Lu, Nan; Xu, Zhaohe; Meng, Bingnan; Sun, Yuhan; Zhang, Jiangtao; Wang, Shaoming; Li, Yun
2014-04-21
The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS) were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques.
Ueda, Junichi; Miyamoto, Kensuke
2003-08-01
We review the graviresponse under true and simulated microgravity conditions on a clinostat in higher plants, and its regulation in molecular bases, especially on the aspect of auxin polar transport in etiolated pea (Pisum sativum L. cv. Alaska) seedlings which were the plant materials subjected to STS-95 space experiments. True and simulated microgravity conditions substantially affected growth and development in etiolated pea seedlings, especially the direction of growth of stems and roots, resulting in automorphosis. In etiolated pea seedlings grown in space, epicotyls were the most oriented toward the direction far from the cotyledons, and roots grew toward the aerial space of Plant Growth Chamber. Automorphosis observed in space were well simulated by a clinorotation on a 3-dimensional clinostat and also phenocopied by the application of auxin polar transport inhibitors of 2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid and 9-hydroxyfluorene-9-carboxylic acid. Judging from the results described above together with the fact that activities of auxin polar transport in epicotyls of etiolated pea seedlings grown in space substantially were reduced, auxin polar transport seems to be closely related to automorphosis. Strenuous efforts to learn in molecular levels how gravity contributes to the auxin polar transport in etiolated pea epicotyls resulted in successful identification of PsPIN2 and PsAUX1 genes located in plasma membrane which products are considered to be putative efflux and influx carriers of auxin, respectively. Based on the results of expression of PsPIN2 and PsAUX1 genes under various gravistimulations, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.
Garmash, Elena V; Velegzhaninov, Ilya O; Grabelnych, Olga I; Borovik, Olga A; Silina, Ekaterina V; Voinikov, Victor K; Golovko, Tamara K
2017-08-01
Mitochondrial respiratory components participate in the maintenance of chloroplast functional activity. This study investigates the effects 48h de-etiolation of spring wheat seedlings (Triticum aestivum L., var. Irgina) on the expression of genes that encode energy-dissipating respiratory components and antioxidant enzymes under continuous light conditions. The expression of AOX1a following the prolonged darkness exhibited a pattern indicating a prominent dependence on light. The expression of other respiratory genes, including NDA2, NDB2, and UCP1b, increased during de-etiolation and dark-to-light transition; however, changes in the expression of these genes occurred later than those in AOX1a expression. A high expression of NDA1 was detected after 12h of de-etiolation. The suppression of AOX1a, NDA2, NDB2, and UCP1b was observed 24h after de-etiolation when the photosynthetic apparatus and its defence systems against excess light were completely developed. The expression patterns of the respiratory genes and several genes encoding antioxidant enzymes (MnSOD, Cu-ZnSOD, t-APX, GR, and GRX) were quite similar. Our data indicate that the induction of nuclear genes encoding respiratory and antioxidant enzymes allow the plants to control reactive oxygen species (ROS) production and avoid oxidative stress during de-etiolation. Copyright © 2017 Elsevier GmbH. All rights reserved.
Xiong, Bo; Gu, Xianjie; Qiu, Xia; Dong, Zhixiang; Ye, Shuang; Sun, Guochao; Huang, Shengjia; Liu, Xinya; Xi, Lijuan
2017-01-01
Considering the known effects of xyloglucan endotransglycosylase (XET) on plant growth and development, we aimed to determine whether XETs help to regulate the growth and elongation of Huangguogan shoots and roots. We confirmed a possible role for XET during seedling etiolation. Our results revealed that the roots of etiolated seedlings (H-E) were longer than those of green seedlings (H-G). However, shoot length exhibited the opposite pattern. We also observed positive and negative effects on the xyloglucan-degrading activity of XET in the root sub-apical region and shoots of etiolated Huangguogan seedling, respectively. There was a significant down-regulation in CitXET expression in the etiolated shoots at 15 days after seed germination. On the contrary, it was significantly increased in the root sub-apical region of etiolated and multicolored seedlings at 15 days after seed germination. The XET coding sequence (i.e., CitXET) was cloned from Huangguogan seedlings using gene-specific primers. The encoded amino acid sequence was predicted by using bioinformatics-based methods. The 990-bp CitXET gene was highly homologous to other XET genes. The CitXET protein was predicted to contain 319 amino acids, with a molecular mass of 37.45 kDa and an isoelectric point of 9.05. The predicted molecular formula was C1724H2548N448O466S14, and the resulting protein included only one transmembrane structure. The CitXET secondary structure consisted of four main structures (i.e., 21% α-helix, 30.72% extended strand, 9.09% β-turn, and 39.18% random coil). Analyses involving the NCBI Conserved Domains Database (NCBI-CDD), InterPro, and ScanProsite revealed that CitXET was a member of the glycosyl hydrolase family 16 (GH16), and included the DEIDFEFLG motif. Our results indicate that the differed degrees of etiolation influenced the CitXET expression pattern and XET activity in Huangguogan seedlings. The differential changes in XET activity and CitXET expression levels in Huangguogan seedlings may influence the regulation of root and shoot development, and may be important for seedling etiolation. PMID:28617857
Talar, Urszula; Kiełbowicz-Matuk, Agnieszka; Czarnecka, Jagoda; Rorat, Tadeusz
2017-01-01
Plant B-box domain proteins (BBX) mediate many light-influenced developmental processes including seedling photomorphogenesis, seed germination, shade avoidance and photoperiodic regulation of flowering. Despite the wide range of potential functions, the current knowledge regarding BBX proteins in major crop plants is scarce. In this study, we identify and characterize the StBBX gene family in potato, which is composed of 30 members, with regard to structural properties and expression profiles under diurnal cycle, etiolation and de-etiolations. Based on domain organization and phylogenetic relationships, StBBX genes have been classified into five groups. Using real-time quantitative PCR, we found that expression of most of them oscillates following a 24-h rhythm; however, large differences in expression profiles were observed between the genes regarding amplitude and position of the maximal and minimal expression levels in the day/night cycle. On the basis of the time-of-day/time-of-night, we distinguished three expression groups specifically expressed during the light and two during the dark phase. In addition, we showed that the expression of several StBBX genes is under the control of the circadian clock and that some others are specifically associated with the etiolation and de-etiolation conditions. Thus, we concluded that StBBX proteins are likely key players involved in the complex diurnal and circadian networks regulating plant development as a function of light conditions and day duration.
NASA Astrophysics Data System (ADS)
Miyamoto, Kensuke; Hoshino, Tomoki; Hitotsubashi, Reiko; Yamashita, Masamichi; Ueda, Junichi
Both microgravity conditions in space and simulated microgravity using a 3-dimensional clinostat resulted in: (1) automorphosis of etiolated pea seedlings, (2) epicotyls bending ca. 45° from the vertical line to the direction away from cotyledons, (3) inhibition of hook formation and (4) alternation of growth direction of roots. These facts indicate that the growth and development of etiolated pea seedlings on earth is under the influence of gravistimulation. Lanthanum and gadolinium ions, blockers of stretch-activated mechanosensitive ion channels, induced automorphosis-like epicotyl bending. Cantharidin, an inhibitor of protein phosphatase, also phenocopied automorphosis-like growth. On the other hand, cytochalasin B, cytochalasin D and brefeldin A did not induce automorphological epicotyl bending and inhibition of hook formation, although these compounds strikingly inhibited elongation of etiolated pea epicotyls. These results strongly suggest that stretch-activated mechanosensitive ion channels are involved in the perception of signals of gravistimuli in plants, and they are transduced by protein phosphorylation and dephosphorylation cascades by changing levels of calcium ions. Possible mechanisms to induce automorphosis-like growth in relation to gravity signals in etiolated pea seedlings are discussed.
Miyamoto, Kensuke; Hoshino, Tomoki; Hitotsubashi, Reiko; Tanimoto, Eiichi; Ueda, Junichi
2003-10-01
In STS-95 space experiments we have demonstrated that microgravity conditions resulted in automorphosis in etiolated pea (Pisum sativum L. cv. Alaska) seedlings (Ueda et al. 1999). Automorphosis-like growth and development in etiolated pea seedlings were also induced under simulated microgravity conditions on a 3-dimensional (3-D) clinostat, epicotyls being the most oriented toward the direction far from the cotyledons. Detail analysis of epicotyl bending revealed that within 36 h after watering, no significant difference in growth direction of epicotyls was observed in between seedlings grown on the 3-D clinostat and under 1 g conditions, differential growth near the cotyledonary node resulting in epicotyl bending of ca. 45 degrees toward the direction far from the cotyledons. Thereafter epicotyls continued to grow almost straightly keeping this orientation on the 3-D clinostat. On the other hand, the growth direction in etiolated seedlings changed to antigravity direction by negative gravitropic response under 1 g conditions. Automorphological epicotyl bending was also phenocopied by the application of auxin polar transport inhibitors such as 9-hydroxyfluorene-9-carboxylic acid, N-(1-naphtyl)phthalamic acid and 2,3,5-triiodobenzoic acid. These results together with the fact that auxin polar transport activity in etiolated pea epicotyls was substantially reduced in space suggested that reduced auxin polar transport is closely related to automorphosis. Strenuous efforts to learn how gravity contributes to the auxin polar transport in etiolated pea epicotyls in molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin-efflux and influx carrier proteins, respectively. Based on the results of these gene expression under simulated microgravity conditions, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.
Hura, Tomasz; Hura, Katarzyna; Grzesiak, Maciej
2010-12-02
In the presented work an attempt has been made to estimate the phenolics content and its implication for the protection of the photosynthetic apparatus in course of a plant's de-etiolation. The experiments were carried out on two genotypes of winter triticale varying in their resistance to drought. The activity of the photosynthetic apparatus was monitored by taking measurements of chlorophyll fluorescence and chlorophyll/carotenoids content. Analyses of the total pool of phenolic compounds and ferulic acid as well as l-phenylalanine ammonia lyase activity were completed. The first illuminations of etiolated seedlings induced a chlorophyll synthesis, which was followed by the increasing activity of the photosynthetic apparatus in both studied genotypes. Piano exhibited a higher values of the maximum quantum efficiency of photosystem II primary photochemistry during de-etiolation than Imperial. These results may just indicate that for Imperial, the delivery of photons to the reaction centres exceeded the capacity of the photosynthetic apparatus to transduce this energy via electron transport. An increase in the content of ferulic acid was more noticeable for Piano and seems to be a consequence of adaptation to the new light conditions. It should be taken into account, that an increase of ferulic acid content during early stage of de-etiolation, may limit the photoinhibition of photosynthesis whenever radiation is excessive for the photosynthetic apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.
Ma, Qianqian; Sun, Jingbo; Mao, Tonglin
2016-05-15
The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.
Muday, Gloria K; Brady, Shari R; Argueso, Cristiana; Deruère, Jean; Kieber, Joseph J; DeLong, Alison
2006-08-01
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.
Mesophyll cell ultrastructure of wheat leaves etiolated by lead and selenium.
Semenova, Galina A; Fomina, Irina R; Kosobryukhov, Anatoly A; Lyubimov, Valery Yu; Nadezhkina, Ekaterina S; Balakhnina, Tamara I
2017-12-01
The ultrastructure of mesophyll cells was studied in leaves of the Triticum aestivum L. cv. "Trizo" seedlings after two weeks of growth on soil contaminated by Pb and/or Se. The soil treatments: control; (Pb1) 50mgkg -1 ; (Pb2) 100mgkg -1 ; (Se1) 0.4mgkg -1 ; (Se2) 0.8mgkg -1 ; (Pb1+Se1); (Pb1+Se2); (P2+Se1); and (Pb2+Se2) were used. Light and other conditions were optimal for plant growth. The (Se1)-plants showed enhanced growth and biomass production; (Pb1+Se1)-plants did not lag behind the controls, though O 2 evolution decreased; chlorophyll content did not differ statistically in these treatments. Other treatments led to statistically significant growth suppression, chlorophyll content reduction, inhibition of photosynthesis, stress development tested by H 2 O 2 and leaf etiolation at the end of 14-days experiment. The tops of etiolated leaves remained green, while the main leaf parts were visually white. Plastids in mesophyll cells of etiolated parts of leaves were mainly represented by etioplasts and an insignificant amount of degraded chloroplasts. Other cellular organelles remained intact in most mesophyll cells of the plants, except (Pb2+Se2)-plants. Ruptured tonoplast and etioplast envelope, swelled cytoplasm and mitochondria, and electron transparent matrix of gialoplasm were observed in the mesophyll cells at (Pb2+Se2)-treatment, that caused maximal inhibition of plant growth. The results indicate that Pb and Se effects on growth of wheat leaves are likely to target meristem in which the development of proplastids to chloroplasts under the light is determined by chlorophyll biosynthesis. Antagonistic effect of low concentration of Se and Pb in combination may retard etiolation process. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Jaffe, M. J.; Leopold, A. C.
1984-01-01
In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.
NASA Astrophysics Data System (ADS)
Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.
STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.
Spectral Dependence of Chlorophyll Biosynthesis Pathways in Plant Leaves.
Belyaeva, O B; Litvin, F F
2015-12-01
This review covers studies on the dependence of chlorophyll photobiosynthesis reactions from protochlorophyllide on the spectral composition of actinic light. A general scheme of the reaction sequence for the photochemical stage in chlorophyll biosynthesis for etiolated plant leaves is presented. Comparative analysis of the data shows that the use of light with varied wavelengths for etiolated plant illumination reveals parallel transformation pathways of different protochlorophyllide forms into chlorophyllide, including a pathway for early photosystem II reaction center P-680 pigment formation.
Tissue to tissue symplastic communication in the shoots of etiolated corn seedlings
NASA Technical Reports Server (NTRS)
Epel, B. L.; Bandurski, R. S.
1990-01-01
Carboxyfluorescein, a symplastic probe, was applied to the cut mesocotyl base or coleoptile apex of etiolated Zea mays cv. Silver Queen seedlings and its transport measured and tissue distribution determined. Long-distance longitudinal symplastic transport of the carboxyfluorescein was mainly in the vascular stele. It moved laterally from the mesocotyl stele to the mesocotyl cortex but the presence of a weak barrier limited the movement. A partial symplastic barrier was also present near the coleoptile-mesocotyl node.
Analysis of Growth and Molecular Responses to Ethylene in Etiolated Rice Seedlings.
Ma, Biao; Zhang, Jin-Song
2017-01-01
Ethylene plays a key role in various submergence responses of rice plants, but the mechanism of ethylene action remains largely unclear in rice. Regarding the differences between rice and Arabidopsis in ethylene-regulated processes, rice plants may possess divergent mechanisms in ethylene signaling in addition to the conserved aspects. Forward genetic analysis is essential to fully understand the ethylene signaling mechanism in rice. Here, we describe a method for screening ethylene-response mutants and evaluating ethylene responsiveness in etiolated rice seedlings.
Kiyota, Seiichiro; Xie, Xianzhi; Takano, Makoto
2012-02-01
Phytochromes are red/far-red photoreceptors encoded by a small gene family in higher plants. Differences in phenotype among mutants suggest distinct functions among phytochrome subfamilies. We attempted to find distinct functions among phytochromes by oligo-microarray analysis of single, double, and triple mutants in rice. In most cases, gene expression was redundantly regulated by phytochromes A and B after irradiation by a red light pulse in etiolated rice shoots. However, we found that several genes were specifically regulated by phytochromes A and C. Most of them were expressed immediately after the red light pulse in a transient manner. They are stress-related genes that may be involved in resistance to light stress when etiolated seedlings are exposed to light. These genes were not expressed in green leaves after the red light pulse, suggesting that they have a function specific to etiolated seedlings. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Jasmonic acid protects etiolated seedlings of Arabidopsis thaliana against herbivorous arthropods
Boex-Fontvieille, Edouard; Rustgi, Sachin; Von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane
2016-01-01
ABSTRACT Seed predators can cause mass ingestion of larger seed populations. As well, herbivorous arthropods attempt to attack etiolated seedlings and chose the apical hook for ingestion, aimed at dropping the cotyledons for later consumption. Etiolated seedlings, as we show here, have established an efficient mechanism of protecting their Achilles' heel against these predators, however. Evidence is provided for a role of jasmonic acid (JA) in this largely uncharacterized plant-herbivore interaction during skotomorphogenesis and that this comprises the temporally and spatially tightly controlled synthesis of a cysteine protease inhibitors of the Kunitz family. Interestingly, the same Kunitz protease inhibitor was found to be expressed in flowers of Arabidopsis where endogenous JA levels are high for fertility. Because both the apical hook and inflorescences were preferred isopod targets in JA-deficient plants that could be rescued by exogenously administered JA, our data identify a JA-dependent mechanism of plant arthropod deterrence that is recalled in different organs and at quite different times of plant development. PMID:27485473
Shade Promotes Phototropism through Phytochrome B-Controlled Auxin Production.
Goyal, Anupama; Karayekov, Elizabeth; Galvão, Vinicius Costa; Ren, Hong; Casal, Jorge J; Fankhauser, Christian
2016-12-19
Phototropism is an asymmetric growth response enabling plants to optimally position their organs. In flowering plants, the phototropin (phot) blue light receptors are essential to detect light gradients. In etiolated seedlings, the phototropic response is enhanced by the red/far-red (R/FR)-sensing phytochromes (phy) with a predominant function of phyA. In this study, we analyzed the influence of the phytochromes on phototropism in green (de-etiolated) Arabidopsis seedlings. Our experiments in the laboratory and outdoors revealed that, in open environments (high R/FR ratio), phyB inhibits phototropism. In contrast, under foliar shade, where access to direct sunlight becomes important, the phototropic response was strong. phyB modulates phototropism, depending on the R/FR ratio, by controlling the activity of three basic-helix-loop-helix (bHLH) transcription factors of the PHYTOCHROME INTERACTING FACTORs (PIFs) family. Promotion of phototropism depends on PIF-mediated induction of several members of the YUCCA gene family, leading to auxin production in the cotyledons. Our study identifies PIFs and YUCCAs as novel molecular players promoting phototropism in photoautotrophic, but not etiolated, seedlings. Moreover, our findings reveal fundamental differences in the phytochrome-phototropism crosstalk in etiolated versus green seedlings. We propose that in natural conditions where the light environment is not homogeneous, the uncovered phytochrome-phototropin co-action is important for plants to adapt their growth strategy to optimize photosynthetic light capture. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bergougnoux, Véronique; Zalabák, David; Jandová, Michaela; Novák, Ondřej; Wiese-Klinkenberg, Anika; Fellner, Martin
2012-01-01
Light is one of the most important factor influencing plant growth and development all through their life cycle. One of the well-known light-regulated processes is de-etiolation, i.e. the switch from skotomorphogenesis to photomorphogenesis. The hormones cytokinins (CKs) play an important role during the establishment of photomorphogenesis as exogenous CKs induced photomorphogenesis of dark-grown seedlings. Most of the studies are conducted on the plant model Arabidopsis, but no or few information are available for important crop species, such as tomato (Solanum lycopersicum L.). In our study, we analyzed for the first time the endogenous CKs content in tomato hypocotyls during skotomorphogenesis, photomorphogenesis and de-etiolation. For this purpose, two tomato genotypes were used: cv. Rutgers (wild-type; WT) and its corresponding mutant (7B-1) affected in its responses to blue light (BL). Using physiological and molecular approaches, we identified that the skotomorphogenesis is characterized by an endoreduplication-mediated cell expansion, which is inhibited upon BL exposure as seen by the accumulation of trancripts encoding CycD3, key regulators of the cell cycle. Our study showed for the first time that iP (isopentenyladenine) is the CK accumulated in the tomato hypocotyl upon BL exposure, suggesting its specific role in photomorphogenesis. This result was supported by physiological experiments and gene expression data. We propose a common model to explain the role and the relationship between CKs, namely iP, and endoreduplication during de-etiolation and photomorphogenesis. PMID:23049779
2015-01-01
Brassinosteroid (BR) and glucose (Glc) regulate many common responses in plants. Here, we demonstrate that under etiolated growth conditions, extensive interdependence/overlap occurs between BR- and Glc-regulated gene expression as well as physiological responses. Glc could regulate the transcript level of 72% of BR-regulated genes at the whole-genome level, of which 58% of genes were affected synergistically and 42% of genes were regulated antagonistically. Presence of Glc along with BR in medium could affect BR induction/repression of 85% of BR-regulated genes. Glc could also regulate several genes involved in BR metabolism and signaling. Both BR and Glc coregulate a large number of genes involved in abiotic/biotic stress responses and growth and development. Physiologically, Glc and BR interact to regulate hypocotyl elongation growth of etiolated Arabidopsis (Arabidopsis thaliana) seedlings in a dose-dependent manner. Glc may interact with BR via a HEXOKINASE1 (HXK1)-mediated pathway to regulate etiolated hypocotyl elongation. BRASSINOSTEROID INSENSITIVE1 (BRI1) is epistatic to HXK1, as the Glc insensitive2bri1-6 double mutant displayed severe defects in hypocotyl elongation growth similar to its bri1-6 parent. Analysis of Glc and BR sensitivity in mutants defective in auxin response/signaling further suggested that Glc and BR signals may converge at S-phase kinase-associated protein1-Cullin-F-box-TRANSPORT INHIBITOR RESPONSE1/AUXIN-RELATED F-BOX-AUXIN/INDOLE-3-ACETIC ACID-mediated auxin-signaling machinery to regulate etiolated hypocotyl elongation growth in Arabidopsis. PMID:26034265
Barak, S; Nejidat, A; Heimer, Y; Volokita, M
2001-03-01
The roles of light and of the putative plastid signal in glycolate oxidase (GLO) gene expression were investigated in tobacco (Nicotiana tabacum cv. Samsun NN) seedlings during their shift from skotomorphogenic to photomorphogenic development. GLO transcript and enzyme activities were detected in etiolated seedlings. Their respective levels increased three- and six-fold during 96 h of exposure to light. The GLO transcript was almost undetectable in seedlings in which chloroplast development was impaired by photooxidation with the herbicide norflurazon. In transgenic tobacco seedlings, photooxidation inhibited the light-dependent increase in GUS activity when it was placed under the regulation of the GLO promoter P(GLO). However, even under these photooxidative conditions, a continuous increase in GUS activity was observed as compared to etiolated seedlings. When GUS expression was driven by the CaMV 35S promoter (P35S), no apparent difference was observed between etiolated, deetiolated and photooxidized seedlings. These observations indicate that the effects of the putative plastid development signal and light on GUS expression can be separated. Translational yield analysis indicated that the translation of the GUS transcript in P(GLO)::GUS seedlings was enhanced 30-fold over that of the GUS transcript in P35S::GUS seedlings. The overall picture emerging from these results is that in etiolated seedlings GLO transcript, though present at a substantial level, is translated at a low rate. Increased GLO transcription is enhanced, however, in response to signals originating from the developing plastids. GLO gene expression is further enhanced at the translational level by a yet undefined light-dependent mechanism.
An Ethylene-Protected Achilles’ Heel of Etiolated Seedlings for Arthropod Deterrence
Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane
2016-01-01
A small family of Kunitz protease inhibitors exists in Arabidopsis thaliana, a member of which (encoded by At1g72290) accomplishes highly specific roles during plant development. Arabidopsis Kunitz-protease inhibitor 1 (Kunitz-PI;1), as we dubbed this protein here, is operative as cysteine PI. Activity measurements revealed that despite the presence of the conserved Kunitz-motif the bacterially expressed Kunitz-PI;1 was unable to inhibit serine proteases such as trypsin and chymotrypsin, but very efficiently inhibited the cysteine protease RESPONSIVE TO DESICCATION 21. Western blotting and cytolocalization studies using mono-specific antibodies recalled Kunitz-PI;1 protein expression in flowers, young siliques and etiolated seedlings. In dark-grown seedlings, maximum Kunitz-PI;1 promoter activity was detected in the apical hook region and apical parts of the hypocotyls. Immunolocalization confirmed Kunitz-PI;1 expression in these organs and tissues. No transmitting tract (NTT) and HECATE 1 (HEC1), two transcription factors previously implicated in the formation of the female reproductive tract in flowers of Arabidopsis, were identified to regulate Kunitz-PI;1 expression in the dark and during greening, with NTT acting negatively and HEC1 acting positively. Laboratory feeding experiments with isopod crustaceans such as Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug) pinpointed the apical hook as ethylene-protected Achilles’ heel of etiolated seedlings. Because exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and mechanical stress (wounding) strongly up-regulated HEC1-dependent Kunitz-PI;1 gene expression, our results identify a new circuit controlling herbivore deterrence of etiolated plants in which Kunitz-PI;1 is involved. PMID:27625656
Mutant Peas as Probes in the Understanding of Growth and Gravitropism
NASA Technical Reports Server (NTRS)
Jaffe, M. J.; Takashi, H.
1985-01-01
One mutant of Pism sativum CREEP grows normally up to the first internode stage, and then begins to grow plagiotropically. The upper internodes bend slowly downward according to a programmed sequence which follows circumnutation of the previous internode and opening of the previous leaves, but preceeds expansion of the previous leaves. The bending is partially inhibited by excission of the opposing stipules. The second mutant, AGEOTROPUM is gravitropically incompetant when grown etiolated, in the dark. When etiolated plants are illuminated with white light, the stems become gravitropically competant, but the roots do not. If the plants are grown in the light in particulate medium, some secondary roots, growing randomly, emerge into the air, and turn and grow downward toward moist soil. When etiolated AGEOTROPUM plants are illuminated, the shoots then become able to respond to gravity in a normal, negatively orthogravitropic manner. The response is to red light and is reversed by far red light. The mutation may involve one or more of the following: (1) release of sequestered calcium for redistribution; (2) radial transport of released calcium; or (3) net calcium flux in the upward direction.
Biever, Jessica J.; Brinkman, Doug; Gardner, Gary
2014-01-01
Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052
[Effects of different salt and alkali stresses on ion distribution in Red globe/Beta grapevines].
Du, Yuan-peng; Jin, Xue-juan; Guo, Shu-hua; Fu, Qing-qing; Zhai, Heng
2015-06-01
The potted Red globe/Beta grapevines were selected to irrigated with NaCl, Na2SO4, NaHCO3, NH4Cl, (NH4)2SO4. Hence, the ions which induced leaf etiolation were screened and the impacts of different salt and alkali on ion distribution in different organs of grapevines were investigated. It was found that NaHCO3 exerted the greatest effects on grapevines, leaf etiolation at 14 days after treatment. By contrast, NaCl and NH4Cl treatments induced leaf etiolation at 28 days after treatment. The Na+ content in all the detected organs were significantly increased under NaHCO3 and NaCl treatment, and Na+ content in root under NaHCO3 treatment was 6.4 times as that in control root. NaHCO3 and NaCl treatments significantly decreased K+ content in the organs with the exception of leaf. NaHCO3 treatment significantly decreased K/Na in different organs, which declined to 0.1 in root. By contrast, NaCl treatment significantly decreased K/Na in the detected organs with exception of stem. Besides, the transport of Ca2+, Mg2+, Fe2+ to aboveground organs was significantly decreased by NaHCO3 and NaCl treatments. K/Na ratio in the detected organs were decreased under NH4Cl, (NH4) 2SO4 and Na2SO4 treatments, especially under NH4 Cl treatment. Taken together, NaHCO3 was the primary factor resulting in leaf etiolation, followed by NaCl and NH4Cl, while (NH4) 2SO4 and Na2SO4 produced impacts.
Solymosi, Katalin; Morandi, Dominique; Bóka, Károly; Böddi, Béla; Schoefs, Benoît
2012-05-01
To study the formation of the photosynthetic apparatus in nature, the carotenoid and chlorophyllous pigment compositions of differently developed leaf primordia in closed and opening buds of common ash (Fraxinus excelsior L.) and horse chestnut (Aesculus hippocastanum L.) as well as in closed buds of tree of heaven (Ailanthus altissima P. Mill.) were analyzed with HPLC. The native organization of the chlorophyllous pigments was studied using 77 K fluorescence spectroscopy, and plastid ultrastructure was investigated with electron microscopy. Complete etiolation, i.e., accumulation of protochlorophyllide, and absence of chlorophylls occurred in the innermost leaf primordia of common ash buds. The other leaf primordia were partially etiolated in the buds and contained protochlorophyllide (0.5-1 μg g(-1) fresh mass), chlorophyllides (0.2-27 μg g(-1) fresh mass) and chlorophylls (0.9-643 μg g(-1) fresh mass). Etio-chloroplasts with prolamellar bodies and either regular or only low grana were found in leaves having high or low amounts of chlorophyll a and b, respectively. After bud break, etioplast-chloroplast conversion proceeded and the pigment contents increased in the leaves, similarly to the greening processes observed in illuminated etiolated seedlings under laboratory conditions. The pigment contents and the ratio of the different spectral forms had a high biological variability that could be attributed to (i) various light conditions due to light filtering in the buds resulting in differently etiolated leaf primordia, (ii) to differences in the light-exposed and inner regions of the same primordia in opening buds due to various leaf folding, and (iii) to tissue-specific slight variations of plastid ultrastructure.
Solymosi, Katalin; Vitányi, Beáta; Hideg, Éva; Böddi, Béla
2007-01-01
Background and Aims Etiolation symptoms and the greening process are usually studied on dark-germinated seedlings and this raises the question – can these results be generalized for plants growing under field conditions? This work examines various aspects of the plastid differentiation under the covering of the achene wall, which often remains attached to the cotyledons of sunflower (Helianthus annuus) seedlings grown under light. Methods Cotyledons of 7- to 10-d-old sunflower seedlings grown in the dark and on light were examined. The partially covered cotyledons were sectioned into light-exposed, covered and transition zones. Pigment contents, 77 K fluorescence spectroscopy, electron microscopy and fluorescence imaging, along with fluorescence kinetic methods, were used. Key Results The light-exposed zone of the partially covered cotyledons was similar to cotyledons developed without achene covering. However, some of the plastids had prolamellar bodies among the granal thylakoid membranes; despite this no protochlorophyllide was detected. The fully covered, yellowish sections contained protochlorophyllide forms emitting at 633 and 655 nm and well-developed prolamellar bodies, similar to those of etiolated cotyledons. In addition, reduced amounts of chlorophyll a, chlorophyll b and stacked thylakoid membrane pairs were found in this region. The transitional sections showed a mixture of the characteristics of the covered and exposed sections. Various, but significantly different values of the photosynthetic activity parameters were found in each sector of the partially covered cotyledons. Conclusions The partial covering of the achene wall shades the cotyledon tissues effectively, enough to provoke the appearance of etiolation phenomena, i.e. the permanent presence of flash-photoactive protochlorophyllide complexes and prolamellar bodies (with or without protochlorophyllide), which proves that these phenomena may appear under natural illumination conditions. PMID:17452377
Red light regulation of ethylene biosynthesis and gravitropism in etiolated pea stems
NASA Technical Reports Server (NTRS)
Steed, C. L.; Taylor, L. K.; Harrison, M. A.
2004-01-01
During gravitropism, the accumulation of auxin in the lower side of the stem causes increased growth and the subsequent curvature, while the gaseous hormone ethylene plays a modulating role in regulating the kinetics of growth asymmetries. Light also contributes to the control of gravitropic curvature, potentially through its interaction with ethylene biosynthesis. In this study, red-light pulse treatment of etiolated pea epicotyls was evaluated for its effect on ethylene biosynthesis during gravitropic curvature. Ethylene biosynthesis analysis included measurements of ethylene; the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC); malonyl-conjugated ACC (MACC); and expression levels of pea ACC oxidase (Ps-ACO1) and ACC synthase (Ps-ACS1, Ps-ACS2) genes by reverse transcriptase-polymerase chain reaction analysis. Red-pulsed seedlings were given a 6 min pulse of 11 micromoles m-2 s-1 red-light 15 h prior to horizontal reorientation for consistency with the timeline of red-light inhibition of ethylene production. Red-pulse treatment significantly reduced ethylene production and MACC levels in epicotyl tissue. However, there was no effect of red-pulse treatment on ACC level, or expression of ACS or ACO genes. During gravitropic curvature, ethylene production increased from 60 to 120 min after horizontal placement in both control and red-pulsed epicotyls. In red-pulsed tissues, ACC levels increased by 120 min after horizontal reorientation, accompanied by decreased MACC levels in the lower portion of the epicotyl. Overall, our results demonstrate that ethylene production in etiolated epicotyls increases after the initiation of curvature. This ethylene increase may inhibit cell growth in the lower portion of the epicotyl and contribute to tip straightening and reduced overall curvature observed after the initial 60 min of curvature in etiolated pea epicotyls.
Shimazu, T; Yuda, T; Miyamoto, K; Yamashita, M; Ueda, J
2001-01-01
Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells. c 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Liu, Xuncheng; Chen, Chia-Yang; Wang, Ko-Ching; Luo, Ming; Tai, Ready; Yuan, Lianyu; Zhao, Minglei; Yang, Songguang; Tian, Gang; Cui, Yuhai; Hsieh, Hsu-Liang; Wu, Keqiang
2013-01-01
PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II–associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings. PMID:23548744
Vanhaelewyn, Lucas; Schumacher, Paolo; Poelman, Dirk; Fankhauser, Christian; Van Der Straeten, Dominique; Vandenbussche, Filip
2016-11-01
Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Men, Xiao; Dong, Kang
2013-11-01
The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.
Phototropin 1 and dim-blue light modulate the red light de-etiolation response.
Wang, Yihai; M Folta, Kevin
2014-01-01
Light signals regulate seedling morphological changes during de-etiolation through the coordinated actions of multiple light-sensing pathways. Previously we have shown that red-light-induced hypocotyl growth inhibition can be reversed by addition of dim blue light through the action of phototropin 1 (phot1). Here we further examine the fluence-rate relationships of this blue light effect in short-term (hours) and long-term (days) hypocotyl growth assays. The red stem-growth inhibition and blue promotion is a low-fluence rate response, and blue light delays or attenuates both the red light and far-red light responses. These de-etiolation responses include blue light reversal of red or far-red induced apical hook opening. This response also requires phot1. Cryptochromes (cry1 and cry2) are activated by higher blue light fluence-rates and override phot1's influence on hypocotyl growth promotion. Exogenous application of auxin transport inhibitor naphthylphthalamic acid abolished the blue light stem growth promotion in both hypocotyl growth and hook opening. Results from the genetic tests of this blue light effect in auxin transporter mutants, as well as phytochrome kinase substrate mutants indicated that aux1 may play a role in blue light reversal of red light response. Together, the phot1-mediated adjustment of phytochrome-regulated photomorphogenic events is most robust in dim blue light conditions and is likely modulated by auxin transport through its transporters.
The structure of the stem endodermis in etiolated pea seedlings
NASA Technical Reports Server (NTRS)
Sack, F. D.
1987-01-01
Differentiation of the endodermis was examined in third internodes of etiolated Pisum sativum L. cv. Alaska seedlings. The endodermis in young internodes contains large, sedimented amyloplasts; in older internodes, a casparian strip differentiates and the endodermis becomes depleted of starch except for the proximal region of the stem, which retains sedimented amyloplasts and remains graviresponsive. Sedimentation occurs in the hook but does not occur consistently until cells reach the base of the hook, where the axis becomes vertical, rapid cell elongation starts, and amyloplast diameter increases substantially. Contact between endoplasmic reticulum and amyloplasts was observed. Endoplasmic reticulum is not distributed polarly with respect to gravity. No symplastic or apoplastic blockages exist in the endodermis at the level of the stem where lateral gradients may be established during tropic curvature.
Kinetics for phototropic curvature by etiolated seedlings of Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Orbovic, V.; Poff, K. L.
1991-01-01
An infrared-imaging system has been used to study the influence of gravity on the kinetics of first positive phototropism. The development of phototropic curvature of etiolated seedlings of Arabidopsis thaliana was measured in the absence of visible radiation. Following a pulse of blue light, stationary seedlings curved to a maximum of approximately 16 degrees about 80 minutes after stimulation. The seedlings then curved upward again or straightened by about 6 degrees during the subsequent 100 minutes. Seedlings rotated on a clinostat reached a similar maximum curvature following photostimulation. These seedlings maintained that curvature for 30 to 40 minutes before subsequently straightening to the same extent as the stationary seedlings. It is concluded that straightening is not a consequence of gravitropism, although gravity has some effect on the phototropism kinetics.
Monselise, E B-I; Levkovitz, A; Kost, D
2015-01-01
Analysis with (15) N NMR revealed that alanine, a universal cellular stress signal, accumulates in etiolated duckweed plants exposed to 15-min pulsed UV light, but not in the absence of UV irradiation. The addition of 10 mm vitamin C, a radical scavenger, reduced alanine levels to zero, indicating the involvement of free radicals. Free D-alanine was detected in (15) N NMR analysis of the chiral amino acid content, using D-tartaric acid as solvent. The accumulation of D-alanine under stress conditions presents a new perspective on the biochemical processes taking place in prokaryote and eukaryote cells. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Phototropin 1 and dim-blue light modulate the red light de-etiolation response
Wang, Yihai; M Folta, Kevin
2014-01-01
Light signals regulate seedling morphological changes during de-etiolation through the coordinated actions of multiple light-sensing pathways. Previously we have shown that red-light-induced hypocotyl growth inhibition can be reversed by addition of dim blue light through the action of phototropin 1 (phot1). Here we further examine the fluence-rate relationships of this blue light effect in short-term (hours) and long-term (days) hypocotyl growth assays. The red stem-growth inhibition and blue promotion is a low-fluence rate response, and blue light delays or attenuates both the red light and far-red light responses. These de-etiolation responses include blue light reversal of red or far-red induced apical hook opening. This response also requires phot1. Cryptochromes (cry1 and cry2) are activated by higher blue light fluence-rates and override phot1's influence on hypocotyl growth promotion. Exogenous application of auxin transport inhibitor naphthylphthalamic acid abolished the blue light stem growth promotion in both hypocotyl growth and hook opening. Results from the genetic tests of this blue light effect in auxin transporter mutants, as well as phytochrome kinase substrate mutants indicated that aux1 may play a role in blue light reversal of red light response. Together, the phot1-mediated adjustment of phytochrome-regulated photomorphogenic events is most robust in dim blue light conditions and is likely modulated by auxin transport through its transporters. PMID:25482790
Xu, Jiajia; Bräutigam, Andrea; Weber, Andreas P. M.; Zhu, Xin-Guang
2016-01-01
Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5′UTR, 3′UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5′UTR, 3′UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution. PMID:27436282
NASA Technical Reports Server (NTRS)
Spalding, E. P.; Cosgrove, D. J.
1993-01-01
A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehmeyer, B.; Cashmore, A.R.; Schaefer, E.
Phytochrome and the blue ultraviolet-A photoreceptor control light-induced expression of genes encoding the chlorophyll a/b binding protein of photosystem II and photosystem I and the genes for the small subunit of the ribulose-1,5-bisphosphate carboxylase in etiolated seedlings of Lycopersicon esculentum (tomato) and Nicotiana tabacum (tobacco). A high irradiance response also controls the induction of these genes. Genes encoding photosystem II- and I-associated chlorophyll a/b binding proteins both exhibit a transient rapid increase in expression in response to light pulse or to continuous irradiation. In contrast, genes encoding the small subunit exhibit a continuous increase in expression in response to light.more » These distinct expression characteristics are shown to reflect differences at the level of transcription.« less
Johnson, Lowell B.; Niblett, C. L.; Shively, O. D.
1973-01-01
Treating etiolated cowpea (Vigna unguiculata) seedlings with 2,4-dichlorophenoxyacetic acid resulted in 2.5-, 3.9-, and 6.5-fold increases in DNA, soluble protein, and RNA, respectively, over untreated controls 84 hours after treatment. Aspartate transcarbamylase activity increased within 12 hours after treatment, and by 84 hours it was almost 12-fold greater than that in the untreated controls. During that time, activity in untreated controls dropped 60%. The assay used 14C-aspartate, which was then separated from the 14C-ureidosuccinate product by Dowex 50 (H+ form) column chromatography. Thin layer chromatography of the reaction product indicated that most of the carbamyl-phosphate-dependent radioactivity co-chromatographed with ureidosuccinate. The reaction has a pH optimum near 10.0 and is inhibited by uridine 5′-phosphate and succinate. The data suggest that aspartate transcarbamylase is important in pyrimidine biosynthesis in 2,4-dichlorophenoxyacetic acid-treated seedlings. PMID:16658322
Interaction of Light and Ethylene on Stem Gravitropism
NASA Technical Reports Server (NTRS)
Harrison, Marcia A.
1996-01-01
The major objective of this study was to evaluate light-regulated ethylene production during gravitropic bending in etiolated pea stems. Previous investigations indicated that ethylene production increases after gravistimulation and is associated with the later (counter-reactive) phase of bending. Additionally, changes in the counter-reaction and locus of curvature during gravitropism are greatly influenced by red light and ethylene production. Ethylene production may be regulated by the levels of available precursor (1-aminocyclopropane-l-carboxylic acid, ACC) via its synthesis, conjugation to malonyl-ACC or glutamyl-ACC, or oxidation to ethylene. The regulation of ethylene production by quantifying ACC and conjugated ACC levels in gravistimulated pea stemswas examined. Also measured was the changes in protein and enzyme activity associated with gravitropic curvature by electrophoretic and spectrophotometric techniques. An image analysis system was used to visualize and quantify enzymatic activity and transcriptional products in gravistimulated and red-light treated etiolated pea stem tissues.
