Selective eradication of cancer cells by delivery of adenovirus-based toxins
Shapira, Shiran; Shapira, Assaf; Kazanov, Diana; Hevroni, Gil; Kraus, Sarah; Arber, Nadir
2017-01-01
Background and objective KRAS mutation is an early event in colorectal cancer carcinogenesis. We previously reported that a recombinant adenovirus, carrying a pro-apoptotic gene (PUMA) under the regulation of Ets/AP1 (RAS-responsive elements) suppressed the growth of cancer cells harboring hyperactive KRAS. We propose to exploit the hyperactive RAS pathway, rather than to inhibit it as was previously tried and failed repeatedly. We aim to improve efficacy by substituting PUMA with a more potent toxin, the bacterial MazF-MazE toxin-antitoxin system, under a very tight regulation. Results A massive cell death, in a dose-dependent manner, reaching 73% at MOI 10 was seen in KRAS cells as compared to 22% in WT cells. Increase expression of MazE (the anti-toxin) protected normal cells from any possible internal or external leakage of the system and confirmed the selectivity, specificity and safety of the targeting system. Considerable tumor shrinkage (61%) was demonstrated in vivo following MazEF-encoding adenovirus treatment without any side effects. Design Efficient vectors for cancer-directed gene delivery were constructed; “pAdEasy-Py4-SV40mP-mCherry-MazF”“pAdEasy-Py4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP“,“pAdEasy-ΔPy4-SV40mP-mCherry-MazF-IRES-TetR-CMVmp-MazE-IRES-EGFP “and “pAdEasy-mCherry”. Virus particles were produced and their potency was tested. Cell death was measured qualitatively by using the fluorescent microscopy and colony formation assay, and was quantified by MTT. FACS analysis using annexin V and RedDot2 dyes was performed for measuring apoptotic and dead cells, respectively. In vivo tumor formation was measured in a xenograft model. Conclusions A proof of concept for a novel cancer safe and effective gene therapy exploiting an aberrant hyperactive pathway is achievable. PMID:28445136
Integrating Reliability Analysis with a Performance Tool
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael
1995-01-01
A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.
Power Plant Model Validation Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
The PPMV is used to validate generator model using disturbance recordings. The PPMV tool contains a collection of power plant models and model validation studies, as well as disturbance recordings from a number of historic grid events. The user can import data from a new disturbance into the database, which converts PMU and SCADA data into GE PSLF format, and then run the tool to validate (or invalidate) the model for a specific power plant against its actual performance. The PNNL PPMV tool enables the automation of the process of power plant model validation using disturbance recordings. The tool usesmore » PMU and SCADA measurements as input information. The tool automatically adjusts all required EPCL scripts and interacts with GE PSLF in the batch mode. The main tool features includes: The tool interacts with GE PSLF; The tool uses GE PSLF Play-In Function for generator model validation; Database of projects (model validation studies); Database of the historic events; Database of the power plant; The tool has advanced visualization capabilities; and The tool automatically generates reports« less
Vehicle Thermal Management Models and Tools | Transportation Research |
NREL Models and Tools Vehicle Thermal Management Models and Tools The National Renewable Energy Laboratory's (NREL's) vehicle thermal management modeling tools allow researchers to assess the trade-offs and calculate the potential benefits of thermal design options. image of three models of semi truck cabs. Truck
XMI2USE: A Tool for Transforming XMI to USE Specifications
NASA Astrophysics Data System (ADS)
Sun, Wuliang; Song, Eunjee; Grabow, Paul C.; Simmonds, Devon M.
The UML-based Specification Environment (USE) tool supports syntactic analysis, type checking, consistency checking, and dynamic validation of invariants and pre-/post conditions specified in the Object Constraint Language (OCL). Due to its animation and analysis power, it is useful when checking critical non-functional properties such as security policies. However, the USE tool requires one to specify (i.e., "write") a model using its own textual language and does not allow one to import any model specification files created by other UML modeling tools. Hence, to make the best use of existing UML tools, we often create a model with OCL constraints using a modeling tool such as the IBM Rational Software Architect (RSA) and then use the USE tool for model validation. This approach, however, requires a manual transformation between the specifications of two different tool formats, which is error-prone and diminishes the benefit of automated model-level validations. In this paper, we describe our own implementation of a specification transformation engine that is based on the Model Driven Architecture (MDA) framework and currently supports automatic tool-level transformations from RSA to USE.
Intelligent Model Management in a Forest Ecosystem Management Decision Support System
Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama
2002-01-01
Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...
An online model composition tool for system biology models
2013-01-01
Background There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. Results We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Conclusions Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well. PMID:24006914
Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.
Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang
2018-02-07
The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials.
Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites
Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang
2018-01-01
The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different workpiece materials. PMID:29414839
Numerical modelling of tool wear in turning with cemented carbide cutting tools
NASA Astrophysics Data System (ADS)
Franco, P.; Estrems, M.; Faura, F.
2007-04-01
A numerical model is proposed for analysing the flank and crater wear resulting from the loss of material on cutting tool surface in turning processes due to wear mechanisms of adhesion, abrasion and fracture. By means of this model, the material loss along cutting tool surface can be analysed, and the worn surface shape during the workpiece machining can be determined. The proposed model analyses the gradual degradation of cutting tool during turning operation, and tool wear can be estimated as a function of cutting time. Wear-land width (VB) and crater depth (KT) can be obtained for description of material loss on cutting tool surface, and the effects of the distinct wear mechanisms on surface shape can be studied. The parameters required for the tool wear model are obtained from bibliography and experimental observation for AISI 4340 steel turning with WC-Co cutting tools.
Rapid SAW Sensor Development Tools
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2007-01-01
The lack of integrated design tools for Surface Acoustic Wave (SAW) devices has led us to develop tools for the design, modeling, analysis, and automatic layout generation of SAW devices. These tools enable rapid development of wireless SAW sensors. The tools developed have been designed to integrate into existing Electronic Design Automation (EDA) tools to take advantage of existing 3D modeling, and Finite Element Analysis (FEA). This paper presents the SAW design, modeling, analysis, and automated layout generation tools.
Data and Tools Data and Tools NREL develops data sets, maps, models, and tools for the analysis of , models, and tools in the alphabetical listing. Popular Resources PVWatts Calculator Geospatial Data
Performance of shrub willows (Salix spp.) as an evapotranspiration cover on Solvay wastebeds
NASA Astrophysics Data System (ADS)
Mirck, Jaconette
2009-12-01
Soda ash (Na2CO3) production in the Syracuse New York area created 607 ha of wastebeds over the course of about 100 years. Today the primary concern of the Solvay wastebeds is high chloride concentrations in the leachate and storm water that may end up in the groundwater and nearby Onondaga Lake. The potential of shrub willow evapotranspiration (ET) covers to minimize leaching and to manage storm water was assessed in two studies. A sap flow sensor field study to estimate transpiration rates of four shrub willow varieties over an entire growing season. A greenhouse study focused on recycling saline Solvay storm water onto shrub willows. Annual sap flow and crop coefficients (Kc) were similar among four shrub willows, but differences were present over the course of the growing season. Peak K c values did not coincide with peak leaf area index (LAI), as might be expected if LAI were the main driver of transpiration. Rather than solely being driven by LAI, coupling with the atmosphere was an important factor in stand level sap flow. Estimates of ET were measured during both experiments, the ET/sap flow rankings of the shrub willow varieties were similar; Salix miyabeana (SX64)< S. purpurea (9882-34)< S. miyabeana x S. sachalinensis (9870-23 or 9870-40). In the greenhouse study, Solvay storm water that contained 1,625 mg Cl - L-1 (close to the average storm water concentration) did not significantly decrease ET values or growth for any of the willow varieties. Mass balances of sodium and chloride were carried out to assess the potentials of recycling saline Solvay storm water back onto a shrub willow ET cover during the growing season. During a ten-week study the combination of a shallow depth soil (33 cm) and a high irrigation regime (170% of average precipitation in the Syracuse NY area) resulted in the accumulation of at least 62% of both sodium and chloride in the plant/soil system for all five Solvay storm water treatments. Both studies indicated that shrub willows have the characteristics to be part of a sustainable ET cover on the Solvay wastebeds, which will decrease leaching of sodium and chloride. Key words. Coupling/decoupling, crop coefficient, hydraulic control, leaf area index, mass balance, phytoremediation, sap flow.
NREL: Renewable Resource Data Center - Biomass Resource Models and Tools
Models and Tools The Renewable Resource Data Center (RReDC) features the following biomass models Models & Tools Publications Related Links Geothermal Resource Information Solar Resource Information
Modeling and Simulation Tools for Heavy Lift Airships
NASA Technical Reports Server (NTRS)
Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John
2016-01-01
For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.
Energy evaluation of protection effectiveness of anti-vibration gloves.
Hermann, Tomasz; Dobry, Marian Witalis
2017-09-01
This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.
The mathematical and computer modeling of the worm tool shaping
NASA Astrophysics Data System (ADS)
Panchuk, K. L.; Lyashkov, A. A.; Ayusheev, T. V.
2017-06-01
Traditionally mathematical profiling of the worm tool is carried out on the first T. Olivier method, known in the theory of gear gearings, with receiving an intermediate surface of the making lath. It complicates process of profiling and its realization by means of computer 3D-modeling. The purpose of the work is the improvement of mathematical model of profiling and its realization based on the methods of 3D-modeling. Research problems are: receiving of the mathematical model of profiling which excludes the presence of the making lath in it; realization of the received model by means of frame and superficial modeling; development and approbation of technology of solid-state modeling for the solution of the problem of profiling. As the basic, the kinematic method of research of the mutually envelope surfaces is accepted. Computer research is executed by means of CAD based on the methods of 3D-modeling. We have developed mathematical model of profiling of the worm tool; frame, superficial and solid-state models of shaping of the mutually enveloping surfaces of the detail and the tool are received. The offered mathematical models and the technologies of 3D-modeling of shaping represent tools for theoretical and experimental profiling of the worm tool. The results of researches can be used at design of metal-cutting tools.
Comparison of BrainTool to other UML modeling and model transformation tools
NASA Astrophysics Data System (ADS)
Nikiforova, Oksana; Gusarovs, Konstantins
2017-07-01
In the last 30 years there were numerous model generated software systems offered targeting problems with the development productivity and the resulting software quality. CASE tools developed due today's date are being advertised as having "complete code-generation capabilities". Nowadays the Object Management Group (OMG) is calling similar arguments in regards to the Unified Modeling Language (UML) models at different levels of abstraction. It is being said that software development automation using CASE tools enables significant level of automation. Actual today's CASE tools are usually offering a combination of several features starting with a model editor and a model repository for a traditional ones and ending with code generator (that could be using a scripting or domain-specific (DSL) language), transformation tool to produce the new artifacts from the manually created and transformation definition editor to define new transformations for the most advanced ones. Present paper contains the results of CASE tool (mainly UML editors) comparison against the level of the automation they are offering.
THE ATMOSPHERIC MODEL EVALUATION TOOL
This poster describes a model evaluation tool that is currently being developed and applied for meteorological and air quality model evaluation. The poster outlines the framework and provides examples of statistical evaluations that can be performed with the model evaluation tool...
SMOKE TOOL FOR MODELS-3 VERSION 4.1 STRUCTURE AND OPERATION DOCUMENTATION
The SMOKE Tool is a part of the Models-3 system, a flexible software system designed to simplify the development and use of air quality models and other environmental decision support tools. The SMOKE Tool is an input processor for SMOKE, (Sparse Matrix Operator Kernel Emissio...
Toolkit of Available EPA Green Infrastructure Modeling ...
This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).
NASA Astrophysics Data System (ADS)
Zhang, X.; Srinivasan, R.
2008-12-01
In this study, a user friendly GIS tool was developed for evaluating and improving NEXRAD using raingauge data. This GIS tool can automatically read in raingauge and NEXRAD data, evaluate the accuracy of NEXRAD for each time unit, implement several geostatistical methods to improve the accuracy of NEXRAD through raingauge data, and output spatial precipitation map for distributed hydrologic model. The geostatistical methods incorporated in this tool include Simple Kriging with varying local means, Kriging with External Drift, Regression Kriging, Co-Kriging, and a new geostatistical method that was newly developed by Li et al. (2008). This tool was applied in two test watersheds at hourly and daily temporal scale. The preliminary cross-validation results show that incorporating raingauge data to calibrate NEXRAD can pronouncedly change the spatial pattern of NEXRAD and improve its accuracy. Using different geostatistical methods, the GIS tool was applied to produce long term precipitation input for a distributed hydrologic model - Soil and Water Assessment Tool (SWAT). Animated video was generated to vividly illustrate the effect of using different precipitation input data on distributed hydrologic modeling. Currently, this GIS tool is developed as an extension of SWAT, which is used as water quantity and quality modeling tool by USDA and EPA. The flexible module based design of this tool also makes it easy to be adapted for other hydrologic models for hydrological modeling and water resources management.
Using Petri Net Tools to Study Properties and Dynamics of Biological Systems
Peleg, Mor; Rubin, Daniel; Altman, Russ B.
2005-01-01
Petri Nets (PNs) and their extensions are promising methods for modeling and simulating biological systems. We surveyed PN formalisms and tools and compared them based on their mathematical capabilities as well as by their appropriateness to represent typical biological processes. We measured the ability of these tools to model specific features of biological systems and answer a set of biological questions that we defined. We found that different tools are required to provide all capabilities that we assessed. We created software to translate a generic PN model into most of the formalisms and tools discussed. We have also made available three models and suggest that a library of such models would catalyze progress in qualitative modeling via PNs. Development and wide adoption of common formats would enable researchers to share models and use different tools to analyze them without the need to convert to proprietary formats. PMID:15561791
Force Modelling in Orthogonal Cutting Considering Flank Wear Effect
NASA Astrophysics Data System (ADS)
Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.
2017-05-01
In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.
Modeling and Tool Wear in Routing of CFRP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.
2011-01-17
This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the toolmore » wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.« less
NREL: Renewable Resource Data Center - Geothermal Resource Models and Tools
allow users to determine locations that are favorable to geothermal energy development. List of software Models and Tools The Renewable Resource Data Center (RReDC) features the following geothermal models and tools. Geothermal Prospector The Geothermal Prospector tool provides the information needed to
ThinkerTools. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2012
2012-01-01
"ThinkerTools" is a computer-based program that aims to develop students' understanding of physics and scientific modeling. The program is composed of two curricula for middle school students, "ThinkerTools Inquiry" and "Model-Enhanced ThinkerTools". "ThinkerTools Inquiry" allows students to explore the…
COUNCIL FOR REGULATORY ENVIRONMENTAL MODELING (CREM) PILOT WATER QUALITY MODEL SELECTION TOOL
EPA's Council for Regulatory Environmental Modeling (CREM) is currently supporting the development of a pilot model selection tool that is intended to help the states and the regions implement the total maximum daily load (TMDL) program. This tool will be implemented within the ...
NASA Astrophysics Data System (ADS)
Kern, Bastian; Jöckel, Patrick
2016-10-01
Numerical climate and weather models have advanced to finer scales, accompanied by large amounts of output data. The model systems hit the input and output (I/O) bottleneck of modern high-performance computing (HPC) systems. We aim to apply diagnostic methods online during the model simulation instead of applying them as a post-processing step to written output data, to reduce the amount of I/O. To include diagnostic tools into the model system, we implemented a standardised, easy-to-use interface based on the Modular Earth Submodel System (MESSy) into the ICOsahedral Non-hydrostatic (ICON) modelling framework. The integration of the diagnostic interface into the model system is briefly described. Furthermore, we present a prototype implementation of an advanced online diagnostic tool for the aggregation of model data onto a user-defined regular coarse grid. This diagnostic tool will be used to reduce the amount of model output in future simulations. Performance tests of the interface and of two different diagnostic tools show, that the interface itself introduces no overhead in form of additional runtime to the model system. The diagnostic tools, however, have significant impact on the model system's runtime. This overhead strongly depends on the characteristics and implementation of the diagnostic tool. A diagnostic tool with high inter-process communication introduces large overhead, whereas the additional runtime of a diagnostic tool without inter-process communication is low. We briefly describe our efforts to reduce the additional runtime from the diagnostic tools, and present a brief analysis of memory consumption. Future work will focus on optimisation of the memory footprint and the I/O operations of the diagnostic interface.
Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review
NASA Astrophysics Data System (ADS)
Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal
2017-08-01
Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.
An agent architecture for an integrated forest ecosystem management decision support system
Donald Nute; Walter D. Potter; Mayukh Dass; Astrid Glende; Frederick Maier; Hajime Uchiyama; Jin Wang; Mark Twery; Peter Knopp; Scott Thomasma; H. Michael Rauscher
2003-01-01
A wide variety of software tools are available to support decision in the management of forest ecosystems. These tools include databases, growth and yield models, wildlife models, silvicultural expert systems, financial models, geographical informations systems, and visualization tools. Typically, each of these tools has its own complex interface and data format. To...
THE AGWA – KINEROS2 SUITE OF MODELING TOOLS
USDA-ARS?s Scientific Manuscript database
A suite of modeling tools ranging from the event-based KINEROS2 flash-flood forecasting tool to the continuous (K2-O2) KINEROS-OPUS biogeochemistry tool. The KINEROS2 flash flood forecasting tool is being tested with the National Weather Service (NEW) is described. Tne NWS version assimilates Dig...
33 CFR 385.33 - Revisions to models and analytical tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Management District, and other non-Federal sponsors shall rely on the best available science including models..., and assessment of projects. The selection of models and analytical tools shall be done in consultation... system-wide simulation models and analytical tools used in the evaluation and assessment of projects, and...
Requirements for clinical information modelling tools.
Moreno-Conde, Alberto; Jódar-Sánchez, Francisco; Kalra, Dipak
2015-07-01
This study proposes consensus requirements for clinical information modelling tools that can support modelling tasks in medium/large scale institutions. Rather than identify which functionalities are currently available in existing tools, the study has focused on functionalities that should be covered in order to provide guidance about how to evolve the existing tools. After identifying a set of 56 requirements for clinical information modelling tools based on a literature review and interviews with experts, a classical Delphi study methodology was applied to conduct a two round survey in order to classify them as essential or recommended. Essential requirements are those that must be met by any tool that claims to be suitable for clinical information modelling, and if we one day have a certified tools list, any tool that does not meet essential criteria would be excluded. Recommended requirements are those more advanced requirements that may be met by tools offering a superior product or only needed in certain modelling situations. According to the answers provided by 57 experts from 14 different countries, we found a high level of agreement to enable the study to identify 20 essential and 21 recommended requirements for these tools. It is expected that this list of identified requirements will guide developers on the inclusion of new basic and advanced functionalities that have strong support by end users. This list could also guide regulators in order to identify requirements that could be demanded of tools adopted within their institutions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation
Biggs, Matthew B.; Papin, Jason A.
2013-01-01
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool. PMID:24147108
Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.
Biggs, Matthew B; Papin, Jason A
2013-01-01
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.
SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output
Hunter, William C. J.; Barrett, Harrison H.; Lewellen, Thomas K.; Miyaoka, Robert S.; Muzi, John P.; Li, Xiaoli; McDougald, Wendy; MacDonald, Lawrence R.
2011-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:22072297
SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output†
Hunter, William C J; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.
2013-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:23640136
Interactive graphic editing tools in bioluminescent imaging simulation
NASA Astrophysics Data System (ADS)
Li, Hui; Tian, Jie; Luo, Jie; Wang, Ge; Cong, Wenxiang
2005-04-01
It is a challenging task to accurately describe complicated biological tissues and bioluminescent sources in bioluminescent imaging simulation. Several graphic editing tools have been developed to efficiently model each part of the bioluminescent simulation environment and to interactively correct or improve the initial models of anatomical structures or bioluminescent sources. There are two major types of graphic editing tools: non-interactive tools and interactive tools. Geometric building blocks (i.e. regular geometric graphics and superquadrics) are applied as non-interactive tools. To a certain extent, complicated anatomical structures and bioluminescent sources can be approximately modeled by combining a sufficient large number of geometric building blocks with Boolean operators. However, those models are too simple to describe the local features and fine changes in 2D/3D irregular contours. Therefore, interactive graphic editing tools have been developed to facilitate the local modifications of any initial surface model. With initial models composed of geometric building blocks, interactive spline mode is applied to conveniently perform dragging and compressing operations on 2D/3D local surface of biological tissues and bioluminescent sources inside the region/volume of interest. Several applications of the interactive graphic editing tools will be presented in this article.
Towards a generalized energy prediction model for machine tools
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan
2017-01-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687
Towards a generalized energy prediction model for machine tools.
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan
2017-04-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.
Introducing GHOST: The Geospace/Heliosphere Observation & Simulation Tool-kit
NASA Astrophysics Data System (ADS)
Murphy, J. J.; Elkington, S. R.; Schmitt, P.; Wiltberger, M. J.; Baker, D. N.
2013-12-01
Simulation models of the heliospheric and geospace environments can provide key insights into the geoeffective potential of solar disturbances such as Coronal Mass Ejections and High Speed Solar Wind Streams. Advanced post processing of the results of these simulations greatly enhances the utility of these models for scientists and other researchers. Currently, no supported centralized tool exists for performing these processing tasks. With GHOST, we introduce a toolkit for the ParaView visualization environment that provides a centralized suite of tools suited for Space Physics post processing. Building on the work from the Center For Integrated Space Weather Modeling (CISM) Knowledge Transfer group, GHOST is an open-source tool suite for ParaView. The tool-kit plugin currently provides tools for reading LFM and Enlil data sets, and provides automated tools for data comparison with NASA's CDAweb database. As work progresses, many additional tools will be added and through open-source collaboration, we hope to add readers for additional model types, as well as any additional tools deemed necessary by the scientific public. The ultimate end goal of this work is to provide a complete Sun-to-Earth model analysis toolset.
Manninen, Tiina; Aćimović, Jugoslava; Havela, Riikka; Teppola, Heidi; Linne, Marja-Leena
2018-01-01
The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results.
Manninen, Tiina; Aćimović, Jugoslava; Havela, Riikka; Teppola, Heidi; Linne, Marja-Leena
2018-01-01
The possibility to replicate and reproduce published research results is one of the biggest challenges in all areas of science. In computational neuroscience, there are thousands of models available. However, it is rarely possible to reimplement the models based on the information in the original publication, let alone rerun the models just because the model implementations have not been made publicly available. We evaluate and discuss the comparability of a versatile choice of simulation tools: tools for biochemical reactions and spiking neuronal networks, and relatively new tools for growth in cell cultures. The replicability and reproducibility issues are considered for computational models that are equally diverse, including the models for intracellular signal transduction of neurons and glial cells, in addition to single glial cells, neuron-glia interactions, and selected examples of spiking neuronal networks. We also address the comparability of the simulation results with one another to comprehend if the studied models can be used to answer similar research questions. In addition to presenting the challenges in reproducibility and replicability of published results in computational neuroscience, we highlight the need for developing recommendations and good practices for publishing simulation tools and computational models. Model validation and flexible model description must be an integral part of the tool used to simulate and develop computational models. Constant improvement on experimental techniques and recording protocols leads to increasing knowledge about the biophysical mechanisms in neural systems. This poses new challenges for computational neuroscience: extended or completely new computational methods and models may be required. Careful evaluation and categorization of the existing models and tools provide a foundation for these future needs, for constructing multiscale models or extending the models to incorporate additional or more detailed biophysical mechanisms. Improving the quality of publications in computational neuroscience, enabling progressive building of advanced computational models and tools, can be achieved only through adopting publishing standards which underline replicability and reproducibility of research results. PMID:29765315
Modeling with Young Students--Quantitative and Qualitative.
ERIC Educational Resources Information Center
Bliss, Joan; Ogborn, Jon; Boohan, Richard; Brosnan, Tim; Mellar, Harvey; Sakonidis, Babis
1999-01-01
A project created tasks and tools to investigate quality and nature of 11- to 14-year-old pupils' reasoning with quantitative and qualitative computer-based modeling tools. Tasks and tools were used in two innovative modes of learning: expressive, where pupils created their own models, and exploratory, where pupils investigated an expert's model.…
Fire behavior modeling-a decision tool
Jack Cohen; Bill Bradshaw
1986-01-01
The usefulness of an analytical model as a fire management decision tool is determined by the correspondence of its descriptive capability to the specific decision context. Fire managers must determine the usefulness of fire models as a decision tool when applied to varied situations. Because the wildland fire phenomenon is complex, analytical fire spread models will...
An Overview of the Object Protocol Model (OPM) and the OPM Data Management Tools.
ERIC Educational Resources Information Center
Chen, I-Min A.; Markowitz, Victor M.
1995-01-01
Discussion of database management tools for scientific information focuses on the Object Protocol Model (OPM) and data management tools based on OPM. Topics include the need for new constructs for modeling scientific experiments, modeling object structures and experiments in OPM, queries and updates, and developing scientific database applications…
Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation
Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee
2018-01-01
This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964
GIS-MODFLOW: Ein kleines OpenSource-Werkzeug zur Anbindung von GIS-Daten an MODFLOW
NASA Astrophysics Data System (ADS)
Gossel, Wolfgang
2013-06-01
The numerical model MODFLOW (Harbaugh 2005) is an efficient and up-to-date tool for groundwater flow modelling. On the other hand, Geo-Information-Systems (GIS) provide useful tools for data preparation and visualization that can also be incorporated in numerical groundwater modelling. An interface between both would therefore be useful for many hydrogeological investigations. To date, several integrated stand-alone tools have been developed that rely on MODFLOW, MODPATH and transport modelling tools. Simultaneously, several open source-GIS codes were developed to improve functionality and ease of use. These GIS tools can be used as pre- and post-processors of the numerical model MODFLOW via a suitable interface. Here we present GIS-MODFLOW as an open-source tool that provides a new universal interface by using the ESRI ASCII GRID data format that can be converted into MODFLOW input data. This tool can also treat MODFLOW results. Such a combination of MODFLOW and open-source GIS opens new possibilities to render groundwater flow modelling, and simulation results, available to larger circles of hydrogeologists.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)
The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...
Software Engineering Tools for Scientific Models
NASA Technical Reports Server (NTRS)
Abrams, Marc; Saboo, Pallabi; Sonsini, Mike
2013-01-01
Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.
NASA Astrophysics Data System (ADS)
Song, Chi; Zhang, Xuejun; Zhang, Xin; Hu, Haifei; Zeng, Xuefeng
2017-06-01
A rigid conformal (RC) lap can smooth mid-spatial-frequency (MSF) errors, which are naturally smaller than the tool size, while still removing large-scale errors in a short time. However, the RC-lap smoothing efficiency performance is poorer than expected, and existing smoothing models cannot explicitly specify the methods to improve this efficiency. We presented an explicit time-dependent smoothing evaluation model that contained specific smoothing parameters directly derived from the parametric smoothing model and the Preston equation. Based on the time-dependent model, we proposed a strategy to improve the RC-lap smoothing efficiency, which incorporated the theoretical model, tool optimization, and efficiency limit determination. Two sets of smoothing experiments were performed to demonstrate the smoothing efficiency achieved using the time-dependent smoothing model. A high, theory-like tool influence function and a limiting tool speed of 300 RPM were o
Integrated Control Modeling for Propulsion Systems Using NPSS
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.
2004-01-01
The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.
Magarey, Roger; Newton, Leslie; Hong, Seung C.; Takeuchi, Yu; Christie, Dave; Jarnevich, Catherine S.; Kohl, Lisa; Damus, Martin; Higgins, Steven I.; Miller, Leah; Castro, Karen; West, Amanda; Hastings, John; Cook, Gericke; Kartesz, John; Koop, Anthony
2018-01-01
This study compares four models for predicting the potential distribution of non-indigenous weed species in the conterminous U.S. The comparison focused on evaluating modeling tools and protocols as currently used for weed risk assessment or for predicting the potential distribution of invasive weeds. We used six weed species (three highly invasive and three less invasive non-indigenous species) that have been established in the U.S. for more than 75 years. The experiment involved providing non-U. S. location data to users familiar with one of the four evaluated techniques, who then developed predictive models that were applied to the United States without knowing the identity of the species or its U.S. distribution. We compared a simple GIS climate matching technique known as Proto3, a simple climate matching tool CLIMEX Match Climates, the correlative model MaxEnt, and a process model known as the Thornley Transport Resistance (TTR) model. Two experienced users ran each modeling tool except TTR, which had one user. Models were trained with global species distribution data excluding any U.S. data, and then were evaluated using the current known U.S. distribution. The influence of weed species identity and modeling tool on prevalence and sensitivity effects was compared using a generalized linear mixed model. Each modeling tool itself had a low statistical significance, while weed species alone accounted for 69.1 and 48.5% of the variance for prevalence and sensitivity, respectively. These results suggest that simple modeling tools might perform as well as complex ones in the case of predicting potential distribution for a weed not yet present in the United States. Considerations of model accuracy should also be balanced with those of reproducibility and ease of use. More important than the choice of modeling tool is the construction of robust protocols and testing both new and experienced users under blind test conditions that approximate operational conditions.
THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE
This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...
Model-Based Reasoning: Using Visual Tools to Reveal Student Learning
ERIC Educational Resources Information Center
Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane
2011-01-01
Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…
Predicting Operator Execution Times Using CogTool
NASA Technical Reports Server (NTRS)
Santiago-Espada, Yamira; Latorella, Kara A.
2013-01-01
Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.
PyCoTools: A Python Toolbox for COPASI.
Welsh, Ciaran M; Fullard, Nicola; Proctor, Carole J; Martinez-Guimera, Alvaro; Isfort, Robert J; Bascom, Charles C; Tasseff, Ryan; Przyborski, Stefan A; Shanley, Daryl P
2018-05-22
COPASI is an open source software package for constructing, simulating and analysing dynamic models of biochemical networks. COPASI is primarily intended to be used with a graphical user interface but often it is desirable to be able to access COPASI features programmatically, with a high level interface. PyCoTools is a Python package aimed at providing a high level interface to COPASI tasks with an emphasis on model calibration. PyCoTools enables the construction of COPASI models and the execution of a subset of COPASI tasks including time courses, parameter scans and parameter estimations. Additional 'composite' tasks which use COPASI tasks as building blocks are available for increasing parameter estimation throughput, performing identifiability analysis and performing model selection. PyCoTools supports exploratory data analysis on parameter estimation data to assist with troubleshooting model calibrations. We demonstrate PyCoTools by posing a model selection problem designed to show case PyCoTools within a realistic scenario. The aim of the model selection problem is to test the feasibility of three alternative hypotheses in explaining experimental data derived from neonatal dermal fibroblasts in response to TGF-β over time. PyCoTools is used to critically analyse the parameter estimations and propose strategies for model improvement. PyCoTools can be downloaded from the Python Package Index (PyPI) using the command 'pip install pycotools' or directly from GitHub (https://github.com/CiaranWelsh/pycotools). Documentation at http://pycotools.readthedocs.io. Supplementary data are available at Bioinformatics.
Evaluating the State of Water Management in the Rio Grande/Bravo Basin
NASA Astrophysics Data System (ADS)
Ortiz Partida, Jose Pablo; Sandoval-Solis, Samuel; Diaz Gomez, Romina
2017-04-01
Water resource modeling tools have been developed for many different regions and sub-basins of the Rio Grande/Bravo (RGB). Each of these tools has specific objectives, whether it is to explore drought mitigation alternatives, conflict resolution, climate change evaluation, tradeoff and economic synergies, water allocation, reservoir operations, or collaborative planning. However, there has not been an effort to integrate different available tools, or to link models developed for specific reaches into a more holistic watershed decision-support tool. This project outlines promising next steps to meet long-term goals of improved decision support tools and modeling. We identify, describe, and synthesize water resources management practices in the RGB basin and available water resources models and decision support tools that represent the RGB and the distribution of water for human and environmental uses. The extent body of water resources modeling is examined from a perspective of environmental water needs and water resources management and thereby allows subsequent prioritization of future research and monitoring needs for the development of river system modeling tools. This work communicates the state of the RGB science to diverse stakeholders, researchers, and decision-makers. The products of this project represent a planning tool to support an integrated water resources management framework to maximize economic and social welfare without compromising vital ecosystems.
Chung, Beom Sun; Chung, Min Suk; Shin, Byeong Seok; Kwon, Koojoo
2018-02-19
The hand anatomy, including the complicated hand muscles, can be grasped by using computer-assisted learning tools with high quality two-dimensional images and three-dimensional models. The purpose of this study was to present up-to-date software tools that promote learning of stereoscopic morphology of the hand. On the basis of horizontal sectioned images and outlined images of a male cadaver, vertical planes, volume models, and surface models were elaborated. Software to browse pairs of the sectioned and outlined images in orthogonal planes and software to peel and rotate the volume models, as well as a portable document format (PDF) file to select and rotate the surface models, were produced. All of the software tools were downloadable free of charge and usable off-line. The three types of tools for viewing multiple aspects of the hand could be adequately employed according to individual needs. These new tools involving the realistic images of a cadaver and the diverse functions are expected to improve comprehensive knowledge of the hand shape. © 2018 The Korean Academy of Medical Sciences.
2018-01-01
Background The hand anatomy, including the complicated hand muscles, can be grasped by using computer-assisted learning tools with high quality two-dimensional images and three-dimensional models. The purpose of this study was to present up-to-date software tools that promote learning of stereoscopic morphology of the hand. Methods On the basis of horizontal sectioned images and outlined images of a male cadaver, vertical planes, volume models, and surface models were elaborated. Software to browse pairs of the sectioned and outlined images in orthogonal planes and software to peel and rotate the volume models, as well as a portable document format (PDF) file to select and rotate the surface models, were produced. Results All of the software tools were downloadable free of charge and usable off-line. The three types of tools for viewing multiple aspects of the hand could be adequately employed according to individual needs. Conclusion These new tools involving the realistic images of a cadaver and the diverse functions are expected to improve comprehensive knowledge of the hand shape. PMID:29441756
Link, William; Sauer, John R.
2016-01-01
The analysis of ecological data has changed in two important ways over the last 15 years. The development and easy availability of Bayesian computational methods has allowed and encouraged the fitting of complex hierarchical models. At the same time, there has been increasing emphasis on acknowledging and accounting for model uncertainty. Unfortunately, the ability to fit complex models has outstripped the development of tools for model selection and model evaluation: familiar model selection tools such as Akaike's information criterion and the deviance information criterion are widely known to be inadequate for hierarchical models. In addition, little attention has been paid to the evaluation of model adequacy in context of hierarchical modeling, i.e., to the evaluation of fit for a single model. In this paper, we describe Bayesian cross-validation, which provides tools for model selection and evaluation. We describe the Bayesian predictive information criterion and a Bayesian approximation to the BPIC known as the Watanabe-Akaike information criterion. We illustrate the use of these tools for model selection, and the use of Bayesian cross-validation as a tool for model evaluation, using three large data sets from the North American Breeding Bird Survey.
A comparison of tools for modeling freshwater ecosystem services.
Vigerstol, Kari L; Aukema, Juliann E
2011-10-01
Interest in ecosystem services has grown tremendously among a wide range of sectors, including government agencies, NGO's and the business community. Ecosystem services entailing freshwater (e.g. flood control, the provision of hydropower, and water supply), as well as carbon storage and sequestration, have received the greatest attention in both scientific and on-the-ground applications. Given the newness of the field and the variety of tools for predicting water-based services, it is difficult to know which tools to use for different questions. There are two types of freshwater-related tools--traditional hydrologic tools and newer ecosystem services tools. Here we review two of the most prominent tools of each type and their possible applications. In particular, we compare the data requirements, ease of use, questions addressed, and interpretability of results among the models. We discuss the strengths, challenges and most appropriate applications of the different models. Traditional hydrological tools provide more detail whereas ecosystem services tools tend to be more accessible to non-experts and can provide a good general picture of these ecosystem services. We also suggest gaps in the modeling toolbox that would provide the greatest advances by improving existing tools. Copyright © 2011 Elsevier Ltd. All rights reserved.
EasyModeller: A graphical interface to MODELLER
2010-01-01
Background MODELLER is a program for automated protein Homology Modeling. It is one of the most widely used tool for homology or comparative modeling of protein three-dimensional structures, but most users find it a bit difficult to start with MODELLER as it is command line based and requires knowledge of basic Python scripting to use it efficiently. Findings The study was designed with an aim to develop of "EasyModeller" tool as a frontend graphical interface to MODELLER using Perl/Tk, which can be used as a standalone tool in windows platform with MODELLER and Python preinstalled. It helps inexperienced users to perform modeling, assessment, visualization, and optimization of protein models in a simple and straightforward way. Conclusion EasyModeller provides a graphical straight forward interface and functions as a stand-alone tool which can be used in a standard personal computer with Microsoft Windows as the operating system. PMID:20712861
Health impact assessment – A survey on quantifying tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehr, Rainer, E-mail: rainer.fehr@uni-bielefeld.de; Mekel, Odile C.L., E-mail: odile.mekel@lzg.nrw.de; Fintan Hurley, J., E-mail: fintan.hurley@iom-world.org
Integrating human health into prospective impact assessments is known to be challenging. This is true for both approaches: dedicated health impact assessments (HIA) as well as inclusion of health into more general impact assessments. Acknowledging the full range of participatory, qualitative, and quantitative approaches, this study focuses on the latter, especially on computational tools for quantitative health modelling. We conducted a survey among tool developers concerning the status quo of development and availability of such tools; experiences made with model usage in real-life situations; and priorities for further development. Responding toolmaker groups described 17 such tools, most of them beingmore » maintained and reported as ready for use and covering a wide range of topics, including risk & protective factors, exposures, policies, and health outcomes. In recent years, existing models have been improved and were applied in new ways, and completely new models emerged. There was high agreement among respondents on the need to further develop methods for assessment of inequalities and uncertainty. The contribution of quantitative modeling to health foresight would benefit from building joint strategies of further tool development, improving the visibility of quantitative tools and methods, and engaging continuously with actual and potential users. - Highlights: • A survey investigated computational tools for health impact quantification. • Formal evaluation of such tools has been rare. • Handling inequalities and uncertainties are priority areas for further development. • Health foresight would benefit from tool developers and users forming a community. • Joint development strategies across computational tools are needed.« less
Toward improved simulation of river operations through integration with a hydrologic model
Morway, Eric D.; Niswonger, Richard G.; Triana, Enrique
2016-01-01
Advanced modeling tools are needed for informed water resources planning and management. Two classes of modeling tools are often used to this end–(1) distributed-parameter hydrologic models for quantifying supply and (2) river-operation models for sorting out demands under rule-based systems such as the prior-appropriation doctrine. Within each of these two broad classes of models, there are many software tools that excel at simulating the processes specific to each discipline, but have historically over-simplified, or at worse completely neglected, aspects of the other. As a result, water managers reliant on river-operation models for administering water resources need improved tools for representing spatially and temporally varying groundwater resources in conjunctive-use systems. A new tool is described that improves the representation of groundwater/surface-water (GW-SW) interaction within a river-operations modeling context and, in so doing, advances evaluation of system-wide hydrologic consequences of new or altered management regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udhay Ravishankar; Milos manic
2013-08-01
This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less
ERIC Educational Resources Information Center
Carey, Cayelan C.; Gougis, Rebekka Darner
2017-01-01
Ecosystem modeling is a critically important tool for environmental scientists, yet is rarely taught in undergraduate and graduate classrooms. To address this gap, we developed a teaching module that exposes students to a suite of modeling skills and tools (including computer programming, numerical simulation modeling, and distributed computing)…
Model Rocketry: University-Level Educational Tool
ERIC Educational Resources Information Center
Barrowman, James S.
