA and can serve as a nonviral DNA delivery system. Copyright 2008 Wiley Periodicals, Inc.

  4. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.

    PubMed

    Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing

    2015-06-17

    In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.

  5. Polymer sol-gel composite inverse opal structures.

    PubMed

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  6. Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassal, N.; Salmon, E.; Fauvarque, J.F.

    1999-01-01

    Sealed alkaline solid polymer electrolyte nickel/metal hydride laboratory cells have been constructed and tested to evaluate their properties. Studies of the cycle life, self-discharge, and behavior of cells at different temperatures were carried out. The first results on the electrochemical behavior of an alkaline solid polymer electrolyte [based on poly(ethylene oxide), potassium hydroxide, and water] medium are presented here and show good reversibility of this all-solid-state system for more than 500 cycles, without significant loss of capacity and with a reasonable average discharge efficiency (close to 80%). The temperature-dependence study allowed the determination of optimum operating conditions between 0 andmore » 40 C. Characteristics of the solid polymer electrolyte based Ni/MH cells are compared to those of several other rechargeable battery systems.« less

  7. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyartanti, Endah R., E-mail: heru.susanto@undip.ac.id, E-mail: endah-rd@uns.ac.id; Department of Chemical Engineering, Diponegoro University, Semarang; Purwanto, Agus

    2016-02-08

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is alsomore » investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF{sub 6}) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.« less

  8. Reducible, Dibromomaleimide-linked Polymers for Gene Delivery

    PubMed Central

    Tan, James-Kevin Y.; Choi, Jennifer L.; Wei, Hua; Schellinger, Joan G.; Pun, Suzie H.

    2014-01-01

    Polycations have been successfully used as gene transfer vehicles both in vitro and in vivo; however, their cytotoxicity has been associated with increasing molecular weight. Polymers that can be rapidly degraded after internalization are typically better tolerated by mammalian cells compared to their non-degradable counterparts. Here, we report the use of a dibromomaleimide-alkyne (DBM-alkyne) linking agent to reversibly bridge cationic polymer segments for gene delivery and to provide site-specific functionalization by azidealkyne cycloaddition chemistry. A panel of reducible and non-reducible, statistical copolymers of (2-dimethylamino) ethyl methacrylate (DMAEMA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA) were synthesized and evaluated. When complexed with plasmid DNA, the reducible and non-reducible polymers had comparable DNA condensation properties, sizes, and transfection efficiencies. When comparing cytotoxicity, the DBM-linked, reducible polymers were significantly less toxic than the non-reducible polymers. To demonstrate polymer functionalization by click chemistry, the DBM-linked polymers were tagged with an azidefluorophore and were used to monitor cellular uptake. Overall, this polymer system introduces the use of a reversible linker, DBM-alkyne, to the area of gene delivery and allows for facile, orthogonal, and site-specific functionalization of gene delivery vehicles. PMID:26214195

  9. Vibrational studies of flexible solid polymer electrolyte based on PCL-EC incorporated with proton conducting NH4SCN

    NASA Astrophysics Data System (ADS)

    Woo, H. J.; Arof, A. K.

    2016-05-01

    A flexible solid polymer electrolyte (SPE) system based on poly(ε-caprolactone) (PCL), a FDA approved non-toxic and biodegradable material in the effort to lower environmental impact was prepared. Ammonium thiocyanate (NH4SCN) and ethylene carbonate (EC) were incorporated as the source of charge carriers and plasticizing agent, respectively. When 50 wt.% of ethylene carbonate (EC) was added to PCL-NH4SCN system, the conductivity increased by two orders from of 3.94 × 10- 7 Scm- 1 to 3.82 × 10- 5 Scm- 1. Molecular vibrational analysis via infrared spectroscopy had been carried out to study the interaction between EC, PCL and NH4SCN. The relative percentage of free ions, ion pairs and ion aggregates was calculated quantitatively by deconvoluting the SCN- stretching mode (2030-2090 cm- 1). This study provides fundamental insight on how EC influences the free ion dissociation rate and ion mobility. The findings are also in good agreement to conductivity, differential scanning calorimetry and X-ray diffraction results. High dielectric constant value (89.8) of EC had made it an effective ion dissociation agent to dissociate both ion pairs and ion aggregates, thus contributing to higher number density of free ions. The incorporation of EC had made the polymer chains more flexible in expanding amorphous domain. This will facilitate the coupling synergy between ionic motion and polymer segmental motion. Possible new pathway through EC-NH4+ complex sites for ions to migrate with shorter distance has been anticipated. This implies an easier ion migration route from one complex site to another.

  10. Gold nanorod linking to control plasmonic properties in solution and polymer nanocomposites.

    PubMed

    Ferrier, Robert C; Lee, Hyun-Su; Hore, Michael J A; Caporizzo, Matthew; Eckmann, David M; Composto, Russell J

    2014-02-25

    A novel, solution-based method is presented to prepare bifunctional gold nanorods (B-NRs), assemble B-NRs end-to-end in various solvents, and disperse linked B-NRs in a polymer matrix. The B-NRs have poly(ethylene glycol) grafted along its long axis and cysteine adsorbed to its ends. By controlling cysteine coverage, bifunctional ligands or polymer can be end-grafted to the AuNRs. Here, two dithiol ligands (C6DT and C9DT) are used to link the B-NRs in organic solvents. With increasing incubation time, the nanorod chain length increases linearly as the longitudinal surface plasmon resonance shifts toward lower adsorption wavelengths (i.e., red shift). Analogous to step-growth polymerization, the polydispersity in chain length also increases. Upon adding poly(ethylene glycol) or poly(methyl methacrylate) to chloroform solution with linked B-NR, the nanorod chains are shown to retain end-to-end linking upon spin-casting into PEO or PMMA films. Using quartz crystal microbalance with dissipation (QCM-D), the mechanism of nanorod linking is investigated on planar gold surfaces. At submonolayer coverage of cysteine, C6DT molecules can insert between cysteines and reach an areal density of 3.4 molecules per nm(2). To mimic the linking of Au NRs, this planar surface is exposed to cysteine-coated Au nanoparticles, which graft at 7 NPs per μm(2). This solution-based method to prepare, assemble, and disperse Au nanorods is applicable to other nanorod systems (e.g., CdSe) and presents a new strategy to assemble anisotropic particles in organic solvents and polymer coatings.

  11. Gold Nanorod Linking to Control Plasmonic Properties in Solution and Polymer Nanocomposites

    PubMed Central

    2015-01-01

    A novel, solution-based method is presented to prepare bifunctional gold nanorods (B-NRs), assemble B-NRs end-to-end in various solvents, and disperse linked B-NRs in a polymer matrix. The B-NRs have poly(ethylene glycol) grafted along its long axis and cysteine adsorbed to its ends. By controlling cysteine coverage, bifunctional ligands or polymer can be end-grafted to the AuNRs. Here, two dithiol ligands (C6DT and C9DT) are used to link the B-NRs in organic solvents. With increasing incubation time, the nanorod chain length increases linearly as the longitudinal surface plasmon resonance shifts toward lower adsorption wavelengths (i.e., red shift). Analogous to step-growth polymerization, the polydispersity in chain length also increases. Upon adding poly(ethylene glycol) or poly(methyl methacrylate) to chloroform solution with linked B-NR, the nanorod chains are shown to retain end-to-end linking upon spin-casting into PEO or PMMA films. Using quartz crystal microbalance with dissipation (QCM-D), the mechanism of nanorod linking is investigated on planar gold surfaces. At submonolayer coverage of cysteine, C6DT molecules can insert between cysteines and reach an areal density of 3.4 molecules per nm2. To mimic the linking of Au NRs, this planar surface is exposed to cysteine-coated Au nanoparticles, which graft at 7 NPs per μm2. This solution-based method to prepare, assemble, and disperse Au nanorods is applicable to other nanorod systems (e.g., CdSe) and presents a new strategy to assemble anisotropic particles in organic solvents and polymer coatings. PMID:24483622

  12. Synthesis and characterization of antifouling poly(N-acryloylaminoethoxyethanol) with ultralow protein adsorption and cell attachment.

    PubMed

    Chen, Hong; Zhang, Mingzhen; Yang, Jintao; Zhao, Chao; Hu, Rundong; Chen, Qiang; Chang, Yung; Zheng, Jie

    2014-09-02

    Rational design of effective antifouling polymers is challenging but important for many fundamental and applied applications. Herein we synthesize and characterize an N-acryloylaminoethoxyethanol (AAEE) monomer, which integrates three hydrophilic groups of hydroxyl, amide, and ethylene glycol in the same material. AAEE monomers were further grafted and polymerized on gold substrates to form polyAAEE brushes with well-controlled thickness via surface-initiated atomic transfer radical polymerization (SI-ATRP), with particular attention to a better understanding of the molecular structure-antifouling property relationship of hydroxyl-acrylic-based polymers. The surface hydrophilicity and antifouling properties of polyAAEE brushes as a function of film thickness are studied by combined experimental and computational methods including surface plasmon resonance (SPR) sensors, atomic force microscopy (AFM), cell adhesion assay, and molecular dynamics (MD) simulations. With the optimal polymer film thicknesses (∼10-40 nm), polyAAEE-grafted surfaces can effectively resist protein adsorption from single-protein solutions and undiluted human blood plasma and serum to a nonfouling level (i.e., <0.3 ng/cm(2)). The polyAAEE brushes also highly resist mammalian cell attachment up to 3 days. MD simulations confirm that the integration of three hydrophilic groups induce a stronger and closer hydration layer around polyAAEE, revealing a positive relationship between surface hydration and antifouling properties. The molecular structure-antifouling properties relationship of a series of hydroxyl-acrylic-based polymers is also discussed. This work hopefully provides a promising structural motif for the design of new effective antifouling materials beyond traditional ethylene glycol-based antifouling materials.

  13. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    PubMed

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  14. Phase Behavior of Pyrene and Vinyl Polymers with Aromatic Side Groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kangovi, Gagan N.; Lee, Sangwoo

    The phase behavior and thermodynamic properties of mixtures of pyrene and model vinyl polymers with and without aromatic side groups are investigated using differential scanning calorimetry (DSC) measurements. The melting temperature and associated heat of melting of the pyrene crystals in the mixtures are utilized to extract the effective interaction parameters χ and the composition of polymer-rich phases, respectively. The χ of pyrene mixed with polymers with aromatic side groups investigated in this study, polystyrene, poly(2-vinylpyridine), and poly(3-vinylanisole), is less than 0.5 at the melting point of the pyrene crystals, suggesting that pyrene and the polymers with aromatic sides groupsmore » are enthalpically compatible, likely due to aromatic π–π interactions. In contrast, the χ of pyrene mixed with poly(1,4-isoprene) or poly(ethylene-alt-propylene) is larger than 0.5. The DSC measurements also enable characterization of the composition of polymer-rich phases. Interestingly, the polymers with aromatic side groups are found to have more pronounced miscibility with pyrene at symmetric compositions.« less

  15. End Functionalized Nonionic Water-Dispersible Conjugated Polymers.

    PubMed

    Zhan, Ruoyu; Liu, Bin

    2017-09-01

    2,7-Dibromofluorene monomers carrying two or four oligo(ethylene glycol) (OEG) side chains are synthesized. Heck coupling between the monomers and 1,4-divinylbenzene followed by end capping with [4-(4-bromophenoxy)butyl]carbamic acid tert-butyl ester leads to two nonionic water-dispersible poly(fluorene-alt-1,4-divinylenephenylene)s end-functionalized with amine groups after hydrolysis. In water, the polymer with a lower OEG density (P1) has poor water dispersibility with a quantum yield of 0.24, while the polymer with a higher OEG density (P2) possesses excellent water-dispersibility with a high quantum yield of 0.45. Both polymers show fluorescence enhancement and blue-shifted absorption and emission maxima in the presence of surfactant sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The polymers are also resistant to ionic strength with minimal nonspecific interactions to bovine serum albumin. When biotin is incorporated into the end of the polymer backbones through N-hydroxysuccinimide/amine coupling reaction, the biotinylated polymers interact specifically with streptavidin on solid surface. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of surface molecular imprinted polymers based on carboxyl-modified silica nanoparticles with the selective detection of dibutyl phthalate from tap water samples

    NASA Astrophysics Data System (ADS)

    Xu, Wanzhen; Zhang, Xiaoming; Huang, Weihong; Luan, Yu; Yang, Yanfei; Zhu, Maiyong; Yang, Wenming

    2017-12-01

    In this work, the molecular imprinted polymers were synthesized with the low monomer concentrations for dibutyl phthalate (DBP). The polymers were prepared over carboxyl-modified silica nanoparticle, which used methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker agent and azoisobutyronitrile as the initiator in the process of preparation. Various measures were used to characterize the structure and morphology in order to get the optimal polymer. The characterization results show that the optimal polymer has suitable features for further adsorption process. And adsorption capacity experiments were evaluated to analyze its adsorption performance, through adsorption isotherms/kinetics, selectivity adsorption and desorption and regeneration experiments. These results showed that the molecular imprinted polymers had a short equilibrium time about 60 min and high stability with 88% after six cycles. Furthermore, the molecular imprinted polymers were successfully applied to remove dibutyl phthalate. The concentration range was 5.0-30.0 μmol L-1, and the limit of detection was 0.06 μmol L-1 in tap water samples.

  17. Quantitative spatial distribution of sirolimus and polymers in drug-eluting stents using confocal Raman microscopy.

    PubMed

    Balss, K M; Llanos, G; Papandreou, G; Maryanoff, C A

    2008-04-01

    Raman spectroscopy was used to differentiate each component found in the CYPHER Sirolimus-eluting Coronary Stent. The unique spectral features identified for each component were then used to develop three separate calibration curves to describe the solid phase distribution found on drug-polymer coated stents. The calibration curves were obtained by analyzing confocal Raman spectral depth profiles from a set of 16 unique formulations of drug-polymer coatings sprayed onto stents and planar substrates. The sirolimus model was linear from 0 to 100 wt % of drug. The individual polymer calibration curves for poly(ethylene-co-vinyl acetate) [PEVA] and poly(n-butyl methacrylate) [PBMA] were also linear from 0 to 100 wt %. The calibration curves were tested on three independent drug-polymer coated stents. The sirolimus calibration predicted the drug content within 1 wt % of the laboratory assay value. The polymer calibrations predicted the content within 7 wt % of the formulation solution content. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra from five formulations confirmed a linear response to changes in sirolimus and polymer content. Copyright 2007 Wiley Periodicals, Inc.

  18. Surface-induced effects in fluctuation-based measurements of single-polymer elasticity: A direct probe of the radius of gyration

    NASA Astrophysics Data System (ADS)

    Innes-Gold, Sarah N.; Morgan, Ian L.; Saleh, Omar A.

    2018-03-01

    Single-molecule measurements of polymer elasticity are powerful, direct probes of both biomolecular structure and principles of polymer physics. Recent work has revealed low-force regimes in which biopolymer elasticity is understood through blob-based scaling models. However, the small tensions required to observe these regimes have the potential to create measurement biases, particularly due to the increased interactions of the polymer chain with tethering surfaces. Here, we examine one experimentally observed bias, in which fluctuation-based estimates of elasticity report an unexpectedly low chain compliance. We show that the effect is in good agreement with predictions based on quantifying the exclusion effect of the surface through an image-method calculation of available polymer configurations. The analysis indicates that the effect occurs at an external tension inversely proportional to the polymer's zero-tension radius of gyration. We exploit this to demonstrate a self-consistent scheme for estimating the radius of gyration of the tethered polymer. This is shown in measurements of both hyaluronic acid and poly(ethylene glycol) chains.

  19. Thermodynamic phase behavior of API/polymer solid dispersions.

    PubMed

    Prudic, Anke; Ji, Yuanhui; Sadowski, Gabriele

    2014-07-07

    To improve the bioavailability of poorly soluble active pharmaceutical ingredients (APIs), these materials are often integrated into a polymer matrix that acts as a carrier. The resulting mixture is called a solid dispersion. In this work, the phase behaviors of solid dispersions were investigated as a function of the API as well as of the type and molecular weight of the carrier polymer. Specifically, the solubility of artemisinin and indomethacin was measured in different poly(ethylene glycol)s (PEG 400, PEG 6000, and PEG 35000). The measured solubility data and the solubility of sulfonamides in poly(vinylpyrrolidone) (PVP) K10 and PEG 35000 were modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The results show that PC-SAFT predictions are in a good accordance with the experimental data, and PC-SAFT can be used to predict the whole phase diagram of an API/polymer solid dispersion as a function of the kind of API and polymer and of the polymer's molecular weight. This remarkably simplifies the screening process for suitable API/polymer combinations.

  20. Catalysis by Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide Synthesis on Ag, Cu or Au Nanoclusters

    DTIC Science & Technology

    2008-02-07

    22 nm) were prepared by reducing a Au salt, and encapsulating the Au nanoparticles formed in a polymer33 . A variety of high area oxides (TiO 2, ZnO ...Morphologies Utilizing a Combinatorial Electrochemistry Methodology. Ph. D. dissertation, Chemical Engineering, University of California, Santa Barbara (2004

  1. Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Buchalla, R.; Schüttler, C.; Bögl, K. W.

    1995-02-01

    Sterilization by ionizing radiation has become, next to ethylene oxide treament, the most important "cold" sterilization process for medical devices made from plastics. The effects of ionizing radiation on the most important polymer for medical devices, ultra-high molecular-weight polyethylene, are briefly described in this review.

  2. 78 FR 20032 - Styrene-Ethylene-Propylene Block Copolymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... of pesticide use in residential settings. If EPA is able to determine that a finite tolerance is not... integral part of its composition, the atomic elements carbon, hydrogen, and oxygen. 3. The polymer does not contain as an integral part of its composition, except as impurities, any element other than those listed...

  3. Fluorescence Characterization of Cure and Water-Uptake in Polymers and Composites

    DTIC Science & Technology

    1994-06-01

    the different wavelength DDS) in the stoichiometric mixture of DDS and EDDA calibration in both instruments as well as to some (ethylene dioxyl...diethyl amine) were obtained before temperature dependence of the excitation maxima. and after 1 h cure at 120°C. EDDA is an aliphatic However, the overall

  4. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: (a) Identity. (1) The additive is an addition polymer of ethylene oxide and water with a mean... diatomaceous earth (Chromosorb W. Johns-Manville, or equivalent). reagents and materials Carrier gas, nitrogen: Commercial grade in cylinder equipped with reducing regulator to provide 50 p.s.i.g. to the gas chromatograph...

  5. d-Fructose-Decorated Poly(ethylene imine) for Human Breast Cancer Cell Targeting.