Xu, Jiajia; Bräutigam, Andrea; Weber, Andreas P M; Zhu, Xin-Guang
2016-09-01
Identification of potential cis-regulatory motifs controlling the development of C4 photosynthesis is a major focus of current research. In this study, we used time-series RNA-seq data collected from etiolated maize and rice leaf tissues sampled during a de-etiolation process to systematically characterize the expression patterns of C4-related genes and to further identify potential cis elements in five different genomic regions (i.e. promoter, 5'UTR, 3'UTR, intron, and coding sequence) of C4 orthologous genes. The results demonstrate that although most of the C4 genes show similar expression patterns, a number of them, including chloroplast dicarboxylate transporter 1, aspartate aminotransferase, and triose phosphate transporter, show shifted expression patterns compared with their C3 counterparts. A number of conserved short DNA motifs between maize C4 genes and their rice orthologous genes were identified not only in the promoter, 5'UTR, 3'UTR, and coding sequences, but also in the introns of core C4 genes. We also identified cis-regulatory motifs that exist in maize C4 genes and also in genes showing similar expression patterns as maize C4 genes but that do not exist in rice C3 orthologs, suggesting a possible recruitment of pre-existing cis-elements from genes unrelated to C4 photosynthesis into C4 photosynthesis genes during C4 evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Liu, Yanmei; Bauer, Stefan
2016-01-01
Here we report that phosphorylation status of S211 and T212 of the CESA3 component of Arabidopsis (Arabidopsis thaliana) cellulose synthase impacts the regulation of anisotropic cell expansion as well as cellulose synthesis and deposition and microtubule-dependent bidirectional mobility of CESA complexes. Mutation of S211 to Ala caused a significant decrease in the length of etiolated hypocotyls and primary roots, while root hairs were not significantly affected. By contrast, the S211E mutation stunted the growth of root hairs, but primary roots were not significantly affected. Similarly, T212E caused a decrease in the length of root hairs but not root length. However, T212E stunted the growth of etiolated hypocotyls. Live-cell imaging of fluorescently labeled CESA showed that the rate of movement of CESA particles was directionally asymmetric in etiolated hypocotyls of S211A and T212E mutants, while similar bidirectional velocities were observed with the wild-type control and S211E and T212A mutant lines. Analysis of cell wall composition and the innermost layer of cell wall suggests a role for phosphorylation of CESA3 S211 and T212 in cellulose aggregation into fibrillar bundles. These results suggest that microtubule-guided bidirectional mobility of CESA complexes is fine-tuned by phosphorylation of CESA3 S211 and T212, which may, in turn, modulate cellulose synthesis and organization, resulting in or contributing to the observed defects of anisotropic cell expansion. PMID:26969722
Roberts, Joseph A; Ma, Bangya; Tredway, Lane P; Ritchie, David F; Kerns, James P
2018-01-01
Bacterial etiolation and decline has developed into a widespread issue with creeping bentgrass (CBG) (Agrostis stolonifera) putting green turf. The condition is characterized by an abnormal elongation of turfgrass stems and leaves that in rare cases progresses into a rapid and widespread necrosis and decline. Recent reports have cited bacteria, Acidovorax avenae and Xanthomonas translucens, as causal agents; however, few cases exist where either bacterium were isolated in conjunction with turf exhibiting bacterial disease symptoms. From 2010 to 2014, turfgrass from 62 locations submitted to the NC State Turf Diagnostic Clinic exhibiting bacterial etiolation and/or decline symptoms were sampled for the presence of bacterial pathogens. Isolated bacteria were identified using rRNA sequencing of the 16S subunit and internal transcribed spacer region (16S-23S or ITS). Results showed diverse bacteria isolated from symptomatic turf and A. avenae and X. translucens were only isolated in 26% of samples. Frequently isolated bacterial species were examined for pathogenicity to 4-week-old 'G2' CBG seedlings and 8-week-old 'A-1' CBG turfgrass stands in the greenhouse. While results confirmed pathogenicity of A. avenae and X. translucens, Pantoea ananatis was also shown to infect CBG turf; although pathogenicity varied among isolated strains. These results illustrate that multiple bacteria are associated with bacterial disease and shed new light on culturable bacteria living in CBG turfgrass putting greens. Future research to evaluate additional microorganisms (i.e., bacteria and fungi) could provide new information on host-microbe interactions and possibly develop ideas for management tactics to reduce turfgrass pests.
NASA Technical Reports Server (NTRS)
Reichler, S. A.; Balk, J.; Brown, M. E.; Woodruff, K.; Clark, G. B.; Roux, S. J.
2001-01-01
The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.
Distinct modes of adventitious rooting in Arabidopsis thaliana.
Correa, L da Rocha; Troleis, J; Mastroberti, A A; Mariath, J E A; Fett-Neto, A G
2012-01-01
The literature describes different rooting protocols for Arabidopsis thaliana as models to study adventitious rooting, and results are generally perceived as comparable. However, there is a lack of investigations focusing on the distinct features, advantages and limitations of each method in the study of adventitious rooting with both wild-type (WT) ecotypes and their respective mutants. This investigation was undertaken to evaluate the adventitious rooting process in three different experimental systems, all using A. thaliana, analysing the same rooting parameters after transient exposure to auxin (indole-3-acetic acid) and control conditions: excised leaves, de-rooted plants and etiolated seedlings. The founding tissues and sites of origin of roots differed depending on the system used, whereas all rooting patterns were of the direct type (i.e., without callus formation). None of the systems had an absolute requirement for exogenous auxin, although rooting was enhanced by this phytohormone, with the exception of de-rooted plants, which had adventitious rooting strongly inhibited by exogenous auxin. Root elongation was much favoured in isolated leaves. Auxin-overproducing mutants could not be used in the detached leaf system due to precocious senescence; in the de-rooted plant system, these mutants had a WT-like rooting response, whereas the expression of the 'rooty' phenotype was only evident in the etiolated seedling system. Adventitious rooting of etiolated WT seedlings in the presence of exogenous auxin was inhibited by exogenous flavonoids, which act as auxin transport inhibitors; surprisingly, the flavonoid-deficient mutant chs had a lower rooting response compared to WT. Although Arabidopsis is an excellent model system to study adventitious rooting, physiological and developmental responses differed significantly, underlining the importance of avoiding data generalisation on rooting responses derived from different experimental systems with this species. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Catalá, Carmen; Rose, Jocelyn K.C.; York, William S.; Albersheim, Peter; Darvill, Alan G.; Bennett, Alan B.
2001-01-01
The reorganization of the cellulose-xyloglucan matrix is proposed to serve as an important mechanism in the control of strength and extensibility of the plant primary cell wall. One of the key enzymes associated with xyloglucan metabolism is xyloglucan endotransglycosylase (XET), which catalyzes the endocleavage and religation of xyloglucan molecules. As with other plant species, XETs are encoded by a gene family in tomato (Lycopersicon esculentum cv T5). In a previous study, we demonstrated that the tomato XET gene LeEXT was abundantly expressed in the rapidly expanding region of the etiolated hypocotyl and was induced to higher levels by auxin. Here, we report the identification of a new tomato XET gene, LeXET2, that shows a different spatial expression and diametrically opposite pattern of auxin regulation from LeEXT. LeXET2 was expressed more abundantly in the mature nonelongating regions of the hypocotyl, and its mRNA abundance decreased dramatically following auxin treatment of etiolated hypocotyl segments. Analysis of the effect of several plant hormones on LeXET2 expression revealed that the inhibition of LeXET2 mRNA accumulation also occurred with cytokinin treatment. LeXET2 mRNA levels increased significantly in hypocotyl segments treated with gibberellin, but this increase could be prevented by adding auxin or cytokinin to the incubation media. Recombinant LeXET2 protein obtained by heterologous expression in Pichia pastoris exhibited greater XET activity against xyloglucan from tomato than that from three other species. The opposite patterns of expression and differential auxin regulation of LeXET2 and LeEXT suggest that they encode XETs with distinct roles during plant growth and development. PMID:11706197
Magnucka, Elżbieta G; Pietr, Stanisław J; Kozubek, Arkadiusz; Zarnowski, Robert
2014-11-01
The effect of three PSII-inhibiting herbicides, lenacil, linuron, and pyrazon, on the accumulation of 5-n-alkylresorcinols in rye seedlings (Secale cereale L.) grown under various light and thermal conditions was studied. All used chemicals increased resorcinolic lipid content in both green and etiolated plants grown at 29 °C. At 22 °C pyrazon and lenacil decreased the content of alkylresorcinols in plants kept in the darkness and increased their amount in the light-grown seedlings. In turn, level of resorcinolic lipids was decreased by linuron in both etiolated and green plants. At the lowest tested temperature lenacil enhanced production of alkylresorcinols only in etiolated rye seedlings, whereas the light-independent stimulatory action of pyrazon on alkylresorcinol accumulation in rye grown at 15 °C was observed. Additionally, only the latter did not exert a negative effect on rye seedling growth under any of tested conditions. Compared with respective controls, the herbicides used also markedly modified the qualitative pattern of resorcinolic homologs. Interestingly, the observed changes generally favored the enhanced antifungal activity of these compounds. Our study provides novel information on the influence of PSII inhibitors on alkylresorcinol metabolism in rye seedlings. The unquestionable achievement of this work is the observation that low dose of pyrazon mainly stimulated both growth and alkylresorcinol synthesis in rye seedlings, a non-target plant. Moreover, our experimental work showed unambiguously that the observed pyrazon-driven accumulation and homolog pattern modification of alkylresorcinols dramatically improved the resistance of winter rye to infections caused by Rhizoctonia cerealis. Copyright © 2014 Elsevier Inc. All rights reserved.
Apoplastic domains and sub-domains in the shoots of etiolated corn seedlings
NASA Technical Reports Server (NTRS)
Epel, B. L.; Bandurski, R. S.
1990-01-01
Light Green, an apoplastic probe, was applied to the cut mesocotyl base or to the cut coleoptile apex of etiolated seedlings of Zea mays L. cv. Silver Queen. Probe transport was measured and its tissue distribution determined. In the mesocotyl, there is an apoplastic barrier between cortex and stele. This barrier creates two apoplastic domains which are non-communicating. A kinetic barrier exists between the apoplast of the mesocotyl stele and that of the coleoptile. This kinetic barrier is not absolute and there is limited communication between the apoplasts of the two regions. This kinetic barrier effectively creates two sub-domains. In the coleoptile, there is communication between the apoplast of the vascular strands and that of the surrounding cortical tissue. No apoplastic communication was observed between the coleoptile cortex and the mesocotyl cortex. Thus, the apoplastic space of the coleoptile cortex is a sub-domain of the integrated coleoptile domain and is separate from that of the apoplastic domain of the mesocotyl cortex.
An Antidote for Science Anxiety.
ERIC Educational Resources Information Center
Beisel, Raymond W.
1991-01-01
Recounts an anecdote about a teacher's science anxiety resulting from the mysterious results of a plant growth experiment. Students found that bean plants grew taller in a dark closet because of etiolation. Points out that teachers need to deal with experimental results objectively and resist looking for "right" answers. (MDH)
Isocladosporin, a biologically active isomer of cladosporin from Cladosporium cladosporioides.
Jacyno, J M; Harwood, J S; Cutler, H G; Lee, M K
1993-08-01
Extraction of the fungus Cladosporium cladosporioides yielded the known isocoumarin, cladosporin [1], and a new compound. This metabolite, which inhibited the growth of etiolated wheat coleoptiles slightly more than did cladosporin, was characterized as a diastereoisomer of cladosporin at C-14 and was named isocladosporin [2].
Phytochrome A-specific signaling in Arabidopsis thaliana
Kircher, Stefan; Terecskei, Kata; Wolf, Iris; Sipos, Mark
2011-01-01
Among the five phytochromes in Arabidopsis thaliana, phytochrome A (phyA) plays a major role in seedling de-etiolation. Until now more then ten positive and some negative components acting downstream of phyA have been identified. However, their site of action and hierarchical relationships are not completely understood yet. PMID:22067110
Heyno, Eiri; Mary, Véronique; Schopfer, Peter; Krieger-Liszkay, Anja
2011-07-01
Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.
Le Lay, Pascaline; Böddi, Béla; Kovacevic, Dragan; Juneau, Philippe; Dewez, David; Popovic, Radovan
2001-01-01
Effects of water deficit on the chlorophyllide (Chlide) transformation pathway were studied in etiolated barley (Hordeum vulgare) leaves by analyzing absorption spectra and 77-K fluorescence spectra deconvoluted in components. Chlide transformations were examined in dehydrated leaves exposed to a 35-ms saturating flash triggering protochlorophyllide (Pchlide) and Chlide transformation processes. During the 90 min following the flash, we found that dehydration induced modifications of Chlide transformations, but no effect on Pchlide phototransformation into Chlide was observed. During this time, content of NADPH-Pchlide oxydoreductase in leaves did not change. Chlide transformation process in dehydrated leaves was characterized by the alteration of the Shibata shift process, by the appearance of a new Chlide species emitting at 692 nm, and by the favored formation of Chl(ide) A668F676. The formation of Chl(ide) A668F676, so-called “free Chlide,” was probably induced by disaggregation of highly aggregated Chlide complexes. Here, we offer evidence for the alteration of photoactive Pchlide regeneration process, which may be caused by the desiccation-induced inhibition of Pchlide synthesis. PMID:11553748
Studies on the longitudinal and lateral transport of IAA in the shoots of etiolated corn seedlings
NASA Technical Reports Server (NTRS)
Epel, B. L.; Warmbrodt, R. P.; Bandurski, R. S.
1992-01-01
The auxin, indole-3-acetic acid, and the symplastic probe, carboxyfluorescein diacetate, were applied to the cut mesocotyl base or coleoptile apex of etiolated Zea mays seedlings and their transport measured and tissue distribution determined. The longitudinal transport of indole-3-acetate was strongly basipolar, while that of carboxyfluorescein was essentially apolar. The longitudinal transport of IAA, like carboxyfluorescein, was mainly in the stele. IAA exhibited a much higher lateral mobility from stele to cortex than did carboxyfluorescein. Based on the calculation of moles probe/kg fw, IAA is 4 times more concentrated in the stele than in the cortex while CF is 24 times higher in concentration in the stele than in the cortex. The structure of the node and the mesocotyl regions just below the node, regions of maximum growth, were examined and plasmodesmatal structure and frequency in these regions determined. The plasmodesmatal frequency, about 3 per micrometer2, between all cell types of the mesocotyl was found to be about 5-8 fold higher than that found for the root. Hypotheses of lateral auxin transport are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, T.W.; Briggs, W.R.
1990-01-01
When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with {gamma}-({sup 32}P)ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of the reactionsmore » described. However, the fluence-response relationships for the change in detectable phosphorylation match quite closely those reported for phototropism but not those for growth inhibition. Blue light has also been found to regulate the capacity for in vitro phosphorylation of a second protein. It has an apparent molecular mass of 84 kilodaltons and is localized primarily in basal stem sections.« less
Shi, Hui; Shen, Xing; Liu, Renlu; Xue, Chang; Wei, Ning; Deng, Xing Wang; Zhong, Shangwei
2016-12-05
Plants germinating under subterranean darkness assume skotomorphogenesis, a developmental program strengthened by ethylene in response to mechanical pressure of soil. Upon reaching the surface, light triggers a dramatic developmental transition termed de-etiolation that requires immediate termination of ethylene responses. Here, we report that light activation of photoreceptor phyB results in rapid degradation of EIN3, the master transcription factor in the ethylene signaling pathway. As a result, light rapidly and efficiently represses ethylene actions. Specifically, phyB directly interacts with EIN3 in a light-dependent manner and also physically associates with F box protein EBFs. The light-activated association of phyB, EIN3, and EBF1/EBF2 proteins stimulates robust EIN3 degradation by SCF EBF1/EBF2 E3 ligases. We reveal that phyB manipulates substrate-E3 ligase interactions in a light-dependent manner, thus directly controlling the stability of EIN3. Our findings illustrate a mechanistic model of how plants transduce light information to immediately turn off ethylene signaling for de-etiolation initiation. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miyamoto, K.; Hoshino, T.; Hitotsubashi, R.; Yamashita, M.; Ueda, J.
In STS-95 space experiments, etiolated pea seedlings grown under microgravity conditions in space have shown to be automorphosis. Epicotyls were almost straight but the most oriented toward the direction far from their cotyledons with ca. 45 degrees from the vertical line as compared with that on earth. In order to know the mechanism of microgravity conditions in space to induce automorphosis, we introduced simulated microgravity conditions on a 3-dimensional clinostat, resulting in the successful induction of automorphosis-like growth and development. Kinetic studies revealed that epicotyls bent at their basal region or near cotyledonary node toward the direction far from the cotyledons with about 45 degrees in both seedlings grown on 1 g and under simulated microgravity conditions on the clinostat within 48 hrs after watering. Thereafter epicotyls grew keeping this orientation under simulated microgravity conditions on the clinostat, whereas those grown on 1 g changed the growth direction to vertical direction by negative gravitropic response. Automorphosis-like growth and development was induced by the application of auxin polar transport inhibitors (2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid, 9-hydroxyfluorene-9-carboxylic acid), but not an anti-auxin, p-chlorophenoxyisobutyric acid. Automorphosis-like epicotyl bending was also phenocopied by the application of inhibitors of stretch-activated channel, LaCl3 and GdCl3, and by the application of an inhibitor of protein kinase, cantharidin. These results suggest that automorphosis-like growth in epicotyls of etiolated pea seedlings is due to suppression of negative gravitropic responses on 1 g, and the growth and development of etiolated pea seedlings under 1 g conditions requires for normal activities of auxin polar transport and the gravisensing system relating to calcium channels. Possible mechanisms of perception and transduction of gravity signals to induce automorphosis are discussed.
USDA-ARS?s Scientific Manuscript database
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During these maturation processes, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organism...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Sukheung; Roberts, D.M.
1990-07-01
A specific calmodulin-N-methyltransferase was used in a radiometric assay to analyze the degree of methylation of lysine-115 in pea (Pisum sativum) plants. Calmodulin was isolated from dissected segments of developing roots of young etiolated and green pea plants and was tested for its ability to be methylated by incubation with the calmodulin methyltransferase in the presence of ({sup 3}H)methyl-S-adenosylmethionine. By this approach, the presence of unmethylated calmodulins were demonstrated in pea tissues, and the levels of methylation varied depending on the developmental state of the tissue tested. Calmodulin methylation levels were lower in apical root segments of both etiolated andmore » green plants, and in the young lateral roots compared with the mature, differentiated root tissues. The incorporation of methyl groups into these calmodulin samples appears to be specific for position 115 since site-directed mutants of calmodulin with substitutions at this position competitively inhibited methyl group incorporation. The present findings, combined with previous data showing differences in the ability of methylated and unmethylated calmodulins to activate pea NAD kinase raise the possibility that posttranslational methylation of calmodulin could be another mechanism for regulating calmodulin activity.« less
Ellard-Ivey, M; Hopkins, R B; White, T J; Lomax, T L
1999-01-01
We have isolated a full-length cDNA clone (CpCDPK1) encoding a calcium-dependent protein kinase (CDPK) gene from zucchini (Cucurbita pepo L.). The predicted amino acid sequence of the cDNA shows a remarkably high degree of similarity to members of the CDPK gene family from Arabidopsis thaliana, especially AtCPK1 and AtCPK2. Northern analysis of steady-state mRNA levels for CpCPK1 in etiolated and light-grown zucchini seedlings shows that the transcript is most abundant in etiolated hypocotyls and overall expression is suppressed by light. As described for other members of the CDPK gene family from different species, the CpCPK1 clone has a putative N-terminal myristoylation sequence. In this study, site-directed mutagenesis and an in vitro coupled transcription/translation system were used to demonstrate that the protein encoded by this cDNA is specifically myristoylated by a plant N-myristoyl transferase. This is the first demonstration of myristoylation of a CDPK protein which may contribute to the mechanism by which this protein is localized to the plasma membrane.
Clinorotation affects morphology and ethylene production in soybean seedlings
NASA Technical Reports Server (NTRS)
Hilaire, E.; Peterson, B. V.; Guikema, J. A.; Brown, C. S.; Sager, J. C. (Principal Investigator)
1996-01-01
The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20 degrees C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin transport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.
[Growth inhibition effect of immobilized pectinase on Microcystis aeruginosa].
Shen, Qing-Qing; Peng, Qian; Lai, Yong-Hong; Ji, Kai-Yan; Han, Xiu-Lin
2012-12-01
To confirm the growth inhibition effect of immobilized pectinase on algae, co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa. After co-cultivation, the damage status of the algae was observed through electron microscope, and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured. The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase. Under electron microscope, plasmolysis was found in the slightly damaged cells, and the cell surface of these cells was rough, uneven and irregular; the severely damaged cells were collapsed or disintegrated completely. The algal yield and the chlorophyll a content decreased significantly with the increase of the treating time. The measurement of the malondiadehyde (MDA) value showed that the antioxidation system of the treated algal cells was destroyed, and their membrane lipid was severely peroxidated. The study indicated that the immobilized pectinase could efficiently inhibit the growth of M. aeruginosa, and the inhibitory rate reached up to 96%.
Solymosi, Katalin; Bóka, Károly; Böddi, Béla
2006-08-01
An accompanying paper reports the accumulation of photoactive protochlorophyllide (Pchlide) in the innermost leaf primordia of buds of many tree species. In this paper, we describe plastid differentiation, changes in pigment concentrations and spectral properties of bud scales and leaf primordia of horse chestnut (Aesculus hippocastanum L.) from January until the end of bud break in April. The bud scales contained plastids with grana, stroma thylakoids characteristic of chloroplasts and large dense bodies within the stroma. In January, proplastids and young chloroplasts were present in the leaf primordia, and the fluorescence spectra of the primordia were similar to those of green leaves except for a minor band at 630 nm, indicative of a protochlorophyll(ide). During bud break, the pigment concentrations of the green bud scales and the outermost leaf primordia increased, and Pchlide forms with emission maxima at 633, 644 and 655 nm accumulated in the middle and innermost leaf primordia. Depending on the position of the leaf primordia within the bud, their plastids and their pigment concentrations varied. Etio-chloroplasts with prolamellar bodies (PLBs) and prothylakoids with developing grana were observed in the innermost leaves. Besides the above-mentioned Pchlide forms, the middle and innnermost leaf primordia contained only a Chl band with an emission maximum at 686 nm. The outermost leaf primordia contained etio-chloroplasts with well-developed grana and small, narrow-type PLBs. These outermost leaves contained only chlorophyll forms like the mature green leaves. No Pchlide accumulation was observed after bud break, indicating that etiolation of the innermost and middle leaves is transient. The Pchlide forms and the plastid types of the primordia in buds grown in nature were similar to those of leaves of dark-germinated seedlings and to those of the leaf primordia of dark-forced buds. We conclude that transient etiolation occurs under natural conditions. The formation of PLBs and etio-chloroplasts and the accumulation of the light-dependent NADPH:protochlorophyllide oxidoreductase are involved in the natural greening process and ontogenesis of young leaf primordia of horse chestnut buds.
Small heat shock protein message in etiolated Pea seedlings under altered gravity
NASA Astrophysics Data System (ADS)
Talalaiev, O.
Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion
Kagawa, Takatoshi; Kimura, Mitsuhiro; Wada, Masamitsu
2009-10-01
Phototropin family photoreceptors, phot1 and phot2, in Arabidopsis thaliana control the blue light (BL)-mediated phototropic responses of the hypocotyl, chloroplast relocation movement and stomatal opening. Phototropic responses in dark-grown tissues have been well studied but those in de-etiolated green plants are not well understood. Here, we analyzed phototropic responses of inflorescence stems and petioles of wild-type and phototropin mutant plants of A. thaliana. Similar to the results obtained from dark-grown seedlings, inflorescence stems and petioles in wild-type and phot2 mutant plants showed phototropic bending towards low fluence BL, while in phot1 mutant plants, a high fluence rate of BL was required. phot1 phot2 double mutant plants did not show any phototropic responses even under very high fluence rates of BL. We further studied the photoreceptive sites for phototropic responses of stems and petioles by partial tissue irradiation. The whole part of the inflorescence stem is sensitive to BL and shows phototropism, but in the petiole only the irradiated abaxial side is sensitive. Similar to dark-grown etiolated seedlings, phot1 plays a major role in phototropic responses under weak light, but phot2 functions under high fluence rate conditions in green plants.
Xiong, Qing; Ma, Biao; Lu, Xiang; Huang, Yi-Hua; He, Si-Jie; Yang, Chao; Yin, Cui-Cui; Zhou, Yang; Wang, Wen-Sheng; Li, Zhi-Kang; Chen, Shou-Yi
2017-01-01
Elongation of the mesocotyl and coleoptile facilitates the emergence of rice (Oryza sativa) seedlings from soil and is affected by various genetic and environment factors. The regulatory mechanism underlying this process remains largely unclear. Here, we examined the regulation of mesocotyl and coleoptile growth by characterizing a gaoyao1 (gy1) mutant that exhibits a longer mesocotyl and longer coleoptile than its original variety of rice. GY1 was identified through map-based cloning and encodes a PLA1-type phospholipase that localizes in chloroplasts. GY1 functions at the initial step of jasmonic acid (JA) biosynthesis to repress mesocotyl and coleoptile elongation in etiolated rice seedlings. Ethylene inhibits the expression of GY1 and other genes in the JA biosynthesis pathway to reduce JA levels and enhance mesocotyl and coleoptile growth by promoting cell elongation. Genetically, GY1 acts downstream of the OsEIN2-mediated ethylene signaling pathway to regulate mesocotyl/coleoptile growth. Through analysis of the resequencing data from 3000 rice accessions, we identified a single natural variation of the GY1 gene, GY1376T, which contributes to mesocotyl elongation in rice varieties. Our study reveals novel insights into the regulatory mechanism of mesocotyl/coleoptile elongation and should have practical applications in rice breeding programs. PMID:28465411
In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings
Evers, Maurits; Alleaume, Anne-Marie; Horos, Rastislav
2016-01-01
RNA binding proteins (RBPs) control the fate and expression of a transcriptome. Despite this fundamental importance, our understanding of plant RBPs is rudimentary, being mainly derived via bioinformatic extrapolation from other kingdoms. Here, we adapted the mRNA-protein interactome capture method to investigate the RNA binding proteome in planta. From Arabidopsis thaliana etiolated seedlings, we captured more than 700 proteins, including 300 with high confidence that we have defined as the At-RBP set. Approximately 75% of these At-RBPs are bioinformatically linked with RNA biology, containing a diversity of canonical RNA binding domains (RBDs). As no prior experimental RNA binding evidence exists for the majority of these proteins, their capture now authenticates them as RBPs. Moreover, we identified protein families harboring emerging and potentially novel RBDs, including WHIRLY, LIM, ALBA, DUF1296, and YTH domain-containing proteins, the latter being homologous to animal RNA methylation readers. Other At-RBP set proteins include major signaling proteins, cytoskeleton-associated proteins, membrane transporters, and enzymes, suggesting the scope and function of RNA-protein interactions within a plant cell is much broader than previously appreciated. Therefore, our foundation data set has provided an unbiased insight into the RNA binding proteome of plants, on which future investigations into plant RBPs can be based. PMID:27729395
Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana.
Junker, Astrid; Mönke, Gudrun; Rutten, Twan; Keilwagen, Jens; Seifert, Michael; Thi, Tuyet Minh Nguyen; Renou, Jean-Pierre; Balzergue, Sandrine; Viehöver, Prisca; Hähnel, Urs; Ludwig-Müller, Jutta; Altschmied, Lothar; Conrad, Udo; Weisshaar, Bernd; Bäumlein, Helmut
2012-08-01
The transcription factor LEAFY COTYLEDON1 (LEC1) controls aspects of early embryogenesis and seed maturation in Arabidopsis thaliana. To identify components of the LEC1 regulon, transgenic plants were derived in which LEC1 expression was inducible by dexamethasone treatment. The cotyledon-like leaves and swollen root tips developed by these plants contained seed-storage compounds and resemble the phenotypes produced by increased auxin levels. In agreement with this, LEC1 was found to mediate up-regulation of the auxin synthesis gene YUCCA10. Auxin accumulated primarily in the elongation zone at the root-hypocotyl junction (collet). This accumulation correlates with hypocotyl growth, which is either inhibited in LEC1-induced embryonic seedlings or stimulated in the LEC1-induced long-hypocotyl phenotype, therefore resembling etiolated seedlings. Chromatin immunoprecipitation analysis revealed a number of phytohormone- and elongation-related genes among the putative LEC1 target genes. LEC1 appears to be an integrator of various regulatory events, involving the transcription factor itself as well as light and hormone signalling, especially during somatic and early zygotic embryogenesis. Furthermore, the data suggest non-embryonic functions for LEC1 during post-germinative etiolation. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls
NASA Technical Reports Server (NTRS)
Spalding, E. P.; Cosgrove, D. J.
1992-01-01
A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.
Cheminant, Soizic; Wild, Michael; Bouvier, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Erhardt, Mathieu; Hayes, Scott; Terry, Matthew J.; Genschik, Pascal; Achard, Patrick
2011-01-01
In plants, light represents an important environmental signal that triggers the production of photosynthetically active chloroplasts. This developmental switch is critical for plant survival because chlorophyll precursors that accumulate in darkness can be extremely destructive when illuminated. Thus, plants have evolved mechanisms to adaptively control plastid development during the transition into light. Here, we report that the gibberellin (GA)-regulated DELLA proteins play a crucial role in the formation of functional chloroplasts during deetiolation. We show that Arabidopsis thaliana DELLAs accumulating in etiolated cotyledons derepress chlorophyll and carotenoid biosynthetic pathways in the dark by repressing the transcriptional activity of the phytochrome-interacting factor proteins. Accordingly, dark-grown GA-deficient ga1-3 mutants (that accumulate DELLAs) display a similar gene expression pattern to wild-type seedlings grown in the light. Consistent with this, ga1-3 seedlings accumulate higher amounts of protochlorophyllide (a phototoxic chlorophyll precursor) in darkness but, surprisingly, are substantially more resistant to photooxidative damage following transfer into light. This is due to the DELLA-dependent upregulation of the photoprotective enzyme protochlorophyllide oxidoreductase (POR) in the dark. Our results emphasize the role of DELLAs in regulating the levels of POR, protochlorophyllide, and carotenoids in the dark and in protecting etiolated seedlings against photooxidative damage during initial light exposure. PMID:21571951
NASA Technical Reports Server (NTRS)
Reymond, P.; Short, T. W.; Briggs, W. R.; Poff, K. L.
1992-01-01
Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.
Hypocotyl Directional Growth in Arabidopsis: A Complex Trait1[W][OA
Gupta, Aditi; Singh, Manjul; Jones, Alan M.; Laxmi, Ashverya
2012-01-01
The growth direction of the Arabidopsis (Arabidopsis thaliana) etiolated-seedling hypocotyl is a complex trait that is controlled by extrinsic signals such as gravity and touch as well as intrinsic signals such as hormones (brassinosteroid [BR], auxin, cytokinin, ethylene) and nutrient status (glucose [Glc], sucrose). We used a genetic approach to identify the signaling elements and their relationship underlying hypocotyl growth direction. BR randomizes etiolated-seedling growth by inhibiting negative gravitropism of the hypocotyls via modulating auxin homeostasis for which we designate as reset, not to be confused with the gravity set point angle. Cytokinin signaling antagonizes this BR reset of gravity sensing and/or tropism by affecting ethylene biosynthesis/signaling. Glc also antagonizes BR reset but acts independently of cytokinin and ethylene signaling pathways via inhibiting BR-regulated gene expression quantitatively and spatially, by altering protein degradation, and by antagonizing BR-induced changes in microtubule organization and cell patterning associated with hypocotyl agravitropism. This BR reset is reduced in the presence of the microtubule organization inhibitor oryzalin, suggesting a central role for cytoskeleton reorganization. A unifying and hierarchical model of Glc and hormone signaling interplay is proposed. The biological significance of BR-mediated changes in hypocotyl graviresponse lies in the fact that BR signaling sensitizes the dark-grown seedling hypocotyl to the presence of obstacles, overriding gravitropism, to enable efficient circumnavigation through soil. PMID:22689891
Quan, Sheng; Yang, Pingfang; Cassin-Ross, Gaëlle; Kaur, Navneet; Switzenberg, Robert; Aung, Kyaw; Li, Jiying; Hu, Jianping
2013-01-01
Plant peroxisomes are highly dynamic organelles that mediate a suite of metabolic processes crucial to development. Peroxisomes in seeds/dark-grown seedlings and in photosynthetic tissues constitute two major subtypes of plant peroxisomes, which had been postulated to contain distinct primary biochemical properties. Multiple in-depth proteomic analyses had been performed on leaf peroxisomes, yet the major makeup of peroxisomes in seeds or dark-grown seedlings remained unclear. To compare the metabolic pathways of the two dominant plant peroxisomal subtypes and discover new peroxisomal proteins that function specifically during seed germination, we performed proteomic analysis of peroxisomes from etiolated Arabidopsis (Arabidopsis thaliana) seedlings. The detection of 77 peroxisomal proteins allowed us to perform comparative analysis with the peroxisomal proteome of green leaves, which revealed a large overlap between these two primary peroxisomal variants. Subcellular targeting analysis by fluorescence microscopy validated around 10 new peroxisomal proteins in Arabidopsis. Mutant analysis suggested the role of the cysteine protease RESPONSE TO DROUGHT21A-LIKE1 in β-oxidation, seed germination, and growth. This work provides a much-needed road map of a major type of plant peroxisome and has established a basis for future investigations of peroxisomal proteolytic processes to understand their roles in development and in plant interaction with the environment. PMID:24130194
Haga, Ken; Sakai, Tatsuya
2013-01-01
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.
Haga, Ken; Sakai, Tatsuya
2013-01-01
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium. PMID:23104115
Fellner, M; Zhang, R; Pharis, R P; Sawhney, V K
2001-04-01
A recessive single gene mutant, 7B-1, in tomato was originally selected for its photoperiod-dependent male sterility. The 7B-1 mutant also has some pleiotropic effects including reduced light-induced inhibition, i.e. de-etiolation, of the hypocotyl in long days (LD), increased seed size and weight, and reduced transpiration rate. These traits led us to investigate the sensitivity of 7B-1 to exogenous hormones and the interaction of these responses with daylength. In LD, but not in short days (SD), 7B-1 was more sensitive than wild-type (WT) to exogenous abscisic acid (ABA) for inhibition of seed germination, root elongation and transpiration rate. 7B-1 mutant also exhibited reduced responses to exogenous gibberellin (GA(3)) for hypocotyl elongation, and to inhibitors of GA biosynthesis for seed germination and root and hypocotyl elongation. 7B-1 hypocotyls contained a higher level of endogenous ABA than WT in both photoperiods, although ABA levels were higher in LD than in SD. In contrast, growth-active GAs, i.e. GA(1), GA(3) and GA(4), and IAA were low in the mutant hypocotyls. The 7B-1 mutant appears to be an ABA-overproducer, and the photoperiod-regulated ABA levels may be responsible for the hypersensitivity of the mutant to exogenous ABA.
Enfissi, Eugenia M.A.; Barneche, Fredy; Ahmed, Ikhlak; Lichtlé, Christiane; Gerrish, Christopher; McQuinn, Ryan P.; Giovannoni, James J.; Lopez-Juez, Enrique; Bowler, Chris; Bramley, Peter M.; Fraser, Paul D.
2010-01-01
Fruit-specific downregulation of the DE-ETIOLATED1 (DET1) gene product results in tomato fruits (Solanum lycopersicum) containing enhanced nutritional antioxidants, with no detrimental effects on yield. In an attempt to further our understanding of how modulation of this gene leads to improved quality traits, detailed targeted and multilevel omic characterization has been performed. Metabolite profiling revealed quantitative increases in carotenoid, tocopherol, phenylpropanoids, flavonoids, and anthocyanidins. Qualitative differences could also be identified within the phenolics, including unique formation in fruit pericarp tissues. These changes resulted in increased total antioxidant content both in the polar and nonpolar fractions. Increased transcription of key biosynthetic genes is a likely mechanism producing elevated phenolic-based metabolites. By contrast, high levels of isoprenoids do not appear to result from transcriptional regulation but are more likely related to plastid-based parameters, such as increased plastid volume per cell. Parallel metabolomic and transcriptomic analyses reveal the widespread effects of DET1 downregulation on diverse sectors of metabolism and sites of synthesis. Correlation analysis of transcripts and metabolites independently indicated strong coresponses within and between related pathways/processes. Interestingly, despite the fact that secondary metabolites were the most severely affected in ripe tomato fruit, our integrative analyses suggest that the coordinated activation of core metabolic processes in cell types amenable to plastid biogenesis is the main effect of DET1 loss of function. PMID:20435899
Light signaling controls nuclear architecture reorganization during seedling establishment
Bourbousse, Clara; Mestiri, Imen; Zabulon, Gerald; Bourge, Mickaël; Formiggini, Fabio; Koini, Maria A.; Brown, Spencer C.; Fransz, Paul; Bowler, Chris; Barneche, Fredy
2015-01-01
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. PMID:25964332
Hypocotyl directional growth in Arabidopsis: a complex trait.
Gupta, Aditi; Singh, Manjul; Jones, Alan M; Laxmi, Ashverya
2012-08-01
The growth direction of the Arabidopsis (Arabidopsis thaliana) etiolated-seedling hypocotyl is a complex trait that is controlled by extrinsic signals such as gravity and touch as well as intrinsic signals such as hormones (brassinosteroid [BR], auxin, cytokinin, ethylene) and nutrient status (glucose [Glc], sucrose). We used a genetic approach to identify the signaling elements and their relationship underlying hypocotyl growth direction. BR randomizes etiolated-seedling growth by inhibiting negative gravitropism of the hypocotyls via modulating auxin homeostasis for which we designate as reset, not to be confused with the gravity set point angle. Cytokinin signaling antagonizes this BR reset of gravity sensing and/or tropism by affecting ethylene biosynthesis/signaling. Glc also antagonizes BR reset but acts independently of cytokinin and ethylene signaling pathways via inhibiting BR-regulated gene expression quantitatively and spatially, by altering protein degradation, and by antagonizing BR-induced changes in microtubule organization and cell patterning associated with hypocotyl agravitropism. This BR reset is reduced in the presence of the microtubule organization inhibitor oryzalin, suggesting a central role for cytoskeleton reorganization. A unifying and hierarchical model of Glc and hormone signaling interplay is proposed. The biological significance of BR-mediated changes in hypocotyl graviresponse lies in the fact that BR signaling sensitizes the dark-grown seedling hypocotyl to the presence of obstacles, overriding gravitropism, to enable efficient circumnavigation through soil.
Sentandreu, Maria; Martín, Guiomar; González-Schain, Nahuel; Leivar, Pablo; Soy, Judit; Tepperman, James M.; Quail, Peter H.; Monte, Elena
2011-01-01
The phytochrome (phy)-interacting basic helix-loop-helix transcription factors (PIFs) constitutively sustain the etiolated state of dark-germinated seedlings by actively repressing deetiolation in darkness. This action is rapidly reversed upon light exposure by phy-induced proteolytic degradation of the PIFs. Here, we combined a microarray-based approach with a functional profiling strategy and identified four PIF3-regulated genes misexpressed in the dark (MIDAs) that are novel regulators of seedling deetiolation. We provide evidence that each one of these four MIDA genes regulates a specific facet of etiolation (hook maintenance, cotyledon appression, or hypocotyl elongation), indicating that there is branching in the signaling that PIF3 relays. Furthermore, combining inferred MIDA gene function from mutant analyses with their expression profiles in response to light-induced degradation of PIF3 provides evidence consistent with a model where the action of the PIF3/MIDA regulatory network enables an initial fast response to the light and subsequently prevents an overresponse to the initial light trigger, thus optimizing the seedling deetiolation process. Collectively, the data suggest that at least part of the phy/PIF system acts through these four MIDAs to initiate and optimize seedling deetiolation, and that this mechanism might allow the implementation of spatial (i.e., organ-specific) and temporal responses during the photomorphogenic program. PMID:22108407
Hu, Yuming; Depaepe, Thomas; Smet, Dajo; Hoyerova, Klara; Klíma, Petr; Cuypers, Ann; Cutler, Sean; Buyst, Dieter; Morreel, Kris; Boerjan, Wout; Martins, José; Petrášek, Jan; Vandenbussche, Filip; Van Der Straeten, Dominique
2017-07-10
The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Technical Reports Server (NTRS)
Henry, R. L.; Armbrust, T.; Gallegos, G.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)
1992-01-01
The structure and supramolecular assembly of the soybean photosystem 1 (PS 1) chlorophyll a/b-binding antenna (LHC 1) was examined. We identified the subunit composition of LHC 1 in soybean and followed the accumulation of individual subunits during light-induced assembly. We observed four LHC 1 subunits, at 23, 22, 21 and 20.5 kDa, obtained partial sequence information by amino-terminal sequence analysis, and classified the 20.5, 22, and 21 kDa subunits as being encoded by type I, II, and IV chlorophyll a/b binding protein genes, respectively. Antisera against LHC 1 subunits were used to follow the accumulation of individual subunits during the light-initiated transition from etioplast to chloroplast. Several points are noteworthy. First, monospecific antibody against the 22 kDa subunit decorated a 25 kDa peptide in etiolated tissue, which declined during maturation. This decline correlated with the light-induced appearance of mature 22 kDa peptide, suggesting a precursor/product relationship. Second, the same antibody identified a 22 kDa protein in mature corn, but not a larger band in etiolated corn, suggesting that LHC 1 accumulation is regulated differently between species before the onset of chlorophyll biosynthesis. Third, the mature 22 kDa subunit appeared somewhat later than the other LHC 1 peptides during greening, implying that this subunit is less intimately associated with the PS1 core than are the subunits appearing earlier in development.
Light-Induced Nuclear Synthesis of Spinach Chloroplast Fructose-1,6-bisphosphatase 1
Chueca, Ana; Lázaro, Juan José; Gorgé, Julio López
1984-01-01
Etiolated spinach (Spinacia oleracea L. var Winter Giant) seedlings show a residual photosynthetic fructose-1,6-bisphosphatase activity, which sharply rises under illumination. This increase in activity is due to a light-induced de novo synthesis, as it has been demonstrated by enzyme labeling experiments with 2H2O and [35S]methionine. The rise of bisphosphatase activity under illumination is strongly inhibited by cycloheximide, but not by the 70S ribosome inhibitor lincocin, which shows the nuclear origin of this chloroplastic enzyme. Images Fig. 3 PMID:16663662
The activity of superoxide dismutases (SODs) at the early stages of wheat deetiolation
Zimak-Piekarczyk, Paulina; Ślesak, Ireneusz
2018-01-01
Unbound tetrapyrroles, i.e. protochlorophyllide (Pchlide), chlorophyllide and chlorophylls, bring the risk of reactive oxygen species (ROS) being generated in the initial stages of angiosperm deetiolation due to inefficient usage of the excitation energy for photosynthetic photochemistry. We analyzed the activity of superoxide dismutases (SODs) in etiolated wheat (Triticum aestivum) leaves and at the beginning of their deetiolation. Mn-SOD and three isoforms of Cu/Zn-SODs were identified both in etiolated and greening leaves of T. aestivum. Two Cu/Zn-SODs, denoted as II and III, were found in plastids. The activity of plastidic Cu/Zn-SOD isoforms as well as that of Mn-SOD correlated with cell aging along a monocot leaf, being the highest at leaf tips. Moreover, a high Pchlide content at leaf tips was observed. No correlation between SOD activity and the accumulation of photoactive Pchlide, i.e. Pchlide bound into ternary Pchlide:Pchlide oxidoreductase:NADPH complexes was found. Cu/Zn-SOD I showed the highest activity at the leaf base. A flash of light induced photoreduction of the photoactive Pchlide to chlorophyllide as well as an increase in all the SODs activity which occurred in a minute time-scale. In the case of seedlings that were deetiolated under continuous light of moderate intensity (100 μmol photons m-2 s-1), only some fluctuations in plastidic Cu/Zn-SODs and Mn-SOD within the first four hours of greening were noticed. The activity of SODs is discussed with respect to the assembly of tetrapyrroles within pigment-protein complexes, monitored by fluorescence spectroscopy at 77 K. PMID:29558520
NASA Technical Reports Server (NTRS)
Kuhn, H.; Galston, A. W.