1974-01-01
Describes how model rocketry can be a useful educational tool at the university level as a practical application of theoretical aerodynamic concepts and as a tool for students in experimental research. (BR)
Modeling and MBL: Software Tools for Science.
ERIC Educational Resources Information Center
Tinker, Robert F.
Recent technological advances and new software packages put unprecedented power for experimenting and theory-building in the hands of students at all levels. Microcomputer-based laboratory (MBL) and model-solving tools illustrate the educational potential of the technology. These tools include modeling software and three MBL packages (which are…
A Model for Developing Meta-Cognitive Tools in Teacher Apprenticeships
ERIC Educational Resources Information Center
Bray, Paige; Schatz, Steven
2013-01-01
This research investigates a model for developing meta-cognitive tools to be used by pre-service teachers during apprenticeship (student teaching) experience to operationalise the epistemological model of Cook and Brown (2009). Meta-cognitive tools have proven to be effective for increasing performance and retention of undergraduate students.…
DOT National Transportation Integrated Search
2010-04-19
The Federal Aviation Administration (FAA) aircraft noise modeling tools Aviation Environmental Design Tool (AEDTc) and Integrated Noise Model (INM) do not currently consider noise below 50 Hz in their computations. This paper describes a preliminary ...
MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models
Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines
2016-08-03
Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorialsmore » explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. In conclusion, this computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community.« less
Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-01
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed. PMID:28787882
García Nieto, Paulino José; García-Gonzalo, Esperanza; Ordóñez Galán, Celestino; Bernardo Sánchez, Antonio
2016-01-28
Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC-MARS-based model was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc . Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC-MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.
Assessment of wear dependence parameters in complex model of cutting tool wear
NASA Astrophysics Data System (ADS)
Antsev, A. V.; Pasko, N. I.; Antseva, N. V.
2018-03-01
This paper addresses wear dependence of the generic efficient life period of cutting tools taken as an aggregate of the law of tool wear rate distribution and dependence of parameters of this law's on the cutting mode, factoring in the random factor as exemplified by the complex model of wear. The complex model of wear takes into account the variance of cutting properties within one batch of tools, variance in machinability within one batch of workpieces, and the stochastic nature of the wear process itself. A technique of assessment of wear dependence parameters in a complex model of cutting tool wear is provided. The technique is supported by a numerical example.
This presentation will provide an overview of the USEPA's Metal Finishing Facility Risk Screening Tool, including a discussion of the models used and outputs. The tool is currently being expanded to include pollution prevention considerations as part of the model. The current st...
Chapter 8: Planning Tools to Simulate and Optimize Neighborhood Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhivov, Alexander Michael; Case, Michael Patrick; Jank, Reinhard
This section introduces different energy modeling tools available in Europe and the USA for community energy master planning process varying from strategic Urban Energy Planning to more detailed Local Energy Planning. Two modeling tools used for Energy Master Planning of primarily residential communities, the 3D city model with CityGML, and the Net Zero Planner tool developed for the US Department of Defense installations are described in more details.
Linear modeling of human hand-arm dynamics relevant to right-angle torque tool interaction.
Ay, Haluk; Sommerich, Carolyn M; Luscher, Anthony F
2013-10-01
A new protocol was evaluated for identification of stiffness, mass, and damping parameters employing a linear model for human hand-arm dynamics relevant to right-angle torque tool use. Powered torque tools are widely used to tighten fasteners in manufacturing industries. While these tools increase accuracy and efficiency of tightening processes, operators are repetitively exposed to impulsive forces, posing risk of upper extremity musculoskeletal injury. A novel testing apparatus was developed that closely mimics biomechanical exposure in torque tool operation. Forty experienced torque tool operators were tested with the apparatus to determine model parameters and validate the protocol for physical capacity assessment. A second-order hand-arm model with parameters extracted in the time domain met model accuracy criterion of 5% for time-to-peak displacement error in 93% of trials (vs. 75% for frequency domain). Average time-to-peak handle displacement and relative peak handle force errors were 0.69 ms and 0.21%, respectively. Model parameters were significantly affected by gender and working posture. Protocol and numerical calculation procedures provide an alternative method for assessing mechanical parameters relevant to right-angle torque tool use. The protocol more closely resembles tool use, and calculation procedures demonstrate better performance of parameter extraction using time domain system identification methods versus frequency domain. Potential future applications include parameter identification for in situ torque tool operation and equipment development for human hand-arm dynamics simulation under impulsive forces that could be used for assessing torque tools based on factors relevant to operator health (handle dynamics and hand-arm reaction force).
Nelson, Carl A; Miller, David J; Oleynikov, Dmitry
2008-01-01
As modular systems come into the forefront of robotic telesurgery, streamlining the process of selecting surgical tools becomes an important consideration. This paper presents a method for optimal queuing of tools in modular surgical tool systems, based on patterns in tool-use sequences, in order to minimize time spent changing tools. The solution approach is to model the set of tools as a graph, with tool-change frequency expressed as edge weights in the graph, and to solve the Traveling Salesman Problem for the graph. In a set of simulations, this method has shown superior performance at optimizing tool arrangements for streamlining surgical procedures.
Shape: A 3D Modeling Tool for Astrophysics.
Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus
2011-04-01
We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.
NASA Astrophysics Data System (ADS)
Jebur, M. N.; Pradhan, B.; Shafri, H. Z. M.; Yusof, Z.; Tehrany, M. S.
2014-10-01
Modeling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modeling. Bivariate statistical analysis (BSA) assists in hazard modeling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, BSM (bivariate statistical modeler), for BSA technique is proposed. Three popular BSA techniques such as frequency ratio, weights-of-evidence, and evidential belief function models are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and is created by a simple graphical user interface, which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.
NASA Astrophysics Data System (ADS)
Jebur, M. N.; Pradhan, B.; Shafri, H. Z. M.; Yusoff, Z. M.; Tehrany, M. S.
2015-03-01
Modelling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modelling. Bivariate statistical analysis (BSA) assists in hazard modelling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time-consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, bivariate statistical modeler (BSM), for BSA technique is proposed. Three popular BSA techniques, such as frequency ratio, weight-of-evidence (WoE), and evidential belief function (EBF) models, are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and created by a simple graphical user interface (GUI), which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve (AUC) is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.
Probst, Yasmine; Morrison, Evan; Sullivan, Emma; Dam, Hoa Khanh
2016-07-28
Standardizing the background diet of participants during a dietary randomized controlled trial is vital to trial outcomes. For this process, dietary modeling based on food groups and their target servings is employed via a dietary prescription before an intervention, often using a manual process. Partial automation has employed the use of linear programming. Validity of the modeling approach is critical to allow trial outcomes to be translated to practice. This paper describes the first-stage development of a tool to automatically perform dietary modeling using food group and macronutrient requirements as a test case. The Dietary Modeling Tool (DMT) was then compared with existing approaches to dietary modeling (manual and partially automated), which were previously available to dietitians working within a dietary intervention trial. Constraint optimization techniques were implemented to determine whether nonlinear constraints are best suited to the development of the automated dietary modeling tool using food composition and food consumption data. Dietary models were produced and compared with a manual Microsoft Excel calculator, a partially automated Excel Solver approach, and the automated DMT that was developed. The web-based DMT was produced using nonlinear constraint optimization, incorporating estimated energy requirement calculations, nutrition guidance systems, and the flexibility to amend food group targets for individuals. Percentage differences between modeling tools revealed similar results for the macronutrients. Polyunsaturated fatty acids and monounsaturated fatty acids showed greater variation between tools (practically equating to a 2-teaspoon difference), although it was not considered clinically significant when the whole diet, as opposed to targeted nutrients or energy requirements, were being addressed. Automated modeling tools can streamline the modeling process for dietary intervention trials ensuring consistency of the background diets, although appropriate constraints must be used in their development to achieve desired results. The DMT was found to be a valid automated tool producing similar results to tools with less automation. The results of this study suggest interchangeability of the modeling approaches used, although implementation should reflect the requirements of the dietary intervention trial in which it is used.
Morrison, Evan; Sullivan, Emma; Dam, Hoa Khanh
2016-01-01
Background Standardizing the background diet of participants during a dietary randomized controlled trial is vital to trial outcomes. For this process, dietary modeling based on food groups and their target servings is employed via a dietary prescription before an intervention, often using a manual process. Partial automation has employed the use of linear programming. Validity of the modeling approach is critical to allow trial outcomes to be translated to practice. Objective This paper describes the first-stage development of a tool to automatically perform dietary modeling using food group and macronutrient requirements as a test case. The Dietary Modeling Tool (DMT) was then compared with existing approaches to dietary modeling (manual and partially automated), which were previously available to dietitians working within a dietary intervention trial. Methods Constraint optimization techniques were implemented to determine whether nonlinear constraints are best suited to the development of the automated dietary modeling tool using food composition and food consumption data. Dietary models were produced and compared with a manual Microsoft Excel calculator, a partially automated Excel Solver approach, and the automated DMT that was developed. Results The web-based DMT was produced using nonlinear constraint optimization, incorporating estimated energy requirement calculations, nutrition guidance systems, and the flexibility to amend food group targets for individuals. Percentage differences between modeling tools revealed similar results for the macronutrients. Polyunsaturated fatty acids and monounsaturated fatty acids showed greater variation between tools (practically equating to a 2-teaspoon difference), although it was not considered clinically significant when the whole diet, as opposed to targeted nutrients or energy requirements, were being addressed. Conclusions Automated modeling tools can streamline the modeling process for dietary intervention trials ensuring consistency of the background diets, although appropriate constraints must be used in their development to achieve desired results. The DMT was found to be a valid automated tool producing similar results to tools with less automation. The results of this study suggest interchangeability of the modeling approaches used, although implementation should reflect the requirements of the dietary intervention trial in which it is used. PMID:27471104
3D FEM Simulation of Flank Wear in Turning
NASA Astrophysics Data System (ADS)
Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio
2011-05-01
This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.
Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel
NASA Astrophysics Data System (ADS)
Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania
2007-05-01
Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.
SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.
Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J
2017-01-01
There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.
Teachers' Use of Computational Tools to Construct and Explore Dynamic Mathematical Models
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron
2011-01-01
To what extent does the use of computational tools offer teachers the possibility of constructing dynamic models to identify and explore diverse mathematical relations? What ways of reasoning or thinking about the problems emerge during the model construction process that involves the use of the tools? These research questions guided the…
Design and Analysis Tools for Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.; Folk, Thomas C.
2009-01-01
Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.
Physical Modeling of Contact Processes on the Cutting Tools Surfaces of STM When Turning
NASA Astrophysics Data System (ADS)
Belozerov, V. A.; Uteshev, M. H.
2016-08-01
This article describes how to create an optimization model of the process of fine turning of superalloys and steel tools from STM on CNC machines, flexible manufacturing units (GPM), machining centers. Creation of the optimization model allows you to link (unite) contact processes simultaneously on the front and back surfaces of the tool from STM to manage contact processes and the dynamic strength of the cutting tool at the top of the STM. Established optimization model of management of the dynamic strength of the incisors of the STM in the process of fine turning is based on a previously developed thermomechanical (physical, heat) model, which allows the system thermomechanical approach to choosing brands STM (domestic and foreign) for cutting tools from STM designed for fine turning of heat resistant alloys and steels.
A workshop will be conducted to demonstrate and focus on two decision support tools developed at EPA/ORD: 1. Community-scale MARKAL model: an energy-water technology evaluation tool and 2. Municipal Solid Waste Decision Support Tool (MSW DST). The Workshop will be part of Southea...
Predicting tool life in turning operations using neural networks and image processing
NASA Astrophysics Data System (ADS)
Mikołajczyk, T.; Nowicki, K.; Bustillo, A.; Yu Pimenov, D.
2018-05-01
A two-step method is presented for the automatic prediction of tool life in turning operations. First, experimental data are collected for three cutting edges under the same constant processing conditions. In these experiments, the parameter of tool wear, VB, is measured with conventional methods and the same parameter is estimated using Neural Wear, a customized software package that combines flank wear image recognition and Artificial Neural Networks (ANNs). Second, an ANN model of tool life is trained with the data collected from the first two cutting edges and the subsequent model is evaluated on two different subsets for the third cutting edge: the first subset is obtained from the direct measurement of tool wear and the second is obtained from the Neural Wear software that estimates tool wear using edge images. Although the complete-automated solution, Neural Wear software for tool wear recognition plus the ANN model of tool life prediction, presented a slightly higher error than the direct measurements, it was within the same range and can meet all industrial requirements. These results confirm that the combination of image recognition software and ANN modelling could potentially be developed into a useful industrial tool for low-cost estimation of tool life in turning operations.
NASA Astrophysics Data System (ADS)
O'Neill, B. C.; Kauffman, B.; Lawrence, P.
2016-12-01
Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.
Cockpit System Situational Awareness Modeling Tool
NASA Technical Reports Server (NTRS)
Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara
2004-01-01
This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.
Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding
NASA Astrophysics Data System (ADS)
Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.
2017-12-01
Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.
NASA Technical Reports Server (NTRS)
Mayer, Richard
1988-01-01
The integrated development support environment (IDSE) is a suite of integrated software tools that provide intelligent support for information modelling. These tools assist in function, information, and process modeling. Additional tools exist to assist in gathering and analyzing information to be modeled. This is a user's guide to application of the IDSE. Sections covering the requirements and design of each of the tools are presented. There are currently three integrated computer aided manufacturing definition (IDEF) modeling methodologies: IDEF0, IDEF1, and IDEF2. Also, four appendices exist to describe hardware and software requirements, installation procedures, and basic hardware usage.
Machinability of titanium metal matrix composites (Ti-MMCs)
NASA Astrophysics Data System (ADS)
Aramesh, Maryam
Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in addition to the effect of cutting parameters. Thus, promising results were obtained which showed a very good agreement with the experimental results. Moreover, a more advanced model was constructed, by adding the tool wear as another variable to the previous model. Therefore, a new model was proposed for estimating the remaining life of worn inserts under different cutting conditions, using the current tool wear data as an input. The results of this model were validated with the experimental results. The estimated results were well consistent with the results obtained from the experiments.
MOD Tool (Microwave Optics Design Tool)
NASA Technical Reports Server (NTRS)
Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.
1999-01-01
The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl/Tk, which allows the user to work on a choice of platforms (PC, Mac, or Unix) after downloading the Tcl/Tk binary, which is readily available on the web. The MOD Tool server is written using Expect, and it resides on a Sun workstation. Client/server communications are performed over a socket, where upon a connection from a client to the server, the server spawns a child which is be dedicated to communicating with that client. The server communicates with other machines, such as supercomputers using Expect with the username and password being provided by the user on the client.
The effective integration of analysis, modeling, and simulation tools.
DOT National Transportation Integrated Search
2013-08-01
The need for model integration arises from the recognition that both transportation decisionmaking and the tools supporting it continue to increase in complexity. Many strategies that agencies evaluate require using tools that are sensitive to supply...
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S>
2007-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
Model-Driven Useware Engineering
NASA Astrophysics Data System (ADS)
Meixner, Gerrit; Seissler, Marc; Breiner, Kai
User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.
Exploration Medical System Trade Study Tools Overview
NASA Technical Reports Server (NTRS)
Mindock, J.; Myers, J.; Latorella, K.; Cerro, J.; Hanson, A.; Hailey, M.; Middour, C.
2018-01-01
ExMC is creating an ecosystem of tools to enable well-informed medical system trade studies. The suite of tools address important system implementation aspects of the space medical capabilities trade space and are being built using knowledge from the medical community regarding the unique aspects of space flight. Two integrating models, a systems engineering model and a medical risk analysis model, tie the tools together to produce an integrated assessment of the medical system and its ability to achieve medical system target requirements. This presentation will provide an overview of the various tools that are a part of the tool ecosystem. Initially, the presentation's focus will address the tools that supply the foundational information to the ecosystem. Specifically, the talk will describe how information that describes how medicine will be practiced is captured and categorized for efficient utilization in the tool suite. For example, the talk will include capturing what conditions will be planned for in-mission treatment, planned medical activities (e.g., periodic physical exam), required medical capabilities (e.g., provide imaging), and options to implement the capabilities (e.g., an ultrasound device). Database storage and configuration management will also be discussed. The presentation will include an overview of how these information tools will be tied to parameters in a Systems Modeling Language (SysML) model, allowing traceability to system behavioral, structural, and requirements content. The discussion will also describe an HRP-led enhanced risk assessment model developed to provide quantitative insight into each capability's contribution to mission success. Key outputs from these various tools, to be shared with the space medical and exploration mission development communities, will be assessments of medical system implementation option satisfaction of requirements and per-capability contributions toward achieving requirements.
2016-04-01
IND Response Decision-Making: Models for Government–Industry Collaboration for the Development of Game -Based Training Tools R.M. Seater C.E. Rose...Models for Government–Industry Collaboration for the Development of Game -Based Training Tools C.E. Rose A.S. Norige Group 44 R.M. Seater K.C...Report 1208 Lexington Massachusetts This page intentionally left blank. iii EXECUTIVE SUMMARY Game -based training tools, sometimes called “serious
Shi, Zhenyu; Liu, Zhanqiang; Li, Yuchao; Qiao, Yang
2017-01-01
Cutting tool geometry should be very much considered in micro-cutting because it has a significant effect on the topography and accuracy of the machined surface, particularly considering the uncut chip thickness is comparable to the cutting edge radius. The objective of this paper was to clarify the influence of the mechanism of the cutting tool geometry on the surface topography in the micro-milling process. Four different cutting tools including two two-fluted end milling tools with different helix angles of 15° and 30° cutting tools, as well as two three-fluted end milling tools with different helix angles of 15° and 30° were investigated by combining theoretical modeling analysis with experimental research. The tool geometry was mathematically modeled through coordinate translation and transformation to make all three cutting edges at the cutting tool tip into the same coordinate system. Swept mechanisms, minimum uncut chip thickness, and cutting tool run-out were considered on modeling surface roughness parameters (the height of surface roughness Rz and average surface roughness Ra) based on the established mathematical model. A set of cutting experiments was carried out using four different shaped cutting tools. It was found that the sweeping volume of the cutting tool increases with the decrease of both the cutting tool helix angle and the flute number. Great coarse machined surface roughness and more non-uniform surface topography are generated when the sweeping volume increases. The outcome of this research should bring about new methodologies for micro-end milling tool design and manufacturing. The machined surface roughness can be improved by appropriately selecting the tool geometrical parameters. PMID:28772479
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
Modelling the urban water cycle as an integrated part of the city: a review.
Urich, Christian; Rauch, Wolfgang
2014-01-01
In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.
Status of the AIAA Modeling and Simulation Format Standard
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Hildreth, Bruce L.
2008-01-01
The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.
NASA Astrophysics Data System (ADS)
Abellán-Nebot, J. V.; Liu, J.; Romero, F.
2009-11-01
The State Space modelling approach has been recently proposed as an engineering-driven technique for part quality prediction in Multistage Machining Processes (MMP). Current State Space models incorporate fixture and datum variations in the multi-stage variation propagation, without explicitly considering common operation variations such as machine-tool thermal distortions, cutting-tool wear, cutting-tool deflections, etc. This paper shows the limitations of the current State Space model through an experimental case study where the effect of the spindle thermal expansion, cutting-tool flank wear and locator errors are introduced. The paper also discusses the extension of the current State Space model to include operation variations and its potential benefits.
Evaluating the Usability of a Professional Modeling Tool Repurposed for Middle School Learning
ERIC Educational Resources Information Center
Peters, Vanessa L.; Songer, Nancy Butler
2013-01-01
This paper reports the results of a three-stage usability test of a modeling tool designed to support learners' deep understanding of the impacts of climate change on ecosystems. The design process involved repurposing an existing modeling technology used by professional scientists into a learning tool specifically designed for middle school…
A Decision Support Model and Tool to Assist Financial Decision-Making in Universities
ERIC Educational Resources Information Center
Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive
2015-01-01
In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…
Webquest 2.0: An Instructional Model for Digital Learners
ERIC Educational Resources Information Center
Dell, Diana F. Abernathy
2012-01-01
Teaching and learning tools such as Moodle and Web 2.0 tools are appearing in K-12 classrooms; however, there is a lack of scholarly research to guide the implementation of these tools. The WebQuest model, a widely adopted inquiry-based model for online instruction, has instructional inadequacies and does not make the most of emerging…
ECO-DRIVING MODELING ENVIRONMENT
DOT National Transportation Integrated Search
2015-11-01
This research project aims to examine the eco-driving modeling capabilities of different traffic modeling tools available and to develop a driver-simulator-based eco-driving modeling tool to evaluate driver behavior and to reliably estimate or measur...
A drill-soil system modelization for future Mars exploration
NASA Astrophysics Data System (ADS)
Finzi, A. E.; Lavagna, M.; Rocchitelli, G.
2004-01-01
This paper presents a first approach to the problem of modeling a drilling process to be carried on in the space environment by a dedicated payload. Systems devoted to work in space present very strict requirements in many different fields such as thermal response, electric power demand, reliability and so on. Thus, models devoted to the operational behaviour simulation represent a fundamental help in the design phase and give a great improvement in the final product quality. As the required power is the crucial constraint within drilling devices, the tool-soil interaction modelization and simulation are finalized to the computation of the power demand as a function of both the drill and the soil parameters. An accurate study of the tool and the soil separately has been firstly carried on and, secondly their interaction has been analyzed. The Dee-Dri system, designed by Tecnospazio and to be part of the lander components in the NASA's Mars Sample Return Mission, has been taken as the tool reference. The Deep-Drill system is a complex rotary tool devoted to the soil perforation and sample collection; it has to operate in a Martian zone made of rocks similar to the terrestrial basalt, then the modelization is restricted to the interaction analysis between the tool and materials belonging to the rock set. The tool geometric modelization has been faced by a finite element approach with a Langrangian formulation: for the static analysis a refined model is assumed considering both the actual geometry of the head and the rod screws; a simplified model has been used to deal with the dynamic analysis. The soil representation is based on the Mohr-Coulomb crack criterion and an Eulerian approach has been selected to model it. However, software limitations in dealing with the tool-soil interface definition required assuming a Langrangian formulation for the soil too. The interaction between the soil and the tool has been modeled by extending the two-dimensional Nishimatsu's theory for rock cutting for rotating perforation tools. A fine analysis on f.e.m. element choice for each part of the tool is presented together with static analysis results. The dynamic analysis results are limited to the first impact phenomenon between the rock and the tool head. The validity of both the theoretical and numerical models is confirmed by the good agreement between simulation results and data coming from the experiments done within the Tecnospazio facilities.
Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining
NASA Astrophysics Data System (ADS)
Rizzuti, S.; Umbrello, D.
2011-01-01
Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.
Iterating between Tools to Create and Edit Visualizations.
Bigelow, Alex; Drucker, Steven; Fisher, Danyel; Meyer, Miriah
2017-01-01
A common workflow for visualization designers begins with a generative tool, like D3 or Processing, to create the initial visualization; and proceeds to a drawing tool, like Adobe Illustrator or Inkscape, for editing and cleaning. Unfortunately, this is typically a one-way process: once a visualization is exported from the generative tool into a drawing tool, it is difficult to make further, data-driven changes. In this paper, we propose a bridge model to allow designers to bring their work back from the drawing tool to re-edit in the generative tool. Our key insight is to recast this iteration challenge as a merge problem - similar to when two people are editing a document and changes between them need to reconciled. We also present a specific instantiation of this model, a tool called Hanpuku, which bridges between D3 scripts and Illustrator. We show several examples of visualizations that are iteratively created using Hanpuku in order to illustrate the flexibility of the approach. We further describe several hypothetical tools that bridge between other visualization tools to emphasize the generality of the model.
A New Climate Adjustment Tool: An update to EPA’s Storm Water Management Model
The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations.
Modeling languages for biochemical network simulation: reaction vs equation based approaches.
Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya
2010-01-01
Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.
Becky K. Kerns; Ayn J. Shlisky; Colin J. Daniel
2012-01-01
The first ever Landscape State-and-Transition Simulation Modeling Conference was held from June 14â16, 2011, in Portland Oregon. The conference brought together over 70 users of state-and-transition simulation modeling toolsâthe Vegetation Dynamics Development Tool (VDDT), the Tool for Exploratory Landscape Analysis (TELSA) and the Path Landscape Model. The goal of the...
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo
2017-04-01
In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.
Designing tools for oil exploration using nuclear modeling
NASA Astrophysics Data System (ADS)
Mauborgne, Marie-Laure; Allioli, Françoise; Manclossi, Mauro; Nicoletti, Luisa; Stoller, Chris; Evans, Mike
2017-09-01
When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.
Modelling of peak temperature during friction stir processing of magnesium alloy AZ91
NASA Astrophysics Data System (ADS)
Vaira Vignesh, R.; Padmanaban, R.
2018-02-01
Friction stir processing (FSP) is a solid state processing technique with potential to modify the properties of the material through microstructural modification. The study of heat transfer in FSP aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSP of magnesium alloy AZ91 was simulated using finite element modelling. The numerical model results were validated using the experimental results from the published literature. The model was used to predict the peak temperature obtained during FSP for various process parameter combinations. The simulated peak temperature results were used to develop a statistical model. The effect of process parameters namely tool rotation speed, tool traverse speed and shoulder diameter of the tool on the peak temperature was investigated using the developed statistical model. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed.
A thermal sensation prediction tool for use by the profession
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fountain, M.E.; Huizenga, C.
1997-12-31
As part of a recent ASHRAE research project (781-RP), a thermal sensation prediction tool has been developed. This paper introduces the tool, describes the component thermal sensation models, and presents examples of how the tool can be used in practice. Since the main end product of the HVAC industry is the comfort of occupants indoors, tools for predicting occupant thermal response can be an important asset to designers of indoor climate control systems. The software tool presented in this paper incorporates several existing models for predicting occupant comfort.
Tools for Local and Distributed Climate Data Access
NASA Astrophysics Data System (ADS)
Schweitzer, R.; O'Brien, K.; Burger, E. F.; Smith, K. M.; Manke, A. B.; Radhakrishnan, A.; Balaji, V.
2017-12-01
Last year we reported on our efforts to adapt existing tools to facilitate model development. During the lifecycle of a Climate Model Intercomparison Project (CMIP), data must be quality controlled before it can be published and studied. Like previous efforts, the next CMIP6 will produce an unprecedented volume of data. For an institution, modelling group or modeller the volume of data is unmanageable without tools that organize and automate as many processes as possible. Even if a modelling group has tools for data and metadata management, it often falls on individuals to do the initial quality assessment for a model run with bespoke tools. Using individually crafted tools can lead to interruptions when project personnel change and may result in inconsistencies and duplication of effort across groups. This talk will expand on our experiences using available tools (Ferret/PyFerret, the Live Access Server, the GFDL Curator, the GFDL Model Development Database Interface and the THREDDS Data Server) to seamlessly automate the data assembly process to give users "one-click" access to a rich suite of Web-based analysis and comparison tools. On the surface, it appears that this collection of tools is well suited to the task, but our experience of the last year taught us that the data volume and distributed storage adds a number of challenges in adapting the tools for this task. Quality control and initial evaluation add their own set of challenges. We will discuss how we addressed the needs of QC researchers by expanding standard tools to include specialized plots and leveraged the configurability of the tools to add specific user defined analysis operations so they are available to everyone using the system. We also report on our efforts to overcome some of the technical barriers for wide adoption of the tools by providing pre-built containers that are easily deployed in virtual machine and cloud environments. Finally, we will offer some suggestions for added features, configuration options and improved robustness that can make future implementation of similar systems operate faster and more reliably. Solving these challenges for data sets distributed narrowly across networks and storage systems of points the way to solving similar problems associated with sharing data distributed across institutions continents.
Myokit: A simple interface to cardiac cellular electrophysiology.
Clerx, Michael; Collins, Pieter; de Lange, Enno; Volders, Paul G A
2016-01-01
Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular action potential to find that current tools do not cater specifically to model development and that there is a gap between easy-to-use but limited software and powerful tools that require strong programming skills from their users. We then describe Myokit's capabilities, focusing on its model description language, simulation engines and import/export facilities in detail. Using three examples, we show how Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap between performance, versatility and user-friendliness. Copyright © 2015 Elsevier Ltd. All rights reserved.
System Maturity and Architecture Assessment Methods, Processes, and Tools
2012-03-02
Deshmukh , and M. Sarfaraz. Development of Systems Engineering Maturity Models and Management Tools. Systems Engineering Research Center Final Technical...Ramirez- Marquez, D. Nowicki, A. Deshmukh , and M. Sarfaraz. Development of Systems Engineering Maturity Models and Management Tools. Systems Engineering
Predictive models in cancer management: A guide for clinicians.
Kazem, Mohammed Ali
2017-04-01
Predictive tools in cancer management are used to predict different outcomes including survival probability or risk of recurrence. The uptake of these tools by clinicians involved in cancer management has not been as common as other clinical tools, which may be due to the complexity of some of these tools or a lack of understanding of how they can aid decision-making in particular clinical situations. The aim of this article is to improve clinicians' knowledge and understanding of predictive tools used in cancer management, including how they are built, how they can be applied to medical practice, and what their limitations may be. Literature review was conducted to investigate the role of predictive tools in cancer management. All predictive models share similar characteristics, but depending on the type of the tool its ability to predict an outcome will differ. Each type has its own pros and cons, and its generalisability will depend on the cohort used to build the tool. These factors will affect the clinician's decision whether to apply the model to their cohort or not. Before a model is used in clinical practice, it is important to appreciate how the model is constructed, what its use may add over and above traditional decision-making tools, and what problems or limitations may be associated with it. Understanding all the above is an important step for any clinician who wants to decide whether or not use predictive tools in their practice. Copyright © 2016 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Prognostic and Prediction Tools in Bladder Cancer: A Comprehensive Review of the Literature.
Kluth, Luis A; Black, Peter C; Bochner, Bernard H; Catto, James; Lerner, Seth P; Stenzl, Arnulf; Sylvester, Richard; Vickers, Andrew J; Xylinas, Evanguelos; Shariat, Shahrokh F
2015-08-01
This review focuses on risk assessment and prediction tools for bladder cancer (BCa). To review the current knowledge on risk assessment and prediction tools to enhance clinical decision making and counseling of patients with BCa. A literature search in English was performed using PubMed in July 2013. Relevant risk assessment and prediction tools for BCa were selected. More than 1600 publications were retrieved. Special attention was given to studies that investigated the clinical benefit of a prediction tool. Most prediction tools for BCa focus on the prediction of disease recurrence and progression in non-muscle-invasive bladder cancer or disease recurrence and survival after radical cystectomy. Although these tools are helpful, recent prediction tools aim to address a specific clinical problem, such as the prediction of organ-confined disease and lymph node metastasis to help identify patients who might benefit from neoadjuvant chemotherapy. Although a large number of prediction tools have been reported in recent years, many of them lack external validation. Few studies have investigated the clinical utility of any given model as measured by its ability to improve clinical decision making. There is a need for novel biomarkers to improve the accuracy and utility of prediction tools for BCa. Decision tools hold the promise of facilitating the shared decision process, potentially improving clinical outcomes for BCa patients. Prediction models need external validation and assessment of clinical utility before they can be incorporated into routine clinical care. We looked at models that aim to predict outcomes for patients with bladder cancer (BCa). We found a large number of prediction models that hold the promise of facilitating treatment decisions for patients with BCa. However, many models are missing confirmation in a different patient cohort, and only a few studies have tested the clinical utility of any given model as measured by its ability to improve clinical decision making. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Tampa Bay Water Clarity Model (TBWCM): As a Predictive Tool
The Tampa Bay Water Clarity Model was developed as a predictive tool for estimating the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bi...
Mulhearn, Tyler J; Watts, Logan L; Todd, E Michelle; Medeiros, Kelsey E; Connelly, Shane; Mumford, Michael D
2017-01-01
Although recent evidence suggests ethics education can be effective, the nature of specific training programs, and their effectiveness, varies considerably. Building on a recent path modeling effort, the present study developed and validated a predictive modeling tool for responsible conduct of research education. The predictive modeling tool allows users to enter ratings in relation to a given ethics training program and receive instantaneous evaluative information for course refinement. Validation work suggests the tool's predicted outcomes correlate strongly (r = 0.46) with objective course outcomes. Implications for training program development and refinement are discussed.
NASA Astrophysics Data System (ADS)
Tironi, Antonio; Marin, Víctor H.; Campuzano, Francisco J.
2010-05-01
This article introduces a management tool for salmon farming, with a scope in the local sustainability of salmon aquaculture of the Aysen Fjord, Chilean Patagonia. Based on Integrated Coastal Zone Management (ICZM) principles, the tool combines a large 3-level nested hydrodynamic model, a particle tracking module and a GIS application into an assessment tool for particulate waste dispersal of salmon farming activities. The model offers an open source alternative to particulate waste modeling and evaluation, contributing with valuable information for local decision makers in the process of locating new facilities and monitoring stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines
Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorialsmore » explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. In conclusion, this computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community.« less
Atmospheric Model Evaluation Tool for meteorological and air quality simulations
The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.
The CVI Watershed Health Assessment Tool Investigating Fisheries, WHAT IF version 2, currently contains five components: Regional Prioritization Tool, Hydrologic Tool, Clustering Tool, Habitat Suitability Tool, BASS model
Agent-based modeling as a tool for program design and evaluation.
Lawlor, Jennifer A; McGirr, Sara
2017-12-01
Recently, systems thinking and systems science approaches have gained popularity in the field of evaluation; however, there has been relatively little exploration of how evaluators could use quantitative tools to assist in the implementation of systems approaches therein. The purpose of this paper is to explore potential uses of one such quantitative tool, agent-based modeling, in evaluation practice. To this end, we define agent-based modeling and offer potential uses for it in typical evaluation activities, including: engaging stakeholders, selecting an intervention, modeling program theory, setting performance targets, and interpreting evaluation results. We provide demonstrative examples from published agent-based modeling efforts both inside and outside the field of evaluation for each of the evaluative activities discussed. We further describe potential pitfalls of this tool and offer cautions for evaluators who may chose to implement it in their practice. Finally, the article concludes with a discussion of the future of agent-based modeling in evaluation practice and a call for more formal exploration of this tool as well as other approaches to simulation modeling in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical modelling of orthogonal cutting: application to woodworking with a bench plane.
Nairn, John A
2016-06-06
A numerical model for orthogonal cutting using the material point method was applied to woodcutting using a bench plane. The cutting process was modelled by accounting for surface energy associated with wood fracture toughness for crack growth parallel to the grain. By using damping to deal with dynamic crack propagation and modelling all contact between wood and the plane, simulations could initiate chip formation and proceed into steady-state chip propagation including chip curling. Once steady-state conditions were achieved, the cutting forces became constant and could be determined as a function of various simulation variables. The modelling details included a cutting tool, the tool's rake and grinding angles, a chip breaker, a base plate and a mouth opening between the base plate and the tool. The wood was modelled as an anisotropic elastic-plastic material. The simulations were verified by comparison to an analytical model and then used to conduct virtual experiments on wood planing. The virtual experiments showed interactions between depth of cut, chip breaker location and mouth opening. Additional simulations investigated the role of tool grinding angle, tool sharpness and friction.
New Tooling System for Forming Aluminum Beverage Can End Shell
NASA Astrophysics Data System (ADS)
Yamazaki, Koetsu; Otsuka, Takayasu; Han, Jing; Hasegawa, Takashi; Shirasawa, Taketo
2011-08-01
This paper proposes a new tooling system for forming shells of aluminum beverage can ends. At first, forming process of a conversional tooling system has been simulated using three-dimensional finite element models. Simulation results have been confirmed to be consistent with those of axisymmetric models, so simulations for further study have been performed using axisymmetric models to save computational time. A comparison shows that thinning of the shell formed by the proposed tooling system has been improved about 3.6%. Influences of the tool upmost surface profiles and tool initial positions in the new tooling system have been investigated and the design optimization method based on the numerical simulations has been then applied to search optimum design points, in order to minimize thinning subjected to the constraints of the geometrical dimensions of the shell. At last, the performance of the shell subjected to internal pressure has been confirmed to meet design requirements.
Fields, Chris
2011-03-01
Structure-mapping inferences are generally regarded as dependent upon relational concepts that are understood and expressible in language by subjects capable of analogical reasoning. However, tool-improvisation inferences are executed by members of a variety of non-human primate and other species. Tool improvisation requires correctly inferring the motion and force-transfer affordances of an object; hence tool improvisation requires structure mapping driven by relational properties. Observational and experimental evidence can be interpreted to indicate that structure-mapping analogies in tool improvisation are implemented by multi-step manipulation of event files by binding and action-planning mechanisms that act in a language-independent manner. A functional model of language-independent event-file manipulations that implement structure mapping in the tool-improvisation domain is developed. This model provides a mechanism by which motion and force representations commonly employed in tool-improvisation structure mappings may be sufficiently reinforced to be available to inwardly directed attention and hence conceptualization. Predictions and potential experimental tests of this model are outlined.
UIVerify: A Web-Based Tool for Verification and Automatic Generation of User Interfaces
NASA Technical Reports Server (NTRS)
Shiffman, Smadar; Degani, Asaf; Heymann, Michael
2004-01-01
In this poster, we describe a web-based tool for verification and automatic generation of user interfaces. The verification component of the tool accepts as input a model of a machine and a model of its interface, and checks that the interface is adequate (correct). The generation component of the tool accepts a model of a given machine and the user's task, and then generates a correct and succinct interface. This write-up will demonstrate the usefulness of the tool by verifying the correctness of a user interface to a flight-control system. The poster will include two more examples of using the tool: verification of the interface to an espresso machine, and automatic generation of a succinct interface to a large hypothetical machine.
Hydrological Simulation Program - FORTRAN (HSPF) Data Formatting Tool (HDFT)
The HSPF data formatting and unit conversion tool has two seperate applications: a web-based application and a desktop application. The tool was developed to aid users in formatting data for HSPF stormwater modeling applications. Unlike traditional HSPF modeling applications, sto...
Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC
NASA Astrophysics Data System (ADS)
O'Connor, Alexander Pinpin
Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.
Test-Case Generation using an Explicit State Model Checker Final Report
NASA Technical Reports Server (NTRS)
Heimdahl, Mats P. E.; Gao, Jimin
2003-01-01
In the project 'Test-Case Generation using an Explicit State Model Checker' we have extended an existing tools infrastructure for formal modeling to export Java code so that we can use the NASA Ames tool Java Pathfinder (JPF) for test case generation. We have completed a translator from our source language RSML(exp -e) to Java and conducted initial studies of how JPF can be used as a testing tool. In this final report, we provide a detailed description of the translation approach as implemented in our tools.
Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review
Misra, Sarthak; Ramesh, K. T.; Okamura, Allison M.