    PubMed

    Englert, Christoph; Pröhl, Michael; Czaplewska, Justyna A; Fritzsche, Carolin; Preußger, Elisabeth; Schubert, Ulrich S; Traeger, Anja; Gottschaldt, Michael

    2017-08-01

    The high affinity of GLUT5 transporter for d-fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d-fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four-step synthesis of a thiol-group bearing d-fructose enables the decoration of a cationic polymer backbone with d-fructose via thiol-ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d-fructose decoration of 16% renders the polymers water-soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA-MB-231 breast cancer cells. Therefore, the introduction of d-fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Giller, Carl; Roland, Mike

    2013-03-01

    At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli. Office of Naval Research

  7. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristinemore » and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.« less

  8. A polymer solution technique for the synthesis of nano-sized Li 2TiO 3 ceramic breeder powders

    NASA Astrophysics Data System (ADS)

    Jung, Choong-Hwan; Lee, Sang Jin; Kriven, Waltraud M.; Park, Ji-Yeon; Ryu, Woo-Seog

    2008-02-01

    Nano-sized Li 2TiO 3 powder was fabricated by an organic-inorganic solution route. A steric entrapment route employing ethylene glycol was used for the preparation of the nano-sized Li 2TiO 3 particles. Titanium isopropoxide and lithium nitrate were dissolved in liquid-type ethylene glycol without any precipitation. With the optimum amount of the polymer, the metal cations (Li and Ti) were dispersed in the solution and a homogeneous polymeric network was formed. The organic-inorganic precursor gels were turned to crystalline powders through an oxidation reaction during a calcination process. The dried precursor gel showed the carbon-free Li 2TiO 3 crystalline form which was observed above 400 °C. The primary particle size of the carbon-free Li 2TiO 3 was about 70 nm, and the structure of the crystallized powder was porous and agglomerated. The powder compact was densified to 92% of TD at a relatively low sintering temperature of 1100 °C for 2 h.

  9. Simulated glass transition of poly(ethylene oxide) bulk and film: a comparative study.

    PubMed

    Wu, Chaofu

    2011-09-29

    Stepwise cooling molecular dynamics (MD) simulations have been carried out on the bulk and film models for poly(ethylene oxide) (PEO) to understand glass transition of amorphous polymer films. Three types of properties--density, energy, and dynamics--are computed and plotted against the temperature for the two systems. It has been confirmed that all these properties can reveal glass transition in both PEO bulk and film systems. All the determined glass transition temperatures (T(g)'s) drop in the same order of magnitude to the experimental data available. Among various methods, the T(g)'s obtained from the density and energy data are close to each other if the same space regions are defined, which can suggest the same free volume theory, and dynamic T(g)'s obtained from mean-squared displacements (MSDs) are highest, which can suggest the kinetic theory for structural relaxation. Consistently, all these T(g)'s obtained using different methods show that the T(g)'s of PEO film are lower than those of PEO bulk. The free surface layers of polymer films dictate this offset. © 2011 American Chemical Society

  10. How to polymerize ethylene in a highly controlled fashion?

    PubMed

    Kempe, Rhett

    2007-01-01

    Very fast, reversible, polyethylene (PE) chain transfer or complex-catalysed "Aufbaureaktion" describes a "living" chain-growing process on a main-group metal or zinc atom; this process is catalysed by an organo-transition-metal or lanthanide complex. PE chains are transferred very fast between the two metal sites and chain growth takes place through ethylene insertion into the transition-metal- or lanthanide-carbon bond-coordinative chain-transfer polymerisation (CCTP). The transferred chains "rest" at the main-group or zinc centre, at which chain-termination processes like beta-H transfer/elimination are of low significance. Such protocols can be used to synthesise very narrowly distributed PE materials (M(w)/M(n)<1.1 up to a molecular weight of about 4000 g mol(-1)) with differently functionalised end groups. Higher molecular-weight polymers can be obtained with a slightly increased M(w)/M(n), since diffusion control and precipitation of the polymers influences the chain-transfer process. Recently, a few transition-metal- or lanthanide-based catalyst systems that catalyse such a highly reversible chain-growing process have been described. They are summarised and compared within this contribution.

  11. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    PubMed Central

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  12. Fabrication of biodegradable micelles with sheddable poly(ethylene glycol) shells as the carrier of 7-ethyl-10-hydroxy-camptothecin.

    PubMed

    Guo, Qian; Luo, Ping; Luo, Yu; Du, Fang; Lu, Wei; Liu, Shiyuan; Huang, Jin; Yu, Jiahui

    2012-12-01

    Biodegradable micelles with sheddable poly(ethylene glycol) shells were fabricated based on poly(ethylene glycol)-block-poly(γ-benzyl L-glutamate) (mPEG-SS-PBLG) diblock copolymer and applied as the carrier of 7-ethyl-10-hydroxy-camptothecin (SN-38) in order to enhance its solubility and stability in aqueous media. The diblock polymer was designed to have the hydrophilic PEG moiety and hydrophobic PBLG moiety linked by biodegradable disulfide bond, so in reducing environment the PEG shells can be detached. The polymer was able to form the micelles of nano-scale in aqueous media, suggesting their passive targeting potential to tumor tissue. Water-insoluble antitumor drug, SN-38, was easily encapsulated into mPEG-SS-PBLG nanomicelles by lyophilization method. When setting theoretical drug loading content at 10 wt%, the drug encapsulation efficiency (EE) was assayed as 73.5%. Owing to the disulfide bond in mPEG-SS-PBLG, intense release of SN-38 occurred in the presence of dithiothreitol (DTT) at the concentration of simulating the intracellular condition, however, micelles showed gradual release of SN-38 in the absence of DTT. Also, the mPEG-SS-PBLG micelles effectively protected the active lactone ring of SN-38 from hydrolysis under physiological condition. Compared with free SN-38, SN-38-loaded nanomicelles showed essentially decreased cytotoxicity against L929 cell line in 24h, bare mPEG-SS-PBLG nanomicelles showed almost non-toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Surface grafting of poly(ethylene glycol) onto poly(acrylamide-co-vinyl amine) cross-linked films under mild conditions.

    PubMed

    Yamamoto, Y; Sefton, M V

    1998-01-01

    Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.

  14. A study of the UV and VUV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1993-01-01

    UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.

  15. Radiation effects on ETFE polymer exposed to glow discharge

    NASA Astrophysics Data System (ADS)

    Minamisawa, Renato Amaral; Abidzina, Volha; de Almeida, Adelaide; Budak, Satilmis; Tereshko, I.; Elkin, I.; Ila, Daryush

    2007-08-01

    The polymer ethylenetetrafluoroethylene (ETFE) is composed of alternating ethylene and tetrafluoroethylene segments. Because it has applications in areas such as medical physics and industrial coatings, there is a great interest in surface modification studies of ETFE polymer. When this material is exposed to ionizing radiation it suffers damage that depends on the type, energy and intensity of the irradiation. In order to determine the radiation damage mechanism from exposure to low voltage plasma, ETFE films were exposed to residual gas plasma in glow discharge regime to a fluence of 2 × 1017 ions/cm2. Irradiated films were analyzed with optical absorption photospectrometry, Fourier transform infrared (FTIR) and Raman spectroscopy to determine the chemical nature of the structural changes caused by low energy glow discharge.

  16. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.

    2015-10-01

    Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.

  17. Adenosine triphosphate diffusion through poly(ethylene glycol) diacrylate hydrogels can be tuned by cross-link density as measured by PFG-NMR

    NASA Astrophysics Data System (ADS)

    Majer, Günter; Southan, Alexander

    2017-06-01

    The diffusion of small molecules through hydrogels is of great importance for many applications. Especially in biological contexts, the diffusion of nutrients through hydrogel networks defines whether cells can survive inside the hydrogel or not. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate with mesh sizes ranging from ξ = 1.1 to 12.9 nm are prepared using polymers with number-average molecular weights between Mn = 700 and 8000 g/mol. Precise measurements of diffusion coefficients D of adenosine triphosphate (ATP), an important energy carrier in biological systems, in these hydrogels are performed by pulsed field gradient nuclear magnetic resonance. Depending on the mesh size, ξ, and on the polymer volume fraction of the hydrogel after swelling, ϕ, it is possible to tune the relative ATP diffusion coefficient D/D0 in the hydrogels to values between 0.14 and 0.77 compared to the ATP diffusion coefficient D0 in water. The diffusion coefficients of ATP in these hydrogels are compared with predictions of various mathematical expressions developed under different model assumptions. The experimental data are found to be in good agreement with the predictions of a modified obstruction model or the free volume theory in combination with the sieving behavior of the polymer chains. No reasonable agreement was found with the pure hydrodynamic model.

  18. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    PubMed

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  19. Microencapsulation of islets within alginate/poly(ethylene glycol) gels cross-linked via Staudinger ligation

    PubMed Central

    Hall, Kristina K.; Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2010-01-01

    Functionalized alginate and PEG polymers were used to generate covalently linked alginate-PEG (XAlgPEG) microbeads of high stability. The cell-compatible Staudinger ligation scheme was used to chemoselectively cross-link phosphine-terminated poly(ethylene glycol) (PEG) to azide-functionalized alginate, resulting in XAlgPEG hydrogels. XAlgPEG microbeads were formed by co-incubation of the two polymers, followed by ionic cross-linking of the alginate using barium ions. The enhanced stability and gel properties of the resulting XAlgPEG microbeads, as well as the compatibility of these polymers for the encapsulation of islets and beta cells lines, were investigated. Our data show that XAlgPEG microbeads exhibit superior resistance to osmotic swelling compared to traditional barium cross-linked alginate (Ba-Alg) beads, with a 5-fold reduction in observed swelling, as well as resistance to dissolution via chelation solution. Diffusion and porosity studies found XAlgPEG beads to exhibit properties comparable to standard Ba-Alg. Our data found XAlgPEG microbeads to be highly cell compatible with insulinoma cell lines, as well as rat and human pancreatic islets, where the viability and functional assessment of cells within XAlgPEG were comparable to Ba-Alg controls. The remarkable improved stability, as well as demonstrated cellular compatibility, of XAlgPEG hydrogels makes them an appealing option for a wide variety of tissue engineering applications. PMID:20654745

  20. Oil-in-water emulsion impregnated electrospun poly(ethylene terephthalate) fiber mat as a novel tool for optical fiber cleaning.

    PubMed

    Devlaminck, Dries J G; Rahman, Md Mahbubor; Dash, Mamoni; Samal, Sangram Keshari; Watté, Jan; Van Vlierberghe, Sandra; Dubruel, Peter

    2018-06-15

    The complete removal of remaining polymer debris after stripping of optical fiber cables is essential for high precision connection between two fibers. It can be anticipated that electrospun porous membranes as cleaning wipes are able to trap and retain polymer debris within their pores. Impregnation of an oil-in-water emulsion as cleaning agent lowers the interfacial tension between debris and the optical fiber thereby enabling the straightforward removal of polymer debris from the optical fiber. Electrospun membranes of poly(ethylene terephthalate) (PET) and cellulose acetate (CA) were obtained with fiber diameters of 0.430 μm and 2 μm respectively. The oil-in-water emulsion was formulated with 10 wt% medium chain triglyceride (MCT) and 10 wt% Tween 80 surfactant in an aqueous phosphate buffer solution. In a scoring range from 0 to 5 for which the score 0 indicated superior cleaning and the score 5 referred to the least efficient cleaning, the electrospun fiber mats (without emulsion) scored within the range of 2-4 while emulsion impregnated electrospun fiber mats revealed the best score of 0. A drastic improvement was thus clearly evident from the obtained results when the cleaning emulsion was applied. The materials developed herein thus represent a new class of soft cleaning agents for optical fibers. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Engineered, thermoresponsive, magnetic nanocarriers of oligo(ethylene glycol)-methacrylate-based biopolymers

    NASA Astrophysics Data System (ADS)

    McCallister, Thomas; Gidney, Elwood; Adams, Devin; Diercks, David R.; Ghosh, Santaneel

    2014-11-01

    Engineered magnetic nanocarriers offer attractive options for implementing novel therapeutic solutions in biomedical research; however lack of biocompatibility and external tunability have prevented a biomedical breakthrough. Here we report multifunctional, magnetic nanospheres with tailored size, volumetric transition range, and magnetic properties based on biocompatible, thermo-responsive oligo(ethylene glycol) methacrylate biopolymers. Precise control of the nanosphere size in the range 100-300 nm, coupled with a higher and broader volumetric transition range (32-42 °C), is ideal for various biomedical applications. More importantly, super-paramagnetic behavior of the nanocarriers, even after polymer shell shrinkage, indicates stable and easily controllable loss mechanisms under exposure to an ac magnetic field.

  2. Poly(ethylene glycol)-[60]Fullerene-Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Reduced Hysteresis.

    PubMed

    Collavini, Silvia; Saliba, Michael; Tress, Wolfgang R; Holzhey, Philippe J; Völker, Sebastian F; Domanski, Konrad; Turren-Cruz, Silver H; Ummadisingu, Amita; Zakeeruddin, Shaik M; Hagfeldt, Anders; Grätzel, Michael; Delgado, Juan L

    2018-03-22

    A series of [60]fullerenes covalently functionalized with the polymer poly(ethylene glycol) is presented. These new [60]fullerene-based materials have been incorporated as additives in CH 3 NH 3 PbI 3 (MAPbI 3 ), the most common organic-inorganic perovskite used in perovskite solar cells. The extensive photovoltaic study performed by using these materials shows several beneficial effects on the performance of these cells, including a reduction in hysteresis and an increased stability against moisture, whereby the solar cells retain up to 97 % of their initial power conversion efficiency in an ambient atmosphere. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermoresponsive Polyurethane Bearing Oligo(Ethylene Glycol) as Side Chain Without Polyol at Polymer Backbone Achieved Excellent Hydrophilic and Hydrophobic Switching.

    PubMed

    Aoki, Daisuke; Ajiro, Hiroharu

    2018-06-13

    In order to prepare thermoresponsive polyurethane gels, a novel polyurethane bearing oligo(ethylene glycol) (OEG) as the side chain is successfully synthesized with hexamethylene diisocyanate and OEG tartrate ester. The aqueous solution of the polyurethane shows sharp and clear lower critical solution temperature behavior at 34 °C. Furthermore, a hydrogel based on the same polyurethane is also successfully prepared using glycerol as the crosslinker. This polyurethane hydrogel including 10 mol% of glycerol presents a large swelling ratio change between 4 °C and 37 °C from 250% to 40%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1985-01-01

    The historical development of ethylene vinyl acetate (EVA) is presented, including the functional requirements, polymer selection, curing, stabilization, production and module processing. The construction and use of a new method for the accelerated aging of polymers is detailed. The method more closely resembles the conditions that may be encountered in actual module field exposure and additionally may permit service life to be predicted accurately. The use of hardboard as a low cost candidate substrate material is studied. The performance of surface antisoiling treatments useful for imparting a self cleaning property to modules is updated.

  5. Curable liquid hydrocarbon prepolymers containing hydroxyl groups and process for producing same

    NASA Technical Reports Server (NTRS)

    Rhein, R. A.; Ingham, J. D. (Inventor)

    1978-01-01

    Production of hydroxyl containing curable liquid hydrocarbon prepolymers by ozonizing a high molecular weight saturated hydrocarbon polymer such as polyisobutylene or ethylene propylene rubber is discussed. The ozonized material is reduced using reducing agents, preferably diisobutyl aluminum hydride, to form the hydroxyl containing liquid prepolymers having a substantially lower molecular weight than the parent polymer. The resulting curable liquid hydroxyl containing prepolymers can be poured into a mold and readily cured, with reactants such as toluene diisocyanate, to produce highly stable elastomers having a variety of uses such as binders for solid propellants.

  6. Preparation, characterization, and activity of α-Ti(HPO4)2 supported metallocene catalysts

    NASA Astrophysics Data System (ADS)

    Shi, Yasai; Yuan, Yuan; Xu, Qinghong; Yi, Jianjun

    2016-10-01

    A series of heterogeneous catalysts by loading metallocenes on surface of α-Ti(HPO4)2, a kind of solid acid, has been synthesized. Polymerization of alkenes, including ethylene and propylene, based on participation of the heterogeneous catalysts were studied and the results were compared to metallocenes supported on silica gel, α-Zr(HPO4)2 and clay. Higher catalytic activity, larger polymer molecular weight and narrow distribution of polymer molecular weight were obtained. Acidic strength of the support and its influence to metallocenes were studied to discover intrinsic factors in the polymerizations.

  7. A brush-polymer conjugate of exendin-4 reduces blood glucose for up to five days and eliminates poly(ethylene glycol) antigenicity

    PubMed Central

    Qi, Yizhi; Simakova, Antonina; Ganson, Nancy J.; Li, Xinghai; Luginbuhl, Kelli M.; Özer, Imran; Liu, Wenge; Hershfield, Michael S.; Matyjaszewski, Krzysztof; Chilkoti, Ashutosh

    2017-01-01

    The delivery of therapeutic peptides and proteins is often challenged by a short half-life, and thus the need for frequent injections that limit efficacy, reduce patient compliance and increase treatment cost. Here, we demonstrate that a single subcutaneous injection of site-specific (C-terminal) conjugates of exendin-4 (exendin) — a therapeutic peptide that is clinically used to treat type 2 diabetes — and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) with precisely controlled molecular weights lowered blood glucose for up to 120 h in fed mice. Most notably, we show that an exendin-C-POEGMA conjugate with an average of 9 side-chain ethylene glycol (EG) repeats exhibits significantly lower reactivity towards patient-derived anti-poly(ethylene glycol) (PEG) antibodies than two FDA-approved PEGylated drugs, and that reducing the side-chain length to 3 EG repeats completely eliminates PEG antigenicity without compromising in vivo efficacy. Our findings establish the site-specific conjugation of POEGMA as a next-generation PEGylation technology for improving the pharmacological performance of traditional PEGylated drugs, whose safety and efficacy are hindered by pre-existing anti-PEG antibodies in patients. PMID:28989813

  8. Simultaneous separation/enrichment and detection of trace ciprofloxacin and lomefloxacin in food samples using thermosensitive smart polymers aqueous two-phase flotation system combined with HPLC.