1992-01-01
Etiolated pea seedlings require transformation of Pr phytochrome to Pfr before they display optimal phototropic response to unilateral blue light. This study investigates the possible role of auxin transport in explaining these phenomena. Labeled [2-14C]IAA applied to the intact terminal buds of dark-grown and red light-treated pea seedlings was measured 210 min later on the shaded and illuminated sides of the epicotyl as a function of direction and duration of irradiation with blue light. Totally darkened epicotyls show an asymmetry in distribution of radioactivity in the upper growth zone of the epicotyl, in favor of the side under the concave part of the apical hook. Red light, which greatly potentiates curvature toward subsequent unilateral blue light, lowers this asymmetry. Blue light directed to the epicotyl of red-pretreated plants in a plane parallel to the hook and from the side bearing the convex portion of the hook induces positive phototropic curvature as well as a surplus of radioactivity on the illuminated side of the upper epicotyl and on the shaded side of the lower growth zone of the epicotyl. Light directed to the side bearing the concave part of the hook also causes an accumulation of counts in the upper part of the lighted side but produces neither curvature of the epicotyl nor accumulation of counts in the lower shaded side. Because of this built-in physiological asymmetry in the growth zone just below the apical hook, it is difficult to explain the effects of red and blue light on curvature in terms of patterns of auxin distribution alone.
NASA Technical Reports Server (NTRS)
Hsieh, H. L.; Tong, C. G.; Thomas, C.; Roux, S. J.
1996-01-01
A CDNA encoding a 47 kDa nucleoside triphosphatase (NTPase) that is associated with the chromatin of pea nuclei has been cloned and sequenced. The translated sequence of the cDNA includes several domains predicted by known biochemical properties of the enzyme, including five motifs characteristic of the ATP-binding domain of many proteins, several potential casein kinase II phosphorylation sites, a helix-turn-helix region characteristic of DNA-binding proteins, and a potential calmodulin-binding domain. The deduced primary structure also includes an N-terminal sequence that is a predicted signal peptide and an internal sequence that could serve as a bipartite-type nuclear localization signal. Both in situ immunocytochemistry of pea plumules and immunoblots of purified cell fractions indicate that most of the immunodetectable NTPase is within the nucleus, a compartment proteins typically reach through nuclear pores rather than through the endoplasmic reticulum pathway. The translated sequence has some similarity to that of human lamin C, but not high enough to account for the earlier observation that IgG against human lamin C binds to the NTPase in immunoblots. Northern blot analysis shows that the NTPase MRNA is strongly expressed in etiolated plumules, but only poorly or not at all in the leaf and stem tissues of light-grown plants. Accumulation of NTPase mRNA in etiolated seedlings is stimulated by brief treatments with both red and far-red light, as is characteristic of very low-fluence phytochrome responses. Southern blotting with pea genomic DNA indicates the NTPase is likely to be encoded by a single gene.
Manova, Vasilissa; Georgieva, Ralitsa; Borisov, Borislav; Stoilov, Lubomir
2016-10-01
Barley stress response to ultraviolet radiation (UV) has been intensively studied at both the physiological and morphological level. However, the ability of barley genome to repair UV-induced lesions at the DNA level is far less characterized. In this study, we have investigated the relative contribution of light-dependent and dark DNA repair pathways for the efficient elimination of cyclobutane pyrimidine dimers (CPDs) from the genomic DNA of barley leaf seedlings. The transcriptional activity of barley CPD photolyase gene in respect to the light-growth conditions and UV-C irradiation of the plants has also been analyzed. Our results show that CPDs induced in the primary barley leaf at frequencies potentially damaging DNA at the single-gene level are removed efficiently and exclusively by photorepair pathway, whereas dark repair is hardly detectable, even at higher CPD frequency. A decrease of initially induced CPDs under dark is observed but only after prolonged incubation, suggesting the activation of light-independent DNA damage repair and/or tolerance mechanisms. The green barley seedlings possess greater capacity for CPD photorepair than the etiolated ones, with efficiency of CPD removal dependent on the intensity and quality of recovering light. The higher repair rate of CPDs measured in the green leaves correlates with the higher transcriptional activity of barley CPD photolyase gene. Visible light and UV-C radiation affect differentially the expression of CPD photolyase gene particularly in the etiolated leaves. We propose that the CPD repair potential of barley young seedlings may influence their response to UV-stress. © 2016 Scandinavian Plant Physiology Society.
Kuhn, H; Galston, A W
1992-01-01
Etiolated pea seedlings require transformation of Pr phytochrome to Pfr before they display optimal phototropic response to unilateral blue light. This study investigates the possible role of auxin transport in explaining these phenomena. Labeled [2-14C]IAA applied to the intact terminal buds of dark-grown and red light-treated pea seedlings was measured 210 min later on the shaded and illuminated sides of the epicotyl as a function of direction and duration of irradiation with blue light. Totally darkened epicotyls show an asymmetry in distribution of radioactivity in the upper growth zone of the epicotyl, in favor of the side under the concave part of the apical hook. Red light, which greatly potentiates curvature toward subsequent unilateral blue light, lowers this asymmetry. Blue light directed to the epicotyl of red-pretreated plants in a plane parallel to the hook and from the side bearing the convex portion of the hook induces positive phototropic curvature as well as a surplus of radioactivity on the illuminated side of the upper epicotyl and on the shaded side of the lower growth zone of the epicotyl. Light directed to the side bearing the concave part of the hook also causes an accumulation of counts in the upper part of the lighted side but produces neither curvature of the epicotyl nor accumulation of counts in the lower shaded side. Because of this built-in physiological asymmetry in the growth zone just below the apical hook, it is difficult to explain the effects of red and blue light on curvature in terms of patterns of auxin distribution alone.
Pea Chaperones under Centrifugation
NASA Astrophysics Data System (ADS)
Talalaiev, Oleksandr
2008-06-01
Etiolated Pisum sativum seedlings were subjected to altered g-forces by centrifugation (3-14g). By using semiquantitative RT-PCR, we studied transcripts of pea genes coding for chaperones that are representatives of small heat shock proteins (sHsps) family. Four members from the different classes of sHsps: cytosolic Hsp17.7 and Hsp18.1 (class I and class II accordingly), chloroplast Hsp21 (class III) and endoplasmic reticulum Hsp22.7 (class IV) were investigated. We conclude that exposure to 3, 7, 10 and 14g for 1h did not affect the level of sHsp transcripts.
Interaction of light and gravitropism with nutation of hypocotyls of Arabidopsis thaliana seedlings
NASA Technical Reports Server (NTRS)
Orbovic, V.; Poff, K. L.
1997-01-01
Etiolated seedlings of Arabidopsis thaliana nutated under conditions of physiological darkness while about ten percent of monitored individuals exhibited regular elliptical nutation, circumnutation. Pre-irradiation with red light prevented occurrence of circumnutation without having an effect on the average rate of the nutational movement. Phototropic response of seedlings to unilateral blue light appeared to be superimposed over nutation. Throughout gravitropism, some seedlings continued to exhibit nutation suggesting that these two processes are independently controlled. Based on these results, we suggest that nutation in Arabidopsis probably is not controlled by the mechanism predicted by the theory of gravitropic overshoots.
Allelopathic potential of Rapanea umbellata leaf extracts.
Novaes, Paula; Imatomi, Maristela; Varela, Rosa M; Molinillo, José M G; Lacret, Rodney; Gualtieri, Sonia C J; Macías, Francisco A
2013-08-01
The stressful conditions associated with the Brazilian savanna (Cerrado) environment were supposed to favor higher levels of allelochemicals in Rapanea umbellata from this ecosystem. The allelopathic potential of R. umbellata leaf extracts was studied using the etiolated wheat coleoptile and standard phytotoxicity bioassays. The most active extract was selected to perform a bioassay-guided isolation, which allowed identifying lutein (1) and (-)-catechin (2) as potential allelochemicals. Finally, the general bioactivity of the two compounds was studied, which indicated that the presence of 1 might be part of the defense mechanisms of this plant. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camirand, A.; Brummell, D.; MacLachlan, G.
1987-07-01
Microsomal membranes from elongating regions of etiolated Pisum sativum stems were separated by rate-zonal centrifugation on Renografin gradients. The transfer of labeled fucose and xylose from GDP-(/sup 14/C) fucose and UDP-(/sup 14/C)xylose to xyloglucan occurred mainly in dictyosome-enriched fractions. No transferase activity was detected in secretory vesicle fractions. Pulse-chase experiments using pea stem slices incubated with (/sup 3/H)fucose suggest that xyloglucan chains are fucosylated and their structure completed within the dictyosomes, before being transported to the cell wall by secretory vesicles.
Orr, Gregory L.; Hess, F. Dana
1982-01-01
Cucumber (Cucumis sativus L.) cotyledons were sensitive to the diphenyl ether herbicide acifluorfen-methyl (AFM); methyl 5-[2-chloro-4-(trifluoro-methyl)phenoxyl-2-nitrobenzoate. Injury was detected by monitoring the efflux of 86Rb+ from treated tissues after exposure to light (600 micro einsteins per meter2 per second; photosynthetically active radiation). AFM exhibited activity in green and etiolated tissues in the presence of both 1 micromolar 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 1 micromolar 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), inhibitors of photosynthetic electron transport. Protection against injury could be obtained by pretreating the seedlings with a carotenoid biosynthesis inhibitor, 10 micromolar fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4 (H)-pyridinone}. After a 4-hour dark pretreatment with 1 and 10 micromolar AFM, cotyledons were exposed to light (600 micro einsteins per meter2 per second; photosynthetically active radiation). Within 1 to 2 hours after light treatment, significant increases in the level of thiobarbituric acid-reacting materials could be detected. Electron microscopic observations of treated tissues revealed significant structural damage to the chloroplast envelope, tonoplast, and plasma membrane. Etiolated cucumber cotyledons treated with 1 micromolar AFM and exposed to light were less susceptible to injury when maintained in an O2-deficient atmosphere. Protection against injury could be obtained with 50 micromolar α-tocopherol. These results suggest AFM is activated in light by yellow plant pigments and then is involved in the initiation of a free radical chain reaction with polyunsaturated fatty acid moieties of phospholipid molecules making up cellular membranes. The perturbations that follow result in a loss of the membrane's selective permeability characteristics, thereby leading to cellular death. Images PMID:16662237
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migliaccio, F.; Galston, A.W.
1987-10-01
Seven day old etiolated pea epicotyls were loaded symmetrically with /sup 3/H-indole 3-acetic acid (IAA) or /sup 45/Ca/sup 2 +/, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca/sup 2 +/ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca/sup 2 +/ asymmetries, but substances known to interfere with normal Ca/sup 2 +/ transport do not significantly alter either IAA or Ca/sup 2 +/ asymmetries. These substances,more » however, are active in modifying both Ca/sup 2 +/ uptake and efflux through oat and pea leaf protoplast membranes. The authors conclude that the /sup 45/Ca/sup 2 +/ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca/sup 2 +/ movement secondary in gravitropism. They hypothesize that apoplastic Ca/sup 2 +/ changes during the graviresponse because it is displaced by H/sup +/ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increased calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H/sup +/ efflux, increase Ca/sup 2 +/ release from pea epicotyl segments, whereas cycloheximide, which inhibits H/sup +/ efflux, has the reverse effect.« less
Lercari, B; Bertram, L
2004-02-01
The interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phytochrome B2 (phyB2) in light-dependent shoot regeneration from the hypocotyl of tomato was analysed using all eight possible homozygous allelic combinations of the null mutants. The donor plants were pre-grown either in the dark or under red or far-red light for 8 days after sowing; thereafter hypocotyl segments (apical, middle and basal portions) were transferred onto hormone-free medium for culture under different light qualities. Etiolated apical segments cultured in vitro under white light showed a very high frequency of regeneration for all of the genotypes tested besides phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants. Evidence is provided of a specific interference of phyB2 with phyA-mediated HIR to far-red and blue light in etiolated explants. Pre-treatment of donor plants by growth under red light enhanced the competence of phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants for shoot regeneration, whereas pre-irradiation with far-red light enhanced the frequency of regeneration only in the phyAphyB1 mutant. Multiple phytochromes are involved in red light- and far-red light-dependent acquisition of competence for shoot regeneration. The position of the segments along the hypocotyl influenced the role of the various phytochromes and the interactions between them. The culture of competent hypocotyl segments under red, far-red or blue light reduced the frequency of explants forming shoots compared to those cultured under white light, with different genotypes having different response patterns.
Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari
2013-04-01
Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.
Yamamoto, Kotaro T; Watahiki, Masaaki K; Matsuzaki, Jun; Satoh, Soichirou; Shimizu, Hisayo
2017-07-01
Imaging analysis was carried out during the gravitropic response of etiolated Arabidopsis hypocotyls, using an IAA19 promoter fusion of destabilized luciferase as a probe. From the bright-field images we obtained the local deflection angle to the vertical, A, local curvature, C, and the partial derivative of C with respect to time, [Formula: see text]. These were determined every 19.9 µm along the curvilinear length of the hypocotyl, at ~10 min intervals over a period of ~6 h after turning hypocotyls through 90° to the horizontal. Similarly from the luminescence images we measured the luminescence intensity of the convex and concave flanks of the hypocotyl as well as along the median of the hypocotyl, to determine differential expression of auxin-inducible IAA19. Comparison of these parameters as a function of time and curvilinear length shows that the gravitropic response is composed of three successive elements: the first and second curving responses and a decurving response (autostraightening). The maximum of the first curving response occurs when A is 76° along the entire length of the hypocotyl, suggesting that A is the sole determinant in this response; in contrast, the decurving response is a function of both A and C, as predicted by the newly-proposed graviproprioception model (Bastien et al., Proc Natl Acad Sci USA 110:755-760, 2013). Further, differential expression of IAA19, with higher expression in the convex flank, is observed at A = 44°, and follows the Sachs' sine law. This also suggests that IAA19 is not involved in the first curving response. In summary, the gravitropic response of Arabidopsis hypocotyls consists of multiple elements that are each determined by separate principles.
Magnotta, Scot M; Gogarten, Johann Peter
2002-01-01
Background Vacuolar type H+-ATPases play a critical role in the maintenance of vacuolar homeostasis in plant cells. V-ATPases are also involved in plants' defense against environmental stress. This research examined the expression and regulation of the catalytic subunit of the vacuolar type H+-ATPase in Arabidopsis thaliana and the effect of environmental stress on multiple transcripts generated by this gene. Results Evidence suggests that subunit A of the vacuolar type H+-ATPase is encoded by a single gene in Arabidopsis thaliana. Genome blot analysis showed no indication of a second subunit A gene being present. The single gene identified was shown by whole RNA blot analysis to be transcribed in all organs of the plant. Subunit A was shown by sequencing the 3' end of multiple cDNA clones to exhibit multi site polyadenylation. Four different poly (A) tail attachment sites were revealed. Experiments were performed to determine the response of transcript levels for subunit A to environmental stress. A PCR based strategy was devised to amplify the four different transcripts from the subunit A gene. Conclusions Amplification of cDNA generated from seedlings exposed to cold, salt stress, and etiolation showed that transcript levels for subunit A of the vacuolar type H+-ATPase in Arabidopsis were responsive to stress conditions. Cold and salt stress resulted in a 2–4 fold increase in all four subunit A transcripts evaluated. Etiolation resulted in a slight increase in transcript levels. All four transcripts appeared to behave identically with respect to stress conditions tested with no significant differential regulation. PMID:11985780
Light Regulation of Gibberellin Biosynthesis and Mode of Action.
García-Martinez, José Luis; Gil, Joan
2001-12-01
Some phenotypic effects produced in plants by light are very similar to those induced by hormones. In this review, the light-gibberellin (GA) interaction in germination, de-etiolation, stem growth, and tuber formation (process regulated by GAs) are discussed. Germination of lettuce and Arabidopsis seeds depends on red irradiation (R), which enhances the expression of GA 3-oxidase genes (GA3ox) and leads to an increase in active GA content. De-etiolation of pea seedling alters the expression of GA20ox and GA3ox genes and induces a rapid decrease of GA1 content. Stem growth of green plants is also affected by diverse light irradiation characteristics. Low light intensity increases stem elongation and active GA content in pea and Brassica. Photoperiod controls active GA levels in long-day rosette (spinach and Silene) and in woody plants (Salix and hybrid aspen) by regulating different steps of GA biosynthesis, mainly through transcript levels of GA20ox and GA3ox genes. Light modulation of stem elongation in light-grown plants is controlled by phytochrome, which modifies GA biosynthesis and catabolism (tobacco, potato, cowpea, Arabidopsis) and GA-response (pea, cucumber, Arabidopsis). In Arabidopsis and tobacco, ATH1 (a gene encoding an homeotic transcription factor) is a positive mediator of a phyB-specific signal transduction cascade controlling GA levels by regulating the expression of GA20ox and GA3ox. Tuber formation in potato is controlled by photoperiod (through phyB) and GAs. Inductive short-day conditions alter the diurnal rhythm of GA20ox transcript abundance, and increases the expression of a new protein (PHOR1) that plays a role in the photoperiod-GA interaction.
NASA Technical Reports Server (NTRS)
Khurana, J. P.; Best, T. R.; Poff, K. L.
1989-01-01
Phototropic and gravitropic curvature by hypocotyls of Arabidopsis thaliana is minimal when the side of the hook with the cotyledons attached is positioned toward the direction of tropistic curvature, and maximal when that side of the hook is positioned away from the direction of tropistic curvature. Based on these data, it is proposed that the position of the hook with attached cotyledons affects curvature and not stimulus perception. A randomly oriented population of plants exhibited considerable heterogeneity in tropistic curvature. This heterogeneity arises at least in part from the dependence of curvature on the position of the hook.
Khurana, J P; Best, T R; Poff, K L
1989-01-01
Phototropic and gravitropic curvature by hypocotyls of Arabidopsis thaliana is minimal when the side of the hook with the cotyledons attached is positioned toward the direction of tropistic curvature, and maximal when that side of the hook is positioned away from the direction of tropistic curvature. Based on these data, it is proposed that the position of the hook with attached cotyledons affects curvature and not stimulus perception. A randomly oriented population of plants exhibited considerable heterogeneity in tropistic curvature. This heterogeneity arises at least in part from the dependence of curvature on the position of the hook.
Mechanisms of graviperception and response in pea seedlings
NASA Technical Reports Server (NTRS)
Galston, A. W.
1984-01-01
A new method for the mass isolation and purification of multigranular amyloplasts from the bundle sheath parenchyma of etiolated pa epicotyls was presented. These bodies, which displace within 2+3 minutes of exposure to 1 x g, are probably the gravity receptors (statoliths) in this plant. These amyloplasts were characterized as having a doublemembrane with a surface-localized ATPase, a high calcium content, and their own genomic DNA. These amyloplasts are investigated as to (a) the reasons for their especially high density, probable related to their starch content, (b) the possible identity of their DNA with the DNA of chloroplasts and unigranular amyloplasts, and (c) possible importance of their high calcium content.
Soybean cotyledon starch metabolism is sensitive to altered gravity conditions
NASA Technical Reports Server (NTRS)
Brown, C. S.; Piastuch, W. C.; Knott, W. M.
1994-01-01
We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, W.S.; Darvill, A.G.; Albersheim, P.
1984-06-01
Xyloglucan, isolated from the soluble extracellular polysaccharides of suspension-cultured sycamore (Acer pseudoplatanus) cells, was digested with an endo-..beta..-1,4-glucanase purified from the culture fluid of Trichoderma viride. A nonasaccharide-rich Bio-Gel P-2 fraction of this digest inhibited 2,4-dichlorophenoxyacetic-acid-stimulated elongation of etiolated pea stem segments. The inhibitory activity of this oligosaccharide fraction exhibited a well-define concentraction optimum between 10/sup -2/ and 10/sup -1/ micrograms per milliliter. Another fraction of the same xyloglucan digest, rich in a structurally related heptasaccharide, did not, at similar concentrations, significantly inhibit the elongation. 11 references, 3 figures.
NASA Technical Reports Server (NTRS)
Migliaccio, F.; Galston, A. W.
1987-01-01
Seven day old etiolated pea epicotyls were loaded symmetrically with 3H-indole 3-acetic acid (IAA) or 45Ca2+, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca2+ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca2+ asymmetries, but substances known to interfere with normal Ca2+ transport (nitrendipine, nisoldipine, Bay K 8644, A 23187) do not significantly alter either IAA or Ca2+ asymmetries. These substances, however, are active in modifying both Ca2+ uptake and efflux through oat and pea leaf protoplast membranes. We conclude that the 45Ca2+ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca2+ movement secondary in gravitropism. We hypothesize that apoplastic Ca2+ changes during graviresponse because it is displaced by H+ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increases calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H+ efflux, increase Ca2+ release from pea epicotyl segments, whereas cycloheximide, which inhibits H+ efflux, has the reverse effect. We suggest that Ca2+ does not redistribute actively during gravitropism: the asymmetry arises because of its release from the wall adjacent to the region of high IAA concentration, proton secretion, and growth. Thus, the asymmetric distribution of Ca2+ appears to be a consequence of growth stimulation, not a critical step in the early phase of the graviresponse.
Tavladoraki, Paraskevi; Kloppstech, Klaus; Argyroudi-Akoyunoglou, Joan
1989-01-01
The mRNA coding for light-harvesting complex of PSII (LHC-II) apoprotein is present in etiolated bean (Phaseolus vulgaris L.) leaves; its level is low in 5-day-old leaves, increases about 3 to 4 times in 9- to 13-day-old leaves, and decreases thereafter. A red light pulse induces an increase in LHC-II mRNA level, which is reversed by far red light, in all ages of the etiolated tissue tested. The phytochrome-controlled initial increase of LHC-II mRNA level is higher in 9- and 13-day-old than in 5- and 17-day-old bean leaves. The amount of LHC-II mRNA, accumulated in the dark after a red light pulse, oscillates rhythmically with a period of about 24 hours. This rhythm is also observed in continuous white light and in the dark following exposure to continuous white light, and persists for at least 70 hours. A second red light pulse, applied 36 hours after initiation of the rhythm, induces a phase-shift, which is prevented by far red light immediately following the second red light pulse. A persistent, but gradually reduced, far red reversibility of the red light-induced increase in LHC-II mRNA level is observed. In contrast, far red reversibility of the red light-induced clock setting is only observed when far red follows immediately the red light. It is concluded that (a) the light-induced LHC-II mRNA accumulation follows an endogenous, circadian rhythm, for the appearance of which a red light pulse is sufficient, (b) the circadian oscillator is under phytochrome control, and (c) a stable Pfr form, which exists for several hours, is responsible for sustaining LHC-II gene transcription. Images Figure 1 Figure 2 Figure 8 PMID:16666825
Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song
2015-01-01
Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326
Coupling of solute transport and cell expansion in pea stems
NASA Technical Reports Server (NTRS)
Schmalstig, J. G.; Cosgrove, D. J.
1990-01-01
As cells expand and are displaced through the elongation zone of the epicotyl of etiolated pea (Pisum sativum L. var Alaska) seedlings, there is little net dilution of the cell sap, implying a coordination between cell expansion and solute uptake from the phloem. Using [14C] sucrose as a phloem tracer (applied to the hypogeous cotyledons), the pattern of label accumulation along the stem closely matched the growth rate pattern: high accumulation in the growing zone, little accumulation in nongrowing regions. Several results suggest that a major portion of phloem contents enters elongating cells through the symplast. We propose that the coordination between phloem transport and cell expansion is accomplished via regulatory pathways affecting both plasmodesmata conductivity and cell expansion.
The ethylene signal transduction pathway in Arabidopsis
NASA Technical Reports Server (NTRS)
Kieber, J. J.; Evans, M. L. (Principal Investigator)
1997-01-01
The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.
Phytochrome regulates GTP-binding protein activity in the envelope of pea nuclei
NASA Technical Reports Server (NTRS)
Clark, G. B.; Memon, A. R.; Thompson, G. A. Jr; Roux, S. J.
1993-01-01
Three GTP-binding proteins with apparent molecular masses of 27, 28 and 30 kDa have been detected in isolated nuclei of etiolated pea plumules. After LDS-PAGE and transfer to nitrocellulose these proteins bind [32P]GTP in the presence of excess ATP, suggesting that they are monomeric G proteins. When nuclei are disrupted, three proteins co-purify with the nuclear envelope fraction and are highly enriched in this fraction. The level of [32P]GTP-binding for all three protein bands is significantly increased when harvested pea plumules are irradiated by red light, and this effect is reversed by far-red light. The results indicate that GTP-binding activity associated with the nuclear envelope of plant cells is photoreversibly regulated by the pigment phytochrome.
An infra-red imaging system for the analysis of tropisms in Arabidopsis thaliana seedlings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orbovic, V.; Poff, K.L.
1990-05-01
Since blue and green light will induce phototropism and red light is absorbed by phytochrome, no wavelength of visible radiation should be considered safe for any study of tropisms in etiolated seedlings. For this reason, we have developed an infra-red imaging system with a video camera with which we can monitor seedlings using radiation at wavelengths longer than 800 nm. The image of the seedlings can be observed in real time, recorded on a VCR and subsequently analyzed using the Java image analysis system. The time courses for curvature of seedlings differ in shape, amplitude, and lag time. This variabilitymore » accounts for much of the noise in the measurement of curvature for a population of seedlings.« less
The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth.
Lozano-Durán, Rosa; Macho, Alberto P; Boutrot, Freddy; Segonzac, Cécile; Somssich, Imre E; Zipfel, Cyril
2013-12-31
The molecular mechanisms underlying the trade-off between plant innate immunity and steroid-mediated growth are controversial. Here, we report that activation of the transcription factor BZR1 is required and sufficient for suppression of immune signaling by brassinosteroids (BR). BZR1 induces the expression of several WRKY transcription factors that negatively control early immune responses. In addition, BZR1 associates with WRKY40 to mediate the antagonism between BR and immune signaling. We reveal that BZR1-mediated inhibition of immunity is particularly relevant when plant fast growth is required, such as during etiolation. Thus, BZR1 acts as an important regulator mediating the trade-off between growth and immunity upon integration of environmental cues. DOI: http://dx.doi.org/10.7554/eLife.00983.001.
Phytotoxic components produced by pathogenic Fusarium against morning glory.
Shimizu, Bun-ichi; Saito, Fukuko; Miyagawa, Hisahi; Watanabe, Ken; Ueno, Tamio; Sakata, Kanzo; Ogawa, Kei
2005-01-01
A pathogenic isolate of Fusarium, F. oxysporum f. sp. batatas O-17 (PF), causes wilt disease in leaf etiolation in sweet potato (Ipomoea batatas) and morning glory (Ipomoea tricolor). Extracts from PF cultures were screened for phytotoxic components using a growth inhibition assay with morning glory seedlings. The extracts were fractionated using differential solvent extraction and two active compounds, ergosterol and fusalanipyrone, were isolated from the less-polar fraction. Growth inhibition of morning glory seedlings showed a sigmoidal dose-response relationship, with fusalanipyrone exhibiting a two order of magnitude higher EC50 value than ergosterol (18 nM and 1.6 microM, respectively). Both compounds showed lower growth inhibition activity towards lettuce seedlings (Lactuca sativa). This study provides information on the phytotoxic components of PF and discusses the mechanism behind PFf-induced phytotoxicity.
NASA Technical Reports Server (NTRS)
Kim, S. H.; Terry, M. E.; Hoops, P.; Dauwalder, M.; Roux, S. J.
1988-01-01
A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.
Macías, Francisco A; Simonet, Ana M; D'Abrosca, Brigida; Maya, Claudia C; Reina, Matías; González-Coloma, Azucena; Cabrera, Raimundo; Giménez, Cristina; Villarroel, Luis
2009-01-01
The new bioactive sesquiterpenoid (3R,6E)-2,6,10-trimethyl-3-(3-p-hydroxyphenylpropanoyloxy)-dodeca-6,11-diene-2,10-diol, named megalanthine, was isolated from the resinous exudates of Heliotropium megalanthum. The degradation products of this compound were identified. Several plant-defensive properties (insecticidal, antifungal, and phytotoxic) were evaluated after obtaining positive results in a preliminary etiolated wheat coleoptile bioassay. This bioassay showed the need to have both the phenolic and sesquiterpene moieties of the natural product present to achieve a biological effect. This result was confirmed in phytotoxicity bioassays. Megalanthine was ruled out as a significant plant-plant defense agent because of its lack of stability. The positive results recorded in the antifungal and antifeedant tests suggest, however, that this chemical is relevant in several ecological interactions involving H. megalanthum.
Jain, Prachi; Bhatla, Satish C
2014-01-01
Sunflower seedlings subjected to 120 mM NaCl stress exhibit high total peroxidase activity, differential expression of its isoforms and accumulation of lipid hydroperoxides. This coincides with high specific activity of phospholipid hydroperoxide glutathione peroxidase (PHGPX) in the 10,000g supernatant from the homogenates of 2-6 d old seedling cotyledons. An upregulation of PHGPX activity by NaCl is evident from Western blot analysis. Confocal laser scanning microscopic (CLSM) analysis of sections of cotyledons incubated with anti-GPX4 (PHGPX) antibody highlights an enhanced cytosolic accumulation of PHGPX, particularly around the secretory canals. Present work, thus, highlights sensing of NaCl stress in sunflower seedlings in relation with lipid hydroperoxide accumulation and its scavenging through an upregulation of PHGPX activity in the cotyledons.
An anion channel in Arabidopsis hypocotyls activated by blue light
NASA Technical Reports Server (NTRS)
Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)
1996-01-01
A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.
Yamada, K; Nakano, H; Yokotani-Tomita, K; Bruinsma, J; Yamamura, S; Hasegawa, K
2000-03-01
The classical experiment of phototropic response as reported by Boysen-Jensen and Nielsen (1926), which supports the Cholodny-Went theory, was repeated in detail. In the original experiment, etiolated oat (Avena sativa L. cv. Victory) coleoptiles with mica inserted into their tip only showed a positive response when the mica was placed parallel toward the light source and not if it was inserted perpendicularly. On the contrary, we found a positive response irrespective of whether the mica was inserted parallel or perpendicularly to the light source. Damage owing to rude splitting severely reduced the response upon perpendicular insertion. These results invalidate the Boysen-Jensen and Nielsen's experiment as a support of the Cholodny-Went theory and lend support to the Bruinsma-Hasegawa theory ascribing phototropism to the local light-induced accumulation of growth inhibitors against a background of even auxin distribution, the diffusion of auxin being unaffected.
Role of carotenoids in first positive phototropism of etiolated Arabidopsis thaliana seedlings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orbovic, V.; Poff, K.L.
1991-05-01
A mutant of Arabidopsis thaliana, chosen for is pale cotyledon phenotype in dark grown material, has been obtained from Klaus Apel (ETH-Zentrum, Zurich, Switzerland). Fluence response curves for this putative carotenoidless mutant and its wild-type parent have been measured. The shape of the fluence response curve for the pale mutant is similar to that of its wild-type parent. However, the amplitude of curvature by the mutant is considerably lower than curvature of the wild-type. If the amplitude of the curvature is enhanced with a red light pre-irradiation, peaks of the two photoreceptor pigments, P{sub I} and P{sub II} can bemore » seen in both the pale mutant and its wild-type parent. Based on these data, the authors conclude that neither photoreceptor pigment is altered in the pale mutant.« less
Physiological Analysis of Phototropic Responses in Arabidopsis.
Zeidler, Mathias
2016-01-01
Plants utilize light as sole energy source. To maximize light capture they are able to detect the light direction and orient themselves towards the light source. This phototropic response is mediated by the plant blue light photoreceptors phototropin1 and 2 (phot1 and phot2). Although fully differentiated plants also exhibit this response it can be best observed in etiolated seedlings. Differences in light between the illuminated and shaded site of a seedling stem lead to changes in the auxin-distribution, resulting in cell elongation on the shaded site. Since phototropism connects light perception, signaling, and auxin transport, it is of great interest to analyze this response with a fast and simple method.Here we describe a method to analyze the phototropic response of Arabidopsis seedlings. With numerous mutants available, its fast germination and its small size Arabidopsis is well suited for this analysis. Different genotypes can be simultaneously probed in less than a week.
Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA
NASA Technical Reports Server (NTRS)
Gaynor, J. J.
1984-01-01
Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.
Macías, Francisco A; Santana, Alejandro; Yamahata, Azusa; Varela, Rosa M; Fronczek, Frank R; Molinillo, José M G
2012-11-26
Commercially available santonin was used to synthesize seven sesquiterpene lactones using a facile strategy that involved a high-yielding photochemical reaction. Three natural products from Artemisia gorgonum were synthesized in good yields, and in the case of two compounds, absolute configurations were determined from X-ray quality crystals. The structures previously reported for these compounds were revised. Sesquiterpene lactones were tested using the etiolated wheat coleoptile bioassay, and the most active compounds were assayed in standard target species. seco-Guaianolide (4) showed higher phytotoxic activities than the known herbicide Logran. This high activity could be due to the presence of a cyclopentenedione ring. These results suggest that compound 4 should be involved in defense of A. gorgorum, displaying a wide range of activities that allow proposing them as new leads for development of a natural herbicide model with a seco-guaianolide skeleton.
A technique for collection of exudate from pea seedlings
NASA Technical Reports Server (NTRS)
Hanson, S. D.; Cohen, J. D.; Bandurski, R. S. (Principal Investigator)
1985-01-01
Ethylenediaminetetraacetic acid (EDTA), at concentrations higher than 1.0 millimolar, is phytotoxic to etiolated seedlings of Pisum sativum. Substantial vascular exudation from pea epicotyls could be obtained without tissue damage at 0.5 millimolar EDTA if the solution was buffered at pH 7.5 with sodium N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid. Treated seedlings exuded 950 micrograms (leucine equivalents) of ninhydrin-positive material per day and 870 micrograms (glucose equivalents) of anthrone-positive material per day. Amino acid analysis showed the exudate to have glutamine as the major amido nitrogen containing compound and sucrose was shown to be the major sugar. Radiolabeled tryptophan and sucrose applied to cotyledons were transferred through the epicotyl and into the collection medium. The pH profile for exudation shows half maximal exudation at pH 7.2, indicating the promotion of exudation by EDTA is probably not due simply to Ca2+ chelation.
Bioassay for assessing cell stress in the vicinity of radio-frequency irradiating antennas.
Monselise, Edna Ben-Izhak; Levkovitz, Aliza; Gottlieb, Hugo E; Kost, Daniel
2011-07-01
The 24 h exposure of water plants (etiolated duckweed) to RF-EMF between 7.8 V m(-1) and 1.8 V m(-1), generated by AM 1.287 MHz transmitting antennas, resulted in alanine accumulation in the plant cells, a phenomenon we have previously shown to be a universal stress signal. The magnitude of the effect corresponds qualitatively to the level of RF-EMF exposure. In the presence of 10 mM vitamin C, alanine accumulation is completely suppressed, suggesting the involvement of free radicals in the process. A unique biological connection has thus been made between exposure to RF-EMF and cell stress, in the vicinity of RF transmitting antennas. This simple test, which lasts only 24 h, constitutes a useful bioassay for the quick detection of biological cell stress caused in the vicinity of RF irradiating antennas.
ARF1 and SAR1 GTPases in Endomembrane Trafficking in Plants
Cevher-Keskin, Birsen
2013-01-01
Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process. PMID:24013371
Naringin Levels in Citrus Tissues 1
Jourdan, Pablo S.; McIntosh, Cecilia A.; Mansell, Richard L.
1985-01-01
The quantitative distribution of the flavanone-7-neohesperidoside, naringin, in seeds, seedlings, young plants, branches, flowers, and fruit of Citrus paradisi Macfad., cv `Duncan' was analyzed by radioimmunoassay. High levels of naringin were associated with very young tissue and lower levels were found in older tissues. Seed coats of ungerminated seeds and young shoots had high naringin concentrations whereas cotyledons and roots had very low concentrations. Light-grown seedlings contained nearly twice as much naringin as etiolated seedlings and, in young plants and branches, the naringin content was highest in developing leaves and stem tissue. In flowers, the ovary had the highest levels of naringin, accounting for nearly 11% of the fresh weight. There was a net increase in the total naringin content of fruits during growth. However, due to the large increase in fruit size, there was a concomitant decrease in the naringin concentration as the fruit matured. PMID:16664159
Epigenetic Regulation of Hormone-dependent Plant Growth Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecker, Joseph Robert
2016-11-18
Impact of EIN6, EEN and ethylene on the H3K27me3 dynamics in Arabidopsis: To assess the dynamic responsiveness of H3K27me3 levels to ethylene and how this might affect ethylene-induced gene expression, we plan to perform H3K27me3 ChIP-seq and RNA- seq experiments in parallel with etiolated seedlings in the absence and presence of ethylene. Further implementation of ein6, een and ein6een mutants will visualize how the H3K27me3 landscape (-/+ET) is altered when H3K27me3 demethylation and/or INO80-mediated chromatin remodeling is compromised. Additional ChIP-seq analyses with EIN6 will show if ethylene- induced H3K27me3 removal at certain genes is always accompanied by the presence ofmore » EIN6.« less
Phytotoxicity of cardoon (Cynara cardunculus) allelochemicals on standard target species and weeds.
Rial, Carlos; Novaes, Paula; Varela, Rosa M; Molinillo, José M G; Macias, Francisco A
2014-07-16
Cardoon (Cynara cardunculus L.) is a native plant to the Iberian Peninsula and the European Atlantic coast and invasive in American environments. Different solvents were used to perform cardoon extracts that were tested in phytotoxic bioassays. The ethyl acetate extract had the highest inhibitory activity so this was tested on the germination and growth of standard target species (lettuce, watercress, tomato, and onion) and weeds (barnyardgrass and brachiaria). The ethyl acetate extract was very active on root growth in both standard target species and weeds and it was therefore fractionated by chromatography. The spectroscopic data showed that the major compounds were sesquiterpene lactones. Aguerin B, grosheimin, and cynaropicrin were very active on etiolated wheat coleoptile, standard target species, and weed growth. The presence of these compounds explains the bioactivity of the ethyl acetate extract. The strong phytotoxicity of these compounds on important weeds shows the potential of these compounds as natural herbicide models.
Cala, Antonio; Molinillo, José M G; Fernández-Aparicio, Mónica; Ayuso, Jesús; Álvarez, José A; Rubiales, Diego; Macías, Francisco A
2017-08-09
Allelochemicals are safer, more selective and more active alternatives than synthetic agrochemicals for weed control. However, the low solubility of these compounds in aqueous media limits their use as agrochemicals. Herein, we propose the application of α-, β- and γ-cyclodextrins to improve the physicochemical properties and biological activities of three sesquiterpene lactones: dehydrocostuslactone, costunolide and (-)-α-santonin. Complexation was achieved by kneading and coprecipitation methods. Aqueous solubility was increased in the range 100-4600% and the solubility-phase diagrams suggested that complex formation had been successful. The results of the PM3 semiempirical calculations were consistent with the experimental results. The activities on etiolated wheat coleoptiles, Standard Target Species and parasitic weeds were improved. Cyclodextrins preserved or enhanced the activity of the three sesquiterpene lactones. Free cyclodextrins did not show significant activity and therefore the enhancement in activity was due to complexation. These results are promising for applications in agrochemical design.
Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.
2003-01-01
It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330
Mitochondrial ultrastructure and tissue respiration of pea leaves under clinorotation
NASA Astrophysics Data System (ADS)
Brykov, Vasyl
2016-07-01
Respiration is essential for growth, maintenance, and carbon balance of all plant cells. Mitochondrial respiration in plants provides energy for biosynthesis, and its balance with photosynthesis determines the rate of plant biomass accumulation (production). Mitochondria are not only the energetic organelles in a cell but they play an essential regulatory role in many basic cellular processes. As plants adapt to real and simulated microgravity, it is very important to understand the state of mitochondria in these conditions. Disturbance of respiratory metabolism can significantly affect the productivity of plants in long-term space flights. We have established earlier that the rate of respiration in root apices of pea etiolated seedlings rose after 7 days of clinorotation. These data indicate the oxygen increased requirement by root apices under clinorotation, that confirms the necessity of sufficient substrate aeration in space greenhouses to provide normal respiratory metabolism and supply of energy for root growth. In etiolated seedlings, substrate supply of mitochondria occurs at the expense of the mobilization of cotyledon nutrients. A goal of our work was to study the ultrastructure and respiration of mitochondria in pea leaves after 12 days of clinorotation during (2 rpm/min). Plants grew at a light level of 180 μµmol m ^{-2} s ^{-1} PAR and a photoperiod of 16 h light/4 h dark. It was showed an essential increase in the mitochondrion area on 53% in palisade parenchyma cells at the sections. Such phenomenon can not be described as swelling of mitochondria, since enlarged mitochondria contained a more quantity of crista 1.76 times. In addition, the cristae total area per organelle also increased in comparison with that in control. An increase in a size of mitochondria in the experimental conditions is supposed to occur by a partial alteration of the chondriom. Thus, a size of 49% mitochondria in control was 0.1 - 0.3 μµm ^{2}, whereas only 26% mitochondria have a similar size under clinorotation. Described changes in the mitochondrion ultrastructure under clinorotation were accompanied with rising of mitochondrial respiration on 17%. These data indicate that mitochondria in both root and leaf cells are sensitive to the simulated microgravity influence. That is why, a further research of plant energetic metabolism during plant growth in real and simulated microgravity has to be in progress.
Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth
Boron, Agnieszka Karolina; Van Loock, Bram; Suslov, Dmitry; Markakis, Marios Nektarios; Verbelen, Jean-Pierre; Vissenberg, Kris
2015-01-01
Background and Aims Plant stature and shape are largely determined by cell elongation, a process that is strongly controlled at the level of the cell wall. This is associated with the presence of many cell wall proteins implicated in the elongation process. Several proteins and enzyme families have been suggested to be involved in the controlled weakening of the cell wall, and these include xyloglucan endotransglucosylases/hydrolases (XTHs), yieldins, lipid transfer proteins and expansins. Although expansins have been the subject of much research, the role and involvement of expansin-like genes/proteins remain mostly unclear. This study investigates the expression and function of AtEXLA2 (At4g38400), a member of the expansin-like A (EXLA) family in arabidposis, and considers its possible role in cell wall metabolism and growth. Methods Transgenic plants of Arabidopsis thaliana were grown, and lines over-expressing AtEXLA2 were identified. Plants were grown in the dark, on media containing growth hormones or precursors, or were gravistimulated. Hypocotyls were studied using transmission electron microscopy and extensiometry. Histochemical GUS (β-glucuronidase) stainings were performed. Key Results AtEXLA2 is one of the three EXLA members in arabidopsis. The protein lacks the typical domain responsible for expansin activity, but contains a presumed cellulose-interacting domain. Using promoter::GUS lines, the expression of AtEXLA2 was seen in germinating seedlings, hypocotyls, lateral root cap cells, columella cells and the central cylinder basally to the elongation zone of the root, and during different stages of lateral root development. Furthermore, promoter activity was detected in petioles, veins of leaves and filaments, and also in the peduncle of the flowers and in a zone just beneath the papillae. Over-expression of AtEXLA2 resulted in an increase of >10 % in the length of dark-grown hypocotyls and in slightly thicker walls in non-rapidly elongating etiolated hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls. Conclusions It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization. PMID:25492062
Short, T W; Briggs, W R
1990-01-01
When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with gamma-[(32)P]ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. The response is observed most strongly in membranes from the growing region of the stem, but no 120 kilodalton radiolabeled band is detected in membranes from the developing buds. Fluence-response curves for the reaction show that the system responds to blue light above about 0.3 micromole per square meter, and the visible phosphorylation completely disappears above 200 micromoles per square meter. Reciprocity is valid for the system, because varying illumination time or fluence rate give similar results. If the stem segments are left in the dark following a saturating blue irradiation, the radio-labeled band begins to return after about 10 minutes and is as intense as that from the dark controls within 45 to 60 minutes. A protein that comigrates with the phosphorylated protein on polyacrylamide gels is also undetectable after saturating blue light irradiations. The fluence range in which the protein band disappears is the same as that for the disappearance of the phosphorylation band. Its dark recovery kinetics and tissue distribution also parallel those for the phosphorylation. In vitro irradiation of the isolated membranes also results in a phosphorylation change at that molecular mass, but in the opposite direction. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light-mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of those reactions. However, the fluence-response relationships for the change in detectable phosphorylation match quite closely those reported for phototropism but not those for growth inhibition. Blue light has also been found to regulate the capacity for in vitro phosphorylation of a second protein. It has an apparent molecular mass of 84 kilodaltons and is localized primarily in basal stem sections.
NASA Technical Reports Server (NTRS)
Dauwalder, M.; Roux, S. J.
1986-01-01
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in etiolated corn (Zea mays, var. Bear Hybrid) seedlings. Uniform staining was seen in the background cytoplasm of most cell types. Cell walls and vacuoles were not stained. In coleoptile mesophyll cells the nucleoplasm of most nuclei was stained as was the stroma of most amyloplasts. The lumen border of mature tracheary elements in coleoptiles also stained. In the rootcap the most intensely stained regions were the cytoplasms of columella cells and of the outermost cells enmeshed in the layer of secreted slime. Nuclei in the rootcap cells did not stain distinctly, but those in all cell types of the root meristem did. Also in the root meristem, the cytoplasm of metaxylem elements stained brightly. These results are compared and contrasted with previous data on the localization of calmodulin in pea root apices and epicotyls and discussed in relation to current hypotheses on mechanisms of gravitropism.
NASA Technical Reports Server (NTRS)
Schmalstig, J. G.; Cosgrove, D. J.
1988-01-01
The dependence of stem elongation on solute import was investigated in etiolated pea seedlings (Pisum sativum L. var Alaska) by excising the cotyledons. Stem elongation was inhibited by 60% within 5 hours of excision. Dry weight accumulation into the growing region stopped and osmotic pressure of the cell sap declined by 0.14 megapascal over 5 hours. Attempts to assay phloem transport via ethylenediaminetetraacetate-enhanced exudation from cut stems revealed no effect of cotyledon excision, indicating that the technique measured artifactual leakage from cells. Despite the drop in cell osmotic pressure, turgor pressure (measured directly via a pressure probe) did not decline. Turgor maintenance is postulated to occur via uptake of solutes from the free space, thereby maintaining the osmotic pressure difference across the cell membrane. Cell wall properties were measured by the pressure-block stress relaxation technique. Results indicate that growth inhibition after cotyledon excision was mediated primarily via an increase in the wall yield threshold.
Photoreceptor-mediated bending towards UV-B in Arabidopsis.
Vandenbussche, Filip; Tilbrook, Kimberley; Fierro, Ana Carolina; Marchal, Kathleen; Poelman, Dirk; Van Der Straeten, Dominique; Ulm, Roman
2014-06-01
Plants reorient their growth towards light to optimize photosynthetic light capture--a process known as phototropism. Phototropins are the photoreceptors essential for phototropic growth towards blue and ultraviolet-A (UV-A) light. Here we detail a phototropic response towards UV-B in etiolated Arabidopsis seedlings. We report that early differential growth is mediated by phototropins but clear phototropic bending to UV-B is maintained in phot1 phot2 double mutants. We further show that this phototropin-independent phototropic response to UV-B requires the UV-B photoreceptor UVR8. Broad UV-B-mediated repression of auxin-responsive genes suggests that UVR8 regulates directional bending by affecting auxin signaling. Kinetic analysis shows that UVR8-dependent directional bending occurs later than the phototropin response. We conclude that plants may use the full short-wavelength spectrum of sunlight to efficiently reorient photosynthetic tissue with incoming light. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.
Characterization of adaptation in phototropism of Arabidopsis thaliana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janoudi, A.K.; Poff, K.L.
1991-02-01
Phototropic curvature has been measured for etiolated Arabidopsis thaliana seedlings with and without a preirradiation. A bilateral preirradiation with 450-nm light at a fluence greater than about 0.1 micromole per square meter causes a rapid densensitization to a subsequent 450-nanometer unilateral irradiation at 0.5 micromole per square meter. Following a refractory period, the capacity to respond phototropically recovers to the predesensitization level, and the response is then enhanced. The length of the refractory period is between 10 and 20 minutes. Both the time needed for recovery and the extent of enhancement increase with increasing fluence of the bilateral preirradiation. Basedmore » on the relative spectral sensitivities of desensitization and enhancement, these responses can be separated. Desensitization is induced by blue light but not by red light. Enhancement, however, is induced by both blue and red light. Thus, enhancement can be induced without desensitization but only vice versa. Both desensitization and enhancement affect only the magnitude of the response and do not affect the fluence threshold.« less
El Marsni, Zouhir; Torres, Ascension; Varela, Rosa M; Molinillo, José M G; Casas, Lourdes; Mantell, Casimiro; Martinez de la Ossa, Enrique J; Macias, Francisco A
2015-07-22
The work described herein is a continuation of our initial studies on the supercritical fluid extraction (SFE) with CO2 of bioactive substances from Helianthus annuus L. var. Arianna. The selected SFE extract showed high activity in the wheat coleoptile bioassay, in Petri dish phytotoxicity bioassays, and in the hydroponic culture of tomato seeds. Chromatographic fractionations of the extracts and a spectroscopic analysis of the isolated compounds showed 52 substances belonging to 10 different chemical classes, which were mainly sesquiterpene lactones, diterpenes, and flavonoids. Heliannuol M (31), helivypolides K and L (36, 37), and helieudesmanolide B (38) are described for the first time in the literature. Metabolites have been tested in the etiolated wheat coleoptile bioassay with good results in a noteworthy effect on germination. The most active compounds were also tested on tomato seeds, heliannuol A (30) and leptocarpin (45) being the most active, with values similar to those of the commercial herbicide.
Tegeder, M; Kohn, H; Nibbe, M; Schieder, O; Pickardt, T
1996-11-01
Protoplasts ofVicia narbonensis isolated from epicotyls and shoot tips of etiolated seedlings were embedded in 1.4% sodium-alginate at a final density of 2.5×10(5) protoplasts/ml and cultivated in Kao and Michayluk-medium containing 0.5 mg/I of each of 2,4- dichlorophenoxyacetic acid, naphthylacetic acid and 6 -benzylaminopurine. A division frequency of 36% and a plating efficiency of 0.40-0.5% were obtained. Six weeks after embedding, protoplast-derived calluses were transferred onto gelrite-solidified Murashige and Skoog-media containing various growth regulators. Regeneration of plants was achieved via two morphologically distinguishable pathways. A two step protocol (initially on medium with a high auxin concentration followed by a culture phase with lowered auxin amount) was used to regenerate somatic embryos, whereas cultivation on medium containing thidiazuron and naphthylacetic acid resulted in shoot morphogenesis. Mature plants were recovered from both somatic embryos as well as from thidiazuron-induced shoots.
CLA1, a novel gene required for chloroplast development, is highly conserved in evolution.
Mandel, M A; Feldmann, K A; Herrera-Estrella, L; Rocha-Sosa, M; León, P
1996-05-01
An albino mutant designated cla1-1 (for "cloroplastos alterados', or "altered chloroplasts') has been isolated from a T-DNA-generated library of Arabidopsis thaliana. In cla1-1 plants, chloroplast development is arrested at an early stage. cla1-1 plants behave like wild-type in their capacity to etiolate and produce anthocyanins indicating that the light signal transduction pathway seems to be unaffected. Genetic and molecular analyses show that the disruption of a single gene, CLA1, by the T-DNA insertion is responsible for the mutant phenotype. RNA expression patterns indicate that CLA1 is positively regulated by light and that it has different effects on the steady-state RNA levels of some nuclear- and chloroplast-encoded photosynthetic genes. Although the specific function of the CLA1 gene is still unknown, it encodes a novel protein conserved in evolution between photosynthetic bacteria and plants which is essential for chloroplast development in Arabidopsis.
Characterization of adaptation in phototropism of Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Phototropic curvature has been measured for etiolated Arabidopsis thaliana seedlings with and without a preirradiation. A bilateral preirradiation with 450-nm light at a fluence greater than about 0.1 micromole per square meter causes a rapid desensitization to a subsequent 450-nanometer unilateral irradiation at 0.5 micromole per square meter. Following a refractory period, the capacity to respond phototropically recovers to the predesensitization level, and the response is then enhanced. The length of the refractory period is between 10 and 20 minutes. Both the time needed for recovery and the extent of enhancement increase with increasing fluence of the bilateral preirradiation. Based on the relative spectral sensitivities of desensitization and enhancement, these responses can be separated. Desensitization is induced by blue light but not by red light. Enhancement, however, is induced by both blue and red light. Thus, enhancement can be induced without desensitization but not vice versa. Both desensitization and enhancement affect only the magnitude of the response and do not affect the fluence threshold.
Structure and function of homodomain-leucine zipper (HD-Zip) proteins.
Elhiti, Mohamed; Stasolla, Claudio
2009-02-01
Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.
Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue
NASA Technical Reports Server (NTRS)
Chisnell, J. R.
1984-01-01
Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.
Trombose venosa profunda e vírus chicungunha
Marques, Marcos Arêas; Adami de Sá, Fernanda Penza; Lupi, Otília; Brasil, Patricia; von Ristow, Arno
2017-01-01
Resumo Algumas infecções virais sistêmicas podem estar relacionadas ao desenvolvimento de trombose venosa profunda e/ou embolia pulmonar. Essa associação já está bem descrita em pacientes com infeções pelo vírus da imunodeficiência humana (HIV), hepatite C ou influenza. Recentemente introduzido no continente americano, o vírus chicungunha, agente etiológico da febre de chicungunha, ainda não tem essa relação bem sedimentada, mas com o aumento progressivo de sua incidência e pelo fato dessa infecção causar, muitas vezes, uma restrição severa da locomoção por poliartralgia e uma possível lesão endotelial direta, casos de tromboembolismo venoso podem começar a ser descritos. Neste relato de caso, descrevemos um paciente que desenvolveu trombose de veia poplítea direita durante internação para tratamento de febre por infecção por vírus chicungunha e poliartralgia severa. PMID:29930626
Gas chromatography-mass spectrometry evidence for several endogenous auxins in pea seedling organs.
Schneider, E A; Kazakoff, C W; Wightman, F
1985-08-01
Qualitative analysis by gas chromatography-mass spectrometry (GC-MS) of the auxins present in the root, cotyledons and epicotyl of 3-dold etiolated pea (Pisum sativum L., cv. Alaska) seedlings has shown that all three organs contain phenylacetic acid (PAA), 3-indoleacetic acid (IAA) and 4-chloro-3-indoleacetic acid (4Cl-IAA). In addition, 3-indolepropionic acid (IPA) was present in the root and 3-indolebutyric acid (IBA) was detected in both root and epicotyl. Phenylacetic acid, IAA and IPA were measured quantitatively in the three organs by GC-MS-single ion monitoring, using deuterated internal standards. Levels of IAA were found to range from 13 to 115 pmol g(-1) FW, while amounts of PAA were considerably higher (347-451 pmol g(-1) FW) and the level of IPA was quite low (5 pmol g(-1) FW). On a molar basis the PAA:IAA ratio in the whole seedling was approx. 15:1.
Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings
NASA Technical Reports Server (NTRS)
Knee, E. M.; Hangarter, R. P.; Knee, M.
2000-01-01
Etiolated seedlings frequently display a hypocotyl or epicotyl hook which opens on exposure to light. Etylene has been shown to be necessary for maintenance of the hook in a number of plants in darkness. We investigated the interaction of ethylene and light in the regulation of hypocotyl hook opening in Arabidopsis thaliana. We found that hooks of Arabidopsis open in response to continuous red, far-red or blue light in the presence of up to 100 microliters l-1 ethylene. Thus a change in sensitivity to ethylene is likely to be responsible for hook opening in Arabidopsis, rather than a decrease in ethylene production in hook tissues. We used photomorphogenic mutants of Arabidopsis to demonstrate the involvement of both blue light and phytochrome photosensory systems in light-induced hook opening in the presence of ethylene. In addition we used ethylene mutants and inhibitors of ethylene action to investigate the role of ethylene in hook maintenance in seedlings grown in light and darkness.
Phenotypic characterization of a photomorphogenic mutant.
Fankhauser, Christian; Casal, Jorge J
2004-09-01
Light is arguably the most important abiotic factor controlling plant growth and development throughout their life cycle. Plants have evolved sophisticated light-sensing mechanisms to monitor fluctuations in light quality, intensity, direction and periodicity (day length). In Arabidopsis, three families of photoreceptors have been identified by molecular genetic studies. The UV-A/blue light receptors cryptochromes and the red/far-red receptors phytochromes control an overlapping set of responses including photoperiodic flowering induction and de-etiolation. Phototropins are the primary photoreceptors for a set of specific responses to UV-A/blue light such as phototropism, chloroplast movement and stomatal opening. Mutants affecting a photoreceptor have a characteristic phenotype. It is therefore possible to determine the specific developmental responses and the photoreceptor pathway(s) affected in a mutant by performing an appropriate set of photobiological and genetic experiments. In this paper, we outline the principal and easiest experiments that can be performed to obtain a first indication about the nature of the photobiological defect in a given mutant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaladharan, P.; Vivekanandan, M.
1990-02-01
The photosynthetic potential of leaves and chloroembryos of Cyamopsis tetragonoloba (L.) Taub as measured by {sup 14}C-bicarbonate fixation, Hill activity, and in vivo fluorescence transients is compared. On a chlorophyll basis, dark fixation of NaH{sup 14}CO{sub 3} in chloroembryos was 1.5 times higher than that of the leaf, whereas carbon fixation under illumination was threefold higher in the leaf than in the embryos. Rates of O{sub 2} evolution were four times more in embryo than in leaf chloroplasts. Shading of developing fruits on the day of anthesis for 10 days induced a 65% reduction in dry matter accumulation in themore » etiolated embryos, as compared to the normal green embryos of the same fruit half covered by a transparent Polythene sheet. The reduction in dry weight, size of the embryos, and levels of assimilates after shading the developing fruits may be ascribed to partial autotrophy of the chloroembryos.« less
2012-01-01
Background White mold, caused by Sclerotinia sclerotiorum, is one of the most important diseases of pea (Pisum sativum L.), however, little is known about the genetics and biochemistry of this interaction. Identification of genes underlying resistance in the host or pathogenicity and virulence factors in the pathogen will increase our knowledge of the pea-S. sclerotiorum interaction and facilitate the introgression of new resistance genes into commercial pea varieties. Although the S. sclerotiorum genome sequence is available, no pea genome is available, due in part to its large genome size (~3500 Mb) and extensive repeated motifs. Here we present an EST data set specific to the interaction between S. sclerotiorum and pea, and a method to distinguish pathogen and host sequences without a species-specific reference genome. Results 10,158 contigs were obtained by de novo assembly of 128,720 high-quality reads generated by 454 pyrosequencing of the pea-S. sclerotiorum interactome. A method based on the tBLASTx program was modified to distinguish pea and S. sclerotiorum ESTs. To test this strategy, a mixture of known ESTs (18,490 pea and 17,198 S. sclerotiorum ESTs) from public databases were pooled and parsed; the tBLASTx method successfully separated 90.1% of the artificial EST mix with 99.9% accuracy. The tBLASTx method successfully parsed 89.4% of the 454-derived EST contigs, as validated by PCR, into pea (6,299 contigs) and S. sclerotiorum (2,780 contigs) categories. Two thousand eight hundred and forty pea ESTs and 996 S. sclerotiorum ESTs were predicted to be expressed specifically during the pea-S. sclerotiorum interaction as determined by homology search against 81,449 pea ESTs (from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings) and 57,751 S. sclerotiorum ESTs (from mycelia at neutral pH, developing apothecia and developing sclerotia). Among those ESTs specifically expressed, 277 (9.8%) pea ESTs were predicted to be involved in plant defense and response to biotic or abiotic stress, and 93 (9.3%) S. sclerotiorum ESTs were predicted to be involved in pathogenicity/virulence. Additionally, 142 S. sclerotiorum ESTs were identified as secretory/signal peptides of which only 21 were previously reported. Conclusions We present and characterize an EST resource specific to the pea-S. sclerotiorum interaction. Additionally, the tBLASTx method used to parse S. sclerotiorum and pea ESTs was demonstrated to be a reliable and accurate method to distinguish ESTs without a reference genome. PMID:23181755
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, R.M.; Rahe, J.E.
1977-04-15
Accumulation of phaseollin at sites of point-freezing injury on etiolated hypocotyls of Phaseolus vulgaris occurred in air but was prevented when seedlings were placed in air containing 15 percent CO/sub 2/ immediately after injury. The inhibitory effect was partially overcome when CO/sub 2/-treated seedlings were returned to air. Phaseollin accumulation in 15 percent CO/sub 2/ did occur, however, when injured seedlings were maintained in air for 3-9 h before being transferred to CO/sub 2/, indicating that the sensitivity to CO/sub 2/ lies at an early stage of the process leading to phaseollin production. In contrast, phaseollin accumulation at sites ofmore » infection of P. vulgaris by an incompatible race of Colletotrichum lindemuthianum was not inhibited by 15 percent CO/sub 2/. These results indicate that the processes leading to the accumulation of phaseollin at incompatible infection sites and at injury sites may be regulated differently.« less
Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber
NASA Technical Reports Server (NTRS)
Spalding, E. P.; Cosgrove, D. J.
1989-01-01
Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.
Thussagunpanit, Jutiporn; Nagai, Yuko; Nagae, Miyu; Mashiguchi, Kiyoshi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Nakano, Takeshi; Nakamura, Hidemitsu; Asami, Tadao
2017-02-01
Strigolactones (SLs) and karrikins (KARs) regulate photomorphogenesis. GR24, a synthetic SL and KAR 1 , a KAR, inhibit the hypocotyl elongation of Arabidopsis thaliana in a weak light. GR24 and KAR 1 up-regulate the expression of STH7, encoding a transcription factor belonging to the double B-box zinc finger subfamily. In this study, we used STH7-overexpressing (STH7ox) lines and functionally defective STH7 (STH7-SRDX) mutants to investigate roles of SLs and KARs in photomorphogenesis of Arabidopsis. Hypocotyl elongation of STH7-SRDX mutants was less sensitive to both GR24 and KAR 1 treatment than that of wild-type Arabidopsis under weak light conditions. Furthermore, the chlorophyll and anthocyanin content was increased in STH7ox lines when de-etiolated with light and GR24-treated plants had enhanced anthocyanin production. GR24 and KAR 1 treatment significantly increased the expression level of photosynthesis-related genes LHCB1 and rbcS. The results strongly suggest that SL and KAR induce photomorphogenesis of Arabidopsis in an STH7-dependent manner.
Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems
NASA Technical Reports Server (NTRS)
Dougher, Tracy A. O.; Bugbee, Bruce
2004-01-01
Blue light (320 to 496 nm) alters hypocotyl and stem elongation and leaf expansion in short-term, cell-level experiments, but histological effects of blue light in long-term studies of whole plants have not been described. We measured cell size and number in stems of soybean (Glycine max L.) and leaves of soybean and lettuce (Lactuca sativa L.), at two blue light fractions. Short-term studies have shown that cell expansion in stems is rapidly inhibited when etiolated tissue is exposed to blue light. However, under long-term light exposure, an increase in the blue light fraction from less than 0.1% to 26% decreased internode length, specifically by inhibiting soybean cell division in stems. In contrast, an increase in blue light fraction from 6% to 26% reduced soybean leaf area by decreasing cell expansion. Surprisingly, lettuce leaf area increased with increasing blue light fraction (0% to 6%), which was attributed to a 3.1-fold increase in cell expansion and a 1.6-fold increase in cell division.
Durán, Alexandra G; Chinchilla, Nuria; Molinillo, José Mg; Macías, Francisco A
2018-03-01
Naphthoquinones are known for their broad range of biological activities. Given the increasing demands of consumers in relation to food quality and growing concerns about the impact of synthetic herbicides, it is necessary to search for new agrochemicals. Natural products and allelopathy provide new alternatives for the development of pesticides with lower toxicity and greater environmental compatibility. A structure-activity relationship to evaluate the effect of bioavailability was performed. A total of 44 O-acyl and O-alkyl derivatives of juglone and lawsone with different linear chain lengths were prepared. These compounds were tested on etiolated wheat coleoptiles, standard target species (STS) and four weeds, Echinochloa crus-galli L., Lolium rigidum Gaud., Lolium perenne L. and Avena fatua L. The results showed a strong influence of lipophilicity and, in most cases, the data fitted a logP-dependent quadratic mathematical model. The effects produced were mostly stunting and necrosis caused by growth inhibition. The potential structure and activity behaviour is described. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Metabolism of trans-3-hexadecenoic acid in broad bean.
Harwood, J L; James, A T
1975-01-02
1. Broad bean (Vicia faba) leaves contain rather high concentrations (about 4% of total fatty acids) of the trans-3-hexadecenoic acid. 2. Amounts of the acid increase with the age of the leaves and are absent from etiolated tissue. 3. Changes in the levels of trans-delta-4-hexadecenoic acid can be produced by subjecting the intact plants to various light/dark periods. 4. Chloroplasts isolated from broad-bean leaves show high rates of fatty acid synthesis from [1-14C]acetate. Synthesis is dependent on coenzyme A and ATP but is insensitive to the addition of exogenous acyl carrier protein. 5. The pattern of acids made includes about 20% palmitic, 5% hexadeconoic, 10% stearic and 60% oleic. trans-3-Hexadecenoic acid synthesis was most active in chloroplasts from plants exposed to the dark for 5 days and light for 3 days. 6. Arsenite addition inhibited stearate formation by isolated chloroplasts but resulted in a two-fold stimulation of overall synthesis. 7. The rate of fatty acid synthesis by isolated chloroplasts paralleled the changes in endogenous trans-3-hexadecenoic acid levels in the leaves from which they were isolated.
Allen, Trudie; Ingles, Patricia J; Praekelt, Uta; Smith, Harry; Whitelam, Garry C
2006-05-01
Plants use specialized photoreceptors to detect the amount, quality, periodicity and direction of light and to modulate their growth and development accordingly. These regulatory light signals often interact with other environmental cues. Exposure of etiolated Arabidopsis seedlings to red (R) or far-red (FR) light causes hypocotyls to grow in random orientations with respect to the gravitational vector, thus overcoming the signal from gravity to grow upwards. This light response, mediated by either phytochrome A or phytochrome B, represents a prime example of cross-talk between environmental signalling systems. Here, we report the isolation the mutant gil1 (for gravitropic in the light) in which hypocotyls continue to grow upwards after exposure of seedlings to R or FR light. The gil1 mutant displays no other phenotypic alterations in response to gravity or light. Cloning of GIL1 has identified a novel gene that is necessary for light-dependent randomization of hypocotyl growth orientation. Using gil1, we have demonstrated that phytochrome-mediated randomization of Arabidopsis hypocotyl orientation provides a fitness advantage to seedlings developing in patchy, low-light environments.
Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.
Prabhu, S Ashok; Ndlovu, Buyani; Engelbrecht, Juanita; van den Berg, Noëlani
2017-01-01
Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction.
Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study
Prabhu, S. Ashok; Ndlovu, Buyani; Engelbrecht, Juanita
2017-01-01
Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction. PMID:29053757
Taylor, Iain E. P.; Wallace, Julia C.; MacKay, Alex L.; Volke, Frank
1990-01-01
Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure. PMID:16667683
The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development.
Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter
2014-01-01
Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-like-protein (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development.
Immunological characterization of plant ornithine transcarbamylases
NASA Technical Reports Server (NTRS)
Slocum, R. D.; Williamson, C. L.; Poggenburg, C. A.; Lynes, M. A.
1990-01-01
Pea (Pisum sativum L.) ornithine transcarbamylase (OTC) antisera were used to investigate the immunological relatedness of several plant and animal OTC enzymes. The antisera immunoprecipitated OTC activity in all monocot and dicot species tested, and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of immunoprecipitated protein revealed monomeric proteins ranging from 35,200 to 36,800 daltons in size. Pea OTC antisera did not recognize mammalian OTC protein. OTC activity and protein levels detected on sodium dodecyl sulfate polyacrylamide gel electrophoresis immunoblots from homogenates of green leaf, etiolated epicotyl and cotyledon, and root tissues of pea were poorly correlated. This might result from differences in amounts of enzymatically active OTC protein in the homogenates. Alternatively, the antisera may fail to recognize different isozyme forms of OTC, which have been reported for some plant species. A putative cytosolic precursor OTC (pOTC) polypeptide exhibiting and Mr = 39,500 to 40,000 daltons was immunoprecipitated from in vitro translation mixtures of total pea leaf poly(A)+ RNA. The size of the pOTC polypeptide, as compared with mature OTC monomer (36,000 daltons), suggests that a 4 kilodalton N-terminal leader sequence, like that responsible for mitochondrial targeting of the mammalian enzyme, may be involved in organellar import of the plant enzyme.
Effect of Hypergravity on the Level of Heat Shock Proteins 70 and 90 in Pea Seedlings
NASA Astrophysics Data System (ADS)
Kozeko, Liudmyla; Kordyum, Elizabeth
2009-01-01
Exposure to hypergravity induces significant changes in gene expression of plants which are indicative of stress conditions. A substantial part of the general stress response is up-regulation of heat shock proteins (Hsp) which function as molecular chaperones. The objective of this research was to test the possible changes in the Hsp70 and Hsp90 level in response to short-term hypergravity exposure. In this study 5-day-old etiolated pea seedlings were exposed to centrifuge-induced hypergravity (3-14 g) for 15 min and 1 h and a part of the seedlings was sampled at 1.5 and 24 h after the exposures. Western blot analysis showed time-dependent changes in Hsp70 and Hsp90 levels: an increase under hypergravity and a tendency towards recovery of the normal content during re-adaptation. The quantity and time of their expression was correlated with the g-force level. These data suggest that short-term hypergravity acts as a stress which could increase the risk of protein denaturation and aggregation. Molecular chaperons induced during the stress may have an essential role in counteracting this risk.
Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings1
McDowell, Michael T.; Lagarias, J. Clark
2001-01-01
Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (PΦB) for photoactivity. In planta, biliverdin IXα (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme PΦB synthase to yield 3Z-PΦB. Here, we describe the >50,000-fold purification of PΦB synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, PΦB synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s−1, which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat PΦB synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of PΦB synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A Km for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 μm. PΦB synthase has a high affinity for its bilin substrate, with a sub-micromolar Km for BV. PMID:11500553
Is There a Role for the Apex in Shoot Geotropism?
Hart, James W.; Macdonald, Ian R.
1984-01-01
Experiments with horizontal etiolated sunflower (Helianthus annuus L.) seedlings supported centrally such that both apical and basal ends are free to react to geostimulus, revealed that the apical end commences curvature 1 to 2 hours earlier than the basal end. The later curvature in the basal region is a consequence of the absence of growth in the initial period rather than merely slower growth. A comparison of zonal growth rates in a vertical and a horizontal seedling confirmed that geostimulus induces a renewal of growth in a region where growth had ceased. Removing the apical half of the hypocotyl showed that the curvature resulting from this growth initiation in the basal region is dependent on attachment to the apical region. Evidence that this dependence is unlikely to be due to energy deficiency is adduced. The prior response of the apical end to geostimulus and the apically dependent later initiation of new growth in the basal region are compatible with the delay inherent in message transport from apex to base and are considered as evidence for apical involvement in the totality of the seedling's georesponse. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663410
The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development
Garcia-Molina, Antoni; Xing, Shuping; Huijser, Peter
2014-01-01
Proteins harboring the kin17 domain (KIN17) constitute a family of well-conserved eukaryotic nuclear proteins involved in nucleic acid metabolism. In mammals, KIN17 orthologs contribute to DNA replication, RNA splicing, and DNA integrity maintenance. Recently, we reported a functional characterization of an Arabidopsis thaliana KIN17 homolog (AtKIN17) that uncovered a role for this protein in tuning physiological responses during copper (Cu) deficiency and oxidative stress. However, functions similar to those described in mammals may also be expected in plants given the conservation of functional domains in KIN17 orthologs. Here, we provide additional data consistent with the participation of AtKIN17 in controlling general plant growth and development, as well as in response to UV radiation. Furthermore, the Arabidopsis genome codes for a second homolog to KIN17, we referred to as KIN17-LIKE-PROTEIN (KLP). KLP loss-of-function lines exhibited a reduced inhibition of root growth in response to copper excess and relatively elongated hypocotyls in etiolated seedlings. Altogether, our experimental data point to a general function of the kin17 domain proteins in plant growth and development. PMID:24713636
NASA Technical Reports Server (NTRS)
Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)
1998-01-01
Cytokinins are central regulators of plant growth and development, but little is known about their mode of action. By using differential display, we identified a gene, IBC6 (for induced by cytokinin), from etiolated Arabidopsis seedlings, that is induced rapidly by cytokinin. The steady state level of IBC6 mRNA was elevated within 10 min by the exogenous application of cytokinin, and this induction did not require de novo protein synthesis. IBC6 was not induced by other plant hormones or by light. A second Arabidopsis gene with a sequence highly similar to IBC6 was identified. This IBC7 gene also was induced by cytokinin, although with somewhat slower kinetics and to a lesser extent. The pattern of expression of the two genes was similar, with higher expression in leaves, rachises, and flowers and lower transcript levels in roots and siliques. Sequence analysis revealed that IBC6 and IBC7 are similar to the receiver domain of bacterial two-component response regulators. This homology, coupled with previously published work on the CKI1 histidine kinase homolog, suggests that these proteins may play a role in early cytokinin signaling.
Humplík, Jan F.; Bergougnoux, Véronique; Jandová, Michaela; Šimura, Jan; Pěnčík, Aleš; Tomanec, Ondřej; Rolčík, Jakub; Novák, Ondřej; Fellner, Martin
2015-01-01
Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings. PMID:25695830
Phytotoxic potential of Onopordum acanthium L. (Asteraceae).
Watanabe, Yusuke; Novaes, Paula; Varela, Rosa M; Molinillo, José M G; Kato-Noguchi, Hisashi; Macías, Francisco A
2014-08-01
Onopordum acanthium L. (Asteraceae) is a plant native to southern Europe and southwestern Asia, but it is invasive in disturbed areas and agricultural fields around the world, causing many agronomic problems by interfering with crops or preventing animals from grazing on pastures. Allelopathy could be one of the reasons that this plant has spread over different continents. The aim of the present study was to bioprospect O. acanthium leaf extracts through the isolation and purification of allelopathic secondary metabolites with phytotoxicity to explain their invasive behavior. Phytotoxic activity was tested using etiolated wheat coleoptiles. The most active extract was selected to perform a bioassay-guided isolation of two flavonoids, pectolarigenin (1) and scutellarein 4'-methyl ether (2), and two sesquiterpene lactones, elemanolide 11(13)-dehydromelitensin β-hydroxyisobutyrate (3) and acanthiolide (4). All compounds were isolated for the first time from O. acanthium, and acanthiolide (4) is described for the first time. Compound 3 strongly inhibited the growth of wheat coleoptiles and 1 showed an intermediate effect. The results indicate that these compounds could contribute to the invasion of O. acanthium in ecological systems and agricultural fields. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
NASA Technical Reports Server (NTRS)
Morre, D. James; Morre, Dorothy M.; Ternes, Philipp
2003-01-01
The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.
Physiology of Movements in the Stems of Seedling Pisum sativum L. cv Alaska 1
Britz, Steven J.; Galston, Arthur W.
1983-01-01
Phototropic response in etiolated pea (Pisum sativum L. cv Alaska) seedlings is poor. However, the curvature induced by unilateral blue light can be hastened and increased in magnitude by a previously administered red light pulse followed by several hours of darkness. Phytochrome is involved in the red light effect. Phototropic response was almost completely inhibited by removal of the apical bud and hook, but it was restored if exogenous indole-3-acetic acid was applied apically to the cut stump. Therefore, the stem contains both the phototropic photoreceptor and response mechanism. Perception of gravity and gravitropic response were also localized in the stem, but gravitropism was scarcely inhibited by decapitation. It was also observed that the kinetics and curvature pattern of gravitropism differed greatly from those of phototropism. Like phototropism, stem nutation required auxin and was promoted by red light. Unlike phototropism, photoenhanced nutational curvature required the apical hook and was propagated as a wave down the stem. Naphthylphthalamic acid inhibited, in order of decreasing effect, nutation, phototropism/gravitropism, and growth. Phototropism, gravitropism, and nutation appear to represent distinct forms of stem movement with fundamental differences in the mechanisms of curvature development. Images Fig. 3 PMID:16662824
Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings
NASA Technical Reports Server (NTRS)
Levine, L. H.; Levine, H. G.; Stryjewski, E. C.; Prima, V.; Piastuch, W. C.; Sager, J. S. (Principal Investigator)
2001-01-01
In order to explore the potential impact of microgravity on flavonoid biosynthesis, we examined isoflavonoid levels in soybean (Glycine max) tissues generated under both spaceflight and clinorotation conditions. A 6-day Space Shuttle-based microgravity exposure resulted in enhanced accumulation of isoflavone glycosides (daidzin, 6"-O-malonyl-7-O-glucosyl daidzein, genistin, 6"-O-malonyl-7-O-glucosyl genistein) in hypocotyl and root tissues, but reduced levels in cotyledons (relative to 1g controls on Earth). Soybean seedlings grown on a horizontally rotating clinostat for 3, 4 and 5 days exhibited (relative to a vertical clinorotation control) an isoflavonoid accumulation pattern similar to the space-grown tissues. Elevated isoflavonoid levels attributable to the clinorotation treatment were transient, with the greatest increase observed in the three-day-treated tissues and smaller increases in the four- and five-day-treated tissues. Differences between stresses presented by spaceflight and clinorotation and the resulting biochemical adaptations are discussed, as is whether the increase in isoflavonoid concentrations were due to differential rates of development under the "gravity" treatments employed. Results suggest that spaceflight exposure does not impair isoflavonoid accumulation in developing soybean tissues and that isoflavonoids respond positively to microgravity as a biochemical strategy of adaptation.
Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana
NASA Technical Reports Server (NTRS)
Janoudi, A. K.; Poff, K. L.
1993-01-01
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of desensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 micromoles m-2 s-1. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 micromole m-2 s-1 than at 0.3 micromole m-2 s-1. In addition, seedlings irradiated with blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs.
Sheen, Jenq-Yunn; Bogorad, Lawrence
1986-01-01
Transcripts of three distinct ribulose-1,5-bisphosphate carboxylase (RuBPC) small subunit (SS) genes account for ∼90% of the mRNA for this protein in maize leaves. Transcripts of two of them constitute >80% of the SS mRNA in 24-h greening maize leaves. The third gene contribute ∼10%. Transcripts of all three nuclear-encoded SS genes are detectable in bundle sheath (BSC) and mesophyll cells (MC) of etiolated maize leaves. The level of mRNA for each gene is different in etioplasts of MC but all drop during photoregulated development of chloroplasts in MC and follow a pattern of transitory rise and fall in BSC. The amounts of LS and SS proteins continue to increase steadily well after the mRNA levels reach their peaks in BSC. The molar ratio of mRNA for chloroplast-encoded RuBPC large subunit (LS) to the nuclear genome encoded SS is about 10:1 although LS and SS proteins are present in about equimolar amounts. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6. PMID:16453739
Jain, M; Tiwary, S; Gadre, R
2018-01-01
Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.
Development of transgenic crops based on photo-biotechnology.
Ganesan, Markkandan; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon
2017-11-01
The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses. © 2016 John Wiley & Sons Ltd.
Stable Membrane-Association of mRNAs in Etiolated, Greening and Mature Plastids.
Legen, Julia; Schmitz-Linneweber, Christian
2017-08-31
Chloroplast genes are transcribed as polycistronic precursor RNAs that give rise to a multitude of processing products down to monocistronic forms. Translation of these mRNAs is realized by bacterial type 70S ribosomes. A larger fraction of these ribosomes is attached to chloroplast membranes. This study analyzed transcriptome-wide distribution of plastid mRNAs between soluble and membrane fractions of purified plastids using microarray analyses and validating RNA gel blot hybridizations. To determine the impact of light on mRNA localization, we used etioplasts, greening plastids and mature chloroplasts from Zea mays as a source for membrane and soluble extracts. The results show that the three plastid types display an almost identical distribution of RNAs between the two organellar fractions, which is confirmed by quantitative RNA gel blot analyses. Furthermore, they reveal that different RNAs processed from polycistronic precursors show transcript-autonomous distribution between stroma and membrane fractions. Disruption of ribosomes leads to release of mRNAs from membranes, demonstrating that attachment is likely a direct consequence of translation. We conclude that plastid mRNA distribution is a stable feature of different plastid types, setting up rapid chloroplast translation in any plastid type.
Ribonucleic Acid Synthesis by Cucumber Chromatin
Johnson, Kenneth D.; Purves, William K.
1970-01-01
When intact etiolated 2-day cucumber (Cucumis sativus) embryos were treated with indoleacetic acid (IAA), gibberellin A7 (GA7), or kinetin, chromatin derived from the embryonic axes exhibited an increased capacity to support RNA synthesis in either the presence or the absence of bacterial RNA polymerase. An IAA effect on cucumber RNA polymerase activity was evident after 4 hours of hormone treatment; the IAA effect on DNA template activity (bacterial RNA polymerase added) occurred after longer treatments (12 hours). GA7 also promoted template activity, but again only after a prior stimulation of endogenous chromatin activity. After 12 hours of kinetin treatment, both endogenous chromatin and DNA template activities were substantially above control values, but longer kinetin treatments caused these activities to decline in magnitude. When chromatin was prepared from hypocotyl segments that were floated on a GA7 solution, a GA-induced increase in endogenous chromatin activity occurred, but only if cotyledon tissue was left attached to the segments during the period of hormone treatment. Age of the seedling tissue had a profound influence on the chromatin characteristics. With progression of development from the 2-day to the 4-day stage, the endogenous chromatin activity declined while the DNA template activity increased. PMID:16657509
Smet, Dajo; Žádníková, Petra; Vandenbussche, Filip; Benková, Eva; Van Der Straeten, Dominique
2014-06-01
Germination of Arabidopsis seeds in darkness induces apical hook development, based on a tightly regulated differential growth coordinated by a multiple hormone cross-talk. Here, we endeavoured to clarify the function of brassinosteroids (BRs) and cross-talk with ethylene in hook development. An automated infrared imaging system was developed to study the kinetics of hook development in etiolated Arabidopsis seedlings. To ascertain the photomorphogenic control of hook opening, the system was equipped with an automatic light dimmer. We demonstrate that ethylene and BRs are indispensable for hook formation and maintenance. Ethylene regulation of hook formation functions partly through BRs, with BR feedback inhibition of ethylene action. Conversely, BR-mediated extension of hook maintenance functions partly through ethylene. Furthermore, we revealed that a short light pulse is sufficient to induce rapid hook opening. Our dynamic infrared imaging system allows high-resolution, kinetic imaging of up to 112 seedlings in a single experimental run. At this high throughput, it is ideally suited to rapidly gain insight in pathway networks. We demonstrate that BRs and ethylene cooperatively regulate apical hook development in a phase-dependent manner. Furthermore, we show that light is a predominant regulator of hook opening, inhibiting ethylene- and BR-mediated postponement of hook opening. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Kozeko, L.
Microgravity is an abnormal and so stress factor for plants. Expression of known stress-related genes is appeared to implicate in the cell response to different kinds of stress. Heat shock proteins HSP70 and HSP90 are present in plant cells under the normal growth conditions and their quantity increases during stress. The effect of simulated microgravity on expression of HSP70 and HSP90 was studied in etiolated Pisum sativum seedlings grown on the horizontal clinostat (2 rpm) from seed germination for 3 days. Seedlings were also subjected to two other types of stressors: vertical clinorotatoin (2 rpm) and 2 h temperature elevation (40°C). HSPs' level was measured by ELISA. The quantity of both HSPs increased more than in three times in the seedlings on the horizontal clinostat in comparison with the stationary 1 g control. Vertical clinorotation also increased HSPs' level but less at about 20% than horizontal one. These effects were comparable with the influence of temperature elevation. The data presented suggest that simulated microgravity upregulate HSP70 and HSP90 expression. The increased HSPs' level might evidence the important functional role of these proteins in plant adaptation to microgravity. We are currently investigating the contribution of constitutive or inducible forms of the HSPs in this stress response.
Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth
NASA Technical Reports Server (NTRS)
Melan, M. A.; Cosgrove, D. J.
1988-01-01
Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.
NASA Technical Reports Server (NTRS)
Sedbrook, John C.; Carroll, Kathleen L.; Hung, Kai F.; Masson, Patrick H.; Somerville, Chris R.
2002-01-01
To investigate how roots respond to directional cues, we characterized a T-DNA-tagged Arabidopsis mutant named sku5 in which the roots skewed and looped away from the normal downward direction of growth on inclined agar surfaces. sku5 roots and etiolated hypocotyls were slightly shorter than normal and exhibited a counterclockwise (left-handed) axial rotation bias. The surface-dependent skewing phenotype disappeared when the roots penetrated the agar surface, but the axial rotation defect persisted, revealing that these two directional growth processes are separable. The SKU5 gene belongs to a 19-member gene family designated SKS (SKU5 Similar) that is related structurally to the multiple-copper oxidases ascorbate oxidase and laccase. However, the SKS proteins lack several of the conserved copper binding motifs characteristic of copper oxidases, and no enzymatic function could be assigned to the SKU5 protein. Analysis of plants expressing SKU5 reporter constructs and protein gel blot analysis showed that SKU5 was expressed most strongly in expanding tissues. SKU5 was glycosylated and modified by glycosyl phosphatidylinositol and localized to both the plasma membrane and the cell wall. Our observations suggest that SKU5 affects two directional growth processes, possibly by participating in cell wall expansion.