2009-01-01
Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in the development of high-fidelity surgical simulators. Researchers have attempted to model tool-tissue interactions in a wide variety of ways, which can be broadly classified as (1) linear elasticity-based, (2) nonlinear (hyperelastic) elasticity-based finite element (FE) methods, and (3) other techniques that not based on FE methods or continuum mechanics. Realistic modeling of organ deformation requires populating the model with real tissue data (which are difficult to acquire in vivo) and simulating organ response in real time (which is computationally expensive). Further, it is challenging to account for connective tissue supporting the organ, friction, and topological changes resulting from tool-tissue interactions during invasive surgical procedures. Overcoming such obstacles will not only help us to model tool-tissue interactions in real time, but also enable realistic force feedback to the user during surgical simulation. This review paper classifies the existing research on tool-tissue interactions for surgical simulators specifically based on the modeling techniques employed and the kind of surgical operation being simulated, in order to inform and motivate future research on improved tool-tissue interaction models. PMID:20119508
Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example
Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.
2016-02-10
The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource managers to inform their decision-making processes; however, as with all population models, caution is needed, and a full understanding of the limitations of a model and the veracity of user-supplied parameters should always be considered when using such model output in the management of any species.
Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.
2005-01-01
In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.
NASA Technical Reports Server (NTRS)
Rasmussen, Robert; Bennett, Matthew
2006-01-01
The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.
ERIC Educational Resources Information Center
Rands, Sean A.
2012-01-01
Models are an important tool in science: not only do they act as a convenient device for describing a system or problem, but they also act as a conceptual tool for framing and exploring hypotheses. Models, and in particular computer simulations, are also an important education tool for training scientists, but it is difficult to teach students the…
Automated Design Tools for Integrated Mixed-Signal Microsystems (NeoCAD)
2005-02-01
method, Model Order Reduction (MOR) tools, system-level, mixed-signal circuit synthesis and optimization tools, and parsitic extraction tools. A unique...Mission Area: Command and Control mixed signal circuit simulation parasitic extraction time-domain simulation IC design flow model order reduction... Extraction 1.2 Overall Program Milestones CHAPTER 2 FAST TIME DOMAIN MIXED-SIGNAL CIRCUIT SIMULATION 2.1 HAARSPICE Algorithms 2.1.1 Mathematical Background
NASA Astrophysics Data System (ADS)
Chetan; Narasimhulu, A.; Ghosh, S.; Rao, P. V.
2015-07-01
Machinability of titanium is poor due to its low thermal conductivity and high chemical affinity. Lower thermal conductivity of titanium alloy is undesirable on the part of cutting tool causing extensive tool wear. The main task of this work is to predict the various wear mechanisms involved during machining of Ti alloy (Ti6Al4V) and to formulate an analytical mathematical tool wear model for the same. It has been found from various experiments that adhesive and diffusion wear are the dominating wear during machining of Ti alloy with PVD coated tungsten carbide tool. It is also clear from the experiments that the tool wear increases with the increase in cutting parameters like speed, feed and depth of cut. The wear model was validated by carrying out dry machining of Ti alloy at suitable cutting conditions. It has been found that the wear model is able to predict the flank wear suitably under gentle cutting conditions.
NASA Astrophysics Data System (ADS)
Simon, E.; Nowicki, S.; Neumann, T.; Tyahla, L.; Saba, J. L.; Guerber, J. R.; Bonin, J. A.; DiMarzio, J. P.
2017-12-01
The Cryosphere model Comparison tool (CmCt) is a web based ice sheet model validation tool that is being developed by NASA to facilitate direct comparison between observational data and various ice sheet models. The CmCt allows the user to take advantage of several decades worth of observations from Greenland and Antarctica. Currently, the CmCt can be used to compare ice sheet models provided by the user with remotely sensed satellite data from ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry, GRACE (Gravity Recovery and Climate Experiment) satellite, and radar altimetry (ERS-1, ERS-2, and Envisat). One or more models can be uploaded through the CmCt website and compared with observational data, or compared to each other or other models. The CmCt calculates statistics on the differences between the model and observations, and other quantitative and qualitative metrics, which can be used to evaluate the different model simulations against the observations. The qualitative metrics consist of a range of visual outputs and the quantitative metrics consist of several whole-ice-sheet scalar values that can be used to assign an overall score to a particular simulation. The comparison results from CmCt are useful in quantifying improvements within a specific model (or within a class of models) as a result of differences in model dynamics (e.g., shallow vs. higher-order dynamics approximations), model physics (e.g., representations of ice sheet rheological or basal processes), or model resolution (mesh resolution and/or changes in the spatial resolution of input datasets). The framework and metrics could also be used for use as a model-to-model intercomparison tool, simply by swapping outputs from another model as the observational datasets. Future versions of the tool will include comparisons with other datasets that are of interest to the modeling community, such as ice velocity, ice thickness, and surface mass balance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Francfort; Kevin Morrow; Dimitri Hochard
2007-02-01
This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.
Digital test assembly of truck parts with the IMMA-tool--an illustrative case.
Hanson, L; Högberg, D; Söderholm, M
2012-01-01
Several digital human modelling (DHM) tools have been developed for simulation and visualisation of human postures and motions. In 2010 the DHM tool IMMA (Intelligently Moving Manikins) was introduced as a DHM tool that uses advanced path planning techniques to generate collision free and biomechanically acceptable motions for digital human models (as well as parts) in complex assembly situations. The aim of the paper is to illustrate how the IPS/IMMA tool is used at Scania CV AB in a digital test assembly process, and to compare the tool with other DHM tools on the market. The illustrated case of using the IMMA tool, here combined with the path planner tool IPS, indicates that the tool is promising. The major strengths of the tool are its user friendly interface, the motion generation algorithms, the batch simulation of manikins and the ergonomics assessment methods that consider time.
Simplified aeroelastic modeling of horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Wendell, J. H.
1982-01-01
Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.
2018-01-01
Background Electronic health (eHealth) and mobile health (mHealth) tools can support and improve the whole process of workplace health promotion (WHP) projects. However, several challenges and opportunities have to be considered while integrating these tools in WHP projects. Currently, a large number of eHealth tools are developed for changing health behavior, but these tools can support the whole WHP process, including group administration, information flow, assessment, intervention development process, or evaluation. Objective To support a successful implementation of eHealth tools in the whole WHP processes, we introduce a concept of WHP (life cycle model of WHP) with 7 steps and present critical and success factors for the implementation of eHealth tools in each step. Methods We developed a life cycle model of WHP based on the World Health Organization (WHO) model of healthy workplace continual improvement process. We suggest adaptations to the WHO model to demonstrate the large number of possibilities to implement eHealth tools in WHP as well as possible critical points in the implementation process. Results eHealth tools can enhance the efficiency of WHP in each of the 7 steps of the presented life cycle model of WHP. Specifically, eHealth tools can support by offering easier administration, providing an information and communication platform, supporting assessments, presenting and discussing assessment results in a dashboard, and offering interventions to change individual health behavior. Important success factors include the possibility to give automatic feedback about health parameters, create incentive systems, or bring together a large number of health experts in one place. Critical factors such as data security, anonymity, or lack of management involvement have to be addressed carefully to prevent nonparticipation and dropouts. Conclusions Using eHealth tools can support WHP, but clear regulations for the usage and implementation of these tools at the workplace are needed to secure quality and reach sustainable results. PMID:29475828
ERIC Educational Resources Information Center
Czocher, Jennifer A.
2016-01-01
This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…
ADAM: analysis of discrete models of biological systems using computer algebra.
Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard
2011-07-20
Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics.
An experiment with interactive planning models
NASA Technical Reports Server (NTRS)
Beville, J.; Wagner, J. H.; Zannetos, Z. S.
1970-01-01
Experiments on decision making in planning problems are described. Executives were tested in dealing with capital investments and competitive pricing decisions under conditions of uncertainty. A software package, the interactive risk analysis model system, was developed, and two controlled experiments were conducted. It is concluded that planning models can aid management, and predicted uses of the models are as a central tool, as an educational tool, to improve consistency in decision making, to improve communications, and as a tool for consensus decision making.
Construction of an advanced software tool for planetary atmospheric modeling
NASA Technical Reports Server (NTRS)
Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.
1993-01-01
Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a testbed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.
Construction of an advanced software tool for planetary atmospheric modeling
NASA Technical Reports Server (NTRS)
Friedland, Peter; Keller, Richard M.; Mckay, Christopher P.; Sims, Michael H.; Thompson, David E.
1992-01-01
Scientific model-building can be a time intensive and painstaking process, often involving the development of large complex computer programs. Despite the effort involved, scientific models cannot be distributed easily and shared with other scientists. In general, implemented scientific models are complicated, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing, using and sharing models. The proposed tool will include an interactive intelligent graphical interface and a high-level domain-specific modeling language. As a test bed for this research, we propose to develop a software prototype in the domain of planetary atmospheric modeling.
Stimulating Scientific Reasoning with Drawing-Based Modeling
NASA Astrophysics Data System (ADS)
Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank
2018-02-01
We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each iteration, the user interface and instructions were adjusted based on students' remarks and the teacher's observations. Students' conversations were analyzed on reasoning complexity as a measurement of efficacy of the modeling tool and the instructions. These findings were also used to compose a set of recommendations for teachers and curriculum designers for using and constructing models in the classroom. Our findings suggest that to stimulate scientific reasoning in students working with a drawing-based modeling, tool instruction about the tool and the domain should be integrated. In creating models, a sufficient level of scaffolding is necessary. Without appropriate scaffolds, students are not able to create the model. With scaffolding that is too high, students may show reasoning that incorrectly assigns external causes to behavior in the model.
Applying Simulation and Logistics Modeling to Transportation Issues
DOT National Transportation Integrated Search
1995-08-15
This paper describes an application where transportation logistics and simulation tools are integrated to create a modeling environment for transportation planning. The Transportation Planning Model (TPM) is a tool developed for the Department of Ene...
Green Infrastructure Modeling Toolkit
EPA's Green Infrastructure Modeling Toolkit is a toolkit of 5 EPA green infrastructure models and tools, along with communication materials, that can be used as a teaching tool and a quick reference resource when making GI implementation decisions.
Modules: A New Tool in the Emissions Modeling Framework
DOT National Transportation Integrated Search
2017-08-14
The Emissions Modeling Framework (EMF) is used by various organizations, including the US Environmental Protection Agency, to manage their emissions inventories, projections, and emissions modeling scenarios. Modules are a new tool under develo...
Using JEDI Data | Jobs and Economic Development Impact Models | NREL
tool; Purchase the necessary aggregated multiplier and consumer commodity demand data from someone skilled in input-output modeling (IMPLAN or another modeling tool); or Purchase the necessary aggregated
Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro
2015-01-01
The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.
NASA Astrophysics Data System (ADS)
Krause, Lee S.; Burns, Carla L.
2000-06-01
This paper discusses the research currently in progress to develop the Conceptual Federation Object Model Design Tool. The objective of the Conceptual FOM (C-FOM) Design Tool effort is to provide domain and subject matter experts, such as scenario developers, with automated support for understanding and utilizing available HLA simulation and other simulation assets during HLA Federation development. The C-FOM Design Tool will import Simulation Object Models from HLA reuse repositories, such as the MSSR, to populate the domain space that will contain all the objects and their supported interactions. In addition, the C-FOM tool will support the conversion of non-HLA legacy models into HLA- compliant models by applying proven abstraction techniques against the legacy models. Domain experts will be able to build scenarios based on the domain objects and interactions in both a text and graphical form and export a minimal FOM. The ability for domain and subject matter experts to effectively access HLA and non-HLA assets is critical to the long-term acceptance of the HLA initiative.
Collaboration tools and techniques for large model datasets
Signell, R.P.; Carniel, S.; Chiggiato, J.; Janekovic, I.; Pullen, J.; Sherwood, C.R.
2008-01-01
In MREA and many other marine applications, it is common to have multiple models running with different grids, run by different institutions. Techniques and tools are described for low-bandwidth delivery of data from large multidimensional datasets, such as those from meteorological and oceanographic models, directly into generic analysis and visualization tools. Output is stored using the NetCDF CF Metadata Conventions, and then delivered to collaborators over the web via OPeNDAP. OPeNDAP datasets served by different institutions are then organized via THREDDS catalogs. Tools and procedures are then used which enable scientists to explore data on the original model grids using tools they are familiar with. It is also low-bandwidth, enabling users to extract just the data they require, an important feature for access from ship or remote areas. The entire implementation is simple enough to be handled by modelers working with their webmasters - no advanced programming support is necessary. ?? 2007 Elsevier B.V. All rights reserved.
Williams, Kent E; Voigt, Jeffrey R
2004-01-01
The research reported herein presents the results of an empirical evaluation that focused on the accuracy and reliability of cognitive models created using a computerized tool: the cognitive analysis tool for human-computer interaction (CAT-HCI). A sample of participants, expert in interacting with a newly developed tactical display for the U.S. Army's Bradley Fighting Vehicle, individually modeled their knowledge of 4 specific tasks employing the CAT-HCI tool. Measures of the accuracy and consistency of task models created by these task domain experts using the tool were compared with task models created by a double expert. The findings indicated a high degree of consistency and accuracy between the different "single experts" in the task domain in terms of the resultant models generated using the tool. Actual or potential applications of this research include assessing human-computer interaction complexity, determining the productivity of human-computer interfaces, and analyzing an interface design to determine whether methods can be automated.
NASA Astrophysics Data System (ADS)
El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.
2006-11-01
Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.
ERIC Educational Resources Information Center
Toral, S. L.; Barrero, F.; Martinez-Torres, M. R.
2007-01-01
This paper presents an exploratory study about the development of a structural and measurement model for the technological acceptance (TAM) of a web-based educational tool. The aim consists of measuring not only the use of this tool, but also the external variables with a significant influence in its use for planning future improvements. The tool,…
The development and testing of a skin tear risk assessment tool.
Newall, Nelly; Lewin, Gill F; Bulsara, Max K; Carville, Keryln J; Leslie, Gavin D; Roberts, Pam A
2017-02-01
The aim of the present study is to develop a reliable and valid skin tear risk assessment tool. The six characteristics identified in a previous case control study as constituting the best risk model for skin tear development were used to construct a risk assessment tool. The ability of the tool to predict skin tear development was then tested in a prospective study. Between August 2012 and September 2013, 1466 tertiary hospital patients were assessed at admission and followed up for 10 days to see if they developed a skin tear. The predictive validity of the tool was assessed using receiver operating characteristic (ROC) analysis. When the tool was found not to have performed as well as hoped, secondary analyses were performed to determine whether a potentially better performing risk model could be identified. The tool was found to have high sensitivity but low specificity and therefore have inadequate predictive validity. Secondary analysis of the combined data from this and the previous case control study identified an alternative better performing risk model. The tool developed and tested in this study was found to have inadequate predictive validity. The predictive validity of an alternative, more parsimonious model now needs to be tested. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.
2017-12-01
The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).
Kluzik, JoAnn; Diedrichsen, Jörn; Shadmehr, Reza; Bastian, Amy J.
2008-01-01
We make errors when learning to use a new tool. However, the cause of error may be ambiguous: is it because we misestimated properties of the tool or of our own arm? We considered a well-studied adaptation task in which people made goal-directed reaching movements while holding the handle of a robotic arm. The robot produced viscous forces that perturbed reach trajectories. As reaching improved with practice, did people recalibrate an internal model of their arm, or did they build an internal model of the novel tool (robot), or both? What factors influenced how the brain solved this credit assignment problem? To investigate these questions, we compared transfer of adaptation between three conditions: catch trials in which robot forces were turned off unannounced, robot-null trials in which subjects were told that forces were turned off, and free-space trials in which subjects still held the handle but watched as it was detached from the robot. Transfer to free space was 40% of that observed in unannounced catch trials. We next hypothesized that transfer to free space might increase if the training field changed gradually, rather than abruptly. Indeed, this method increased transfer to free space from 40 to 60%. Therefore although practice with a novel tool resulted in formation of an internal model of the tool, it also appeared to produce a transient change in the internal model of the subject's arm. Gradual changes in the tool's dynamics increased the extent to which the nervous system recalibrated the model of the subject's own arm. PMID:18596187
NASA Technical Reports Server (NTRS)
Thomas, Stan J.
1993-01-01
KATE (Knowledge-based Autonomous Test Engineer) is a model-based software system developed in the Artificial Intelligence Laboratory at the Kennedy Space Center for monitoring, fault detection, and control of launch vehicles and ground support systems. In order to bring KATE to the level of performance, functionality, and integratability needed for firing room applications, efforts are underway to implement KATE in the C++ programming language using an X-windows interface. Two programs which were designed and added to the collection of tools which comprise the KATE toolbox are described. The first tool, called the schematic viewer, gives the KATE user the capability to view digitized schematic drawings in the KATE environment. The second tool, called the model editor, gives the KATE model builder a tool for creating and editing knowledge base files. Design and implementation issues having to do with these two tools are discussed. It will be useful to anyone maintaining or extending either the schematic viewer or the model editor.
NASA Astrophysics Data System (ADS)
Teodor, V. G.; Baroiu, N.; Susac, F.; Oancea, N.
2016-11-01
The modelling of a curl of surfaces associated with a pair of rolling centrodes, when it is known the profile of the rack-gear's teeth profile, by direct measuring, as a coordinate matrix, has as goal the determining of the generating quality for an imposed kinematics of the relative motion of tool regarding the blank. In this way, it is possible to determine the generating geometrical error, as a base of the total error. The generation modelling allows highlighting the potential errors of the generating tool, in order to correct its profile, previously to use the tool in machining process. A method developed in CATIA is proposed, based on a new method, namely the method of “relative generating trajectories”. They are presented the analytical foundation, as so as some application for knows models of rack-gear type tools used on Maag teething machines.
Process for selecting engineering tools : applied to selecting a SysML tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Spain, Mark J.; Post, Debra S.; Taylor, Jeffrey L.
2011-02-01
Process for Selecting Engineering Tools outlines the process and tools used to select a SysML (Systems Modeling Language) tool. The process is general in nature and users could use the process to select most engineering tools and software applications.
An adaptive observer for on-line tool wear estimation in turning, Part I: Theory
NASA Astrophysics Data System (ADS)
Danai, Kourosh; Ulsoy, A. Galip
1987-04-01
On-line sensing of tool wear has been a long-standing goal of the manufacturing engineering community. In the absence of any reliable on-line tool wear sensors, a new model-based approach for tool wear estimation has been proposed. This approach is an adaptive observer, based on force measurement, which uses both parameter and state estimation techniques. The design of the adaptive observer is based upon a dynamic state model of tool wear in turning. This paper (Part I) presents the model, and explains its use as the basis for the adaptive observer design. This model uses flank wear and crater wear as state variables, feed as the input, and the cutting force as the output. The suitability of the model as the basis for adaptive observation is also verified. The implementation of the adaptive observer requires the design of a state observer and a parameter estimator. To obtain the model parameters for tuning the adaptive observer procedures for linearisation of the non-linear model are specified. The implementation of the adaptive observer in turning and experimental results are presented in a companion paper (Part II).
Subsonic Wing Optimization for Handling Qualities Using ACSYNT
NASA Technical Reports Server (NTRS)
Soban, Danielle Suzanne
1996-01-01
The capability to accurately and rapidly predict aircraft stability derivatives using one comprehensive analysis tool has been created. The PREDAVOR tool has the following capabilities: rapid estimation of stability derivatives using a vortex lattice method, calculation of a longitudinal handling qualities metric, and inherent methodology to optimize a given aircraft configuration for longitudinal handling qualities, including an intuitive graphical interface. The PREDAVOR tool may be applied to both subsonic and supersonic designs, as well as conventional and unconventional, symmetric and asymmetric configurations. The workstation-based tool uses as its model a three-dimensional model of the configuration generated using a computer aided design (CAD) package. The PREDAVOR tool was applied to a Lear Jet Model 23 and the North American XB-70 Valkyrie.
NASA Technical Reports Server (NTRS)
Vairo, Daniel M.
1998-01-01
The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.
Translation of Real-Time Infectious Disease Modeling into Routine Public Health Practice
Chughtai, Abrar A.; Heywood, Anita; Gardner, Lauren M.; Heslop, David J.; MacIntyre, C. Raina
2017-01-01
Infectious disease dynamic modeling can support outbreak emergency responses. We conducted a workshop to canvas the needs of stakeholders in Australia for practical, real-time modeling tools for infectious disease emergencies. The workshop was attended by 29 participants who represented government, defense, general practice, and academia stakeholders. We found that modeling is underused in Australia and its potential is poorly understood by practitioners involved in epidemic responses. The development of better modeling tools is desired. Ideal modeling tools for operational use would be easy to use, clearly indicate underlying parameterization and assumptions, and assist with policy and decision making. PMID:28418309
Relating MBSE to Spacecraft Development: A NASA Pathfinder
NASA Technical Reports Server (NTRS)
Othon, Bill
2016-01-01
The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.
AdViSHE: A Validation-Assessment Tool of Health-Economic Models for Decision Makers and Model Users.
Vemer, P; Corro Ramos, I; van Voorn, G A K; Al, M J; Feenstra, T L
2016-04-01
A trade-off exists between building confidence in health-economic (HE) decision models and the use of scarce resources. We aimed to create a practical tool providing model users with a structured view into the validation status of HE decision models, to address this trade-off. A Delphi panel was organized, and was completed by a workshop during an international conference. The proposed tool was constructed iteratively based on comments from, and the discussion amongst, panellists. During the Delphi process, comments were solicited on the importance and feasibility of possible validation techniques for modellers, their relevance for decision makers, and the overall structure and formulation in the tool. The panel consisted of 47 experts in HE modelling and HE decision making from various professional and international backgrounds. In addition, 50 discussants actively engaged in the discussion at the conference workshop and returned 19 questionnaires with additional comments. The final version consists of 13 items covering all relevant aspects of HE decision models: the conceptual model, the input data, the implemented software program, and the model outcomes. Assessment of the Validation Status of Health-Economic decision models (AdViSHE) is a validation-assessment tool in which model developers report in a systematic way both on validation efforts performed and on their outcomes. Subsequently, model users can establish whether confidence in the model is justified or whether additional validation efforts should be undertaken. In this way, AdViSHE enhances transparency of the validation status of HE models and supports efficient model validation.
Fisher, Rohan; Lassa, Jonatan
2017-04-18
Modelling travel time to services has become a common public health tool for planning service provision but the usefulness of these analyses is constrained by the availability of accurate input data and limitations inherent in the assumptions and parameterisation. This is particularly an issue in the developing world where access to basic data is limited and travel is often complex and multi-modal. Improving the accuracy and relevance in this context requires greater accessibility to, and flexibility in, travel time modelling tools to facilitate the incorporation of local knowledge and the rapid exploration of multiple travel scenarios. The aim of this work was to develop simple open source, adaptable, interactive travel time modelling tools to allow greater access to and participation in service access analysis. Described are three interconnected applications designed to reduce some of the barriers to the more wide-spread use of GIS analysis of service access and allow for complex spatial and temporal variations in service availability. These applications are an open source GIS tool-kit and two geo-simulation models. The development of these tools was guided by health service issues from a developing world context but they present a general approach to enabling greater access to and flexibility in health access modelling. The tools demonstrate a method that substantially simplifies the process for conducting travel time assessments and demonstrate a dynamic, interactive approach in an open source GIS format. In addition this paper provides examples from empirical experience where these tools have informed better policy and planning. Travel and health service access is complex and cannot be reduced to a few static modeled outputs. The approaches described in this paper use a unique set of tools to explore this complexity, promote discussion and build understanding with the goal of producing better planning outcomes. The accessible, flexible, interactive and responsive nature of the applications described has the potential to allow complex environmental social and political considerations to be incorporated and visualised. Through supporting evidence-based planning the innovative modelling practices described have the potential to help local health and emergency response planning in the developing world.
Peer Review of EPA's Draft BMDS Document: Exponential ...
BMDS is one of the Agency's premier tools for estimating risk assessments, therefore the validity and reliability of its statistical models are of paramount importance. This page provides links to peer review of the BMDS applications and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling. This page provides links to peer review of the BMDS applications and its models as they were developed and eventually released documenting the rigorous review process taken to provide the best science tools available for statistical modeling.
Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology
Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron
2016-01-01
Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094
Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Dianliang; Zhu Hongmin; Shanghai Key Laboratory of Advance Manufacturing Environment
Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools andmore » equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.« less
NASA Astrophysics Data System (ADS)
Equeter, Lucas; Ducobu, François; Rivière-Lorphèvre, Edouard; Abouridouane, Mustapha; Klocke, Fritz; Dehombreux, Pierre
2018-05-01
Industrial concerns arise regarding the significant cost of cutting tools in machining process. In particular, their improper replacement policy can lead either to scraps, or to early tool replacements, which would waste fine tools. ISO 3685 provides the flank wear end-of-life criterion. Flank wear is also the nominal type of wear for longest tool lifetimes in optimal cutting conditions. Its consequences include bad surface roughness and dimensional discrepancies. In order to aid the replacement decision process, several tool condition monitoring techniques are suggested. Force signals were shown in the literature to be strongly linked with tools flank wear. It can therefore be assumed that force signals are highly relevant for monitoring the condition of cutting tools and providing decision-aid information in the framework of their maintenance and replacement. The objective of this work is to correlate tools flank wear with numerically computed force signals. The present work uses a Finite Element Model with a Coupled Eulerian-Lagrangian approach. The geometry of the tool is changed for different runs of the model, in order to obtain results that are specific to a certain level of wear. The model is assessed by comparison with experimental data gathered earlier on fresh tools. Using the model at constant cutting parameters, force signals under different tool wear states are computed and provide force signals for each studied tool geometry. These signals are qualitatively compared with relevant data from the literature. At this point, no quantitative comparison could be performed on worn tools because the reviewed literature failed to provide similar studies in this material, either numerical or experimental. Therefore, further development of this work should include experimental campaigns aiming at collecting cutting forces signals and assessing the numerical results that were achieved through this work.
Clarity versus complexity: land-use modeling as a practical tool for decision-makers
Sohl, Terry L.; Claggett, Peter
2013-01-01
The last decade has seen a remarkable increase in the number of modeling tools available to examine future land-use and land-cover (LULC) change. Integrated modeling frameworks, agent-based models, cellular automata approaches, and other modeling techniques have substantially improved the representation of complex LULC systems, with each method using a different strategy to address complexity. However, despite the development of new and better modeling tools, the use of these tools is limited for actual planning, decision-making, or policy-making purposes. LULC modelers have become very adept at creating tools for modeling LULC change, but complicated models and lack of transparency limit their utility for decision-makers. The complicated nature of many LULC models also makes it impractical or even impossible to perform a rigorous analysis of modeling uncertainty. This paper provides a review of land-cover modeling approaches and the issues causes by the complicated nature of models, and provides suggestions to facilitate the increased use of LULC models by decision-makers and other stakeholders. The utility of LULC models themselves can be improved by 1) providing model code and documentation, 2) through the use of scenario frameworks to frame overall uncertainties, 3) improving methods for generalizing key LULC processes most important to stakeholders, and 4) adopting more rigorous standards for validating models and quantifying uncertainty. Communication with decision-makers and other stakeholders can be improved by increasing stakeholder participation in all stages of the modeling process, increasing the transparency of model structure and uncertainties, and developing user-friendly decision-support systems to bridge the link between LULC science and policy. By considering these options, LULC science will be better positioned to support decision-makers and increase real-world application of LULC modeling results.
The efficiency of geophysical adjoint codes generated by automatic differentiation tools
NASA Astrophysics Data System (ADS)
Vlasenko, A. V.; Köhl, A.; Stammer, D.
2016-02-01
The accuracy of numerical models that describe complex physical or chemical processes depends on the choice of model parameters. Estimating an optimal set of parameters by optimization algorithms requires knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity computation involves differentiation of the model, which can be performed by applying algorithmic differentiation (AD) tools to the underlying numerical code. However, existing AD tools differ substantially in design, legibility and computational efficiency. In this study we show that, for geophysical data assimilation problems of varying complexity, the performance of adjoint codes generated by the existing AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 90-95 elements such as structures and pointers, which are new elements that either combine groups of variables or provide aliases to memory addresses, respectively. We show that, while operator overloading tools are the only ones suitable for modern codes written in object-oriented programming languages, their computational efficiency lags behind source transformation by orders of magnitude, rendering the application of these modern tools to practical assimilation problems prohibitive. In contrast, the application of source transformation tools appears to be the most efficient choice, allowing handling even large geophysical data assimilation problems. However, they can only be applied to numerical models written in earlier generations of programming languages. Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that urgently need to be solved to allow the continuous use of AD tools for solving geophysical problems on modern computer architectures.
Proposal for constructing an advanced software tool for planetary atmospheric modeling
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Sims, Michael H.; Podolak, Esther; Mckay, Christopher P.; Thompson, David E.
1990-01-01
Scientific model building can be a time intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientist/programmer to understand. We believe that advanced software techniques can facilitate both the model building and model sharing process. We propose to construct a scientific modeling software tool that serves as an aid to the scientist in developing and using models. The proposed tool will include an interactive intelligent graphical interface and a high level, domain specific, modeling language. As a testbed for this research, we propose development of a software prototype in the domain of planetary atmospheric modeling.
Active controls: A look at analytical methods and associated tools
NASA Technical Reports Server (NTRS)
Newsom, J. R.; Adams, W. M., Jr.; Mukhopadhyay, V.; Tiffany, S. H.; Abel, I.
1984-01-01
A review of analytical methods and associated tools for active controls analysis and design problems is presented. Approaches employed to develop mathematical models suitable for control system analysis and/or design are discussed. Significant efforts have been expended to develop tools to generate the models from the standpoint of control system designers' needs and develop the tools necessary to analyze and design active control systems. Representative examples of these tools are discussed. Examples where results from the methods and tools have been compared with experimental data are also presented. Finally, a perspective on future trends in analysis and design methods is presented.
Irena : tool suite for modeling and analysis of small-angle scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilavsky, J.; Jemian, P.
2009-04-01
Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron)more » using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.« less
NASA Astrophysics Data System (ADS)
Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.
2017-12-01
In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.
Khajouei, Hamid; Khajouei, Reza
2017-12-01
Appropriate knowledge, correct information, and relevant data are vital in medical diagnosis and treatment systems. Knowledge Management (KM) through its tools/techniques provides a pertinent framework for decision-making in healthcare systems. The objective of this study was to identify and prioritize the KM tools/techniques that apply to hospital setting. This is a descriptive-survey study. Data were collected using a -researcher-made questionnaire that was developed based on experts' opinions to select the appropriate tools/techniques from 26 tools/techniques of the Asian Productivity Organization (APO) model. Questions were categorized into five steps of KM (identifying, creating, storing, sharing, and applying the knowledge) according to this model. The study population consisted of middle and senior managers of hospitals and managing directors of Vice-Chancellor for Curative Affairs in Kerman University of Medical Sciences in Kerman, Iran. The data were analyzed in SPSS v.19 using one-sample t-test. Twelve out of 26 tools/techniques of the APO model were identified as the tools applicable in hospitals. "Knowledge café" and "APO knowledge management assessment tool" with respective means of 4.23 and 3.7 were the most and the least applicable tools in the knowledge identification step. "Mentor-mentee scheme", as well as "voice and Voice over Internet Protocol (VOIP)" with respective means of 4.20 and 3.52 were the most and the least applicable tools/techniques in the knowledge creation step. "Knowledge café" and "voice and VOIP" with respective means of 3.85 and 3.42 were the most and the least applicable tools/techniques in the knowledge storage step. "Peer assist and 'voice and VOIP' with respective means of 4.14 and 3.38 were the most and the least applicable tools/techniques in the knowledge sharing step. Finally, "knowledge worker competency plan" and "knowledge portal" with respective means of 4.38 and 3.85 were the most and the least applicable tools/techniques in the knowledge application step. The results showed that 12 out of 26 tools in the APO model are appropriate for hospitals of which 11 are significantly applicable, and "storytelling" is marginally applicable. In this study, the preferred tools/techniques for implementation of each of the five KM steps in hospitals are introduced. Copyright © 2017 Elsevier B.V. All rights reserved.
Pre- and Post-Processing Tools to Create and Characterize Particle-Based Composite Model Structures
2017-11-01
ARL-TR-8213 ● NOV 2017 US Army Research Laboratory Pre- and Post -Processing Tools to Create and Characterize Particle-Based...ARL-TR-8213 ● NOV 2017 US Army Research Laboratory Pre- and Post -Processing Tools to Create and Characterize Particle-Based Composite...AND SUBTITLE Pre- and Post -Processing Tools to Create and Characterize Particle-Based Composite Model Structures 5a. CONTRACT NUMBER 5b. GRANT
2014-06-01
Integration of Advanced Sediment Transport Tools into HEC-RAS by Paul M. Boyd and Stanford A. Gibson PURPOSE: This Coastal and Hydraulics Engineering...Technical Note (CHETN) summarizes the development and initial testing of new sediment transport and modeling tools developed by the U.S. Army Corps...sediment transport within the USACE HEC River Analysis System (HEC-RAS) software package and to determine its applicability to Regional Sediment
Thermomechanical modelling of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.
2018-03-01
A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.
Spectrum simulation in DTSA-II.
Ritchie, Nicholas W M
2009-10-01
Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.
Stochastic Simulation Tool for Aerospace Structural Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F.; Moore, David F.
2006-01-01
Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.
Virtual Solar System Project: Building Understanding through Model Building.
ERIC Educational Resources Information Center
Barab, Sasha A.; Hay, Kenneth E.; Barnett, Michael; Keating, Thomas
2000-01-01
Describes an introductory astronomy course for undergraduate students in which students use three-dimensional (3-D) modeling tools to model the solar system and develop rich understandings of astronomical phenomena. Indicates that 3-D modeling can be used effectively in regular undergraduate university courses as a tool to develop understandings…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiike, S.; Okazaki, Y.
This paper describes a performance estimation tool developed for modeling and simulation of open distributed energy management systems to support their design. The approach of discrete event simulation with detailed models is considered for efficient performance estimation. The tool includes basic models constituting a platform, e.g., Ethernet, communication protocol, operating system, etc. Application softwares are modeled by specifying CPU time, disk access size, communication data size, etc. Different types of system configurations for various system activities can be easily studied. Simulation examples show how the tool is utilized for the efficient design of open distributed energy management systems.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2011-01-01
Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.
Thermomechanical conditions and stresses on the friction stir welding tool
NASA Astrophysics Data System (ADS)
Atthipalli, Gowtam
Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.
NASA Astrophysics Data System (ADS)
Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao
2011-09-01
Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.
DOT National Transportation Integrated Search
2016-09-01
This report documents use of the NASA Design and Analysis of Rotorcraft (NDARC) helicopter performance software tool in developing data for the FAAs Aviation Environmental Design Tool (AEDT). These data support the Rotorcraft Performance Model (RP...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... tool. The PBP analysis tool is a cash-flow model for evaluating alternative financing arrangements, and... PBP analysis tool is a cash-flow model for evaluating alternative financing arrangements, and is... that reflects adequate consideration to the Government for the improved contractor cash flow...
GRASP - A Prototype Interactive Graphic Sawing Program - (Forest Products Journal)
Luis G. Occeña; Daniel L. Schmoldt
1996-01-01
A versatile microcomputer-based interactive graphics sawing program has been developed as a tool for modeling various hardwood processes, from bucking and topping to log sawing, lumber edging, secondary processing, and even veneering. The microcomputer platform makes the tool affordable and accessible. A solid modeling basis provides the tool with a sound geometrical...
GRASP - A Prototype Interactive Graphic Sawing Program - (MU-IE Technical Report)
Luis G. Occeña; Daniel L. Schmoldt
1995-01-01
A versatile microcomputer-based interactive graphics program has been developed as a tool for modeling various hardwood processes, from bucking and topping to log sawing, lumber edging, secondary processing, even veneering. The microcomputer platform makes the tool affordable and accessible.A solid modeling basis provides the tool with a sound geometrical and...
Toward A Simulation-Based Tool for the Treatment of Vocal Fold Paralysis
Mittal, Rajat; Zheng, Xudong; Bhardwaj, Rajneesh; Seo, Jung Hee; Xue, Qian; Bielamowicz, Steven
2011-01-01
Advances in high-performance computing are enabling a new generation of software tools that employ computational modeling for surgical planning. Surgical management of laryngeal paralysis is one area where such computational tools could have a significant impact. The current paper describes a comprehensive effort to develop a software tool for planning medialization laryngoplasty where a prosthetic implant is inserted into the larynx in order to medialize the paralyzed vocal fold (VF). While this is one of the most common procedures used to restore voice in patients with VF paralysis, it has a relatively high revision rate, and the tool being developed is expected to improve surgical outcomes. This software tool models the biomechanics of airflow-induced vibration in the human larynx and incorporates sophisticated approaches for modeling the turbulent laryngeal flow, the complex dynamics of the VFs, as well as the production of voiced sound. The current paper describes the key elements of the modeling approach, presents computational results that demonstrate the utility of the approach and also describes some of the limitations and challenges. PMID:21556320
Cloud-Based Tools to Support High-Resolution Modeling (Invited)
NASA Astrophysics Data System (ADS)
Jones, N.; Nelson, J.; Swain, N.; Christensen, S.
2013-12-01
The majority of watershed models developed to support decision-making by water management agencies are simple, lumped-parameter models. Maturity in research codes and advances in the computational power from multi-core processors on desktop machines, commercial cloud-computing resources, and supercomputers with thousands of cores have created new opportunities for employing more accurate, high-resolution distributed models for routine use in decision support. The barriers for using such models on a more routine basis include massive amounts of spatial data that must be processed for each new scenario and lack of efficient visualization tools. In this presentation we will review a current NSF-funded project called CI-WATER that is intended to overcome many of these roadblocks associated with high-resolution modeling. We are developing a suite of tools that will make it possible to deploy customized web-based apps for running custom scenarios for high-resolution models with minimal effort. These tools are based on a software stack that includes 52 North, MapServer, PostGIS, HT Condor, CKAN, and Python. This open source stack provides a simple scripting environment for quickly configuring new custom applications for running high-resolution models as geoprocessing workflows. The HT Condor component facilitates simple access to local distributed computers or commercial cloud resources when necessary for stochastic simulations. The CKAN framework provides a powerful suite of tools for hosting such workflows in a web-based environment that includes visualization tools and storage of model simulations in a database to archival, querying, and sharing of model results. Prototype applications including land use change, snow melt, and burned area analysis will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1135482
Zabor, Emily C; Coit, Daniel; Gershenwald, Jeffrey E; McMasters, Kelly M; Michaelson, James S; Stromberg, Arnold J; Panageas, Katherine S
2018-02-22
Prognostic models are increasingly being made available online, where they can be publicly accessed by both patients and clinicians. These online tools are an important resource for patients to better understand their prognosis and for clinicians to make informed decisions about treatment and follow-up. The goal of this analysis was to highlight the possible variability in multiple online prognostic tools in a single disease. To demonstrate the variability in survival predictions across online prognostic tools, we applied a single validation dataset to three online melanoma prognostic tools. Data on melanoma patients treated at Memorial Sloan Kettering Cancer Center between 2000 and 2014 were retrospectively collected. Calibration was assessed using calibration plots and discrimination was assessed using the C-index. In this demonstration project, we found important differences across the three models that led to variability in individual patients' predicted survival across the tools, especially in the lower range of predictions. In a validation test using a single-institution data set, calibration and discrimination varied across the three models. This study underscores the potential variability both within and across online tools, and highlights the importance of using methodological rigor when developing a prognostic model that will be made publicly available online. The results also reinforce that careful development and thoughtful interpretation, including understanding a given tool's limitations, are required in order for online prognostic tools that provide survival predictions to be a useful resource for both patients and clinicians.
Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach
Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen
2016-01-01
A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design. PMID:28773800
Design of Friction Stir Spot Welding Tools by Using a Novel Thermal-Mechanical Approach.
Su, Zheng-Ming; Qiu, Qi-Hong; Lin, Pai-Chen
2016-08-09
A simple thermal-mechanical model for friction stir spot welding (FSSW) was developed to obtain similar weld performance for different weld tools. Use of the thermal-mechanical model and a combined approach enabled the design of weld tools for various sizes but similar qualities. Three weld tools for weld radii of 4, 5, and 6 mm were made to join 6061-T6 aluminum sheets. Performance evaluations of the three weld tools compared fracture behavior, microstructure, micro-hardness distribution, and welding temperature of welds in lap-shear specimens. For welds made by the three weld tools under identical processing conditions, failure loads were approximately proportional to tool size. Failure modes, microstructures, and micro-hardness distributions were similar. Welding temperatures correlated with frictional heat generation rate densities. Because the three weld tools sufficiently met all design objectives, the proposed approach is considered a simple and feasible guideline for preliminary tool design.
Data Provenance as a Tool for Debugging Hydrological Models based on Python
NASA Astrophysics Data System (ADS)
Wombacher, A.; Huq, M.; Wada, Y.; Van Beek, R.
2012-12-01
There is an increase in data volume used in hydrological modeling. The increasing data volume requires additional efforts in debugging models since a single output value is influenced by a multitude of input values. Thus, it is difficult to keep an overview among the data dependencies. Further, knowing these dependencies, it is a tedious job to infer all the relevant data values. The aforementioned data dependencies are also known as data provenance, i.e. the determination of how a particular value has been created and processed. The proposed tool infers the data provenance automatically from a python script and visualizes the dependencies as a graph without executing the script. To debug the model the user specifies the value of interest in space and time. The tool infers all related data values and displays them in the graph. The tool has been evaluated by hydrologists developing a model for estimating the global water demand [1]. The model uses multiple different data sources. The script we analysed has 120 lines of codes and used more than 3000 individual files, each of them representing a raster map of 360*720 cells. After importing the data of the files into a SQLite database, the data consumes around 40 GB of memory. Using the proposed tool a modeler is able to select individual values and infer which values have been used to calculate the value. Especially in cases of outliers or missing values it is a beneficial tool to provide the modeler with efficient information to investigate the unexpected behavior of the model. The proposed tool can be applied to many python scripts and has been tested with other scripts in different contexts. In case a python code contains an unknown function or class the tool requests additional information about the used function or class to enable the inference. This information has to be entered only once and can be shared with colleagues or in the community. Reference [1] Y. Wada, L. P. H. van Beek, D. Viviroli, H. H. Drr, R. Weingartner, and M. F. P. Bierkens, "Global monthly water stress: II. water demand and severity of water," Water Resources Research, vol. 47, 2011.
NASA Astrophysics Data System (ADS)
Peckham, S. D.; Kelbert, A.; Rudan, S.; Stoica, M.
2016-12-01
Standardized metadata for models is the key to reliable and greatly simplified coupling in model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System). This model metadata also helps model users to understand the important details that underpin computational models and to compare the capabilities of different models. These details include simplifying assumptions on the physics, governing equations and the numerical methods used to solve them, discretization of space (the grid) and time (the time-stepping scheme), state variables (input or output), model configuration parameters. This kind of metadata provides a "deep description" of a computational model that goes well beyond other types of metadata (e.g. author, purpose, scientific domain, programming language, digital rights, provenance, execution) and captures the science that underpins a model. While having this kind of standardized metadata for each model in a repository opens up a wide range of exciting possibilities, it is difficult to collect this information and a carefully conceived "data model" or schema is needed to store it. Automated harvesting and scraping methods can provide some useful information, but they often result in metadata that is inaccurate or incomplete, and this is not sufficient to enable the desired capabilities. In order to address this problem, we have developed a browser-based tool called the MCM Tool (Model Component Metadata) which runs on notebooks, tablets and smart phones. This tool was partially inspired by the TurboTax software, which greatly simplifies the necessary task of preparing tax documents. It allows a model developer or advanced user to provide a standardized, deep description of a computational geoscience model, including hydrologic models. Under the hood, the tool uses a new ontology for models built on the CSDMS Standard Names, expressed as a collection of RDF files (Resource Description Framework). This ontology is based on core concepts such as variables, objects, quantities, operations, processes and assumptions. The purpose of this talk is to present details of the new ontology and to then demonstrate the MCM Tool for several hydrologic models.
NASA Technical Reports Server (NTRS)
ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.
Interactive Planning under Uncertainty with Casual Modeling and Analysis
2006-01-01
Tool ( CAT ), a system for creating and analyzing causal models similar to Bayes networks. In order to use CAT as a tool for planning, users go through...an iterative process in which they use CAT to create and an- alyze alternative plans. One of the biggest difficulties is that the number of possible...Causal Analysis Tool ( CAT ), which is a tool for representing and analyzing causal networks sim- ilar to Bayesian networks. In order to represent plans
2016-05-05
Training for IND Response Decision-Making: Models for Government–Industry Collaboration for the Development of Game -Based Training Tools R.M. Seater...Skill Transfer and Virtual Training for IND Response Decision-Making: Models for Government–Industry Collaboration for the Development of Game -Based...unlimited. This page intentionally left blank. iii EXECUTIVE SUMMARY Game -based training tools, sometimes called “serious games ,” are becoming
Visualization, documentation, analysis, and communication of large scale gene regulatory networks
Longabaugh, William J.R.; Davidson, Eric H.; Bolouri, Hamid
2009-01-01
Summary Genetic regulatory networks (GRNs) are complex, large-scale, and spatially and temporally distributed. These characteristics impose challenging demands on computational GRN modeling tools, and there is a need for custom modeling tools. In this paper, we report on our ongoing development of BioTapestry, an open source, freely available computational tool designed specifically for GRN modeling. We also outline our future development plans, and give some examples of current applications of BioTapestry. PMID:18757046
Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems.
DiMaio, Frank
2017-01-01
Molecular replacement (MR), a method for solving the crystallographic phase problem using phases derived from a model of the target structure, has proven extremely valuable, accounting for the vast majority of structures solved by X-ray crystallography. However, when the resolution of data is low, or the starting model is very dissimilar to the target protein, solving structures via molecular replacement may be very challenging. In recent years, protein structure prediction methodology has emerged as a powerful tool in model building and model refinement for difficult molecular replacement problems. This chapter describes some of the tools available in Rosetta for model building and model refinement specifically geared toward difficult molecular replacement cases.
An online tool for tracking soil nitrogen
NASA Astrophysics Data System (ADS)
Wang, J.; Umar, M.; Banger, K.; Pittelkow, C. M.; Nafziger, E. D.
2016-12-01
Near real-time crop models can be useful tools for optimizing agricultural management practices. For example, model simulations can potentially provide current estimates of nitrogen availability in soil, helping growers decide whether more nitrogen needs to be applied in a given season. Traditionally, crop models have been used at point locations (i.e. single fields) with homogenous soil, climate and initial conditions. However, nitrogen availability across fields with varied weather and soil conditions at a regional or national level is necessary to guide better management decisions. This study presents the development of a publicly available, online tool that automates the integration of high-spatial-resolution forecast and past weather and soil data in DSSAT to estimate nitrogen availability for individual fields in Illinois. The model has been calibrated with field experiments from past year at six research corn fields across Illinois. These sites were treated with applications of different N fertilizer timings and amounts. The tool requires minimal management information from growers and yet has the capability to simulate nitrogen-water-crop interactions with calibrated parameters that are more appropriate for Illinois. The results from the tool will be combined with incoming field experiment data from 2016 for model validation and further improvement of model's predictive accuracy. The tool has the potential to help guide better nitrogen management practices to maximize economic and environmental benefits.
Jimenez, Paulino; Bregenzer, Anita
2018-02-23
Electronic health (eHealth) and mobile health (mHealth) tools can support and improve the whole process of workplace health promotion (WHP) projects. However, several challenges and opportunities have to be considered while integrating these tools in WHP projects. Currently, a large number of eHealth tools are developed for changing health behavior, but these tools can support the whole WHP process, including group administration, information flow, assessment, intervention development process, or evaluation. To support a successful implementation of eHealth tools in the whole WHP processes, we introduce a concept of WHP (life cycle model of WHP) with 7 steps and present critical and success factors for the implementation of eHealth tools in each step. We developed a life cycle model of WHP based on the World Health Organization (WHO) model of healthy workplace continual improvement process. We suggest adaptations to the WHO model to demonstrate the large number of possibilities to implement eHealth tools in WHP as well as possible critical points in the implementation process. eHealth tools can enhance the efficiency of WHP in each of the 7 steps of the presented life cycle model of WHP. Specifically, eHealth tools can support by offering easier administration, providing an information and communication platform, supporting assessments, presenting and discussing assessment results in a dashboard, and offering interventions to change individual health behavior. Important success factors include the possibility to give automatic feedback about health parameters, create incentive systems, or bring together a large number of health experts in one place. Critical factors such as data security, anonymity, or lack of management involvement have to be addressed carefully to prevent nonparticipation and dropouts. Using eHealth tools can support WHP, but clear regulations for the usage and implementation of these tools at the workplace are needed to secure quality and reach sustainable results. ©Paulino Jimenez, Anita Bregenzer. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.02.2018.
Engine System Model Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; Simpson, Steven P.
2006-01-01
In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.
An Investigation of Software Scaffolds Supporting Modeling Practices
NASA Astrophysics Data System (ADS)
Fretz, Eric B.; Wu, Hsin-Kai; Zhang, Baohui; Davis, Elizabeth A.; Krajcik, Joseph S.; Soloway, Elliot
2002-08-01
Modeling of complex systems and phenomena is of value in science learning and is increasingly emphasised as an important component of science teaching and learning. Modeling engages learners in desired pedagogical activities. These activities include practices such as planning, building, testing, analysing, and critiquing. Designing realistic models is a difficult task. Computer environments allow the creation of dynamic and even more complex models. One way of bringing the design of models within reach is through the use of scaffolds. Scaffolds are intentional assistance provided to learners from a variety of sources, allowing them to complete tasks that would otherwise be out of reach. Currently, our understanding of how scaffolds in software tools assist learners is incomplete. In this paper the scaffolds designed into a dynamic modeling software tool called Model-It are assessed in terms of their ability to support learners' use of modeling practices. Four pairs of middle school students were video-taped as they used the modeling software for three hours, spread over a two week time frame. Detailed analysis of coded videotape transcripts provided evidence of the importance of scaffolds in supporting the use of modeling practices. Learners used a variety of modeling practices, the majority of which occurred in conjunction with scaffolds. The use of three tool scaffolds was assessed as directly as possible, and these scaffolds were seen to support a variety of modeling practices. An argument is made for the continued empirical validation of types and instances of tool scaffolds, and further investigation of the important role of teacher and peer scaffolding in the use of scaffolded tools.
OISI dynamic end-to-end modeling tool
NASA Astrophysics Data System (ADS)
Kersten, Michael; Weidler, Alexander; Wilhelm, Rainer; Johann, Ulrich A.; Szerdahelyi, Laszlo
2000-07-01
The OISI Dynamic end-to-end modeling tool is tailored to end-to-end modeling and dynamic simulation of Earth- and space-based actively controlled optical instruments such as e.g. optical stellar interferometers. `End-to-end modeling' is meant to denote the feature that the overall model comprises besides optical sub-models also structural, sensor, actuator, controller and disturbance sub-models influencing the optical transmission, so that the system- level instrument performance due to disturbances and active optics can be simulated. This tool has been developed to support performance analysis and prediction as well as control loop design and fine-tuning for OISI, Germany's preparatory program for optical/infrared spaceborne interferometry initiated in 1994 by Dornier Satellitensysteme GmbH in Friedrichshafen.
Revel8or: Model Driven Capacity Planning Tool Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Liming; Liu, Yan; Bui, Ngoc B.
2007-05-31
Designing complex multi-tier applications that must meet strict performance requirements is a challenging software engineering problem. Ideally, the application architect could derive accurate performance predictions early in the project life-cycle, leveraging initial application design-level models and a description of the target software and hardware platforms. To this end, we have developed a capacity planning tool suite for component-based applications, called Revel8tor. The tool adheres to the model driven development paradigm and supports benchmarking and performance prediction for J2EE, .Net and Web services platforms. The suite is composed of three different tools: MDAPerf, MDABench and DSLBench. MDAPerf allows annotation of designmore » diagrams and derives performance analysis models. MDABench allows a customized benchmark application to be modeled in the UML 2.0 Testing Profile and automatically generates a deployable application, with measurement automatically conducted. DSLBench allows the same benchmark modeling and generation to be conducted using a simple performance engineering Domain Specific Language (DSL) in Microsoft Visual Studio. DSLBench integrates with Visual Studio and reuses its load testing infrastructure. Together, the tool suite can assist capacity planning across platforms in an automated fashion.« less
On the modeling of separation foils in thermoforming simulations
NASA Astrophysics Data System (ADS)
Margossian, Alexane; Bel, Sylvain; Hinterhölzl, Roland
2016-10-01
Composite forming simulations consist in modelling the forming process of composite components to anticipate the occurrence of potential flaws such as out-of-plane wrinkles and fibre re-orientation. Forming methods often consist of automated processes in which flat composite blanks are forced to comply with tool geometries. Although Finite Element forming simulations require the modelling of all stakeholders (blankholder, tooling and composite blank), consumables such as separation films are often not considered. Used in thermoforming processes, these films are placed between tooling and composite to ease part removal after forming. These films are also used to decrease tool/ply friction and thus, enhance forming quality. This work presents thermoforming simulations of pre-impregnated carbon fibre thermoplastic blanks in which separation films are modelled in the same manner as composite layers, i.e. by a layer of shell elements. The mechanical properties of such films are also characterised at the same temperature as forming occurs. The proposed approach is finally compared to the actual modelling method, in which separation films are not modelled as such but in which their influence is only considered within the friction coefficient between tooling and blank.
2014-01-01
Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231
Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin
2014-04-28
It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.
Knowledge-based approach for generating target system specifications from a domain model
NASA Technical Reports Server (NTRS)
Gomaa, Hassan; Kerschberg, Larry; Sugumaran, Vijayan
1992-01-01
Several institutions in industry and academia are pursuing research efforts in domain modeling to address unresolved issues in software reuse. To demonstrate the concepts of domain modeling and software reuse, a prototype software engineering environment is being developed at George Mason University to support the creation of domain models and the generation of target system specifications. This prototype environment, which is application domain independent, consists of an integrated set of commercial off-the-shelf software tools and custom-developed software tools. This paper describes the knowledge-based tool that was developed as part of the environment to generate target system specifications from a domain model.
A Multiscale Closed-Loop Cardiovascular Model, with Applications to Heart Pacing and Hemorrhage
NASA Astrophysics Data System (ADS)
Canuto, Daniel; Eldredge, Jeff; Chong, Kwitae; Benharash, Peyman; Dutson, Erik
2017-11-01
A computational tool is developed for simulating the dynamic response of the human cardiovascular system to various stressors and injuries. The tool couples zero-dimensional models of the heart, pulmonary vasculature, and peripheral vasculature to one-dimensional models of the major systemic arteries. To simulate autonomic response, this multiscale circulatory model is integrated with a feedback model of the baroreflex, allowing control of heart rate, cardiac contractility, and peripheral impedance. The performance of the tool is demonstrated in two scenarios: increasing heart rate by stimulating the sympathetic nervous system, and an acute 10 percent hemorrhage from the left femoral artery.
ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra
2011-01-01
Background Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. Results We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Conclusions Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web-based tool for several different input formats, and it makes analysis of complex models accessible to a larger community, as it is platform independent as a web-service and does not require understanding of the underlying mathematics. PMID:21774817
A universal Model-R Coupler to facilitate the use of R functions for model calibration and analysis
Wu, Yiping; Liu, Shuguang; Yan, Wende
2014-01-01
Mathematical models are useful in various fields of science and engineering. However, it is a challenge to make a model utilize the open and growing functions (e.g., model inversion) on the R platform due to the requirement of accessing and revising the model's source code. To overcome this barrier, we developed a universal tool that aims to convert a model developed in any computer language to an R function using the template and instruction concept of the Parameter ESTimation program (PEST) and the operational structure of the R-Soil and Water Assessment Tool (R-SWAT). The developed tool (Model-R Coupler) is promising because users of any model can connect an external algorithm (written in R) with their model to implement various model behavior analyses (e.g., parameter optimization, sensitivity and uncertainty analysis, performance evaluation, and visualization) without accessing or modifying the model's source code.
An integrated modeling and design tool for advanced optical spacecraft
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1992-01-01
Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.
Challenges and Opportunities in Analysing Students Modelling
ERIC Educational Resources Information Center
Blanco-Anaya, Paloma; Justi, Rosária; Díaz de Bustamante, Joaquín
2017-01-01
Modelling-based teaching activities have been designed and analysed from distinct theoretical perspectives. In this paper, we use one of them--the model of modelling diagram (MMD)--as an analytical tool in a regular classroom context. This paper examines the challenges that arise when the MMD is used as an analytical tool to characterise the…
ERIC Educational Resources Information Center
Levy, Roy; Xu, Yuning; Yel, Nedim; Svetina, Dubravka
2015-01-01
The standardized generalized dimensionality discrepancy measure and the standardized model-based covariance are introduced as tools to critique dimensionality assumptions in multidimensional item response models. These tools are grounded in a covariance theory perspective and associated connections between dimensionality and local independence.…
Developing Formal Object-oriented Requirements Specifications: A Model, Tool and Technique.
ERIC Educational Resources Information Center
Jackson, Robert B.; And Others
1995-01-01
Presents a formal object-oriented specification model (OSS) for computer software system development that is supported by a tool that automatically generates a prototype from an object-oriented analysis model (OSA) instance, lets the user examine the prototype, and permits the user to refine the OSA model instance to generate a requirements…
RELEASE NOTES FOR MODELS-3 VERSION 4.1 PATCH: SMOKE TOOL AND FILE CONVERTER
This software patch to the Models-3 system corrects minor errors in the Models-3 framework, provides substantial improvements in the ASCII to I/O API format conversion of the File Converter utility, and new functionalities for the SMOKE Tool. Version 4.1 of the Models-3 system...
Human-scale interaction for virtual model displays: a clear case for real tools
NASA Astrophysics Data System (ADS)
Williams, George C.; McDowall, Ian E.; Bolas, Mark T.
1998-04-01
We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.
Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model
NASA Astrophysics Data System (ADS)
Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming
Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and cloud computing. SSC provides its users with self-service storage and computing resources at the same time.At present, the prototyping of SSC is underway and the platform is expected to be put into trial operation in August 2014. We hope that as SSC develops, our vision of Digital Space may come true someday.
Space Weather Products at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.
2010-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.
Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars
2016-04-12
A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.
Green Infrastructure Modeling Tools
Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.
Data Modeling & the Infrastructural Nature of Conceptual Tools
ERIC Educational Resources Information Center
Lesh, Richard; Caylor, Elizabeth; Gupta, Shweta
2007-01-01
The goal of this paper is to demonstrate the infrastructural nature of many modern conceptual technologies. The focus of this paper is on conceptual tools associated with elementary types of data modeling. We intend to show a variety of ways in which these conceptual tools not only express thinking, but also mold and shape thinking. And those ways…
Scratch as a Computational Modelling Tool for Teaching Physics
ERIC Educational Resources Information Center
Lopez, Victor; Hernandez, Maria Isabel
2015-01-01
The Scratch online authoring tool, which features a simple programming language that has been adapted to primary and secondary students, is being used more and more in schools as it offers students and teachers the opportunity to use a tool to build scientific models and evaluate their behaviour, just as can be done with computational modelling…
Burnside, Elizabeth S.; Lee, Sandra J.; Bennette, Carrie; Near, Aimee M.; Alagoz, Oguzhan; Huang, Hui; van den Broek, Jeroen J.; Kim, Joo Yeon; Ergun, Mehmet A.; van Ravesteyn, Nicolien T.; Stout, Natasha K.; de Koning, Harry J.; Mandelblatt, Jeanne S.
2017-01-01
Background There are no publicly available tools designed specifically to assist policy makers to make informed decisions about the optimal ages of breast cancer screening initiation for different populations of US women. Objective To use three established simulation models to develop a web-based tool called Mammo OUTPuT. Methods The simulation models use the 1970 US birth cohort and common parameters for incidence, digital screening performance, and treatment effects. Outcomes include breast cancers diagnosed, breast cancer deaths averted, breast cancer mortality reduction, false-positive mammograms, benign biopsies, and overdiagnosis. The Mammo OUTPuT tool displays these outcomes for combinations of age at screening initiation (every year from 40 to 49), annual versus biennial interval, lifetime versus 10-year horizon, and breast density, compared to waiting to start biennial screening at age 50 and continuing to 74. The tool was piloted by decision makers (n = 16) who completed surveys. Results The tool demonstrates that benefits in the 40s increase linearly with earlier initiation age, without a specific threshold age. Likewise, the harms of screening increase monotonically with earlier ages of initiation in the 40s. The tool also shows users how the balance of benefits and harms varies with breast density. Surveys revealed that 100% of users (16/16) liked the appearance of the site; 94% (15/16) found the tool helpful; and 94% (15/16) would recommend the tool to a colleague. Conclusions This tool synthesizes a representative subset of the most current CISNET (Cancer Intervention and Surveillance Modeling Network) simulation model outcomes to provide policy makers with quantitative data on the benefits and harms of screening women in the 40s. Ultimate decisions will depend on program goals, the population served, and informed judgments about the weight of benefits and harms. PMID:29376135
Implementing health promotion tools in Australian Indigenous primary health care.
Percival, Nikki A; McCalman, Janya; Armit, Christine; O'Donoghue, Lynette; Bainbridge, Roxanne; Rowley, Kevin; Doyle, Joyce; Tsey, Komla
2018-02-01
In Australia, significant resources have been invested in producing health promotion best practice guidelines, frameworks and tools (herein referred to as health promotion tools) as a strategy to improve Indigenous health promotion programmes. Yet, there has been very little rigorous implementation research about whether or how health promotion tools are implemented. This paper theorizes the complex processes of health promotion tool implementation in Indigenous comprehensive primary healthcare services. Data were derived from published and grey literature about the development and the implementation of four Indigenous health promotion tools. Tools were theoretically sampled to account for the key implementation types described in the literature. Data were analysed using the grounded-theory methods of coding and constant comparison with construct a theoretical implementation model. An Indigenous Health Promotion Tool Implementation Model was developed. Implementation is a social process, whereby researchers, practitioners and community members collectively interacted in creating culturally responsive health promotion to the common purpose of facilitating empowerment. The implementation of health promotion tools was influenced by the presence of change agents; a commitment to reciprocity and organizational governance and resourcing. The Indigenous Health Promotion Tool Implementation Model assists in explaining how health promotion tools are implemented and the conditions that influence these actions. Rather than simply developing more health promotion tools, our study suggests that continuous investment in developing conditions that support empowering implementation processes are required to maximize the beneficial impacts and effectiveness of health promotion tools. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
McEver, Jimmie; Davis, Paul K.; Bigelow, James H.
2000-06-01
We have developed and used families of multiresolution and multiple-perspective models (MRM and MRMPM), both in our substantive analytic work for the Department of Defense and to learn more about how such models can be designed and implemented. This paper is a brief case history of our experience with a particular family of models addressing the use of precision fires in interdicting and halting an invading army. Our models were implemented as closed-form analytic solutions, in spreadsheets, and in the more sophisticated AnalyticaTM environment. We also drew on an entity-level simulation for data. The paper reviews the importance of certain key attributes of development environments (visual modeling, interactive languages, friendly use of array mathematics, facilities for experimental design and configuration control, statistical analysis tools, graphical visualization tools, interactive post-processing, and relational database tools). These can go a long way towards facilitating MRMPM work, but many of these attributes are not yet widely available (or available at all) in commercial model-development tools--especially for use with personal computers. We conclude with some lessons learned from our experience.
Simulation environment and graphical visualization environment: a COPD use-case.
Huertas-Migueláñez, Mercedes; Mora, Daniel; Cano, Isaac; Maier, Dieter; Gomez-Cabrero, David; Lluch-Ariet, Magí; Miralles, Felip
2014-11-28
Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios.
Lähdesmäki, Harri; Hautaniemi, Sampsa; Shmulevich, Ilya; Yli-Harja, Olli
2006-01-01
A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes. PMID:17415411
Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.
2009-01-01
The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.
Brouwers, Melissa C; Makarski, Julie; Kastner, Monika; Hayden, Leigh; Bhattacharyya, Onil
2015-03-15
Practice guideline (PG) implementability refers to PG features that promote their use. While there are tools and resources to promote PG implementability, none are based on an evidence-informed and multidisciplinary perspective. Our objectives were to (i) create a comprehensive and evidence-informed model of PG implementability, (ii) seek support for the model from the international PG community, (iii) map existing implementability tools on to the model, (iv) prioritize areas for further investigation, and (v) describe how the model can be used by PG developers, users, and researchers. A mixed methods approach was used. Using our completed realist review of the literature of seven different disciplines as the foundation, an iterative consensus process was used to create the beta version of the model. This was followed by (i) a survey of international stakeholders (guideline developers and users) to gather feedback and to refine the model, (ii) a content analysis comparing the model to existing PG tools, and (iii) a strategy to prioritize areas of the model for further research by members of the research team. The Guideline Implementability for Decision Excellence Model (GUIDE-M) is comprised of 3 core tactics, 7 domains, 9 subdomains, 44 attributes, and 40 subattributes and elements. Feedback on the beta version was received from 248 stakeholders from 34 countries. The model was rated as logical, relevant, and appropriate. Seven PG tools were selected and compared to the GUIDE-M: very few tools targeted the Contextualization and Deliberations domain. Also, fewer of the tools addressed PG appraisal than PG development and reporting functions. These findings informed the research priorities identified by the team. The GUIDE-M provides an evidence-informed international and multidisciplinary conceptualization of PG implementability. The model can be used by PG developers to help them create more implementable recommendations, by clinicians and other users to help them be better consumers of PGs, and by the research community to identify priorities for further investigation.
Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.
Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron
2016-09-01
Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Challenges of NDE Simulation Tool Challenges of NDE Simulation Tool
NASA Technical Reports Server (NTRS)
Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.; Frank, Ashley L.
2015-01-01
Realistic nondestructive evaluation (NDE) simulation tools enable inspection optimization and predictions of inspectability for new aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of advanced aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation cannot rapidly simulate damage detection techniques for large scale, complex geometry composite components/vehicles with realistic damage types. This paper discusses some of the challenges of model development and validation for composites, such as the level of realism and scale of simulation needed for NASA' applications. Ongoing model development work is described along with examples of model validation studies. The paper will also discuss examples of the use of simulation tools at NASA to develop new damage characterization methods, and associated challenges of validating those methods.
2014-09-30
Consequences of Acoustic Disturbance to Data from Marine Mammal Populations (PCAD Tools II) Len Thomas, John Harwood, Catriona Harris, and Robert S... mammals changes over time. This project will develop statistical tools to allow mathematical models of the population consequences of acoustic...disturbance to be fitted to data from marine mammal populations. We will work closely with Phase II of the ONR PCAD Working Group, and will provide
Tool Efficiency Analysis model research in SEMI industry
NASA Astrophysics Data System (ADS)
Lei, Ma; Nana, Zhang; Zhongqiu, Zhang
2018-06-01
One of the key goals in SEMI industry is to improve equipment through put and ensure equipment production efficiency maximization. This paper is based on SEMI standards in semiconductor equipment control, defines the transaction rules between different tool states, and presents a TEA system model which is to analysis tool performance automatically based on finite state machine. The system was applied to fab tools and verified its effectiveness successfully, and obtained the parameter values used to measure the equipment performance, also including the advices of improvement.
NASA Technical Reports Server (NTRS)
Sebok, Angelia; Wickens, Christopher; Sargent, Robert
2015-01-01
One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.
A coarse-grained model for DNA origami.
Reshetnikov, Roman V; Stolyarova, Anastasia V; Zalevsky, Arthur O; Panteleev, Dmitry Y; Pavlova, Galina V; Klinov, Dmitry V; Golovin, Andrey V; Protopopova, Anna D
2018-02-16
Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version.
NASA Astrophysics Data System (ADS)
Kant Garg, Girish; Garg, Suman; Sangwan, K. S.
2018-04-01
The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.
IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Hale, Elaine; Hansen, Timothy M.
This paper describes the Integrated Grid Modeling System (IGMS), a novel electric power system modeling platform for integrated transmission-distribution analysis that co-simulates off-the-shelf tools on high performance computing (HPC) platforms to offer unprecedented resolution from ISO markets down to appliances and other end uses. Specifically, the system simultaneously models hundreds or thousands of distribution systems in co-simulation with detailed Independent System Operator (ISO) markets and AGC-level reserve deployment. IGMS uses a new MPI-based hierarchical co-simulation framework to connect existing sub-domain models. Our initial efforts integrate opensource tools for wholesale markets (FESTIV), bulk AC power flow (MATPOWER), and full-featured distribution systemsmore » including physics-based end-use and distributed generation models (many instances of GridLAB-D[TM]). The modular IGMS framework enables tool substitution and additions for multi-domain analyses. This paper describes the IGMS tool, characterizes its performance, and demonstrates the impacts of the coupled simulations for analyzing high-penetration solar PV and price responsive load scenarios.« less
A coarse-grained model for DNA origami
Stolyarova, Anastasia V; Zalevsky, Arthur O; Panteleev, Dmitry Y; Pavlova, Galina V; Klinov, Dmitry V; Golovin, Andrey V; Protopopova, Anna D
2018-01-01
Abstract Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version. PMID:29267876
ASTEC and MODEL: Controls software development at Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Downing, John P.; Bauer, Frank H.; Surber, Jeffrey L.
1993-01-01
The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide selection of controls analysis tools at the personal computer level, as well as the capability to upload compute-intensive jobs to a mainframe or supercomputer. In the last three years the ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under development. ASTEC is meant to be an integrated collection of controls analysis tools for use at the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that converts programs written in the MODEL language to FORTRAN. An upgraded version of the MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and has not kept with changes in computers or user interface techniques. This paper describes the changes made to MODEL in order to make it useful in the 90's and how it relates to ASTEC.
The National energy modeling system
NASA Astrophysics Data System (ADS)
The DOE uses a variety of energy and economic models to forecast energy supply and demand. It also uses a variety of more narrowly focussed analytical tools to examine energy policy options. For the purpose of the scope of this work, this set of models and analytical tools is called the National Energy Modeling System (NEMS). The NEMS is the result of many years of development of energy modeling and analysis tools, many of which were developed for different applications and under different assumptions. As such, NEMS is believed to be less than satisfactory in certain areas. For example, NEMS is difficult to keep updated and expensive to use. Various outputs are often difficult to reconcile. Products were not required to interface, but were designed to stand alone. Because different developers were involved, the inner workings of the NEMS are often not easily or fully understood. Even with these difficulties, however, NEMS comprises the best tools currently identified to deal with our global, national and regional energy modeling, and energy analysis needs.
Models of Weather Impact on Air Traffic
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao
2017-01-01
Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.
2012-09-28
spectral-geotechnical libraries and models developed during remote sensing and calibration/ validation campaigns conducted by NRL and collaborating...geotechnical libraries and models developed during remote sensing and calibration/ validation campaigns conducted by NRL and collaborating institutions in four...2010; Bachmann, Fry, et al, 2012a). The NRL HITT tool is a model for how we develop and validate software, and the future development of tools by
Yan, Qiang; Fong, Stephen S.
2017-01-01
Metabolic diversity in microorganisms can provide the basis for creating novel biochemical products. However, most metabolic engineering projects utilize a handful of established model organisms and thus, a challenge for harnessing the potential of novel microbial functions is the ability to either heterologously express novel genes or directly utilize non-model organisms. Genetic manipulation of non-model microorganisms is still challenging due to organism-specific nuances that hinder universal molecular genetic tools and translatable knowledge of intracellular biochemical pathways and regulatory mechanisms. However, in the past several years, unprecedented progress has been made in synthetic biology, molecular genetics tools development, applications of omics data techniques, and computational tools that can aid in developing non-model hosts in a systematic manner. In this review, we focus on concerns and approaches related to working with non-model microorganisms including developing molecular genetics tools such as shuttle vectors, selectable markers, and expression systems. In addition, we will discuss: (1) current techniques in controlling gene expression (transcriptional/translational level), (2) advances in site-specific genome engineering tools [homologous recombination (HR) and clustered regularly interspaced short palindromic repeats (CRISPR)], and (3) advances in genome-scale metabolic models (GSMMs) in guiding design of non-model species. Application of these principles to metabolic engineering strategies for consolidated bioprocessing (CBP) will be discussed along with some brief comments on foreseeable future prospects. PMID:29123506
An Intelligent Crop Planning Tool for Controlled Ecological Life Support Systems
NASA Technical Reports Server (NTRS)
Whitaker, Laura O.; Leon, Jorge
1996-01-01
This paper describes a crop planning tool developed for the Controlled Ecological Life Support Systems (CELSS) project which is in the research phases at various NASA facilities. The Crop Planning Tool was developed to assist in the understanding of the long term applications of a CELSS environment. The tool consists of a crop schedule generator as well as a crop schedule simulator. The importance of crop planning tools such as the one developed is discussed. The simulator is outlined in detail while the schedule generator is touched upon briefly. The simulator consists of data inputs, plant and human models, and various other CELSS activity models such as food consumption and waste regeneration. The program inputs such as crew data and crop states are discussed. References are included for all nominal parameters used. Activities including harvesting, planting, plant respiration, and human respiration are discussed using mathematical models. Plans provided to the simulator by the plan generator are evaluated for their 'fitness' to the CELSS environment with an objective function based upon daily reservoir levels. Sample runs of the Crop Planning Tool and future needs for the tool are detailed.
Ward, Jordan D.
2015-01-01
Recent and rapid advances in genetic and molecular tools have brought spectacular tractability to Caenorhabditis elegans, a model that was initially prized because of its simple design and ease of imaging. C. elegans has long been a powerful model in biomedical research, and tools such as RNAi and the CRISPR/Cas9 system allow facile knockdown of genes and genome editing, respectively. These developments have created an additional opportunity to tackle one of the most debilitating burdens on global health and food security: parasitic nematodes. I review how development of nonparasitic nematodes as genetic models informs efforts to import tools into parasitic nematodes. Current tools in three commonly studied parasites (Strongyloides spp., Brugia malayi, and Ascaris suum) are described, as are tools from C. elegans that are ripe for adaptation and the benefits and barriers to doing so. These tools will enable dissection of a huge array of questions that have been all but completely impenetrable to date, allowing investigation into host–parasite and parasite–vector interactions, and the genetic basis of parasitism. PMID:26644478
Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools
NASA Astrophysics Data System (ADS)
Jagadesh, Thangavel; Samuel, G. L.
2017-02-01
The demand for manufacturing axi-symmetric Ti-6Al-4V implants is increasing in biomedical applications and it involves micro turning process. To understand the micro turning process, in this work, a 3D finite element model has been developed for predicting the tool chip interface temperature, cutting, thrust and axial forces. Strain gradient effect has been included in the Johnson-Cook material model to represent the flow stress of the work material. To verify the simulation results, experiments have been conducted at four different feed rates and at three different cutting speeds. Since titanium alloy has low Young's modulus, spring back effect is predominant for higher edge radius coated carbide tool which leads to the increase in the forces. Whereas, polycrystalline diamond (PCD) tool has smaller edge radius that leads to lesser forces and decrease in tool chip interface temperature due to high thermal conductivity. Tool chip interface temperature increases by increasing the cutting speed, however the increase is less for PCD tool as compared to the coated carbide tool. When uncut chip thickness decreases, there is an increase in specific cutting energy due to material strengthening effects. Surface roughness is higher for coated carbide tool due to ploughing effect when compared with PCD tool. The average prediction error of finite element model for cutting and thrust forces are 11.45 and 14.87 % respectively.
Modeling biochemical transformation processes and information processing with Narrator.
Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-03-27
Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from http://www.narrator-tool.org.
Nursing Assessment Tool for People With Liver Cirrhosis
Reis, Renata Karina; da Silva, Patrícia Costa dos Santos; Silva, Ana Elisa Bauer de Camargo; Atila, Elisabeth
2016-01-01
The aim of this study was to describe the process of developing a nursing assessment tool for hospitalized adult patients with liver cirrhosis. A descriptive study was carried out in three stages. First, we conducted a literature review to develop a data collection tool on the basis of the Conceptual Model of Wanda Horta. Second, the data collection tool was assessed through an expert panel. Third, we conducted the pilot testing in hospitalized patients. Most of the comments offered by the panel members were accepted to improve the tool. The final version was in the form of a questionnaire with open-closed questions. The panel members concluded that the tool was useful for accurate nursing diagnosis. Horta's Conceptual Model assisted with the development of this data collection tool to help nurses identify accurate nursing diagnosis in hospitalized patients with liver cirrhosis. We hope that the tool can be used by all nurses in clinical practice. PMID:26425862
Food abundance, prey morphology, and diet specialization influence individual sea otter tool use
Fujii, Jessica A.; Ralls, Katherine; Tinker, M. Tim
2017-01-01
Sea otters are well-known tool users, employing objects such as rocks or shells to break open invertebrate prey. We used a series of generalized linear mixed effect models to examine observational data on prey capture and tool use from 211 tagged individuals from 5 geographically defined study areas throughout the sea otter’s range in California. Our best supported model was able to explain 75% of the variation in the frequency of tool use by individual sea otters with only ecological and demographic variables. In one study area, where sea otter food resources were abundant, all individuals had similar diets focusing on preferred prey items and used tools at low to moderate frequencies (4–38% of prey captures). In the remaining areas, where sea otters were food-limited, individuals specialized on different subsets of the available prey and had a wider range of average tool-use frequency (0–98% of prey captures). The prevalence of difficult-to-access prey in individual diets was a major predictor of tool use and increased the likelihood of using tools on prey that were not difficult to access as well. Age, sex, and feeding habitat also contributed to the probability of tool use but to a smaller extent. We developed a conceptual model illustrating how food abundance, the prevalence of difficult-to-access prey, and individual diet specialization interacted to determine the likelihood that individual sea otters would use tools and considered the model’s relevance to other tool-using species.