    PubMed

    Lu, Yang; Chen, Bo; Yu, Miao; Han, Juan; Wang, Yun; Tan, Zhenjiang; Yan, Yongsheng

    2016-11-01

    Smart polymer aqueous two phase flotation system (SPATPF) is a new separation and enrichment technology that integrated the advantages of the three technologies, i.e., aqueous two phase system, smart polymer and flotation sublation. Ethylene oxide and propylene oxide copolymer (EOPO)-(NH4)2SO4 SPATPF is a pretreatment technique, and it is coupled with high-performance liquid chromatography to analyze the trace ciprofloxacin and lomefloxacin in real food samples. The optimized conditions of experiment were determined in the multi-factor experiment by using response surface methodology. The flotation efficiency of lomefloxacin and ciprofloxacin was 94.50% and 98.23% under the optimized conditions. The recycling experimentsshowed that the smart polymer EOPO could use repeatedly, which will reduce the cost in the future application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode

    NASA Astrophysics Data System (ADS)

    Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun

    A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.

  10. Self-formation of polymer nanostructures in plasma etching: mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Du, Ke; Jiang, Youhua; Huang, Po-Shun; Ding, Junjun; Gao, Tongchuan; Choi, Chang-Hwan

    2018-01-01

    In recent years, plasma-induced self-formation of polymer nanostructures has emerged as a simple, scalable and rapid nanomanufacturing technique to pattern sub-100 nm nanostructures. High-aspect-ratio nanostructures (>20:1) are fabricated on a variety of polymer surfaces such as poly(methylmethacrylate) (PMMA), polystyrene (PS), polydimethylsiloxane (PDMS), and fluorinated ethylene propylene (FEP). Sub-100 nm nanostructures (i.e. diameter  ⩽  50 nm) are fabricated in this one-step process without relying on slow and expensive nanolithography techniques. This review starts with discussion of the self-formation mechanisms including surface modulation, random masks, and materials impurities. Emphasis is put on the applications of polymer nanostructures in the fields of hierarchical nanostructures, liquid repellence, adhesion, lab-on-a-chip, surface enhanced Raman scattering (SERS), organic light emitting diode (OLED), and energy harvesting. The unique advantages of this nanomanufacturing technique are illustrated, followed by prospects.

  11. [Preparation and evaluation of novel mesoporous molecular sieve of baicalin surface molecularly imprinted polymers].

    PubMed

    Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na

    2015-05-01

    Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.

  12. pH-Responsive Hydrogels with Dispersed Hydrophobic Nanoparticles for the Oral Delivery of Chemotherapeutics

    PubMed Central

    Schoener, Cody A.; Hutson, Heather N.; Peppas, Nicholas A.

    2012-01-01

    Amphiphilic polymer carriers were formed by polymerizing a hydrophilic, pH-responsive hydrogel composed of poly(methacrylic – grafted – ethylene glycol) (P(MAA-g-EG)) in the presence of hydrophobic PMMA nanoparticles. These polymer carriers were varied in PMMA nanoparticle content to elicit a variety of physiochemical properties which would preferentially load doxorubicin, a hydrophobic chemotherapeutic, and release doxorubicin locally in the colon for the treatment of colon cancers. Loading levels ranged from 49% to 64% and increased with increasing nanoparticle content. Doxorubicin loaded polymers were released in a physiological model where low pH was used to simulate the stomach and then stepped to more neutral conditions to simulate the upper small intestine. P(MAA-g-EG) containing nanoparticles were less mucoadhesive as determined using a tensile tester, polymer samples, and fresh porcine small intestine. The cytocompatibility of the polymer materials were assessed using cell lines representing the GI tract and colon cancer and were non-cytotoxic at varying concentrations and exposure times. PMID:23281185

  13. Molecularly imprinted polymers for RGD selective recognition and separation.

    PubMed

    Papaioannou, Emmanuel; Koutsas, Christos; Liakopoulou-Kyriakides, Maria

    2009-03-01

    Molecularly imprinted polymers that could recognize the tripeptide Arg-Gly-Asp have been produced with the use of two functional monomers and three different cross-linkers, respectively. Methacrylic acid and acrylamide were used as functional monomers and the role of the ethylene glycol dimethacrylate, trimethylpropane trimethacrylate and N,N'-methylene-bisacrylamide as crosslinking monomers, was investigated on their recognition capability. The % net rebinding and the imprinting factor values were obtained, giving for the methacrylic acid-trimethylpropane trimethacrylate polymer the highest values 12.3% and 2.44, respectively. In addition, this polymer presented lower dissociation constant (K(D)) value and the higher B (max)% of theoretical total binding sites than all the other polymers. Rebinding experiments with Lys-Gly-Asp, an analogue of Arg-Gly-Asp, and other different peptides, such as cholecystokinin C-terminal tri- and pentapeptide and gramicidin, further indicated the selectivity of methacrylic acid-trimethylpropane trimethacrylate copolymer for Arg-Gly-Asp giving specific selectivity factor values 1.27, 1.98, 1.31 and 1.67, respectively.

  14. Puncture Self-Healing Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  15. Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene".

    PubMed

    Sandoz-Rosado, E; Beaudet, T D; Balu, R; Wetzel, E D

    2016-06-07

    As the simplest two-dimensional (2D) polymer, graphene has immensely high intrinsic strength and elastic stiffness but has limited toughness due to brittle fracture. We use atomistic simulations to explore a new class of graphene/polyethylene hybrid 2D polymer, "graphylene", that exhibits ductile fracture mechanisms and has a higher fracture toughness and flaw tolerance than graphene. A specific configuration of this 2D polymer hybrid, denoted "GrE-2" for the two-carbon-long ethylene chains connecting benzene rings in the inherent framework, is prioritized for study. MD simulations of crack propagation show that the energy release rate to propagate a crack in GrE-2 is twice that of graphene. We also demonstrate that GrE-2 exhibits delocalized failure and other energy-dissipating fracture mechanisms such as crack branching and bridging. These results demonstrate that 2D polymers can be uniquely tailored to achieve a balance of fracture toughness with mechanical stiffness and strength.

  16. Synthesis and Evaluation of a Molecularly Imprinted Polymer for the Determination of Metronidazole in Water Samples.

    PubMed

    de León-Martínez, L Díaz; Rodríguez-Aguilar, M; Ocampo-Pérez, R; Gutiérrez-Hernández, J M; Díaz-Barriga, F; Batres-Esquivel, L; Flores-Ramírez, R

    2018-03-01

    A molecularly imprinted polymer was developed and evaluated for selective determination of metronidazole (MNZ) in wastewater. This was achieved by using sodium methacrylate as monomer, toluene as porogen, ethylene glycol dimethacrylate as crosslinker, azobisisobutyronitrile as initiator and metronidazole as template molecule to generate the selectivity of the polymer for the compound, as well as non-imprinted polymers were synthesized. Two different polymerization approaches were used, bulk and emulsion and the polymers obtained by emulsion presented higher retention percentages the MIP 2-M presented the higher retention (83%). The performed method, was validated in fortified water, showing linearity from 10 up to 1000 ng/mL; limit of detection and quantification for compound were between 3 and 10 ng/mL, respectively. Finally, the method was applied in samples of a wastewater treatment plant in the city of San Luis Potosí, México, and the concentrations of MNZ in these samples were 84.1-114 ng/mL.

  17. Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes.

    PubMed

    Fong, Kara D; Wang, Tiesheng; Kim, Hyun-Kyung; Kumar, R Vasant; Smoukov, Stoyan K

    2017-09-08

    Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.

  18. Effect of chain topology on crystallization within nanoporous alumina

    NASA Astrophysics Data System (ADS)

    Yao, Yang; Suzuki, Yasuhito; Sakai, Takamasa; Seiwert, Jan; Frey, Holger; Steinhart, Martin; Butt, Hans-Juergen; Floudas, George

    Polymer topology has inevitable influence on the structure, packing, and dynamic of chains. Herein, we investigate for the first time the impact of polymer architecture on crystallization under 2D confinement, the latter provided by nanoporous alumina (AAO). We employ two poly(ethylene oxide) (PEO) star polymers to study the effect of (i) end groups and (ii) molecular weight on polymer crystallization in the bulk and under confinement. Bulk end groups reduce the crystallization/melting temperatures and the corresponding equilibrium melting point. Under confinement, in the absence of catalyst, homogeneous nucleation prevails as with linear PEOs. The homogeneous nucleation temperatures for the star polymers agree with that of linear ones provided that the arm molecular weight is used instead. Long-range dynamics pertinent to star relaxation are affecting the homogeneous nucleation temperature. On the other hand, the segmental dynamics speed up on confinement. In addition to star PEO, we study the effect of another topology, i.e. hyperbranched PEO, on the nucleation mechanism.

  19. Multivalent Ion Transport in Polymers via Metal-Ligand Coordination

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel

    Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.

  20. Catching the PEG-induced attractive interaction between proteins.

    PubMed

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  1. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    PubMed

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  2. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    USDA-ARS?s Scientific Manuscript database

    Improved approaches are needed to rapidly and accurately assess the bioavailability of persistent, hydrophobic organic compounds in soils at contaminated sites. The performance of a thin-film solid-phase extraction (TF-SPE) assay using vials coated with ethylene vinyl acetate polymer was compared to...

  3. Continuous Hypergolic Monitor Network for Shipboard Applications

    DTIC Science & Technology

    2005-08-30

    PEI Oxidizers MON-25 Polyamines and Polycarbonyls Ethanol SXFA Acetone PEO Octane Poly(ethylene-co-vinyl acetate) ( PEVA ), Polyisobutylene...polyvinylacetate ( PEVA ). These tests were performed under variable humidity and temperature (Figure 13) and under low humidity at ambient temperature...Test of Chemoselective Polymers Against Interferents with Variable Temperature and Humidity. Key: PEVA black; PEI red; SXFA blue; NmA yellow

  4. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  5. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    NASA Astrophysics Data System (ADS)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  6. Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug.

    PubMed

    Iza, M; Stoianovici, G; Viora, L; Grossiord, J L; Couarraze, G

    1998-03-02

    Thermosensitive polymer networks were synthesized from poly(ethylene glycol), hexamethylene diisocyanate and 1,2,6-hexanetriol in stoichiometric proportions. By varying the amount of 1,2,6-hexanetriol and the molar mass of the poly(ethylene glycol), a wide range of networks with different crosslinking densities was prepared. The networks obtained were characterized by the temperature dependence of their degree of equilibrium swelling in water and by their Young's moduli. For each network, the molecular weight between crosslinks was estimated. The structure of the hydrogels was analysed with respect to scaling laws, and it was found that the results obtained with PEG 1500 and PEG 6000 hydrogels are in agreement with theoretical predictions, whereas those obtained with PEG 400 hydrogels are in disagreement. The release properties of PEG hydrogels were studied by the determination of the diffusion coefficient for acebutolol chlorhydrate and by an analysis of the effect of temperature on these coefficients. Finally, these release properties were correlated with the swelling and structural properties of the hydrogels.

  7. Poly(ethylene glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications

    PubMed Central

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-01-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field. PMID:29164107

  8. Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol).

    PubMed

    Chan, Cheng-Kuang; Chu, I-Ming

    2003-01-01

    A novel biomaterial: poly(sebacic anhydride-co-ethylene glycol) was synthesized by introducing poly(ethylene glycol) (PEG) into a polyanhydride system. This copolymer was synthesized using sebacic acid and PEG via melt-condensation polymerization. The crystalline behavior of these synthesized products was studied, and compared to that of polymer blends of poly(sebacic anhydride) (PSA) and PEG. The crystallinity of PSA chain segments can be significantly enhanced by increasing chain mobility via the introduction of PEG. The crystallinity of the PSA component in copolymers was substantially greater than that of blends. However, the crystalline growth of the PEG segments was totally hindered by the presence of PSA chain segments, such that no crystal for PEG component was found in these copolymers. Besides, a dynamic mechanical analysis of these materials was also performed to provide additional information concerning visco-elastic behavior for other biomedical applications, where it was found that the viscous behavior in copolymers was more significant than in neat PSA and PEG. Copyright 2002 Elsevier Science Ltd.

  9. Poly(ethylene glycol) and Cyclodextrin-Grafted Chitosan: From Methodologies to Preparation and Potential Biotechnological Applications.

    PubMed

    Campos, Estefânia V R; Oliveira, Jhones L; Fraceto, Leonardo F

    2017-01-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  10. Application of magnetic resonance imaging to the investigation of the diffusivity of 1,1,1,2-tetrafluorethane in two polymers.

    PubMed

    Mayele, M; Oellrich, L R

    2004-03-01

    In order to evaluate the suitability of a polymer as a sealing material for certain working fluids used in process plants, information about the fluid diffusivity into the polymer or the polymer permeability to the fluid is a prerequisite. The fluid of interest in the present work is 1,1,1,2-tetrafluorethane, CH(2)FCF(3), a partly fluorinated hydrocarbon (HFC) commonly known as refrigerant R134a. HFCs are increasingly used in refrigeration, air conditioning, and heat pump applications as substitutes for the chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) that are believed to be responsible for ozone depletion in the stratosphere. The polymers studied were FPM, a perfluoroelastomer, and EPDM, an ethylene-propylene-diene rubber. The study was carried out using magnetic resonance imaging (MRI). The contact time dependence of diffusion of the fluid into the polymer, as well as the spatial distributions of spin-lattice, T(1), and spin-spin, T(2), relaxation times, were used as indicators of the influence of the EPDM matrix on the mobility of R134a molecules.

  11. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    PubMed

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Optimization of neural network for ionic conductivity of nanocomposite solid polymer electrolyte system (PEO-LiPF 6-EC-CNT)

    NASA Astrophysics Data System (ADS)

    Johan, Mohd Rafie; Ibrahim, Suriani

    2012-01-01

    In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.

  13. Determining heat loss from the surface of polymer films via modeling of experimental fluorescence thermometry

    NASA Astrophysics Data System (ADS)

    Firestone, Gabriel; Bochinski, Jason; Meth, Jeffrey; Clarke, Laura

    Understanding of the heat transfer characteristics of a polymer during processing is critical to predicting and controlling the resulting properties and has been studied extensively in injection molding. As new methodologies for polymer processing are developed, such as photothermal heating, it is important to build an understanding of how heat transfer properties change under these novel conditions. By combining theoretical and experimental approaches, the thermal properties of photothermally heated polymer films were measured. The key idea is that by measuring the steady state temperature profile of a spot heated polymer film via a fluorescence probe (the temperature versus distance from the heated region) and fitting to a theoretical model, heat transfer coefficients can be extracted. We apply this approach to three different polymer systems, crosslinked epoxy, poly(methyl methacrylate) and poly(ethylene oxide) thin films with a range of thicknesses, under different heating laser intensities and with different resultant temperatures. We will discuss the resultant trends and extension of the model beyond a simple spot heating configuration. Support from National Science Foundation CMMI-1069108 and CMMI-1462966.

  14. Polymer-electrolyte-gated nanowire synaptic transistors for neuromorphic applications

    NASA Astrophysics Data System (ADS)

    Zou, Can; Sun, Jia; Gou, Guangyang; Kong, Ling-An; Qian, Chuan; Dai, Guozhang; Yang, Junliang; Guo, Guang-hua

    2017-09-01

    Polymer-electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer-electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer-electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.

  15. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    PubMed Central

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  16. Mixed solvent electrolytes for ambient temperature secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Deligiannis, Fotios (Inventor); Halpert, Gerald (Inventor)

    1991-01-01

    The present invention comprises an improved electrolyte for secondary lithium-based cells as well as batteries fabricated using this electrolyte. The electrolyte is a lithium containing salt dissolved in a non-aqueous solvent, which is made from a mixture of ethylene carbonate, ethylene propylene diene terpolymer, 2-methylfuran, and 2-methyltetrahydrofuran. This improved, mixed solvent electrolyte is more conductive than prior electrolytes and much less corrosive to lithium anodes. Batteries constructed with this improved electrolyte utilize lithium or lithium alloy anodes and cathodes made of metal chalcogenides or oxides, such as TiS.sub.2, NbSe.sub.3, V.sub.6 O.sub.13, V.sub.2 O.sub.5, MoS.sub.2, MoS.sub.3, CoO.sub.2, or CrO.sub.2, dissolved in a supporting polymer matrix, like EPDM. The preferred non-aqueous solvent mixture comprises approximately 5 to 30 volume percent ethylene carbonate, approximately 0.01 to 0.1 weight percent ethylene propylene diene terpolymer, and approximately 0.2 to 2 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The most preferred solvent comprises approximately 10 to 20 volume percent ethylene carbonate, about 0.05 weight percent ethylene propylene diene terpolymer, and about 1.0 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The concentration of lithium arsenic hexafluoride can range from about 1.0 to 1.8 M; a concentration 1.5 M is most preferred. Secondary batteries made with the improved electrolyte of this invention have lower internal impedance, longer cycle life, higher energy density, low self-discharge, and longer shelf life.

  17. Thermal oxidative degradation of ethylene tetrafluoroethylene copolymer systems

    NASA Astrophysics Data System (ADS)

    Elders, Jonathan Patrick

    Thermo-oxidative degradation of ethylene tetrafluoroethylene (ETFE) was investigated to determine how modifications for use in an electrical wire system affected its thermal stability. Modifications included electron irradiation and subsequent cross-linking during manufacture and contact with a metal surface. Samples with irradiation histories between 0 and 48 MRads were investigated. Degradation of ETFE was enhanced by contact with a metal "conductor" surface: silver - coated copper. Polymer degradation was analyzed by weight loss kinetics (thermogravimetric analysis (TGA)), changes in polymer morphology (differential scanning calorimetry (DSC)), optical microscopy, attenuated total reflectance (ATR) infrared spectroscopy, and gas chromatography - mass spectroscopy (GC/MS). Conductor aging (copper permeation through silver with subsequent oxidation) was investigated using scanning Auger Electron Spectroscopy (AES). Conductor aging is enhanced in the presence of the polymer surface. Interactions between conductor and polymer were analyzed by optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The rate of polymer degradation from 220°C to 280°C was independent of time and extent of degradation, and rate was proportional to irradiation dose. The activation energy for degradation of unirradiated ETFE was 227 kJ/mol and decreased from 150 to 138 kJ/mol for ETFE irradiated to doses between 6 and 48 MRads. Rates of degradation at 300°C to 320°C were dependent on the extent of degradation. Rates of degradation at temperatures between 230°C and 310°C were an order of magnitude larger in the presence of a conductor than in its absence, and activation energies for degradation in the presence of conductor were reduced to 120 kJ/mol. Degradation was modeled as the combination of bulk polymer degradation and catalytic degradation at the polymer-metal interface. ETFE aged at 250°C in the presence or absence of a conductor exhibited a double melting endotherm. ATR spectra of aged ETFE indicated polymer oxidation. Based on AES experiments, copper permeation during aging in the presence or absence of ETFE was consistent with Fickian diffusion. The coefficient for copper diffusion through silver was approximately 10 -15 cm2/second, and catalytic ETFE degradation was proportional to conductor aging. The copper oxidized on the surface to yield a material with a stoichiometric composition of Cu3O 2.