Metabolism of arginine by aging and 7 day old pumpkin seedlings.
Splittstoesser, W E
1969-03-01
The metabolism of arginine by etiolated pumpkin (Cucurbita moschata) seedlings was studied over various time and age intervals by injecting arginine-U-(14)C into the cotyledons. At most, 25% of the (14)C was transported from the cotyledon to the axis tissue and the amount of this transport decreased with increasing age of the seedlings. The cotyledons of 25 day old plants contained 60% of the administered (14)C as unmetabolized arginine. Little (14)C was in sugars and it appeared that arginine was the primary translocation product. Time course studies showed that arginine was extensively metabolized and the labeling patterns suggest that different pathways were in operation in the axis and cotyledons. The amount of arginine incorporated into cotyledonary protein show that synthesis and turnover were occurring at rapid rate. Only 25% of the label incorporated into protein by 1.5 hr remained after 96 hr. The label in protein was stable in the axis tissue. By 96 hr 50% of the administered label occurred as (14)CO(2) and it appeared that arginine was metabolized, through glutamate, by the citrio acid cycle in the cotyledons. The experiments showed that an extensive conversion of arginine carbon into other amino acids did not occur.
Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis
Sullivan, Stuart; Hart, Jaynee E.; Rasch, Patrick; Walker, Catriona H.; Christie, John M.
2016-01-01
Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m−2 s−1) is enhanced by overhead pre-treatment with red light (20 μmol m−2 s−1 for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m−2 s−1). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m−2 s−1 unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis. PMID:27014313
NASA Technical Reports Server (NTRS)
Dauwalder, M.; Roux, S. J.; Hardison, L.
1986-01-01
Immunofluorescence techniques have been used to study the distribution of calmodulin in several tissues in young etiolated pea (Pisum sativum L.) seedlings. A fairly uniform staining was seen in the nucleoplasm and background cytoplasm of most cell types. Cell walls and nucleoli were not stained. In addition, patterned staining reactions were seen in many cells. In cells of the plumule, punctate staining of the cytoplasm was common, and in part this stain appeared to be associated with the plastids. A very distinctive staining of amyloplasts was seen in the columella of the root cap. Staining associated with cytoskeletal elements could be shown in division stages. By metaphase, staining of the spindle region was quite evident. In epidermal cells of the stem and along the underside of the leaf there was an intense staining of the vacuolar contents. Guard cells lacked this vacuolar stain. Vacuolar staining was sometimes seen in cells of the stele, but the most distinctive pattern in the stele was associated with young conducting cells of the xylem. These staining patterns are consistent with the idea that the interactions of plastids and the cytoskeletal may be one of the Ca(2+)-mediated steps in the response of plants to environmental stimuli. Nuclear functions may also be controlled, at least in part, by Ca2+.
Larsen, Paul B; Cancel, Jesse D
2004-05-01
By screening etiolated Arabidopsis seedlings for mutants with aberrant ethylene-related phenotypes, we identified a mutant that displays features of the ethylene-mediated triple response even in the absence of ethylene. Further characterization showed that the phenotype observed for the dark-grown seedlings of this mutant is reversible by prevention of ethylene perception and is dependent on a modest increase in ethylene production correlated with an increase in 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) activity in the hypocotyl. Molecular characterization of leaves of the mutant revealed severely impaired induction of basic chitinase (chiB) and plant defensin (PDF)1.2 following treatment with jasmonic acid and/or ethylene. Positional cloning of the mutation resulted in identification of a 49-bp deletion in RCE1 (related to ubiquitin 1 (RUB1)-conjugating enzyme), which has been demonstrated to be responsible for covalent attachment of RUB1 to the SCF (Skpl Cdc 53 F-box) ubiquitin ligase complex to modify its activity. Our analyses with rce1-2 demonstrate a previously unknown requirement for RUB1 modification for regulation of ethylene biosynthesis and proper induction of defense-related genes in Arabidopsis.
Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis.
Sullivan, Stuart; Hart, Jaynee E; Rasch, Patrick; Walker, Catriona H; Christie, John M
2016-01-01
Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m(-2) s(-1)) is enhanced by overhead pre-treatment with red light (20 μmol m(-2) s(-1) for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m(-2) s(-1)). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m(-2) s(-1) unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis.
Stowe-Evans, Emily L.; Luesse, Darron R.; Liscum, Emmanuel
2001-01-01
The induction of phototropism in etiolated (dark-grown) seedlings exposed to an unidirectional pulse or extended irradiation with low fluence rate blue light (BL) requires the action of the phototropin (nph1) BL receptor. Although cryptochromes and phytochromes are not required for phototropic induction, these photoreceptors do modulate the magnitude of curvature resulting from phototropin activation. Modulatory increases in the magnitude of phototropic curvature have been termed “enhancement.” Here, we show that phototropic enhancement is primarily a phytochrome A (phyA)-dependent red/far-red-reversible low fluence response. This phyA-dependent response is genetically separable from the basal phototropin-dependent response, as demonstrated by its retention under extended irradiation conditions in the nph4 mutant background, which normally lacks the basal BL-induced response. It is interesting that the nph4 mutants fail to exhibit the basal phototropin-dependent and phyA-dependent enhancement responses under limiting light conditions. Given that NPH4 encodes a transcriptional activator, auxin response factor 7 (ARF7), we hypothesize that the ultimate target(s) of phyA action during the phototropic enhancement response is a rate-limiting ARF-containing transcriptional complex in which the constituent ARFs can vary in identity or activity depending upon the irradiation condition. PMID:11402210
Xiao, Chaowen; Somerville, Chris; Anderson, Charles T
2014-03-01
Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1's involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.
Mechanism of gibberellin-dependent stem elongation in peas
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.; Sovonick-Dunford, S. A.
1989-01-01
Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.
A Temporarily Red Light-Insensitive Mutant of Tomato Lacks a Light-Stable, B-Like Phytochrome.
Van Tuinen, A.; Kerckhoffs, LHJ.; Nagatani, A.; Kendrick, R. E.; Koornneef, M.
1995-01-01
We have selected four recessive mutants in tomato (Lycopersicon esculentum Mill.) that, under continuous red light (R), have long hypocotyls and small cotyledons compared to wild type (WT), a phenotype typical of phytochrome B (phyB) mutants of other species. These mutants, which are allelic, are only insensitive to R during the first 2 days upon transition from darkness to R, and therefore we propose the gene symbol tri (temporarily red light insensitive). White light-grown mutant plants have a more elongated growth habit than that of the WT. An immunochemically and spectrophotometrically detectable phyB-like polypeptide detectable in the WT is absent or below detection limits in the tri1 mutant. In contrast to the absence of an elongation growth response to far-red light (FR) given at the end of the daily photoperiod (EODFR) in all phyB-deficient mutants so far characterized, the tri1 mutant responds to EODFR treatment. The tri1 mutant also shows a strong response to supplementary daytime far-red light. We propose that the phyB-like phytochrome deficient in the tri mutants plays a major role during de-etiolation and that other light-stable phytochromes can regulate the EODFR and shade-avoidance responses in tomato. PMID:12228517
NASA Technical Reports Server (NTRS)
Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.
1998-01-01
The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.
Sharma, Pooja; Chatterjee, Mithu; Burman, Naini; Khurana, Jitendra P
2014-04-01
The blue light photoreceptors cryptochromes are ubiquitous in higher plants and are vital for regulating plant growth and development. In spite of being involved in controlling agronomically important traits like plant height and flowering time, cryptochromes have not been extensively characterized from agriculturally important crops. Here we show that overexpression of CRY1 from Brassica napus (BnCRY1), an oilseed crop, results in short-statured Brassica transgenics, likely to be less prone to wind and water lodging. The overexpression of BnCRY1 accentuates the inhibition of cell elongation in hypocotyls of transgenic seedlings. The analysis of hypocotyl growth inhibition and anthocyanin accumulation responses in BnCRY1 overexpressors substantiates that regulation of seedling photomorphogenesis by cry1 is dependent on light intensity. This study highlights that the photoactivated cry1 acts through coordinated induction and suppression of specific downstream genes involved in phytohormone synthesis or signalling, and those involved in cell wall modification, during de-etiolation of Brassica seedlings. The microarray-based transcriptome profiling also suggests that the overexpression of BnCRY1 alters abiotic/biotic stress signalling pathways; the transgenic seedlings were apparently oversensitive to abscisic acid (ABA) and mannitol. © 2013 John Wiley & Sons Ltd.
Crowell, Elizabeth Faris; Timpano, Hélène; Desprez, Thierry; Franssen-Verheijen, Tiny; Emons, Anne-Mie; Höfte, Herman; Vernhettes, Samantha
2011-07-01
It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.
Crowell, Elizabeth Faris; Timpano, Hélène; Desprez, Thierry; Franssen-Verheijen, Tiny; Emons, Anne-Mie; Höfte, Herman; Vernhettes, Samantha
2011-01-01
It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy. PMID:21742992
Magnucka, Elzbieta G; Suzuki, Yoshikatsu; Pietr, Stanislaw J; Kozubek, Arkadiusz; Zarnowski, Robert
2009-10-01
Cycloate inhibits the biosynthesis of very-long-chain fatty acids, the essential constituents of plant waxes and suberin. Fatty acids also serve as precursors of aliphatic carbon chains in resorcinolic lipids, which play a fundamental role in the plant defence system against fungal pathogens. In this study, the effect of cycloate on the biosynthesis of 5-n-alkylresorcinols in rye seedlings (Secale cereale L.) grown under various light and thermal conditions was examined. The content of alkylresorcinols biosynthesised in rye was generally increased by the herbicide in both green and etiolated plants. The presence of cycloate also affected patterns of alkylresorcinol homologues in plants grown at 15 and 22 degrees C; very-long-side-chain compounds were less abundant, whereas both short-chain saturated and unsaturated homologues were generally accumulated. No cycloate-related effects caused by homologue pattern modifications were observed at elevated temperature. This study extends present understanding of the mode of action of thiocarbamate herbicides. Cycloate markedly affected the biosynthesis of very-long-side-chain resorcinolic lipids in rye seedlings, confirming the existence of parallels in both fatty acid and alkylresorcinol biosynthetic pathways. The observed cycloate-driven accumulation of 5-n-alkylresorcinols may improve the resistance of cereals to infections caused by microbial pathogens. Copyright 2009 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Vogel, J. P.; Schuerman, P.; Woeste, K.; Brandstatter, I.; Kieber, J. J.; Evans, M. L. (Principal Investigator)
1998-01-01
Cytokinins elevate ethylene biosynthesis in etiolated Arabidopsis seedlings via a post-transcriptional modification of one isoform of the key biosynthetic enzyme ACC synthase. In order to begin to dissect the signaling events leading from cytokinin perception to this modification, we have isolated a series of mutants that lack the ethylene-mediated triple response in the presence of cytokinin due to their failure to increase ethylene biosynthesis. Analysis of genetic complementation and mapping revealed that these Cin mutants (cytokinin-insensitive) represent four distinct complementation groups, one of which, cin4, is allelic to the constitutive photomorphogenic mutant fus9/cop10. The Cin mutants have subtle effects on the morphology of adult plants. We further characterized the Cin mutants by analyzing ethylene biosynthesis in response to various other inducers and in adult tissues, as well as by assaying additional cytokinin responses. The cin3 mutant did not disrupt ethylene biosynthesis under any other conditions, nor did it disrupt any other cytokinin responses. Only cin2 disrupted ethylene biosynthesis in multiple circumstances. cin1 and cin2 made less anthocyanin in response to cytokinin. cin1 also displayed reduced shoot initiation in tissue culture in response to cytokinin, suggesting that it affects a cytokinin signaling element.
Evaluation of bakanae disease progression caused by Fusarium fujikuroi in Oryza sativa L.
Hwang, In Sun; Kang, Woo-Ri; Hwang, Duk-Ju; Bae, Shin-Chul; Yun, Sung-Hwan; Ahn, Il-Pyung
2013-12-01
Bakanae disease caused by Fusarium fujikuroi is an important fungal disease in rice. Among the seven strains isolated from symptomatic rice grains in this study, one strain, FfB14, triggered severe root growth inhibition and decay in the crown and root of rice seedlings. The remaining six strains caused typical Bakanae symptoms such as etiolation and abnormal succulent rice growth. To reveal the relationship between mycelial growth in the infected tissues and Bakanae disease progression, we have established a reliable quantification method using real time PCR that employs a primer pair and dual-labeled probe specific to a unigene encoding F. fujikuroi PNG1 (FfPNG1), which is located upstream of the fumonisin biosynthesis gene cluster. Plotting the crossing point (CP) values from the infected tissue DNAs on a standard curve revealed the active fungal growth of FfB14 in the root and crown of rice seedlings, while the growth rate of FfB20 in rice was more than 4 times lower than FfB14. Massive infective mycelial growth of FfB14 was evident in rice stems and crown; however, FfB20 did not exhibit vigorous growth. Our quantitative evaluation system is applicable for the identification of fungal virulence factors other than gibberellin.
Dancing in the dark: darkness as a signal in plants.
Seluzicki, Adam; Burko, Yogev; Chory, Joanne
2017-11-01
Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface. © 2017 John Wiley & Sons Ltd.
Candido, Lafayette P; Varela, Rosa M; Torres, Ascensión; Molinillo, José M G; Gualtieri, Sonia C J; Macías, Francisco A
2016-08-01
Despite the increase in recent decades in herbicide research on the potential of native plants, current knowledge is considered to be low. Very few studies have been carried out on the chemical profile or the biological activity of the Brazilian savanna (Cerrado) species. In the study reported here, the allelopathic activity of AcOEt and MeOH extracts of leaves, stems, and roots from Ocotea pulchella Nees was evaluated. The extracts were assayed on etiolated wheat coleoptiles. The AcOEt leaf extract was the most active and this was tested on standard target species (STS). Lycopersicon esculentum and Lactuca sativa were the most sensitive species in this test. A total of eleven compounds have been isolated and characterized. Compounds 1, 2, 4, and 6 have not been identified previously from O. pulchella and ocoteol (9) is reported for the first time in the literature. Eight compounds were tested on wheat coleoptile growth, and spathulenol, benzyl salicylate, and benzyl benzoate showed the highest activities. These compounds showed inhibitory activity on L. esculentum. The values obtained correspond to the activity exhibited by the extract and these compounds may therefore be responsible for the allelopathic activity shown by O. pulchella. © 2016 Wiley-VHCA AG, Zürich.
Regulation of Glyoxysomal Enzymes during Germination of Cucumber
Lamb, Jamie E.; Riezman, Howard; Becker, Wayne M.; Leaver, Christopher J.
1978-01-01
The glyoxysomal enzymes isocitrate lyase and catalase have been isolated from etiolated cucumber (Cucumis sativus) cotyledons. The enzymes co-purified through polyethyleneimine precipitation and (NH4)2SO4 precipitation, and were resolved by gel filtration on Sepharose 6B followed by chromatography on diethylaminoethyl-cellulose (isocitrate lyase) or hydroxylapatite (catalase). Purity of the isolated enzymes was assessed by sodium dodecyl sulfate-polyacrylamide electrophoresis, isoelectric focusing, and immunoelectrophoresis. Antibodies raised to both enzymes in rabbits and in tumor-bearing mice were shown to be monospecific by immunoelectrophoresis against total homogenate protein. Isocitrate lyase and catalase represent about 0.56% and 0.1%, respectively, of total extractable cotyledonary protein. Both enzymes appear to be present in a single form. Molecular weights of the native enzymes and its subunits are 225,000 and 54,500 for catalase, and 325,000 and 63,500 for isocitrate lyase. The pH optimum for isocitrate lyase is about 6.75 in morpholinopropane sulfonic acid buffer, but varies significantly with buffer used. The Km for d-isocitrate is 39 micromolar. A double antibody technique (rabbit anti-isocitrate lyase followed by 125I-labeled goat anti-rabbit immunoglobulin G) has been used to visualize isocitrate lyase subunit protein on sodium dodecyl sulfate-polyacrylamide with high specificity and sensitivity. ImagesFig. 5Fig. 6Fig. 7Fig. 8 PMID:16660600
Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei
NASA Technical Reports Server (NTRS)
Li, H.; Dauwalder, M.; Roux, S. J.
1991-01-01
Almost all the Ca(2+)-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 x 10(-7) molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca(2+)-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca(2+)-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.
Hartmann, Lisa; Drewe-Boß, Philipp; Wießner, Theresa; Wagner, Gabriele; Geue, Sascha; Lee, Hsin-Chieh; Obermüller, Dominik M; Kahles, André; Behr, Jonas; Sinz, Fabian H; Rätsch, Gunnar; Wachter, Andreas
2016-11-01
Plants use light as source of energy and information to detect diurnal rhythms and seasonal changes. Sensing changing light conditions is critical to adjust plant metabolism and to initiate developmental transitions. Here, we analyzed transcriptome-wide alterations in gene expression and alternative splicing (AS) of etiolated seedlings undergoing photomorphogenesis upon exposure to blue, red, or white light. Our analysis revealed massive transcriptome reprogramming as reflected by differential expression of ∼20% of all genes and changes in several hundred AS events. For more than 60% of all regulated AS events, light promoted the production of a presumably protein-coding variant at the expense of an mRNA with nonsense-mediated decay-triggering features. Accordingly, AS of the putative splicing factor REDUCED RED-LIGHT RESPONSES IN CRY1CRY2 BACKGROUND1, previously identified as a red light signaling component, was shifted to the functional variant under light. Downstream analyses of candidate AS events pointed at a role of photoreceptor signaling only in monochromatic but not in white light. Furthermore, we demonstrated similar AS changes upon light exposure and exogenous sugar supply, with a critical involvement of kinase signaling. We propose that AS is an integration point of signaling pathways that sense and transmit information regarding the energy availability in plants. © 2016 American Society of Plant Biologists. All rights reserved.
A Strategy to Validate the Role of Callose-mediated Plasmodesmal Gating in the Tropic Response.
Kumar, Ritesh; Wu, Shu Wei; Iswanto, Arya Bagus Boedi; Kumar, Dhinesh; Han, Xiao; Kim, Jae-Yean
2016-04-17
The plant hormone auxin plays an important role in many growth and developmental processes, including tropic responses to light and gravity. The establishment of an auxin gradient is a key event leading to phototropism and gravitropism. Previously, polar auxin transport (PAT) was shown to establish an auxin gradient in different cellular domains of plants. However, Han et al. recently demonstrated that for proper auxin gradient formation, plasmodesmal callose-mediated symplasmic connectivity between the adjacent cells is also a critical factor. In this manuscript, the strategy to elucidate the role of particular genes, which can affect phototropism and gravitropism by altering the symplasmic connectivity through modulating plasmodesmal callose synthesis, is discussed. The first step is to screen aberrant tropic responses from 3-day-old etiolated seedlings of mutants or over-expression lines of a gene along with the wild type. This preliminary screening can lead to the identification of a range of genes functioning in PAT or controlling symplasmic connectivity. The second screening involves the sorting of candidates that show altered tropic responses by affecting symplasmic connectivity. To address such candidates, the movement of a symplasmic tracer and the deposition of plasmodesmal callose were examined. This strategy would be useful to explore new candidate genes that can regulate symplasmic connectivity directly or indirectly during tropic responses and other developmental processes.
Desensitization and recovery of phototropic responsiveness in Arabidopsis thaliana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janoudi, A.K.; Poff, K.L.
1993-04-01
Phototropism is induced by blue light, which also induces desensitization, a partial or total loss of phototropic responsiveness. The fluence and fluence-rate dependence of densensitization and recovery from desensitization have been measured for etiolated and red light (669-nm) preirradiated Arabidopsis thaliana seedlings. The extent of desensitization increased as the fluence of the desensitizing 450-nm light was increased from 0.3 to 60 [mu]mol m[sup [minus]2] s[sup [minus]1]. At equal fluences, blue light caused more desensitization when given at a fluence rate of 1.0 [mu]mol m[sup [minus]2] s[sup [minus]1] than at 0.3 [mu]mol m[sup [minus]2] s[sup [minus]1]. In addition, seedlings irradiated withmore » blue light at the higher fluence rate required a longer recovery time than seedlings irradiated at the lower fluence rate. A red light preirradiation, probably mediated via phytochrome, decreased the time required for recovery from desensitization. The minimum time for detectable recovery was about 65 s, and the maximum time observed was about 10 min. It is proposed that the descending arm of the fluence-response relationship for first positive phototropism is a consequence of desensitization, and that the time threshold for second positive phototropism establishes a period during which recovery from desensitization occurs. 11 refs., 6 figs.« less
NASA Technical Reports Server (NTRS)
Kigel, J.; Cosgrove, D. J.
1991-01-01
The underlying mechanism of photoinhibition of stem elongation by blue (BL) and red light (RL) was studied in etiolated seedlings of pea (Pisum sativum L. cv Alaska). Brief BL irradiations resulted in fast transient inhibition of elongation, while a delayed (lag approximately 60 minutes) but prolonged inhibition was observed after brief RL. Possible changes in the hydraulic and wall properties of the growing cells during photoinhibition were examined. Cell sap osmotic pressure was unaffected by BL and RL, but both irradiations increased turgor pressure by approximately 0.05 megapascal (pressure-probe technique). Cell wall yielding was analyzed by in vivo stress relaxation (pressure-block technique). BL and RL reduced the initial rate of relaxation by 38 and 54%, while the final amount of relaxation was decreased by 48 and 10%, respectively. These results indicate that RL inhibits elongation mainly by lowering the wall yield coefficient, while most of the inhibitory effect of BL was due to an increase of the yield threshold. Mechanical extensibility of cell walls (Instron technique) was decreased by BL and RL, mainly due to a reduction in the plastic component of extensibility. Thus, photoinhibitions of elongation by both BL and RL are achieved through changes in cell wall properties, and are not due to effects on the hydraulic properties of the cell.
Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.
Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T
1996-10-31
Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.
Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen
2016-01-01
Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. PMID:26527657
Thermoinactivation analysis of vacuolar H(+)-pyrophosphatase.
Yang, Su J; Jiang, Shih S; Hsiao, Yi Y; Van, Ru C; Pan, Yih J; Pan, Rong L
2004-06-07
Vacuolar H(+)-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) catalyzes both the hydrolysis of PP(i) and the electrogenic translocation of proton from the cytosol to the lumen of the vacuole. Vacuolar H(+)-PPase, purified from etiolated hypocotyls of mung bean (Vigna radiata L.), is a homodimer with a molecular mass of 145 kDa. To investigate the relationship between structure and function of this H(+)-translocating enzyme, thermoinactivation analysis was employed. Thermoinactivation studies suggested that vacuolar H(+)-PPase consists of two distinct states upon heat treatment and exhibited different transition temperatures in the presence and absence of ligands (substrate and inhibitors). Substrate protection of H(+)-PPase stabilizes enzyme structure by increasing activation energy from 54.9 to 70.2 kJ/mol. We believe that the conformation of this enzyme was altered in the presence of substrate to protect against the thermoinactivation. In contrast, the modification of H(+)-PPase by inhibitor (fluorescein 5'-isothiocyanate; FITC) augmented the inactivation by heat treatment. The native, substrate-bound, and FITC-labeled vacuolar H(+)-PPases possess probably distinct conformation and show different modes of susceptibility to thermoinactivation. Our results also indicate that the structure of one subunit of this homodimer exerts long distance effect on the other, suggesting a specific subunit-subunit interaction in vacuolar H(+)-PPase. A working model was proposed to interpret the relationship of the structure and function of vacuolar H(+)-PPase.
Davuluri, Ganga Rao; van Tuinen, Ageeth; Mustilli, Anna Chiara; Manfredonia, Alessandro; Newman, Robert; Burgess, Diane; Brummell, David A.; King, Stephen R.; Palys, Joe; Uhlig, John; Pennings, Henk M. J.; Bowler, Chris
2013-01-01
Summary The tomato HIGH PIGMENT-2 gene encodes an orthologue of the Arabidopsis nuclear protein DE-ETIOLATED 1 (DET1). From genetic analyses it has been proposed that DET1 is a negative regulator of light signal transduction, and recent results indicate that it may control light-regulated gene expression at the level of chromatin remodelling. To gain further understanding about the function of DET1 during plant development, we generated a range of overexpression constructs and introduced them into tomato. Unexpectedly, we only observed phenotypes characteristic of DET1 inactivation, i.e. hyper-responsiveness to light. Molecular analysis indicated in all cases that these phenotypes were a result of suppression of endogenous DET1 expression, due to post-transcriptional gene silencing. DET1 silencing was often lethal when it occurred at relatively early stages of plant development, whereas light hyper-responsive phenotypes were obtained when silencing occurred later on. The appearance of phenotypes correlated with the generation of siRNAs but not DNA hypermethylation, and was most efficient when using constructs with mutations in the DET1 coding sequence or with constructs containing only the 3′-terminal portion of the gene. These results indicate an important function for DET1 throughout plant development and demonstrate that silencing of DET1 in fruits results in increased carotenoids, which may have biotechnological potential. PMID:15469492
Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J; Anderson, Charles T
2016-01-01
Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.
Chen, Xiaoping; Li, Hongjie; Pandey, Manish K.; Yang, Qingli; Wang, Xiyin; Garg, Vanika; Li, Haifen; Chi, Xiaoyuan; Doddamani, Dadakhalandar; Hong, Yanbin; Upadhyaya, Hari; Guo, Hui; Khan, Aamir W.; Zhu, Fanghe; Zhang, Xiaoyan; Pan, Lijuan; Pierce, Gary J.; Zhou, Guiyuan; Krishnamohan, Katta A. V. S.; Chen, Mingna; Zhong, Ni; Agarwal, Gaurav; Li, Shuanzhu; Chitikineni, Annapurna; Zhang, Guo-Qiang; Sharma, Shivali; Chen, Na; Liu, Haiyan; Janila, Pasupuleti; Li, Shaoxiong; Wang, Min; Wang, Tong; Sun, Jie; Li, Xingyu; Li, Chunyan; Wang, Mian; Yu, Lina; Wen, Shijie; Singh, Sube; Yang, Zhen; Zhao, Jinming; Zhang, Chushu; Yu, Yue; Bi, Jie; Zhang, Xiaojun; Paterson, Andrew H.; Wang, Shuping; Liang, Xuanqiang; Varshney, Rajeev K.; Yu, Shanlin
2016-01-01
Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45–56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis. For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity. PMID:27247390
Irshad, Muhammad; Canut, Hervé; Borderies, Gisèle; Pont-Lezica, Rafael; Jamet, Elisabeth
2008-01-01
Background Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. Results Two developmental stages (active growth and after growth arrest) were compared. A new strategy consisting of high performance cation exchange chromatography and mono-dimensional electrophoresis was established for separation of cell wall proteins. This work allowed identification of 137 predicted secreted proteins, among which 51 had not been identified previously. Apart from expected proteins known to be involved in cell wall extension such as xyloglucan endotransglucosylase-hydrolases, expansins, polygalacturonases, pectin methylesterases and peroxidases, new proteins were identified such as proteases, proteins related to lipid metabolism and proteins of unknown function. Conclusion This work highlights the CWP dynamics that takes place between the two developmental stages. The presence of proteins known to be related to cell wall extension after growth arrest showed that these proteins may play other roles in cell walls. Finally, putative regulatory mechanisms of protein biological activity are discussed from this global view of cell wall proteins. PMID:18796151
Balanced cell proliferation and expansion is essential for flowering stem growth control.
Ferjani, Ali; Hanai, Kenya; Gunji, Shizuka; Maeda, Saori; Sawa, Shinichiro; Tsukaya, Hirokazu
2015-01-01
The postembryonic development of aboveground plant organs relies on a continuous supply of cells from the shoot apical meristem. Previous studies of developmental regulation in leaves and flowers have revealed the crucial role of coordinated cell proliferation and differentiation during organogenesis. However, the importance of this coordination has not been examined in flowering stems. Very recently, we attempted to identify regulatory factors that maintain flowering stem integrity. We found that the increased cell number in clavata (clv) mutants and the decreased cell size in de-etiolated (det)3-1 resulted in flowering stems that were thicker and thinner, respectively, than in wild-type (WT) plants. Interestingly, in the cell proliferation- and cell expansion-defective double mutant clv det3-1, the flowering stems often exhibited severe cracking, resulting in exposure of their inner tissues. In this study, further quantification of the cellular phenotypes in the cotyledons and leaves revealed no differences between det3-1 and clv3 det3-1. Together, the above findings suggest that the clv3 mutation in a det3-1 background primarily affects flowering stems, while its effect on other organs is likely negligible. We propose that the coordination between cell proliferation and differentiation is not only important during leaf development, but also plays a role in the growth control of Arabidopsis flowering stems.
Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells.
Kobylińska, Agnieszka; Borek, Sławomir; Posmyk, Małgorzata M
2018-05-01
Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Brassinosteroid Regulates Seed Size and Shape in Arabidopsis1[W][OPEN
Jiang, Wen-Bo; Huang, Hui-Ya; Hu, Yu-Wei; Zhu, Sheng-Wei; Wang, Zhi-Yong; Lin, Wen-Hui
2013-01-01
Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integument cell length. The det2 mutant also showed delay in embryo development, with reduction in both the size and number of embryo cells. Pollination of det2 flowers with wild-type pollen yielded seeds of normal size but still shortened shape, indicating that the BR produced by the zygotic embryo and endosperm is sufficient for increasing seed volume but not for seed elongation, which apparently requires BR produced from maternal tissues. BR activates expression of SHORT HYPOCOTYL UNDER BLUE1, MINISEED3, and HAIKU2, which are known positive regulators of seed size, but represses APETALA2 and AUXIN RESPONSE FACTOR2, which are negative regulators of seed size. These genes are bound in vivo by the BR-activated transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), and they are known to influence specific processes of integument, endosperm, and embryo development. Our results demonstrate that BR regulates seed size and seed shape by transcriptionally modulating specific seed developmental pathways. PMID:23771896
Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song
2014-10-01
Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.
NASA Technical Reports Server (NTRS)
Biermann, B. J.; Pao, L. I.; Feldman, L. J.
1994-01-01
Protein kinase activity has repeatedly been found to co-purify with the plant photoreceptor phytochrome, suggesting that light signals received by phytochrome may be transduced or modulated through protein phosphorylation. In this study immunoprecipitation techniques were used to characterize protein kinase activity associated with phytochrome from maize (Zea mays L.). A protein kinase that specifically phosphorylated phytochrome was present in washed anti-phytochrome immunoprecipitates of etiolated coleoptile proteins. No other substrate tested was phosphorylated by this kinase. Adding salts or detergents to disrupt low-affinity protein interactions reduced background phosphorylation in immunoprecipitates without affecting phytochrome phosphorylation, indicating that the protein kinase catalytic activity is either intrinsic to the phytochrome molecule or associated with it by high-affinity interactions. Red irradiation (of coleoptiles or extracts) sufficient to approach photoconversion saturation reduced phosphorylation of immunoprecipitated phytochrome. Subsequent far-red irradiation reversed the red-light effect. Phytochrome phosphorylation was stimulated about 10-fold by a co-immunoprecipitated factor. The stimulatory factor was highest in immunoprecipitates when Mg2+ was present in immunoprecipitation reactions but remained in the supernatant in the absence of Mg2+. These observations provide strong support for the hypothesis that phytochrome-associated protein kinase modulates light responses in vivo. Since only phytochrome was found to be phosphorylated, the co-immunoprecipitated protein kinase may function to regulate receptor activity.
Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song
2015-01-01
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037
He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song
2014-01-01
Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236
Haga, Ken; Tsuchida-Mayama, Tomoko; Yamada, Mizuki; Sakai, Tatsuya
2015-01-01
Living organisms adapt to changing light environments via mechanisms that enhance photosensitivity under darkness and attenuate photosensitivity under bright light conditions. In hypocotyl phototropism, phototropin1 (phot1) blue light photoreceptors mediate both the pulse light-induced, first positive phototropism and the continuous light-induced, second positive phototropism, suggesting the existence of a mechanism that alters their photosensitivity. Here, we show that light induction of ROOT PHOTOTROPISM2 (RPT2) underlies photosensory adaptation in hypocotyl phototropism of Arabidopsis thaliana. rpt2 loss-of-function mutants exhibited increased photosensitivity to very low fluence blue light but were insensitive to low fluence blue light. Expression of RPT2 prior to phototropic stimulation in etiolated seedlings reduced photosensitivity during first positive phototropism and accelerated second positive phototropism. Our microscopy and biochemical analyses indicated that blue light irradiation causes dephosphorylation of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) proteins and mediates their release from the plasma membrane. These phenomena correlate closely with the desensitization of phot1 signaling during the transition period from first positive phototropism to second positive phototropism. RPT2 modulated the phosphorylation of NPH3 and promoted reconstruction of the phot1-NPH3 complex on the plasma membrane. We conclude that photosensitivity is increased in the absence of RPT2 and that this results in the desensitization of phot1. Light-mediated induction of RPT2 then reduces the photosensitivity of phot1, which is required for second positive phototropism under bright light conditions. PMID:25873385
Stolárik, Tibor; Hedtke, Boris; Šantrůček, Jiří; Ilík, Petr; Grimm, Bernhard; Pavlovič, Andrej
2017-05-01
Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.
Redistribution of annexin in gravistimulated pea plumules
NASA Technical Reports Server (NTRS)
Clark, G. B.; Rafati, D. S.; Bolton, R. J.; Dauwalder, M.; Roux, S. J.
2000-01-01
We used immunocytochemistry to investigate the effects of gravistimulation on annexin localization in etiolated pea plumule shoots. In longitudinal sections, an asymmetric annexin immunostaining pattern was observed in a defined group of cells located just basipetal to apical meristems at the main shoot apex and at all of the axillary buds, an area classically referred to as the leaf gap. The pattern was observed using both protein-A-purified anti-annexin and affinity-purified anti-annexin antibodies for the immunostaining. A subset of the cells with the annexin staining also showed an unusually high level of periodic acid Schiff (PAS) staining in their cell walls. Prior to gravistimulation, the highest concentration of annexin was oriented toward the direction of gravity along the apical end of these immunostained cells. In contrast, both at 15 and 30 min after gravistimulation, the annexin immunostain became more evenly distributed all around the cell and more distinctly cell peripheral. The asymmetry along the lower wall of these cells was no longer evident. In accord with current models of annexin action, we interpret the results to indicate that annexin-mediated secretion in the leaf gap area is preferentially toward the apical meristem prior to gravistimulation, and that gravistimulation results in a redirection of this secretion. These data are to our knowledge the first to show a correlation between the vector of gravity and the distribution of annexins in the cells of flowering plants. c 2000 Editions scientifiques et medicales Elsevier SAS.
Geomagnetic field impacts on cryptochrome and phytochrome signaling.
Agliassa, Chiara; Narayana, Ravishankar; Christie, John M; Maffei, Massimo E
2018-05-29
The geomagnetic field (GMF) is an environmental element whose instability affects plant growth and development. Despite known plant responses to GMF direction and intensity, the mechanism of magnetoreception in plants is still not known. Magnetic field variations affect many light-dependent plant processes, suggesting that the magnetoreception could require light. The objective of this work was to comprehensively investigate the influence of GMF on Arabidopsis thaliana (Col-0) photoreceptor signaling. Wild-type Arabidopsis seedlings and photoreceptor-deficient mutants (cry1cry2, phot1, phyA and phyAphyB) were exposed to near null magnetic field (NNMF, ≤40 nT) and GMF (~43 μT) under darkness and different light wavelengths. The GMF did not alter skotomorphogenic or photomorphogenic seedling development but had a significant impact on gene expression pathways downstream of cryptochrome and phytochrome photoactivation. GMF-induced changes in gene expression observed under blue light were partially associated with an alteration of cryptochrome activation. GMF impacts on phytochrome-regulated gene expression could be attributed to alterations in phytochrome protein abundance that were also dependent on the presence of cry1, cry2 and phot1. Moreover, the GMF was found to impact photomorphogenic-promoting gene expression in etiolated seedlings, indicating the existence of a light-independent magnetoreception mechanism. In conclusion, our data shows that magnetoreception alters photoreceptor signaling in Arabidopsis, but it does not necessarily depend on light. Copyright © 2018. Published by Elsevier B.V.
A Putative Role for the Tomato Genes DUMPY and CURL-3 in Brassinosteroid Biosynthesis and Response1
Koka, Chala V.; Cerny, R. Eric; Gardner, Randy G.; Noguchi, Takahiro; Fujioka, Shozo; Takatsuto, Suguru; Yoshida, Shigeo; Clouse, Steven D.
2000-01-01
The dumpy (dpy) mutant of tomato (Lycopersicon esculentum Mill.) exhibits short stature, reduced axillary branching, and altered leaf morphology. Application of brassinolide and castasterone rescued the dpy phenotype, as did C-23-hydroxylated, 6-deoxo intermediates of brassinolide biosynthesis. The brassinolide precursors campesterol, campestanol, and 6-deoxocathasterone failed to rescue, suggesting that dpy may be affected in the conversion of 6-deoxocathasterone to 6-deoxoteasterone, similar to the Arabidopsis constitutive photomorphogenesis and dwarfism (cpd) mutant. Measurements of endogenous brassinosteroid levels by gas chromatography-mass spectrometry were consistent with this hypothesis. To examine brassinosteroid-regulated gene expression in dpy, we performed cDNA subtractive hybridization and isolated a novel xyloglucan endotransglycosylase that is regulated by brassinosteroid treatment. The curl-3 (cu-3) mutant (Lycopersicon pimpinellifolium [Jusl.] Mill.) shows extreme dwarfism, altered leaf morphology, de-etiolation, and reduced fertility, all strikingly similar to the Arabidopsis mutant brassinosteroid insensitive 1 (bri1). Primary root elongation of wild-type L. pimpinellifolium seedlings was strongly inhibited by brassinosteroid application, while cu-3 mutant roots were able to elongate at the same brassinosteroid concentration. Moreover, cu-3 mutants retained sensitivity to indole-3-acetic acid, cytokinins, gibberellin, and abscisic acid while showing hypersensitivity to 2,4-dichlorophenoxyacetic acid in the root elongation assay. The cu-3 root response to hormones, coupled with its bri1-like phenotype, suggests that cu-3 may also be brassinosteroid insensitive. PMID:10631252
Coenen, Catharina; Lomax, Terri L.
1998-01-01
The interactions between the plant hormones auxin and cytokinin throughout plant development are complex, and genetic investigations of the interdependency of auxin and cytokinin signaling have been limited. We have characterized the cytokinin sensitivity of the auxin-resistant diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.) in a range of auxin- and cytokinin-regulated responses. Intact, etiolated dgt seedlings showed cross-resistance to cytokinin with respect to root elongation, but cytokinin effects on hypocotyl growth and ethylene synthesis in these seedlings were not impaired by the dgt mutation. Seven-week-old, green wild-type and dgt plants were also equally sensitive to cytokinin with respect to shoot growth and hypocotyl and internode elongation. The effects of cytokinin and the dgt mutation on these processes appeared additive. In tissue culture organ regeneration from dgt hypocotyl explants showed reduced sensitivity to auxin but normal sensitivity to cytokinin, and the effects of cytokinin and the mutation were again additive. However, although callus induction from dgt hypocotyl explants required auxin and cytokinin, dgt calli did not show the typical concentration-dependent stimulation of growth by either auxin or cytokinin observed in wild-type calli. Cross-resistance of the dgt mutant to cytokinin thus was found to be limited to a small subset of auxin- and cytokinin-regulated growth processes affected by the dgt mutation, indicating that auxin and cytokinin regulate plant growth through both shared and separate signaling pathways. PMID:9576775
Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)
NASA Technical Reports Server (NTRS)
Shibata, K.; Abe, S.; Davies, E.
2001-01-01
Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.
Silencing GhNDR1 and GhMKK2 compromised cotton resistance to Verticillium wilt
Gao, Xiquan; Wheeler, Terry; Li, Zhaohu; Kenerley, Charles M.; He, Ping; Shan, Libo
2011-01-01
SUMMARY Cotton is an important cash crop worldwide and serves as a significant source of fiber, feed, foodstuff, oil and biofuel products. Considerable effort in genetics and genomics has been expended to increase sustainable yield and quality through molecular breeding and genetic engineering of new cotton cultivars. With the effort of whole genome sequencing of cotton, it is essential to develop molecular tools and resources for large-scale analysis of gene functions at the genome-wide level. We have successfully established an Agrobacterium-mediated virus-induced gene silencing (VIGS) assay in several cotton cultivars with different genetic backgrounds. The genes of interest were potently and readily silenced within 2 weeks after inoculation at the seedling stage. Importantly, we showed that silencing GhNDR1 and GhMKK2 compromised cotton resistance to the infection by Verticillium dahliae, a fungal pathogen causing Verticillium wilt. Furthermore, we established a cotton protoplast system for transient gene expression to study gene functions by a gain-of-function approach. The viable protoplasts were isolated from green cotyledons, etiolated cotyledons, and true leaves, and responded to a wide range of pathogen elicitors and phytohormones. Remarkably, cotton plants possess conserved, but also distinct MAP kinase activation with Arabidopsis upon bacterial elicitor flagellin perception. Thus, we demonstrated that GhNDR1 and GhMKK2 are required for Verticillium resistance in cotton using gene silencing assays, and established the high throughput loss-of-function and gain-of-function assays for functional genomic studies in cotton. PMID:21219508
Andreeva, Zornitza; Barton, Deborah; Armour, William J; Li, Min Y; Liao, Li-Fen; McKellar, Heather L; Pethybridge, Kylie A; Marc, Jan
2010-10-01
The phospholipase protein superfamily plays an important role in hormonal signalling and cellular responses to environmental stimuli. There is also growing evidence for interactions between phospholipases and the cytoskeleton. In this report we used a pharmacological approach to investigate whether inhibiting a member of the phospholipase superfamily, phospholipase C (PLC), affects microtubules and actin microfilaments as well as root growth and morphology of Arabidopsis thaliana seedlings. Inhibiting PLC activity using the aminosteroid U73122 significantly inhibited root elongation and disrupted root morphology in a concentration-dependent manner, with the response being saturated at 5 μM, whereas the inactive analogue U73343 was ineffective. The primary root appeared to lose growth directionality accompanied by root waving and formation of curls. Immunolabelling of roots exposed to increasingly higher U73122 concentrations revealed that the normal transverse arrays of cortical microtubules in the elongation zone became progressively more disorganized or depolymerized, with the disorganization appearing within 1 h of incubation. Likewise, actin microfilament arrays also were disrupted. Inhibiting PLC using an alternative inhibitor, neomycin, caused similar disruptions to both cytoskeletal organization and root morphology. In seedlings gravistimulated by rotating the culture plates by 90°, both U73122 and neomycin disrupted the normal gravitropic growth of roots and etiolated hypocotyls. The effects of PLC inhibitors are therefore consistent with the notion that, as with phospholipases A and D, PLC likewise interacts with the cytoskeleton, alters growth morphology, and is involved in gravitropism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell-Lelong, D.A.; Cusumano, J.C.; Meyer, K.