A fast ultrasonic simulation tool based on massively parallel implementations
NASA Astrophysics Data System (ADS)
Lambert, Jason; Rougeron, Gilles; Lacassagne, Lionel; Chatillon, Sylvain
2014-02-01
This paper presents a CIVA optimized ultrasonic inspection simulation tool, which takes benefit of the power of massively parallel architectures: graphical processing units (GPU) and multi-core general purpose processors (GPP). This tool is based on the classical approach used in CIVA: the interaction model is based on Kirchoff, and the ultrasonic field around the defect is computed by the pencil method. The model has been adapted and parallelized for both architectures. At this stage, the configurations addressed by the tool are : multi and mono-element probes, planar specimens made of simple isotropic materials, planar rectangular defects or side drilled holes of small diameter. Validations on the model accuracy and performances measurements are presented.
The cognitive life of mechanical molecular models.
Charbonneau, Mathieu
2013-12-01
The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Visualization and modeling of smoke transport over landscape scales
Glenn P. Forney; William Mell
2007-01-01
Computational tools have been developed at the National Institute of Standards and Technology (NIST) for modeling fire spread and smoke transport. These tools have been adapted to address fire scenarios that occur in the wildland urban interface (WUI) over kilometer-scale distances. These models include the smoke plume transport model ALOFT (A Large Open Fire plume...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... remain subject to USML control are modeling or simulation tools that model or simulate the environments... USML revision process, the public is asked to provide specific examples of nuclear-related items whose...) Modeling or simulation tools that model or simulate the environments generated by nuclear detonations or...
Improving Environmental Model Calibration and Prediction
2011-01-18
REPORT Final Report - Improving Environmental Model Calibration and Prediction 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: First, we have continued to...develop tools for efficient global optimization of environmental models. Our algorithms are hybrid algorithms that combine evolutionary strategies...toward practical hybrid optimization tools for environmental models. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 18-01-2011 13
Cycles of Exploration, Reflection, and Consolidation in Model-Based Learning of Genetics
ERIC Educational Resources Information Center
Kim, Beaumie; Pathak, Suneeta A.; Jacobson, Michael J.; Zhang, Baohui; Gobert, Janice D.
2015-01-01
Model-based reasoning has been introduced as an authentic way of learning science, and many researchers have developed technological tools for learning with models. This paper describes how a model-based tool, "BioLogica"™, was used to facilitate genetics learning in secondary 3-level biology in Singapore. The research team co-designed…
An Overview of Tools for Creating, Validating and Using PDS Metadata
NASA Astrophysics Data System (ADS)
King, T. A.; Hardman, S. H.; Padams, J.; Mafi, J. N.; Cecconi, B.
2017-12-01
NASA's Planetary Data System (PDS) has defined information models for creating metadata to describe bundles, collections and products for all the assets acquired by a planetary science projects. Version 3 of the PDS Information Model (commonly known as "PDS3") is widely used and is used to describe most of the existing planetary archive. Recently PDS has released version 4 of the Information Model (commonly known as "PDS4") which is designed to improve consistency, efficiency and discoverability of information. To aid in creating, validating and using PDS4 metadata the PDS and a few associated groups have developed a variety of tools. In addition, some commercial tools, both free and for a fee, can be used to create and work with PDS4 metadata. We present an overview of these tools, describe those tools currently under development and provide guidance as to which tools may be most useful for missions, instrument teams and the individual researcher.
NASA Astrophysics Data System (ADS)
Makhijani, Vinod B.; Przekwas, Andrzej J.
2002-10-01
This report presents results of a DARPA/MTO Composite CAD Project aimed to develop a comprehensive microsystem CAD environment, CFD-ACE+ Multiphysics, for bio and microfluidic devices and complete microsystems. The project began in July 1998, and was a three-year team effort between CFD Research Corporation, California Institute of Technology (CalTech), University of California, Berkeley (UCB), and Tanner Research, with Mr. Don Verlee from Abbott Labs participating as a consultant on the project. The overall objective of this project was to develop, validate and demonstrate several applications of a user-configurable VLSI-type mixed-dimensionality software tool for design of biomicrofluidics devices and integrated systems. The developed tool would provide high fidelity 3-D multiphysics modeling capability, l-D fluidic circuits modeling, and SPICE interface for system level simulations, and mixed-dimensionality design. It would combine tools for layouts and process fabrication, geometric modeling, and automated grid generation, and interfaces to EDA tools (e.g. Cadence) and MCAD tools (e.g. ProE).
Control/structure interaction conceptual design tool
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1990-01-01
The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.
HiVy automated translation of stateflow designs for model checking verification
NASA Technical Reports Server (NTRS)
Pingree, Paula
2003-01-01
tool set enables model checking of finite state machines designs. This is acheived by translating state-chart specifications into the input language of the Spin model checker. An abstract syntax of hierarchical sequential automata (HSA) is provided as an intermediate format tool set.
Software Tools for Weed Seed Germination Modeling
USDA-ARS?s Scientific Manuscript database
The next generation of weed seed germination models will need to account for variable soil microclimate conditions. In order to predict this microclimate environment we have developed a suite of individual tools (models) that can be used in conjunction with the next generation of weed seed germinati...
Watershed Management Optimization Support Tool (WMOST) v1: Theoretical Documentation
The Watershed Management Optimization Support Tool (WMOST) is a screening model that is spatially lumped with options for a daily or monthly time step. It is specifically focused on modeling the effect of management decisions on the watershed. The model considers water flows and ...
ERIC Educational Resources Information Center
Dishaw, Mark T.; Eierman, Michael A.; Iversen, Jacob H.; Philip, George
2013-01-01
As collaboration among teams that are distributed in time and space is becoming increasingly important, there is a need to understand the efficacy of tools available to support that collaboration. This study employs a combination of the Technology Acceptance Model (TAM) and the Task-Technology Fit (TTF) model to compare four different technologies…
A Monthly Water-Balance Model Driven By a Graphical User Interface
McCabe, Gregory J.; Markstrom, Steven L.
2007-01-01
This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.
simuwatt - A Tablet Based Electronic Auditing Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macumber, Daniel; Parker, Andrew; Lisell, Lars
2014-05-08
'simuwatt Energy Auditor' (TM) is a new tablet-based electronic auditing tool that is designed to dramatically reduce the time and cost to perform investment-grade audits and improve quality and consistency. The tool uses the U.S. Department of Energy's OpenStudio modeling platform and integrated Building Component Library to automate modeling and analysis. simuwatt's software-guided workflow helps users gather required data, and provides the data in a standard electronic format that is automatically converted to a baseline OpenStudio model for energy analysis. The baseline energy model is calibrated against actual monthly energy use to ASHRAE Standard 14 guidelines. Energy conservation measures frommore » the Building Component Library are then evaluated using OpenStudio's parametric analysis capability. Automated reporting creates audit documents that describe recommended packages of energy conservation measures. The development of this tool was partially funded by the U.S. Department of Defense's Environmental Security Technology Certification Program. As part of this program, the tool is being tested at 13 buildings on 5 Department of Defense sites across the United States. Results of the first simuwatt audit tool demonstration are presented in this paper.« less
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
DAISY: a new software tool to test global identifiability of biological and physiological systems.
Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D'Angiò, Leontina
2007-10-01
A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/.
System Architecture Modeling for Technology Portfolio Management using ATLAS
NASA Technical Reports Server (NTRS)
Thompson, Robert W.; O'Neil, Daniel A.
2006-01-01
Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.
Application of simulation models for the optimization of business processes
NASA Astrophysics Data System (ADS)
Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří
2016-06-01
The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Granat, Robert A.; Norton, Charles D.; Rundle, John B.; Pierce, Marlon E.; Fox, Geoffrey C.; McLeod, Dennis; Ludwig, Lisa Grant
2012-01-01
QuakeSim 2.0 improves understanding of earthquake processes by providing modeling tools and integrating model applications and various heterogeneous data sources within a Web services environment. QuakeSim is a multisource, synergistic, data-intensive environment for modeling the behavior of earthquake faults individually, and as part of complex interacting systems. Remotely sensed geodetic data products may be explored, compared with faults and landscape features, mined by pattern analysis applications, and integrated with models and pattern analysis applications in a rich Web-based and visualization environment. Integration of heterogeneous data products with pattern informatics tools enables efficient development of models. Federated database components and visualization tools allow rapid exploration of large datasets, while pattern informatics enables identification of subtle, but important, features in large data sets. QuakeSim is valuable for earthquake investigations and modeling in its current state, and also serves as a prototype and nucleus for broader systems under development. The framework provides access to physics-based simulation tools that model the earthquake cycle and related crustal deformation. Spaceborne GPS and Inter ferometric Synthetic Aperture (InSAR) data provide information on near-term crustal deformation, while paleoseismic geologic data provide longerterm information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database system, and are accessible by users or various model applications. UAVSAR repeat pass interferometry data products are added to the QuakeTables database, and are available through a browseable map interface or Representational State Transfer (REST) interfaces. Model applications can retrieve data from Quake Tables, or from third-party GPS velocity data services; alternatively, users can manually input parameters into the models. Pattern analysis of GPS and seismicity data has proved useful for mid-term forecasting of earthquakes, and for detecting subtle changes in crustal deformation. The GPS time series analysis has also proved useful as a data-quality tool, enabling the discovery of station anomalies and data processing and distribution errors. Improved visualization tools enable more efficient data exploration and understanding. Tools provide flexibility to science users for exploring data in new ways through download links, but also facilitate standard, intuitive, and routine uses for science users and end users such as emergency responders.
Analyzing Human-Landscape Interactions: Tools That Integrate
NASA Astrophysics Data System (ADS)
Zvoleff, Alex; An, Li
2014-01-01
Humans have transformed much of Earth's land surface, giving rise to loss of biodiversity, climate change, and a host of other environmental issues that are affecting human and biophysical systems in unexpected ways. To confront these problems, environmental managers must consider human and landscape systems in integrated ways. This means making use of data obtained from a broad range of methods (e.g., sensors, surveys), while taking into account new findings from the social and biophysical science literatures. New integrative methods (including data fusion, simulation modeling, and participatory approaches) have emerged in recent years to address these challenges, and to allow analysts to provide information that links qualitative and quantitative elements for policymakers. This paper brings attention to these emergent tools while providing an overview of the tools currently in use for analysis of human-landscape interactions. Analysts are now faced with a staggering array of approaches in the human-landscape literature—in an attempt to bring increased clarity to the field, we identify the relative strengths of each tool, and provide guidance to analysts on the areas to which each tool is best applied. We discuss four broad categories of tools: statistical methods (including survival analysis, multi-level modeling, and Bayesian approaches), GIS and spatial analysis methods, simulation approaches (including cellular automata, agent-based modeling, and participatory modeling), and mixed-method techniques (such as alternative futures modeling and integrated assessment). For each tool, we offer an example from the literature of its application in human-landscape research. Among these tools, participatory approaches are gaining prominence for analysts to make the broadest possible array of information available to researchers, environmental managers, and policymakers. Further development of new approaches of data fusion and integration across sites or disciplines pose an important challenge for future work in integrating human and landscape components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez Galdamez, Rinaldo A.; Recknagle, Kurtis P.
2012-04-30
This report provides an overview of the work performed for Solid Oxide Fuel Cell (SOFC) modeling during the 2012 Winter/Spring Science Undergraduate Laboratory Internship at Pacific Northwest National Laboratory (PNNL). A brief introduction on the concept, operation basics and applications of fuel cells is given for the general audience. Further details are given regarding the modifications and improvements of the Distributed Electrochemistry (DEC) Modeling tool developed by PNNL engineers to model SOFC long term performance. Within this analysis, a literature review on anode degradation mechanisms is explained and future plans of implementing these into the DEC modeling tool are alsomore » proposed.« less
Which benefits in the use of a modeling platform : The VSoil example.
NASA Astrophysics Data System (ADS)
Lafolie, François; Cousin, Isabelle; Mollier, Alain; Pot, Valérie; Maron, Pierre-Alain; Moitrier, Nicolas; Nouguier, Cedric; Moitrier, Nathalie; Beudez, Nicolas
2015-04-01
In the environmental community the need for coupling the models and the associated knowledges emerged recently. The development of a coupling tool or of a modeling platform is mainly driven by the necessity to create models accounting for multiple processes and to take into account the feed back between these processes. Models focusing on a restricted number of processes exist and thus the coupling of these numerical tools appeared as an efficient and rapid mean to fill up the identified gaps. Several tools have been proposed : OMS3 (David et al. 2013) ; CSDMS framework (Peckham et al. 2013) ; the Open MI project developed within the frame of European Community (Open MI, 2011). However, what we should expect from a modeling platform could be more ambitious than only coupling existing numerical codes. We believe that we need to share easily not only our numerical representations but also the attached knowledges. We need to rapidly and easily develop complex models to have tools to bring responses to current issues on soil functioning and soil evolution within the frame of global change. We also need to share in a common frame our visions of soil functioning at various scales, one the one hand to strengthen our collaborations, and, on the other hand, to make them visible by the other communities working on environmental issues. The presentation will briefly present the VSoil platform. The platform is able to manipulate concepts and numerical representations of these processes. The tool helps in assembling modules to create a model and automatically generates an executable code and a GUI. Potentialities of the tool will be illustrated on few selected cases.
Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model
This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).
Light-weight Parallel Python Tools for Earth System Modeling Workflows
NASA Astrophysics Data System (ADS)
Mickelson, S. A.; Paul, K.; Xu, H.; Dennis, J.; Brown, D. I.
2015-12-01
With the growth in computing power over the last 30 years, earth system modeling codes have become increasingly data-intensive. As an example, it is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than 10x to an expected 25PB per climate model. Faced with this daunting challenge, developers of the Community Earth System Model (CESM) have chosen to change the format of their data for long-term storage from time-slice to time-series, in order to reduce the required download bandwidth needed for later analysis and post-processing by climate scientists. Hence, efficient tools are required to (1) perform the transformation of the data from time-slice to time-series format and to (2) compute climatology statistics, needed for many diagnostic computations, on the resulting time-series data. To address the first of these two challenges, we have developed a parallel Python tool for converting time-slice model output to time-series format. To address the second of these challenges, we have developed a parallel Python tool to perform fast time-averaging of time-series data. These tools are designed to be light-weight, be easy to install, have very few dependencies, and can be easily inserted into the Earth system modeling workflow with negligible disruption. In this work, we present the motivation, approach, and testing results of these two light-weight parallel Python tools, as well as our plans for future research and development.
Agur, Zvia; Elishmereni, Moran; Kheifetz, Yuri
2014-01-01
Despite its great promise, personalized oncology still faces many hurdles, and it is increasingly clear that targeted drugs and molecular biomarkers alone yield only modest clinical benefit. One reason is the complex relationships between biomarkers and the patient's response to drugs, obscuring the true weight of the biomarkers in the overall patient's response. This complexity can be disentangled by computational models that integrate the effects of personal biomarkers into a simulator of drug-patient dynamic interactions, for predicting the clinical outcomes. Several computational tools have been developed for personalized oncology, notably evidence-based tools for simulating pharmacokinetics, Bayesian-estimated tools for predicting survival, etc. We describe representative statistical and mathematical tools, and discuss their merits, shortcomings and preliminary clinical validation attesting to their potential. Yet, the individualization power of mathematical models alone, or statistical models alone, is limited. More accurate and versatile personalization tools can be constructed by a new application of the statistical/mathematical nonlinear mixed effects modeling (NLMEM) approach, which until recently has been used only in drug development. Using these advanced tools, clinical data from patient populations can be integrated with mechanistic models of disease and physiology, for generating personal mathematical models. Upon a more substantial validation in the clinic, this approach will hopefully be applied in personalized clinical trials, P-trials, hence aiding the establishment of personalized medicine within the main stream of clinical oncology. © 2014 Wiley Periodicals, Inc.
Modeling Interoperable Information Systems with 3LGM² and IHE.
Stäubert, S; Schaaf, M; Jahn, F; Brandner, R; Winter, A
2015-01-01
Strategic planning of information systems (IS) in healthcare requires descriptions of the current and the future IS state. Enterprise architecture planning (EAP) tools like the 3LGM² tool help to build up and to analyze IS models. A model of the planned architecture can be derived from an analysis of current state IS models. Building an interoperable IS, i. e. an IS consisting of interoperable components, can be considered a relevant strategic information management goal for many IS in healthcare. Integrating the healthcare enterprise (IHE) is an initiative which targets interoperability by using established standards. To link IHE concepts to 3LGM² concepts within the 3LGM² tool. To describe how an information manager can be supported in handling the complex IHE world and planning interoperable IS using 3LGM² models. To describe how developers or maintainers of IHE profiles can be supported by the representation of IHE concepts in 3LGM². Conceptualization and concept mapping methods are used to assign IHE concepts such as domains, integration profiles actors and transactions to the concepts of the three-layer graph-based meta-model (3LGM²). IHE concepts were successfully linked to 3LGM² concepts. An IHE-master-model, i. e. an abstract model for IHE concepts, was modeled with the help of 3LGM² tool. Two IHE domains were modeled in detail (ITI, QRPH). We describe two use cases for the representation of IHE concepts and IHE domains as 3LGM² models. Information managers can use the IHE-master-model as reference model for modeling interoperable IS based on IHE profiles during EAP activities. IHE developers are supported in analyzing consistency of IHE concepts with the help of the IHE-master-model and functions of the 3LGM² tool The complex relations between IHE concepts can be modeled by using the EAP method 3LGM². 3LGM² tool offers visualization and analysis features which are now available for the IHE-master-model. Thus information managers and IHE developers can use or develop IHE profiles systematically. In order to improve the usability and handling of the IHE-master-model and its usage as a reference model, some further refinements have to be done. Evaluating the use of the IHE-master-model by information managers and IHE developers is subject to further research.
RISK ASSESSMENT ANALYSES USING EPA'S ON-LINE SITE-SPECIFIC TRANSPORT MODELS AND FIELD DATA
EPA has developed a suite of on-line calculators and transport models to aid in risk assessment for subsurface contamination. The calculators (www.epa.gov/athens/onsite) provide several levels of tools and data. These include tools for generating commonly-used model input param...
Sustainability-based decision making is a challenging process that requires balancing trade-offs among social, economic, and environmental components. System Dynamic (SD) models can be useful tools to inform sustainability-based decision making because they provide a holistic co...
An Integrated Approach to Mathematical Modeling: A Classroom Study.
ERIC Educational Resources Information Center
Doerr, Helen M.
Modeling, simulation, and discrete mathematics have all been identified by professional mathematics education organizations as important areas for secondary school study. This classroom study focused on the components and tools for modeling and how students use these tools to construct their understanding of contextual problems in the content area…
Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, James T.; Maile, Tobias; Rose, Cody
Typical processes of whole Building Energy simulation Model (BEM) generation are subjective, labor intensive, time intensive and error prone. Essentially, these typical processes reproduce already existing data, i.e. building models already created by the architect. Accordingly, Lawrence Berkeley National Laboratory (LBNL) developed a semi-automated process that enables reproducible conversions of Building Information Model (BIM) representations of building geometry into a format required by building energy modeling (BEM) tools. This is a generic process that may be applied to all building energy modeling tools but to date has only been used for EnergyPlus. This report describes and demonstrates each stage inmore » the semi-automated process for building geometry using the recently constructed NASA Ames Sustainability Base throughout. This example uses ArchiCAD (Graphisoft, 2012) as the originating CAD tool and EnergyPlus as the concluding whole building energy simulation tool. It is important to note that the process is also applicable for professionals that use other CAD tools such as Revit (“Revit Architecture,” 2012) and DProfiler (Beck Technology, 2012) and can be extended to provide geometry definitions for BEM tools other than EnergyPlus. Geometry Simplification Tool (GST) was used during the NASA Ames project and was the enabling software that facilitated semi-automated data transformations. GST has now been superseded by Space Boundary Tool (SBT-1) and will be referred to as SBT-1 throughout this report. The benefits of this semi-automated process are fourfold: 1) reduce the amount of time and cost required to develop a whole building energy simulation model, 2) enable rapid generation of design alternatives, 3) improve the accuracy of BEMs and 4) result in significantly better performing buildings with significantly lower energy consumption than those created using the traditional design process, especially if the simulation model was used as a predictive benchmark during operation. Developing BIM based criteria to support the semi-automated process should result in significant reliable improvements and time savings in the development of BEMs. In order to define successful BIMS, CAD export of IFC based BIMs for BEM must adhere to a standard Model View Definition (MVD) for simulation as provided by the concept design BIM MVD (buildingSMART, 2011). In order to ensure wide scale adoption, companies would also need to develop their own material libraries to support automated activities and undertake a pilot project to improve understanding of modeling conventions and design tool features and limitations.« less
Chaiyakunapruk, Nathorn; Somkrua, Ratchadaporn; Hutubessy, Raymond; Henao, Ana Maria; Hombach, Joachim; Melegaro, Alessia; Edmunds, John W; Beutels, Philippe
2011-05-12
Several decision support tools have been developed to aid policymaking regarding the adoption of pneumococcal conjugate vaccine (PCV) into national pediatric immunization programs. The lack of critical appraisal of these tools makes it difficult for decision makers to understand and choose between them. With the aim to guide policymakers on their optimal use, we compared publicly available decision-making tools in relation to their methods, influential parameters and results. The World Health Organization (WHO) requested access to several publicly available cost-effectiveness (CE) tools for PCV from both public and private provenance. All tools were critically assessed according to the WHO's guide for economic evaluations of immunization programs. Key attributes and characteristics were compared and a series of sensitivity analyses was performed to determine the main drivers of the results. The results were compared based on a standardized set of input parameters and assumptions. Three cost-effectiveness modeling tools were provided, including two cohort-based (Pan-American Health Organization (PAHO) ProVac Initiative TriVac, and PneumoADIP) and one population-based model (GlaxoSmithKline's SUPREMES). They all compared the introduction of PCV into national pediatric immunization program with no PCV use. The models were different in terms of model attributes, structure, and data requirement, but captured a similar range of diseases. Herd effects were estimated using different approaches in each model. The main driving parameters were vaccine efficacy against pneumococcal pneumonia, vaccine price, vaccine coverage, serotype coverage and disease burden. With a standardized set of input parameters developed for cohort modeling, TriVac and PneumoADIP produced similar incremental costs and health outcomes, and incremental cost-effectiveness ratios. Vaccine cost (dose price and number of doses), vaccine efficacy and epidemiology of critical endpoint (for example, incidence of pneumonia, distribution of serotypes causing pneumonia) were influential parameters in the models we compared. Understanding the differences and similarities of such CE tools through regular comparisons could render decision-making processes in different countries more efficient, as well as providing guiding information for further clinical and epidemiological research. A tool comparison exercise using standardized data sets can help model developers to be more transparent about their model structure and assumptions and provide analysts and decision makers with a more in-depth view behind the disease dynamics. Adherence to the WHO guide of economic evaluations of immunization programs may also facilitate this process. Please see related article: http://www.biomedcentral.com/1741-7007/9/55.
System capacity and economic modeling computer tool for satellite mobile communications systems
NASA Technical Reports Server (NTRS)
Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.
1988-01-01
A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.
Simulation environment and graphical visualization environment: a COPD use-case
2014-01-01
Background Today, many different tools are developed to execute and visualize physiological models that represent the human physiology. Most of these tools run models written in very specific programming languages which in turn simplify the communication among models. Nevertheless, not all of these tools are able to run models written in different programming languages. In addition, interoperability between such models remains an unresolved issue. Results In this paper we present a simulation environment that allows, first, the execution of models developed in different programming languages and second the communication of parameters to interconnect these models. This simulation environment, developed within the Synergy-COPD project, aims at helping and supporting bio-researchers and medical students understand the internal mechanisms of the human body through the use of physiological models. This tool is composed of a graphical visualization environment, which is a web interface through which the user can interact with the models, and a simulation workflow management system composed of a control module and a data warehouse manager. The control module monitors the correct functioning of the whole system. The data warehouse manager is responsible for managing the stored information and supporting its flow among the different modules. This simulation environment has been validated with the integration of three models: two deterministic, i.e. based on linear and differential equations, and one probabilistic, i.e., based on probability theory. These models have been selected based on the disease under study in this project, i.e., chronic obstructive pulmonary disease. Conclusion It has been proved that the simulation environment presented here allows the user to research and study the internal mechanisms of the human physiology by the use of models via a graphical visualization environment. A new tool for bio-researchers is ready for deployment in various use cases scenarios. PMID:25471327
Validation of Multiple Tools for Flat Plate Photovoltaic Modeling Against Measured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.; Whitmore, J.; Blair, N.
2014-08-01
This report expands upon a previous work by the same authors, published in the 40th IEEE Photovoltaic Specialists conference. In this validation study, comprehensive analysis is performed on nine photovoltaic systems for which NREL could obtain detailed performance data and specifications, including three utility-scale systems and six commercial scale systems. Multiple photovoltaic performance modeling tools were used to model these nine systems, and the error of each tool was analyzed compared to quality-controlled measured performance data. This study shows that, excluding identified outliers, all tools achieve annual errors within +/-8% and hourly root mean squared errors less than 7% formore » all systems. It is further shown using SAM that module model and irradiance input choices can change the annual error with respect to measured data by as much as 6.6% for these nine systems, although all combinations examined still fall within an annual error range of +/-8.5%. Additionally, a seasonal variation in monthly error is shown for all tools. Finally, the effects of irradiance data uncertainty and the use of default loss assumptions on annual error are explored, and two approaches to reduce the error inherent in photovoltaic modeling are proposed.« less
An Evaluation Tool for CONUS-Scale Estimates of Components of the Water Balance
NASA Astrophysics Data System (ADS)
Saxe, S.; Hay, L.; Farmer, W. H.; Markstrom, S. L.; Kiang, J. E.
2016-12-01
Numerous research groups are independently developing data products to represent various components of the water balance (e.g. runoff, evapotranspiration, recharge, snow water equivalent, soil moisture, and climate) at the scale of the conterminous United States. These data products are derived from a range of sources, including direct measurement, remotely-sensed measurement, and statistical and deterministic model simulations. An evaluation tool is needed to compare these data products and the components of the water balance they contain in order to identify the gaps in the understanding and representation of continental-scale hydrologic processes. An ideal tool will be an objective, universally agreed upon, framework to address questions related to closing the water balance. This type of generic, model agnostic evaluation tool would facilitate collaboration amongst different hydrologic research groups and improve modeling capabilities with respect to continental-scale water resources. By adopting a comprehensive framework to consider hydrologic modeling in the context of a complete water balance, it is possible to identify weaknesses in process modeling, data product representation and regional hydrologic variation. As part of its National Water Census initiative, the U.S. Geological survey is facilitating this dialogue to developing prototype evaluation tools.
NASA Astrophysics Data System (ADS)
López de Lacalle, Luis Norberto; Urbicain Pelayo, Gorka; Fernández-Valdivielso, Asier; Alvarez, Alvaro; González, Haizea
2017-09-01
Difficult to cut materials such as nickel and titanium alloys are used in the aeronautical industry, the former alloys due to its heat-resistant behavior and the latter for the low weight - high strength ratio. Ceramic tools made out alumina with reinforce SiC whiskers are a choice in turning for roughing and semifinishing workpiece stages. Wear rate is high in the machining of these alloys, and consequently cutting forces tends to increase along one operation. This paper establishes the cutting force relation between work-piece and tool in the turning of such difficult-to-cut alloys by means of a mechanistic cutting force model that considers the tool wear effect. The cutting force model demonstrates the force sensitivity to the cutting engagement parameters (ap, f) when using ceramic inserts and wear is considered. Wear is introduced through a cutting time factor, being useful in real conditions taking into account that wear quickly appears in alloys machining. A good accuracy in the cutting force model coefficients is the key issue for an accurate prediction of turning forces, which could be used as criteria for tool replacement or as input for chatter or other models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.
Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less
Dissecting children's observational learning of complex actions through selective video displays.
Flynn, Emma; Whiten, Andrew
2013-10-01
Children can learn how to use complex objects by watching others, yet the relative importance of different elements they may observe, such as the interactions of the individual parts of the apparatus, a model's movements, and desirable outcomes, remains unclear. In total, 140 3-year-olds and 140 5-year-olds participated in a study where they observed a video showing tools being used to extract a reward item from a complex puzzle box. Conditions varied according to the elements that could be seen in the video: (a) the whole display, including the model's hands, the tools, and the box; (b) the tools and the box but not the model's hands; (c) the model's hands and the tools but not the box; (d) only the end state with the box opened; and (e) no demonstration. Children's later attempts at the task were coded to establish whether they imitated the hierarchically organized sequence of the model's actions, the action details, and/or the outcome. Children's successful retrieval of the reward from the box and the replication of hierarchical sequence information were reduced in all but the whole display condition. Only once children had attempted the task and witnessed a second demonstration did the display focused on the tools and box prove to be better for hierarchical sequence information than the display focused on the tools and hands only. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jilg, Andreas; Seifert, Thomas
2018-05-01
Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.
Cloud-Based Orchestration of a Model-Based Power and Data Analysis Toolchain
NASA Technical Reports Server (NTRS)
Post, Ethan; Cole, Bjorn; Dinkel, Kevin; Kim, Hongman; Lee, Erich; Nairouz, Bassem
2016-01-01
The proposed Europa Mission concept contains many engineering and scientific instruments that consume varying amounts of power and produce varying amounts of data throughout the mission. System-level power and data usage must be well understood and analyzed to verify design requirements. Numerous cross-disciplinary tools and analysis models are used to simulate the system-level spacecraft power and data behavior. This paper addresses the problem of orchestrating a consistent set of models, tools, and data in a unified analysis toolchain when ownership is distributed among numerous domain experts. An analysis and simulation environment was developed as a way to manage the complexity of the power and data analysis toolchain and to reduce the simulation turnaround time. A system model data repository is used as the trusted store of high-level inputs and results while other remote servers are used for archival of larger data sets and for analysis tool execution. Simulation data passes through numerous domain-specific analysis tools and end-to-end simulation execution is enabled through a web-based tool. The use of a cloud-based service facilitates coordination among distributed developers and enables scalable computation and storage needs, and ensures a consistent execution environment. Configuration management is emphasized to maintain traceability between current and historical simulation runs and their corresponding versions of models, tools and data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Na; Goel, Supriya; Gorrissen, Willy J.
2013-06-24
The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system to help building owners to evaluate the as-built physical characteristics (including building envelope, the mechanical and electrical systems) and overall building energy efficiency, independent of occupancy and operational choices. The energy asset score breaks down building energy use information by simulating building performance under typical operating and occupancy conditions for a given use type. A web-based modeling tool, the energy asset score tool facilitates the implementation of the asset score system. The tool consists of a simplified user interface built on a centralized simulation enginemore » (EnergyPlus). It is intended to reduce both the implementation cost for the users and increase modeling standardization compared with an approach that requires users to build their own energy models. A pilot project with forty-two buildings (consisting mostly offices and schools) was conducted in 2012. This paper reports the findings. Participants were asked to collect a minimum set of building data and enter it into the asset score tool. Participants also provided their utility bills, existing ENERGY STAR scores, and previous energy audit/modeling results if available. The results from the asset score tool were compared with the building energy use data provided by the pilot participants. Three comparisons were performed. First, the actual building energy use, either from the utility bills or via ENERGY STAR Portfolio Manager, was compared with the modeled energy use. It was intended to examine how well the energy asset score represents a building’s system efficiencies, and how well it is correlated to a building’s actual energy consumption. Second, calibrated building energy models (where they exist) were used to examine any discrepancies between the asset score model and the pilot participant buildings’ [known] energy use pattern. This comparison examined the end use breakdowns and more detailed time series data. Third, ASHRAE 90.1 prototype buildings were also used as an industry standard modeling approach to test the accuracy level of the asset score tool. Our analysis showed that the asset score tool, which uses simplified building simulation, could provide results comparable to a more detailed energy model. The buildings’ as-built efficiency can be reflected in the energy asset score. An analysis between the modeled energy use through the asset score tool and the actual energy use from the utility bills can further inform building owners about the effectiveness of their building’s operation and maintenance.« less
Standardizing Exoplanet Analysis with the Exoplanet Characterization Tool Kit (ExoCTK)
NASA Astrophysics Data System (ADS)
Fowler, Julia; Stevenson, Kevin B.; Lewis, Nikole K.; Fraine, Jonathan D.; Pueyo, Laurent; Bruno, Giovanni; Filippazzo, Joe; Hill, Matthew; Batalha, Natasha; Wakeford, Hannah; Bushra, Rafia
2018-06-01
Exoplanet characterization depends critically on analysis tools, models, and spectral libraries that are constantly under development and have no single source nor sense of unified style or methods. The complexity of spectroscopic analysis and initial time commitment required to become competitive is prohibitive to new researchers entering the field, as well as a remaining obstacle for established groups hoping to contribute in a comparable manner to their peers. As a solution, we are developing an open-source, modular data analysis package in Python and a publicly facing web interface including tools that address atmospheric characterization, transit observation planning with JWST, JWST corongraphy simulations, limb darkening, forward modeling, and data reduction, as well as libraries of stellar, planet, and opacity models. The foundation of these software tools and libraries exist within pockets of the exoplanet community, but our project will gather these seedling tools and grow a robust, uniform, and well-maintained exoplanet characterization toolkit.
NASA Astrophysics Data System (ADS)
Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco
2018-03-01
Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data. PMID:25698947
Serino, Andrea; Canzoneri, Elisa; Marzolla, Marilena; di Pellegrino, Giuseppe; Magosso, Elisa
2015-01-01
Stimuli from different sensory modalities occurring on or close to the body are integrated in a multisensory representation of the space surrounding the body, i.e., peripersonal space (PPS). PPS dynamically modifies depending on experience, e.g., it extends after using a tool to reach far objects. However, the neural mechanism underlying PPS plasticity after tool use is largely unknown. Here we use a combined computational-behavioral approach to propose and test a possible mechanism accounting for PPS extension. We first present a neural network model simulating audio-tactile representation in the PPS around one hand. Simulation experiments showed that our model reproduced the main property of PPS neurons, i.e., selective multisensory response for stimuli occurring close to the hand. We used the neural network model to simulate the effects of a tool-use training. In terms of sensory inputs, tool use was conceptualized as a concurrent tactile stimulation from the hand, due to holding the tool, and an auditory stimulation from the far space, due to tool-mediated action. Results showed that after exposure to those inputs, PPS neurons responded also to multisensory stimuli far from the hand. The model thus suggests that synchronous pairing of tactile hand stimulation and auditory stimulation from the far space is sufficient to extend PPS, such as after tool-use. Such prediction was confirmed by a behavioral experiment, where we used an audio-tactile interaction paradigm to measure the boundaries of PPS representation. We found that PPS extended after synchronous tactile-hand stimulation and auditory-far stimulation in a group of healthy volunteers. Control experiments both in simulation and behavioral settings showed that the same amount of tactile and auditory inputs administered out of synchrony did not change PPS representation. We conclude by proposing a simple, biological-plausible model to explain plasticity in PPS representation after tool-use, which is supported by computational and behavioral data.
MHDL CAD tool with fault circuit handling
NASA Astrophysics Data System (ADS)
Espinosa Flores-Verdad, Guillermo; Altamirano Robles, Leopoldo; Osorio Roque, Leticia
2003-04-01
Behavioral modeling and simulation, with Analog Hardware and Mixed Signal Description High Level Languages (MHDLs), have generated the development of diverse simulation tools that allow handling the requirements of the modern designs. These systems have million of transistors embedded and they are radically diverse between them. This tendency of simulation tools is exemplified by the development of languages for modeling and simulation, whose applications are the re-use of complete systems, construction of virtual prototypes, realization of test and synthesis. This paper presents the general architecture of a Mixed Hardware Description Language, based on the standard 1076.1-1999 IEEE VHDL Analog and Mixed-Signal Extensions known as VHDL-AMS. This architecture is novel by consider the modeling and simulation of faults. The main modules of the CAD tool are briefly described in order to establish the information flow and its transformations, starting from the description of a circuit model, going throw the lexical analysis, mathematical models generation and the simulation core, ending at the collection of the circuit behavior as simulation"s data. In addition, the incorporated mechanisms to the simulation core are explained in order to realize the handling of faults into the circuit models. Currently, the CAD tool works with algebraic and differential descriptions for the circuit models, nevertheless the language design is open to be able to handle different model types: Fuzzy Models, Differentials Equations, Transfer Functions and Tables. This applies for fault models too, in this sense the CAD tool considers the inclusion of mutants and saboteurs. To exemplified the results obtained until now, the simulated behavior of a circuit is shown when it is fault free and when it has been modified by the inclusion of a fault as a mutant or a saboteur. The obtained results allow the realization of a virtual diagnosis for mixed circuits. This language works in a UNIX system; it was developed with an object-oriented methodology and programmed in C++.
ERIC Educational Resources Information Center
Knezek, Gerald; Christensen, Rhonda
2016-01-01
An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power of the model for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be…
Model-It: A Case Study of Learner-Centered Software Design for Supporting Model Building.
ERIC Educational Resources Information Center
Jackson, Shari L.; Stratford, Steven J.; Krajcik, Joseph S.; Soloway, Elliot
Learner-centered software design (LCSD) guides the design of tasks, tools, and interfaces in order to support the unique needs of learners: growth, diversity and motivation. This paper presents a framework for LCSD and describes a case study of its application to the ScienceWare Model-It, a learner-centered tool to support scientific modeling and…
RT 24 - Architecture, Modeling & Simulation, and Software Design
2010-11-01
focus on tool extensions (UPDM, SysML, SoaML, BPMN ) Leverage “best of breed” architecture methodologies Provide tooling to support the methodology DoDAF...Capability 10 Example: BPMN 11 DoDAF 2.0 MetaModel BPMN MetaModel Mapping SysML to DoDAF 2.0 12 DoDAF V2.0 Models OV-2 SysML Diagrams Requirement
A Quasiphysics Intelligent Model for a Long Range Fast Tool Servo
Liu, Qiang; Zhou, Xiaoqin; Lin, Jieqiong; Xu, Pengzi; Zhu, Zhiwei
2013-01-01
Accurately modeling the dynamic behaviors of fast tool servo (FTS) is one of the key issues in the ultraprecision positioning of the cutting tool. Herein, a quasiphysics intelligent model (QPIM) integrating a linear physics model (LPM) and a radial basis function (RBF) based neural model (NM) is developed to accurately describe the dynamic behaviors of a voice coil motor (VCM) actuated long range fast tool servo (LFTS). To identify the parameters of the LPM, a novel Opposition-based Self-adaptive Replacement Differential Evolution (OSaRDE) algorithm is proposed which has been proved to have a faster convergence mechanism without compromising with the quality of solution and outperform than similar evolution algorithms taken for consideration. The modeling errors of the LPM and the QPIM are investigated by experiments. The modeling error of the LPM presents an obvious trend component which is about ±1.15% of the full span range verifying the efficiency of the proposed OSaRDE algorithm for system identification. As for the QPIM, the trend component in the residual error of LPM can be well suppressed, and the error of the QPIM maintains noise level. All the results verify the efficiency and superiority of the proposed modeling and identification approaches. PMID:24163627
System Engineering Concept Demonstration, Effort Summary. Volume 1
1992-12-01
involve only the system software, user frameworks and user tools. U •User Tool....s , Catalyst oExternal 00 Computer Framwork P OSystems • •~ Sysytem...analysis, synthesis, optimization, conceptual design of Catalyst. The paper discusses the definition, design, test, and evaluation; operational concept...This approach will allow system engineering The conceptual requirements for the Process Model practitioners to recognize and tailor the model. This
ERIC Educational Resources Information Center
Wu, Pai-Hsing; Wu, Hsin-Kai; Kuo, Che-Yu; Hsu, Ying-Shao
2015-01-01
Computer-based learning tools include design features to enhance learning but learners may not always perceive the existence of these features and use them in desirable ways. There might be a gap between what the tool features are designed to offer (intended affordance) and what they are actually used (actual affordance). This study thus aims at…
Geral I. McDonald; Philip D. Tanimoto; Thomas M. Rice; David E. Hall; Jane E. Stewart; Paul J. Zambino; Jonalea R. Tonn; Ned B. Klopfenstein; Mee-Sook Kim
2005-01-01
The Root Disease Analyzer-Armillaria Response Tool (ART) is a Web-based tool that estimates Armillaria root disease risk in dry forests of the Western United States. This fact sheet identifies the intended users and uses, required inputs, what the model does and does not do, and tells the user how to obtain the model.