  18. Novel Hydrogels from Telechelic Polymers

    NASA Astrophysics Data System (ADS)

    Taribagil, Rajiv R.

    The last two decades have seen telechelic polymers support an increasing number of applications as stabilizers and flow modifiers in fields as varied as pharmaceutics, paints and oil recovery. Mainly consisting of a long hydrophilic block end-capped with hydrophobic blocks, these polymers form gels at modest concentrations, comprising hydrophobic junctions with hydrophilic blocks bridging these junctions. This thesis examines two different types of telechelic polymer hydrogels: concentrated dispersions of telechelic triblock copolymers and dilute solutions of wormlike micelles cross-linked by hydrophobically end-capped polymers. Aqueous gels of telechelic poly(ethylene oxide) (PEO)-based triblock polymers, with homo and hetero combinations of 1,2-polybutadiene (PB) and poly(perfluoropropylene oxide) (PFPO) as hydrophobic end-blocks, were investigated using a combination of cryogenic scanning electron microscopy and small-angle neutron scattering. The PB-b-PEO-b-PB copolymers formed networks of spherical micelles at all concentrations as expected, albeit with significant spatial heterogeneity that diminished with increasing concentration. The PFPO-b-PEO-b-PFPO copolymers also formed networks by aggregation of the end-blocks, but the PFPO blocks tended to adopt disk-like or even sheet-like structures. This is attributed to the extremely high interfacial tension of PFPO with water and is consistent with the "super-strong" segregation regime behavior. The heterotelechelic PB-b-PEO- b-PFPO terpolymers adopted a quite different structure, namely an intricate bicontinuous open-cell foam, with cells on the order of 500 nm in size and cell walls composed of PFPO disks embedded in PB sheets. These various network structures illustrate the potential of using end-block chemistry to manipulate both the morphology and the physical properties of polymer gels. Dilute aqueous solutions containing 1 wt% cetyltrimethylammonium tosylate, a surfactant well recognized to form wormlike micelles, and low concentrations of hydrophobically end-capped poly(ethylene oxide), were investigated using dynamic mechanical spectroscopy and small-angle neutron scattering. The detailed examination shows that addition of as little as 0.1 wt% of the polymer to the dilute wormlike micelle solution leads to a massive enhancement in its viscoelastic response. This phenomenon raises the possibility of significantly reducing the amount of additive required to achieve a desired rheological profile, with concomitant advantages in both cost and environmental impact.

  19. MS/MS-Assisted Design of Sequence-Controlled Synthetic Polymers for Improved Reading of Encoded Information

    NASA Astrophysics Data System (ADS)

    Charles, Laurence; Cavallo, Gianni; Monnier, Valérie; Oswald, Laurence; Szweda, Roza; Lutz, Jean-François

    2017-06-01

    In order to improve their MS/MS sequencing, structure of sequence-controlled synthetic polymers can be optimized based on considerations regarding their fragmentation behavior in collision-induced dissociation conditions, as demonstrated here for two digitally encoded polymer families. In poly(triazole amide)s, the main dissociation route proceeded via cleavage of the amide bond in each monomer, hence allowing the chains to be safely sequenced. However, a competitive cleavage of an ether bond in a tri(ethylene glycol) spacer placed between each coding moiety complicated MS/MS spectra while not bringing new structural information. Changing the tri(ethylene glycol) spacer to an alkyl group of the same size allowed this unwanted fragmentation pathway to be avoided, hence greatly simplifying the MS/MS reading step for such undecyl-based poly(triazole amide)s. In poly(alkoxyamine phosphodiester)s, a single dissociation pathway was achieved with repeating units containing an alkoxyamine linkage, which, by very low dissociation energy, made any other chemical bonds MS/MS-silent. Structure of these polymers was further tailored to enhance the stability of those precursor ions with a negatively charged phosphate group per monomer in order to improve their MS/MS readability. Increasing the size of both the alkyl coding moiety and the nitroxide spacer allowed sufficient distance between phosphate groups for all of them to be deprotonated simultaneously. Because the charge state of product ions increased with their polymerization degree, MS/MS spectra typically exhibited groups of fragments at one or the other side of the precursor ion depending on the original α or ω end-group they contain, allowing sequence reconstruction in a straightforward manner. [Figure not available: see fulltext.

  20. Conducting polymer electrodes for visual prostheses.

    PubMed

    Green, R A; Devillaine, F; Dodds, C; Matteucci, P; Chen, S; Byrnes-Preston, P; Poole-Warren, L A; Lovell, N H; Suaning, G J

    2010-01-01

    Conducting polymers (CPs) have the potential to provide superior neural interfaces to conventional metal electrodes by introducing more efficient charge transfer across the same geometric area. In this study the conducting polymer poly(ethylene dioxythiophene) (PEDOT) was coated on platinum (Pt) microelectrode arrays. The in vitro electrical characteristics were assessed during biphasic stimulation regimes applied between electrode pairs. It was demonstrated that PEDOT could reduce the potential excursion at a Pt electrode interface by an order of magnitude. The charge injection limit of PEDOT was found to be 15 x larger than Pt. Additionally, PEDOT coated electrodes were acutely implanted in the suprachoroidal space of a cat retina. It was demonstrated that PEDOT coated electrodes also had lower potential excursions in vivo and electrically evoked potentials (EEPs) could be detected within the vision cortex.

  1. Detection of Carbon Monoxide Using Polymer-Carbon Composite Films

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.

    2011-01-01

    A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm.

  2. Synthesis of a Temperature-Sensitive Matrine-Imprinted Polymer and Its Potential Application for the Selective Extraction of Matrine from Radix Sophorae Tonkinensis

    PubMed Central

    Jiang, Minjie; Wang, Lisheng; Liu, Xu; Yang, Hua; Ren, Fan; Gan, Lizhen; Jiang, Weizhe

    2015-01-01

    A temperature-sensitive matrine-imprinted polymer was prepared in chloroform by free-radical cross-linking copolymerization of methacrylic acid at 60 °C in the presence of ethylene glycol dimethacrylate as the cross-linker, N-isopropyl acrylamide as the temperature-responsive monomer and matrine as the template molecule. Binding experiments and Scatchard analyses revealed that two classes of binding sites were formed on molecular imprinted polymer (MIP) at 50 °C. Additionally, the thermoresponsive MIP was tested for its application as a sorbent material for the selective separation of matrine from Chinese medicinal plant radix Sophorae tonkinensis. It was shown that the thermoresponsive MIP displayed different efficiency in clean-up and enrichments using the SPE protocol at different temperatures. PMID:25658797

  3. Studies on the effect of dispersoid(ZrO2) in PVdF-co-HFP based gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Sivakumar, M.; Subadevi, R.; Muthupradeepa, R.

    2013-06-01

    Gel polymer electrolytes containing poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) / Lithium bis(trifluoromethane sulfon)imide (LiTFSI) / mixture of ethylene carbonate and propylene carbonate (EC+PC) with different concendration of ZrO2 has been prepared using the solution casting technique. The conductivity of the prepared electrolyte sample has been determined by AC impedance technique in the range 303-353K. The temperature dependent ionic conductivity plot seems to obey VTF relation. The maximum ionic conductivity value of 4.46 × 10-3S/cm has been obtained for PVdF-co-HFP(32%) - LiTFSI(8%) - EC+PC (60%) + ZrO2(6wt%) based polymer electrolyte. The surface morphology of the prepared electrolyte sample has been studied using SEM.

  4. Amphiphilic graft polymer with reduction breakable main chain prepared via click polymerization and grafting onto

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojin; Dai, Yu

    2018-06-01

    Amphiphilic graft polymer PSS- g-Pal/PEG with reduction breakable main chain was synthesized via click polymerization of dialkynyl (containing disulfide bond) and diazide (containing pendant diol) and one-pot grafting onto of hydrophobic palmitate (Pal) and hydrophilic methoxy poly(ethylene glycol) (PEG). PSS- g-Pal/PEG is able to form polymeric micelles by self-assembly in water via dialysis. Polymeric micelles are nano-sized spheres and the particle size is approximately 70 nm. Of note, polymeric micelles are reduction-responsive owing to the disulfide bonds in main chain of PSS- g-Pal/PEG. Therefore, polymeric micelles prepared from amphiphilic graft polymer PSS- g-Pal/PEG are able to fast release the drugs in the presence of the reducing agents such as DL-dithiothreitol (DTT).

  5. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface. PMID:8534807

  6. Competitive adsorption of surfactants and polymers at the free water surface. A computer simulation study of the sodium dodecyl sulfate-poly(ethylene oxide) system.

    PubMed

    Darvas, Mária; Gilányi, Tibor; Jedlovszky, Pál

    2011-02-10

    Competitive adsorption of a neutral amphiphilic polymer, namely poly(ethylene oxide) (PEO) and an ionic surfactant, i.e., sodium dodecyl sulfate (SDS), is investigated at the free water surface by computer simulation methods at 298 K. The sampled equilibrium configurations are analyzed in terms of the novel identification of the truly interfacial molecules (ITIM) method, by which the intrinsic surface of the aqueous phase (i.e., its real surface corrugated by the capillary waves) instead of an ideally flat surface approximating its macroscopic surface plane, can be taken into account. In the simulations, the surface density of SDS is gradually increased from zero up to saturation, and the structural, dynamical, and energetic aspects of the gradual squeezing out of the PEO chains from the surface are analyzed in detail. The obtained results reveal that this squeezing out occurs in a rather intricate way. Thus, in the presence of a moderate amount of SDS the majority of the PEO monomer units, forming long bulk phase loops in the absence of SDS, are attracted to the surface of the solution. This synergistic effect of SDS of moderate surface density on the adsorption of PEO is explained by two factors, namely by the electrostatic attraction between the ionic groups of the surfactant and the moderately polar monomer units of the polymer, and by the increase of the conformational entropy of the polymer chain in the presence of the surfactant. This latter effect, thought to be the dominant one among the above two factors, also implies the formation of similar polymer/surfactant complexes at the interface than what are known to exist in the bulk phase of the solution. Finally, in the presence of a large amount of SDS the more surface active surfactant molecules gradually replace the PEO monomer units at the interfacial positions, and squeezing out the PEO molecules from the surface in a monomer unit by monomer unit manner.

  7. Gel polymer electrolyte for lithium-ion batteries comprising cyclic carbonate moieties

    NASA Astrophysics Data System (ADS)

    Tillmann, S. D.; Isken, P.; Lex-Balducci, A.

    2014-12-01

    A polymer system based on oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and cyclic carbonate methacrylate (CCMA) was chosen as matrix to realize high-performance gel polymer electrolytes due to the fact that both monomers are able to interact with the liquid electrolyte, thus, retaining it inside the matrix. Additionally, OEGMA enables high flexibility, while CCMA provides mechanical stability. The polymer displays a high thermal stability up to 200 °C and a glass transition temperature below room temperature (5 °C) allowing an easy handling of the obtained films. By immobilizing the liquid electrolyte 1 M LiPF6 in EC:DMC 1:1 w:w in the polymer host a gel polymer electrolyte with a high conductivity of 2.3 mS cm-1 at 25 °C and a stable cycling behavior with high capacities and efficiencies in Li(Ni1/3Co1/3Mn1/3)O2 (NCM)/graphite full cells is obtained. The investigated gel polymer electrolyte is identified as promising electrolyte for lithium-ion batteries, because it combines good electrochemical properties comparable to that of liquid electrolytes with the safety advantage that no leakage of the flammable electrolyte solvents can occur.

  8. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments

    DOE PAGES

    Paxton, Walter F.; Bachand, George D.; Gomez, Andrew; ...

    2015-04-24

    In this study, we describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4–5 h for corresponding lipid networks).more » The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.« less

  9. Effect of polymer architecture on curcumin encapsulation and release from PEGylated polymer nanoparticles: Toward a drug delivery nano-platform to the CNS.

    PubMed

    Rabanel, Jean-Michel; Faivre, Jimmy; Paka, Ghislain Djiokeng; Ramassamy, Charles; Hildgen, Patrice; Banquy, Xavier

    2015-10-01

    We developed a nanoparticles (NPs) library from poly(ethylene glycol)-poly lactic acid comb-like polymers with variable amount of PEG. Curcumin was encapsulated in the NPs with a view to develop a delivery platform to treat diseases involving oxidative stress affecting the CNS. We observed a sharp decrease in size between 15 and 20% w/w of PEG which corresponds to a transition from a large solid particle structure to a "micelle-like" or "polymer nano-aggregate" structure. Drug loading, loading efficacy and release kinetics were determined. The diffusion coefficients of curcumin in NPs were determined using a mathematical modeling. The higher diffusion was observed for solid particles compared to "polymer nano-aggregate" particles. NPs did not present any significant toxicity when tested in vitro on a neuronal cell line. Moreover, the ability of NPs carrying curcumin to prevent oxidative stress was evidenced and linked to polymer architecture and NPs organization. Our study showed the intimate relationship between the polymer architecture and the biophysical properties of the resulting NPs and sheds light on new approaches to design efficient NP-based drug carriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.

    PubMed

    Ray, Judith V; Mirata, Fosca; Pérollier, Celine; Arotcarena, Michel; Bayoudh, Sami; Resmini, Marina

    2016-03-01

    A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.

  11. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    PubMed Central

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  12. Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Prasanth; Manuel, James; Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Jou-Hyeon; Nah, Changwoon

    Electrospun membranes of polyacrylonitrile are prepared, and the electrospinning parameters are optimized to get fibrous membranes with uniform bead-free morphology. The polymer solution of 16 wt.% in N, N-dimethylformamide at an applied voltage of 20 kV results in the nanofibrous membrane with average fiber diameter of 350 nm and narrow fiber diameter distribution. Gel polymer electrolytes are prepared by activating the nonwoven membranes with different liquid electrolytes. The nanometer level fiber diameter and fully interconnected pore structure of the host polymer membranes facilitate easy penetration of the liquid electrolyte. The gel polymer electrolytes show high electrolyte uptake (>390%) and high ionic conductivity (>2 × 10 -3 S cm -1). The cell fabricated with the gel polymer electrolytes shows good interfacial stability and oxidation stability >4.7 V. Prototype coin cells with gel polymer electrolytes based on a membrane activated with 1 M LiPF 6 in ethylene carbonate/dimethyl carbonate or propylene carbonate are evaluated for discharge capacity and cycle property in Li/LiFePO 4 cells at room temperature. The cells show remarkably good cycle performance with high initial discharge properties and low capacity fade under continuous cycling.

  13. On the chemistry of Jupiter's upper atmosphere

    USGS Publications Warehouse

    Saslaw, W.C.; Wildey, R.L.

    1967-01-01

    We conduct a first investigation into the ion-molecule chemistry of the upper Jovian atmosphere. Experimental results show that intense ultraviolet radiation reacts with the constituents of the Jovian atmosphere to produce C2H4, C2H6, C3H8, and higher polymers. The general procedure for calculating both equilibrium and nonequilibrium abundances of these products is formulated and applied to the case of the surface passage of a satellite shadow. A specific example is made of ethylene, for which an analytical approximation gives 1010 molecules in an atmospheric column of 1 cm2 cross section after a very rapid rise to equilibrium. Such a concentration of ethylene does not substantially affect the infrared radiation in the shadow. ?? 1967.

  14. Micro- and Nanoscale Hydrogel Systems for Drug Delivery and Tissue Engineering

    PubMed Central

    Schwall, Christine T.; Banerjee, Ipsita A.

    2009-01-01

    The pursuit for targeted drug delivery systems has led to the development of highly improved biomaterials with enhanced biocompatibility and biodegradability properties. Micro- and nanoscale components of hydrogels prepared from both natural and artificial components have been gaining significant importance due to their potential uses in cell based therapies, tissue engineering, liquid micro-lenses, cancer therapy, and drug delivery. In this review some of the recent methodologies used in the preparation of a number of synthetic hydrogels such as poly(N-isopropylacrylamide) (pNIPAm), poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), polyvinyl alcohol methylacrylate co-polymers (PVA-MA) and polylactic acid (PLA), as well as some of the natural hydrogels and their applications have been discussed in detail.

  15. Adsorption of poly(ethylene oxide) on smectite: Effect of layer charge.

    PubMed

    Su, Chia-Chi; Shen, Yun-Hwei

    2009-04-01

    The adsorption of polymers on clay is important in many applications. However the mechanisms of poly(ethylene oxide) (PEO) adsorption on smectite is not well elucidated at present. The aim of this study was to investigate the effect of layer charge density on the adsorption of PEO by smectite. The results indicated that both the hydrophobic interaction (between CH(2)CH(2) groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of smectite) lead to PEO preferential adsorption on the surface of low-charge smectite. In addition, the delamination of low-charge smectite in water is enhanced upon PEO adsorption presumably due to the hydrophilic ether oxygen of adsorbed PEO.

  16. Quantitative control of poly(ethylene oxide) surface antifouling and biodetection through azimuthally enhanced grating coupled-surface plasmon resonance sensing

    NASA Astrophysics Data System (ADS)

    Sonato, Agnese; Silvestri, Davide; Ruffato, Gianluca; Zacco, Gabriele; Romanato, Filippo; Morpurgo, Margherita

    2013-12-01

    Grating Coupled-Surface Plasmon reflectivity measurements carried out under azimuth and polarization control (GC-SPR φ ≠ 0°) were used to optimize the process of gold surface dressing with poly(ethylene oxide) (PEO) derivatives of different molecular weight, with the final goal to maximize the discrimination between specific and non-specific binding events occurring at the surface. The kinetics of surface deposition of thiol-ending PEOs (0.3, 2 and 5 kDa), introduced as antifouling layers, was monitored. Non-specific binding events upon immersion of the surfaces into buffers containing either 0.1% bovine serum albumin or 1% Goat Serum, were evaluated as a function of polymer size and density. A biorecognition event between avidin and biotin was then monitored in both buffers at selected low and high polymer surface densities and the contribution of analyte and fouling elements to the signal was precisely quantified. The 0.3 kDa PEO film was unable to protect the surface from non-specific interactions at any tested density. On the other hand, the 2 and 5 kDa polymers at their highest surface densities guaranteed full protection from non-specific interactions from both buffers. These densities were reached upon a long deposition time (24-30 h). The results pave the way toward the application of this platform for the detection of low concentration and small dimension analytes, for which both non-fouling and high instrumental sensitivity are fundamental requirements.

  17. Stealth properties of poly(ethylene oxide)-based triblock copolymer micelles: a prerequisite for a pH-triggered targeting system.