1997-03-01
Cinnamate-r-hydroxylase (C4H) is the first Cyt P450-dependent monooxygenase of the phenylpropanoid pathway. To study the expression of this gene in Arabidopsis thaliana, a C4H cDNA clone from the Arabidopsis expressed sequence tag database was identified and used to isolate its corresponding genomic clone. The entire C4H coding sequence plus 2.9 kb of its promoter were isolated on a 5.4-kb HindIII fragment of this cosmid. Inspection of the promoter sequence revealed the presence of a number of putative regulatory motifs previously identified in the promoters of other phenylpropanoid pathway genes. The expression of C4H was analyzed by RNA blot hybridization analysismore » and in transgenic Arabidopsis carrying a C4H-{beta}-glucuronidase transcriptional fusion. C4H message accumulation was light-dependent, but was detectable even in dark-grown seedlings. Consistent with these data, C4H mRNA was accumulated to light-grown levels in etiolated det1-1 mutant seedlings. C4H is widely expressed in various Arabidopsis tissues, particularly in roots and cells undergoing lignification. The C4H-driven {beta}-glucuronidase expression accurately reflected the tissue-specificity and wound-inducibility of the C4H promoter indicated by RNA blot hybridization analysis. A modest increase in C4H expression was observed in the tt8 mutant of Arabidopsis. 77 refs., 5 figs.« less
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1990-01-01
The growth response of etiolated cucumber (Cucumis sativus L.) hypocotyls to gravitropic stimulation was examined by means of time-lapse photography and high-resolution analysis of surface expansion and curvature. In comparison with video analysis, the technique described here has five- to 20-fold better resolution; moreover, the mathematical fitting method (cubic splines) allows direct estimation of local and integrated curvature. After switching seedlings from a vertical to horizontal position, both upper and lower surfaces of the stem reacted after a lag of about 11 min with a two- to three-fold increase in surface expansion rate on the lower side and a cessation of expansion, or slight compression, on the upper surface. This growth asymmetry was initiated simultaneously along the length of the hypocotyl, on both upper and lower surfaces, and did not migrate basipetally from the apex. Later stages in the gravitropic response involved a complex reversal of the growth asymmetry, with the net result being a basipetal migration of the curved region. This secondary growth reversal may reflect oscillatory and/or self-regulatory behaviour of growing cells. With some qualifications, the kinetics and pattern of growth response are consistent with a mechanism involving hormone redistribution, although they do not prove such a mechanism. The growth kinetics require a growth mechanism which can be stimulated by two- to three-fold or completely inhibited within a few minutes.
Reddy, M K; Nair, S; Tewari, K K; Mudgil, Y; Yadav, B S; Sopory, S K
1999-09-01
We have isolated and sequenced four overlapping cDNA clones to identify the full-length cDNA for topoisomerase II (PsTopII) from pea. Using degenerate primers, based on the conserved amino acid sequences of other eukaryotic type II topoisomerases, a 680 bp fragment was PCR-amplified with pea cDNA as template. This fragment was used as a probe to screen an oligo-dT-primed pea cDNA library. A partial cDNA clone was isolated that was truncated at the 3' end. RACE-PCR was employed to isolate the remaining portion of the gene. The total size of PsTopII is 4639 bp with an open reading frame of 4392 bp. The deduced amino acid sequence shows a strong homology to other eukaryotic topoisomerase II (topo II) at the N-terminus end. The topo II transcript was abundant in proliferative tissues. We also show that the level of topo II transcripts could be stimulated by exogenous application of growth factors that induced proliferation in vitro cultures. Light irradiation to etiolated tissue strongly stimulated the expression of topo II. These results suggest that topo II gene expression is up-regulated in response to light and hormones and correlates with cell proliferation. Besides, we have also isolated and analysed the 5'-flanking region of the pea TopII gene. This is first report on the isolation of a putative promoter for topoisomerase II from plants.
Guo, L; Phillips, A T; Arteca, R N
1993-12-05
1-Aminocyclopropane-1-carboxylate (ACC) N-malonyltransferase from etiolated mung bean hypocotyls was examined for its relationship to D-phenylalanine N-malonyltransferase and other enzymes which transfer malonyl groups from malonyl-CoA to D-amino acids. Throughout a 3600-fold purification the ratio of D-phenylalanine N-malonyltransferase activity to ACC N-malonyltransferase activity was unchanged. Antibodies raised against purified ACC N-malonyltransferase 55-kDa protein were also able to precipitate all D-phenylalanine-directed activity from partially purified mung bean extracts. The irreversible inhibitors phenylglyoxal and tetranitromethane reduced malonyltransferase activity towards D-phenylalanine to the same extent as that for ACC. In addition, several other D-amino acids, particularly D-tryptophan and D-tyrosine, were able to inhibit action towards both ACC and D-phenylalanine. These lines of evidence suggest that a single enzyme is capable of promoting malonylation of both ACC and D-phenylalanine. Km values for D-phenylalanine and malonyl-CoA were found to be 48 and 43 microM, respectively; these values are 10-fold lower than the corresponding values when ACC was substrate. Coenzyme A was a noncompetitive (mixed type) product inhibitor towards malonyl-CoA at both unsaturated and saturated ACC concentrations. The enzyme was also inhibited uncompetitively at high concentrations of malonyl-CoA. We propose that the enzyme follows an Ordered Bi-Bi reaction pathway, with the amino acid substrate being bound initially.
Fauth; Schweizer; Buchala; Markstadter; Riederer; Kato; Kauss
1998-08-01
Hypocotyls from etiolated cucumber (Cucumis sativus L.) seedlings were gently abraded at their epidermal surface and cut segments were conditioned to develop competence for H2O2 elicitation. Alkaline hydrolysates of cutin from cucumber, tomato, and apple elicited H2O2 in such conditioned segments. The most active constituent of cucumber cutin was identified as dodecan-1-ol, a novel cutin monomer capable of forming hydrophobic terminal chains. Additionally, the cutin hydrolysates enhanced the activity of a fungal H2O2 elicitor, similar to cucumber surface wax, which contained newly identified alkan-1,3-diols. The specificity of elicitor and enhancement activity was further elaborated using some pure model compounds. Certain saturated hydroxy fatty acids were potent H2O2 elicitors as well as enhancers. Some unsaturated epoxy and hydroxy fatty acids were also excellent H2O2 elicitors but inhibited the fungal elicitor activity. Short-chain alkanols exhibited good elicitor and enhancer activity, whereas longer-chain alkan-1-ols were barely active. The enhancement effect was also observed for H2O2 elicitation by ergosterol and chitosan. The physiological significance of these observations might be that once the cuticle is degraded by fungal cutinase, the cutin monomers may act as H2O2 elicitors. Corrosion of cutin may also bring surface wax constituents in contact with protoplasts and enhance elicitation.
Sineshchekov, Vitaly; Sudnitsin, Artem; Ádám, Éva; Schäfer, Eberhard; Viczián, András
2014-12-01
Low-temperature fluorescence investigations of phyA-GFP used in experiments on its nuclear-cytoplasmic partitioning were carried out. In etiolated hypocotyls of phyA-deficient Arabidopsis thaliana expressing phyA-GFP, it was found that it is similar to phyA in spectroscopic parameters with both its native types, phyA' and phyA'', present and their ratio shifted towards phyA'. In transgenic tobacco hypocotyls, native phyA and rice phyA-GFP were also identical to phyA in the wild type whereas phyA-GFP belonged primarily to the phyA' type. Finally, truncated oat Δ6-12 phyA-GFP expressed in phyA-deficient Arabidopsis was represented by the phyA' type in contrast to full-length oat phyA-GFP with an approximately equal proportion of the two phyA types. This correlates with a previous observation that Δ6-12 phyA-GFP can form only numerous tiny subnuclear speckles while its wild-type counterpart can also localize into bigger and fewer subnuclear protein complexes. Thus, phyA-GFP is spectroscopically and photochemically similar or identical to the native phyA, suggesting that the GFP tag does not affect the chromophore. phyA-GFP comprises phyA'-GFP and phyA''-GFP, suggesting that both of them are potential participants in nuclear-cytoplasmic partitioning, which may contribute to its complexity.
Structure and dynamics of thylakoids in land plants.
Pribil, Mathias; Labs, Mathias; Leister, Dario
2014-05-01
Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.
Oxidation of Proline by Mitochondria Isolated from Water-Stressed Maize Shoots 1
Sells, Gary D.; Koeppe, David E.
1981-01-01
Proline oxidation and coupled phosphorylation were measured in mitochondria after isolation from shoots of water-stressed, etiolated maize (Zea mays L.) seedlings. Both state III and state IV rates of proline oxidation decreased as a logarithmic function of increased seedling water stress between −5 and −10 bars. Proline oxidation rates decreased 62% (state III) and 58% (state IV) as seedling water potentials were decreased from −5 to −10 bars. By comparison, oxidation of succinate, exogenous NADH, or malate + pyruvate decreased only 10 to 15% in this stress range. These decreases were a linear function of increased stress and were comparable to oxidation rates of mitochondria subjected to varying in vitro osmotic potentials. Osmotically induced in vitro stress reduced proline oxidation rates linearly with more negative osmotic potentials, a decrease that was similar to the responses of the other substrates to more negative osmotic potentials. Some decrease in coupling, with all substrates as determined by ADP/O ratios, was observed under osmotic stress. Mitochondria were also isolated from shoot tissue that had been stressed and then rewatered. On a percentage basis, the recovery of proline oxidation was greater than that of the other substrates. The decreases in the proline oxidase activity of mitochondria after only slight stress indicate a mitochondrial sensitivity to water stress at significantly less negative water potentials than previously reported for measurements of maize membrane permeability and respiratory activity. PMID:16662051
Role of Arabidopsis ABF1/3/4 during det1 germination in salt and osmotic stress conditions.
Fernando, V C Dilukshi; Al Khateeb, Wesam; Belmonte, Mark F; Schroeder, Dana F
2018-05-01
Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4. While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
The Dehydratase ADT3 Affects ROS Homeostasis and Cotyledon Development1[OPEN
Para, Alessia; Muhammad, DurreShahwar; Naldrett, Michael J.; Warpeha, Katherine M.
2016-01-01
During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS. Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling. PMID:27540109
THE PATHOMECHANICAL ETIOLOGY OF POST-TRAUMATIC OSTEOARTHRITIS FOLLOWING INTRAARTICULAR FRACTURES
Anderson, Donald D; Marsh, J Lawrence; Brown, Thomas D
2011-01-01
Many intra-articular fracture patients eventually experience significant functional deficits, pain, and stiffness from post-traumatic osteoarthritis (PTOA). Over the last several decades, continued refinement of surgical reconstruction techniques has failed to markedly improve patient outcomes. New treatment paradigms are needed - ideally, bio/pharmaceutical. Progress in that direction has been impeded because the pathomechanical etiol-ogy of PTOA development is poorly understood. In particular, the relative roles and pathomechanisms of acute joint injury (from the initial trauma) versus chronic contact stress elevation (from residual incongruity) are unknown, primarily because there have been no objective methods for reliably quantifying either of these insult entities. Over the past decade, novel enabling technologies have been developed that provide objective biomechanical indices of injury severity and of chronic contact stress challenge to fractured joint surfaces. The severity of the initial joint injury is indexed primarily on the basis of the energy released in fracture, obtained from validated digital image analysis of CT scans. Chronic contact stress elevations are indexed by patient-specific finite element stress analysis, using models derived from post-reduction CT scans. These new measures, conceived in the laboratory, have been taken through the stage of validation, and then have been applied in studies of intra-articular fracture patients, to relate these biomechanical indices of cartilage insult to the incidence and severity of PTOA This body of work has provided a novel framework for developing and testing new approaches to forestall PTOA following intra-articular fractures. PMID:22096414
Sullivan, Joe H.; Muhammad, DurreShahwar; Warpeha, Katherine M.
2014-01-01
UV-radiation elicits a suite of developmental (photomorphogenic) and protective responses in plants, but responses early post-germination have received little attention, particularly in intensively bred plants of economic importance. We examined germination, hypocotyl elongation, leaf pubescence and subcellular responses of germinating and/or etiolated soybean (Glycine max (L.) Merr.) seedlings in response to treatment with discrete wavelengths of UV-A or UV-B radiation. We demonstrate differential responses of germinating/young soybean seedlings to a range of UV wavelengths that indicate unique signal transduction mechanisms regulate UV-initiated responses. We have investigated how phenylalanine, a key substrate in the phenylpropanoid pathway, may be involved in these responses. Pubescence may be a key location for phenylalanine-derived protective compounds, as UV-B irradiation increased pubescence and accumulation of UV-absorbing compounds within primary leaf pubescence, visualized by microscopy and absorbance spectra. Mass spectrometry analysis of pubescence indicated that sinapic esters accumulate in the UV-irradiated hairs compared to unirradiated primary leaf tissue. Deleterious effects of some UV-B wavelengths on germination and seedling responses were reduced or entirely prevented by inclusion of phenylalanine in the growth media. Key effects of phenylalanine were not duplicated by tyrosine or tryptophan or sucrose, nor is the specificity of response due to the absorbance of phenylalanine itself. These results suggest that in the seed-to-seedling transition, phenylalanine may be a limiting factor in the development of initial mechanisms of UV protection in the developing leaf. PMID:25549094
LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture1[OPEN
2017-01-01
A rice (Oryza sativa) mutant led to the discovery of a plant-specific LAZY1 protein that controls the orientation of shoots. Arabidopsis (Arabidopsis thaliana) possesses six LAZY genes having spatially distinct expression patterns. Branch angle phenotypes previously associated with single LAZY genes were here studied in roots and shoots of single and higher-order atlazy mutants. The results identify the major contributors to root and shoot branch angles and gravitropic behavior of seedling hypocotyls and primary roots. AtLAZY1 is the principal determinant of inflorescence branch angle. The weeping inflorescence phenotype of atlazy1,2,4 mutants may be due at least in part to a reversal in the gravitropism mechanism. AtLAZY2 and AtLAZY4 determined lateral root branch angle. Lateral roots of the atlazy2,4 double mutant emerged slightly upward, approximately 10° greater than perpendicular to the primary root axis, and they were agravitropic. Etiolated hypocotyls of the quadruple atlazy1,2,3,4 mutant were essentially agravitropic, but their phototropic response was robust. In light-grown seedlings, the root of the atlazy2,3,4 mutant was also agravitropic but when adapted to dim red light it displayed a reversed gravitropic response. A reversed auxin gradient across the root visualized by a fluorescent signaling reporter explained the reversed, upward bending response. We propose that AtLAZY proteins control plant architecture by coupling gravity sensing to the formation of auxin gradients that override a LAZY-independent mechanism that creates an opposing gravity-induced auxin gradient. PMID:28821594
Grabelnych, O I; Borovik, O A; Tauson, E L; Pobezhimova, T P; Katyshev, A I; Pavlovskaya, N S; Koroleva, N A; Lyubushkina, I V; Bashmakov, V Yu; Popov, V N; Borovskii, G B; Voinikov, V K
2014-06-01
Gene expression, protein synthesis, and activities of alternative oxidase (AOX), uncoupling proteins (UCP), adenine nucleotide translocator (ANT), and non-coupled NAD(P)H dehydrogenases (NDex, NDPex, and NDin) were studied in shoots of etiolated winter wheat (Triticum aestivum L.) seedlings after exposure to hardening low positive (2°C for 7 days) and freezing (-2°C for 2 days) temperatures. The cold hardening efficiently increased frost-resistance of the seedlings and decreased the generation of reactive oxygen species (ROS) during further cold shock. Functioning of mitochondrial energy-dissipating systems can represent a mechanism responsible for the decrease in ROS under these conditions. These systems are different in their response to the action of the hardening low positive and freezing temperatures. The functioning of the first system causes induction of AOX and UCP synthesis associated with an increase in electron transfer via AOX in the mitochondrial respiratory chain and also with an increase in the sensitivity of mitochondrial non-phosphorylating respiration to linoleic and palmitic acids. The increase in electron transfer via AOX upon exposure of seedlings to hardening freezing temperature is associated with retention of a high activity of NDex. It seems that NDex but not the NDPex and NDin can play an important role in maintaining the functional state of mitochondria in heterotrophic tissues of plants under the influence of freezing temperatures. The involvement of the mitochondrial energy-dissipating systems and their possible physiological role in the adaptation of winter crops to cold and frost are discussed.
Haga, Ken; Tsuchida-Mayama, Tomoko; Yamada, Mizuki; Sakai, Tatsuya
2015-04-01
Living organisms adapt to changing light environments via mechanisms that enhance photosensitivity under darkness and attenuate photosensitivity under bright light conditions. In hypocotyl phototropism, phototropin1 (phot1) blue light photoreceptors mediate both the pulse light-induced, first positive phototropism and the continuous light-induced, second positive phototropism, suggesting the existence of a mechanism that alters their photosensitivity. Here, we show that light induction of ROOT PHOTOTROPISM2 (RPT2) underlies photosensory adaptation in hypocotyl phototropism of Arabidopsis thaliana. rpt2 loss-of-function mutants exhibited increased photosensitivity to very low fluence blue light but were insensitive to low fluence blue light. Expression of RPT2 prior to phototropic stimulation in etiolated seedlings reduced photosensitivity during first positive phototropism and accelerated second positive phototropism. Our microscopy and biochemical analyses indicated that blue light irradiation causes dephosphorylation of NONPHOTOTROPIC HYPOCOTYL3 (NPH3) proteins and mediates their release from the plasma membrane. These phenomena correlate closely with the desensitization of phot1 signaling during the transition period from first positive phototropism to second positive phototropism. RPT2 modulated the phosphorylation of NPH3 and promoted reconstruction of the phot1-NPH3 complex on the plasma membrane. We conclude that photosensitivity is increased in the absence of RPT2 and that this results in the desensitization of phot1. Light-mediated induction of RPT2 then reduces the photosensitivity of phot1, which is required for second positive phototropism under bright light conditions. © 2015 American Society of Plant Biologists. All rights reserved.
Kahn, R A; Bak, S; Svendsen, I; Halkier, B A; Møller, B L
1997-01-01
A cytochrome P450, designated P450ox, that catalyzes the conversion of (Z)-p-hydroxyphenylacetaldoxime (oxime) to p-hydroxymandelonitrile in the biosynthesis of the cyanogenic glucoside beta-D-glucopyranosyloxy-(S)-p-hydroxymandelonitrile (dhurrin), has been isolated from microsomes prepared from etiolated seedlings of sorghum (Sorghum bicolor L. Moench). P450ox was solubilized using nonionic detergents, and isolated by ion-exchange chromatography, Triton X-114 phase partitioning, and dye-column chromatography. P450ox has an apparent molecular mass of 55 kD, its N-terminal amino acid sequence is -ATTATPQLLGGSVP, and it contains the internal sequence MDRLVADLDRAAA. Reconstitution of P450ox with NADPH-P450 oxidoreductase in micelles of L-alpha-dilauroyl phosphatidylcholine identified P450ox as a multifunctional P450 catalyzing dehydration of (Z)-oxime to p-hydroxyphenylaceto-nitrile (nitrile) and C-hydroxylation of p-hydroxyphenylacetonitrile to nitrile. P450ox is extremely labile compared with the P450s previously isolated from sorghum. When P450ox is reconstituted in the presence of a soluble uridine diphosphate glucose glucosyltransferase, oxime is converted to dhurrin. In vitro reconstitution of the entire dhurrin biosynthetic pathway from tyrosine was accomplished by the insertion of CYP79 (tyrosine N-hydroxylase), P450ox, and NADPH-P450 oxidoreductase in lipid micelles in the presence of uridine diphosphate glucose glucosyltransferase. The catalysis of the conversion of Tyr into nitrile by two multifunctional P450s explains why all intermediates in this pathway except (Z)-oxime are channeled. PMID:9414567
Jakubowicz, Małgorzata; Gałgańska, Hanna; Nowak, Witold; Sadowski, Jan
2010-01-01
In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-α1, -α2, -γ1, and -δ, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-γ1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-γ 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PAPLD signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity. PMID:20581125
Xiao, Chaowen; Barnes, William J; Zamil, M Shafayet; Yi, Hojae; Puri, Virendra M; Anderson, Charles T
2017-03-01
Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by polygalacturonases affects stem development and secondary wall formation remains unclear. Using an activation tag screen, we identified a transgenic Arabidopsis thaliana line with longer etiolated hypocotyls, which overexpresses a gene encoding a polygalacturonase. We designated this gene as POLYGALACTURONASE INVOLVED IN EXPANSION2 (PGX2), and the corresponding activation tagged line as PGX2 AT . PGX2 is widely expressed in young seedlings and in roots, stems, leaves, flowers, and siliques of adult plants. PGX2-GFP localizes to the cell wall, and PGX2 AT plants show higher total polygalacturonase activity and smaller pectin molecular masses than wild-type controls, supporting a function for this protein in apoplastic pectin degradation. A heterologously expressed, truncated version of PGX2 also displays polygalacturonase activity in vitro. Like previously identified PGX1 AT plants, PGX2 AT plants have longer hypocotyls and larger rosette leaves, but they also uniquely display early flowering, earlier stem lignification, and lodging stems with enhanced mechanical stiffness that is possibly due to decreased stem thickness. Together, these results indicate that PGX2 both functions in cell expansion and influences secondary wall formation, providing a possible link between these two developmental processes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
The 7B-1 mutant in tomato shows blue-light-specific resistance to osmotic stress and abscisic acid.
Fellner, Martin; Sawhney, Vipen K
2002-03-01
Germination of wild-type (WT) tomato ( Lycopersicon esculentum Mill.) seed is inhibited by mannitol (100-140 mM) in light, but not in darkness, suggesting that light amplifies the responsiveness of the seed to osmotic stress (M. Fellner, V.K. Sawhney (2001) Theor Appl Genet 102:215-221). Here we report that white light (W) and especially blue light (B) strongly enhance the mannitol-induced inhibition of seed germination, and that the effect of red light (R) is weak or nil. The inhibitory effect of mannitol could be completely overcome by fluridone, an inhibitor of abscisic acid (ABA) biosynthesis, indicating that mannitol inhibits seed germination via ABA accumulation in seeds. The inhibition of WT seed germination by exogenous ABA was also amplified by W or B, but not by R. In a recessive, ABA-overproducing, 7B-1 mutant of tomato, seed germination and hypocotyl growth were resistant to inhibition by mannitol or exogenous ABA, both in W or B. Experiments with fluridone suggested that inhibition of hypocotyl growth by W or B is also partially via ABA accumulation. De-etiolation in the mutant was especially less in B compared to the WT, and there was no difference in hypocotyl growth between the two genotypes in R. Our data suggest that B amplifies the responsiveness of tomato seeds and hypocotyls to mannitol and ABA, and that W- or B-specific resistance of the 7B-1 mutant to osmotic stress or ABA is a consequence of a defect in B perception or signal transduction.
Comparative Studies of Enzymes Related to Serine Metabolism in Higher Plants 1
Cheung, Geoffrey P.; Rosenblum, I. Y.; Sallach, H. J.
1968-01-01
The following enzymes related to serine metabolism in higher plants have been investigated: 1) d-3-phosphoglycerate dehydrogenase, 2) phosphohydroxypyruvate:l-glutamate transaminase, 3) d-glycerate dehydrogenase, and 4) hydroxypyruvate:l-alanine transaminase. Comparative studies on the distribution of the 2 dehydrogenases in seeds and leaves from various plants revealed that d-3-phosphoglycerate dehydrogenase is widely distributed in seeds in contrast to d-glycerate dehydrogenase, which is either absent or present at low levels, and that the reverse pattern is observed in green leaves. The levels of activity of the 4 enzymes listed above were followed in different tissues of the developing pea (Pisum sativum, var. Alaska). In the leaf, from the tenth to seventeenth day of germination, the specific activity of d-glycerate dehydrogenase increased markedly and was much higher than d-3-phosphoglycerate dehydrogenase which remained relatively constant during this time period. Etiolation resulted in a decrease in d-glycerate dehydrogenase and an increase in d-3-phosphoglycerate dehydrogenase activities. In apical meristem, on the other hand, the level of d-3-phosphoglycerate dehydrogenase exceeded that of d-glycerate dehydrogenase at all time periods studied. Low and decreasing levels of both dehydrogenases were found in epicotyl and cotyledon. The specific activities of the 2 transaminases remained relatively constant during development in both leaf and apical meristem. In general, however, the levels of phosphohydroxypyruvate:l-glutamate transaminase were comparable to those of d-3-phosphoglycerate dehydrogenase in a given tissue as were those for hydroxypyruvate: l-alanine transaminase and d-glycerate dehydrogenase. PMID:5699148
Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang
2015-01-01
We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kakuszi, Andrea; Solymosi, Katalin; Böddi, Béla
2017-04-01
The maintenance but substantial transformation of plastids was found in lowermost hypocotyl segments of soil-grown bean plants (Phaseolus vulgaris cv. Magnum) during a 60-day cultivation period. Although the plants were grown under natural light-dark cycles, this hypocotyl segment was under full coverage of the soil in 5-7 cm depth, thus it was never exposed to light. The 4-day-old plants were fully etiolated: amyloplasts, occasionally prolamellar bodies, protochlorophyllide (Pchlide) and protochlorophyll (Pchl) were found in the hypocotyls of these young seedlings. The 633 and 654 nm bands in the 77 K fluorescence emission spectra indicated the presence of Pchlide and Pchl pigments. During aging, both the Pchlide and Pchl contents increased, however, the Pchl to Pchlide ratio gradually increased. In parallel, the contribution of the 654 nm form decreased and in the spectra of the 60-day-old samples, the main band shifted to 631 nm, and a new form appeared with an emission maximum at 641 nm. The photoactivity had been lost; bleaching took place at continuous illumination. The inner membranes of the plastids disappeared, the amount of starch storing amyloplasts decreased. These data may indicate the general importance of plastids for plant cell metabolism, which can be the reason for their maintenance. Also the general heterogeneity of plastid forms can be concluded: in tissues not exposed to light, Pchl accumulating plastids develop and are maintained even for a long period. © 2016 Scandinavian Plant Physiology Society.
McWilliam, J. R.; Naylor, A. W.
1967-01-01
The effect of temperature and light intensity have been studied in relation to the greening of etiolated corn (Zea mays cv. Pioneer 309-B) seedlings. Chlorophyll accumulation is rapid at high temperature (28°) under all conditions of light intensity. At low temperature (16°), and particularly in combination with high light intensity (3000-4500 ft-c), the accumulation of both chlorophyll and carotene is inhibited. Low pigment content at 16° is not directly due to a block in the pigment synthesizing mechanism, but rather to the photodestruction of chlorophyll prior to its stabilization in the membrane structure of the chloroplast lamellae. The parallel reduction in carotene content at high light intensity is probably a contributing factor, because of its role in protecting chlorophyll from photodestruction. The greater severity of photo-oxidation of chlorophyll at low temperature in corn when compared with wheat, appears to be due to a slower rate of protochlorophyllide synthesis and subsequent esterification. Thus in corn at 16° there is a prolongation of the photosensitive stage during chlorophyll synthesis. Photo-oxidation at 16° has also been shown to be a function of the incident light energy, with the photosynthetic pigments acting as receptors for their own destruction. In comparison with the behavior of corn, wheat seedlings green rapidly at high light intensity at both 16° and 28°. This contrasting temperature response with respect to chlorophyll synthesis may underlie a fundamental difference in adaptation of these 2 species to growth in the temperate zones of the world. PMID:16656709
Cruz, R E; Macedo, A M; Barnabé, C; Freitas, J M; Chiari, E; Veloso, V M; Carneiro, C M; Bahia, M T; Tafuri, Washington L; Lana, M
2006-03-01
We describe here an extension of a previous genetic characterization of Trypanosoma cruzi strains (Be-62 and Be-78) isolated from the patient Berenice, the first human case of Chagas disease [Chagas, C., 1909. Nova Tripanomíase humana. Estudos sobre morfologia e o ciclo evolutivo do Schizotrypanum cruzi, n. gen., n. sp., agente etiolójico da nova entidade morbida do homem. Mem. Inst. Oswaldo Cruz 1, 159-218]. We wanted to verify the composition of T. cruzi populations originated from these two isolates. In the present work, 22 enzymatic loci (MLEE), nine RAPD primers and 7 microsatellite loci were analyzed. Clones from both strains were also characterized to verify whether these strains are mono or polyclonal. Be-62 and Be-78 strains were different in 3 out of 22 enzymatic systems, in 3 out of 9 RAPD primers tested and in all microsatellite loci investigated. However, our data suggests that both strains are phylogenetically closely related, belonging to genetic group 32 from Tibayrenc and Ayala [Tibayrenc, M., Ayala, F.J., 1988. Isoenzime variability in Trypanosoma cruzi, the agent of Chagas' disease: genetical, taxonomical, and epidemiological significance. Evolution 42, 277-292], equivalent to zymodeme 2 and T. cruzi II major lineage which, in Brazil, comprises parasites from the domestic cycle of the disease. Microsatellite analyses showed differences between the parental strains but suggested that both populations are monoclonal since each strain and their respective clones showed the same amplification products.
Analysis of fabric materials cut using ultraviolet laser ablation
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.
2016-04-01
Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.
Chinn, E; Silverthorne, J; Hohtola, A
1995-01-01
In a prior study (E. Chinn and J. Silverthorne [1993] Plant Physiol 103: 727-732) we showed that the gymnosperm Ginkgo biloba was completely dependent on light for chlorophyll synthesis and chloroplast development and that expression of light-harvesting complex b (Lhcb) mRNAs was substantially increased by light. However, dark-grown seedlings that were transferred to constant white light took significantly longer than angiosperm seedlings to initiate a program of photomorphogenesis and the stems failed to green completely. We have prepared type-specific probes for mRNAs encoding major polypeptides of light-harvesting complex II (Lhcb1, Lhcb2, and Lhcb3) and have used these to analyze the expression of individual Lhcb mRNAs during greening. All three sequences accumulated in the top portions of dark-grown seedlings transferred to light, but, as was seen previously for total Lhcb mRNAs, there was a transient, reproducible decline in the levels of all three mRNAs after 4 d in the light. This transient decrease in Lhcb mRNA levels was not paralleled by a decrease in Chl accumulation. By contrast, there were significantly lower levels of all three Lhcb mRNAs in the lower portions of greening dark-grown stems as well as lower Chl levels. We conclude that although the tops of the plants have the capacity to etiolate and green, Gingko seedling stems continue a program of development into woody tissue in darkness that precludes greening when the seedlings are transferred to the light. PMID:7724674
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDougall, G.J.; Fry, S.C.
1990-07-01
Oligosaccharides produced by the action of fungal cellulase on xyloglucans promoted the elongation of etiolated pea (Pisum sativum L.) stem segments in a straight-growth bioassay designed for the determination of auxins. The oligosaccharides were most active at about 1 micromolar. We tested the relative growth-promoting activities of four HPLC-purified oligosaccharides which shared a common glucose{sub 4} {center dot} xylose{sub 3} (XG7) core. The substituted oligosaccharides XG8 (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose) and XG9n (glucose{sub 4} {center dot} xylose{sub 3} {center dot} galactose{sub 2}) were more effective than XG7 itself and XG9 (glucose{sub 4} {center dot} xylose{submore » 3} {center dot} galactose {center dot} fucose). The same oligosaccharides also promoted the degradation, assayed viscometrically, of xyloglucan by an acidic cellulase from bean (Phaseolus vulgaris L.) leaves. The oligosaccharides were highly active at 10{sup {minus}4} molar, causing up to a fourfold increase in activity, but the effect was still detectable at 1 micromolar. Those oligosaccharides (XG8 and XG9n) which best promoted growth, stimulated cellulase activity to the greatest extent. The oligosaccharides did not stimulate the action of the cellulase in an assay based on the conversion of ({sup 3}H)xyloglucan to ethanol-soluble fragments. This suggests that the oligosaccharides enhanced the midchain hydrolysis of xyloglucan molecules (which would rapidly reduce the viscosity of the solution), at the expense of cleavage near the termini (which would yield ethanol-soluble products).« less
Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E
1990-01-01
Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.
Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.
1990-01-01
Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248
Suzuki, Hiromi; Matano, Naoyuki; Nishimura, Takeshi; Koshiba, Tomokazu
2014-01-01
Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1. However, 1-NOA also shows auxin activity because of its structural similarity to NAA. In this study, we have identified another candidate inhibitor of the IAA influx carrier. The compound, “7-B3; ethyl 2-[(2-chloro-4-nitrophenyl)thio]acetate,” is a 2,4-dichlorophenoxyacetic acid (2,4-D) analog. At high concentrations (> 300 µM), 7-B3 slightly reduced IAA transport and tropic curvature of maize coleoptiles, whereas lower concentrations had almost no effect. We have analyzed the effects of 7-B3 on Arabidopsis thaliana seedlings. 7-B3 rescued the 2,4-D-inhibited root elongation, but not the NAA-inhibited root elongation. The effect of 7-B3 was weaker than that of 1-NOA. Both 1-NOA and 7-B3 inhibited DR5::GUS expression induced by IAA and 2,4-D, but not that induced by NAA. At high concentrations, 1-NOA exhibited auxin activity, but 7-B3 did not. Furthermore, 7-B3 inhibited apical hook formation in etiolated seedlings more effectively than 1-NOA did. These results indicate that 7-B3 is a potential inhibitor of IAA influx that has almost no effect on IAA efflux or auxin signaling. PMID:24800738
Robles, Linda M.; Deslauriers, Stephen D.; Alvarez, Ashley A.; Larsen, Paul B.
2012-01-01
As part of a continuing effort to elucidate mechanisms that regulate the magnitude of ethylene signalling, an Arabidopsis mutant with an enhanced ethylene response was identified. Subsequent characterization of this loss-of-function mutant revealed severe hypocotyl shortening in the presence of saturating ethylene along with increased expression in leaves of a subset of ethylene-responsive genes. It was subsequently determined by map-based cloning that the mutant (sar1-7) represents a loss-of-function mutation in the previously described nucleoporin AtNUP160 (At1g33410, SAR1). In support of previously reported results, the sar1-7 mutant partially restored auxin responsiveness to roots of an rce1 loss-of-function mutant, indicating that AtNUP160/SAR1 is required for proper expression of factors responsible for the repression of auxin signalling. Analysis of arf7-1/sar1-7 and arf19-1/sar1-7 double mutants revealed that mutations affecting either ARF7 or ARF19 function almost fully blocked manifestation of the sar1-7-dependent ethylene hypersensitivity phenotype, suggesting that ARF7- and ARF19-mediated auxin signalling is responsible for regulating the magnitude of and/or competence for the ethylene response in Arabidopsis etiolated hypocotyls. Consistent with this, addition of auxin to ethylene-treated seedlings resulted in severe hypocotyl shortening, reminiscent of that seen for other eer (enhanced ethylene response) mutants, suggesting that auxin functions in part synergistically with ethylene to control hypocotyl elongation and other ethylene-dependent phenomena. PMID:22238449
Somatic embryogenesis in ferns: a new experimental system.
Mikuła, Anna; Pożoga, Mariusz; Tomiczak, Karolina; Rybczyński, Jan J
2015-05-01
Somatic embryogenesis has never been reported in ferns. The study showed that it is much easier to evoke the acquisition and expression of embryogenic competence in ferns than in spermatophytes. We discovered that the tree fern Cyathea delgadii offers an effective model for the reproducible and rapid formation of somatic embryos on hormone-free medium. Our study provides cyto-morphological evidence for the single cell origin and development of somatic embryos. Somatic embryogenesis (SE) in both primary and secondary explants was induced on half-strength micro- and macro-nutrients Murashige and Skoog medium without the application of exogenous plant growth regulators, in darkness. The early stage of SE was characterized by sequential perpendicular cell divisions of an individual epidermal cell of etiolated stipe explant. These resulted in the formation of a linear pro-embryo. Later their development resembled that of the zygotic embryo. We defined three morphogenetic stages of fern somatic embryo development: linear, early and late embryonic leaf stage. The transition from somatic embryo to juvenile sporophyte was quick and proceeded without interruption caused by dormancy. Following 9 weeks of culture the efficiency of somatic embryogenesis reached 12-13 embryos per responding explant. Spontaneous formation of somatic embryos and callus production, which improved the effectiveness of the process sevenfold in 10-month-long culture, occurred without subculturing. The tendency for C. delgadii to propagate by SE in vitro makes this species an excellent model for studies relating to asexual embryogenesis and the endogenous hormonal regulation of that process and opens new avenues of experimentation.
Kumar, Santosh; Jordan, Mark C; Datla, Raju; Cloutier, Sylvie
2013-01-01
As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem) while the transcript levels declined during reproductive development (ovary, anthers) and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.
iTRAQ Analysis Reveals Mechanisms of Growth Defects Due to Excess Zinc in Arabidopsis1[W][OA
Fukao, Yoichiro; Ferjani, Ali; Tomioka, Rie; Nagasaki, Nahoko; Kurata, Rie; Nishimori, Yuka; Fujiwara, Masayuki; Maeshima, Masayoshi
2011-01-01
The micronutrient zinc is essential for all living organisms, but it is toxic at high concentrations. Here, to understand the effects of excess zinc on plant cells, we performed an iTRAQ (for isobaric tags for relative and absolute quantification)-based quantitative proteomics approach to analyze microsomal proteins from Arabidopsis (Arabidopsis thaliana) roots. Our approach was sensitive enough to identify 521 proteins, including several membrane proteins. Among them, IRT1, an iron and zinc transporter, and FRO2, a ferric-chelate reductase, increased greatly in response to excess zinc. The expression of these two genes has been previously reported to increase under iron-deficient conditions. Indeed, the concentration of iron was significantly decreased in roots and shoots under excess zinc. Also, seven subunits of the vacuolar H+-ATPase (V-ATPase), a proton pump on the tonoplast and endosome, were identified, and three of them decreased significantly in response to excess zinc. In addition, excess zinc in the wild type decreased V-ATPase activity and length of roots and cells to levels comparable to those of the untreated de-etiolated3-1 mutant, which bears a mutation in V-ATPase subunit C. Interestingly, excess zinc led to the formation of branched and abnormally shaped root hairs, a phenotype that correlates with decreased levels of proteins of several root hair-defective mutants. Our results point out mechanisms of growth defects caused by excess zinc in which cross talk between iron and zinc homeostasis and V-ATPase activity might play a central role. PMID:21325567
Chen, Z; Nie, H; Grover, C E; Wang, Y; Li, P; Wang, M; Pei, H; Zhao, Y; Li, S; Wendel, J F; Hua, J
2017-05-01
Cotton (Gossypium spp.) is commonly grouped into eight diploid genomic groups, designated A-G and K, and an allotetraploid genomic group, AD. Gossypium raimondii (D 5 ) and G. arboreum (A 2 ) are the putative contributors to the progenitor of G. hirsutum (AD 1 ), the economically important fibre-producing cotton species. Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genomes were sequenced, assembled, annotated and analysed in orderly. Gossypium raimondii (D 5 ) and G. arboreum (A 2 ) mitochondrial genomes were provided in this study. The mitochondrial genomes of two diploid species harboured circular genome of 643,914 bp (D 5 ) and 687,482 bp (A 2 ), respectively. They differ in size and number of repeat sequences, both contain illuminating triplicate sequences with 7317 and 10,246 bp, respectively, demonstrating dynamic difference and rearranged genome organisations. Comparing the D 5 and A 2 mitogenomes with mitogenomes of tetraploid Gossypium species (AD 1 , G. hirsutum; AD 2 , G. barbadense), a shared 11 kbp fragment loss was detected in allotetraploid species, three regions shared by G. arboreum (A 2 ), G. hirsutum (AD 1 ) and G. barbadense (AD 2 ), while eight regions were specific to G. raimondii (D 5 ). The presence/absence variations and gene-based phylogeny supported that A-genome is a cytoplasmic donor to the progenitor of allotetraploid species G. hirsutum and G. barbadense. The results present structure variations and phylogeny of Gossypium mitochondrial genome evolution. © 2017 The Authors. Plant Biology published by John Wiley & Sons Ltd on behalf of German Botanical Society, Royal Dutch Botanical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharrock, R.A.; Quail, P.H.
1989-01-01
Phytochrome is a plant regulatory photoreceptor that mediates red light effects on a wide variety of physiological and molecular responses. DNA blot analysis indicates that the Arabidopsis thaliana genome contains four to five phytochrome-related gene sequences. The authors have isolated and sequenced cDNA clones corresponding to three of these genes and have deduced the amino acid sequence of the full-length polypeptide encoded in each case. One of these proteins (phyA) shows 65-80% amino acid sequence identity with the major, etiolated-tissue phytochrome apoproteins described previously in other plant species. The other two polypeptides (phyB and phyC) are unique in that theymore » have low sequence identity with each other, with phyA, and with all previously described phytochromes. The phyA, phyB, and phyC proteins are of similar molecular mass, have related hydropathic profiles, and contain a conserved chromophore attachment region. However, the sequence comparison data indicate that the three phy genes diverged early in plant evolution, well before the divergence of the two major groups of angiosperms, the monocots and dicots. The steady-state level of the phyA transcript is high in dark-grown A. thaliana seedlings and is down-regulated by light. In contrast, the phyB and phyC transcripts are present at lower levels and are not strongly light-regulated. These findings indicate that the red/far red light-responsive phytochrome photoreceptor system in A. thaliana, and perhaps in all higher plants, consists of a family of chromoproteins that are heterogeneous in structure and regulation.« less
Leong, Ta-Yan; Briggs, Winslow R.