Looking Good versus Doing Good: Which Factors Take Precedence when Children Learn about New Tools?
ERIC Educational Resources Information Center
DiYanni, Cara; Nini, Deniela; Rheel, Whitney
2011-01-01
We present two experiments exploring whether individuals would be persuaded to imitate the intentional action of an adult model whose actions suggest that the correct way to complete a task is with an inefficient tool. In Experiment 1, children ages 5-10 years and a group of adults watched an adult model reject an efficient tool in favor of one…
Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)
NASA Technical Reports Server (NTRS)
Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.
2005-01-01
The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.
NASA Technical Reports Server (NTRS)
Hayden, Jeffrey L.; Jeffries, Alan
2012-01-01
The JPSS Ground System is a lIexible system of systems responsible for telemetry, tracking & command (TT &C), data acquisition, routing and data processing services for a varied lIeet of satellites to support weather prediction, modeling and climate modeling. To assist in this engineering effort, architecture modeling tools are being employed to translate the former NPOESS baseline to the new JPSS baseline, The paper will focus on the methodology for the system engineering process and the use of these architecture modeling tools within that process, The Department of Defense Architecture Framework version 2,0 (DoDAF 2.0) viewpoints and views that are being used to describe the JPSS GS architecture are discussed. The Unified Profile for DoOAF and MODAF (UPDM) and Systems Modeling Language (SysML), as ' provided by extensions to the MagicDraw UML modeling tool, are used to develop the diagrams and tables that make up the architecture model. The model development process and structure are discussed, examples are shown, and details of handling the complexities of a large System of Systems (SoS), such as the JPSS GS, with an equally complex modeling tool, are described
Linear regression metamodeling as a tool to summarize and present simulation model results.
Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M
2013-10-01
Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.
MatchingTools: A Python library for symbolic effective field theory calculations
NASA Astrophysics Data System (ADS)
Criado, Juan C.
2018-06-01
MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite them in terms of any chosen set of operators.
Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool
NASA Technical Reports Server (NTRS)
Maul, William A.; Fulton, Christopher E.
2011-01-01
This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1991-01-01
The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.
Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft Excel
NASA Technical Reports Server (NTRS)
McGlothlin, E. P.; Yeh, H. Y.; Lin, C. H.
1999-01-01
The development of a Microsoft Excel-compatible Environmental Control and Life Support System (ECLSS) sizing analysis "tool" for conceptual design of Mars human exploration missions makes it possible for a user to choose a certain technology in the corresponding subsystem. This tool estimates the mass, volume, and power requirements of every technology in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, mass balance models that solve for component throughputs of such ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) must be developed. The ARS Mass Balance Model will be discussed in this paper.
Verification of a Multiphysics Toolkit against the Magnetized Target Fusion Concept
NASA Technical Reports Server (NTRS)
Thomas, Scott; Perrell, Eric; Liron, Caroline; Chiroux, Robert; Cassibry, Jason; Adams, Robert B.
2005-01-01
In the spring of 2004 the Advanced Concepts team at MSFC embarked on an ambitious project to develop a suite of modeling routines that would interact with one another. The tools would each numerically model a portion of any advanced propulsion system. The tools were divided by physics categories, hence the name multiphysics toolset. Currently most of the anticipated modeling tools have been created and integrated. Results are given in this paper for both a quarter nozzle with chemically reacting flow and the interaction of two plasma jets representative of a Magnetized Target Fusion device. The results have not been calibrated against real data as of yet, but this paper demonstrates the current capability of the multiphysics tool and planned future enhancements
Hybrid Wing Body Planform Design with Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Wells, Douglas P.; Olson, Erik D.
2011-01-01
The objective of this paper was to provide an update on NASA s current tools for design and analysis of hybrid wing body (HWB) aircraft with an emphasis on Vehicle Sketch Pad (VSP). NASA started HWB analysis using the Flight Optimization System (FLOPS). That capability is enhanced using Phoenix Integration's ModelCenter(Registered TradeMark). Model Center enables multifidelity analysis tools to be linked as an integrated structure. Two major components are linked to FLOPS as an example; a planform discretization tool and VSP. The planform discretization tool ensures the planform is smooth and continuous. VSP is used to display the output geometry. This example shows that a smooth & continuous HWB planform can be displayed as a three-dimensional model and rapidly sized and analyzed.
A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects
NASA Technical Reports Server (NTRS)
Trase, Kathryn; Fink, Eric
2014-01-01
Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information
Web-based applications for building, managing and analysing kinetic models of biological systems.
Lee, Dong-Yup; Saha, Rajib; Yusufi, Faraaz Noor Khan; Park, Wonjun; Karimi, Iftekhar A
2009-01-01
Mathematical modelling and computational analysis play an essential role in improving our capability to elucidate the functions and characteristics of complex biological systems such as metabolic, regulatory and cell signalling pathways. The modelling and concomitant simulation render it possible to predict the cellular behaviour of systems under various genetically and/or environmentally perturbed conditions. This motivates systems biologists/bioengineers/bioinformaticians to develop new tools and applications, allowing non-experts to easily conduct such modelling and analysis. However, among a multitude of systems biology tools developed to date, only a handful of projects have adopted a web-based approach to kinetic modelling. In this report, we evaluate the capabilities and characteristics of current web-based tools in systems biology and identify desirable features, limitations and bottlenecks for further improvements in terms of usability and functionality. A short discussion on software architecture issues involved in web-based applications and the approaches taken by existing tools is included for those interested in developing their own simulation applications.
SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool
Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda
2008-01-01
Background It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. Results This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. Conclusion SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes. PMID:18706080
SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool.
Zi, Zhike; Zheng, Yanan; Rundell, Ann E; Klipp, Edda
2008-08-15
It has long been recognized that sensitivity analysis plays a key role in modeling and analyzing cellular and biochemical processes. Systems biology markup language (SBML) has become a well-known platform for coding and sharing mathematical models of such processes. However, current SBML compatible software tools are limited in their ability to perform global sensitivity analyses of these models. This work introduces a freely downloadable, software package, SBML-SAT, which implements algorithms for simulation, steady state analysis, robustness analysis and local and global sensitivity analysis for SBML models. This software tool extends current capabilities through its execution of global sensitivity analyses using multi-parametric sensitivity analysis, partial rank correlation coefficient, SOBOL's method, and weighted average of local sensitivity analyses in addition to its ability to handle systems with discontinuous events and intuitive graphical user interface. SBML-SAT provides the community of systems biologists a new tool for the analysis of their SBML models of biochemical and cellular processes.
Gaussian process regression for tool wear prediction
NASA Astrophysics Data System (ADS)
Kong, Dongdong; Chen, Yongjie; Li, Ning
2018-05-01
To realize and accelerate the pace of intelligent manufacturing, this paper presents a novel tool wear assessment technique based on the integrated radial basis function based kernel principal component analysis (KPCA_IRBF) and Gaussian process regression (GPR) for real-timely and accurately monitoring the in-process tool wear parameters (flank wear width). The KPCA_IRBF is a kind of new nonlinear dimension-increment technique and firstly proposed for feature fusion. The tool wear predictive value and the corresponding confidence interval are both provided by utilizing the GPR model. Besides, GPR performs better than artificial neural networks (ANN) and support vector machines (SVM) in prediction accuracy since the Gaussian noises can be modeled quantitatively in the GPR model. However, the existence of noises will affect the stability of the confidence interval seriously. In this work, the proposed KPCA_IRBF technique helps to remove the noises and weaken its negative effects so as to make the confidence interval compressed greatly and more smoothed, which is conducive for monitoring the tool wear accurately. Moreover, the selection of kernel parameter in KPCA_IRBF can be easily carried out in a much larger selectable region in comparison with the conventional KPCA_RBF technique, which helps to improve the efficiency of model construction. Ten sets of cutting tests are conducted to validate the effectiveness of the presented tool wear assessment technique. The experimental results show that the in-process flank wear width of tool inserts can be monitored accurately by utilizing the presented tool wear assessment technique which is robust under a variety of cutting conditions. This study lays the foundation for tool wear monitoring in real industrial settings.
NASA Astrophysics Data System (ADS)
Ki, Seo Jin; Ray, Chittaranjan
2015-03-01
A regional screening tool-which is useful in cases where few site-specific parameters are available for complex vadose zone models-assesses the leaching potential of pollutants to groundwater over large areas. In this study, the previous pesticide leaching tool used in Hawaii was revised to account for the release of new volatile organic compounds (VOCs) from the soil surface. The tool was modified to introduce expanded terms in the traditional pesticide ranking indices (i.e., retardation and attenuation factors), allowing the estimation of the leaching fraction of volatile chemicals based on recharge, soil, and chemical properties to be updated. Results showed that the previous tool significantly overestimated the mass fraction of VOCs leached through soils as the recharge rates increased above 0.001801 m/d. In contrast, the revised tool successfully delineated vulnerable areas to the selected VOCs based on two reference chemicals, a known leacher and non-leacher, which were determined in local conditions. The sensitivity analysis with the Latin-Hypercube-One-factor-At-a-Time method revealed that the new leaching tool was most sensitive to changes in the soil organic carbon sorption coefficient, fractional organic carbon content, and Henry's law constant; and least sensitive to parameters such as the bulk density, water content at field capacity, and particle density in soils. When the revised tool was compared to the analytical (STANMOD) and numerical (HYDRUS-1D) models as a susceptibility measure, it ranked particular VOCs well (e.g., benzene, carbofuran, and toluene) that were consistent with other two models under the given conditions. Therefore, the new leaching tool can be widely used to address intrinsic groundwater vulnerability to contamination of pesticides and VOCs, along with the DRASTIC method or similar Tier 1 models such as SCI-GROW and WIN-PST.
An Object-Based Approach to Evaluation of Climate Variability Projections and Predictions
NASA Astrophysics Data System (ADS)
Ammann, C. M.; Brown, B.; Kalb, C. P.; Bullock, R.
2017-12-01
Evaluations of the performance of earth system model predictions and projections are of critical importance to enhance usefulness of these products. Such evaluations need to address specific concerns depending on the system and decisions of interest; hence, evaluation tools must be tailored to inform about specific issues. Traditional approaches that summarize grid-based comparisons of analyses and models, or between current and future climate, often do not reveal important information about the models' performance (e.g., spatial or temporal displacements; the reason behind a poor score) and are unable to accommodate these specific information needs. For example, summary statistics such as the correlation coefficient or the mean-squared error provide minimal information to developers, users, and decision makers regarding what is "right" and "wrong" with a model. New spatial and temporal-spatial object-based tools from the field of weather forecast verification (where comparisons typically focus on much finer temporal and spatial scales) have been adapted to more completely answer some of the important earth system model evaluation questions. In particular, the Method for Object-based Diagnostic Evaluation (MODE) tool and its temporal (three-dimensional) extension (MODE-TD) have been adapted for these evaluations. More specifically, these tools can be used to address spatial and temporal displacements in projections of El Nino-related precipitation and/or temperature anomalies, ITCZ-associated precipitation areas, atmospheric rivers, seasonal sea-ice extent, and other features of interest. Examples of several applications of these tools in a climate context will be presented, using output of the CESM large ensemble. In general, these tools provide diagnostic information about model performance - accounting for spatial, temporal, and intensity differences - that cannot be achieved using traditional (scalar) model comparison approaches. Thus, they can provide more meaningful information that can be used in decision-making and planning. Future extensions and applications of these tools in a climate context will be considered.
DOT National Transportation Integrated Search
2011-07-01
This report documents work done to enhance terminal area aircraft performance modeling in the Federal : Aviation Administration's Aviation Environmental Design Tool. A commercially available aircraft : performance software tool was used to develop da...
NASA Astrophysics Data System (ADS)
Maesano, Francesco E.; D'Ambrogi, Chiara
2017-02-01
We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.
A comparative assessment of tools for ecosystem services quantification and valuation
Bagstad, Kenneth J.; Semmens, Darius; Waage, Sissel; Winthrop, Robert
2013-01-01
To enter widespread use, ecosystem service assessments need to be quantifiable, replicable, credible, flexible, and affordable. With recent growth in the field of ecosystem services, a variety of decision-support tools has emerged to support more systematic ecosystem services assessment. Despite the growing complexity of the tool landscape, thorough reviews of tools for identifying, assessing, modeling and in some cases monetarily valuing ecosystem services have generally been lacking. In this study, we describe 17 ecosystem services tools and rate their performance against eight evaluative criteria that gauge their readiness for widespread application in public- and private-sector decision making. We describe each of the tools′ intended uses, services modeled, analytical approaches, data requirements, and outputs, as well time requirements to run seven tools in a first comparative concurrent application of multiple tools to a common location – the San Pedro River watershed in southeast Arizona, USA, and northern Sonora, Mexico. Based on this work, we offer conclusions about these tools′ current ‘readiness’ for widespread application within both public- and private-sector decision making processes. Finally, we describe potential pathways forward to reduce the resource requirements for running ecosystem services models, which are essential to facilitate their more widespread use in environmental decision making.
The Integrated Medical Model: A Decision Support Tool for In-flight Crew Health Care
NASA Technical Reports Server (NTRS)
Butler, Doug
2009-01-01
This viewgraph presentation reviews the development of an Integrated Medical Model (IMM) decision support tool for in-flight crew health care safety. Clinical methods, resources, and case scenarios are also addressed.
Bolt installation tool for tightening large nuts and bolts
NASA Technical Reports Server (NTRS)
Mcdougal, A. R.; Norman, R. M.
1974-01-01
Large bolts and nuts are accurately tightened to structures without damaging torque stresses. There are two models of bolt installation tool. One is rigidly mounted and one is hand held. Each model includes torque-multiplier unit.
NASA Technical Reports Server (NTRS)
Scheper, C.; Baker, R.; Frank, G.; Yalamanchili, S.; Gray, G.
1992-01-01
Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified.
Cultural differences in the imitation and transmission of inefficient actions.
Corriveau, Kathleen H; DiYanni, Cara J; Clegg, Jennifer M; Min, Grace; Chin, Jason; Nasrini, Jad
2017-09-01
Across two studies, we explored cultural differences in children's imitation and transmission of inefficient actions. Chinese American and Caucasian American preschoolers (N=115) viewed either one or three models using two inefficient tools to perform two different tasks. In the video, when the model(s) performed the task, only the inefficient tool was available; thus, their choice to use that tool could be considered rational. Next, children were invited to complete the task with either the inefficient tool or an efficient alternative. Whereas the two cultural groups imitated a single model at similar rates, Chinese American children imitated significantly more than Caucasian American children after viewing a consensus. Similar results were found when exploring differences in information transmission. The Chinese American children were significantly more likely than their Caucasian American peers to instruct using an inefficient tool when they had initially viewed a consensus demonstrate it. We discuss these findings with respect to differences in children's use of social versus task-specific cues for learning and teaching. Copyright © 2017 Elsevier Inc. All rights reserved.
A Review on High-Speed Machining of Titanium Alloys
NASA Astrophysics Data System (ADS)
Rahman, Mustafizur; Wang, Zhi-Gang; Wong, Yoke-San
Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.
A Data-Driven Framework for Incorporating New Tools for ...
This talk was given during the “Exposure-Based Toxicity Testing” session at the annual meeting of the International Society for Exposure Science. It provided an update on the state of the science and tools that may be employed in risk-based prioritization efforts. It outlined knowledge gained from the data provided using these high-throughput tools to assess chemical bioactivity and to predict chemical exposures and also identified future needs. It provided an opportunity to showcase ongoing research efforts within the National Exposure Research Laboratory and the National Center for Computational Toxicology within the Office of Research and Development to an international audience. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
Developing a Framework for Effective Network Capacity Planning
NASA Technical Reports Server (NTRS)
Yaprak, Ece
2005-01-01
As Internet traffic continues to grow exponentially, developing a clearer understanding of, and appropriately measuring, network's performance is becoming ever more critical. An important challenge faced by the Information Resources Directorate (IRD) at the Johnson Space Center in this context remains not only monitoring and maintaining a secure network, but also better understanding the capacity and future growth potential boundaries of its network. This requires capacity planning which involves modeling and simulating different network alternatives, and incorporating changes in design as technologies, components, configurations, and applications change, to determine optimal solutions in light of IRD's goals, objectives and strategies. My primary task this summer was to address this need. I evaluated network-modeling tools from OPNET Technologies Inc. and Compuware Corporation. I generated a baseline model for Building 45 using both tools by importing "real" topology/traffic information using IRD's various network management tools. I compared each tool against the other in terms of the advantages and disadvantages of both tools to accomplish IRD's goals. I also prepared step-by-step "how to design a baseline model" tutorial for both OPNET and Compuware products.
RCrane: semi-automated RNA model building.
Keating, Kevin S; Pyle, Anna Marie
2012-08-01
RNA crystals typically diffract to much lower resolutions than protein crystals. This low-resolution diffraction results in unclear density maps, which cause considerable difficulties during the model-building process. These difficulties are exacerbated by the lack of computational tools for RNA modeling. Here, RCrane, a tool for the partially automated building of RNA into electron-density maps of low or intermediate resolution, is presented. This tool works within Coot, a common program for macromolecular model building. RCrane helps crystallographers to place phosphates and bases into electron density and then automatically predicts and builds the detailed all-atom structure of the traced nucleotides. RCrane then allows the crystallographer to review the newly built structure and select alternative backbone conformations where desired. This tool can also be used to automatically correct the backbone structure of previously built nucleotides. These automated corrections can fix incorrect sugar puckers, steric clashes and other structural problems.
A Software Tool for Integrated Optical Design Analysis
NASA Technical Reports Server (NTRS)
Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)
2001-01-01
Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.
NASA Astrophysics Data System (ADS)
Cota, Stephen A.; Lomheim, Terrence S.; Florio, Christopher J.; Harbold, Jeffrey M.; Muto, B. Michael; Schoolar, Richard B.; Wintz, Daniel T.; Keller, Robert A.
2011-10-01
In a previous paper in this series, we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) tool may be used to model space and airborne imaging systems operating in the visible to near-infrared (VISNIR). PICASSO is a systems-level tool, representative of a class of such tools used throughout the remote sensing community. It is capable of modeling systems over a wide range of fidelity, anywhere from conceptual design level (where it can serve as an integral part of the systems engineering process) to as-built hardware (where it can serve as part of the verification process). In the present paper, we extend the discussion of PICASSO to the modeling of Thermal Infrared (TIR) remote sensing systems, presenting the equations and methods necessary to modeling in that regime.
Patient-centered medical home model: do school-based health centers fit the model?
Larson, Satu A; Chapman, Susan A
2013-01-01
School-based health centers (SBHCs) are an important component of health care reform. The SBHC model of care offers accessible, continuous, comprehensive, family-centered, coordinated, and compassionate care to infants, children, and adolescents. These same elements comprise the patient-centered medical home (PCMH) model of care being promoted by the Affordable Care Act with the hope of lowering health care costs by rewarding clinicians for primary care services. PCMH survey tools have been developed to help payers determine whether a clinician/site serves as a PCMH. Our concern is that current survey tools will be unable to capture how a SBHC may provide a medical home and therefore be denied needed funding. This article describes how SBHCs might meet the requirements of one PCMH tool. SBHC stakeholders need to advocate for the creation or modification of existing survey tools that allow the unique characteristics of SBHCs to qualify as PCMHs.
A comparison of methods of fitting several models to nutritional response data.
Vedenov, D; Pesti, G M
2008-02-01
A variety of models have been proposed to fit nutritional input-output response data. The models are typically nonlinear; therefore, fitting the models usually requires sophisticated statistical software and training to use it. An alternative tool for fitting nutritional response models was developed by using widely available and easier-to-use Microsoft Excel software. The tool, implemented as an Excel workbook (NRM.xls), allows simultaneous fitting and side-by-side comparisons of several popular models. This study compared the results produced by the tool we developed and PROC NLIN of SAS. The models compared were the broken line (ascending linear and quadratic segments), saturation kinetics, 4-parameter logistics, sigmoidal, and exponential models. The NRM.xls workbook provided results nearly identical to those of PROC NLIN. Furthermore, the workbook successfully fit several models that failed to converge in PROC NLIN. Two data sets were used as examples to compare fits by the different models. The results suggest that no particular nonlinear model is necessarily best for all nutritional response data.
Eco-Logic: Logic-Based Approaches to Ecological Modelling
Daniel L. Schmoldt
1991-01-01
This paper summarizes the simulation research carried out during 1984-1989 at the University of Edinburgh. Two primary objectives of their research are 1) to provide tools for manipulating simulation models (i.e., implementation tools) and 2) to provide advice on conceptualizing real-world phenomena into an idealized representation for simulation (i.e., model design...
USDA-ARS?s Scientific Manuscript database
The Soil and Water Assessment Tool (SWAT) is a basin scale hydrologic model developed by the US Department of Agriculture-Agricultural Research Service. SWAT's broad applicability, user friendly model interfaces, and automatic calibration software have led to a rapid increase in the number of new u...
A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling
ERIC Educational Resources Information Center
Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.
2011-01-01
Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…
Cross-Classified Random Effects Models in Institutional Research
ERIC Educational Resources Information Center
Meyers, Laura E.
2012-01-01
Multilevel modeling offers researchers a rich array of tools that can be used for a variety of purposes, such as analyzing specific institutional issues, looking for macro-level trends, and helping to shape and inform educational policy. One of the more complex multilevel modeling tools available to institutional researchers is cross-classified…
California Geriatric Education Center Logic Model: An Evaluation and Communication Tool
ERIC Educational Resources Information Center
Price, Rachel M.; Alkema, Gretchen E.; Frank, Janet C.
2009-01-01
A logic model is a communications tool that graphically represents a program's resources, activities, priority target audiences for change, and the anticipated outcomes. This article describes the logic model development process undertaken by the California Geriatric Education Center in spring 2008. The CGEC is one of 48 Geriatric Education…
TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, Michael S; Cetiner, Mustafa S; Fugate, David L
Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and supportmore » tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.« less
O'Donnell, Michael S.; Aldridge, Cameron L.; Doherty, Kevin E.; Fedy, Bradley C.
2015-01-01
We deliver all products described herein as online geographic information system data for visualization and downloading. We outline the data properties for each model and their data inputs, describe the process of selecting appropriate data products for multifarious applications, describe all data products and software, provide newly derived model composites, and discuss how land managers may use the models to inform future sage-grouse studies and potentially refine conservation efforts. The models, software tools, and associated opportunities for novel applications of these products should provide a suite of additional, but not exclusive, tools for assessing Wyoming Greater Sage-grouse habitats, which land managers, conservationists, and scientists can apply to myriad applications.
On the next generation of reliability analysis tools
NASA Technical Reports Server (NTRS)
Babcock, Philip S., IV; Leong, Frank; Gai, Eli
1987-01-01
The current generation of reliability analysis tools concentrates on improving the efficiency of the description and solution of the fault-handling processes and providing a solution algorithm for the full system model. The tools have improved user efficiency in these areas to the extent that the problem of constructing the fault-occurrence model is now the major analysis bottleneck. For the next generation of reliability tools, it is proposed that techniques be developed to improve the efficiency of the fault-occurrence model generation and input. Further, the goal is to provide an environment permitting a user to provide a top-down design description of the system from which a Markov reliability model is automatically constructed. Thus, the user is relieved of the tedious and error-prone process of model construction, permitting an efficient exploration of the design space, and an independent validation of the system's operation is obtained. An additional benefit of automating the model construction process is the opportunity to reduce the specialized knowledge required. Hence, the user need only be an expert in the system he is analyzing; the expertise in reliability analysis techniques is supplied.
Response simulation and theoretical calibration of a dual-induction resistivity LWD tool
NASA Astrophysics Data System (ADS)
Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei
2014-03-01
In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.
2014-01-01
This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio and number of control surfaces. A doublet lattice approach is taken to compute generalized forces. A rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. Although, all parameters can be easily modified if desired.The focus of this paper is on tool presentation, verification and validation. This process is carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool. Therefore the flutter speed and frequency for a clamped plate are computed using V-g and V-f analysis. The computational results are compared to a previously published computational analysis and wind tunnel results for the same structure. Finally a case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to V-g and V-f analysis. This also includes the analysis of the model in response to a 1-cos gust.
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard J.; Mavris, Dimitri N.
2015-01-01
This paper introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this paper is on tool presentation, verification, and validation. These processes are carried out in stages throughout the paper. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
DAISY: a new software tool to test global identifiability of biological and physiological systems
Bellu, Giuseppina; Saccomani, Maria Pia; Audoly, Stefania; D’Angiò, Leontina
2009-01-01
A priori global identifiability is a structural property of biological and physiological models. It is considered a prerequisite for well-posed estimation, since it concerns the possibility of recovering uniquely the unknown model parameters from measured input-output data, under ideal conditions (noise-free observations and error-free model structure). Of course, determining if the parameters can be uniquely recovered from observed data is essential before investing resources, time and effort in performing actual biomedical experiments. Many interesting biological models are nonlinear but identifiability analysis for nonlinear system turns out to be a difficult mathematical problem. Different methods have been proposed in the literature to test identifiability of nonlinear models but, to the best of our knowledge, so far no software tools have been proposed for automatically checking identifiability of nonlinear models. In this paper, we describe a software tool implementing a differential algebra algorithm to perform parameter identifiability analysis for (linear and) nonlinear dynamic models described by polynomial or rational equations. Our goal is to provide the biological investigator a completely automatized software, requiring minimum prior knowledge of mathematical modelling and no in-depth understanding of the mathematical tools. The DAISY (Differential Algebra for Identifiability of SYstems) software will potentially be useful in biological modelling studies, especially in physiology and clinical medicine, where research experiments are particularly expensive and/or difficult to perform. Practical examples of use of the software tool DAISY are presented. DAISY is available at the web site http://www.dei.unipd.it/~pia/. PMID:17707944
Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.
2015-01-01
This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.
Integrated workflows for spiking neuronal network simulations
Antolík, Ján; Davison, Andrew P.
2013-01-01
The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages. PMID:24368902
Prediction of morbidity and mortality in patients with type 2 diabetes.
Wells, Brian J; Roth, Rachel; Nowacki, Amy S; Arrigain, Susana; Yu, Changhong; Rosenkrans, Wayne A; Kattan, Michael W
2013-01-01
Introduction. The objective of this study was to create a tool that accurately predicts the risk of morbidity and mortality in patients with type 2 diabetes according to an oral hypoglycemic agent. Materials and Methods. The model was based on a cohort of 33,067 patients with type 2 diabetes who were prescribed a single oral hypoglycemic agent at the Cleveland Clinic between 1998 and 2006. Competing risk regression models were created for coronary heart disease (CHD), heart failure, and stroke, while a Cox regression model was created for mortality. Propensity scores were used to account for possible treatment bias. A prediction tool was created and internally validated using tenfold cross-validation. The results were compared to a Framingham model and a model based on the United Kingdom Prospective Diabetes Study (UKPDS) for CHD and stroke, respectively. Results and Discussion. Median follow-up for the mortality outcome was 769 days. The numbers of patients experiencing events were as follows: CHD (3062), heart failure (1408), stroke (1451), and mortality (3661). The prediction tools demonstrated the following concordance indices (c-statistics) for the specific outcomes: CHD (0.730), heart failure (0.753), stroke (0.688), and mortality (0.719). The prediction tool was superior to the Framingham model at predicting CHD and was at least as accurate as the UKPDS model at predicting stroke. Conclusions. We created an accurate tool for predicting the risk of stroke, coronary heart disease, heart failure, and death in patients with type 2 diabetes. The calculator is available online at http://rcalc.ccf.org under the heading "Type 2 Diabetes" and entitled, "Predicting 5-Year Morbidity and Mortality." This may be a valuable tool to aid the clinician's choice of an oral hypoglycemic, to better inform patients, and to motivate dialogue between physician and patient.
Integrated workflows for spiking neuronal network simulations.
Antolík, Ján; Davison, Andrew P
2013-01-01
The increasing availability of computational resources is enabling more detailed, realistic modeling in computational neuroscience, resulting in a shift toward more heterogeneous models of neuronal circuits, and employment of complex experimental protocols. This poses a challenge for existing tool chains, as the set of tools involved in a typical modeler's workflow is expanding concomitantly, with growing complexity in the metadata flowing between them. For many parts of the workflow, a range of tools is available; however, numerous areas lack dedicated tools, while integration of existing tools is limited. This forces modelers to either handle the workflow manually, leading to errors, or to write substantial amounts of code to automate parts of the workflow, in both cases reducing their productivity. To address these issues, we have developed Mozaik: a workflow system for spiking neuronal network simulations written in Python. Mozaik integrates model, experiment and stimulation specification, simulation execution, data storage, data analysis and visualization into a single automated workflow, ensuring that all relevant metadata are available to all workflow components. It is based on several existing tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models and recording configurations using hierarchically organized configuration files. Mozaik automatically records all data together with all relevant metadata about the experimental context, allowing automation of the analysis and visualization stages. Mozaik has a modular architecture, and the existing modules are designed to be extensible with minimal programming effort. Mozaik increases the productivity of running virtual experiments on highly structured neuronal networks by automating the entire experimental cycle, while increasing the reliability of modeling studies by relieving the user from manual handling of the flow of metadata between the individual workflow stages.
NASA Technical Reports Server (NTRS)
Nguyen, Lac; Kenney, Patrick J.
1993-01-01
Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.
Improved Analysis of Earth System Models and Observations using Simple Climate Models
NASA Astrophysics Data System (ADS)
Nadiga, B. T.; Urban, N. M.
2016-12-01
Earth system models (ESM) are the most comprehensive tools we have to study climate change and develop climate projections. However, the computational infrastructure required and the cost incurred in running such ESMs precludes direct use of such models in conjunction with a wide variety of tools that can further our understanding of climate. Here we are referring to tools that range from dynamical systems tools that give insight into underlying flow structure and topology to tools that come from various applied mathematical and statistical techniques and are central to quantifying stability, sensitivity, uncertainty and predictability to machine learning tools that are now being rapidly developed or improved. Our approach to facilitate the use of such models is to analyze output of ESM experiments (cf. CMIP) using a range of simpler models that consider integral balances of important quantities such as mass and/or energy in a Bayesian framework.We highlight the use of this approach in the context of the uptake of heat by the world oceans in the ongoing global warming. Indeed, since in excess of 90% of the anomalous radiative forcing due greenhouse gas emissions is sequestered in the world oceans, the nature of ocean heat uptake crucially determines the surface warming that is realized (cf. climate sensitivity). Nevertheless, ESMs themselves are never run long enough to directly assess climate sensitivity. So, we consider a range of models based on integral balances--balances that have to be realized in all first-principles based models of the climate system including the most detailed state-of-the art climate simulations. The models range from simple models of energy balance to those that consider dynamically important ocean processes such as the conveyor-belt circulation (Meridional Overturning Circulation, MOC), North Atlantic Deep Water (NADW) formation, Antarctic Circumpolar Current (ACC) and eddy mixing. Results from Bayesian analysis of such models using both ESM experiments and actual observations are presented. One such result points to the importance of direct sequestration of heat below 700 m, a process that is not allowed for in the simple models that have been traditionally used to deduce climate sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-01-19
The purpose of LEM-CF Premixed Tool Kit is to process premixed flame simulation data from the LEM-CF solver (https://fileshare.craft-tech.com/clusters/view/lem-cf) into a large-eddy simulation (LES) subgrid model database. These databases may be used with a user-defined-function (UDF) that is included in the Tool Kit. The subgrid model UDF may be used with the ANSYS FLUENT flow solver or other commercial flow solvers.
A Multiagent Modeling Environment for Simulating Work Practice in Organizations
NASA Technical Reports Server (NTRS)
Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron
2004-01-01
In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to represent the relations of people, locations, systems, artifacts, communication and information content.
Modeling and Simulation of Phased Array Antennas to Support Next-Generation Satellite Design
NASA Technical Reports Server (NTRS)
Tchorowski, Nicole; Murawski, Robert; Manning, Robert; Fuentes, Michael
2016-01-01
Developing enhanced simulation capabilities has become a significant priority for the Space Communications and Navigation (SCaN) project at NASA as new space communications technologies are proposed to replace aging NASA communications assets, such as the Tracking and Data Relay Satellite System (TDRSS). When developing the architecture for these new space communications assets, it is important to develop updated modeling and simulation methodologies, such that competing architectures can be weighed against one another and the optimal path forward can be determined. There have been many simulation tools developed here at NASA for the simulation of single RF link budgets, or for the modeling and simulation of an entire network of spacecraft and their supporting SCaN network elements. However, the modeling capabilities are never fully complete and as new technologies are proposed, gaps are identified. One such gap is the ability to rapidly develop high fidelity simulation models of electronically steerable phased array systems. As future relay satellite architectures are proposed that include optical communications links, electronically steerable antennas will become more desirable due to the reduction in platform vibration introduced by mechanically steerable devices. In this research, we investigate how modeling of these antennas can be introduced into out overall simulation and modeling structure. The ultimate goal of this research is two-fold. First, to enable NASA engineers to model various proposed simulation architectures and determine which proposed architecture meets the given architectural requirements. Second, given a set of communications link requirements for a proposed satellite architecture, determine the optimal configuration for a phased array antenna. There is a variety of tools available that can be used to model phased array antennas. To meet our stated goals, the first objective of this research is to compare the subset of tools available to us, trading-off modeling fidelity of the tool with simulation performance. When comparing several proposed architectures, higher- fidelity modeling may be desirable, however, when iterating a proposed set of communication link requirements across ranges of phased array configuration parameters, the practicality of performance becomes a significant requirement. In either case, a minimum simulation - fidelity must be met, regardless of performance considerations, which will be discussed in this research. Given a suitable set of phased array modeling tools, this research then focuses on integration with current SCaN modeling and simulation tools. While properly modeling the antenna elements of a system are vital, this is only a small part of the end-to-end communication path between a satellite and the supporting ground station and/or relay satellite assets. To properly model a proposed simulation architecture, this toolset must be integrated with other commercial and government development tools, such that the overall architecture can be examined in terms of communications, reliability, and cost. In this research, integration with previously developed communication tools is investigated.
System and Software Reliability (C103)
NASA Technical Reports Server (NTRS)
Wallace, Dolores
2003-01-01
Within the last decade better reliability models (hardware. software, system) than those currently used have been theorized and developed but not implemented in practice. Previous research on software reliability has shown that while some existing software reliability models are practical, they are no accurate enough. New paradigms of development (e.g. OO) have appeared and associated reliability models have been proposed posed but not investigated. Hardware models have been extensively investigated but not integrated into a system framework. System reliability modeling is the weakest of the three. NASA engineers need better methods and tools to demonstrate that the products meet NASA requirements for reliability measurement. For the new models for the software component of the last decade, there is a great need to bring them into a form that they can be used on software intensive systems. The Statistical Modeling and Estimation of Reliability Functions for Systems (SMERFS'3) tool is an existing vehicle that may be used to incorporate these new modeling advances. Adapting some existing software reliability modeling changes to accommodate major changes in software development technology may also show substantial improvement in prediction accuracy. With some additional research, the next step is to identify and investigate system reliability. System reliability models could then be incorporated in a tool such as SMERFS'3. This tool with better models would greatly add value in assess in GSFC projects.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Beven, Keith; Brewer, Paul; El-khatib, Yehia; Gemmell, Alastair; Haygarth, Phil; Mackay, Ellie; Macklin, Mark; Marshall, Keith; Quinn, Paul; Stutter, Marc; Thomas, Nicola; Vitolo, Claudia
2013-04-01
Today's world is dominated by a wide range of informatics tools that are readily available to a wide range of stakeholders. There is growing recognition that the appropriate involvement of local communities in land and water management decisions can result in multiple environmental, economic and social benefits. Therefore, local stakeholder groups are increasingly being asked to participate in decision making alongside policy makers, government agencies and scientists. As such, addressing flooding issues requires new ways of engaging with the catchment and its inhabitants at a local level. To support this, new tools and approaches are required. The growth of cloud based technologies offers new novel ways to facilitate this process of exchange of information in earth sciences. The Environmental Virtual Observatory Pilot project (EVOp) is a new initiative from the UK Natural Environment Research Council (NERC) designed to deliver proof of concept for new tools and approaches to support the challenges as outlined above (http://www.evo-uk.org/). The long term vision of the Environmental Virtual Observatory is to: • Make environmental data more visible and accessible to a wide range of potential users including public good applications; • Provide tools to facilitate the integrated analysis of data, greater access to added knowledge and expert analysis and visualisation of the results; • Develop new, added-value knowledge from public and private sector data assets to help tackle environmental challenges. As part of the EVO pilot, an interactive cloud based tool has been developed with local stakeholders. The Local Landscape Visualisation Tool attempts to communicate flood risk in local impacted communities. The tool has been developed iteratively to reflect the needs, interests and capabilities of a wide range of stakeholders. This tool (assessable via a web portal) combines numerous cloud based tools and services, local catchment datasets, hydrological models and novel visualisation techniques. This pilot tool has been developed by engaging with different stakeholder groups in three catchments in the UK; the Afon Dyfi (Wales), the River Tarland (Scotland) and the River Eden (England). Stakeholders were interested in accessing live data in their catchments and looking at different land use change scenarios on flood peaks. Visualisation tools have been created which offer access to real time data (such as river level, rainfall and webcam images). Other tools allow land owners to use cloud based models (example presented here uses Topmodel, a rainfall-runoff model, on a custom virtual machine image on Amazon web services) and local datasets to explore future land use scenarios, allowing them to understand the associated flood risk. Different ways to communicate model uncertainty are currently being investigated and discussed with stakeholders. In summary the pilot project has had positive feedback and has evolved into two unique parts; a web based map tool and a model interface tool. Users can view live data from different sources, combine different data types together (data mash-up), develop local scenarios for land use and flood risk and exploit the dynamic, elastic cloud modelling capability. This local toolkit will reside within a wider EVO platform that will include national and global datasets, models and state of the art cloud computer systems.
Thermal modelling of cooling tool cutting when milling by electrical analogy
NASA Astrophysics Data System (ADS)
Benabid, F.; Arrouf, M.; Assas, M.; Benmoussa, H.