    PubMed

    Van Butsele, K; Morille, M; Passirani, C; Legras, P; Benoit, J P; Varshney, S K; Jérôme, R; Jérôme, C

    2011-10-01

    Evaluation of the biocompatibility of pH-triggered targeting micelles was performed with the goal of studying the effect of a poly(ethylene oxide) (PEO) coating on micelle stealth properties. Upon protonation under acidic conditions, pH-sensitive poly(2-vinylpyridine) (P2VP) blocks were stretched, exhibiting positive charges at the periphery of the micelles as well as being a model targeting unit. The polymer micelles were based on two different macromolecular architectures, an ABC miktoarm star terpolymer and an ABC linear triblock copolymer, which combined three different polymer blocks, i.e. hydrophobic poly(ε-caprolactone), PEO and P2VP. Neutral polymer micelles were formed at physiological pH. These systems were tested for their ability to avoid macrophage uptake, their complement activation and their pharmacological behavior after systemic injection in mice, as a function of their conformation (neutral or protonated). After protonation, complement activation and macrophage uptake were up to twofold higher than for neutral systems. By contrast, when P2VP blocks and the targeting unit were buried by the PEO shell at physiological pH, micelle stealth properties were improved, allowing their future systemic injection with an expected long circulation in blood. Smart systems responsive to pH were thus developed which therefore hold great promise for targeted drug delivery to an acidic tumoral environment. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. 77 FR 1267 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... products with repeating ether linkages (i.e., -R-O-R-) formed by the reaction of ethylene oxide, propylene....regulations.gov : Follow the on-line instructions for submitting comments. Email: a-and-r[email protected] http://www.regulations.gov Web site is an ``anonymous access'' system, which means the EPA will not...

  19. Light-triggered thermoelectric conversion based on a carbon nanotube-polymer hybrid gel.

    PubMed

    Miyako, Eijiro; Nagata, Hideya; Funahashi, Ryoji; Hirano, Ken; Hirotsu, Takahiro

    2009-01-01

    Lights? Nanotubes? Action! A hydrogel comprising lysozymes, poly(ethylene glycol), phospholipids, and functionalized single-walled carbon nanotubes is employed for light-driven thermoelectric conversion. A photoinduced thermoelectric conversion module based on the hydrogel functions as a novel electric power generator (see image). This concept may find application in various industries, such as robotics and aerospace engineering.

  20. High-Molecular Compounds (Selected Articles).

    DTIC Science & Technology

    1987-09-11

    with methacrylamide (AMK), methacrylic acid (MAK) and ethylene-glycolmethacrylate (MEG), copolymer of methylmethacrylate (MMA) and MAK and...polymerization in medium of isopropyl or butyl alcohol with dinitrile of azoisobutyric acid (DAK). Samples for the tests re-precipitated from acetone... temperatu .-es T. T in films of PVTs process of thermal structuring occurs, as a result of which polymer changes into undissolved state. * REFERENCES

  1. Radiation processed polychloroprene-co-ethylene-propene diene terpolymer blends: Effect of radiation vulcanization on solvent transport kinetics

    NASA Astrophysics Data System (ADS)

    Dubey, K. A.; Bhardwaj, Y. K.; Chaudhari, C. V.; Kumar, Virendra; Goel, N. K.; Sabharwal, S.

    2009-03-01

    Blends of polychloroprene rubber (PCR) and ethylene propylene diene terpolymer rubber (EPDM) of different compositions were made and exposed to different gamma radiation doses. The radiation sensitivity and radiation vulcanization efficiency of blends was estimated by gel-content analysis, Charlesby-Pinner parameter determination and crosslinking density measurements. Gamma radiation induced crosslinking was most efficient for EPDM ( p0/ q0 ˜ 0.08), whereas it was the lowest for blends containing 40% PCR ( p0/ q0 ˜ 0.34). The vulcanized blends were characterized for solvent diffusion characteristics by following the swelling dynamics. Blends with higher PCR content showed anomalous swelling. The sorption and permeability of the solvent were not strictly in accordance with each other and the extent of variation in two parameters was found to be a function of blend composition. The Δ G values for solvent diffusion were in the range -2.97 to -9.58 kJ/mol and indicated thermodynamically favorable sorption for all blends. These results were corroborated by dynamic swelling, experimental as well as simulated profiles and have been explained on the basis of correlation between crosslinking density, diffusion kinetics, thermodynamic parameters and polymer-polymer interaction parameter.

  2. Radiation-induced phenomena in ethylene-co-tetrafluoroethylene polymer. Temperature and LET effects

    NASA Astrophysics Data System (ADS)

    Oshima, Akihiro; Washio, Masakazu

    2003-08-01

    Irradiation temperature and linear energy transfer (LET) dependency on radiation-induced reactions of ethylene-co-tetrafluoroethylene polymer (ETFE) were investigated precisely by using low and high LET beams, and in a wide range of irradiation temperatures from 77 to 573 K including its melting temperature, respectively. At various temperatures irradiation by low LET beam such as γ-rays or electron beams, significant changes were observed in the photo-absorption spectra in the wavelength region between 200 and 500 nm. The general tendency is that the absorption band shifts to longer wavelengths with higher irradiation temperatures. The enhancement of the photo-absorption at 200-500 nm is due to the formation of conjugated double bonds in ETFE by irradiation. By high LET beam irradiation at room temperature such as ion beams, the photo-absorption spectra was different from those of low LET beams, i.e. the new absorption bands around 250-450 nm was appeared. It could be suggested that the high LET beams induced the production of intermediate species in a localized area such as track structure. As a result, reaction kinetics are different from low LET beams.

  3. Thermal and chemical stabilization of ethylene/vinyl acetate/vinyl alcohol (EVA-OH) terpolymers under nitroplasticizer environments

    DOE PAGES

    Yang, Dali; Hubbard, Kevin M.; Henderson, Kevin C.; ...

    2014-09-17

    Here, we compare the aging behaviors of cross-linked ethylene/vinyl acetate/vinyl alcohol terpolymers, also referred to as EVA-OH, when they are either immersed in nitroplasticizer (NP) liquid or exposed to NP vapor at different temperatures. And while thermogravimetric analysis and differential scanning calorimetry are used to probe the thermal stability of aged NP and polymers, Fourier transform infrared, gel permeation chromatography, ultra-violet/vis, and nuclear magnetic resonance are used to probe their structural changes over the aging process. Our study confirms that NP degrades through C[BOND]N cleavage, and releases HONO molecules at a slightly elevated temperature (<75°C). As these molecules accumulate inmore » the vapor phase, they react among themselves to create an acidic environment. Therefore, these chemical constituents in the NP vapor significantly accelerate the hydrolysis of EVA-OH polymer. When the hydrolysis occurs in both vinyl acetate and urethane groups and the scission at the cross-linker progresses, EVA-OH becomes vulnerable to further degradation in the NP vapor environment. Finally, through the comprehensive characterization, the possible degradation mechanisms of the terpolymers are proposed.« less

  4. Countercurrent distribution of biological cells

    NASA Technical Reports Server (NTRS)

    1982-01-01

    It is known that the addition of phosphate buffer to two polymer aqueous phase systems has a strong effect on the partition behavior of cells and other particles in such mixtures. The addition of sodium phosphate to aqueous poly(ethylene glycol) dextran phase systems causes a concentration-dependent shift in binodial on the phase diagram, progressively lowering the critical conditions for phase separation as the phosphate concentration is increased. Sodium chloride produces no significant shift in the critical point relative to the salt-free case. Accurate determinations of the phase diagram require measurements of the density of the phases; data is presented which allows this parameter to be calculated from polarimetric measurements of the dextran concentrations of both phases. Increasing polymer concentrations in the phase systems produce increasing preference of the phosphate for the dextran-rich bottom phase. Equilibrium dialysis experiments showed that poly(ethylene glycol) effectively rejected phosphate, and to a lesser extent chloride, but that dextran had little effect on the distribution of either salt. Increasing ionic strength via addition of 0.15 M NaCl to phase systems containing 0.01 M phosphate produces an increased concentration of phosphate ions in the bottom dextran-rich phase, the expected effect in this type of Donnan distribution.

  5. [Evaluation of the influence of sterilization method on the stability of carboxymethyl cellulose wound dressing].

    PubMed

    Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš

    2013-04-01

    Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.

  6. Poly(ethyl glyoxylate)-Poly(ethylene oxide) Nanoparticles: Stimuli-Responsive Drug Release via End-to-End Polyglyoxylate Depolymerization.

    PubMed

    Fan, Bo; Gillies, Elizabeth R

    2017-08-07

    The ability to disrupt polymer assemblies in response to specific stimuli provides the potential to release drugs selectively at certain sites or conditions in vivo. However, most stimuli-responsive delivery systems require many stimuli-initiated events to release drugs. "Self-immolative polymers" offer the potential to provide amplified responses to stimuli as they undergo complete end-to-end depolymerization following the cleavage of a single end-cap. Herein, linker end-caps were developed to conjugate self-immolative poly(ethyl glyoxylate) (PEtG) with poly(ethylene oxide) (PEO) to form amphiphilic block copolymers. These copolymers were self-assembled to form nanoparticles in aqueous solution. Cleavage of the linker end-caps were triggered by a thiol reducing agent, UV light, H 2 O 2 , and combinations of these stimuli, resulting in nanoparticle disintegration. Low stimuli concentrations were effective in rapidly disrupting the nanoparticles. Nile red, doxorubin, and curcumin were encapsulated into the nanoparticles and were selectively released upon application of the appropriate stimulus. The ability to tune the stimuli-responsiveness simply by changing the linker end-cap makes this new platform highly attractive for applications in drug delivery.

  7. Studying radiolytic ageing of nuclear power plant electric cables with FTIR spectroscopy.

    PubMed

    Levet, A; Colombani, J; Duponchel, L

    2017-09-01

    Due to the willingness to extend the nuclear power plants length of life, it is of prime importance to understand long term ageing effect on all constitutive materials. For this purpose gamma-irradiation effects on insulation of instrumentation and control cables are studied. Mid-infrared spectroscopy and principal components analysis (PCA) were used to highlight molecular modifications induced by gamma-irradiation under oxidizing conditions. In order to be closer to real world conditions, a low dose rate of 11Gyh -1 was used to irradiate insulations in full cable or alone with a dose up to 58 kGy. Spectral differences according to irradiation dose were extracted using PCA. It was then possible to observe different behaviors of the insulation constitutive compounds i.e. ethylene vinyl acetate (EVA), ethylene propylene diene monomer (EPDM) and aluminium trihydrate (ATH). Irradiation of insulations led to the oxidation of their constitutive polymers and a modification of filler-polymer ratio. Moreover all these modifications were observed for insulations alone or in full cable indicating that oxygen easily diffuses into the material. Spectral contributions were discussed considering different degradation mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    NASA Astrophysics Data System (ADS)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited <5% of drug detoxification. In vitro drug-release studies revealed that the core-shell nanoparticles were ruptured upon exposure to lysosomal enzymes like esterase at the intracellular compartments. Cytotoxicity studies were performed both in normal wild-type mouse embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells. Electronic supplementary information (ESI) available: TGA profile and DSC thermogram of all polymers, DLS data, AFM image, 1H-NMR, 13C-NMR, and MALDI spectra of all polymers and monomers. See DOI: 10.1039/c5nr04963f

  9. Influence of dehydrated nanotubed titanic acid on charge transport and luminescent properties of polymer light-emitting diodes with fluorescent dye

    NASA Astrophysics Data System (ADS)

    Qian, Lei; Bera, Debasis; Jin, Zhen-Sheng; Du, Zu-Liang; Xu, Zheng; Teng, Feng; Liu, Wei

    2007-09-01

    In this paper, we discuss the influence of dehydrated nanotubed titanic acid (DNTA) on charge transport and luminescent properties of polymer light-emitting diodes (PLEDs) doped with fluorescent dye. Photoluminescence results confirm the efficient energy transfer from PVK to 4-(dicyanom-ethylene)-2- t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris-(8-hydroxtquinoline) aluminum (Alq 3) in a DNTA-doped device. The device showed lower turn-on voltages and higher charge current by doping with DNTA, which also caused a shift in the exciton's recombination region.

  10. A Polymer Chemistry Point of View on Mucoadhesion and Mucopenetration.

    PubMed

    Schattling, Philipp; Taipaleenmäki, Essi; Zhang, Yan; Städler, Brigitte

    2017-09-01

    Although oral is the preferred route of administration of pharmaceutical formulations, the long-standing challenge for medically active compounds to efficiently cross the mucus layer barrier limits its wider applicability. Efforts in nanomedicine to overcome this hurdle consider mucoadhesive and mucopenetrating drug carriers by selectively designing (macromolecular) building blocks. This review highlights and critically discusses recent strategies developed in this context including poly(ethylene glycol)-based modifications, cationic and thiolated polymers, as well as particles with high charge density, zeta-potential shifting ability, or mucolytic properties. The latest advances in ex vivo test platforms are also reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Quaternary Polymer Electrolytes Containing an Ionic Liquid and a Ceramic Filler.

    PubMed

    Sharova, Varvara; Kim, Guk-Tae; Giffin, Guinevere A; Lex-Balducci, Alexandra; Passerini, Stefano

    2016-07-01

    In this work, the individual and combined effects of an ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ceramic filler silicon dioxide on the thermal and electrochemical properties of poly(ethylene oxide) electrolytes have been investigated. The electrolyte containing both components has the lowest glass transition (-60 °C) and melting temperatures (27 °C), the highest conductivity at any investigated temperature, and the highest limiting current density (at 40 °C). This solid polymer electrolyte also exhibits the best long-term cycling performance in Li/LiFePO4 cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The bridging conformations of double-end anchored polymer-surfactants destabilize a hydrogel of lipid membranes

    NASA Astrophysics Data System (ADS)

    Slack, N. L.; Davidson, P.; Chibbaro, M. A.; Jeppesen, C.; Eiselt, P.; Warriner, H. E.; Schmidt, H.-W.; Pincus, P.; Safinya, C. R.

    2001-10-01

    Double-end-anchored poly-ethylene-glycol-surfactants (DEA-PEG-surfactants) induce the gelation of lyotropic lamellar Lα phases stabilized by undulation forces. The physical hydrogel (Lα,g) derives its viscoelasticity from the proliferation of defects at a mesoscopic level. The DEA-PEG-surfactants assume both looping and bridging conformations. The existence of novel bridging conformations is indicated by the coexistence of two lamellar phases and the limited swelling of the Lα and Lα,g phases. Modeling of the polymer decorated membranes demonstrates the existence of bridging and yields a rapidly decreasing density of bridging conformations with increasing interlayer spacing.

  13. X-ray versus gamma irradiation effects on polymers

    NASA Astrophysics Data System (ADS)

    Croonenborghs, B.; Smith, M. A.; Strain, P.

    2007-11-01

    Today, the most common methods used for medical device sterilisation are by gaseous ethylene oxide and by electron beam or gamma irradiation. With X-ray sterilisation about to enter the market, its material compatibility needs to be assessed at doses typically encountered during a sterilisation process. This paper reports on a study that compares the effects of exposing different types of plastics that are commonly used in medical devices to 60Co or to 5 MeV X-rays. The dose rate for both irradiation modalities was of the same order of magnitude. Under these conditions, both types of radiation are found to have similar effects on polymer properties.

  14. MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment Being Conducted

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Hammerstrom, Anne; Youngstrom, Erica; Kaminski, Carolyn; Marx, Laura; Fine, Elizabeth; Gummow, Jonathan D.; Wright, Douglas

    2002-01-01

    As part of the Materials International Space Station Experiment (MISSE), 41 different polymers are being exposed for approximately 1 1/2 years to the low-Earth-orbit (LEO) environment on the exterior of the International Space Station. MISSE is a materials flight experiment sponsored by the Air Force Research Lab/Materials Lab and NASA, and is the first external experiment on the space station. A similar set of 41 polymers will be flown as part of the Polymer Erosion and Contamination Experiment (PEACE) a shuttle flight experiment that is being developed at the NASA Glenn Research Center collaboratively with the Hathaway Brown School for girls. Therefore, these 41 polymers are collectively called the MISSE PEACE Polymers. The purpose of the MISSE PEACE Polymers experiment is to determine how durable polymers are in the LEO space environment where spacecraft, such as the space station, orbit. Polymers are commonly used as spacecraft materials because of their desirable properties such as good flexibility, low density, and certain electrical properties or optical properties (such as a low solar absorptance and high thermal emittance). Two examples of the use of polymers on the exterior of spacecraft exposed to the space environment include metalized Teflon FEP (fluorinated ethylene propylene, DuPont) thermal control materials on the Hubble Space Telescope, and polyimide Kapton (DuPont) solar array blankets.

  15. Manipulating Hydrophobic Interactions in Associative Polymer Solutions via Surfactant-Cyclodextrin Complexation

    NASA Astrophysics Data System (ADS)

    Talwar, Sachin; Harding, Jonathon; Khan, Saad A.

    2008-07-01

    Associative polymers in combination with cyclodextrin (CD) provide a potent tool to manipulate the solution rheology of aqueous solutions. In this study, we discuss the viability and scope of employing surfactants in such systems to facilitate a more versatile and effective tailoring of rheological properties. A model hydrophobically modified alkali-soluble emulsion (HASE) polymer is used which forms a transient physical network of intra- and inter-molecular hydrophobic junctions in solution arising from the interactions between hydrophobic groups grafted on the polymer backbone. The presence of these hydrophobic junctions significantly enhances the solution rheological properties with both the steady state viscosity and dynamic moduli exhibiting an increase by several orders of magnitude. The ability of nonionic surfactants to modulate and recover the hydrophobic interactions in these polymer solutions in the presence of cyclodextrin is examined. The presence of either a- or β-CD results in a dramatic decrease in viscosity and viscoelastic properties of the HASE polymer solution resulting from the encapsulation of polymer hydrophobes by CDs. Addition of nonionic surfactants to such systems promotes a competition between CDs and surfactant molecules to complex with polymer hydrophobes thereby altering the hydrophobic interactions. In this regard, nonylphenol ethoxylates (NPe) with different ethylene oxide (EO) chain lengths, which determine the surfactant hydrophilic-lipophilic balance (HLB), are used.

  16. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    PubMed Central

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  17. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM.

    PubMed

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A

    2016-06-30

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity.

  18. Spectral distribution of UV range diffuse reflectivity for Si+ ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Balabanov, S.; Tsvetkova, T.; Borisova, E.; Avramov, L.; Bischoff, L.