1982-01-01
The diphenyl ether acifluorfen enhances the blue light-induced absorbance change in Triton X100-solubilized crude membrane preparations from etiolated oat (Avena sativa L. cv. Lodi) coleoptiles. Enhancement of the spectral change is correlated with a change in rate of dark reoxidation of a b-type cytochrome. Similar, although smaller, enhancement was obtained with oxyfluorfen, nitrofen, and bifenox. Light-minus-dark difference spectra in the presence and absence of acifluorfen, and the dithionite-reduced-minus oxidized difference spectrum indicate that acifluorfen is acting specifically at a blue light-sensitive cytochrome-flavin complex. Sodium azide, a flavin inhibitor, decreases the light-induced absorbance change significantly, but does not affect the dark reoxidation of the cytochrome. Hence, it is acting on the light reaction, suggesting that the photoreceptor itself is a flavin. Acifluorfen sensitizes phototropism in dark-grown oat seedlings such that the first positive response occurs with blue light fluences as little as one-third of those required to elicit the same response in seedlings grown in the absence of the herbicide. Both this increase in sensitivity to light and the enhancement of the light-induced cytochrome reduction vary with the applied acifluorfen concentration in a similar manner. The herbicide is without effect either on elongation or on the geotropic response of dark-grown oat seedlings, indicating that acifluorfen is acting specifically close to, or at the photoreceptor end of, the stimulus-response chain. It seems likely that the flavin-cytochrome complex serves to transduce the light signal into curvature in phototropism in oats, with the flavin moiety itself serving as the photoreceptor. PMID:16662593
Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei
NASA Technical Reports Server (NTRS)
Li, H.; Roux, S. J.
1992-01-01
Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.
WVD2 and WDL1 modulate helical organ growth and anisotropic cell expansion in Arabidopsis
NASA Technical Reports Server (NTRS)
Yuen, Christen Y L.; Pearlman, Rebecca S.; Silo-Suh, Laura; Hilson, Pierre; Carroll, Kathleen L.; Masson, Patrick H.
2003-01-01
Wild-type Arabidopsis roots develop a wavy pattern of growth on tilted agar surfaces. For many Arabidopsis ecotypes, roots also grow askew on such surfaces, typically slanting to the right of the gravity vector. We identified a mutant, wvd2-1, that displays suppressed root waving and leftward root slanting under these conditions. These phenotypes arise from transcriptional activation of the novel WAVE-DAMPENED2 (WVD2) gene by the cauliflower mosaic virus 35S promoter in mutant plants. Seedlings overexpressing WVD2 exhibit constitutive right-handed helical growth in both roots and etiolated hypocotyls, whereas the petioles of WVD2-overexpressing rosette leaves exhibit left-handed twisting. Moreover, the anisotropic expansion of cells is impaired, resulting in the formation of shorter and stockier organs. In roots, the phenotype is accompanied by a change in the arrangement of cortical microtubules within peripheral cap cells and cells at the basal end of the elongation zone. WVD2 transcripts are detectable by reverse transcriptase-polymerase chain reaction in multiple organs of wild-type plants. Its predicted gene product contains a conserved region named "KLEEK," which is found only in plant proteins. The Arabidopsis genome possesses seven other genes predicted to encode KLEEK-containing products. Overexpression of one of these genes, WVD2-LIKE 1, which encodes a protein with regions of similarity to WVD2 extending beyond the KLEEK domain, results in phenotypes that are highly similar to wvd2-1. Silencing of WVD2 and its paralogs results in enhanced root skewing in the wild-type direction. Our observations suggest that at least two members of this gene family may modulate both rotational polarity and anisotropic cell expansion during organ growth.
The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.
Urquhart, Shelley; Foo, Eloise; Reid, James B
2015-03-01
The recently discovered group of plant hormones, the strigolactones, have been implicated in regulating photomorphogenesis. We examined this extensively in our strigolactone synthesis and response mutants and could find no evidence to support a major role for strigolactone signaling in classic seedling photomorphogenesis (e.g. elongation and leaf expansion) in pea (Pisum sativum), consistent with two recent independent reports in Arabidopsis. However, we did find a novel effect of strigolactones on adventitious rooting in darkness. Strigolactone-deficient mutants, Psccd8 and Psccd7, produced significantly fewer adventitious roots than comparable wild-type seedlings when grown in the dark, but not when grown in the light. This observation in dark-grown plants did not appear to be due to indirect effects of other factors (e.g. humidity) as the constitutively de-etiolated mutant, lip1, also displayed reduced rooting in the dark. This role for strigolactones did not involve the MAX2 F-Box strigolactone response pathway as Psmax2 f-box mutants did not show a reduction in adventitious rooting in the dark compared with wild-type plants. The auxin-deficient mutant bushy also reduced adventitious rooting in the dark, as did decapitation of wild-type plants. Rooting was restored by the application of indole-3-acetic acid (IAA) to decapitated plants, suggesting a role for auxin in the rooting response. However, auxin measurements showed no accumulation of IAA in the epicotyls of wild-type plants compared with the strigolactone synthesis mutant Psccd8, suggesting that changes in the gross auxin level in the epicotyl are not mediating this response to strigolactone deficiency. © 2014 Scandinavian Plant Physiology Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D.G.; Kelly, J.W.; Rajapakse, N.C.
1993-09-01
The effects of carbon dioxide enrichment on growth, photosynthesis, and postharvest characteristics of Meijikatar'' potted roses were determined. Plants were grown in 350, 700, or 1,050 [mu]l CO[sub 2]/liter until they reached 50% flower bud coloration and then were placed into dark storage for 5 days at 4 or 16C. Plants grown in 700 or 1,050 [mu]l CO[sub 2]/liter reached the harvest stage earlier and were taller at harvest than plants produced in 350 [mu]l CO[sub 2]/liter, but there were no differences in the number of flowers and flower buds per plant among CO[sub 2] treatments. Plants grown in earlymore » spring were taller and had more flowers and flower buds than plants grown in late winter. shoot and root growth of plants grown in 700 or 1,050 [mu]l CO[sub 2]/liter were higher than in plants produced in 350 [mu]l CO[sub 2]/liter, with plants grown in early spring showing greater increases than plants grown in late winter. Immediately after storage, plants grown in 350 [mu]l CO[sub 2]/liter and stored at 4C had the fewest etiolated shoots, while plants grown in 1,050 [mu]l CO[sub 2]/liter and stored at 16C had the most. Five days after removal from storage, chlorophyll concentration of upper and lower leaves had been reduced by [approximately]50% from the day of harvest. Carbon dioxide enrichment had no effect on postharvest leaf chlorosis, but plants grown in early spring and stored at 16C had the most leaf chlorosis while plants grown in late winter and stored at 4C had the least leaf chlorosis.« less
Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi
2014-01-01
Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3 −. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3 − conditions, and further enhanced under NO3 − limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3 − during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3 − as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis. PMID:25000295
Naithani, Sushma; Sullivan, Chris; Preece, Justin; Tiwari, Vijay K.; Elser, Justin; Leonard, Jeffrey M.; Sage, Abigail; Gresham, Cathy; Kerhornou, Arnaud; Bolser, Dan; McCarthy, Fiona; Kersey, Paul; Lazo, Gerard R.; Jaiswal, Pankaj
2014-01-01
Background Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. Principal Findings The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. Conclusions De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers. PMID:24821410
Suzuki, Hiromi; Okamoto, Ai; Kojima, Akane; Nishimura, Takeshi; Takano, Makoto; Kagawa, Takatoshi; Kadota, Akeo; Kanegae, Takeshi; Koshiba, Tomokazu
2014-08-01
ZmPHOT1 and ZmPHOT2 are expressed differentially in maize coleoptiles and leaves, with Zmphot1 possibly involved in first-positive phototropic curvature of red-light-adapted maize coleoptiles exposed to pulsed low-fluence blue light. Unilateral blue-light perception by phototropin(s) is the first event of phototropism, with the subsequent signal causing lateral transport of auxin at the coleoptile tip region of monocots. In this study, we analyzed the behavior of two maize phototropin genes: ZmPHOT1 and ZmPHOT2, the latter identified from the maize genome database and newly characterized. Quantitative real-time PCR analysis demonstrated that ZmPHOT1 was abundantly expressed in etiolated coleoptiles, while lower expressions of both ZmPHOT1 and ZmPHOT2 were observed in young leaves. Interestingly, these genes were not specifically expressed in the coleoptile tip region, a key position for photoperception in phototropism. Exposure to pulsed low-fluence blue light (LBL) (0.33 µmol m(-2) s(-1) × 8 s) and continuous high-fluence blue light (HBL) (10 µmol m(-2) s(-1)) rapidly decreased ZmPHOT1 gene expression in coleoptiles, with levels of ZmPHOT2 not significantly altered in that tissue. In young leaves, no drastic expression changes were induced in either ZmPHOT1 or ZmPHOT2 by LBL or HBL irradiation. The Zmphot1 protein was investigated by Western blot analysis with anti-Osphot1 antibodies. Zmphot1 was detected in microsomal fractions, with higher levels in coleoptiles than in leaves. HBL caused rapid phosphorylation of the protein, whereas no phot1 phosphorylation was induced by LBL. The involvement of Zmphot1 in LBL-induced phototropic curvature of maize coleoptiles is discussed.
Zang, Guangchao; Zou, Hanyan; Zhang, Yuchan; Xiang, Zheng; Huang, Junli; Luo, Li; Wang, Chunping; Lei, Kairong; Li, Xianyong; Song, Deming; Din, Ahmad Ud; Wang, Guixue
2016-01-01
DEETIOLATED1 (DET1) plays a critical role in developmental and environmental responses in many plants. To date, the functions of OsDET1 in rice (Oryza sativa) have been largely unknown. OsDET1 is an ortholog of Arabidopsis (Arabidopsis thaliana) DET1. Here, we found that OsDET1 is essential for maintaining normal rice development. The repression of OsDET1 had detrimental effects on plant development, and leaded to contradictory phenotypes related to abscisic acid (ABA) in OsDET1 interference (RNAi) plants. We found that OsDET1 is involved in modulating ABA signaling in rice. OsDET1 RNAi plants exhibited an ABA hypersensitivity phenotype. Using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays, we determined that OsDET1 interacts physically with DAMAGED-SPECIFIC DNA-BINDING PROTEIN1 (OsDDB1) and CONSTITUTIVE PHOTOMORPHOGENIC10 (COP10); DET1- and DDB1-ASSOCIATED1 binds to the ABA receptors OsPYL5 and OsDDB1. We found that the degradation of OsPYL5 was delayed in OsDET1 RNAi plants. These findings suggest that OsDET1 deficiency disturbs the COP10-DET1-DDB1 complex, which is responsible for ABA receptor (OsPYL) degradation, eventually leading to ABA sensitivity in rice. Additionally, OsDET1 also modulated ABA biosynthesis, as ABA biosynthesis was inhibited in OsDET1 RNAi plants and promoted in OsDET1-overexpressing transgenic plants. In conclusion, our data suggest that OsDET1 plays an important role in maintaining normal development in rice and mediates the cross talk between ABA biosynthesis and ABA signaling pathways in rice. PMID:27208292
Meng, Hongyan; Jiang, Ling; Xu, Bosi; Guo, Wenzhu; Li, Jinglai; Zhu, Xiuqing; Qi, Xiaoquan; Duan, Lixin; Meng, Xianbin; Fan, Yunliu; Zhang, Chunyi
2014-01-01
Interactions among metabolic pathways are important in plant biology. At present, not much is known about how folate metabolism affects other metabolic pathways in plants. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in seed reserves and skotomorphogenesis. Lower carbon (C) and higher nitrogen (N) content in the mutant seeds than that of the wild type were indicative of an altered C and N partitioning capacity. Higher levels of organic acids and sugars were detected in the mutant seeds compared with the wild type. Further analysis revealed that atdfb-3 seeds contained less total amino acids and individual Asn and Glu as well as NO3-. These results indicate significant changes in seed storage in the mutant. Defects in hypocotyl elongation were observed in atdfb-3 in darkness under sufficient NO3- conditions, and further enhanced under NO3- limited conditions. The strong expression of AtDFB in cotyledons and hypocotyl during early developmental stage was consistent with the mutant sensitivity to limited NO3- during a narrow developmental window. Exogenous 5-formyl-tetrahydrofolate completely restored the hypocotyl length in atdfb-3 seedlings with NO3- as the sole N source. Further study demonstrated that folate profiling and N metabolism were perturbed in atdfb-3 etiolated seedlings. The activity of enzymes involved in N reduction and assimilation was altered in atdfb-3. Taken together, these results indicate that AtDFB is required for seed reserves, hypocotyl elongation and N metabolism in darkness, providing novel insights into potential associations of folate metabolism with seed reserve accumulation, N metabolism and hypocotyl development in Arabidopsis.
Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination
Shi, Hui; Wang, Xin; Mo, Xiaorong; Tang, Chao; Zhong, Shangwei; Deng, Xing Wang
2015-01-01
Seed is an essential propagation organ and a critical strategy adopted by terrestrial flowering plants to colonize the land. The ability of seeds to accurately respond to light is vital for plant survival. However, the underlying mechanism is largely unknown. In this study, we reveal a circuit of triple feed-forward loops adopted by Arabidopsis seeds to exclusively repress germination in dark conditions and precisely initiate germination under diverse light conditions. We identify that de-etiolated 1 (DET1), an evolutionarily conserved protein, is a central repressor of light-induced seed germination. Genetic analysis demonstrates that DET1 functions upstream of long hypocotyl in far-red 1 (HFR1) and phytochrome interacting factor 1 (PIF1), the key positive and negative transcription regulators in seed germination. We further find that DET1 and constitutive photomorphogenic 10 (COP10) target HFR1 for protein degradation by assembling a COP10–DET1–damaged DNA binding protein 1–cullin4 E3 ligase complex. Moreover, DET1 and COP10 directly interact with and promote the protein stability of PIF1. Computational modeling reveals that phytochrome B (phyB)–DET1–HFR1–PIF1 and phyB–DET1–Protease–PIF1 are new signaling pathways, independent of the previously identified phyB-PIF1 pathway, respectively mediating the rapid and time-lapse responses to light irradiation. The model-simulated results are highly consistent with their experimental validations, suggesting that our mathematical model captures the essence of Arabidopsis seed germination networks. Taken together, this study provides a comprehensive molecular framework for light-regulated seed germination, improving our understanding of how plants respond to changeable environments. PMID:25775589
Patterns of expression and normalized levels of the five Arabidopsis phytochromes.
Sharrock, Robert A; Clack, Ted
2002-09-01
Using monoclonal antibodies specific for each apoprotein and full-length purified apoprotein standards, the levels of the five Arabidopsis phytochromes and their patterns of expression in seedlings and mature plants and under different light conditions have been characterized. Phytochrome levels are normalized to the DNA content of the various tissue extracts to approximate normalization to the number of cells in the tissue. One phytochrome, phytochrome A, is highly light labile. The other four phytochromes are much more light stable, although among these, phytochromes B and C are reduced 4- to 5-fold in red- or white-light-grown seedlings compared with dark-grown seedlings. The total amount of extractable phytochrome is 23-fold lower in light-grown than dark-grown tissues, and the percent ratios of the five phytochromes, A:B:C:D:E, are measured as 85:10:2:1.5:1.5 in etiolated seedlings and 5:40:15:15:25 in seedlings grown in continuous white light. The four light-stable phytochromes are present at nearly unchanging levels throughout the course of development of mature rosette and reproductive-stage plants and are present in leaves, stems, roots, and flowers. Phytochrome protein expression patterns over the course of seed germination and under diurnal and circadian light cycles are also characterized. Little cycling in response to photoperiod is observed, and this very low amplitude cycling of some phytochrome proteins is out of phase with previously reported cycling of PHY mRNA levels. These studies indicate that, with the exception of phytochrome A, the family of phytochrome photoreceptors in Arabidopsis constitutes a quite stable and very broadly distributed array of sensory molecules.
NASA Technical Reports Server (NTRS)
Caspar, T.; Pickard, B. G.
1989-01-01
The starch-statolith theory of gravity reception has been tested with a mutant of Arabidopsis thaliana (L.) Heynh. which, lacking plastid phosphoglucomutase (EC 2.7.5.1) activity, does not synthesize starch. The hypocotyls and seedling roots of the mutant were examined by light and electron microscopy to confirm that they did not contain starch. In upright wild-type (WT) seedlings, starch-filled plastids in the starch sheath of the hypocotyl and in three of the five columellar layers of the root cap were piled on the cell floors, and sedimented to the ceilings when the plants were inverted. However, starchless plastids of the mutant were not significantly sedimented in these cells in either upright or inverted seedlings. Gravitropism of light-grown seedling roots was vigorous: e.g., 10 degrees curvature developed in mutants rotated on a clinostat following a 5 min induction at 1 g, compared with 14 degrees in the WT. Curvatures induced during intervals from 2.5 to 30 min were 70% as great in the mutant as the WT. Thus under these conditions the presence of starch and the sedimentation of plastids are unnecessary for reception of gravity by Arabidopsis roots. Gravitropism by hypocotyls of light-grown seedlings was less vigorous than that by roots, but the mutant hypocotyls exhibited an average of 70-80% as much curvature as the WT. Roots and hypocotyls of etiolated seedlings and flower stalks of mature plants were also gravitropic, although in these cases the mutant was generally less closely comparable to the WT. Thus, starch is also unnecessary for gravity reception in these tissues.
Display of a maize cDNA library on baculovirus infected insect cells.
Meller Harel, Helene Y; Fontaine, Veronique; Chen, Hongying; Jones, Ian M; Millner, Paul A
2008-08-12
Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV) have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 x 10(5) independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1), was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.
The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo
NASA Technical Reports Server (NTRS)
Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)
1999-01-01
Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.
Wilkop, Thomas E.; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia
2015-01-01
Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls. PMID:25535279
Worden, Natasha; Wilkop, Thomas E; Esteve, Victor Esteva; Jeannotte, Richard; Lathe, Rahul; Vernhettes, Samantha; Weimer, Bart; Hicks, Glenn; Alonso, Jose; Labavitch, John; Persson, Staffan; Ehrhardt, David; Drakakaki, Georgia
2015-02-01
Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls. © 2015 American Society of Plant Biologists. All Rights Reserved.
Wu, Lei; Zhou, Zhao-Yang; Zhang, Chun-Guang; Chai, Juan; Zhou, Qin; Wang, Li; Hirnerová, Eva; Mrvková, Michaela; Novák, Ondřej; Guo, Guang-Qin
2015-01-01
Cytokinins (CKs) regulate plant development and growth via a two-component signaling pathway. By forward genetic screening, we isolated an Arabidopsis mutant named grow fast on cytokinins 1 (gfc1), whose seedlings grew larger aerial parts on MS medium with CK. gfc1 is allelic to a previously reported cutin mutant defective in cuticular ridges (dcr). GFC1/DCR encodes a soluble BAHD acyltransferase (a name based on the first four enzymes characterized in this family: Benzylalcohol O-acetyltransferase, Anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase and Deacetylvindoline 4-O-acetyltransferase) with diacylglycerol acyltransferase (DGAT) activity in vitro and is necessary for normal cuticle formation on epidermis in vivo. Here we show that gfc1 was a CK-insensitive mutant, as revealed by its low regeneration frequency in vitro and resistance to CK in adventitious root formation and dark-grown hypocotyl inhibition assays. In addition, gfc1 had de-etiolated phenotypes in darkness and was therefore defective in skotomorphogenesis. The background expression levels of most type-A Arabidopsis Response Regulator (ARR) genes were higher in the gfc1 mutant. The gfc1-associated phenotypes were also observed in the cutin-deficient glycerol-3-phosphate acyltransferase 4/8 (gpat4/8) double mutant [defective in glycerol-3-phosphate (G3P) acyltransferase enzymes GPAT4 and GPAT8, which redundantly catalyze the acylation of G3P by hydroxyl fatty acid (OH-FA)], but not in the cutin-deficient mutant cytochrome p450, family 86, subfamily A, polypeptide 2/aberrant induction of type three 1 (cyp86A2/att1), which affects the biosynthesis of some OH-FAs. Our results indicate that some acyltransferases associated with cutin formation are involved in CK responses and skotomorphogenesis in Arabidopsis.
Chai, Juan; Zhou, Qin; Wang, Li; Hirnerová, Eva; Mrvková, Michaela; Novák, Ondřej; Guo, Guang-Qin
2015-01-01
Cytokinins (CKs) regulate plant development and growth via a two-component signaling pathway. By forward genetic screening, we isolated an Arabidopsis mutant named grow fast on cytokinins 1 (gfc1), whose seedlings grew larger aerial parts on MS medium with CK. gfc1 is allelic to a previously reported cutin mutant defective in cuticular ridges (dcr). GFC1/DCR encodes a soluble BAHD acyltransferase (a name based on the first four enzymes characterized in this family: Benzylalcohol O-acetyltransferase, Anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase and Deacetylvindoline 4-O-acetyltransferase) with diacylglycerol acyltransferase (DGAT) activity in vitro and is necessary for normal cuticle formation on epidermis in vivo. Here we show that gfc1 was a CK-insensitive mutant, as revealed by its low regeneration frequency in vitro and resistance to CK in adventitious root formation and dark-grown hypocotyl inhibition assays. In addition, gfc1 had de-etiolated phenotypes in darkness and was therefore defective in skotomorphogenesis. The background expression levels of most type-A Arabidopsis Response Regulator (ARR) genes were higher in the gfc1 mutant. The gfc1-associated phenotypes were also observed in the cutin-deficient glycerol-3-phosphate acyltransferase 4/8 (gpat4/8) double mutant [defective in glycerol-3-phosphate (G3P) acyltransferase enzymes GPAT4 and GPAT8, which redundantly catalyze the acylation of G3P by hydroxyl fatty acid (OH-FA)], but not in the cutin-deficient mutant cytochrome p450, family 86, subfamily A, polypeptide 2/aberrant induction of type three 1 (cyp86A2/att1), which affects the biosynthesis of some OH-FAs. Our results indicate that some acyltransferases associated with cutin formation are involved in CK responses and skotomorphogenesis in Arabidopsis. PMID:25803274
NASA Astrophysics Data System (ADS)
Klymchuk, Dmytro
It is known that gravitropic response of etiolated seedlings is accompanied with asymmetrical distribution of auxins. The higher amount of auxins in the tissues of the lower sides of gravistimulated organs induces cell elongation in shoots and inhibits cell elongation in roots. In spite on the progress in understanding of the auxin-mediated effects on plant growth and development, there is no a complete conception concerning of gravitropic response mechanism. This investigation aims to determine whether the growth response of tomato seedlings on reorientation to the horizontal induces alterations in distribution of electrolytes in cells of the main root elongation zone, the site where induction of the curvature takes place. Tomato (Lycopersicon esculentum, Rio Grande) seedlings were grown on agar surface in 10 cm Petri dishes. The gravitropic response of seedlings was evaluated by the angle of gravitropic curvature after the roots were reoriented 90° from the vertical. Root segments of several mm basipetal to the root tip were fixed in liquid nitrogen, freeze-substituted with Lowicril K11M at -35° C. Sections 100 and 1000 nm thick were cut using LKB Ultrotome V, collected by dry method and analyzed in the 6060 LA SEM at accelerating voltage 15 kV. Using different modes of X-ray microanalysis (X-ray map, - line and -point analysis), distribution of the physiologically relevant ions (Na, P, K, Ca) in cells of surface layers of the upper and lower root sides were investigated. The peculiarities in localization of the electrolytes in different subcellular compartments as well as distribution in the direction between upper and lower sides of the root curvature are discussed.
Yao, Zhen; Jordan, Mark C.; Park, Seokhoon; Ayele, Belay T.
2014-01-01
Maintenance and release of seed dormancy is regulated by plant hormones; their levels and seed sensitivity being the critical factors. This study reports transcriptional regulation of brassinosteroids (BR), ethylene (ET), cytokinin (CK) and salicylic acid (SA) related wheat genes by after-ripening, a period of dry storage that decays dormancy. Changes in the expression of hormonal genes due to seed after-ripening did not occur in the anhydrobiotic state but rather in the hydrated state. After-ripening induced dormancy decay appears to be associated with imbibition mediated increase in the synthesis and signalling of BR, via transcriptional activation of de-etiolated2, dwarf4 and brassinosteroid signaling kinase, and repression of brassinosteroid insensitive 2. Our analysis is also suggestive of the significance of increased ET production, as reflected by enhanced transcription of 1-aminocyclopropane-1-carboxylic acid oxidase in after-ripened seeds, and tight regulation of seed response to ET in regulating dormancy decay. Differential transcriptions of lonely guy, zeatin O-glucosyltransferases and cytokinin oxidases, and pseudo-response regulator between dormant and after-ripened seeds implicate CK in the regulation of seed dormancy in wheat. Our analysis also reflects the association of dormancy decay in wheat with seed SA level and NPR independent SA signaling that appear to be regulated transcriptionally by phenylalanine ammonia lyase, and whirly and suppressor of npr1 inducible1 genes, respectively. Co-expression clustering of the hormonal genes implies the significance of synergistic and antagonistic interaction between the different plant hormones in regulating wheat seed dormancy. These results contribute to further our understanding of the molecular features controlling seed dormancy in wheat. PMID:24498132
Deslauriers, Stephen D; Alvarez, Ashley A; Lacey, Randy F; Binder, Brad M; Larsen, Paul B
2015-10-01
Prior work resulted in identification of an Arabidopsis mutant, eer5-1, with extreme ethylene response in conjunction with failure to induce a subset of ethylene-responsive genes, including AtEBP. EER5, which is a TREX-2 homolog that is part of a nucleoporin complex, functions as part of a cryptic aspect of the ethylene signaling pathway that is required for regulating the magnitude of ethylene response. A suppressor mutagenesis screen was carried out to identify second site mutations that could restore the growth of ethylene-treated eer5-1 to wild-type levels. A dominant gain-of-function mutation in the ethylene receptor ETHYLENE RESPONSE SENSOR 1 (ERS1) was identified, with the ers1-4 mutation being located in transmembrane domain III at a point nearly equivalent to the previously described etr1-2 mutation in the other Arabidopsis subfamily I ethylene receptor, ETHYLENE RESPONSE 1 (ETR1). Although both ers1-4 and etr1-2 partially suppress the ethylene hypersensitivity of eer5-1 and are at least in part REVERSION TO ETHYLENE SENSITIVITY 1 (RTE1)-dependent, ers1-4 was additionally found to restore the expression of AtEBP in ers1-4;eer5-1 etiolated seedlings after ethylene treatment in an EIN3-dependent manner. Our work indicates that ERS1-regulated expression of a subset of ethylene-responsive genes is related to controlling the magnitude of ethylene response, with hyperinduction of these genes correlated with reduced ethylene-dependent growth inhibition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Tong, C G; Reichler, S; Blumenthal, S; Balk, J; Hsieh, H L; Roux, S J
1997-01-01
A cDNA encoding a nucleolar protein was selected from a pea (Pisum sativum) plumule library, cloned, and sequenced. The translated sequence of the cDNA has significant percent identity to Xenopus laevis nucleolin (31%), the alfalfa (Medicago sativa) nucleolin homolog (66%), and the yeast (Saccharomyces cerevisiae) nucleolin homolog (NSR1) (28%). It also has sequence patterns in its primary structure that are characteristic of all nucleolins, including an N-terminal acidic motif, RNA recognition motifs, and a C-terminal Gly- and Arg-rich domain. By immunoblot analysis, the polyclonal antibodies used to select the cDNA bind selectively to a 90-kD protein in purified pea nuclei and nucleoli and to an 88-kD protein in extracts of Escherichia coli expressing the cDNA. In immunolocalization assays of pea plumule cells, the antibodies stained primarily a region surrounding the fibrillar center of nucleoli, where animal nucleolins are typically found. Southern analysis indicated that the pea nucleolin-like protein is encoded by a single gene, and northern analysis showed that the labeled cDNA binds to a single band of RNA, approximately the same size and the cDNA. After irradiation of etiolated pea seedlings by red light, the mRNA level in plumules decreased during the 1st hour and then increased to a peak of six times the 0-h level at 12 h. Far-red light reversed this effect of red light, and the mRNA accumulation from red/far-red light irradiation was equal to that found in the dark control. This indicates that phytochrome may regulate the expression of this gene. PMID:9193096
Escobar, Matthew A.; Franklin, Keara A.; Svensson, Å. Staffan; Salter, Michael G.; Whitelam, Garry C.; Rasmusson, Allan G.
2004-01-01
Controlled oxidation reactions catalyzed by the large, proton-pumping complexes of the respiratory chain generate an electrochemical gradient across the mitochondrial inner membrane that is harnessed for ATP production. However, several alternative respiratory pathways in plants allow the maintenance of substrate oxidation while minimizing the production of ATP. We have investigated the role of light in the regulation of these energy-dissipating pathways by transcriptional profiling of the alternative oxidase, uncoupling protein, and type II NAD(P)H dehydrogenase gene families in etiolated Arabidopsis seedlings. Expression of the nda1 and ndc1 NAD(P)H dehydrogenase genes was rapidly up-regulated by a broad range of light intensities and qualities. For both genes, light induction appears to be a direct transcriptional effect that is independent of carbon status. Mutant analyses demonstrated the involvement of two separate photoreceptor families in nda1 and ndc1 light regulation: the phytochromes (phyA and phyB) and an undetermined blue light photoreceptor. In the case of the nda1 gene, the different photoreceptor systems generate distinct kinetic induction profiles that are integrated in white light response. Primary transcriptional control of light response was localized to a 99-bp region of the nda1 promoter, which contains an I-box flanked by two GT-1 elements, an arrangement prevalent in the promoters of photosynthesis-associated genes. Light induction was specific to nda1 and ndc1. The only other substantial light effect observed was a decrease in aox2 expression. Overall, these results suggest that light directly influences the respiratory electron transport chain via photoreceptor-mediated transcriptional control, likely for supporting photosynthetic metabolism. PMID:15333756
Growth Stimulation by Catecholamines in Plant Tissue/Organ Cultures 1
Protacio, Calixto M.; Dai, Yao-ren; Lewis, Eldrin F.; Flores, Hector E.
1992-01-01
Addition of catecholamines at micromolar concentrations caused a dramatic stimulation of growth of tobacco (Nicotiana tabacum) thin cell layers (TCLs) and Acmella oppositifolia “hairy” root cultures. A threefold increase in the rate of ethylene evolution was observed in the catecholamine-treated explants. Aminooxyacetic acid and silver thiosulfate, inhibitors of ethylene biosynthesis and action, respectively, reduced the growth-promoting effect of dopamine. However, these compounds alone could also inhibit the growth of the TCL explants. When ethylene in the culture vessel was depleted by trapping with mercuric perchlorate, dopamine-stimulated growth was still obtained, suggesting that ethylene does not mediate the dopamine effect. Dopamine potentiated the growth of TCLs grown in Murashige and Skoog medium supplemented with indoleacetic acid (IAA) and kinetin. When IAA was replaced by 2,4-dichlorophenoxyacetic acid, dopamine addition showed no growth-promoting effect. Instead, 2,4-dichlorophenoxyacetic acid stimulated the growth of TCL explants to the same extent as that obtained with IAA plus dopamine. Because synthetic auxins do not appear to be substrates for IAA oxidizing enzymes, we hypothesized that catecholamines exert their effect by preventing IAA oxidation. Consistent with this explanation, dopamine (25 micromolar) inhibited IAA oxidase activity by 60 to 100% in crude enzyme extracts from tobacco roots and etiolated corn coleoptiles, but had no effect on peroxidase activity in the same extracts. Furthermore, addition of dopamine to TCL cultures resulted in a fourfold reduction in the oxidative degradation of [1-14C]IAA fed to the explants. Because the growth enhancement by catecholamines is observed in both IAA-requiring and IAA-independent cultures, we suggest that these aromatic amines may have a role in the regulation of IAA levels in vivo. ImagesFigure 2 PMID:16668653
Padrões de refluxo nas veias safenas em homens com insuficiência venosa crônica
Engelhorn, Carlos Alberto; Coral, Francisco Eduardo; Soares, Isabela Chaves Monteiro; Corrêa, Gabriel Fernando de Araújo; Ogeda, Jaqueline Pozzolo; Hara, Larissa Yuri; Murasse, Luisa Saemi
2016-01-01
Resumo Contexto A insuficiência venosa crônica (IVCr) é frequente e predomina nas mulheres, mas ainda há poucas informações sobre o refluxo nas veias safenas na população masculina. Objetivos Identificar os diferentes padrões de refluxo nas veias safenas magnas (VSMs) e parvas (VSPs) em homens, correlacionando esses dados com a apresentação clínica conforme a classificação Clínica, Etiológica, Anatômica e Fisiopatológica (CEAP). Métodos Foram avaliados 369 membros inferiores de 207 homens pela ultrassonografia vascular (UV) com diagnóstico clínico de IVCr primária. As variáveis analisadas foram a classificação CEAP, o padrão de refluxo nas VSMs e VSPs e a correlação entre os dois. Resultados Nos 369 membros avaliados, 72,9% das VSMs apresentaram refluxo com predominância do padrão segmentar (33,8%). Nas VSPs, 16% dos membros inferiores analisados apresentaram refluxo, sendo o mais frequente o padrão distal (33,9%). Dos membros classificados como C4, C5 e C6, 100% apresentaram refluxo na VSM com predominância do refluxo proximal (25,64%), e 38,46% apresentaram refluxo na VSP com equivalência entre os padrões distal e proximal (33,3%). Refluxo na junção safeno-femoral (JSF) foi detectado em 7,1% dos membros nas classes C0 e C1, 35,6% nas classes C2 e C3, e 64,1% nas classes C4 a C6. Conclusões O padrão de refluxo segmentar é predominante na VSM, e o padrão de refluxo distal é predominante na VSP. A ocorrência de refluxo na JSF é maior em pacientes com IVCr mais avançada. PMID:29930603
Growth of pea epicotyl in low magnetic field: implication for space research.
Negishi, Y; Hashimoto, A; Tsushima, M; Dobrota, C; Yamashita, M; Nakamura, T
1999-01-01
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly. c1999 COSPAR. Published by Elsevier Science Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoyagi, K.; Bassham, J.A.
1986-02-01
Regenerating maize A188 tissue cultures were examined for the presence of enzymes involved in C/sub 4/ photosynthesis, for cell morphology, and for /sup 14/C labeling kinetics to study the implementation of this pathway during plant development. For comparison, sections of maize seedling leaves were examined. Protein blot analysis using antibodies to leaf enzymes showed a different profile of these enzymes during the early stages of shoot regeneration from callus from the closely-coordinated profile observed in seedling leaves. Pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1) and phosphoenolpyruvate carboxylase (PEPC) (EC 4.1.1.31) were found in nonchlorophyllous callus while ribulose 1,5-bisphosphate carboxylase (RuBPC, ECmore » 4.1.1.39) and malic enzyme, NADP-specific (ME-NADP) (EC 1.3.1.37) were not detectable until later. Enzyme activity assays showed the presence of ME-NADP as well as PEPC and PPDK in nonchlorophyllous callus. However, the activities of ME-NADP and PEPC had properties similar to those of the enzymes from C/sub 3/ leaves and from etiolated C/sub 4/ leaf tissues, but differing from the corresponding enzymes in the mature leaf. Immunoprecipitation of in vitro translation products of poly(A)RNA extracted from embryoid-forming callus showed both the 110 kilodalton precursor to chloroplast PPDK and the 94 kilodalton polypeptide. Therefore, the chloroplast tye of PPDK mRNA is present prior to the appearance of leaf morphology. Analysis of the labeled products of /sup 14/CO/sub 2/ fixation by nonchlorophyllous calli indicated ..beta..-carboxylation to give acids of the tricarboxylic acid cycle, but no incorporation into phosphoglycerate. With greening of the callus, some incorporation into phosphoglycerate and sugar phosphates occurred, and this increased in shoots as they developed, although with older shoots the increase in ..beta..-carboxylation products was even greater.« less
Functional redundancy in the control of seedling growth by the karrikin signaling pathway.
Stanga, John P; Morffy, Nicholas; Nelson, David C
2016-06-01
SMAX1 and SMXL2 control seedling growth, demonstrating functional redundancy within a gene family that mediates karrikin and strigolactone responses. Strigolactones (SLs) are plant hormones with butenolide moieties that control diverse aspects of plant growth, including shoot branching. Karrikins (KARs) are butenolide molecules found in smoke that enhance seed germination and seedling photomorphogenesis. In Arabidopsis thaliana, SLs and KARs signal through the α/β hydrolases D14 and KAI2, respectively. The F-box protein MAX2 is essential for both signaling pathways. SUPPRESSOR OF MAX2 1 (SMAX1) plays a prominent role in KAR-regulated growth downstream of MAX2, and SMAX1-LIKE genes SMXL6, SMXL7, and SMXL8 mediate SL responses. We previously found that smax1 loss-of-function mutants display constitutive KAR response phenotypes, including reduced seed dormancy and hypersensitive growth responses to light in seedlings. However, smax1 seedlings remain slightly responsive to KARs, suggesting that there is functional redundancy in karrikin signaling. SMXL2 is a strong candidate for this redundancy because it is the closest paralog of SMAX1, and because its expression is regulated by KAR signaling. Here, we present evidence that SMXL2 controls hypocotyl growth and expression of the KAR/SL transcriptional markers KUF1, IAA1, and DLK2 redundantly with SMAX1. Hypocotyl growth in the smax1 smxl2 double mutant is insensitive to KAR and SL, and etiolated smax1 smxl2 seedlings have reduced hypocotyl elongation. However, smxl2 has little or no effect on seed germination, leaf shape, or petiole orientation, which appear to be predominantly controlled by SMAX1. Neither SMAX1 nor SMXL2 affect axillary branching or inflorescence height, traits that are under SL control. These data support the model that karrikin and strigolactone responses are mediated by distinct subclades of the SMXL family, and further the case for parallel butenolide signaling pathways that evolved through ancient KAI2 and SMXL duplications.
Maeda, Saori; Gunji, Shizuka; Hanai, Kenya; Hirano, Tomonari; Kazama, Yusuke; Ohbayashi, Iwai; Abe, Tomoko; Sawa, Shinichiro; Tsukaya, Hirokazu; Ferjani, Ali
2014-11-01
Plant shoot organs such as stems, leaves and flowers are derived from specialized groups of stem cells organized at the shoot apical meristem (SAM). Organogenesis involves two major processes, namely cell proliferation and differentiation, whereby the former contributes to increasing the cell number and the latter involves substantial increases in cell volume through cell expansion. Co-ordination between the above processes in time and space is essential for proper organogenesis. To identify regulatory factors involved in proper organogenesis, heavy-ion beam-irradiated de-etiolated (det) 3-1 seeds have been used to identify striking phenotypes in the A#26-2; det3-1 mutant. In addition to the stunted plant stature mimicking det3-1, the A#26-2; det3-1 mutant exhibited stem thickening, increased floral organ number and a fruit shape reminiscent of clavata (clv) mutants. DNA sequencing analysis demonstrated that A#26-2; det3-1 harbors a mutation in the CLV3 gene. Importantly, A#26-2; det3-1 displayed cracks that randomly occurred on the main stem with a frequency of approximately 50%. Furthermore, the double mutants clv3-8 det3-1, clv1-4 det3-1 and clv2-1 det3-1 consistently showed stem cracks with frequencies of approximately 97, 38 and 35%, respectively. Cross-sections of stems further revealed an increase in vascular bundle number, cell number and size in the pith of clv3-8 det3-1 compared with det3-1. These findings suggest that the stem inner volume increase due to clv mutations exerts an outward mechanical stress; that in a det3-1 background (defective in cell expansion) resulted in cracking of the outermost layer of epidermal cells. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Age Effects on Hypocotyl Mechanics.
Saxe, Friederike; Weichold, Susann; Reinecke, Antje; Lisec, Jan; Döring, Anett; Neumetzler, Lutz; Burgert, Ingo; Eder, Michaela
2016-01-01
Numerous studies deal with composition and molecular processes involved in primary cell wall formation and alteration in Arabidopsis. However, it still remains difficult to assess the relation between physiological properties and mechanical function at the cell wall level. The thin and fragile structure of primary cell walls and their large biological variability, partly related to structural changes during growth, make mechanical experiments challenging. Since, to the best of our knowledge, there is no reliable data in the literature about how the properties of the fully elongated zone of hypocotyls change with age. We studied in a series of experiments on two different seed batches the tensile properties the region below the growth zone of 4 to 7 day old etiolated Arabidopsis hypocotyls. Additionally, we analysed geometrical parameters, hypocotyl density and cellulose content as individual traits and their relation to tissue mechanics. No significant differences of the mechanical parameters of the non-growing region between 5-7 day old plants could be found whereas in 4 day old plants both tensile stiffness and ultimate tensile stress were significantly lower than in the older plants. Furthermore hypocotyl diameters and densities remain almost the same for 5, 6 and 7 day old seedlings. Naturally, hypocotyl lengths increase with age. The evaluation whether the choice-age or length-influences the mechanical properties showed that both are equally applicable sampling parameters. Additionally, our detailed study allows for the estimation of biological variability, connections between mechanics and hypocotyl age could be established and complement the knowledge on biochemistry and genetics affecting primary plant cell wall growth. The application of two different micromechanical devices for testing living Arabidopsis hypocotyls allows for emphasizing and discussing experimental limitations and for presenting a wide range of possibilities to address current and future questions related to plant cell wall mechanics, synthesis and growth in combination with molecular biology methodologies.
Baker, Stokes S.; Vidican, Cleo B.; Cameron, David S.; Greib, Haittam G.; Jarocki, Christine C.; Setaputri, Andres W.; Spicuzza, Christopher H.; Burr, Aaron A.; Waqas, Meriam A.; Tolbert, Danzell A.