2010-06-01
Measurement temperatures by (some devises) are applied immediately after shut-down and may be corrected for the temperature drop that occurs in the interval between shut-down and measurement. This paper presents a new procedure for thermal modelling of the tool cutting used just after machining; when the tool is out off the chip in order to extrapolate the cutting temperature from the temperature measured when the tool is at stand still. A fin approximation is made in enhancing heat loss (by conduction and convection) to air stream is used. In the modelling we introduce an equivalent thermal network to estimate the cutting temperature as a function of specific energy. In another hand, a local modified element lumped conduction equation is used to predict the temperature gradient with time when the tool is being cooled, with initial and boundary conditions. These predictions provide a detailed view of the global heat transfer coefficient as a function of cutting speed because the heat loss for the tool in air stream is an order of magnitude larger than in normal environment. Finally we deduct the cutting temperature by inverse method.
OLTARIS: On-Line Tool for the Assessment of Radiation in Space
NASA Technical Reports Server (NTRS)
Sandridge, Chris A.; Blattnig, Steve R.; Clowdsley, Martha S.; Norbury, John; Qualis, Garry D.; Simonsen, Lisa C.; Singleterry, Robert C.; Slaba, Tony C.; Walker, Steven A.; Badavi, Francis F.;
2009-01-01
The effects of ionizing radiation on humans in space is a major technical challenge for exploration to the moon and beyond. The radiation shielding team at NASA Langley Research Center has been working for over 30 years to develop techniques that can efficiently assist the engineer throughout the entire design process. OLTARIS: On-Line Tool for the Assessment of Radiation in Space is a new NASA website (http://oltaris.larc.nasa.gov) that allows engineers and physicists to access a variety of tools and models to study the effects of ionizing space radiation on humans and shielding materials. The site is intended to be an analysis and design tool for those working radiation issues for current and future manned missions, as well as a research tool for developing advanced material and shielding concepts. The site, along with the analysis tools and models within, have been developed using strict software practices to ensure reliable and reproducible results in a production environment. They have also been developed as a modular system so that models and algorithms can be easily added or updated.
Cai, Gaigai; Chen, Xuefeng; Li, Bing; Chen, Baojia; He, Zhengjia
2012-01-01
The reliability of cutting tools is critical to machining precision and production efficiency. The conventional statistic-based reliability assessment method aims at providing a general and overall estimation of reliability for a large population of identical units under given and fixed conditions. However, it has limited effectiveness in depicting the operational characteristics of a cutting tool. To overcome this limitation, this paper proposes an approach to assess the operation reliability of cutting tools. A proportional covariate model is introduced to construct the relationship between operation reliability and condition monitoring information. The wavelet packet transform and an improved distance evaluation technique are used to extract sensitive features from vibration signals, and a covariate function is constructed based on the proportional covariate model. Ultimately, the failure rate function of the cutting tool being assessed is calculated using the baseline covariate function obtained from a small sample of historical data. Experimental results and a comparative study show that the proposed method is effective for assessing the operation reliability of cutting tools. PMID:23201980
ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS
In the field of environmental engineering, modeling tools are playing an ever larger role in addressing air quality issues, including source pollutant emissions, atmospheric dispersion and human exposure risks. More detailed modeling of environmental flows requires tools for c...
About Using Predictive Models and Tools To Assess Chemicals under TSCA
As part of EPA's effort to promote chemical safety, OPPT provides public access to predictive models and tools which can help inform the public on the hazards and risks of substances and improve chemical management decisions.
Green Infrastructure Models and Tools
The objective of this project is to modify and refine existing models and develop new tools to support decision making for the complete green infrastructure (GI) project lifecycle, including the planning and implementation of stormwater control in urban and agricultural settings,...
Mueller, Martina; Wagner, Carol L; Annibale, David J; Knapp, Rebecca G; Hulsey, Thomas C; Almeida, Jonas S
2006-03-01
Approximately 30% of intubated preterm infants with respiratory distress syndrome (RDS) will fail attempted extubation, requiring reintubation and mechanical ventilation. Although ventilator technology and monitoring of premature infants have improved over time, optimal extubation remains challenging. Furthermore, extubation decisions for premature infants require complex informational processing, techniques implicitly learned through clinical practice. Computer-aided decision-support tools would benefit inexperienced clinicians, especially during peak neonatal intensive care unit (NICU) census. A five-step procedure was developed to identify predictive variables. Clinical expert (CE) thought processes comprised one model. Variables from that model were used to develop two mathematical models for the decision-support tool: an artificial neural network (ANN) and a multivariate logistic regression model (MLR). The ranking of the variables in the three models was compared using the Wilcoxon Signed Rank Test. The best performing model was used in a web-based decision-support tool with a user interface implemented in Hypertext Markup Language (HTML) and the mathematical model employing the ANN. CEs identified 51 potentially predictive variables for extubation decisions for an infant on mechanical ventilation. Comparisons of the three models showed a significant difference between the ANN and the CE (p = 0.0006). Of the original 51 potentially predictive variables, the 13 most predictive variables were used to develop an ANN as a web-based decision-tool. The ANN processes user-provided data and returns the prediction 0-1 score and a novelty index. The user then selects the most appropriate threshold for categorizing the prediction as a success or failure. Furthermore, the novelty index, indicating the similarity of the test case to the training case, allows the user to assess the confidence level of the prediction with regard to how much the new data differ from the data originally used for the development of the prediction tool. State-of-the-art, machine-learning methods can be employed for the development of sophisticated tools to aid clinicians' decisions. We identified numerous variables considered relevant for extubation decisions for mechanically ventilated premature infants with RDS. We then developed a web-based decision-support tool for clinicians which can be made widely available and potentially improve patient care world wide.
NASA Astrophysics Data System (ADS)
Wichmann, Volker
2017-09-01
The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each component several modeling approaches are provided, which makes the tool configurable for different processes such as rockfall, debris flows or snow avalanches. The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping but also contains components for scenario-based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their applicability in numerous studies, also including geomorphological research questions such as the delineation of sediment cascades or the study of process connectivity. This is the first open-source implementation, completely re-written, extended and improved in many ways. The tool has been committed to the main repository of the System for Automated Geoscientific Analyses (SAGA) and thus will be available with every SAGA release.
Advanced techniques in reliability model representation and solution
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.; Nicol, David M.
1992-01-01
The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.
Integrated performance and reliability specification for digital avionics systems
NASA Technical Reports Server (NTRS)
Brehm, Eric W.; Goettge, Robert T.
1995-01-01
This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.
Strategies for fitting nonlinear ecological models in R, AD Model Builder, and BUGS
Bolker, Benjamin M.; Gardner, Beth; Maunder, Mark; Berg, Casper W.; Brooks, Mollie; Comita, Liza; Crone, Elizabeth; Cubaynes, Sarah; Davies, Trevor; de Valpine, Perry; Ford, Jessica; Gimenez, Olivier; Kéry, Marc; Kim, Eun Jung; Lennert-Cody, Cleridy; Magunsson, Arni; Martell, Steve; Nash, John; Nielson, Anders; Regentz, Jim; Skaug, Hans; Zipkin, Elise
2013-01-01
1. Ecologists often use nonlinear fitting techniques to estimate the parameters of complex ecological models, with attendant frustration. This paper compares three open-source model fitting tools and discusses general strategies for defining and fitting models. 2. R is convenient and (relatively) easy to learn, AD Model Builder is fast and robust but comes with a steep learning curve, while BUGS provides the greatest flexibility at the price of speed. 3. Our model-fitting suggestions range from general cultural advice (where possible, use the tools and models that are most common in your subfield) to specific suggestions about how to change the mathematical description of models to make them more amenable to parameter estimation. 4. A companion web site (https://groups.nceas.ucsb.edu/nonlinear-modeling/projects) presents detailed examples of application of the three tools to a variety of typical ecological estimation problems; each example links both to a detailed project report and to full source code and data.
Choi, Seunghee; Coon, Joshua J.; Goggans, Matthew Scott; Kreisman, Thomas F.; Silver, Daniel M.; Nesson, Michael H.
2016-01-01
Many of the materials that are challenging for large animals to cut or puncture are also cut and punctured by much smaller organisms that are limited to much smaller forces. Small organisms can overcome their force limitations by using sharper tools, but one drawback may be an increased susceptibility to fracture. We use simple contact mechanics models to estimate how much smaller the diameter of the tips or edges of tools such as teeth, claws and cutting blades must be in smaller organisms in order for them to puncture or cut the same materials as larger organisms. In order to produce the same maximum stress when maximum force scales as the square of body length, the diameter of the tool region that is in contact with the target material must scale isometrically for punch-like tools (e.g. scorpion stings) on thick targets, and for crushing tools (e.g. molars). For punch-like tools on thin targets, and for cutting blades on thick targets, the tip or edge diameters must be even smaller than expected from isometry in smaller animals. The diameters of a small sample of unworn punch-like tools from a large range of animal sizes are consistent with the model, scaling isometrically or more steeply (positively allometric). In addition, we find that the force required to puncture a thin target using real biological tools scales linearly with tip diameter, as predicted by the model. We argue that, for smaller tools, the minimum energy to fracture the tool will be a greater fraction of the minimum energy required to puncture the target, making fracture more likely. Finally, energy stored in tool bending, relative to the energy to fracture the tool, increases rapidly with the aspect ratio (length/width), and we expect that smaller organisms often have to employ higher aspect ratio tools in order to puncture or cut to the required depth with available force. The extra stored energy in higher aspect ratio tools is likely to increase the probability of fracture. We discuss some of the implications of the suggested scaling rules and possible adaptations to compensate for fracture sensitivity in smaller organisms. PMID:27274804
Model Evaluation of Continuous Data Pharmacometric Models: Metrics and Graphics
Nguyen, THT; Mouksassi, M‐S; Holford, N; Al‐Huniti, N; Freedman, I; Hooker, AC; John, J; Karlsson, MO; Mould, DR; Pérez Ruixo, JJ; Plan, EL; Savic, R; van Hasselt, JGC; Weber, B; Zhou, C; Comets, E
2017-01-01
This article represents the first in a series of tutorials on model evaluation in nonlinear mixed effect models (NLMEMs), from the International Society of Pharmacometrics (ISoP) Model Evaluation Group. Numerous tools are available for evaluation of NLMEM, with a particular emphasis on visual assessment. This first basic tutorial focuses on presenting graphical evaluation tools of NLMEM for continuous data. It illustrates graphs for correct or misspecified models, discusses their pros and cons, and recalls the definition of metrics used. PMID:27884052
Representing clinical guidelines in UMl: a comparative study.
Hederman, Lucy; Smutek, Daniel; Wade, Vincent; Knape, Thomas
2002-01-01
Clinical guidelines can be represented using models, such as GLIF, specifically designed for healthcare guidelines. This paper demonstrates that they can also be modelled using a mainstream business modelling language such as UML. The paper presents a guideline in GLIF and as UML activity diagrams, and then presents a mapping of GLIF primitives to UML. The potential benefits of using a mainstream modelling language are outlined. These include availability of advanced modelling tools, transfer between modelling tools, and automation via business workflow technology.
Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models
NASA Astrophysics Data System (ADS)
Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.
2008-12-01
The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality room known as a Cave Automatic Virtual Environment (CAVE), enables the scientist to stand in data three-dimensional dataset while taking measurements. The CAVE involves three or more projection surfaces arranged as walls in a room. Stereo projectors combined with a motion tracking system and immersion recreates the experience of carrying out research in the field. This high-end system provides significant advantages for scientists working with complex volumetric data. The interactive tools also work on low-cost platforms that provide stereo views and the potential for interactivity such as a Geowall or a 3D enabled TV. The Geowall is also a well-established tool for education, and in combination with the tools we have developed, enables the rapid transfer of research data and new knowledge to the classroom. The interactive visualization tools can also be used on a desktop or laptop with or without stereo capability. Further information about the Virtual Reality User Interface (VRUI), the 3DVisualizer, the Virtual mapping tools, and the LIDAR viewer, can be found on the KeckCAVES website, www.keckcaves.org.
Mbeutcha, Aurélie; Mathieu, Romain; Rouprêt, Morgan; Gust, Kilian M; Briganti, Alberto; Karakiewicz, Pierre I; Shariat, Shahrokh F
2016-10-01
In the context of customized patient care for upper tract urothelial carcinoma (UTUC), decision-making could be facilitated by risk assessment and prediction tools. The aim of this study was to provide a critical overview of existing predictive models and to review emerging promising prognostic factors for UTUC. A literature search of articles published in English from January 2000 to June 2016 was performed using PubMed. Studies on risk group stratification models and predictive tools in UTUC were selected, together with studies on predictive factors and biomarkers associated with advanced-stage UTUC and oncological outcomes after surgery. Various predictive tools have been described for advanced-stage UTUC assessment, disease recurrence and cancer-specific survival (CSS). Most of these models are based on well-established prognostic factors such as tumor stage, grade and lymph node (LN) metastasis, but some also integrate newly described prognostic factors and biomarkers. These new prediction tools seem to reach a high level of accuracy, but they lack external validation and decision-making analysis. The combinations of patient-, pathology- and surgery-related factors together with novel biomarkers have led to promising predictive tools for oncological outcomes in UTUC. However, external validation of these predictive models is a prerequisite before their introduction into daily practice. New models predicting response to therapy are urgently needed to allow accurate and safe individualized management in this heterogeneous disease.
Using artificial neural networks to model aluminium based sheet forming processes and tools details
NASA Astrophysics Data System (ADS)
Mekras, N.
2017-09-01
In this paper, a methodology and a software system will be presented concerning the use of Artificial Neural Networks (ANNs) for modeling aluminium based sheet forming processes. ANNs models’ creation is based on the training of the ANNs using experimental, trial and historical data records of processes’ inputs and outputs. ANNs models are useful in cases that processes’ mathematical models are not accurate enough, are not well defined or are missing e.g. in cases of complex product shapes, new material alloys, new process requirements, micro-scale products, etc. Usually, after the design and modeling of the forming tools (die, punch, etc.) and before mass production, a set of trials takes place at the shop floor for finalizing processes and tools details concerning e.g. tools’ minimum radii, die/punch clearance, press speed, process temperature, etc. and in relation with the material type, the sheet thickness and the quality achieved from the trials. Using data from the shop floor trials and forming theory data, ANNs models can be trained and created, and can be used to estimate processes and tools final details, hence supporting efficient set-up of processes and tools before mass production starts. The proposed ANNs methodology and the respective software system are implemented within the EU H2020 project LoCoMaTech for the aluminium-based sheet forming process HFQ (solution Heat treatment, cold die Forming and Quenching).
NASA Technical Reports Server (NTRS)
Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina
2006-01-01
The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.
Vehicle Technology Simulation and Analysis Tools | Transportation Research
| NREL Vehicle Technology Simulation and Analysis Tools Vehicle Technology Simulation and vehicle technologies with the potential to achieve significant fuel savings and emission reductions. NREL : Automotive Deployment Options Projection Tool The ADOPT modeling tool estimates vehicle technology
Modeling biochemical transformation processes and information processing with Narrator
Mandel, Johannes J; Fuß, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-01-01
Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from . PMID:17389034
When product designers use perceptually based color tools
NASA Astrophysics Data System (ADS)
Bender, Walter R.
1998-07-01
Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to give guidance to their selection of seasonal palettes for use in production of the private-label merchandise of a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.
When product designers use perceptually based color tools
NASA Astrophysics Data System (ADS)
Bender, Walter R.
2001-01-01
Palette synthesis and analysis tools have been built based upon a model of color experience. This model adjusts formal compositional elements such as hue, value, chroma, and their contrasts, as well as size and proportion. Clothing and household product designers were given these tools to guide their selection of seasonal palettes in the production of the private-label merchandise in a large retail chain. The designers chose base palettes. Accents to these palettes were generated with and without the aid of the color tools. These palettes are compared by using perceptual metrics and interviews. The results are presented.
Human eye haptics-based multimedia.
Velandia, David; Uribe-Quevedo, Alvaro; Perez-Gutierrez, Byron
2014-01-01
Immersive and interactive multimedia applications offer complementary study tools in anatomy as users can explore 3D models while obtaining information about the organ, tissue or part being explored. Haptics increases the sense of interaction with virtual objects improving user experience in a more realistic manner. Common eye studying tools are books, illustrations, assembly models, and more recently these are being complemented with mobile apps whose 3D capabilities, computing power and customers are increasing. The goal of this project is to develop a complementary eye anatomy and pathology study tool using deformable models within a multimedia application, offering the students the opportunity for exploring the eye from up close and within with relevant information. Validation of the tool provided feedback on the potential of the development, along with suggestions on improving haptic feedback and navigation.
A Selection of Composites Simulation Practices at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.
2007-01-01
One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.
Thermal Error Test and Intelligent Modeling Research on the Spindle of High Speed CNC Machine Tools
NASA Astrophysics Data System (ADS)
Luo, Zhonghui; Peng, Bin; Xiao, Qijun; Bai, Lu
2018-03-01
Thermal error is the main factor affecting the accuracy of precision machining. Through experiments, this paper studies the thermal error test and intelligent modeling for the spindle of vertical high speed CNC machine tools in respect of current research focuses on thermal error of machine tool. Several testing devices for thermal error are designed, of which 7 temperature sensors are used to measure the temperature of machine tool spindle system and 2 displacement sensors are used to detect the thermal error displacement. A thermal error compensation model, which has a good ability in inversion prediction, is established by applying the principal component analysis technology, optimizing the temperature measuring points, extracting the characteristic values closely associated with the thermal error displacement, and using the artificial neural network technology.
ERIC Educational Resources Information Center
Schwarz, Christina V.; Meyer, Jason; Sharma, Ajay
2007-01-01
This study infused computer modeling and simulation tools in a 1-semester undergraduate elementary science methods course to advance preservice teachers' understandings of computer software use in science teaching and to help them learn important aspects of pedagogy and epistemology. Preservice teachers used computer modeling and simulation tools…
Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham
2012-01-01
Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...
Introducing a new open source GIS user interface for the SWAT model
USDA-ARS?s Scientific Manuscript database
The Soil and Water Assessment Tool (SWAT) model is a robust watershed modelling tool. It typically uses the ArcSWAT interface to create its inputs. ArcSWAT is public domain software which works in the licensed ArcGIS environment. The aim of this paper was to develop an open source user interface ...
Visible Earthquakes: a web-based tool for visualizing and modeling InSAR earthquake data
NASA Astrophysics Data System (ADS)
Funning, G. J.; Cockett, R.
2012-12-01
InSAR (Interferometric Synthetic Aperture Radar) is a technique for measuring the deformation of the ground using satellite radar data. One of the principal applications of this method is in the study of earthquakes; in the past 20 years over 70 earthquakes have been studied in this way, and forthcoming satellite missions promise to enable the routine and timely study of events in the future. Despite the utility of the technique and its widespread adoption by the research community, InSAR does not feature in the teaching curricula of most university geoscience departments. This is, we believe, due to a lack of accessibility to software and data. Existing tools for the visualization and modeling of interferograms are often research-oriented, command line-based and/or prohibitively expensive. Here we present a new web-based interactive tool for comparing real InSAR data with simple elastic models. The overall design of this tool was focused on ease of access and use. This tool should allow interested nonspecialists to gain a feel for the use of such data and greatly facilitate integration of InSAR into upper division geoscience courses, giving students practice in comparing actual data to modeled results. The tool, provisionally named 'Visible Earthquakes', uses web-based technologies to instantly render the displacement field that would be observable using InSAR for a given fault location, geometry, orientation, and slip. The user can adjust these 'source parameters' using a simple, clickable interface, and see how these affect the resulting model interferogram. By visually matching the model interferogram to a real earthquake interferogram (processed separately and included in the web tool) a user can produce their own estimates of the earthquake's source parameters. Once satisfied with the fit of their models, users can submit their results and see how they compare with the distribution of all other contributed earthquake models, as well as the mean and median models. We envisage that the ensemble of contributed models will be useful both as a research resource and in the classroom. Locations of earthquakes derived from InSAR data have already been demonstrated to differ significantly from those obtained from global seismic networks (Weston et al., 2011), and the locations obtained by our users will enable us to identify systematic mislocations that are likely due to errors in Earth velocity models used to locate earthquakes. If the tool is incorporated into geophysics, tectonics and/or structural geology classes, in addition to familiarizing students with InSAR and elastic deformation modeling, the spread of different results for each individual earthquake will allow the teaching of concepts such as model uncertainty and non-uniqueness when modeling real scientific data. Additionally, the process students go through to optimize their estimates of fault parameters can easily be tied into teaching about the concepts of forward and inverse problems, which are common in geophysics.
Rapid Prototyping of Hydrologic Model Interfaces with IPython
NASA Astrophysics Data System (ADS)
Farthing, M. W.; Winters, K. D.; Ahmadia, A. J.; Hesser, T.; Howington, S. E.; Johnson, B. D.; Tate, J.; Kees, C. E.
2014-12-01
A significant gulf still exists between the state of practice and state of the art in hydrologic modeling. Part of this gulf is due to the lack of adequate pre- and post-processing tools for newly developed computational models. The development of user interfaces has traditionally lagged several years behind the development of a particular computational model or suite of models. As a result, models with mature interfaces often lack key advancements in model formulation, solution methods, and/or software design and technology. Part of the problem has been a focus on developing monolithic tools to provide comprehensive interfaces for the entire suite of model capabilities. Such efforts require expertise in software libraries and frameworks for creating user interfaces (e.g., Tcl/Tk, Qt, and MFC). These tools are complex and require significant investment in project resources (time and/or money) to use. Moreover, providing the required features for the entire range of possible applications and analyses creates a cumbersome interface. For a particular site or application, the modeling requirements may be simplified or at least narrowed, which can greatly reduce the number and complexity of options that need to be accessible to the user. However, monolithic tools usually are not adept at dynamically exposing specific workflows. Our approach is to deliver highly tailored interfaces to users. These interfaces may be site and/or process specific. As a result, we end up with many, customized interfaces rather than a single, general-use tool. For this approach to be successful, it must be efficient to create these tailored interfaces. We need technology for creating quality user interfaces that is accessible and has a low barrier for integration into model development efforts. Here, we present efforts to leverage IPython notebooks as tools for rapid prototyping of site and application-specific user interfaces. We provide specific examples from applications in near-shore environments as well as levee analysis. We discuss our design decisions and methodology for developing customized interfaces, strategies for delivery of the interfaces to users in various computing environments, as well as implications for the design/implementation of simulation models.
Ciffroy, P; Alfonso, B; Altenpohl, A; Banjac, Z; Bierkens, J; Brochot, C; Critto, A; De Wilde, T; Fait, G; Fierens, T; Garratt, J; Giubilato, E; Grange, E; Johansson, E; Radomyski, A; Reschwann, K; Suciu, N; Tanaka, T; Tediosi, A; Van Holderbeke, M; Verdonck, F
2016-10-15
MERLIN-Expo is a library of models that was developed in the frame of the FP7 EU project 4FUN in order to provide an integrated assessment tool for state-of-the-art exposure assessment for environment, biota and humans, allowing the detection of scientific uncertainties at each step of the exposure process. This paper describes the main features of the MERLIN-Expo tool. The main challenges in exposure modelling that MERLIN-Expo has tackled are: (i) the integration of multimedia (MM) models simulating the fate of chemicals in environmental media, and of physiologically based pharmacokinetic (PBPK) models simulating the fate of chemicals in human body. MERLIN-Expo thus allows the determination of internal effective chemical concentrations; (ii) the incorporation of a set of functionalities for uncertainty/sensitivity analysis, from screening to variance-based approaches. The availability of such tools for uncertainty and sensitivity analysis aimed to facilitate the incorporation of such issues in future decision making; (iii) the integration of human and wildlife biota targets with common fate modelling in the environment. MERLIN-Expo is composed of a library of fate models dedicated to non biological receptor media (surface waters, soils, outdoor air), biological media of concern for humans (several cultivated crops, mammals, milk, fish), as well as wildlife biota (primary producers in rivers, invertebrates, fish) and humans. These models can be linked together to create flexible scenarios relevant for both human and wildlife biota exposure. Standardized documentation for each model and training material were prepared to support an accurate use of the tool by end-users. One of the objectives of the 4FUN project was also to increase the confidence in the applicability of the MERLIN-Expo tool through targeted realistic case studies. In particular, we aimed at demonstrating the feasibility of building complex realistic exposure scenarios and the accuracy of the modelling predictions through a comparison with actual measurements. Copyright © 2016 Elsevier B.V. All rights reserved.
Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony R.; Romanok, Kristin M.; Wengrowski, Edward W
2015-01-01
A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenico Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.
VARS-TOOL: A Comprehensive, Efficient, and Robust Sensitivity Analysis Toolbox
NASA Astrophysics Data System (ADS)
Razavi, S.; Sheikholeslami, R.; Haghnegahdar, A.; Esfahbod, B.
2016-12-01
VARS-TOOL is an advanced sensitivity and uncertainty analysis toolbox, applicable to the full range of computer simulation models, including Earth and Environmental Systems Models (EESMs). The toolbox was developed originally around VARS (Variogram Analysis of Response Surfaces), which is a general framework for Global Sensitivity Analysis (GSA) that utilizes the variogram/covariogram concept to characterize the full spectrum of sensitivity-related information, thereby providing a comprehensive set of "global" sensitivity metrics with minimal computational cost. VARS-TOOL is unique in that, with a single sample set (set of simulation model runs), it generates simultaneously three philosophically different families of global sensitivity metrics, including (1) variogram-based metrics called IVARS (Integrated Variogram Across a Range of Scales - VARS approach), (2) variance-based total-order effects (Sobol approach), and (3) derivative-based elementary effects (Morris approach). VARS-TOOL is also enabled with two novel features; the first one being a sequential sampling algorithm, called Progressive Latin Hypercube Sampling (PLHS), which allows progressively increasing the sample size for GSA while maintaining the required sample distributional properties. The second feature is a "grouping strategy" that adaptively groups the model parameters based on their sensitivity or functioning to maximize the reliability of GSA results. These features in conjunction with bootstrapping enable the user to monitor the stability, robustness, and convergence of GSA with the increase in sample size for any given case study. VARS-TOOL has been shown to achieve robust and stable results within 1-2 orders of magnitude smaller sample sizes (fewer model runs) than alternative tools. VARS-TOOL, available in MATLAB and Python, is under continuous development and new capabilities and features are forthcoming.
SOURCE APPORTIONMENT RESULTS, UNCERTAINTIES, AND MODELING TOOLS
Advanced multivariate receptor modeling tools are available from the U.S. Environmental Protection Agency (EPA) that use only speciated sample data to identify and quantify sources of air pollution. EPA has developed both EPA Unmix and EPA Positive Matrix Factorization (PMF) and ...
Aviation Environmental Design Tool (AEDT 2b)
DOT National Transportation Integrated Search
2015-10-01
The Aviation Environmental Design Tool (AEDT) is a part of FAAs NextGen environmental and modeling toolsuite. It provides a means of modeling aircraft in four dimensions for all phases of flight including taxi, takeoff/landing, and cruise. It is s...
This product provides training to air pollution inventory and modeling professionals to understand the US EPA's SPECIATE database base and Speciation Tool and their use to develop speciated emission inventories.
Assessment of local models and tools for analyzing smart-growth strategies.
DOT National Transportation Integrated Search
2007-07-01
There is a growing interest in California in smart-growth land- use and transportation : strategies designed to provide mobility options and reduce demand on automobile-oriented facilities. This study focuses on models and tools available for u...
Description of Updates for MCCEM Version 1.2 (February 2001)
The EPA Office of Pollution Prevention and Toxics, Economics, Exposure, and Technology Division has developed several exposure assessment tools and models. A description of the models and tools and the definition of exposure are given in separate web page
DIAGNOSTIC TOOL DEVELOPMENT AND APPLICATION THROUGH REGIONAL CASE STUDIES
Case studies are a useful vehicle for developing and testing conceptual models, classification systems, diagnostic tools and models, and stressor-response relationships. Furthermore, case studies focused on specific places or issues of interest to the Agency provide an excellent ...
On-line Tools for Assessing Petroleum Releases
The Internet tools described in this report provide methods and models for evaluation of contaminated sites. Two problems are addressed by models. The first is the placement of wells for correct delineation of contaminant plumes. Because aquifer recharge can displace plumes dow...
Data access and decision tools for coastal water resources management
US EPA has supported the development of numerous models and tools to support implementation of environmental regulations. However, transfer of knowledge and methods from detailed technical models to support practical problem solving by local communities and watershed or coastal ...
2001-04-12
Comparison of Oversight Models in Managed Care 1 Running Head: Comparison of Oversight Models in Managed Care A Comparison of the Audit and...TITLE AND SUBTITLE A Comparison of the Audit and Accreditation Tools Used By The Health Care Financing Administration, The Texas Department of...Comparison of Oversight Models in Managed Care 5 A Comparison of the Audit and Accreditation Tools Used By The Health Care Financing
Model-Based GUI Testing Using Uppaal at Novo Nordisk
NASA Astrophysics Data System (ADS)
Hjort, Ulrik H.; Illum, Jacob; Larsen, Kim G.; Petersen, Michael A.; Skou, Arne
This paper details a collaboration between Aalborg University and Novo Nordiskin developing an automatic model-based test generation tool for system testing of the graphical user interface of a medical device on an embedded platform. The tool takes as input an UML Statemachine model and generates a test suite satisfying some testing criterion, such as edge or state coverage, and converts the individual test case into a scripting language that can be automatically executed against the target. The tool has significantly reduced the time required for test construction and generation, and reduced the number of test scripts while increasing the coverage.
NREL Multiphysics Modeling Tools and ISC Device for Designing Safer Li-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesaran, Ahmad A.; Yang, Chuanbo
2016-03-24
The National Renewable Energy Laboratory has developed a portfolio of multiphysics modeling tools to aid battery designers better understand the response of lithium ion batteries to abusive conditions. We will discuss this portfolio, which includes coupled electrical, thermal, chemical, electrochemical, and mechanical modeling. These models can simulate the response of a cell to overheating, overcharge, mechanical deformation, nail penetration, and internal short circuit. Cell-to-cell thermal propagation modeling will be discussed.
General MACOS Interface for Modeling and Analysis for Controlled Optical Systems
NASA Technical Reports Server (NTRS)
Sigrist, Norbert; Basinger, Scott A.; Redding, David C.
2012-01-01
The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.
Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diakov, Victor; Cole, Wesley; Sullivan, Patrick
2015-11-01
Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validitymore » of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.« less
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations
NASA Astrophysics Data System (ADS)
Tselioudis, G.; Bauer, M.; Rossow, W.
2009-04-01
Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.
Uses of Agent-Based Modeling for Health Communication: the TELL ME Case Study.
Barbrook-Johnson, Peter; Badham, Jennifer; Gilbert, Nigel
2017-08-01
Government communication is an important management tool during a public health crisis, but understanding its impact is difficult. Strategies may be adjusted in reaction to developments on the ground and it is challenging to evaluate the impact of communication separately from other crisis management activities. Agent-based modeling is a well-established research tool in social science to respond to similar challenges. However, there have been few such models in public health. We use the example of the TELL ME agent-based model to consider ways in which a non-predictive policy model can assist policy makers. This model concerns individuals' protective behaviors in response to an epidemic, and the communication that influences such behavior. Drawing on findings from stakeholder workshops and the results of the model itself, we suggest such a model can be useful: (i) as a teaching tool, (ii) to test theory, and (iii) to inform data collection. We also plot a path for development of similar models that could assist with communication planning for epidemics.
The medical simulation markup language - simplifying the biomechanical modeling workflow.
Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie
2014-01-01
Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.
Development of the Rice Convection Model as a Space Weather Tool
2015-05-31
coupled to the ionosphere that is suitable for both scientific studies as well as a prediction tool. We are able to run the model faster than “real...of work by finding ways to fund a more systematic effort in making the RCM a space weather prediction tool for magnetospheric and ionospheric studies...convection electric field, total electron content, TEC, ionospheric convection, plasmasphere 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT
Automation of Ocean Product Metrics
2008-09-30
Presented in: Ocean Sciences 2008 Conf., 5 Mar 2008. Shriver, J., J. D. Dykes, and J. Fabre: Automation of Operational Ocean Product Metrics. Presented in 2008 EGU General Assembly , 14 April 2008. 9 ...processing (multiple data cuts per day) and multiple-nested models. Routines for generating automated evaluations of model forecast statistics will be...developed and pre-existing tools will be collected to create a generalized tool set, which will include user-interface tools to the metrics data
An object-oriented description method of EPMM process
NASA Astrophysics Data System (ADS)
Jiang, Zuo; Yang, Fan
2017-06-01
In order to use the object-oriented mature tools and language in software process model, make the software process model more accord with the industrial standard, it’s necessary to study the object-oriented modelling of software process. Based on the formal process definition in EPMM, considering the characteristics that Petri net is mainly formal modelling tool and combining the Petri net modelling with the object-oriented modelling idea, this paper provides this implementation method to convert EPMM based on Petri net into object models based on object-oriented description.
Comparison of in silico models for prediction of mutagenicity.
Bakhtyari, Nazanin G; Raitano, Giuseppa; Benfenati, Emilio; Martin, Todd; Young, Douglas
2013-01-01
Using a dataset with more than 6000 compounds, the performance of eight quantitative structure activity relationships (QSAR) models was evaluated: ACD/Tox Suite, Absorption, Distribution, Metabolism, Elimination, and Toxicity of chemical substances (ADMET) predictor, Derek, Toxicity Estimation Software Tool (T.E.S.T.), TOxicity Prediction by Komputer Assisted Technology (TOPKAT), Toxtree, CEASAR, and SARpy (SAR in python). In general, the results showed a high level of performance. To have a realistic estimate of the predictive ability, the results for chemicals inside and outside the training set for each model were considered. The effect of applicability domain tools (when available) on the prediction accuracy was also evaluated. The predictive tools included QSAR models, knowledge-based systems, and a combination of both methods. Models based on statistical QSAR methods gave better results.
DiMaio, F; Chiu, W
2016-01-01
Electron cryo-microscopy (cryoEM) has advanced dramatically to become a viable tool for high-resolution structural biology research. The ultimate outcome of a cryoEM study is an atomic model of a macromolecule or its complex with interacting partners. This chapter describes a variety of algorithms and software to build a de novo model based on the cryoEM 3D density map, to optimize the model with the best stereochemistry restraints and finally to validate the model with proper protocols. The full process of atomic structure determination from a cryoEM map is described. The tools outlined in this chapter should prove extremely valuable in revealing atomic interactions guided by cryoEM data. © 2016 Elsevier Inc. All rights reserved.
GAMBIT: the global and modular beyond-the-standard-model inference tool
NASA Astrophysics Data System (ADS)
Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian
2017-11-01
We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.
Unified Approach to Modeling and Simulation of Space Communication Networks and Systems
NASA Technical Reports Server (NTRS)
Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth
2010-01-01
Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks
NASA Astrophysics Data System (ADS)
Zhang, P. P.; Guo, Y.; Wang, B.
2017-05-01
The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.
Tool wear compensation scheme for DTM
NASA Astrophysics Data System (ADS)
Sandeep, K.; Rao, U. S.; Balasubramaniam, R.
2018-04-01
This paper is aimed to monitor tool wear in diamond turn machining (DTM), assess effects of tool wear on accuracies of the machined component, and develop compensation methodology to enhance size and shape accuracies of a hemispherical cup. In order to find change in the centre and radius of tool with increasing wear of tool, a MATLAB program is used. In practice, x-offsets are readjusted by DTM operator for desired accuracy in the cup and the results of theoretical model show that change in radius and z-offset are insignificant however x-offset is proportional to the tool wear and this is what assumed while resetting tool offset. Since we could not measure the profile of tool; therefore we modeled our program for cup profile data. If we assume no error due to slide and spindle of DTM then any wear in the tool will be reflected in the cup profile. As the cup data contains surface roughness, therefore random noise similar to surface waviness is added. It is observed that surface roughness affects the centre and radius but pattern of shifting of centre with increase in wear of tool remains similar to the ideal condition, i.e. without surface roughness.
The Watershed Deposition Tool: A Tool for Incorporating Atmospheric Deposition in Watershed Analysis
The tool for providing the linkage between air and water quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. The Watershed Deposition Tool (WDT) takes gridded output of at...
This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments...
Communications Effects Server (CES) Model for Systems Engineering Research
2012-01-31
Visualization Tool Interface «logical» HLA Tool Interface «logical» DIS Tool Interface «logical» STK Tool Interface «module» Execution Kernels «logical...interoperate with STK when running simulations. GUI Components Architect – The Architect represents the main network design and visualization ...interest» CES «block» Third Party Visualization Tool «block» Third Party Analysis Tool «block» Third Party Text Editor «block» HLA Tools Analyst User Army
Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys
2011-01-01
tool material (AISI H13 tool steel ) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process...threads/m; (b) tool 598 material = AISI H13 tool steel ; (c) workpiece material = 599 AA5059; (d) tool rotation speed = 500 rpm; (e) tool travel 600 speed...the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13
NASA Technical Reports Server (NTRS)
Tijidjian, Raffi P.
2010-01-01
The TEAMS model analyzer is a supporting tool developed to work with models created with TEAMS (Testability, Engineering, and Maintenance System), which was developed by QSI. In an effort to reduce the time spent in the manual process that each TEAMS modeler must perform in the preparation of reporting for model reviews, a new tool has been developed as an aid to models developed in TEAMS. The software allows for the viewing, reporting, and checking of TEAMS models that are checked into the TEAMS model database. The software allows the user to selectively model in a hierarchical tree outline view that displays the components, failure modes, and ports. The reporting features allow the user to quickly gather statistics about the model, and generate an input/output report pertaining to all of the components. Rules can be automatically validated against the model, with a report generated containing resulting inconsistencies. In addition to reducing manual effort, this software also provides an automated process framework for the Verification and Validation (V&V) effort that will follow development of these models. The aid of such an automated tool would have a significant impact on the V&V process.
Mysara, Mohamed; Elhefnawi, Mahmoud; Garibaldi, Jonathan M
2012-06-01
The investigation of small interfering RNA (siRNA) and its posttranscriptional gene-regulation has become an extremely important research topic, both for fundamental reasons and for potential longer-term therapeutic benefits. Several factors affect the functionality of siRNA including positional preferences, target accessibility and other thermodynamic features. State of the art tools aim to optimize the selection of target siRNAs by identifying those that may have high experimental inhibition. Such tools implement artificial neural network models as Biopredsi and ThermoComposition21, and linear regression models as DSIR, i-Score and Scales, among others. However, all these models have limitations in performance. In this work, a neural-network trained new siRNA scoring/efficacy prediction model was developed based on combining two existing scoring algorithms (ThermoComposition21 and i-Score), together with the whole stacking energy (ΔG), in a multi-layer artificial neural network. These three parameters were chosen after a comparative combinatorial study between five well known tools. Our developed model, 'MysiRNA' was trained on 2431 siRNA records and tested using three further datasets. MysiRNA was compared with 11 alternative existing scoring tools in an evaluation study to assess the predicted and experimental siRNA efficiency where it achieved the highest performance both in terms of correlation coefficient (R(2)=0.600) and receiver operating characteristics analysis (AUC=0.808), improving the prediction accuracy by up to 18% with respect to sensitivity and specificity of the best available tools. MysiRNA is a novel, freely accessible model capable of predicting siRNA inhibition efficiency with improved specificity and sensitivity. This multiclassifier approach could help improve the performance of prediction in several bioinformatics areas. MysiRNA model, part of MysiRNA-Designer package [1], is expected to play a key role in siRNA selection and evaluation. Copyright © 2012 Elsevier Inc. All rights reserved.