    2008-05-01

    The analysis of the UV range spectral characteristics can supply additional information on the formed sub-surface buried layer with implanted dopants. The near-surface layer (50÷150 nm) of bulk polymer samples have been implanted with silicon (Si+) ions at low energies (E = 30 keV) and a wide range of ion doses (D = 1.1013 ÷ 1, 2.1017 cm-2). The studied polymer materials were: ultra-high-molecular-weight polyethylene (UHMWPE), poly-methyl-metacrylate (PMMA) and poly-tetra-fluor-ethylene (PTFE). The diffuse optical reflectivity spectra Rd = f(λ) of the ion implanted samples have been measured in the UV range (λ = 220÷350 nm). In this paper the dose dependences of the size and sign of the diffuse optical reflectivity changes λRd = f(D) have been analysed.

  19. Enhancement of the Mechanical Properties of a Polylactic Acid/Flax Fiber Biocomposite by WPU, WPU/Starch, and TPS Polyurethanes Using Coupling Additives

    NASA Astrophysics Data System (ADS)

    Miskolczi, N.; Sedlarik, V.; Kucharczyk, P.; Riegel, E.

    2018-01-01

    This work is addressed to the synthesis of bio-based polymers and investigation of their application in a flax-fiber-reinforced polylactic acid. Polyurethane polymers were synthesized from polyphenyl-methane-diisocyanate, poly (ethylene oxide) glycol, and ricinoleic acid, and their structure was examined by the Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It was established that the introduction of flax fibers and different compatibilizers into the polymers improved their mechanical properties. A vinyl-trimetoxy-silane and polyalkenyl-polymaleic-anhydride derivative with a high acid number produced the best effect on the properties, but samples without additives had the highest water absorption capacity. SEM micrographs showed a good correlation between the morphology of fracture structure of the composites and the mechanical properties of flax fibers.

  20. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    NASA Astrophysics Data System (ADS)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  1. Modification of Side Chains of Conjugated Molecules and Polymers for Charge Mobility Enhancement and Sensing Functionality.

    PubMed

    Liu, Zitong; Zhang, Guanxin; Zhang, Deqing

    2018-06-19

    Organic semiconductors have received increasing attentions in recent years because of their promising applications in various optoelectronic devices. The key performance metric for organic semiconductors is charge carrier mobility, which is governed by the electronic structures of conjugated backbones and intermolecular/interchain π-π interactions and packing in both microscopic and macroscopic levels. For this reason, more efforts have been paid to the design and synthesis of conjugated frameworks for organic semiconductors with high charge mobilities. However, recent studies manifest that appropriate modifications of side chains that are linked to conjugated frameworks can improve the intermolecular/interchain packing order and boost charge mobilities. In this Account, we discuss our research results in context of modification of side chains in organic semiconductors for charge mobility enhancement. These include the following: (i) The lengths of alkyl chains in sulfur-rich thiepin-fused heteroacences can dramatically influence the intermolecular arrangements and orbital overlaps, ushering in different hole mobilities. Inversely, the lamellar stacking modes of alkyl chains in naphthalene diimide (NDI) derivatives with tetrathiafulvalene (TTF) units are affected by the structures of conjugated cores. (ii) The steric hindrances owing to the bulky branching chains can be weakened by partial replacement of the branching alkyl chains with linear ones for diketopyrrolopyrrole (DPP)-based D (donor)-A (acceptor) conjugated polymers. Such modification of side chains makes the polymer backbones more planar and thus interchain packing order and charge mobilities are improved. The incorporation of hydrophilic tri(ethylene glycol) (TEG) chains into the polymers also leads to improved interchain packing order. In particular, the polymer in which TEG side chains are distributed uniformly exhibits relatively high charge mobility without thermal annealing. (iii) The incorporation of urea groups in the side chains induces the polymer chains to pack more orderly and form large domains because of the additional H-bonding among urea groups. Accordingly, thin film mobilities of the conjugated D-A polymers with side chains entailing urea groups are largely boosted in comparison with those of polymers of the same backbones with either branching alkyl chains or branching/linear alkyl chains. (iv) The torsions of branching alkyl chains in conjugated D-A polymers can be inhibited to some extent upon incorporation of tiny amount of NMe 4 I in the thin film. As a result, the polymer thin films with NMe 4 I exhibit improved crystallinity, and charge mobilities can be boosted by more than 20 times. (v) Side chains with functional groups in the conjugated polymers can endow the thin film field-effect transistors (FETs) with sensing functionality. FETs with the conjugated polymer with -COOH groups in the side chains show sensitive, selective, and fast responses toward ammonia and amines, while FETs with the ultrathin films of the polymer containing tetra(ethylene glycol) (TEEG) in the side chains can sense alcohol vapors (in particular ethanol vapor) sensitively and selectively with fast response.

  2. Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications

    PubMed Central

    Yakacki, Christopher M.; Shandas, Robin; Lanning, Craig; Rech, Bryan; Eckstein, Alex; Gall, Ken

    2009-01-01

    Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in-vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were synthesized via photopolymerization of tert-butyl acrylate and poly (ethylene glycol) dimethacrylate to provide precise control over the thermomechanical response of the system. The free recovery response of the polymer stents at body temperature was studied as a function of glass transition temperature (Tg), crosslink density, geometrical perforation, and deformation temperature, all of which can be independently controlled. Room temperature storage of the stents was shown to be highly dependent on Tg and crosslink density. The pressurized response of the stents is also demonstrated to depend on crosslink density. This polymer system exhibits a wide range of shape-memory and thermomechanical responses to adapt and meet specific needs of minimally invasive cardiovascular devices. PMID:17296222

  3. The mechanism of the polymer-induced drag reduction in blood.

    PubMed

    Pribush, Alexander; Hatzkelzon, Lev; Meyerstein, Dan; Meyerstein, Naomi

    2013-03-01

    Literature reports provide evidence that nanomolar concentrations of spaghetti-like, high molecular weight polymers decrease the hydrodynamic resistance of blood thereby improving impaired blood circulation. It has been suggested that the polymer-induced drag reduction is caused by the corralling of red blood cells (RBCs) among extended macromolecules aligned in the flow direction. This mechanism predicts that drag-reducing polymers must affect the conductivity of completely dispersed blood, time-dependent and steady state structural organization of aggregated RBCs at rest. However, experimental results obtained at the concentration of poly(ethylene oxide) (PEO, MW=4 × 10(6)) of 35 ppm show that neither the conductivity of completely dispersed blood, nor the kinetics of RBC aggregation occurring after the stoppage of flow, nor the structural organization of aggregated RBCs in the quiescent blood are affected by PEO. As these results are at odds with the "corralling" hypothesis, it is assumed that the effect of these polymers on the drag is associated with their interactions with local irregularities of disturbed laminar blood flow. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Dynamical behavior of a single polymer chain under nanometric confinement

    NASA Astrophysics Data System (ADS)

    Lagrené, K.; Zanotti, J.-M.; Daoud, M.; Farago, B.; Judeinstein, P.

    2010-10-01

    We address the dynamical behavior of a single polymer chain under nanometric confinement. We consider a polymer melt made of a mixture of hydrogenated and deuterated high molecular mass Poly(Ethylene Oxide) (PEO). The confining material is a membrane of Anodic Aluminum Oxide (AAO), a macroscopically highly ordered confining system made of parallel cylindrical channels. We use Neutron Spin-Echo (NSE) under the Zero Average Contrast (ZAC) condition to, all at once, i) match the intense porous AAO detrimental elastic SANS (Small Angle Neutron Scattering) contribution to the total intermediate scattering function I(Q,t) and ii) measure the Q dependence of the dynamical modes of a single chain under confinement. The polymer dynamics is probed on an extremely broad spacial ([2.2 10-2 Å-1, 0.2 Å-1]) and temporal ([0.1 ns, 600 ns]) ranges. We do not detect any influence of confinement on the polymer dynamics. This result is discussed in the framework of the debate on the existence of a "corset effect" recently suggested by NMR relaxometry data.

  5. Systematic Experimental and Computational Investigation of Ion Transport in Novel Polyether Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Webb, Michael; Jung, Yukyung; Zheng, Qi; Miller, Thomas, III; Coates, Geoffrey; Balsara, Nitash

    Polyethers, such as poly(ethylene oxide) (PEO), are considered to be the most promising polymer electrolyte materials due to their high ionic conductivity and electrochemical stability, both essential for battery applications. To gain a fundamental understanding of the transport properties of polyether systems, we design a systematic set of linear PEO-like polymers to explore the effect of adding carbon spacers to the backbone of the chain. Ac impedance spectroscopy is employed to measure the ionic conductivity of polyether/lithium salt electrolytes; the results elucidate tradeoffs between lowering the glass transition temperature and diluting the polar groups on the polymer chain. Molecular-level insight is provided by molecular dynamics simulations of the polyether electrolytes. We define the useful and intuitive metric of ``connectivity'', a parameter calculated from simulations which describes the physical arrangements of solvation sites in a polymer melt. Direct comparison of experiment and theory allows us to determine the relationship between connectivity and conductivity. The comparison provides insight regarding the factors that control conductivity, and highlights considerations that must be taken when designing new ion-conducting polymers.

  6. Generation of Well-Relaxed All-Atom Models of Large Molecular Weight Polymer Melts: A Hybrid Particle-Continuum Approach Based on Particle-Field Molecular Dynamics Simulations.

    PubMed

    De Nicola, Antonio; Kawakatsu, Toshihiro; Milano, Giuseppe

    2014-12-09

    A procedure based on Molecular Dynamics (MD) simulations employing soft potentials derived from self-consistent field (SCF) theory (named MD-SCF) able to generate well-relaxed all-atom structures of polymer melts is proposed. All-atom structures having structural correlations indistinguishable from ones obtained by long MD relaxations have been obtained for poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) melts. The proposed procedure leads to computational costs mainly related on system size rather than to the chain length. Several advantages of the proposed procedure over current coarse-graining/reverse mapping strategies are apparent. No parametrization is needed to generate relaxed structures of different polymers at different scales or resolutions. There is no need for special algorithms or back-mapping schemes to change the resolution of the models. This characteristic makes the procedure general and its extension to other polymer architectures straightforward. A similar procedure can be easily extended to the generation of all-atom structures of block copolymer melts and polymer nanocomposites.

  7. Controlling Crystal Microstructure to Minimize Loss in Polymer Dielectrics

    NASA Astrophysics Data System (ADS)

    Miranda, Daniel; Iacob, Ciprian; Zhang, Shihai; Runt, James

    Polymer dielectric films are of great importance for high performance capacitors. For these films it is critical to reduce dielectric loss, as it diminishes efficiency and contributes to waste heat generation during device operation. Here, a model semi-crystalline polymer, poly(ethylene naphthalate) (PEN), was used to examine how morphological factors inhibit chain relaxations responsible for loss. This was achieved by manipulating the extent of crystallization and the crystalline microstructure through a combination of annealing and uniaxial drawing, and investigating their effects on dielectric performance. Varying crystallization conditions influenced the dynamic Tg and extent of rigid amorphous fraction formation, but had a limited effect on loss magnitude. Film orientation however greatly reduced loss, through strain-induced crystallization and development of oriented amorphous mesophasic regions. Post-drawing annealing conditions were capable of further refining the crystal microstructure and, in turn, the dielectric properties. These findings demonstrate that semi-crystalline polymer morphology has a very strong influence on amorphous chain relaxations, and understanding how processing conditions affect morphology is critical to the rational design of polymer dielectrics. Office of Naval Research.

  8. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of zinc ions.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein; Sahraei, Reza

    2015-04-15

    A new Zinc (II) ion-imprinted polymer (IIPs) nanoparticles was synthesised for the separation and recovery of trace Zn (II) ion from food and water sample. Zn (II) IIP was prepared by copolymerisation of methyl methacrylate (monomer) and ethylene glycol dimethacrylate (cross-linker) in the presence of Zn (II)-N,N'-o-phenylene bis (salicylideneimine) ternary complex wherein Zn (II) ion is the imprint ion and is used to form the imprinted polymer. Moreover, control polymer (NIP) particles were similarly prepared without the zinc (II) ions. The unleached and leached IIP particles were characterised by X-ray diffraction, Fourier transform infra-red spectroscopy and scanning electron microscopy. The preconcentration of Zn(2+) from aqueous solution was studied during rebinding with the leached IIP particles as a function of pH, the weight of the polymer material, the uptake and desorption times, the aqueous phase and the desorption volumes. Flame atomic absorption spectrometry was employed for determination of zinc in aqueous solution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers

    PubMed Central

    Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2013-01-01

    The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764

  10. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels.

    PubMed

    Statz, Andrea; Finlay, John; Dalsin, Jeffrey; Callow, Maureen; Callow, James A; Messersmith, Phillip B

    2006-01-01

    The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out. Results were compared to glass, a poly(dimethylsiloxane) elastomer (Silastic T2) and uncoated Ti. The mPEG-DOPA3 modified Ti surfaces exhibited a substantial decrease in attachment of both cells of N. perminuta and zoospores of U. linza as well as the highest detachment of attached cells under flow compared to control surfaces. The superior performance of this polymer over a standard silicone fouling-release coating in diatom assays and approximately equivalent performance in zoospore assays suggests that this bio-inspired polymer may be effective in marine antifouling and fouling-release applications.

  11. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries

    PubMed Central

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10−4 S cm−1) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety. PMID:25183416

  12. Effects of Temperature on Polymer/Carbon Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Manfireda, Allison; Lara, Liana; Homer, Margie; Yen, Shiao-Pin; Kisor, Adam; Ryan, Margaret; Zhou, Hanying; Shevade, Abhijit; James, Lim; Manatt, Kenneth

    2009-01-01

    Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.

  13. Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.

    PubMed

    Nielen, M W; Buijtenhuijs, F A

    1999-05-01

    Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS:  size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.

  14. Improved Tumor Targeting of Polymer-based Nanovesicles Using Polymer-Lipid Blends

    PubMed Central

    Cheng, Zhiliang; Elias, Drew R.; Kamat, Neha P.; Johnston, Eric D.; Poloukhtine, Andrei; Popik, Vladimir; Hammer, Daniel A.; Tsourkas, Andrew

    2011-01-01

    Block copolymer-based vesicles have recently garnered a great deal of interest as nanoplatforms for drug delivery and molecular imaging applications due to their unique structural properties. These nanovesicles have been shown to direct their cargo to disease sites either through enhanced permeability and retention or even more efficiently via active targeting. Here we show that the efficacy of nanovesicle targeting can be significantly improved when prepared from polymer-lipid blends compared with block copolymer alone. Polymer-lipid hybrid nanovesicles were produced from the aqueous co-assembly of the diblock copolymer, poly(ethylene oxide)-block-polybutadiene (PEO-PBD), and the phospholipid, hydrogenated soy phosphatidylcholine (HSPC). The PEG-based vesicles, 117 nm in diameter, were functionalized with either folic acid or anti-HER2/neu affibodies as targeting ligands to confer specificity for cancer cells. Our results revealed that nanovesicles prepared from polymer-lipid blends led to significant improvement in cell binding compared to nanovesicles prepared from block copolymer alone in both in vitro cell studies and murine tumor models. Therefore, it is envisioned that nanovesicles composed of polymer-lipid blends may constitute a preferred embodiment for targeted drug delivery and molecular imaging applications. PMID:21899335

  15. Development of switchable polymers to address the dilemma of stability and cargo release in polycationic nucleic acid carriers.

    PubMed

    Cheng, Yilong; Sellers, Drew L; Tan, James-Kevin Y; Peeler, David J; Horner, Philip J; Pun, Suzie H

    2017-05-01

    Cationic polymer gene delivery vehicles that effectively resist premature serum degradation often have difficulty releasing their nucleic acid cargoes. In this work, we report a pH-sensitive polymer (SP), poly(oligo(ethylene glycol) monomethyl ether methacrylate)-co-poly(2-(dimethylamino)ethyl methacrylate)-block- poly(propargyl methacrylate-graft-propyl-(4-methoxy-benzylidene)-amine) (p(PMA-PMBA)-b-(p(OEGMA-DMAEMA)), for successful in vitro and in vivo gene transfer. In the physiological condition, the hydrophobization of p(OEGMA-DMAEMA) polycations by p(PMA-PMBA) significantly enhanced the stability of its polyplexes counterpart. In endosomes, the polymer undergoes an acid-triggered hydrophilic transition through the cleavage of benzoic imines, thus allowing the vector to quickly release nucleic acid cargo due to the loss of hydrophobic functionalization. Compared to a pH-insensitive polymer (IP), SP exhibited more significant luciferase plasmid delivery efficiency with HeLa cells in vitro and with in vivo intraventricular brain injections. Therefore, the polymer designed here is a good solution to address the dilemma of stability and cargo release in gene delivery, and may have broad potential applications in therapeutic agent delivery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Materials for Diabetes Therapeutics

    PubMed Central

    Bratlie, Kaitlin M.; York, Roger L.; Invernale, Michael A.; Langer, Robert

    2013-01-01

    This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies–(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels). PMID:23184741

  17. Tetraphenylethylene-Interweaving Conjugated Macrocycle Polymer Materials as Two-Photon Fluorescence Sensors for Metal Ions and Organic Molecules.

    PubMed

    Li, Xi; Li, Zheng; Yang, Ying-Wei

    2018-05-01

    A luminescent conjugated macrocycle polymer (CMP) with strong two-photon fluorescence property, namely, P[5]-TPE-CMP, is constructed from ditriflate-functionalized pillar[5]arene and a 1,1,2,2-tetrakis(4-ethynylphenyl)ethylene (TPE) linker through a Sonogashira-Hagihara cross-coupling reaction. Significantly, in sharp contrast with the corresponding conjugated microporous polymer without synthetic macrocycles, P[5]-TPE-CMP shows an outstanding stability against photobleaching and exhibits highly selective cation sensing capability toward Fe 3+ at different excitation wavelengths (both UV and red-near-infrared regions). Meanwhile, its fluorescence could also be sufficiently quenched by 4-amino azobenzene, a frequently used organic dye that is certified to be carcinogenic, as compared with a group of common organic compounds. This work paves a new way for enhancing the properties of porous organic polymers through the introduction of supramolecular macrocycles like macrocyclic arenes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Blending of Low-Density Polyethylene and Poly-Lactic Acid with Maleic Anhydride as A Compatibilizer for Better Environmentally Food-Packaging Material

    NASA Astrophysics Data System (ADS)

    Setiawan, A. H.; Aulia, F.