2012-01-01
Background and aims Studies have shown that levels of green fluorescent protein (GFP) leaf surface fluorescence are directly proportional to GFP soluble protein concentration in transgenic plants. However, instruments that measure GFP surface fluorescence are expensive. The goal of this investigation was to develop techniques with consumer digital cameras to analyse GFP surface fluorescence in transgenic plants. Methodology Inexpensive filter cubes containing machine vision dichroic filters and illuminated with blue light-emitting diodes (LED) were designed to attach to digital single-lens reflex (SLR) camera macro lenses. The apparatus was tested on purified enhanced GFP, and on wild-type and GFP-expressing arabidopsis grown autotrophically and heterotrophically. Principal findings Spectrum analysis showed that the apparatus illuminates specimens with wavelengths between ∼450 and ∼500 nm, and detects fluorescence between ∼510 and ∼595 nm. Epifluorescent photographs taken with SLR digital cameras were able to detect red-shifted GFP fluorescence in Arabidopsis thaliana leaves and cotyledons of pot-grown plants, as well as roots, hypocotyls and cotyledons of etiolated and light-grown plants grown heterotrophically. Green fluorescent protein fluorescence was detected primarily in the green channel of the raw image files. Studies with purified GFP produced linear responses to both protein surface density and exposure time (H0: β (slope) = 0 mean counts per pixel (ng s mm−2)−1, r2 > 0.994, n = 31, P < 1.75 × 10−29). Conclusions Epifluorescent digital photographs taken with complementary metal-oxide-semiconductor and charge-coupled device SLR cameras can be used to analyse red-shifted GFP surface fluorescence using visible blue light. This detection device can be constructed with inexpensive commercially available materials, thus increasing the accessibility of whole-organism GFP expression analysis to research laboratories and teaching institutions with small budgets. PMID:22479674
Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi
2015-01-01
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793
Zhao, Xiaoying; Yu, Xuhong; Foo, Eloise; Symons, Gregory M.; Lopez, Javier; Bendehakkalu, Krishnaprasad T.; Xiang, Jing; Weller, James L.; Liu, Xuanming; Reid, James B.; Lin, Chentao
2007-01-01
Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA4 in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA4 content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs. PMID:17644628
Pratt, Lee H.; Liang, Chun; Shah, Manish; Sun, Feng; Wang, Haiming; Reid, St. Patrick; Gingle, Alan R.; Paterson, Andrew H.; Wing, Rod; Dean, Ralph; Klein, Robert; Nguyen, Henry T.; Ma, Hong-mei; Zhao, Xin; Morishige, Daryl T.; Mullet, John E.; Cordonnier-Pratt, Marie-Michèle
2005-01-01
Improved knowledge of the sorghum transcriptome will enhance basic understanding of how plants respond to stresses and serve as a source of genes of value to agriculture. Toward this goal, Sorghum bicolor L. Moench cDNA libraries were prepared from light- and dark-grown seedlings, drought-stressed plants, Colletotrichum-infected seedlings and plants, ovaries, embryos, and immature panicles. Other libraries were prepared with meristems from Sorghum propinquum (Kunth) Hitchc. that had been photoperiodically induced to flower, and with rhizomes from S. propinquum and johnsongrass (Sorghum halepense L. Pers.). A total of 117,682 expressed sequence tags (ESTs) were obtained representing both 3′ and 5′ sequences from about half that number of cDNA clones. A total of 16,801 unique transcripts, representing tentative UniScripts (TUs), were identified from 55,783 3′ ESTs. Of these TUs, 9,032 are represented by two or more ESTs. Collectively, these libraries were predicted to contain a total of approximately 31,000 TUs. Individual libraries, however, were predicted to contain no more than about 6,000 to 9,000, with the exception of light-grown seedlings, which yielded an estimate of close to 13,000. In addition, each library exhibits about the same level of complexity with respect to both the number of TUs preferentially expressed in that library and the frequency with which two or more ESTs is found in only that library. These results indicate that the sorghum genome is expressed in highly selective fashion in the individual organs and in response to the environmental conditions surveyed here. Close to 2,000 differentially expressed TUs were identified among the cDNA libraries examined, of which 775 were differentially expressed at a confidence level of 98%. From these 775 TUs, signature genes were identified defining drought, Colletotrichum infection, skotomorphogenesis (etiolation), ovary, immature panicle, and embryo. PMID:16169961
Sénéchal, Fabien; L'Enfant, Mélanie; Domon, Jean-Marc; Rosiau, Emeline; Crépeau, Marie-Jeanne; Surcouf, Ogier; Esquivel-Rodriguez, Juan; Marcelo, Paulo; Mareck, Alain; Guérineau, François; Kim, Hyung-Rae; Mravec, Jozef; Bonnin, Estelle; Jamet, Elisabeth; Kihara, Daisuke; Lerouge, Patrice; Ralet, Marie-Christine; Pelloux, Jérôme; Rayon, Catherine
2015-09-18
Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Choe, Sunghwa; Schmitz, Robert J.; Fujioka, Shozo; Takatsuto, Suguru; Lee, Mi-Ok; Yoshida, Shigeo; Feldmann, Kenneth A.; Tax, Frans E.
2002-01-01
Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3β family. Unlike human glycogen synthase kinase 3β, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways. PMID:12428015
NASA Technical Reports Server (NTRS)
Jones, A. M.; Cochran, D. S.; Lamerson, P. M.; Evans, M. L.; Cohen, J. D.
1991-01-01
We examined the changes in the levels of indoleacetic acid (IAA), IAA esters, and a 22-kilodalton subunit auxin-binding protein (ABP1) in apical mesocotyl tissue of maize (Zea mays L.) during continuous red light (R) irradiation. These changes were compared with the kinetics of R-induced growth inhibition in the same tissue. Upon the onset of continuous irradiation, growth decreased in a continuous manner following a brief lag period. The decrease in growth continued for 5 hours, then remained constant at 25% of the dark rate. The abundance of ABP1 and the level of free IAA both decreased in the mesocotyl. Only the kinetics of the decrease in IAA within the apical mesocotyl correlated with the initial change in growth, although growth continued to decrease even after IAA content reached its final level, 50% of the dark control. This decrease in IAA within the mesocotyl probably occurs primarily by a change in its transport within the shoot since auxin applied as a pulse move basipetally in R-irradiated tissue at the same rate but with half the area as dark control tissue. In situ localization of auxin in etiolated maize shoots revealed that R-irradiated shoots contained less auxin in the epidermis than the dark controls. Irradiated mesocotyl grew 50% less than the dark controls even when incubated in an optimal level of auxin. However, irradiated and dark tissue contained essentially the same amount of radioactivity after incubation in [14C]IAA indicating that the light treatment does not affect the uptake into the tissue through the cut end, although it is possible that a small subset of cells within the mesocotyl is affected. These observations support the hypothesis that R causes a decrease in the level of auxin in epidermal cells of the mesocotyl, consequently constraining the growth of the entire mesocotyl.
You, Min Kyoung; Kim, Jin Hwa; Lee, Yeo Jin; Jeong, Ye Sol; Ha, Sun-Hwa
2016-12-22
Plastoglobules (PGs) are thylakoid membrane microdomains within plastids that are known as specialized locations of carotenogenesis. Three rice phytoene synthase proteins (OsPSYs) involved in carotenoid biosynthesis have been identified. Here, the N-terminal 80-amino-acid portion of OsPSY2 (PTp) was demonstrated to be a chloroplast-targeting peptide by displaying cytosolic localization of OsPSY2(ΔPTp):mCherry in rice protoplast, in contrast to chloroplast localization of OsPSY2:mCherry in a punctate pattern. The peptide sequence of a PTp was predicted to harbor two transmembrane domains eligible for a putative PG-targeting signal. To assess and enhance the PG-targeting ability of PTp, the original PTp DNA sequence ( PTp ) was modified to a synthetic DNA sequence ( stPTp ), which had 84.4% similarity to the original sequence. The motivation of this modification was to reduce the GC ratio from 75% to 65% and to disentangle the hairpin loop structures of PTp . These two DNA sequences were fused to the sequence of the synthetic green fluorescent protein (sGFP) and drove GFP expression with different efficiencies. In particular, the RNA and protein levels of stPTp-sGFP were slightly improved to 1.4-fold and 1.3-fold more than those of sGFP, respectively. The green fluorescent signals of their mature proteins were all observed as speckle-like patterns with slightly blurred stromal signals in chloroplasts. These discrete green speckles of PTp - sGFP and stPTp - sGFP corresponded exactly to the red fluorescent signal displayed by OsPSY2:mCherry in both etiolated and greening protoplasts and it is presumed to correspond to distinct PGs. In conclusion, we identified PTp as a transit peptide sequence facilitating preferential translocation of foreign proteins to PGs, and developed an improved PTp sequence, a s tPTp , which is expected to be very useful for applications in plant biotechnologies requiring precise micro-compartmental localization in plastids.
Ma, Zhaoxue; Hu, Xupeng; Cai, Wenjuan; Huang, Weihua; Zhou, Xin; Luo, Qian; Yang, Hongquan; Wang, Jiawei; Huang, Jirong
2014-01-01
An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. PMID:25101599
Liu, Fang; Ling, Jian; Wang, Chunying; Li, Shaohui; Zhang, Xiangdi; Wang, Yuhong; Wang, Kunbo
2012-01-01
Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established. PMID:22442728
Krol, M; Huner, N P; Williams, J P; Maissan, E
1988-02-01
Etiolated seedlings developed at cold-hardening temperatures (5°C) exhibited etioplasts with considerable vesiculation of internal membranes compared to etioplasts developed at 20°C regardless of the osmotic concentration employed during sample preparation. This vesiculation disappeared during exposure to continuous light at 5°C. This transformation of 5°C and 20°C etioplasts to chloroplasts under continuous light at 5° and 20°C respectively proceeded normally with the initial development of non-appressed lamellae and the subsequent appearance of granal stacks. However, chloroplasts developed at 5°C exhibited fewer lamellae per granum than chloroplasts developed at 20°C.Although the polypeptide complements of etioplasts and chloroplasts developed at 5° or 20°C were not significantly different, monomeric light harvesting complex (LHCII3) was assembled into oligomeric light harvesting complex (LHCII1) during chloroplast biogenesis at 20°C (oligomer:monomer =1.8) whereas monomeric LHCII predominated at 5°C (oligomer:monomer =0.3). Low temperature fluorescence emission spectra of isolated thylakoids indicated that both the F685/F735 and F695/F735 were significantly higher after greening at 5°C than at 20°C. In addition, chloroplast biogenesis at 5°C was associated with a low ratio of trans-Δ3-hexadecenoic acid (0.5) in phosphatidylglycerol whereas at 20°C biogenesis was associated with a high ratio (1.6). Comparative kinetics indicated that the maximization of the trans-Δ3-hexadecenoic acid level precedes the assembly of monomeric LHCII into oligomeric LHCII during biogenesis at 20°C. It is suggested that low developmental temperatures modulate the assembly of LHCII by reducing the trans-Δ3-hexadecenoic acid content of phosphatidylglycerol such that monomeric or some intermediate form of LHCII predominates.
Sibbesen, O; Koch, B; Halkier, B A; Møller, B L
1994-01-01
The cytochrome P-450 enzyme (hemethiolate enzyme) that catalyzes the N-hydroxylation of L-tyrosine to N-hydroxytyrosine, the committed step in the biosynthesis of the cyanogenic glucoside dhurrin, has been isolated from microsomes prepared from etiolated seedlings of Sorghum bicolor (L.) Moench. The cytochrome P-450 enzyme was solubilized with the detergents Renex 690, reduced Triton X-100, and 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and isolated by ion-exchange (DEAE-Sepharose) and dye (Cibacron blue and reactive red 120) column chromatography. To prevent irreversible aggregation of the cytochrome P-450 enzyme, the isolation procedure was designed without any concentration step--i.e., with dilution of the ion-exchange gel with gel filtration material. The isolated enzyme, which we designate the cytochrome P-450TYR enzyme, gives rise to the specific formation of a type I substrate binding spectrum in the presence of L-tyrosine. The microsomal preparation contains 0.2 nmol of total cytochrome P-450/mg of protein. The cytochrome P-450TYR enzyme is estimated to constitute approximately 20% of the total cytochrome P-450 content of the microsomal membranes and about 0.2% of their total protein content. The apparent molecular mass of the cytochrome P-450TYR enzyme is 57 kDa, and the N-terminal amino acid sequence is ATMEVEAAAATVLAAP. A polyclonal antibody raised against the isolated cytochrome P-450TYR enzyme is specific as monitored by Western blot analysis and inhibits the in vitro conversion of L-tyrosine to p-hydroxymandelonitrile catalyzed by the microsomal system. The cytochrome P-450TYR enzyme exhibits high substrate specificity and acts as an N-hydroxylase on a single endogenous substrate. The reported isolation procedure based on dye columns constitutes a gentle isolation method for cytochrome P-450 enzymes and is of general use as indicated by its ability to separate cytochrome P-450TYR from the cytochrome P-450 enzyme catalyzing the C-hydroxylation of p-hydroxyphenylacetonitrile and from cinnamic acid 4-hydroxylase. Images PMID:7937883
Peng, Suna; Tao, Ping; Xu, Feng; Wu, Aiping; Huo, Weige; Wang, Jinxiang
2016-01-01
Brassinosteroids (BR) play important roles in plant growth and development. Although BR receptors have been intensively studied in Arabidopsis, the BR receptors in soybean remain largely unknown. Here, in addition to the known receptor gene Glyma06g15270 (GmBRI1a), we identified five putative BR receptor genes in the soybean genome: GmBRI1b, GmBRL1a, GmBRL1b, GmBRL2a, and GmBRL2b. Analysis of their expression patterns by quantitative real-time PCR showed that they are ubiquitously expressed in primary roots, lateral roots, stems, leaves, and hypocotyls. We used rapid amplification of cDNA ends (RACE) to clone GmBRI1b (Glyma04g39160), and found that the predicted amino acid sequence of GmBRI1b showed high similarity to those of AtBRI1 and pea PsBRI1. Structural modeling of the ectodomain also demonstrated similarities between the BR receptors of soybean and Arabidopsis. GFP-fusion experiments verified that GmBRI1b localizes to the cell membrane. We also explored GmBRI1b function in Arabidopsis through complementation experiments. Ectopic over-expression of GmBRI1b in Arabidopsis BR receptor loss-of-function mutant (bri1-5 bak1-1D) restored hypocotyl growth in etiolated seedlings; increased the growth of stems, leaves, and siliques in light; and rescued the developmental defects in leaves of the bri1-6 mutant, and complemented the responses of BR biosynthesis-related genes in the bri1-5 bak1-D mutant grown in light. Bioinformatics analysis demonstrated that the six BR receptor genes in soybean resulted from three gene duplication events during evolution. Phylogenetic analysis classified the BR receptors in dicots and monocots into three subclades. Estimation of the synonymous (Ks) and the nonsynonymous substitution rate (Ka) and selection pressure (Ka/Ks) revealed that the Ka/Ks of BR receptor genes from dicots and monocots were less than 1.0, indicating that BR receptor genes in plants experienced purifying selection during evolution. PMID:27338344
Auxin increases the hydraulic conductivity of auxin-sensitive hypocotyl tissue.
Boyer, J S; Wu, G
1978-01-01
The ability of water to enter the cells of growing hypocotyl tissue was determined in etiolated soybean (Glycine max (L.) Merr.) seedlings. Water uptake was restricted to that for cell enlargement, and the seedlings were kept intact insofar as possible. Tissue water potentials (ψ w) were measured at thermodynamic equilibrium with an isopiestic thermocouple psychrometer. ψ wwas below the water potential of the environment by as much as 3.1 bars when the tissue was enlarging rapidly. However, ψ w was similar to the water potential of the environment when cell enlargement was not occurring. The low ψ w in enlarging tissue indicates that there was a low conductivity for water entering the cells.The ability of water to enter the enlarging cells was defined as the apparent hydraulic conductivity of the tissue (L'p). Despite the low L'p of growing cells, L'p decreased further as cell enlargement decreased when intact hypocotyl tissue was deprived of endogenous auxin (indole-3-acetic acid) by removal of the hypocotyl hook. Cell enlargement resumed and L'p increased when auxin was resupplied exogenously. The auxin-induced increase in L'p was correlated with the magnitude of the growth enhancement caused by auxin, and it was observed during the earliest phase of the growth response to auxin. The increase in L'p appeared to be caused by an increase in the hydraulic conductivity of the cell protoplasm, since other factors contributing to L'p remained constant. The rapidity of the response is consistent with a cellular site of action at the plasmalemma, although other sites are not precluded.Because the experiments involved only short times, auxin-induced changes in cell enlargement could not be attributed to changes in cell osmotic potentials. Neither could they be attributed to changes in turgor, which increased when the rate of enlargement decreased. Rather, auxin appeared to act by altering the extensibility of the cell walls and by simultaneously altering the ability of water to enter the growing cells under a given water potential gradient. The hydraulic conductivity and extensibility of the cell walls appeared to contribute about equally to the control of the growth rate of the hypocotyls.
Shanklin, John; Jabben, Merten; Vierstra, Richard D.
1987-01-01
Phytochrome is the photoreceptor that controls red light-mediated morphogenesis in higher plants. It exists in two photointerconvertible forms, a red light-absorbing form, Pr, and a far-red light-absorbing form, Pfr. Because photoconversion of Pr to Pfr by a brief light pulse decreases the in vivo half-life of this chromoprotein by a factor of ≈100, this system offers a unique way to modulate the turnover rate of a specific protein and hence study the mechanisms responsible for selective protein degradation. In etiolated oat [Avena sativa (L.)] seedlings, degradation of phytochrome as Pfr follows zero-order kinetics as measured both spectrally and by ELISA, with 50% of Pfr lost in ≈130 min at 27°C. Immunoblot analysis of the destruction process with anti-oat phytochrome immunoglobulins reveals that degradation involves the loss of the 124-kDa phytochrome monomer and that proteolytic intermediates of apparent molecular mass lower than 124 kDa do not accumulate to detectable levels in vivo (<0.015% of total phytochrome). The latter observation suggests that proteolytic breakdown of the protein is extremely rapid. However, a series of polypeptides with higher apparent molecular mass and recognized by anti-phytochrome immunoglobulins (principally 129 and 134 kDa) appears after photoconversion to Pfr. These polypeptides represent no more than a few percent of the total immunologically detectable phytochrome pool and have incremental differences in apparent molecular mass of 5 kDa. They appear within 5 min after Pfr formation, reach maximal levels between 90 and 180 min, and decline thereafter. These polypeptides and others of apparent molecular mass up to 160 kDa are also detectable with immunoglobulins directed against either oat or human ubiquitin, indicating that they are ubiquitin-phytochrome conjugates. Since ubiquitin conjugation is involved in intracellular protein turnover and since formation and degradation of Pfr-ubiquitin conjugates coincide with the turnover of Pfr, these data suggest that the Pfr form of phytochrome is degraded via a ubiquitin-dependent proteolytic pathway. Images PMID:16593800
Gene expression analysis of flax seed development
2011-01-01
Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well. PMID:21529361
Rajagopalan, A V; Devi, M T; Raghavendra, A S
1994-02-01
Three to four families of nuclear genes encode different isoforms of phosphoenolpyruvate (PEP) carboxylase (PEPC): C4-specific, C3 or etiolated, CAM and root forms. C4 leaf PEPC is encoded by a single gene (ppc) in sorghum and maize, but multiple genes in the C4-dicot Flaveria trinervia. Selective expression of ppc in only C4-mesophyll cells is proposed to be due to nuclear factors, DNA methylation and a distinct gene promoter. Deduced amino acid sequences of C4-PEPC pinpoint the phosphorylatable serine near the N-terminus, C4-specific valine and serine residues near the C-terminus, conserved cysteine, lysine and histidine residues and PEP binding/catalytic sites. During the PEPC reaction, PEP and bicarbonate are first converted into carboxyphosphate and the enolate of pyruvate. Carboxyphosphate decomposes within the active site into Pi and CO2, the latter combining with the enolate to form oxalacetate. Besides carboxylation, PEPC catalyzes a HCO3 (-)-dependent hydrolysis of PEP to yield pyruvate and Pi. Post-translational regulation of PEPC occurs by a phosphorylation/dephosphorylation cascade in vivo and by reversible enzyme oligomerization in vitro. The interrelation between phosphorylation and oligomerization of the enzyme is not clear. PEPC-protein kinase (PEPC-PK), the enzyme responsible for phosphorylation of PEPC, has been studied extensively while only limited information is available on the protein phosphatase 2A capable of dephosphorylating PEPC. The C4 ppc was cloned and expressed in Escherichia coli as well as tobacco. The transformed E. coli produced a functional/phosphorylatable C4 PEPC and the transgenic tobacco plants expressed both C3 and C4 isoforms. Site-directed mutagenesis of ppc indicates the importance of His(138), His(579) and Arg(587) in catalysis and/or substrate-binding by the E. coli enzyme, Ser(8) in the regulation of sorghum PEPC. Important areas for further research on C4 PEPC are: mechanism of transduction of light signal during photoactivation of PEPC-PK and PEPC in leaves, extensive use of site-directed mutagenesis to precisely identify other key amino acid residues, changes in quarternary structure of PEPC in vivo, a high-resolution crystal structure, and hormonal regulation of PEPC expression.
Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals
Enganti, Ramya; Cho, Sung Ki; Toperzer, Jody D.; ...
2018-01-19
The translation of mRNA into protein is tightly regulated by the light environment as well as by the circadian clock. Although changes in translational efficiency have been well documented at the level of mRNA-ribosome loading, the underlying mechanisms are unclear. The reversible phosphorylation of RIBOSOMAL PROTEIN OF THE SMALL SUBUNIT 6 (RPS6) has been known for 40 years, but the biochemical significance of this event remains unclear to this day. Here, we confirm using a clock-deficient strain of Arabidopsis thaliana that RPS6 phosphorylation (RPS6-P) is controlled by the diel light-dark cycle with a peak during the day. Strikingly, when wild-type,more » clock-enabled, seedlings that have been entrained to a light-dark cycle are placed under free-running conditions, the circadian clock drives a cycle of RPS6-P with an opposite phase, peaking during the subjective night. We show that in wild-type seedlings under a light-dark cycle, the incoherent light and clock signals are integrated by the plant to cause an oscillation in RPS6-P with a reduced amplitude with a peak during the day. Sucrose can stimulate RPS6-P, as seen when sucrose in the medium masks the light response of etiolated seedlings. However, the diel cycles of RPS6-P are observed in the presence of 1% sucrose and in its absence. Sucrose at a high concentration of 3% appears to interfere with the robust integration of light and clock signals at the level of RPS6-P. Finally, we addressed whether RPS6-P occurs uniformly in polysomes, non-polysomal ribosomes and their subunits, and non-ribosomal protein. It is the polysomal RPS6 whose phosphorylation is most highly stimulated by light and repressed by darkness. These data exemplify a striking case of contrasting biochemical regulation between clock signals and light signals. Although the physiological significance of RPS6-P remains unknown, our data provide a mechanistic basis for the future understanding of this enigmatic event.« less
Vishwakarma, Abhaypratap; Tetali, Sarada Devi; Selinski, Jennifer; Scheibe, Renate; Padmasree, Kollipara
2015-01-01
Background and Aims The importance of the alternative oxidase (AOX) pathway, particularly AOX1A, in optimizing photosynthesis during de-etiolation, under elevated CO2, low temperature, high light or combined light and drought stress is well documented. In the present study, the role of AOX1A in optimizing photosynthesis was investigated when electron transport through the cytochrome c oxidase (COX) pathway was restricted at complex III. Methods Leaf discs of wild-type (WT) and aox1a knock-out mutants of Arabidopsis thaliana were treated with antimycin A (AA) under growth-light conditions. To identify the impact of AOX1A deficiency in optimizing photosynthesis, respiratory O2 uptake and photosynthesis-related parameters were measured along with changes in redox couples, reactive oxygen species (ROS), lipid peroxidation and expression levels of genes related to respiration, the malate valve and the antioxidative system. Key Results In the absence of AA, aox1a knock-out mutants did not show any difference in physiological, biochemical or molecular parameters compared with WT. However, after AA treatment, aox1a plants showed a significant reduction in both respiratory O2 uptake and NaHCO3-dependent O2 evolution. Chlorophyll fluorescence and P700 studies revealed that in contrast to WT, aox1a knock-out plants were incapable of maintaining electron flow in the chloroplastic electron transport chain, and thereby inefficient heat dissipation (low non-photochemical quenching) was observed. Furthermore, aox1a mutants exhibited significant disturbances in cellular redox couples of NAD(P)H and ascorbate (Asc) and consequently accumulation of ROS and malondialdehyde (MDA) content. By contrast, WT plants showed a significant increase in transcript levels of CSD1, CAT1, sAPX, COX15 and AOX1A in contrast to aox1a mutants. Conclusions These results suggest that AOX1A plays a significant role in sustaining the chloroplastic redox state and energization to optimize photosynthesis by regulating cellular redox homeostasis and ROS generation when electron transport through the COX pathway is disturbed at complex III. PMID:26292995
Phosphorylation of Ribosomal Protein RPS6 Integrates Light Signals and Circadian Clock Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enganti, Ramya; Cho, Sung Ki; Toperzer, Jody D.
The translation of mRNA into protein is tightly regulated by the light environment as well as by the circadian clock. Although changes in translational efficiency have been well documented at the level of mRNA-ribosome loading, the underlying mechanisms are unclear. The reversible phosphorylation of RIBOSOMAL PROTEIN OF THE SMALL SUBUNIT 6 (RPS6) has been known for 40 years, but the biochemical significance of this event remains unclear to this day. Here, we confirm using a clock-deficient strain of Arabidopsis thaliana that RPS6 phosphorylation (RPS6-P) is controlled by the diel light-dark cycle with a peak during the day. Strikingly, when wild-type,more » clock-enabled, seedlings that have been entrained to a light-dark cycle are placed under free-running conditions, the circadian clock drives a cycle of RPS6-P with an opposite phase, peaking during the subjective night. We show that in wild-type seedlings under a light-dark cycle, the incoherent light and clock signals are integrated by the plant to cause an oscillation in RPS6-P with a reduced amplitude with a peak during the day. Sucrose can stimulate RPS6-P, as seen when sucrose in the medium masks the light response of etiolated seedlings. However, the diel cycles of RPS6-P are observed in the presence of 1% sucrose and in its absence. Sucrose at a high concentration of 3% appears to interfere with the robust integration of light and clock signals at the level of RPS6-P. Finally, we addressed whether RPS6-P occurs uniformly in polysomes, non-polysomal ribosomes and their subunits, and non-ribosomal protein. It is the polysomal RPS6 whose phosphorylation is most highly stimulated by light and repressed by darkness. These data exemplify a striking case of contrasting biochemical regulation between clock signals and light signals. Although the physiological significance of RPS6-P remains unknown, our data provide a mechanistic basis for the future understanding of this enigmatic event.« less
Efimova, Marina V; Vankova, Radomira; Kusnetsov, Victor V; Litvinovskaya, Raisa P; Zlobin, Ilya E; Dobrev, Petre; Vedenicheva, Nina P; Savchuk, Alina L; Karnachuk, Raisa A; Kudryakova, Natalia V; Kuznetsov, Vladimir V
2017-04-01
In order to evaluate whether brassinosteroids (BS) and green light regulate the transcription of plastid genes in a cross-talk with cytokinins (CKs), transcription rates of 12 plastid genes (ndhF, rrn23, rpoB, psaA, psaB, rrn16, psbA, psbD, psbK, rbcL, atpB, and trnE/trnY) as well as the accumulation of transcripts of some photoreceptors (PHYA, CRY2, CRY1A, and CRY1B) and signaling (SERK and CAS) genes were followed in detached etiolated barley leaves exposed to darkness, green or white light ±1μm 24-epibrassinolide (EBL). EBL in the dark was shown to up-regulate the transcription of 12 plastid genes, while green light activated 10 genes and the EBL combined with the green light affected the transcription of only two genes (psaB and rpoB). Green light inhibited the expression of photoreceptor genes, except for CRY1A. Under the green light, EBL practically did not affect the expression of CRY1A, CAS and SERK genes, but it reduced the influence of white light on the accumulation of CAS, CRY1A, CRY1B, and SERK gene transcripts. The total content of BS in the dark and under white light remained largely unchanged, while under green light the total content of BRs (brassinolide, castasterone, and 6-deoxocastasterone) and HBRs (28-homobrassinolide, 28-homocastasterone, and 6-deoxo-28-homocastasterone) increased. The EBL-dependent up-regulation of plastome transcription in the dark was accompanied by a significant decrease in CK deactivation by O-glucosylation. However, no significant effect on the content of active CKs was detected. EBL combined with green light moderately increased the contents of trans-zeatin and isopentenyladenine, but had a negative effect on cis-zeatin. The most significant promotive effect of EBL on active CK bases was observed in white light. The data obtained suggest the involvement of CKs in the BS- and light-dependent transcription regulation of plastid genes. Copyright © 2016 Elsevier Inc. All rights reserved.
Vishwakarma, Abhaypratap; Tetali, Sarada Devi; Selinski, Jennifer; Scheibe, Renate; Padmasree, Kollipara
2015-09-01
The importance of the alternative oxidase (AOX) pathway, particularly AOX1A, in optimizing photosynthesis during de-etiolation, under elevated CO2, low temperature, high light or combined light and drought stress is well documented. In the present study, the role of AOX1A in optimizing photosynthesis was investigated when electron transport through the cytochrome c oxidase (COX) pathway was restricted at complex III. Leaf discs of wild-type (WT) and aox1a knock-out mutants of Arabidopsis thaliana were treated with antimycin A (AA) under growth-light conditions. To identify the impact of AOX1A deficiency in optimizing photosynthesis, respiratory O2 uptake and photosynthesis-related parameters were measured along with changes in redox couples, reactive oxygen species (ROS), lipid peroxidation and expression levels of genes related to respiration, the malate valve and the antioxidative system. In the absence of AA, aox1a knock-out mutants did not show any difference in physiological, biochemical or molecular parameters compared with WT. However, after AA treatment, aox1a plants showed a significant reduction in both respiratory O2 uptake and NaHCO3-dependent O2 evolution. Chlorophyll fluorescence and P700 studies revealed that in contrast to WT, aox1a knock-out plants were incapable of maintaining electron flow in the chloroplastic electron transport chain, and thereby inefficient heat dissipation (low non-photochemical quenching) was observed. Furthermore, aox1a mutants exhibited significant disturbances in cellular redox couples of NAD(P)H and ascorbate (Asc) and consequently accumulation of ROS and malondialdehyde (MDA) content. By contrast, WT plants showed a significant increase in transcript levels of CSD1, CAT1, sAPX, COX15 and AOX1A in contrast to aox1a mutants. These results suggest that AOX1A plays a significant role in sustaining the chloroplastic redox state and energization to optimize photosynthesis by regulating cellular redox homeostasis and ROS generation when electron transport through the COX pathway is disturbed at complex III. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pazur, Alexander; Rassadina, Valentina; Dandler, Jörg; Zoller, Jutta
2006-01-01
Background The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. Perception mechanisms were attributed originally to ferrimagnetism, but later discoveries required additional explanations like the "radical pair mechanism" and the "Ion cyclotron resonance" (ICR), primarily considered by Liboff. The latter predicts effects by small ions involved in biological processes, that occur in definite frequency- and intensity ranges ("windows") of simultaneously impacting magnetic and electromagnetic fields related by a linear equation, which meanwhile is proven by a number of in vivo and in vitro experiments. Methods Barley seedlings (Hordeum vulgare, L. var. Steffi) were grown in the dark for 5 and 6 days under static magnetic and 50 Hz electromagnetic fields matching the ICR conditions of Ca2+. Control cultures were grown under normal geomagnetic conditions, not matching this ICR. Morphology, pigmentation and long-term development of the adult plants were subsequently investigated. Results The shoots of plants exposed to Ca2+-ICR exposed grew 15–20% shorter compared to the controls, the plant weight was 10–12% lower, and they had longer coleoptiles that were adhering stronger to the primary leaf tissue. The total pigment contents of protochlorophyllide (PChlide) and carotenoids were significantly decreased. The rate of PChlide regeneration after light irradiation was reduced for the Ca2+-ICR exposed plants, also the Shibata shift was slightly delayed. Even a longer subsequent natural growing phase without any additional fields could only partially eliminate these effects: the plants initially exposed to Ca2+-ICR were still significantly shorter and had a lower chlorophyll (a+b) content compared to the controls. A continued cultivation and observation of the adult plants under natural conditions without any artificial electromagnetic fields showed a retardation of the originally Ca2+-ICR exposed plants compared to control cultures lasting several weeks, with an increased tendency for dehydration. Conclusion A direct influence of the applied MF and EMF is discussed affecting Ca2+ levels via the ICR mechanism. It influences the available Ca2+ and thereby regulatory processes. Theoretical considerations on molecular level focus on ionic interactions with water related to models using quantum electrodynamics. PMID:16457719
Autism spectrum disorders: an updated guide for genetic counseling.
Griesi-Oliveira, Karina; Sertié, Andréa Laurato
2017-01-01
Autism spectrum disorder is a complex and genetically heterogeneous disorder, which has hampered the identification of the etiological factors in each patient and, consequently, the genetic counseling for families at risk. However, in the last decades, the remarkable advances in the knowledge of genetic aspects of autism based on genetic and molecular research, as well as the development of new molecular diagnostic tools, have substantially changed this scenario. Nowadays, it is estimated that using the currently available molecular tests, a potential underlying genetic cause can be identified in nearly 25% of cases. Combined with clinical assessment, prenatal history evaluation and investigation of other physiological aspects, an etiological explanation for the disease can be found for approximately 30 to 40% of patients. Therefore, in view of the current knowledge about the genetic architecture of autism spectrum disorder, which has contributed for a more precise genetic counseling, and of the potential benefits that an etiological investigation can bring to patients and families, molecular genetic investigation has become increasingly important. Here, we discuss the current view of the genetic architecture of autism spectrum disorder, and list the main associated genetic alterations, the available molecular tests and the key aspects for the genetic counseling of these families. RESUMO O transtorno do espectro autista é um distúrbio complexo e geneticamente heterogêneo, o que sempre dificultou a identificação de sua etiologia em cada paciente em particular e, por consequência, o aconselhamento genético das famílias. Porém, nas últimas décadas, o acúmulo crescente de conhecimento oriundo das pesquisas sobre os aspectos genéticos e moleculares desta doença, assim como o desenvolvimento de novas ferramentas de diagnóstico molecular, tem mudado este cenário de forma substancial. Atualmente, estima-se que, por meio de testes moleculares, é possível detectar uma alteração genética potencialmente causal em cerca de 25% dos casos. Considerando-se também a avaliação clínica, a história pré-natal e a investigação de outros aspectos fisiológicos, pode-se atribuir uma etiologia para aproximadamente 30 a 40% dos pacientes. Assim, em vista do conhecimento atual sobre a arquitetura genética do transtorno do espectro autista, que tem tornado o aconselhamento genético cada vez mais preciso, e dos potenciais benefícios que a investigação etiológica pode trazer aos pacientes e familiares, tornam-se cada vez mais importantes os testes genéticos moleculares. Apresentamos aqui uma breve discussão sobre a visão atual da arquitetura genética dos transtornos do espectro autista, listando as principais alterações genéticas associadas, os testes moleculares disponíveis e os principais aspectos a se considerar para o aconselhamento genético destas famílias.
Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.
Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong
2017-07-17
Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that the plant hormone ethylene induces combinatorial effects of H3K9Ac, K14Ac and K23Ac histone acetylation in gene expression genome widely. Further, for a group of ethylene regulated genes, in the absence of ethylene the levels and the covered breadths of H3K9Ac are the preexist markers for distinguishing up- and down- regulated genes, the change in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expression in the presence of ethylene.
NASA Astrophysics Data System (ADS)
Tu, Xiuwen
2008-10-01
Several novel phenomena at the single-atom and single-molecule level occurring on the surfaces of single crystals were studied with home-built low temperature scanning tunneling microscopes. The results revealed intriguing properties of single atoms and single molecules, including nonlinearity, resonance, charging, and motion. First, negative differential resistance (NDR) was observed in the dI/dV spectra for single copper-phthalocyanine (CuPc) molecules adsorbed on one- and two-layer sodium bromide (NaBr), but not for single CuPc molecules adsorbed on three-layer NaBr, all grown on a NiAl(110) surface. This transition from NDR to the absence of NDR was explained as the result of competing effects in the double-barrier tunnel junction (DBTJ) and was reproduced in a calculation based on a resonant-tunneling model. Second, the nonlinearity of the STM junction due to a single manganese (Mn) atom or MnCO molecule adsorbed on a NiAl(110) surface was used to rectify microwave irradiation. The resulting rectification current was shown to be sensitive to the spin-splitting of the electronic states of the Mn atom and to the vibrations of the MnCO molecule. Next, the ordering of cesium (Cs) atoms adsorbed on a Au(111) surface and a NiAl(110) surface was imaged in real space. Because of charge transfer to the substrates, Cs adatoms were positively charged on both surfaces. Even at 12 K, Cs adatoms were able to move and adjust according to coverage. On Au(111), the Cs first layer had a quasi-hexagonal lattice and islands of the second Cs layer did not appear until the first was completed. On NiAl(110), a locally disordered Cs first layer was observed before a locally ordered layer appeared at higher coverages. The cation-pi interactions were then studied at the single molecular level. We were able to form cation-pi complexes such as Cs···DSB, Cs···DSB···Cs, Rb···DSB, and Rb···ZnEtiol controllably by manipulation with the STM tip. We could also separate these complexes controllably by voltage pulses. STM imaging and spectroscopy revealed precise information about the atomic and electronic structure of these cation-pi complexes. Finally, electron transport through single atoms and molecules in a double-barrier tunnel junction (DBTJ) was examined. Charge bistability was observed for single ZnEtioI molecules adsorbed in several different conformations on ultrathin aluminum oxide. A sudden decrease in local apparent barrier height (LABH) was observed at the onset of an adsorbate electronic orbital for single ZnEtioI molecules and Cs atoms supported by the ultrathin aluminum oxide. The resonant-tunneling model, which was proposed to explain the transition from NDR to the absence of NDR, was found useful in explaining the sudden decrease in LABH, too. NDR, bipolar tunneling, and vibronic states were also observed and discussed in the context of DBTJ.
Some results of radiobiological studies performed on Cosmos-110 biosatellite.
Antipov, V V; Delone, N L; Nikitin, M D; Parfyonov, G P; Saxonov, P P
1969-01-01
The experiment carried out on the Cosmos 110 biosatellite is a step further in radiobiological investigations performed in outer space and differs appreciably from flight experiments conducted on board the Vostok and Voskhod spacecraft. The difference lies, firstly, in the integral dose of cosmic radiation. According to the onboard dosimeter readings, it was 12 rad at an average dose rate of 500 mrad/day during the biosatellite flight, whereas in previous biological flight experiments, as is well known, the total dose was below 80 mrad (on a five-day flight of Vostok 5) at a dose rate of 80 to 20 mrad/day. Secondly, during the biosatellite mission, cosmic radiation originated not from the primary cosmic radiation as was the case in the Vostok and Voskhod flights but mainly from the Earth's radiation belts. Thirdly, the duration of the Cosmos 110 flight was far longer than that of any previous mission: the effect of weightlessness lasted for about 22 days. The paper presents results of investigations performed on E. coli K-12 lambda lysogenic bacteria, Tradescantia microspores, dry seeds of higher plants, different Chlorella strains and an intact plant of Tradescantia paludosa. The biological effect of space flight factors was evaluated by various physiological, cytogenetic, genetic and microbiological techniques. Similar to previous experiments carried out on board the Vostok 3-6 spacecraft, tests with lysogenic bacteria revealed a statistically significant induction of moderate bacteriophage. The induction value was shown to lag behind the mission duration dependence level. This seems to be related to a change of inducibility properties of lysogenic bacteria and a reduction of the yield range of phages per bacterial cell. Other tests (duration of the latent period, formation pattern of phage components) indicated no significant differences between test and control objects (N.N. Zhukov-Verezhnikov, N.I. Rybakov, V.A. Kozlov et al.). A study of protective properties of chemical compounds of different types in relation to the bacteriophage induction demonstrated that preparations of the aminothiolic group produced a high antimutagenic effect (V.A. Kozlov, N.I. Rybakov et al.). A postflight cytological analysis of Tradescantia paludosa microspores indicated their changes of three types: chromosome aberrations, mitotic disturbances and disorders of growth processes in the cell. Examinations of dry seeds of wheat, barley, pine and other plants, as well as of Allium cepa bulbs, gave evidence of a diverse effect of space flight factors on both physiological processes and hereditary structures of the objects. In some cases an increased percentage of seed germination, stimulation of their growth and a significant increase of aberrations were found. An investigation of the occurrence frequency of visible mutations in reaction cell cultures of different Chlorella strains (LARG-1, LARG-3 and others) showed no significant differences between the test and control material. Some cultures taken under a more detailed study indicated a delay with which cells entered the first sporulation and a greater amount of cells that divided into a lesser than usual number of autospores. In addition, test variants of the strains showed a slightly reduced survival of Chlorella cells. The reduction appeared to be statistically significant for the LARG-3 strain only (E.N. Vaulina et al.). A postflight examination of the appearance of the Tradescantia paludosa plant showed that it retained good turgor; its leaves were dark green and several bright flowers bloomed. No signs of its inhibition or etiolation were noted. As compared to the control, the test plant grew noticeably and the stem became crooked. Certain problems of biological indications of outer space are discussed.
Puccio, Francis; Fuller-Tyszkiewicz, Matthew; Ong, Deborah; Krug, Isabel
2016-05-01
Undertake a meta-analysis to provide a quantitative synthesis of longitudinal studies that assessed the direction of effects between eating pathology and depression. A second aim was to use meta-regression to account for heterogeneity in terms of study-level effect modifiers. A systematic review was conducted on 42 studies that assessed the longitudinal relationship between eating pathology and depression. Of these 42 studies, multilevel random-effects meta-analyses were conducted on 30 eligible studies. Meta-analysis results showed that eating pathology was a risk factor for depression (rm = 0.13) and that depression was a risk factor for eating pathology (rm = 0.16). Meta-regression analyses showed that these effects were significantly stronger for studies that operationalized eating pathology as an eating disorder diagnosis versus eating pathology symptoms, and for studies that operationalized the respective outcome measure as a categorical variable (e.g., a diagnosis of a disorder or where symptoms were "present"/"absent") versus a continuous measure. Results also showed that in relation to eating pathology type, the effect of an eating disorder diagnosis and bulimic symptoms on depression was significantly stronger for younger participants. Eating pathology and depression are concurrent risk factors for each other, suggesting that future research would benefit from identifying factors that are etiological to the development of both constructs. Llevar a cabo un meta-análisis para proporcionar una síntesis cuantitativa de los estudios longitudinales que evaluaron la dirección de los efectos entre la alimentación patológica y la depresión. Un segundo objetivo fue utilizar la meta-regresión para dar cuenta de la heterogeneidad en términos de modificadores del efecto a nivel de estudio. MÉTODO: Una revisión sistemática se llevó a cabo en 42 estudios que evaluaron la relación longitudinal entre la alimentación patológica y la depresión. De estos 42 estudios, se realizaron meta-análisis de multinivel de efectos aleatorios en 30 estudios elegibles. Los resultados del meta-análisis mostraron que la alimentación patológica era un factor de riesgo para depresión (rm=0.13) y que la depresión era un factor de riesgo para la alimentación patológica (rm=0.16). Los análisis de meta-regresión mostraron que estos efectos eran significativamente más fuertes para estudios que operacionalizaban la alimentación patológica como un diagnóstico de trastorno de la conducta alimentaria versus síntomas de alimentación patológica, y para los estudios que operacionalizaban la medida respectiva de resultado como una variable categórica (e.g., un diagnóstico de trastorno o cuando los síntomas estaban "presentes"/"ausentes") versus una medida continua. Los resultados mostraron que en relación al tipo de alimentación patológica, el efecto de un diagnóstico de trastorno de la conducta alimentaria y síntomas bulímicos en la depresión era significativamente más fuerte para participantes más jóvenes. DISCUSIÓN: La alimentación patológica y la depresión son factores de riesgo concurrentes uno para el otro, lo que sugiere que la investigación futura se beneficiaría de identificar factores que son etiológicos al desarrollo de ambos constructos. © 2015 Wiley Periodicals, Inc. (Int J Eat Disord 2016;49:439-454). © 2015 Wiley Periodicals, Inc.