From data to function: functional modeling of poultry genomics data.
McCarthy, F M; Lyons, E
2013-09-01
One of the challenges of functional genomics is to create a better understanding of the biological system being studied so that the data produced are leveraged to provide gains for agriculture, human health, and the environment. Functional modeling enables researchers to make sense of these data as it reframes a long list of genes or gene products (mRNA, ncRNA, and proteins) by grouping based upon function, be it individual molecular functions or interactions between these molecules or broader biological processes, including metabolic and signaling pathways. However, poultry researchers have been hampered by a lack of functional annotation data, tools, and training to use these data and tools. Moreover, this lack is becoming more critical as new sequencing technologies enable us to generate data not only for an increasingly diverse range of species but also individual genomes and populations of individuals. We discuss the impact of these new sequencing technologies on poultry research, with a specific focus on what functional modeling resources are available for poultry researchers. We also describe key strategies for researchers who wish to functionally model their own data, providing background information about functional modeling approaches, the data and tools to support these approaches, and the strengths and limitations of each. Specifically, we describe methods for functional analysis using Gene Ontology (GO) functional summaries, functional enrichment analysis, and pathways and network modeling. As annotation efforts begin to provide the fundamental data that underpin poultry functional modeling (such as improved gene identification, standardized gene nomenclature, temporal and spatial expression data and gene product function), tool developers are incorporating these data into new and existing tools that are used for functional modeling, and cyberinfrastructure is being developed to provide the necessary extendibility and scalability for storing and analyzing these data. This process will support the efforts of poultry researchers to make sense of their functional genomics data sets, and we provide here a starting point for researchers who wish to take advantage of these tools.
Techniques to Access Databases and Integrate Data for Hydrologic Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.
2009-06-17
This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed.more » The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and retrieve the required data, and their ability to integrate the data into environmental models using the FRAMES environment.« less
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
Reed, Shelby D; Neilson, Matthew P; Gardner, Matthew; Li, Yanhong; Briggs, Andrew H; Polsky, Daniel E; Graham, Felicia L; Bowers, Margaret T; Paul, Sara C; Granger, Bradi B; Schulman, Kevin A; Whellan, David J; Riegel, Barbara; Levy, Wayne C
2015-11-01
Heart failure disease management programs can influence medical resource use and quality-adjusted survival. Because projecting long-term costs and survival is challenging, a consistent and valid approach to extrapolating short-term outcomes would be valuable. We developed the Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model, a Web-based simulation tool designed to integrate data on demographic, clinical, and laboratory characteristics; use of evidence-based medications; and costs to generate predicted outcomes. Survival projections are based on a modified Seattle Heart Failure Model. Projections of resource use and quality of life are modeled using relationships with time-varying Seattle Heart Failure Model scores. The model can be used to evaluate parallel-group and single-cohort study designs and hypothetical programs. Simulations consist of 10,000 pairs of virtual cohorts used to generate estimates of resource use, costs, survival, and incremental cost-effectiveness ratios from user inputs. The model demonstrated acceptable internal and external validity in replicating resource use, costs, and survival estimates from 3 clinical trials. Simulations to evaluate the cost-effectiveness of heart failure disease management programs across 3 scenarios demonstrate how the model can be used to design a program in which short-term improvements in functioning and use of evidence-based treatments are sufficient to demonstrate good long-term value to the health care system. The Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model provides researchers and providers with a tool for conducting long-term cost-effectiveness analyses of disease management programs in heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.
Time Domain Tool Validation Using ARES I-X Flight Data
NASA Technical Reports Server (NTRS)
Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay
2011-01-01
The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.
Innovative Stormwater Quality Tools by SARA for Holistic Watershed Master Planning
NASA Astrophysics Data System (ADS)
Thomas, S. M.; Su, Y. C.; Hummel, P. R.
2016-12-01
Stormwater management strategies such as Best Management Practices (BMP) and Low-Impact Development (LID) have increasingly gained attention in urban runoff control, becoming vital to holistic watershed master plans. These strategies can help address existing water quality impairments and support regulatory compliance, as well as guide planning and management of future development when substantial population growth and urbanization is projected to occur. However, past efforts have been limited to qualitative planning due to the lack of suitable tools to conduct quantitative assessment. The San Antonio River Authority (SARA), with the assistance of Lockwood, Andrews & Newnam, Inc. (LAN) and AQUA TERRA Consultants (a division of RESPEC), developed comprehensive hydrodynamic and water quality models using the Hydrological Simulation Program-FORTRAN (HSPF) for several urban watersheds in the San Antonio River Basin. These models enabled watershed management to look at water quality issues on a more refined temporal and spatial scale than the limited monitoring data. They also provided a means to locate and quantify potential water quality impairments and evaluate the effects of mitigation measures. To support the models, a suite of software tools were developed. including: 1) SARA Timeseries Utility Tool for managing and processing of large model timeseries files, 2) SARA Load Reduction Tool to determine load reductions needed to achieve screening levels for each modeled constituent on a sub-basin basis, and 3) SARA Enhanced BMP Tool to determine the optimal combination of BMP types and units needed to achieve the required load reductions. Using these SARA models and tools, water quality agencies and stormwater professionals can determine the optimal combinations of BMP/LID to accomplish their goals and save substantial stormwater infrastructure and management costs. The tools can also help regulators and permittees evaluate the feasibility of achieving compliance using BMP/LID. The project has gained national attention, being showcased in multiple newsletters, professional magazines, and conference presentations. The project also won the Texas American Council of Engineering Companies (ACEC) Gold Medal Award and the ACEC National Recognition Award in 2016.
Nisqually Community Forest VELMA modeling
We developed a set of modeling tools to support community-based forest management and salmon-recovery planning in Pacific Northwest watersheds. Here we describe how these tools are being applied to the Mashel River Watershed in collaboration with the Board of Directors of the Nis...
Integrated Exoplanet Modeling with the GSFC Exoplanet Modeling & Analysis Center (EMAC)
NASA Astrophysics Data System (ADS)
Mandell, Avi M.; Hostetter, Carl; Pulkkinen, Antti; Domagal-Goldman, Shawn David
2018-01-01
Our ability to characterize the atmospheres of extrasolar planets will be revolutionized by JWST, WFIRST and future ground- and space-based telescopes. In preparation, the exoplanet community must develop an integrated suite of tools with which we can comprehensively predict and analyze observations of exoplanets, in order to characterize the planetary environments and ultimately search them for signs of habitability and life.The GSFC Exoplanet Modeling and Analysis Center (EMAC) will be a web-accessible high-performance computing platform with science support for modelers and software developers to host and integrate their scientific software tools, with the goal of leveraging the scientific contributions from the entire exoplanet community to improve our interpretations of future exoplanet discoveries. Our suite of models will include stellar models, models for star-planet interactions, atmospheric models, planet system science models, telescope models, instrument models, and finally models for retrieving signals from observational data. By integrating this suite of models, the community will be able to self-consistently calculate the emergent spectra from the planet whether from emission, scattering, or in transmission, and use these simulations to model the performance of current and new telescopes and their instrumentation.The EMAC infrastructure will not only provide a repository for planetary and exoplanetary community models, modeling tools and intermodal comparisons, but it will include a "run-on-demand" portal with each software tool hosted on a separate virtual machine. The EMAC system will eventually include a means of running or “checking in” new model simulations that are in accordance with the community-derived standards. Additionally, the results of intermodal comparisons will be used to produce open source publications that quantify the model comparisons and provide an overview of community consensus on model uncertainties on the climates of various planetary targets.
NASA Astrophysics Data System (ADS)
Fernandes, R.; Leitão, P. C.; Braunschweig, F.; Lourenço, F.; Galvão, P.; Neves, R.
2012-04-01
The increasing ship traffic and maritime transport of dangerous substances make it more difficult to significantly reduce the environmental, economic and social risks posed by potential spills, although the security rules are becoming more restrictive (ships with double hull, etc.) and the surveillance systems are becoming more developed (VTS, AIS). In fact, the problematic associated to spills is and will always be a main topic: spill events are continuously happening, most of them unknown for the general public because of their small scale impact, but with some of them (in a much smaller number) becoming authentic media phenomena in this information era, due to their large dimensions and environmental and social-economic impacts on ecosystems and local communities, and also due to some spectacular or shocking pictures generated. Hence, the adverse consequences posed by these type of accidents, increase the preoccupation of avoiding them in the future, or minimize their impacts, using not only surveillance and monitoring tools, but also increasing the capacity to predict the fate and behaviour of bodies, objects, or substances in the following hours after the accident - numerical models can have now a leading role in operational oceanography applied to safety and pollution response in the ocean because of their predictive potential. Search and rescue operation, oil, inert (ship debris, or floating containers), and HNS (hazardous and noxious substances) spills risk analysis are the main areas where models can be used. Model applications have been widely used in emergency or planning issues associated to pollution risks, and contingency and mitigation measures. Before a spill, in the planning stage, modelling simulations are used in environmental impact studies, or risk maps, using historical data, reference situations, and typical scenarios. After a spill, the use of fast and simple modelling applications allow to understand the fate and behaviour of the spilt substances, helping in the management of the crisis, in the distribution of response resources, or prioritizing specific areas. They can also be used for detection of pollution sources. However, the resources involved, and the scientific and technological levels needed in the manipulation of numerical models, had both limited the interoperability between operational models, monitoring tools and decision-support software tools. The increasing predictive capacity of metocean conditions and fate and behaviour of pollutants spilt at sea or costal zones, and the presence of monitoring tools like vessel traffic control systems, can both provide a safer support for decision-making in emergency or planning issues associated to pollution risk management, especially if used in an integrated way. Following this approach, and taking advantage of an integrated framework developed in ARCOPOL (www.arcopol.eu) and EASYCO (www.project-easy.info) projects, three innovative model-supported software tools were developed and applied in the Atlantic Area, and / or the Portuguese Coast. Two of these tools are used for spill model simulations - a web-based interface (EASYCO web bidirectional tool) and an advanced desktop application (MOHID Desktop Spill Simulator) - both of them allowing end user to have control over the model simulations. Parameters such as date and time of the event, location and oil spill volume are provided the users; these interactive tools also integrate best available metocean forecasts (waves, meteorological, hydrodynamics) from different institutions in the Atlantic Area. Metocean data are continuously gathered from remote THREDDS data servers (using OPENDAP) or ftp sites, and then automatically interpolated and pre-processed to be available for the simulators. These simulation tools developed can also import initial data and export results from/to remote servers, using OGC WFS services. Simulations are provided to end user in a matter of seconds, and thus, can be very useful in emergency situations. The backtracking modelling feature and the possibility of importing spill locations from remote servers with observed data (per example, from flight surveillance or remote sensing) allow the potential application to the evaluation of possible contamination sources. The third tool developed is an innovative system to dynamically produce quantified risk levels in real time, integrating best available information from numerical forecasts and the existing monitoring tools. This system provides coastal pollution risk levels associated to potential (or real) oil spill incidents, taking into account regional statistic information on vessel accidents and coastal sensitivity indexes (determined in EROCIPS project), real time vessel information (positioning, cargo type, speed and vessel type) obtained from AIS, best-available metocean numerical forecasts (hydrodynamics, meteorology - including visibility, wave conditions) and simulated scenarios by the oil spill fate and behaviour component of MOHID Water Modelling System (www.mohid.com). Different spill fate and behaviour simulations are continuously generated and processed in background (assuming hypothetical spills from vessels), based on variable vessel information, and metocean conditions, and results from these simulations are used in the quantification the consequences of potential spills. Dynamic Risk Tool was not designed to replace conventional mapping tools, but to complement that type of information with an innovative approach to risk mapping. Taking advantage of interoperability between forecasting models, oil spill simulations, AIS monitoring systems, statistical data and coastal vulnerability, this software can provide to end-users realtime risk levels, allowing an innovative approach to risk mapping, providing decision-makers with an improved decision support model and also an intelligent risk-based traffic monitoring. For instance, this tool allows the prioritisation of individual ships and geographical areas, and facilitates strategic and dynamic tug positioning. As referred, the risk levels are generated in realtime, and the historic results are kept in a database, allowing later risk analysis or compilations for specific seasons or regions, in order to obtain typical risk maps, etc. The integration with metocean modeling results (instead of using typical static scenarios), as well as continuous background oil spill modelling, provide a more realistic approach to the estimation of risk levels - the metocean conditions and oil spill behaviour are always different and specific, and it's virtually impossible to previously define those conditions even if several thousands of static scenarios were previously considered. This system was initially implemented in Portugal (ARCOPOL project) for oil spills. The implementation at different regions in the Atlantic and the adaptation to chemical spills will be executed in the scope of ARCOPOL+ project. The numerical model used for computing the fate and behaviour of spilled substances in all the tools developed (MOHID lagrangian & oil spill model from MOHID Water modelling System) was also subject of several adaptations and updates, in order to increase its adaptability to the developed tools - horizontal velocity due to Stokes Drift, vertical movement of oil substances, modelling of floating containers, backtracking modelling and a multi-solution approach (generating computational grid on-the-fly, and using the available information from the multiple metocean forecasting solutions available) are some of the main features recently implemented. The main purpose of these software tools are mainly to reduce the gap between the decision-makers and scientific modellers - although the correct analysis of model results usually requires a specialist, an operational model user should not loose most of the time converting and interpolating metocean results, preparing input data files, running models and post-processing results - rather than analysing results and producing different scenarios. The harmonization and standardization in respect to dissemination of numerical model outputs is a strategic effort for the modelling scientific community, because facilitates the application of their results in decision-support tools like the ones presented here.
Macellini, S.; Maranesi, M.; Bonini, L.; Simone, L.; Rozzi, S.; Ferrari, P. F.; Fogassi, L.
2012-01-01
Macaques can efficiently use several tools, but their capacity to discriminate the relevant physical features of a tool and the social factors contributing to their acquisition are still poorly explored. In a series of studies, we investigated macaques' ability to generalize the use of a stick as a tool to new objects having different physical features (study 1), or to new contexts, requiring them to adapt the previously learned motor strategy (study 2). We then assessed whether the observation of a skilled model might facilitate tool-use learning by naive observer monkeys (study 3). Results of study 1 and study 2 showed that monkeys trained to use a tool generalize this ability to tools of different shape and length, and learn to adapt their motor strategy to a new task. Study 3 demonstrated that observing a skilled model increases the observers' manipulations of a stick, thus facilitating the individual discovery of the relevant properties of this object as a tool. These findings support the view that in macaques, the motor system can be modified through tool use and that it has a limited capacity to adjust the learnt motor skills to a new context. Social factors, although important to facilitate the interaction with tools, are not crucial for tool-use learning. PMID:22106424
NASA Astrophysics Data System (ADS)
Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.
2011-01-01
The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.
A toolbox and a record for scientific model development
NASA Technical Reports Server (NTRS)
Ellman, Thomas
1994-01-01
Scientific computation can benefit from software tools that facilitate construction of computational models, control the application of models, and aid in revising models to handle new situations. Existing environments for scientific programming provide only limited means of handling these tasks. This paper describes a two pronged approach for handling these tasks: (1) designing a 'Model Development Toolbox' that includes a basic set of model constructing operations; and (2) designing a 'Model Development Record' that is automatically generated during model construction. The record is subsequently exploited by tools that control the application of scientific models and revise models to handle new situations. Our two pronged approach is motivated by our belief that the model development toolbox and record should be highly interdependent. In particular, a suitable model development record can be constructed only when models are developed using a well defined set of operations. We expect this research to facilitate rapid development of new scientific computational models, to help ensure appropriate use of such models and to facilitate sharing of such models among working computational scientists. We are testing this approach by extending SIGMA, and existing knowledge-based scientific software design tool.
Collision detection and modeling of rigid and deformable objects in laparoscopic simulator
NASA Astrophysics Data System (ADS)
Dy, Mary-Clare; Tagawa, Kazuyoshi; Tanaka, Hiromi T.; Komori, Masaru
2015-03-01
Laparoscopic simulators are viable alternatives for surgical training and rehearsal. Haptic devices can also be incorporated with virtual reality simulators to provide additional cues to the users. However, to provide realistic feedback, the haptic device must be updated by 1kHz. On the other hand, realistic visual cues, that is, the collision detection and deformation between interacting objects must be rendered at least 30 fps. Our current laparoscopic simulator detects the collision between a point on the tool tip, and on the organ surfaces, in which haptic devices are attached on actual tool tips for realistic tool manipulation. The triangular-mesh organ model is rendered using a mass spring deformation model, or finite element method-based models. In this paper, we investigated multi-point-based collision detection on the rigid tool rods. Based on the preliminary results, we propose a method to improve the collision detection scheme, and speed up the organ deformation reaction. We discuss our proposal for an efficient method to compute simultaneous multiple collision between rigid (laparoscopic tools) and deformable (organs) objects, and perform the subsequent collision response, with haptic feedback, in real-time.
NASA Astrophysics Data System (ADS)
Nikolić, Dalibor; Milošević, Žarko; Saveljić, Igor; Filipović, Nenad
2015-12-01
Vibration of the skull causes a hearing sensation. We call it Bone Conduction (BC) sound. There are several investigations about transmission properties of bone conducted sound. The aim of this study was to develop a software tool for easy generation of the finite element (FE) model of the human head with different materials based on human head anatomy and to calculate sound conduction through the head. Developed software tool generates a model in a few steps. The first step is to do segmentation of CT medical images (DICOM) and to generate a surface mesh files (STL). Each STL file presents a different layer of human head with different material properties (brain, CSF, different layers of the skull bone, skin, etc.). The next steps are to make tetrahedral mesh from obtained STL files, to define FE model boundary conditions and to solve FE equations. This tool uses PAK solver, which is the open source software implemented in SIFEM FP7 project, for calculations of the head vibration. Purpose of this tool is to show impact of the bone conduction sound of the head on the hearing system and to estimate matching of obtained results with experimental measurements.
Development and validation of a nursing professionalism evaluation model in a career ladder system.
Kim, Yeon Hee; Jung, Young Sun; Min, Ja; Song, Eun Young; Ok, Jung Hui; Lim, Changwon; Kim, Kyunghee; Kim, Ji-Su
2017-01-01
The clinical ladder system categorizes the degree of nursing professionalism and rewards and is an important human resource tool for managing nursing. We developed a model to evaluate nursing professionalism, which determines the clinical ladder system levels, and verified its validity. Data were collected using a clinical competence tool developed in this study, and existing methods such as the nursing professionalism evaluation tool, peer reviews, and face-to-face interviews to evaluate promotions and verify the presented content in a medical institution. Reliability and convergent and discriminant validity of the clinical competence evaluation tool were verified using SmartPLS software. The validity of the model for evaluating overall nursing professionalism was also analyzed. Clinical competence was determined by five dimensions of nursing practice: scientific, technical, ethical, aesthetic, and existential. The structural model explained 66% of the variance. Clinical competence scales, peer reviews, and face-to-face interviews directly determined nursing professionalism levels. The evaluation system can be used for evaluating nurses' professionalism in actual medical institutions from a nursing practice perspective. A conceptual framework for establishing a human resources management system for nurses and a tool for evaluating nursing professionalism at medical institutions is provided.
Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2012-01-01
This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.
2012-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.
MOEMS Modeling Using the Geometrical Matrix Toolbox
NASA Technical Reports Server (NTRS)
Wilson, William C.; Atkinson, Gary M.
2005-01-01
New technologies such as MicroOptoElectro-Mechanical Systems (MOEMS) require new modeling tools. These tools must simultaneously model the optical, electrical, and mechanical domains and the interactions between these domains. To facilitate rapid prototyping of these new technologies an optical toolbox has been developed for modeling MOEMS devices. The toolbox models are constructed using MATLAB's dynamical simulator, Simulink. Modeling toolboxes will allow users to focus their efforts on system design and analysis as opposed to developing component models. This toolbox was developed to facilitate rapid modeling and design of a MOEMS based laser ultrasonic receiver system.
Investigating System Dependability Modeling Using AADL
NASA Technical Reports Server (NTRS)
Hall, Brendan; Driscoll, Kevin R.; Madl, Gabor
2013-01-01
This report describes Architecture Analysis & Design Language (AADL) models for a diverse set of fault-tolerant, embedded data networks and describes the methods and tools used to created these models. It also includes error models per the AADL Error Annex. Some networks were modeled using Error Detection Isolation Containment Types (EDICT). This report gives a brief description for each of the networks, a description of its modeling, the model itself, and evaluations of the tools used for creating the models. The methodology includes a naming convention that supports a systematic way to enumerate all of the potential failure modes.
The Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct
ERIC Educational Resources Information Center
Knezek, Gerald; Christensen, Rhonda
2015-01-01
An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be targeted for…
A new method for the analysis of fire spread modeling errors
Francis M. Fujioka
2002-01-01
Fire spread models have a long history, and their use will continue to grow as they evolve from a research tool to an operational tool. This paper describes a new method to analyse two-dimensional fire spread modeling errors, particularly to quantify the uncertainties of fire spread predictions. Measures of error are defined from the respective spread distances of...
ERIC Educational Resources Information Center
Rowe, Jeremy; Razdan, Anshuman
The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…
Meta II: Multi-Model Language Suite for Cyber Physical Systems
2013-03-01
AVM META) projects have developed tools for designing cyber physical (or Mechatronic ) Systems . These systems are increasingly complex, take much...projects have developed tools for designing cyber physical (CPS) (or Mechatronic ) systems . Exemplified by modern amphibious and ground military...and parametric interface of Simulink models and defines associations with CyPhy components and component interfaces. 2. Embedded Systems Modeling
GMODWeb: a web framework for the generic model organism database
O'Connor, Brian D; Day, Allen; Cain, Scott; Arnaiz, Olivier; Sperling, Linda; Stein, Lincoln D
2008-01-01
The Generic Model Organism Database (GMOD) initiative provides species-agnostic data models and software tools for representing curated model organism data. Here we describe GMODWeb, a GMOD project designed to speed the development of model organism database (MOD) websites. Sites created with GMODWeb provide integration with other GMOD tools and allow users to browse and search through a variety of data types. GMODWeb was built using the open source Turnkey web framework and is available from . PMID:18570664
Wu, Yiping; Liu, Shu-Guang
2012-01-01
R program language-Soil and Water Assessment Tool-Flexible Modeling Environment (R-SWAT-FME) (Wu and Liu, 2012) is a comprehensive modeling framework that adopts an R package, Flexible Modeling Environment (FME) (Soetaert and Petzoldt, 2010), for the Soil and Water Assessment Tool (SWAT) model (Arnold and others, 1998; Neitsch and others, 2005). This framework provides the functionalities of parameter identifiability, model calibration, and sensitivity and uncertainty analysis with instant visualization. This user's guide shows how to apply this framework for a customized SWAT project.
Harris, Melanie; Jones, Phil; Heartfield, Marie; Allstrom, Mary; Hancock, Janette; Lawn, Sharon; Battersby, Malcolm
2015-01-01
Health services introducing practice changes need effective implementation methods. Within the setting of a community mental health service offering recovery-oriented psychosocial support for people with mental illness, we aimed to: (i) identify a well-founded implementation model; and (ii) assess its practical usefulness in introducing a new programme for recovery-oriented self-management support. We reviewed the literature to identify implementation models applicable to community mental health organisations, and that also had corresponding measurement tools. We used one of these models to inform organisational change strategies. The literature review showed few models with corresponding tools. The Promoting Action on Research Implementation in Health Services (PARIHS) model and the related Organisational Readiness to Change Assessment (ORCA) tool were used. The PARIHS proposes prerequisites for health service change and the ORCA measures the extent to which these prerequisites are present. Application of the ORCA at two time points during implementation of the new programme showed strategy-related gains for some prerequisites but not for others, reflecting observed implementation progress. Additional strategies to address target prerequisites could be drawn from the PARIHS model. The PARIHS model and ORCA tool have potential in designing and monitoring practice change strategies in community mental health organisations. Further practical use and testing of implementation models appears justified in overcoming barriers to change.
Scenario Evaluator for Electrical Resistivity survey pre-modeling tool
Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D.; Halford, Keith J.; Binley, Andrew; Lane, John W.; Werkema, Dale D.
2017-01-01
Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.
Foundations of the Bandera Abstraction Tools
NASA Technical Reports Server (NTRS)
Hatcliff, John; Dwyer, Matthew B.; Pasareanu, Corina S.; Robby
2003-01-01
Current research is demonstrating that model-checking and other forms of automated finite-state verification can be effective for checking properties of software systems. Due to the exponential costs associated with model-checking, multiple forms of abstraction are often necessary to obtain system models that are tractable for automated checking. The Bandera Tool Set provides multiple forms of automated support for compiling concurrent Java software systems to models that can be supplied to several different model-checking tools. In this paper, we describe the foundations of Bandera's data abstraction mechanism which is used to reduce the cardinality (and the program's state-space) of data domains in software to be model-checked. From a technical standpoint, the form of data abstraction used in Bandera is simple, and it is based on classical presentations of abstract interpretation. We describe the mechanisms that Bandera provides for declaring abstractions, for attaching abstractions to programs, and for generating abstracted programs and properties. The contributions of this work are the design and implementation of various forms of tool support required for effective application of data abstraction to software components written in a programming language like Java which has a rich set of linguistic features.
Modeling RF-induced Plasma-Surface Interactions with VSim
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.
2014-10-01
An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.
Pivel, María Alejandra Gómez; Dal Sasso Freitas, Carla Maria
2010-08-01
Numerical models that predict the fate of drilling discharges at sea constitute a valuable tool for both the oil industry and regulatory agencies. In order to provide reliable estimates, models must be validated through the comparison of predictions with field or laboratory observations. In this paper, we used the Offshore Operators Committee Model to simulate the discharges from two wells drilled at Campos Basin, offshore SE Brazil, and compared the results with field observations obtained 3 months after drilling. The comparison showed that the model provided reasonable predictions, considering that data about currents were reconstructed and theoretical data were used to characterize the classes of solids. The model proved to be a valuable tool to determine the degree of potential impact associated to drilling activities. However, since the accuracy of the model is directly dependent on the quality of input data, different possible scenarios should be considered when used for forecast modeling.
Process Model for Friction Stir Welding
NASA Technical Reports Server (NTRS)
Adams, Glynn
1996-01-01
Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.
2014-06-01
TECHNICAL REPORT 2077 June 2014 Modeling Tool to Quantify Metal Sources in Stormwater Discharges at Naval Facilities (NESDI Project 455... Stormwater Discharges at Naval Facilities (NESDI Project 455) Final Report and Guidance C. Katz K. Sorensen E. Arias SSC Pacific R. Pitt L. Talebi...demonstration/validation project to assess the use of the urban stormwater model Windows Source Loading and Management Model (WinSLAMM) to characterize
A discrete event simulation tool to support and predict hospital and clinic staffing.
DeRienzo, Christopher M; Shaw, Ryan J; Meanor, Phillip; Lada, Emily; Ferranti, Jeffrey; Tanaka, David
2017-06-01
We demonstrate how to develop a simulation tool to help healthcare managers and administrators predict and plan for staffing needs in a hospital neonatal intensive care unit using administrative data. We developed a discrete event simulation model of nursing staff needed in a neonatal intensive care unit and then validated the model against historical data. The process flow was translated into a discrete event simulation model. Results demonstrated that the model can be used to give a respectable estimate of annual admissions, transfers, and deaths based upon two different staffing levels. The discrete event simulation tool model can provide healthcare managers and administrators with (1) a valid method of modeling patient mix, patient acuity, staffing needs, and costs in the present state and (2) a forecast of how changes in a unit's staffing, referral patterns, or patient mix would affect a unit in a future state.
Information Extraction for System-Software Safety Analysis: Calendar Year 2007 Year-End Report
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2008-01-01
This annual report describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis on the models to identify possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations; 4) perform discrete-time-based simulation on the models to investigate scenarios where these paths may play a role in failures and mishaps; and 5) identify resulting candidate scenarios for software integration testing. This paper describes new challenges in a NASA abort system case, and enhancements made to develop the integrated tool set.
Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations
Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; ...
2017-08-29
Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less
Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.
Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less
cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud.
Cianfrocco, Michael A; Lahiri, Indrajit; DiMaio, Frank; Leschziner, Andres E
2018-06-01
Access to streamlined computational resources remains a significant bottleneck for new users of cryo-electron microscopy (cryo-EM). To address this, we have developed tools that will submit cryo-EM analysis routines and atomic model building jobs directly to Amazon Web Services (AWS) from a local computer or laptop. These new software tools ("cryoem-cloud-tools") have incorporated optimal data movement, security, and cost-saving strategies, giving novice users access to complex cryo-EM data processing pipelines. Integrating these tools into the RELION processing pipeline and graphical user interface we determined a 2.2 Å structure of ß-galactosidase in ∼55 hours on AWS. We implemented a similar strategy to submit Rosetta atomic model building and refinement to AWS. These software tools dramatically reduce the barrier for entry of new users to cloud computing for cryo-EM and are freely available at cryoem-tools.cloud. Copyright © 2018. Published by Elsevier Inc.
Generating community-built tools for data sharing and analysis in environmental networks
Read, Jordan S.; Gries, Corinna; Read, Emily K.; Klug, Jennifer; Hanson, Paul C.; Hipsey, Matthew R.; Jennings, Eleanor; O'Reilley, Catherine; Winslow, Luke A.; Pierson, Don; McBride, Christopher G.; Hamilton, David
2016-01-01
Rapid data growth in many environmental sectors has necessitated tools to manage and analyze these data. The development of tools often lags behind the proliferation of data, however, which may slow exploratory opportunities and scientific progress. The Global Lake Ecological Observatory Network (GLEON) collaborative model supports an efficient and comprehensive data–analysis–insight life cycle, including implementations of data quality control checks, statistical calculations/derivations, models, and data visualizations. These tools are community-built and openly shared. We discuss the network structure that enables tool development and a culture of sharing, leading to optimized output from limited resources. Specifically, data sharing and a flat collaborative structure encourage the development of tools that enable scientific insights from these data. Here we provide a cross-section of scientific advances derived from global-scale analyses in GLEON. We document enhancements to science capabilities made possible by the development of analytical tools and highlight opportunities to expand this framework to benefit other environmental networks.
Guilak, Farshid
2017-03-21
We are currently in one of the most exciting times for science and engineering as we witness unprecedented growth in our computational and experimental capabilities to generate new data and models. To facilitate data and model sharing, and to enhance reproducibility and rigor in biomechanics research, the Journal of Biomechanics has introduced a number of tools for Content Innovation to allow presentation, sharing, and archiving of methods, models, and data in our articles. The tools include an Interactive Plot Viewer, 3D Geometric Shape and Model Viewer, Virtual Microscope, Interactive MATLAB Figure Viewer, and Audioslides. Authors are highly encouraged to make use of these in upcoming journal submissions. Copyright © 2017 Elsevier Ltd. All rights reserved.
New V and V Tools for Diagnostic Modeling Environment (DME)
NASA Technical Reports Server (NTRS)
Pecheur, Charles; Nelson, Stacy; Merriam, Marshall (Technical Monitor)
2002-01-01
The purpose of this report is to provide correctness and reliability criteria for verification and validation (V&V) of Second Generation Reusable Launch Vehicle (RLV) Diagnostic Modeling Environment, describe current NASA Ames Research Center tools for V&V of Model Based Reasoning systems, and discuss the applicability of Advanced V&V to DME. This report is divided into the following three sections: (1) correctness and reliability criteria; (2) tools for V&V of Model Based Reasoning; and (3) advanced V&V applicable to DME. The Executive Summary includes an overview of the main points from each section. Supporting details, diagrams, figures, and other information are included in subsequent sections. A glossary, acronym list, appendices, and references are included at the end of this report.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-01
... an improved understanding of methodological challenges associated with integrating existing tools and... methodological challenges associated with integrating existing tools (e.g., climate models, downscaling... sensitivity to methodological choices such as different approaches for downscaling global climate change...
Logic Models: A Tool for Designing and Monitoring Program Evaluations. REL 2014-007
ERIC Educational Resources Information Center
Lawton, Brian; Brandon, Paul R.; Cicchinelli, Louis; Kekahio, Wendy
2014-01-01
introduction to logic models as a tool for designing program evaluations defines the major components of education programs--resources, activities, outputs, and short-, mid-, and long-term outcomes--and uses an example to demonstrate the relationships among them. This quick…
CDPP Tools in the IMPEx infrastructure
NASA Astrophysics Data System (ADS)
Gangloff, Michel; Génot, Vincent; Bourrel, Nataliya; Hess, Sébastien; Khodachenko, Maxim; Modolo, Ronan; Kallio, Esa; Alexeev, Igor; Al-Ubaidi, Tarek; Cecconi, Baptiste; André, Nicolas; Budnik, Elena; Bouchemit, Myriam; Dufourg, Nicolas; Beigbeder, Laurent
2014-05-01
The CDPP (Centre de Données de la Physique des Plasmas, http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of plasma data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (http://amda.cdpp.eu/) which enables in depth analysis of large amount of data through dedicated functionalities such as: visualization, conditional search, cataloguing, and 3DView (http://3dview.cdpp.eu/) which provides immersive visualisations in planetary environments and is further developed to include simulation and observational data. Both tools implement the IMPEx protocol (http://impexfp7.oeaw.ac.at/) to give access to outputs of simulation runs and models in planetary sciences from several providers like LATMOS, FMI , SINP; prototypes have also been built to access some UCLA and CCMC simulations. These tools and their interaction will be presented together with the IMPEx simulation data model (http://impex.latmos.ipsl.fr/tools/DataModel.htm) used for the interface to model databases.
A remote sensing computer-assisted learning tool developed using the unified modeling language
NASA Astrophysics Data System (ADS)
Friedrich, J.; Karslioglu, M. O.
The goal of this work has been to create an easy-to-use and simple-to-make learning tool for remote sensing at an introductory level. Many students struggle to comprehend what seems to be a very basic knowledge of digital images, image processing and image arithmetic, for example. Because professional programs are generally too complex and overwhelming for beginners and often not tailored to the specific needs of a course regarding functionality, a computer-assisted learning (CAL) program was developed based on the unified modeling language (UML), the present standard for object-oriented (OO) system development. A major advantage of this approach is an easier transition from modeling to coding of such an application, if modern UML tools are being used. After introducing the constructed UML model, its implementation is briefly described followed by a series of learning exercises. They illustrate how the resulting CAL tool supports students taking an introductory course in remote sensing at the author's institution.
Detection of Cutting Tool Wear using Statistical Analysis and Regression Model
NASA Astrophysics Data System (ADS)
Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin
2010-10-01
This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.
NASA Astrophysics Data System (ADS)
Kong, D.; Donnellan, A.; Pierce, M. E.
2012-12-01
QuakeSim is an online computational framework focused on using remotely sensed geodetic imaging data to model and understand earthquakes. With the rise in online social networking over the last decade, many tools and concepts have been developed that are useful to research groups. In particular, QuakeSim is interested in the ability for researchers to post, share, and annotate files generated by modeling tools in order to facilitate collaboration. To accomplish this, features were added to the preexisting QuakeSim site that include single sign-on, automated saving of output from modeling tools, and a personal user space to manage sharing permissions on these saved files. These features implement OpenID and Lightweight Data Access Protocol (LDAP) technologies to manage files across several different servers, including a web server running Drupal and other servers hosting the computational tools themselves.
A model for flexible tools used in minimally invasive medical virtual environments.
Soler, Francisco; Luzon, M Victoria; Pop, Serban R; Hughes, Chris J; John, Nigel W; Torres, Juan Carlos
2011-01-01
Within the limits of current technology, many applications of a virtual environment will trade-off accuracy for speed. This is not an acceptable compromise in a medical training application where both are essential. Efficient algorithms must therefore be developed. The purpose of this project is the development and validation of a novel physics-based real time tool manipulation model, which is easy to integrate into any medical virtual environment that requires support for the insertion of long flexible tools into complex geometries. This encompasses medical specialities such as vascular interventional radiology, endoscopy, and laparoscopy, where training, prototyping of new instruments/tools and mission rehearsal can all be facilitated by using an immersive medical virtual environment. Our model recognises and uses accurately patient specific data and adapts to the geometrical complexity of the vessel in real time.
Data and Tools - Alphabetical Listing | NREL
Climate Action Planning Tool Community Solar Scenario Tool Comparative PV Levelized Cost of Energy (LCOE Design Response Toolbox WEC-Sim: Wave Energy Converter Simulator West Associates Solar Monitoring Network Design and Engineering Model
Advanced surface design for logistics analysis
NASA Astrophysics Data System (ADS)
Brown, Tim R.; Hansen, Scott D.
The development of anthropometric arm/hand and tool models and their manipulation in a large system model for maintenance simulation are discussed. The use of Advanced Surface Design and s-fig technology in anthropometrics, and three-dimensional graphics simulation tools, are found to achieve a good balance between model manipulation speed and model accuracy. The present second generation models are shown to be twice as fast to manipulate as the first generation b-surf models, to be easier to manipulate into various configurations, and to more closely approximate human contours.
Recent Advances in Algal Genetic Tool Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Dahlin, Lukas; T. Guarnieri, Michael
The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less
Recent Advances in Algal Genetic Tool Development
R. Dahlin, Lukas; T. Guarnieri, Michael
2016-06-24
The goal of achieving cost-effective biofuels and bioproducts derived from algal biomass will require improvements along the entire value chain, including identification of robust, high-productivity strains and development of advanced genetic tools. Though there have been modest advances in development of genetic systems for the model alga Chlamydomonas reinhardtii, progress in development of algal genetic tools, especially as applied to non-model algae, has generally lagged behind that of more commonly utilized laboratory and industrial microbes. This is in part due to the complex organellar structure of algae, including robust cell walls and intricate compartmentalization of target loci, as well asmore » prevalent gene silencing mechanisms, which hinder facile utilization of conventional genetic engineering tools and methodologies. However, recent progress in global tool development has opened the door for implementation of strain-engineering strategies in industrially-relevant algal strains. Here, we review recent advances in algal genetic tool development and applications in eukaryotic microalgae.« less
Examining the Effect of the Die Angle on Tool Load and Wear in the Extrusion Process
NASA Astrophysics Data System (ADS)
Nowotyńska, Irena; Kut, Stanisław
2014-04-01
The tool durability is a crucial factor in each manufacturing process, and this also includes the extrusion process. Striving to achieve the higher product quality should be accompanied by a long-term tool life and production cost reduction. This article presents the comparative research of load and wear of die at various angles of working cone during the concurrent extrusion. The numerical calculations of a tool load during the concurrent extrusion were performed using the MSC MARC software using the finite element method (FEM). Archard model was used to determine and compare die wear. This model was implemented in the software using the FEM. The examined tool deformations and stress distribution were determined based on the performed analyses. The die wear depth at various working cone angles was determined. Properly shaped die has an effect on the extruded material properties, but also controls loads, elastic deformation, and the tool life.
Tool Wear Monitoring Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.