    2017-05-01

    The common conventional food packaging materialsare using a thin layer plastic or film, which is made of a synthetic polymer, such as Low-Density Poly Ethylene (LDPE). However, the use of these polymers hasan adverse impact on the environment, because the synthetic polymersare difficult to degrade naturally. Poly-Lactic Acid (PLA) is a biodegradable polymer that can be substituted to synthetic polymers. Since LDPE and PLA have a difference in polarity, therefore the first step of research is to graft them with maleic anhydride (MAH) for increasing the properties of its miscibility. The interaction between them is confirmed by FTIR; whereas the environment issueis characterized by the water adsorption and biodegradability. The FTIR spectra indicated that there had been an interaction between LDPE and MAH and LDPE/LDPE-g-MAH/PLA blend. Increasing PLA content in the blend affected to the increasing in their water absorption and biodegradable. Poly-blend with 20% PLA content was the optimum composition for environmentally food packaging.

  19. Water-compatible molecularly imprinted polymers for efficient direct injection on-line solid-phase extraction of ropivacaine and bupivacaine from human plasma.

    PubMed

    Cobb, Zoe; Sellergren, Börje; Andersson, Lars I

    2007-12-01

    Two novel molecularly imprinted polymers (MIPs) selected from a combinatorial library of bupivacaine imprinted polymers were used for selective on-line solid-phase extraction of bupivacaine and ropivacaine from human plasma. The MIPs were prepared using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linking monomer and in addition hydroxyethylmethacrylate to render the polymer surface hydrophilic. The novel MIPs showed high selectivity for the analytes and required fewer and lower concentrations of additives to suppress non-specific adsorption compared with a conventional MIP. This enabled the development of an on-line system for direct extraction of buffered plasma. Selective extraction was achieved without the use of time-consuming solvent switch steps, and transfer of the analytes from the MIP column to the analytical column was carried out under aqueous conditions fully compatible with reversed-phase LC gradient separation of analyte and internal standard. The MIPs showed excellent aqueous compatibility and yielded extractions with acceptable recovery and high selectivity.

  20. Local Dynamics of Acid- and Ion-containing Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie

    Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.

  1. Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes.

    PubMed

    Savoie, Brett M; Webb, Michael A; Miller, Thomas F

    2017-02-02

    Solid polymer electrolytes (SPEs) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li + conductivity remains a barrier to technological viability. SPEs are designed to maximize Li + diffusivity relative to the anion while maintaining sufficient salt solubility. It is thus remarkable that poly(ethylene oxide) (PEO), the most widely used SPE, exhibits Li + diffusivity that is an order of magnitude smaller than that of typical counterions at moderate salt concentrations. We show that Lewis-basic polymers like PEO favor slow cation and rapid anion diffusion, while this relationship can be reversed in Lewis-acidic polymers. Using molecular dynamics, polyboranes are identified that achieve up to 10-fold increases in Li + diffusivities and significant decreases in anion diffusivities, relative to PEO in the dilute-ion regime. These results illustrate a general principle for increasing Li + diffusivity and transference number with chemistries that exhibit weaker cation and stronger anion coordination.

  2. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    PubMed

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  3. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).

    PubMed

    Burke, Jeffrey M; Smela, Elisabeth

    2012-03-01

    A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.

  4. Polymer-based materials to be used as the active element in microsensors: a scanning force microscopy study

    PubMed

    Porter; Eastman; Pace; Bradley

    2000-09-01

    Polymer-based materials can be incorporated as the active sensing elements in chemiresistor devices. Most of these devices take advantage of the fact that certain polymers will swell when exposed to gaseous analytes. To measure this response, a conducting material such as carbon black is incorporated within the nonconducting polymer matrix. In response to analytes, polymer swelling results in a measurable change in the conductivity of the polymer/carbon composite material. Arrays of these sensors may be used in conjunction with pattern recognition techniques for purposes of analyte recognition and quantification. We have used the technique of scanning force microscopy (SFM) to investigate microstructural changes in carbon-polymer composites formed from the polymers poly (isobutylene) (PIB), poly (vinyl alcohol) (PVA), and poly (ethylene-vinyl acetate) (PEVA) when exposed to the analytes hexane, toluene, water, ethanol, and acetone. Using phase-contrast imaging (PI), changes in the carbon nanoparticle distribution on the surface of the polymer matrix are measured as the polymers are exposed to the analytes in vapor phase. In some but not all cases, the changes were reversible (at the scale of the SFM measurements) upon removal of the analyte vapor. In this paper, we also describe a new type of microsensor based on piezoresistive microcantilever technology. With these new devices, polymeric volume changes accompanying exposure to analyte vapor are measured directly by a piezoresistive microcantilever in direct contact with the polymer. These devices may offer a number of advantages over standard chemiresistor-based sensors.

  5. Miscibility, Crystallization, and Rheological Behavior of Solution Casting Poly(3-hydroxybutyrate)/poly(ethylene succinate) Blends Probed by Differential Scanning Calorimetry, Rheology, and Optical Microscope Techniques

    NASA Astrophysics Data System (ADS)

    Sun, Wei-hua; Qiao, Xiao-ping; Cao, Qi-kun; Liu, Jie-ping

    2010-02-01

    The miscibility and crystallization of solution casting biodegradable poly(3-hydroxybutyrate)/poly(ethylene succinate) (PHB/PES) blends was investigated by differential scanning calorimetry, rheology, and optical microscopy. The blends showed two glass transition temperatures and a depression of melting temperature of PHB with compositions in phase diagram, which indicated that the blend was partially miscible. The morphology observation supported this result. It was found that the PHB and PES can crystallize simultaneously or upon stepwise depending on the crystallization temperatures and compositions. The spherulite growth rate of PHB increased with increasing of PES content. The influence of compositions on the spherulitic growth rate for the partially miscible polymer blends was discussed.

  6. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  7. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    PubMed

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1982-01-01

    Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatments, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. One compound in particular, designated Lupersol - TBEC (Lucidol Division of Pennwalt Corp.) was found to be unusually effective in promoting the rapid cure of both these materials. Formulation of these resins with TBEC resulted in compositions of very high gel content, lower temperatures of activation, and much lower cure times, even in the ethylene/methyl acrylate polymer that is more difficult to cure. It is expected that TBEC modified pottant formulations may permit the lamination/encapsulation step to be operated at lower temperatures, higher speed, higher throughput and a much wider tolerance for intentional or accidental variations in the cure schedule. An experimental program continued to determine the effectiveness of soil resistant coatings.

  9. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    PubMed

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  10. Synthesis and application of ion-imprinted polymer nanoparticles for the extraction and preconcentration of copper ions in environmental water samples.

    PubMed

    Roushani, Mahmoud; Abbasi, Shahryar; Khani, Hossein

    2015-04-01

    Novel Cu(II) ion-imprinted polymers (Cu-IIP) nanoparticles were prepared by using Cu(II) ion-thiosemicarbazide complex as the template molecule and methacrylic acid, ethylene glycol dimethacrylate (EGDMA), and 2,2'azobisisobutyronitrile (AIBN) as the functional monomer, cross-linker, and the radical initiator, respectively. The synthesized polymer nanoparticles were characterized by using infrared spectroscopy (IR), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopic (SEM) techniques. Some parameters such as pH, weight of the polymer, adsorption time, elution time, eluent type, and eluent volume which affect the extraction efficiency of the polymer were studied. In the proposed method, the maximum sorbent capacity of the ion-imprinted polymer was calculated to be 38.8 mg g(-1). The preconcentration factor, relative standard deviation, and limit of detection of the method were found to be 80, 1.7%, and 0.003 μg mL(-1), respectively. The prepared ion-imprinted polymer nanoparticles have an increased selectivity toward Cu(II) ions over a range of competing metal ions with the same charge and similar ionic radius. The method was applied to the determination of ultra trace levels of Cu2+ in environmental water samples with satisfactory results.

  11. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties.

    PubMed

    Green, Rylie A; Lovell, Nigel H; Poole-Warren, Laura A

    2010-01-01

    Conductive neural interfaces tailored for cell interaction by incorporation of bioactive factors are hypothesized to produce superior neuroprostheses with improved charge transfer capabilities. This study examined the effect of entrapping nerve growth factor (NGF) within the conducting polymer poly(ethylene dioxythiophene) (PEDOT) during electrodeposition to create a polymer capable of stimulating neurite outgrowth from proximal neural tissue. NGF entrapment was performed on polymers doped with laminin peptides DEDEDYFQRYLI and DCDPGYIGSR and, additionally, a conventional dopant, paratoluene sulphonate (pTS). All polymer coatings were analysed for a range of physical, electrical and mechanical properties, with the biological activity of ligands examined using a PC12 neurite outgrowth assay. NGF was successfully entrapped in PEDOT during electrodeposition and was shown to produce a softer interface than conventional conducting polymers and films without the NGF modification. However, it was found that the use of a peptide dopant combined with NGF entrapment resulted in polymers with diminished electrical and mechanical stability. Entrapped NGF was determined to be biologically active, with PEDOT/pTS/NGF producing neurite outgrowth comparable with control films where NGF was supplied via the medium. Future studies will determine the effect of typical neural prosthetic stimulation regimes on the release of neurotrophins and subsequent cell response.

  12. Fabrication and evaluation of polymeric early-warning fire-alarm devices. [combustion products

    NASA Technical Reports Server (NTRS)

    Senturia, S. D.

    1975-01-01

    The electrical resistivities were investigated of some polymers known to be enhanced by the presence of certain gases. This was done to make a device capable of providing early warning to fire through its response with the gases produced in the early phases of combustion. Eight polymers were investigated: poly(phenyl acetylene), poly(p-aminophenyl acetylene), poly(p-nitrophenyl acetylene), poly(p-formamidophenyl acetylene), poly(ethynyl ferrocene), poly(ethynyl carborane), poly(ethynyl pyridine), and the polymer made from 1,2,3,6 tetramethyl pyridazine. A total of 40 usable thin-film sandwich devices and a total of 70 usable interdigitated-electrode lock-and-key devices were fabricated. The sandwich devices were used for measurements of contact linearity, polymer conductivity, and polymer dielectric constant. The lock-and-key devices were used to determine the response of the polymers to a spectrum of gases that included ammonia, carbon nonoxide, carbon dioxide, sulfur dioxide, ethylene, acrolein, water vapor, and normal laboratory air. Strongest responses were to water vapor, ammonia, and acrolein, and depending on the polymer, weaker responses to carbon dioxide, sulfur dioxide, and carbon monoxide were observed. A quantitative theory of device operation, capable of accounting for observed device leakage current and sensitivity, was developed. A prototype detection/alarm system was designed and built for use in demonstrating sensor performance.

  13. Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method

    PubMed Central

    Fang, Jiajie; Zhu, Tao; Sheng, Jie; Jiang, Zhongying; Ma, Yuqiang

    2015-01-01

    The solution viscosity near an interface, which affects the solution behavior and the molecular dynamics in the solution, differs from the bulk. This paper measured the effective viscosity of a dilute poly (ethylene glycol) (PEG) solution adjacent to a Au electrode using the quartz crystal microbalance with dissipation (QCM-D) technique. We evidenced that the effect of an adsorbed PEG layer can be ignored, and calculated the zero shear rate effective viscosity to remove attenuation of high shear frequency oscillations. By increasing the overtone n from 3 to 13, the thickness of the sensed polymer solution decreased from ~70 to 30 nm. The zero shear rate effective viscosity of the polymer solution and longest relaxation time of PEG chains within it decrease with increasing solution thickness. The change trends are independent of the relation between the apparent viscosity and shear frequency and the values of the involved parameter, suggesting that the polymer solution and polymer chains closer to a solid substrate have a greater effective viscosity and slower relaxation mode, respectively. This method can study the effect of an interface presence on behavior and phenomena relating to the effective viscosity of polymer solutions, including the dynamics of discrete polymer chains. PMID:25684747

  14. Self-Healing Behavior of Ethylene-Based Ionomers

    NASA Technical Reports Server (NTRS)

    Kalista, Stephen J., Jr.; Ward, Thomas C.; Oyetunji, Zainab

    2004-01-01

    The self-healing behavior of poly(ethylene-co-methacrylic acid) (EMAA)-based ionomers holds tremendous potential for use in a wide variety of unique applications. However, to effectively utilize this self-healing behavior and to design novel materials which possess this ability, the mechanism by which they heal must first be understood ionomers are a class of polymers that can be described as copolymers containing less than 15 mol% ionic content whereby the bulk properties are governed by ionic interactions within the polymer. These ionic groups aggregate into discrete regions known as multiplets which overlap forming clusters that act as physical cross-links profoundly influencing the bulk physical properties. These clusters possess an order-disorder transition (T(sub i)) where the clustered regions may rearrange themselves given time and stimuli. Recognizing the strong influence of these ionic regions on other well understood ionomer properties, their role in self-heating behavior will be assessed. The self-healing behavior is observed following projectile puncture. It has been suggested that during impact energy is passed to the ionomer material, heating it to the melt state. After penetration, it is proposed that the ionic regions maintain their attractions and flow together patching the hole. Thus, the importance of this ionic character and is unique interaction must be established. This will be accomplished through examination of materials with varying ionic content and through the analysis of the T(sub i). The specific ionomer systems examined include a number of ethylene-based materials. Materials of varying ionic content, including the non-ionic base copolymers, will be examined by peel tests, projectile impact and DSC analysis. The information will also be compared with some basic data on LDPE material.

  15. Crosslinked polymer nanoparticles containing single conjugated polymer chains

    NASA Astrophysics Data System (ADS)

    Ponzio, Rodrigo A.; Marcato, Yésica L.; Gómez, María L.; Waiman, Carolina V.; Chesta, Carlos A.; Palacios, Rodrigo E.

    2017-06-01

    Conjugated polymer nanoparticles are widely used in fluorescent labeling and sensing, as they have mean radii between 5 and 100 nm, narrow size dispersion, high brightness, and are photochemically stable, allowing single particle detection with high spatial and temporal resolution. Highly crosslinked polymers formed by linking individual chains through covalent bonds yield high-strength rigid materials capable of withstanding dissolution by organic solvents. Hence, the combination of crosslinked polymers and conjugated polymers in a nanoparticulated material presents the possibility of interesting applications that require the combined properties of constituent polymers and nanosized dimension. In the present work, F8BT@pEGDMA nanoparticles composed of poly(ethylene glycol dimethacrylate) (pEGDMA; a crosslinked polymer) and containing the commercial conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were synthesized and characterized. Microemulsion polymerization was applied to produce F8BT@pEDGMA particles with nanosized dimensions in a ∼25% yield. Photophysical and size distribution properties of F8BT@pEDGMA nanoparticles were evaluated by various methods, in particular single particle fluorescence microscopy techniques. The results demonstrate that the crosslinking/polymerization process imparts structural rigidity to the F8BT@pEDGMA particles by providing resistance against dissolution/disintegration in organic solvents. The synthesized fluorescent crosslinked nanoparticles contain (for the most part) single F8BT chains and can be detected at the single particle level, using fluorescence microscopy, which bodes well for their potential application as molecularly imprinted polymer fluorescent nanosensors with high spatial and temporal resolution.

  16. Optimizing Ionic Electrolytes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan; Hall, Sarah

    2009-03-01

    Dye-sensitized solar cells DSSCs provide next generation, low cost, and easy fabrication photovoltaic devices based on organic sensitizing molecules, polymer gel electrolyte, and metal oxide semiconductors. One of the key components is the solvent-free ionic liquid electrolyte that has low volatility and high stability. We report a rapid and low cost method to fabricate ionic polymer electrolyte used in DSSCs. Poly(ethylene oxide) (PEO) is blended with imidazolinium salt without any chemical solvent to form a gel electrolyte. Uniform and crack-free porous TiO2 thin films are sensitized by porphrine dye covered by the synthesized gel electrolyte. The fabricated DSSCs are more stable and potentially increase the photo-electricity conversion efficiency.

  17. Effect of zirconium oxide nanofiller and dibutyl phthalate plasticizer on ionic conductivity and optical properties of solid polymer electrolyte.

    PubMed

    Yasin, Siti Mariah Mohd; Ibrahim, Suriani; Johan, Mohd Rafie

    2014-01-01

    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.

  18. Effect of Zirconium Oxide Nanofiller and Dibutyl Phthalate Plasticizer on Ionic Conductivity and Optical Properties of Solid Polymer Electrolyte

    PubMed Central

    Yasin, Siti Mariah Mohd; Ibrahim, Suriani

    2014-01-01

    New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10−4 Scm−1). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased. PMID:25133244

  19. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    NASA Astrophysics Data System (ADS)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  20. Industrially Feasible Approach to Transparent, Flexible, and Conductive Carbon Nanotube Films: Cellulose-Assisted Film Deposition Followed by Solution and Photonic Processing

    NASA Astrophysics Data System (ADS)

    Kim, Yeji; Chikamatsu, Masayuki; Azumi, Reiko; Saito, Takeshi; Minami, Nobutsugu

    2013-02-01

    We report that single-walled nanotube (SWNT) films with precisely controlled thicknesses and transmittances can be produced through the doctor-blade method using SWNT-polymer inks. The matrix polymer around SWNTs were successfully removed by either solution curing or photonic curing at room temperature, which are advantageous processes enabling direct film formation on plastic substrates. Sheet resistances as low as 68-240 Ω/sq at T=89-98% were obtained. Furthermore, the SWNT film on poly(ethylene naphthalate) exhibited superior flexibility and stability in a flexure endurance test. The method may open a wide range of opportunities for flexible electrical devices.

  1. Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications

    NASA Astrophysics Data System (ADS)

    Ikeda, Shoichiro; Mori, Yoichi; Furuhashi, Yuri; Masuda, Hideki; Yamamoto, Osamu

    In this report, we will present the results on the photo-cross-linked poly-(ethylene glycol) diacrylate (PEGDA) based quasi-solid, i.e. gel, polymer electrolyte systems with lithium, magnesium and zinc trifluoromethanesulfonates [triflate; M n(CF 3SO 3) n] and their preliminary applications to primary cells. The Celgard® membrane-impregnated electrolytes were prepared in the same manner as Abraham et al. [K.M. Abraham, M. Alamgir, D.K. Hoffman, J. Electrochem. Soc. 142 (1995) 683]. The precursor solutions were composed of metal triflates, ethylene carbonate, propylene carbonate, and tetraethylene glycol diacrylate. The Celgard® #3401 membrane was soaked overnight in the precursor solution, then clamped between two Pyrex glass plates and irradiated with UV light to form a gel electrolyte. The maxima of the conductivity obtained were 4.5×10 -4 S cm -1 at 12 mol% for LiCF 3SO 3, 1.7×10 -4 S cm -1 at 1 mol% for Mg(CF 3SO 3) 2, and 2.1×10 -4 S cm -1 at 4 mol% for Zn(CF 3SO 3) 2 system, respectively. The Arrhenius plots of the conductivities are almost linear between 268 and 338 K with 15-25 kJ/mol of activation energy for conduction. The cell, Li|LiCF 3SO 3-SPE+Celgard® #3401|(CH 3) 4NI 5+acetylene black, showed 2.86 V of OCV and could discharge up to 25% with respect to the cathode active material at a discharging current of 0.075 mA/cm 2.

  2. Investigation of a new passive sampler for the detection of munitions compounds in marine and freshwater systems.

    PubMed

    Warren, Joseph K; Vlahos, Penny; Smith, Richard; Tobias, Craig

    2018-07-01

    Over the last century, unexploded ordnances have been disposed of in marine shelf systems because of a lack of cost-effective alternatives. Underwater unexploded ordnances have the potential to leak 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazine (RDX), commonly used chemical munitions, and contaminate local waters, biota, and sediments. The rate at which this contamination occurs in the environment is relatively unknown, and the cost- and time-prohibitive nature of sampling across sites makes mapping difficult. In the present study we assessed the efficacy of ethylene-vinyl acetate (EVA) for sampling relatively soluble munitions compounds over a range of environmental conditions (i.e., changes in temperature and salinity) and optimized the composition of the passive sampling polymer. The EVA sampler was able to successfully detect ambient concentrations of lingering munitions compounds from field sites containing unexploded ordnances. The sampler affinity for the munitions in terms of an EVA-water partition coefficient was greater than the standard octanol water values for each target compound. Partitioning of compounds onto EVA over the natural ranges of salinity did not change significantly, although uptake varied consistently and predictably with temperature. Increasing the vinyl acetate to ethylene ratio of the polymer corresponded to an increase in uptake capacity, consistent with enhanced dipole-dipole interactions between the munitions and the polymer. This sampler provides a cost-effective means to map and track leakage of unexploded ordnances both spatially and temporally. Environ Toxicol Chem 2018;37:1990-1997. © 2018 SETAC. © 2018 SETAC.

  3. PEGylated PEI-based biodegradable polymers as non-viral gene vectors.

    PubMed

    Huang, Fu-Wei; Wang, Hui-Yuan; Li, Cao; Wang, Hua-Fen; Sun, Yun-Xia; Feng, Jun; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2010-11-01

    Novel functional biodegradable gene vectors, poly(L-succinimide)-g-polyethylenimines-g-poly(ethylene glycol) (PSI-g-PEI-g-PEGs) were synthesized by conjugating methoxy poly(ethylene glycol) (mPEG, M(w)=750 Da) to PEI segments (M(w)=800 Da) of PSI-g-PEI. The physicochemical properties of PSI-g-PEI-g-PEGs, including buffering capability, pDNA binding ability, cytotoxicity, zeta potential and the particle size of polymer/pDNA complexes, were explored. The influence of PEGylation was discussed based on a comparative study of PSI-g-PEI-g-PEGs, PSI-g-PEI and PEI25k (M(w)=25 kDa). SEM images revealed that PSI-g-PEI-g-PEG/pDNA particles have a regular shape with the diameter ranging from 70 to 170 nm. PEGylation could suppress the aggregation occurrence between complexes, resulting in a reduction of the polymer/pDNA complex size. PSI-g-PEI-g-PEGs exhibited remarkably lower cytotoxicity compared to PSI-g-PEI and PEI25k. In 293T and HeLa cells, the obtained PSI-g-PEI-g-PEGs showed very high transfection efficiency compared to PEI25k. Fluorescent confocal microscopy demonstrated that PSI-g-PEI-g-PEGs could effectively transport pGL-3 plasmids into the nuclei of HeLa cells. Taking into account the continued high transfection efficacy and decreased toxicity after PEG modification, PSI-g-PEI-g-PEGs show great potential as the non-viral vectors for gene transfection. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Adsorption induced enzyme denaturation: the role of polymer hydrophobicity in adsorption and denaturation of alpha-chymotrypsin on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers.

    PubMed

    Lahari, Challa; Jasti, Lakshmi S; Fadnavis, Nitin W; Sontakke, Kalpana; Ingavle, Ganesh; Deokar, Sarika; Ponrathnam, Surendra

    2010-01-19

    Effects of changes in hydrophobicity of polymeric support on structure and activity of alpha-chymotrypsin (E.C. 3.4.21.1) have been studied with copolymers of allyl glycidyl ether (AGE) and ethylene glycol dimethacrylate (EGDM) with increasing molar ratio of EGDM to AGE (cross-link density 0.05 to 1.5). The enzyme is readily adsorbed from aqueous buffer at room temperature following Langmuir adsorption isotherms in unexpectedly large amounts (25% w/w). Relative hydrophobicity of the copolymers has been assessed by studying adsorption of naphthalene and Fmoc-methionine by the series of copolymers from aqueous solutions. Polymer hydrophobicity appears to increase linearly on increasing cross-link density from 0.05 to 0.25. Further increase in cross-link density causes a decrease in naphthalene binding but has little effect on binding of Fmoc-Met. Binding of alpha-chymotrypsin to these copolymers follow the trend for Fmoc-methionine binding, rather than naphthalene binding, indicating involvement of polar interactions along with hydrophobic interactions during binding of protein to the polymer. The adsorbed enzyme undergoes extensive denaturation (ca. 80%) with loss of both tertiary and secondary structure on contact with the copolymers as revealed by fluorescence, CD and Raman spectra of the adsorbed protein. Comparison of enzyme adsorption behavior with Eupergit C, macroporous Amberlite XAD-2, and XAD-7 suggests that polar interactions of the EGDM ester functional groups with the protein play a significant role in enzyme denaturation.

  5. Tissue engineering of fish skin: behavior of fish cells on poly(ethylene glycol terephthalate)/poly(butylene terephthalate) copolymers in relation to the composition of the polymer substrate as an initial step in constructing a robotic/living tissue hybrid.

    PubMed

    Pouliot, Roxane; Azhari, Rosa; Qanadilo, Hala F; Mahmood, Tahir A; Triantafyllou, Michael S; Langer, Robert

    2004-01-01

    This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds.

  6. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth.

    PubMed

    Wang, Dong-an; Ji, Jian; Sun, Yong-hong; Shen, Jia-cong; Feng, Lin-xian; Elisseeff, Jennifer H

    2002-01-01

    A "CBABC"-type pentablock coupling polymer, mesylMPEO, was designed and synthesized to promote human endothelial cell growth on the surfaces of polyurethane biomaterials. The polymer was composed of a central 4,4'-methylenediphenyl diisocyanate (MDI) coupling unit and poly(ethylene oxide) (PEO) spacer arms with methanesulfonyl (mesyl) end groups pendent on both ends. As the presurface modifying additive (pre-SMA), the mesylMPEO was noncovalently introduced onto the poly(ether urethane) (PEU) surfaces by dip coating, upon which the protein/peptide factors (gelatin, albumin, and arginine-glycine-aspartic acid tripeptide [RGD]) were covalently immobilized in situ by cleavage of the original mesyl end groups. The pre-SMA synthesis and PEU surface modification were characterized using nuclear magnetic resonance spectroscopy ((1)H NMR), attenuated total reflection infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS). Human umbilical vein endothelial cells (HUVEC) were harvested manually by collagenase digestion and seeded on the modified PEU surfaces. Cell adhesion ratios (CAR) and cell proliferation ratios (CPR) were measured using flow cytometry, and the individual cell viability (ICV) was determined by MTT assay. The cell morphologies were investigated by optical inverted microscopy (OIM) and scanning electrical microscopy (SEM). The gelatin- and RGD-modified surfaces were HUVEC-compatible and promoted HUVEC growth. The albumin-modified surfaces were compatible but inhibited cell adhesion. The results also indicated that, for HUVEC in vitro cultivation, the cell adhesion stage was of particular importance and had a significant impact on the cell responses to the modified surfaces.

  7. Effect of headgroup size, charge, and solvent structure on polymer-micelle interactions, studied by molecular dynamics simulations.

    PubMed

    Shang, Barry Z; Wang, Zuowei; Larson, Ronald G

    2009-11-19

    We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges on larger units in the polymer chain.

  8. Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization.

    PubMed

    Kitano, Hiromi; Kondo, Takuya; Suzuki, Hisatomo; Ohno, Kohji

    2010-05-15

    A polymer brush of 2-(2-methoxyethoxy)ethyl methacrylate (MDM) was prepared by atom transfer radical polymerization (ATRP) using a 11-(2-bromoisobutyroyloxy)undecyl moiety-carrying initiator covalently fixed to a glass substrate. An aqueous solution of the MDM polymer (E-PMDM), which had been prepared for comparison, turned to be opaque above certain temperature (26.2 °C for E-PMDM (M(n,GPC)=1.84×10(4))), which was corresponding to the lower critical solution temperature (LCST) of the polymer. The PMDM polymer brush accumulated on the glass surface also indicated temperature-responsive changes in contact angle of air bubble in the air-in-water system. Furthermore, non-specific adsorption of various proteins (bovine serum albumin (BSA), human immunoglobulin G (IgG) and bovine plasma fibrinogen (BPF)) to the surface of polymer brush on the glass plate was examined by the bicinchoninic acid method. The PMDM brush did not adsorb IgG and BPF significantly below the LCST of the polymer chain, whereas adsorbed a larger amount of the proteins above the LCST. A similar but less significant temperature-responsive adsorption was observed in the case of BSA. These results suggest usability of the temperature-responsive polymer-brushes with pendent ω-methoxy oligo(ethylene glycol) groups to coat various materials for bio-medical applications. Copyright © 2010. Published by Elsevier Inc.

  9. Synthesis of polyrotaxanes from acetyl-β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Ristić, I. S.; Nikolić, L.; Nikolić, V.; Ilić, D.; Budinski-Simendić, J.

    2011-12-01

    Polyrotaxanes are intermediary products in the synthesis of topological gels. They are created by inclusion complex formation of hydrophobic linear macromolecules with cyclodextrins or their derivatives. Then, pairs of cyclodextrin molecules with covalently linkage were practically forming the nodes of the semi-flexible polymer network. Such gels are called topological gels and they can absorb huge quantities of water due to the net flexibility allowing the poly(ethylene oxide) chains to slide through the cyclodextrin cavities, without being pulled out altogether. For polyrotaxane formation poly(ethylene oxide) was used like linear macromolecules. There are hydroxyl groups at poly(ethylene oxide) chains, whereby the linking of the voluminous molecules should be made. To avoid the reaction of cyclodextrin OH groups with stoppers, they should be protected by, e.g., acetylation. In this work, the acetylation of the OH groups of β-cyclodextrin was performed by acetic acid anhydride with iodine as the catalyst. The acetylation reaction was assessed by the FTIR and HPLC method. By the HPLC analysis was found that the acetylation was completed in 20 minutes. Inserting of poly(ethylene oxide) with 4000 g/mol molecule mass into acetyl-β-cyclodextrin with 2:1 poly(ethylene oxide) monomer unit to acetyl-β-cyclodextrin ratio was also monitored by FTIR, and it was found that the process was completed in 12 h at the temperature of 10°C. If the process is performed at temperatures above 10°C, or for periods longer than 12 hours, the process of uncontrolled hydrolysis of acetate groups was initiated.

  10. Robust solid polymer electrolyte for conducting IPN actuators

    NASA Astrophysics Data System (ADS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  11. Adsorption of β-sitosterol on molecularly imprinted polymer

    NASA Astrophysics Data System (ADS)

    Soekamto, N. H.; Fauziah, St.; Taba, P.; Amran, M. B.

    2017-04-01

    Molecularly Imprinted Polymer (MIP) has been synthesized using methacrylate acid (MAA) as a monomer with hydroxyl and carbonyl functional groups that can react with ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, and β-sitosterol as a template molecule. After the template was removed from the polymer, MIP_TFMAA was obtained. The MIP was used to adsorb β-sitosterol. The amount of β-sitosterol in solution after the adsorption was determined by HPLC. The results showed that the MIP was able to adsorb well the β-sitosterol at a pH 7 and the contact time of 90 min. The kinetic adsorption data obtained for β-sitosterol followed the pseudo-second-order model and consistent with the model of Feundlich isothermal with the adsorption capacity of 1.05 mg/g. The MIP was selective on β-sitosterol because it was able to adsorb β-sitosterol better than cholesterol.

  12. Preparation of Highly Conductive Yarns by an Optimized Impregnation Process

    NASA Astrophysics Data System (ADS)

    Amba Sankar, K. N.; Mohanta, Kallol

    2017-12-01

    We report the development of the electrical conductivity in textile yarns through impregnation and post-treatment of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The conductive polymer is deposited on fibers, which fills the gap space within the hierarchical structure of the yarns. Organic nonpolar solvents act as reducing agent to increase the density of PEDOT moieties on the yarns, galvanizing increment in conductivity values. Post-treatment by ethylene glycol transforms the resonance configuration of the conductive moieties of conjugated polymer, which helps in further enhancement of electrical conductivity of the yarns. We have optimized the method in terms of loading and conformal change of the polymer to have a lesser resistance of the coated conductive yarns. The minimum resistance achieved has a value of 77 Ωcm-1. This technique of developing conductivity in conventional yarns enables retaining the flexibility of yarns and feeling of softness which would find suitable applications for wearable electronics.

  13. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics.

    PubMed

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gómez, Andrés; Primetzhofer, Daniel; Amassian, Aram; Campoy-Quiles, Mariano; Müller, Christian

    2017-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm -1 and Seebeck coefficient from 100 to 60 μV K -1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m -1 K -1 gives rise to a thermoelectric Figure of merit ZT ∼ 10 -4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  14. Removal of heavy metals from waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, M.D.; Kozaruk, J.M.; Melvin, M.

    1988-07-19

    A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water,more » wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.« less

  15. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels.

    PubMed

    Tarasevich, B J; Gutowska, A; Li, X S; Jeong, B-M

    2009-04-01

    Graft copolymers consisting of a poly(D,L-lactic acid-co-glycolic acid) backbone grafted with polyethylene glycol side chains were synthesized and formed thermoreversible gels in aqueous solutions that exhibited solution behavior at low temperature and sol-to-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid, glycolic acid, and ethylene glycol were varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15 to 34 degrees C by increasing the concentration of polyethylene glycol in the graft copolymer. The gelation temperature also depended on the polymer molecular weight and concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery. Copyright 2008 Wiley Periodicals, Inc.

  16. Rapid removal of aniline from contaminated water by a novel polymeric adsorbent.

    PubMed

    Huang, Yunhong; Xu, Yang; He, Qinghua; Cao, Yusheng; Du, Bibai

    2014-01-01

    Dummy molecularly imprinted polymers (DMIPs) for aniline were synthesized by a thermal polymerization method using acrylamide as a functional monomer, ethylene dimethacrylate as a crosslinker, 2,2-azobisisobutyronitrile as a free radical initiator, acetonitrile as a porogenic solvent, and analogues of aniline, namely sulfadiazine, as the template. The DMIPs that were obtained showed a high affinity to aniline compared to non-imprinted polymers. It was proven that the DMIPs obtained using sulfadiazine as the template were much better than the molecularly imprinted polymers using aniline as the template. The results indicated that the Freundlich model was fit for the adsorption model of DMIP for aniline and the adsorption model of the DMIP for aniline was multilayer adsorption. Furthermore, the results showed that the DMIP synthesized by bulk polymerization could be used as a novel adsorbent for removal of aniline from contaminated water.

  17. Grafting of 2 (2-hydroxy-5-vinylphenyl) 2H-benzotriazole onto polymers with aliphatic groups. Synthesis and polymerization of 2 (2-hydroxy-5-isopropenylphenyl) 2H-benzotriazole and a new synthesis of 2 (2-hydroxy-5-vinylphenyl) 2H-benzotriazole

    NASA Technical Reports Server (NTRS)

    Pradellok, W.; Nir, Z.; Vogl, O.

    1981-01-01

    Successful grafting of 2(2-hydroxy-5-vinylphenyl)2H-benzotriazole onto saturated aliphatic C-H groups of polymers has been accomplished. When the grafting reaction was carried out in chlorobenzene at 150 C = 160 C with di-tertiarybutylperoxide as the grafting initiator, grafts as high as 20 percent - 30 percent at a grafting efficiency of 50 percent and 80 percent have readily been obtained. The grafting reaction was carried out in tubes sealed under high vacuum since trace amounts of oxygen cause complete inhibition of the grafting reaction by the phenolic monomer. On a variety of different polymers including atactic polypropylene, ethylene/vinyl acetate copolymer, poly(methyl methacrylate), poly(butyl acrylate), and polycarbonate were used.

  18. Multilayer moisture barrier

    DOEpatents

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  19. Extending the lanthanide-terephthalate system: Isolation of an unprecedented Tb(III)-based coordination polymer with high potential porosity and luminescence properties

    NASA Astrophysics Data System (ADS)

    Le Natur, François; Calvez, Guillaume; Freslon, Stéphane; Daiguebonne, Carole; Bernot, Kevin; Guillou, Olivier

    2015-04-01

    A novel coordination polymer with chemical formula {[Tb(bdc)1.5(H2O)]ṡ(DMF)(H2O)}∞ (1) has been synthesized by reaction between 1,4-benzene-dicarboxylic acid (H2bdc) and di-cationic hexanuclear entity [Tb6O(OH)8(NO3)6(H2O)12]2+ in an ethylene glycol (EG)/N,N-dimethylformamide (DMF) mixture. This compound has been obtained as single crystals by slow evaporation in air at room temperature. If the hexanuclear entity is destroyed during the reaction, the coordination polymer that is obtained is original and presents promising potential micro-porosity and luminescent properties. It crystallizes in the monoclinic system, space group C12/c1 (No. 15) with the cell parameters a = 23.7540(1) Å, b = 10.5390(4) Å, c = 19.7580(3) Å, β = 125.8100(1)° and Z = 8.

  20. Preparation of Highly Conductive Yarns by an Optimized Impregnation Process

    NASA Astrophysics Data System (ADS)

    Amba Sankar, K. N.; Mohanta, Kallol

    2018-03-01

    We report the development of the electrical conductivity in textile yarns through impregnation and post-treatment of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The conductive polymer is deposited on fibers, which fills the gap space within the hierarchical structure of the yarns. Organic nonpolar solvents act as reducing agent to increase the density of PEDOT moieties on the yarns, galvanizing increment in conductivity values. Post-treatment by ethylene glycol transforms the resonance configuration of the conductive moieties of conjugated polymer, which helps in further enhancement of electrical conductivity of the yarns. We have optimized the method in terms of loading and conformal change of the polymer to have a lesser resistance of the coated conductive yarns. The minimum resistance achieved has a value of 77 Ωcm-1. This technique of developing conductivity in conventional yarns enables retaining the flexibility of yarns and feeling of softness which would find suitable␣applications for wearable electronics.

Top